Министерство науки и высшего образования Российской федерации

ТОМСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ СИСТЕМ УПРАВЛЕНИЯ И РАДИОЭЛЕКТРОНИКИ

С.Н. Шарангович

МУЛЬТИПЛЕКСОРНОЕ И УСИЛИТЕЛЬНОЕ ОБОРУДОВАНИЕ МНОГОВОЛНОВЫХ ОПТИЧЕСКИХ СИСТЕМ ПЕРЕДАЧИ

Учебное пособие

Издание четвертое, дополненное

Рекомендовано Сибирским региональным отделением учебно-методического объединения высших учебных заведений РФ по образованию в области радиотехники, электроники, биомедицинской техники и автоматизации для межвузовского использования в качестве учебного пособия для студентов, обучающихся по направлениям подготовки 11.03.01 «Радиотехника», 11.03.02 «Инфокоммуникационные технологии и системы связи»

> Томск ТУСУР 2022

УДК 621.372.8.029(075.8) ББК 32.845.7я73 Ш 25

Рецензенты:

Горлов Н.И., д-р техн. наук, проф., зав. каф. линий связи Сиб. гос. ун-та телекоммуникаций и информатики;

Коханенко А.П., д-р физ.-мат. наук, проф. каф. квантовой электроники и оптоинформатики Томск. гос. ун-та.

Шарангович С.Н.

Ш 25 Мультиплексорное и усилительное оборудование многоволновых оптических систем передачи: учеб. пособие/ С.Н.Шарангович.. 4-е изд., доп.– Томск: Томск. гос. ун-т систем упр. и радиоэлектроники, 2022. – 124 с.

ISBN 5-56889-319-0

Излагаются принципы оптического мультиплексирования и усиления в многоволновых волоконно-оптических системах передачи. Рассматриваются основы построения и расчета мультиплексоров на интерференционных, дифракционных и волноводных структурах, оптических усилителей на допированных оптических волокнах. Представлены методические материалы к лабораторному практикуму по курсу «Мультиплексорное оборудование оптических цифровых систем связи». Даны описания компьютерных лабораторных работ и руководств по компьютерному моделированию оптических мультиплексоров и усилителей.

Предназначено для студентов технических вузов, обучающихся направлению 11.03.02 «Инфокоммуникационные технологии и системы связи» (дисциплина «Мультиплексорное оборудование оптических цифровых систем связи») и направлению 11.03.01 «Радиотехника» (дисциплина «Оптические устройства в радиотехнике»).

> УДК 621.372.8.029(075.8) ББК 32.845.7я73

> > © Томск. гос. ун-т систем упр. и радиоэлектроники, 2022
> > © Шарангович С.Н, 2022

ISBN 5-56889-319-0

Оглавление

Введение	4
1 МНОГОВОЛНОВЫЕ ВОСП	5
1.1 Структура многоволновых ВОСП	5
1.2. Частотный план ITU-Т	7
1.3 Оптические усилители	8
1.3.1 Классификация по способу применения и физическим принципам работы	8
1.3.2 Полупроводниковые оптические усилители	10
1.3.3 Усилители на допированном волокне	12
1.3.4 Нелинейные оптические усилители	14
1.3.5 Методы стабилизации коэффициента усиления	18
1.4 Оптические мультиплексоры	21
1.4.1 Функциональные принципы построения	21
1.4.2 Физические принципы построения	22
1.4.3 Технические и функциональные параметры	26
1.5 Характеристики мультиплексорного и усилительного оборудования основных	
производителей WDM ВОСП	29
1.5.1 Оборудование «Пуск»	30
1.5.2 Оборудование OptiX BWS 320G	31
1.5.3 Оборудование SpectralWave 40/80 DWDM System (NEC)	33
1.5.4 Оборудование Alcatel 1640WM (Alcatel)	33
1.5.5 Сравнительные характеристики оборудования	33
2 МУЛЬТИПЛЕКСОРНОЕ И УСИЛИТЕЛЬНОЕ ОБОРУДОВАНИЕ ВОСП С СР	35
2.1 Многоволновые оптические усилители EDFA	35
2.1.1 Принцип действия и схемы накачки EDFA	35
2.1.2 Основные технические параметры и характеристики EDFA	37
2.1.3 Математическая модель многоволнового EDFA	39
2.1.4 Характеристики и структура оборудования промышленных оптических	
усилителей EDFA	44
2.2 Мультиплексоры на интерференционных фильтрах	46
2.2.1 Принципы действия и структура мультиплексора	46
2.2.2 Расчет основных характеристик	49
2.2.3 Характеристики и структура оборудования промышленных мультиплек-	54
соров	
2.3 Мультиплексоры на фильтрах Фабри — Перо	56
2.3.1 Принцип действия и структура мультиплексора	56
2.3.2 Расчет основных характеристик	57
2.4 Мультиплексоры на голографических дифракционных решетках	59
2.4.1 Принцип действия и структура мультиплексора	59
2.4.2 Математическая модель	61
2.4.3 Расчет основных оценочных характеристик	67
2.5. Мультиплексоры на основе AWG.	68
2.5.1 Принципы действия и структура мультиплексора	68
2.5.2 Математическая модель	69
2.5.3. Расчет основных оценочных характеристик	75
2.5.4 Характеристики и структура промышленных мультиплексров	76
3 ЛАБОРАТОРНЫЙ ПРАКТИКУМ	79
3.1 Лабораторная работа № 1. Оптические многоволновые EDFA усилители	79
3.2 Лабораторная работа № 2. Демультиплексоры на интерференционных и	81

Фабри— Перо фильтрах	
3.3 Лабораторная работа № 3. Демультиплексоры на голографических дифракци-	85
онных структурах	
3.4 Лабораторная работа № 4. Демультиплексоры на основе массива планарных	86
Волноводов	
4 ПРОГРАММНОЕ ОБЕСПЕЧЕНИЕ ЛАБОРАТОРНОГО ПРАКТИКУМА	89
4.1 Моделирование оптических многоволновых EDFA усилителей	89
4.2 Моделирование оптических демультиплексоров на тонкопленочных и Фабри	
— Перо фильтрах	92
4.3 Моделирование оптических демультиплексоров на голографических дифрак-	
ционных структурах	99
4.4. Моделирование оптических демультиплексоров на основе массива планар-	
ных волноводов	104
Литература	112
Приложение РД 45.286-2002 Аппаратура волоконно-оптической системы передачи	115
со спектральным разделением. Технические требования	
Список основных сокращений и обозначений	121
-	

Введение

Технология волнового оптического мультиплексирования (WDM/ DWDM) позволяет осуществить передачу информации терабитных объемов со скоростями, достигающими 100 Гбит/сек, и в настоящее время широко внедряется от глобальных до локальных оптических сетей связи. Возможность передачи большого количества информации по волоконнооптическим линиям связи (ВОЛС) связана с использованием технологии спектрального уплотнения, где передача информации по волокну ведется одновременно на разных длинах волн. При этом введение информационных оптических сигналов с различающимися длинами волн в ВОЛС осуществляется с помощью оптических мультиплексоров (MUX) на передаче, а выведение на приеме — при помощи демультиплексоров (DMUX). Необходимым элементом мультиплексорного оборудования WDM-систем является оптические усилители. Достаточно высокий (20-25 дБ) коэффициент усиления EDFA-усилителя позволяет компенсировать потери, вносимые мультиплексорами, демультиплексорами, ВОЛС и другими пассивными элементами. В настоящее время телекоммуникационное оборудование WDM-систем включает широкий спектр усилительного и мультиплексорного оборудования, представленного на рынке. Однако в известной учебной литературе вопросы, в полной мере охватывающие физические принципы построения, методы расчета и моделирования характеристик WDMмультиплексоров и многоволновых усилителей, освещены недостаточно.

В данном учебном пособии первый раздел посвящен изложению принципов оптического мультиплексирования и усиления в многоволновых волоконно-оптических системах передачи. Во-втором разделе рассматриваются основы построения и расчета мультиплексоров на интерференционных, дифракционных и волноводных структурах, оптических усилителей на допированных оптических волокнах. Приводятся сведения по структуре и параметрам промышленного усилительного и мультиплексорного оборудования. В третьем разделе представлены методические материалы к лабораторному практикуму по курсу «Мультиплексорное оборудование оптических цифровых систем связи». В четвертом разделе даны описания компьютерных лабораторных работ и руководств по компьютерному моделированию оптических мультиплексоров и усилителей.

Пособие предназначено для студентов технических вузов старших курсов, обучающихся по направлению 11.03.02 «Инфокоммуникационные технологии и системы связи» (дисциплина «Мультиплексорное оборудование оптических цифровых систем связи») и направлению 11.03.01 «Радиотехника» (дисциплина «Оптические устройства в радиотехнике»)

1 МНОГОВОЛНОВЫЕ ВОСП

1.1 Структура многоволновых ВОСП

Волоконно-оптической системой передачи (ВОСП) называется совокупность оптических устройств и оптических линий передачи для создания, обработки и передачи оптических сигналов. При этом оптическим сигналом служит модулированное оптическое излучение лазера или светодиода [1-8].

Один из наиболее перспективных методов увеличения коэффициента использования пропускной способности оптического волокна — спектральное уплотнение, или WDM (Wavelength Division Multiplexing). Суть метода состоит в том, что *m* информационных цифровых потоков, переносимых каждый на своей оптической несущей на длине волны λ_m и разнесенных в пространстве с помощью специальных устройств — оптических мультиплексоров (MUX) — объединяются в один оптический поток $\lambda_1 \dots \lambda_m$, который вводится в оптическое линейное волокно, входящее в состав оптического кабеля [7]. На приемной стороне производится обратная операция демультиплексирования (DMUX).

Структурная схема ВОСП-WDM, соответствующая рекомендации G.692 МСЭ-Т, приведена на рис. 1.1 [14].

На рисунке:

 Tx_i и Rx_i (*i* = 1, 2,...,*n*) — передающие и приемные транспондеры (приемопередатчики) каждого канала *N*-канальной ВОСП-WDM;

ОМ — оптический мультиплексор;

ОА — оптический усилитель;

OD — оптический демультиплексор;

R_{ті} — контрольные точки (интерфейсы) на входе передающих транспондеров;

S_{Ti} — контрольные точки на выходах приемных транспондеров;

 S_i — контрольные точки на OB, на выходах оптических соединителей (OC) передающих транспондеров, соответственно для каналов *i*;

 R_{Mi} — контрольные точки на OB непосредственно перед блоком OM/BOA, на входе OC, соответственно для каналов *i*;

MPI-S — контрольная точка (интерфейс) на ОВ сразу после блока ОМ/ВОА на выходе ОС;

S' — контрольная точка сразу после линейного оптического усилителя LOA на выходе ОС;

R' — контрольная точка на OB перед линейным оптическим усилителем, на входе OC;

MPI-R — контрольная точка (интерфейс) на OB перед оптическим усилителем POA на входе оптического демодулятора (OD), на входе OC;

 S_{Di} — контрольные точки на выходе блока OA/OD, на выходе OC;

OSC — точки подключения оптического служебного канала;

ОАDМ — мультиплексор ввода-вывода оптических каналов;

S, R — интерфейсы на выходе передатчиков и входе приемников аппаратуры STM-N (обычно *N*=16, либо 64), или ATM.

Рис. 1.1 — Структурная схема волоконно-оптической системы связи со спектральным уплотнением каналов [4]: — оптические соединители

Как видно из рис. 1.1, структурная схема ВОСП-WDM содержитоптический передатчик (TX), оптический приемник (RX) и главный оптический тракт (OP).

Оптический передатчик содержит канальные приемопередатчики (транспондеры) $Tx_1 \div Tx_n$, которые, в частности, преобразуют длину волны STM-N (или ATM) λ_0 в длины волн спектра каналов λ_i . На выходе Tx_j образуется канальный сигнал, спектр которого соответствует скорости передачи STM-N. Канальные сигналы, а, следовательно, и их спектры объединяются с помощью оптического мультиплексора (OM), на выходе которого образуется групповой сигнал, спектр которого содержит суммарный спектр канальных сигналов:

$$\Delta f_{\tilde{a}\tilde{n}} = \Delta f_{\hat{e}\tilde{n}} + (n-1)\Delta f_{\hat{i} \div \tilde{o}},$$

где $\Delta f_{\tilde{a}\tilde{n}}$ — спектр группового сигнала; $\Delta f_{\kappa c}$ — спектр канального сигнала; $\Delta f_{\mu v p}$ — номинальное частотное разнесение каналов (НЧР).

Групповой сигнал усиливается оконечным оптическим усилителем ВОА (бустер), с помощью которого в интерфейсе MPI-S устанавливается необходимая общая средняя мощность линейного сигнала *P*_{лс}.

Главный оптический тракт (OP) содержит линейные оптические усилители (LOA), компенсирующие затухание, вносимое участками оптических волокон длиной $l_1 - l_k$. Вместо

любого из усилителей может быть включен мультиплексор ввода/вывода каналов OADM с такими же интерфейсами R' и S', как и у оптического усилителя.

Приемник (RX) содержит предварительный оптический усилитель (POA), усиливающий линейный сигнал, демультиплексор (DM), разделяющий групповой сигнал на канальные сигналы, приемные транспондеры Rx_{j} , преобразующие длины волн λ_i , в длину волны λ_0 , соответствующую STM-N или ATM.

Оптический служебный канал (OSC) организуется на длине волны, лежащей вне диапазона спектра WDM. OSC вводится и выводится как в оптических передатчике и приемнике, так и линейных усилителях, и мультиплексорах ввода/вывода (OADM) оптического тракта.

1.2. Частотный план ITU-Т

Оптические параметры систем WDM регламентируются рекомендациями G.692, в которых определены длины волн и оптические частоты для каждого канала. Согласно этим рекомендациям, многоволновые системы передачи работают в 3-м окне прозрачности OB, т.е. в диапазоне длин волн 1530...1565 нм. Для этого установлен стандарт длин волн, представляющий собой сетку оптических частот, в которой расписаны регламентированные значения оптических частот 196,1 ТГц до 192,1 ТГц с интервалами 100 ГГци длины волн от 1528,77 до 1560,61 нм с интервалом 0,8 нм. Однако в последнее время установилась четкая тенденция уменьшения частотного интервала между спектральными каналами до 50 и даже 25 ГГц, что приводитк более плотному расположению спектральных каналов в отведенном диапазоне длин волн (1530...1565 нм). Такое уплотнение получило азвание плотного волнового уплотнения, или DWDM (Dense Wavelength Division Multiplexing). Частотный план ITU-T WDM представлен в таблице.

Harran TE	Интервал, ГГц						Π
частота, п ц	100	200	400	400/500	600	1000	длинна волны, нм
196,1	٠	•					1528,77
196,0	•						1529,55
195,9	٠	٠					1530,33
195,8	•						1531,12
195,7	•	٠					1531,90
195,6	•						1532,68
195,5	•	٠			•	٠	1533,47
195,4	•						1534,25
195,3	•	٠		•			1535,04
195,2	•						1535,82
195,1	٠	٠					1536,61
195,0	•						1537,40
194,9	•	٠			•		1538,19
194,8	٠			•			1538,98
194,7	•	٠					1539,77
194,6	•						1540,56
194,5	٠	٠				•	1541,35
194,4	•						1542,14
194,3	٠	٠		•	•		1542,94
194,2	•						1543,73
194,1	٠	٠					1544,53
194,0	•						1545,32
193,9	•	•	•	•			1546,12
193,8	•						1546,92
193,7	•	•	•		•		1547,72
193,6	٠						1548,51
193,5	•	•	•			•	1549,32
193,4	•			•			1550,12
193,3	•	•	•				1550,92
193,2	•						1551,72

Частотный план ITU-Т WDM по рекомендации МСЭ-Т G.692

193,1	•	٠	•		•		1552,52
193,0	•			•			1553,33
192,9	•	•	•				1554,13
192,8	•						1554,94
192,7	•	٠	•				1555,75
192,6	•						1556,55
192,5	•	•	•	•	•	•	1557,36
194,4	•						1558,17
192,3	•	•	•				1558,98
192,2	•						1559,79
192,1	•	•		•			1560,61

Частотные план ITU-T DWDM (рек. МСЭ-Т G.694.1) и CWDM (рек. МСЭ-Т G.694.2) приведены в табл.7 и 8 Приложения.

1.3 Оптические усилители

1.3.1 Классификация по способу применения и физическим принципам работы

В зависимости от области использования оптические усилители делятся на предварительные, линейные и усилители мощности (рис. 1.2) [1,7,9,10,16].

Предварительные усилители (предусилители) устанавливаются непосредственно перед приемником регенератора и способствуют увеличению отношения сигнал/шум на выходе электронного каскада усиления в оптоэлектронном приемнике. Оптические предусилители часто используются в качестве замены дорогих когерентных оптических приемников.

Рис. 1.2 — Применение оптического усилителя

Линейные усилители устанавливаются в протяженных линиях связи между регенераторами или на выходе оптических разветвителей с целью компенсации ослабления сигнала, происходящего ввиду затухания в оптическом волокне или в оптических разветвителях, ответвителях и мультиплексорах WDM. Линейные усилители заменяют оптоэлектронные регенераторы, когда нет необходимости в точном восстановлении сигнала.

Усилители мощности (бустеры) устанавливаются непосредственно после лазерных передатчиков для дополнительного усиления сигнала до уровня, который не может быть достигнут на основе лазерного диода. Бустеры могут также устанавливаться перед оптическим разветвителем, например при передаче нисходящего трафика в гибридных волоконнокоаксиальных сетях кабельного телевидения.

В табл. 1.1 указана степень значимости параметров EDFA в зависимости от типа усилителя.

Усиление света в оптических системах осуществляется за счет энергии внешнего источника. Основой усилителя является активная физическая среда, в которой за счет энергии стороннего источника подкачки происходит увеличение мощности излучения информационного сигнала. В качестве активной среды применяются полупроводниковые среды или волокно, допированное различными примесями. В качестве примесей чаще всего встречаются редкоземельные металлы: эрбий (Er), неодим (Nd), празеодим (Pr) и тулий (Tm). Накачка этих сред осуществляется непрерывно или импульсно. При усилении может происходить преобразование спектра входного сигнала, т.е. выходной сигнал может быть смещен в частотном диапазоне [5].

Таблица 1.1

	-		
Параметр	Прелисилитени	Линейный	Усилитель
Параметр	предусилитель	усилитель	мощности
Коэффициент усиления G	высокий *	средний	низкий
Коэффициент шума NF	низкий	средний *	низкий
Мощность насыщения <i>P_{out sut}</i>	низкая	средняя	высокая *
Нелинейность **	низкая	низкая	низкая
Полоса усиления	узкая	широкая	широкая

Сравнительный анализ параметров трех типов ОА

* — указан наиболее значимый параметр;

** — нелинейность охватывает совокупность характеристик: зависимость G от P_{in} , поляризационную чувствительность, поперечные помехи между каналами

К оптическим усилителям предъявляется ряд требований:

- высокий коэффициент усиления в заданном диапазоне оптических частот;
- малые собственные шумы;
- нечувствительность к поляризации;
- хорошее согласование с волокном;
- минимальные нелинейные и линейные искажения оптических сигналов;
- большой динамический диапазон входных сигналов;
- широкая полоса усиления для ВОСП-СР;

Этим требованиям в наибольшей степени отвечают полупроводниковые и волоконные усилители, настроенные на стандартные три окна прозрачности волокна: 0,85; 1,31 и 1,55 мкм.

Существуют три основных типа оптического усилителя, используемые в ВОСП-СР: полупроводниковые усилители, усилители на допированном волокне и рамановские усилители (рис. 1.3). В отличие от остальных оптических усилителей полупроводниковые усилители могут быть спроектированы для любой длины волны, где работают лазеры в составе передающих оптических модулей.

Рис. 1.3 — Классификация оптических усилителей

1.3.2 Полупроводниковые оптические усилители

Полупроводниковые усилители (OSA — Optical Semiconductor Amplifier) работают на основе хорошо известных принципов полупроводниковых лазерных диодов и осуществляются, как правило, по двум схемам:

–резонансные усилители, в которых эффект усиления и отсутствие лазерной генерации обеспечивается за счет того, что уровень постоянного тока накачки в рабочем режиме выбирается ниже порогового значения;

-усилители бегущей волны, в которых эффект оптического усиления наблюдается при распространении входного излучения в инверсной среде активного слоя с просветленными гранями.

Возбуждение в обоих типах OSA достигается внешней электрической накачкой.

OSA с резонатором Фабри — **Перо** (OSA-FP) являются разновидностью резонансных OSA. OSA-FP состоит из усиливающей среды, заключенной в плоский резонатор с зеркальными полупрозрачными стенками. OSA-FP обеспечивают высокий коэффициент усиления (до 25 дБ) в очень узком (1,5 ГГц), но широко перестраиваемом (800 ГГц) спектральном диапазоне (рис. 1.4,*a*). Кроме этого, эти устройства не чувствительны к поляризации сигнала и характеризуются сильным подавлением боковых составляющих (ослабление на 20 дБ за пределами интервала в 5 ГГц). В силу своих характеристик, усилители Фабри — Перо идеально подходят для работы в качестве демультиплексоров, поскольку они могут всегда быть перестроены для усиления одной определенной длины волны одного канала из входного многоканального WDM-сигнала [42].

Рис. 1.4 — Схема построения полупроводниковых усилителей

Усилитель бегущей волны (OSA-TW) — полупроводниковый усилитель, ограничивающие поверхности которого покрыты антиотражающим покрытием (рис. $1.4, \delta$). В последнее время OSA-TW стал доминировать в группе OSA.

OSA-TW состоит из центральной активной секции около 600 и двух пассивных секций по 100 мкм длиной. Центральный слой представляет собой раздельную удерживающую гетероструктуру и состоит из объемного активного слоя толщиной 0,2 мкм, заключенного между двух четвертьволновых слоев по 0,1 мкм. Активный слой сужается на длине 150 мкм, что обеспечивает оптическое согласование с основным пассивным волноводом. Такой тип структуры обеспечивает высокий коэффициент локализации вследствие разницы между показателями преломления слоев в широкой области и увеличенный точечный размер на торцах для увеличения коэффициента согласования с волокном.

Усилители бегущей волны могут быть реализованы с достаточно большим коэффициентом усиления (около 30 дБ) и широкой полосой (около 5–10 ТГц). Для этого необходимо подавление возможных отражений фотонов от торцов (отражение менее 0,1 %). Для дополнительного снижения коэффициента отражения используют наклонный активный слой или дополнительные грани [5].

Полупроводниковые усилители имеют ряд недостатков, которые делают их использование непрактичным в качестве линейного усилителя. Среди этих недостатков можно отметить чувствительность к поляризации, большие потери при вводе в волокно, переходные помехи между каналами.

Первый недостаток является очень существенным, т.к. коэффициент усиления OSA в зависимости от направления поляризации может отличаться на 4–8 дБ для двух ортогональных поляризаций. Так как в стандартном одномодовом волокне поляризация распространяемого светового сигнала не контролируется, поэтому коэффициент усиления OSA зависит от неконтролируемого фактора. Можно уменьшить эту зависимость от поляризации путем установки двух OSA. Возможно как параллельное (требуется пара разветвителей), так и последовательное их подключение, но это приводит к усложнению конструкции и росту стоимости конечного продукта.

Второй недостаток OSA обусловлен тем, что светоизлучающий активный слой имеет поперечный размер несколько микрон, а толщину — в пределах одного микрона, что много меньше, чем диаметр светонесущей части оптического одномодового волокна (8–10 мкм). Вследствие этого большая часть светового потока из входящего волокна не попадает в активную область и теряется, что уменьшает КПД усилителя. Увеличить КПД можно, поставив между входящим волокном и активной средой линзу, что приводит к усложнению конструкции.

Два приведенных недостатка нивелируются в тех случаях, когда OSA интегрирован с другими оптическими устройствами. Именно так преимущественно и используются OSA. Одна из возможностей интеграции — производство совмещенного светоизлучающего лазерного диода, непосредственно на выходе которого устанавливается OSA.

В табл. 1.2 приведены типовые параметры OSA [5].

Таблица 1.2

			1					
Параметры		Окна прозрачности, мкм						
	0,82–0,85		1,28–1,33		1,53–1,56			
		Химическое соединение						
	AlGaAs/GaAs		InGaAsP/InP		AlGaAsPSb/GaSb			
Назначение усили- теля	предвари- тельный	мощно- сти	предва- ритель- ный	мощнсти	предва- ритель- ный	мощности		
Коэффициент	35–40	10–15	33	12–16	20-27	10–12		

Типовые параметры OSA

усиления, дБм						
Полоса частот усиления, ТГц	200–250	200–250	60–90	60–90	30–50	30–50
Мощность накач- ки, мВт	100–150	100–150	45–50	80–150	50–70	80–200
Ток накачки, мА	_	_	80–400	_	80–400	80–400
Потребляемая мощность, Вт	1,5	1,5	1,5	2,5	1,5	

OSA могут использоваться во всех трех схемах применения (см. рис. 1.2). Одним из главных преимуществ OSA перед EDFA является возможность их работы во всех трех окнах прозрачности кварцевого волокна.

Когда OSA используется в качестве предусилителя, выходной уровень сигнала, подаваемый на оптический приемник, оказывается таким большим, что характеристики приемника ограничиваются уровнем дробового шума. Относительно высокий коэффициент шума (порядка 5–7 дБ) типового OSA делает его использование в качестве предусилителя нежелательным. Но даже в этом случае OSA могут значительно улучшить чувствительность приемника.

Если OSA используется в качестве усилителя мощности, его выходная мощность ограничена обычно на уровне 10 мВт. Это объясняется его относительно малой (примерно 5 мВт) выходной мощностью насыщения.

1.3.3 Усилители на допированном волокне

История усилителей на допированном волокне (DFA — Doped Fiber Amplifier) восходит к 1960 годам, когда впервые был продемонстриро-ван оптический усилитель на стеклянном волокне с покрытием из ниодима с рабочей длиной волны 1,06 мкм. По прошествии ряда лет было выполнено объединение физических принципов, положенных в основу работы одномодового стеклянного волокна и полупроводникового лазера, и создавались условия для появления DFA на 1,55 мкм в 1987 г. [13].

Как видно из названия усилитель на допированном волокне основан, на оптическом волокне с примесью редкоземельного материала, в основном эрбия Ег. Длина допированного волокна, как правило, колеблется от 20 до 100 м. DFA получили наибольшее распространение в ВОСП-СР. Это связано с рядом их неоспоримых достоинств по сравнению с остальными ОА:

- простотой конструкции;
- высокой надежностью;
- большими коэффициентами усиления;
- малыми шумами;
- широкой полосой усиления;
- нечувствительностью к поляризации усиливаемого сигнала и т.д.

Принцип действия DFA основан на эффекте возбуждения посредством внешней накачки атомов редкоземельного материала, помещенных в сердцевину обычного одномодового стекловолокна. Редкоземельные металлы выбраны таким образом, чтобы имелись зоны поглощения внешней энергии и создавалась инверсная населенность, которая приводит к спонтанной и вынужденной люминесценции. При этом вынужденное свечение обусловлено входным сигналом и совпадает с ним по длине волны.

Наиболее подходящими для DFA считаются редкоземельные празео-дим Pr, неодим Nd, эрбий Er, тулий Tm, совместно эрбий Er и иттрий Y, а также гольмий, самарий, таллий. Они позволяют создать DFA, работающий на различных длинах волн от 500 до 3500 нм [11,12,42].

Наибольшее распространение среди DFA получили эрбиевые усилители EDFA (Erbium Doped Fiber Amplifier).

Функциональная схема DFA приведена на рисунке 1.5.

Рис. 1.5 — Функциональная схема DFA

Для того, чтобы волокно стало усиливающей средой, оно накачивается излучением λ_p от отдельного лазера. При этом возможны как прямая (сонаправленная) и встречная (противонаправленная) накачка от одного лазера, так и двусторонняя накачка (прямая + встречная) от двух лазеров. Система контроля усиления управляет током накачки лазера благодаря обратной связи, устанавливаемой через делитель мощности. Усиливаемый сигнал λ_s и накачка λ_p объединяются в мультиплексоре и направляются в оптическое волокно с примесью, где происходит увеличение мощности сигнала. Большая часть мощности усиленного сигнала (95%) проходит через фильтр на выход. Фильтр отсекает накачку λ_p и шумы вне полосы частот сигнала. Оптический изолятор исключает прохождение отраженных в усилителе сигналов во входящее волокно.

Усилитель на волокне, легированном эрбием (EDFA) является одним из наиболее практичных, однако его применение ограничено окном прозрачности 1550 нм. Усиление в EDFA происходит по всей длине волокна, легированного редкоземельным металлом эрбием.

Усилитель EDFA состоит из двух активных элементов: активно-го волокна, легированного Er³⁺, и полупроводникового лазера накачки с одной или несколькими из следующих длин волн: 1480, 980, 800, 670 и 521 нм. Для подачи сигнала накачки в волокно требуется, по крайней мере, один разветвитель, селективный к длине волны. Реально используются длины волн 1480 и 980 нм. Это обусловлено рядом причин: эффективностью полупроводниковых лазеров большой мощности, малым затуханием оптического волокна, низкими требованиями к точности длины волны накачки. Для накачки предпочтительно использовать GaAs лазерные диоды, которые достигают эффективности накачки порядка 11 дБ/мВт.

На длине волны 980 нм наблюдаются наименьшие шумы усиления, а на длине волны 1480 нм нет жестких требований к точности настройки. Оптический усилитель с накачкой на длине волны 1480 нм называют двухуровневым, а усилитель с накачкой на длине волны 980 нм — трехуровневым (рис. 1.6).

Рис. 1.6 — Диаграмма энергетических уровней оптического усилителя

Ионы эрбия возбуждаются за счет поглощения энергии излучения лазера накачки (λ_p). Они переходят с основного уровня на более высокие энергетические уровни, а затем — безизлучательно на метастабильный уровень. Одновременно на возбужденные атомы воздействует излучение сигнала λ_c , вызывающее стимулированное излучение на всей длине активного волокна.

В настоящее время на рынке доминируют EDFA, а основные их конкуренты — OSA — до сих пор уступали им дороговизной производства, чувствительностью к поляризации и высоким уровнем перекрестных помех.

Другие усилители типа DFA. Усилитель на кварцевом волокне, легированном эрбием, обеспечивает полосу около 35 нм в окне прозрачности 1550 нм. Однако окно прозрачности волокна с потерями не более 0,25 дБ/км имеет ширину примерно 200 нм. Если же допустить уровень потерь до ве-личины 0,35 дБ/км, то можно рассчитывать на использование системами DWDM-полосы шириной примерно 400 нм. Для использования такой широкой полосы требуются усилители с другими редкоземельными легирующими добавками. Одним из таких усилителей может быть оптический усилитель на теллуритовом волокне, легированном эрбием (EDTFA), который способен расширить полосу усиления до 90 нм [42].

Полезную полосу пропускания в окне 1550 нм можно еще больше расширить, если использовать оптические усилители на фтористом волокне, легированном тулием (TDFFA) или празеодимом (PDFFA). Используя тулиевый усилитель типа TDFFA, можно получить полосу усилителя с 1470 до 1650 нм. Усилитель на волокне, легированном празеодимом, работает в окне прозрачности 1310 нм.

TDFA функционируют по принципу сходному с EDFA. Различие между двумя типами усилителей заключается в используемом редкоземельном элементе (тулий или эрбий) для допирования волокна.

В стандартной схеме TDFA на волокне, допированным высоким содержанием тулия совместно с фторидом или фторзамещеным цирконатом или многокомпонентным силикатом с силикатом сурьмы, показы-вает усиление вблизи 1460 нм. Ширина полосы усиления на уровне 20 дБ приблизительно равна 35 нм. Максимально достижимая полоса усиления может быть на уровне 31 дБ [42].

Волокно, используемое в TDFA, является очень хрупким, что препятствует широкому внедрению тулиевых усилителей. Соединение TDFA с существующей волоконно-оптической сетью осуществляется только с помощью эпоксидного пигтейла, что представляет собой сложную задачу и является дорогостоящим, кроме того приводит к потерям более чем 0,3 дБ.

Волоконно-оптические усилители, легированные тулием (TDFA) для S⁺-полосы (1450– 1480 нм) и S-полосы (1480–1530 нм) являются кандидатами для следующего поколения DFA взамен EDFA для L-полосы.

Специалисты NTT Laboratories (Япония) путем использования специального эквалайзера создали EDTFA с относительно плоской характеристикой в диапазоне 1561–1611 нм, коэффициентом усиления порядка 25 дБ и уровнем шума менее 6 дБ. На основе этого экспериментального образца компания NTT создала впоследствии усилитель типа EDTFA с плоской характеристикой в рабочем диапазоне 1570–1617 нм [42]..

1.3.4 Нелинейные оптические усилители

Существуют два вида оптических усилителей, в которых усиление оптических колебаний происходит в результате рассеяния излучения накачки на атомах вещества, из которого состоит волокно. Усилители работают на основе эффектов Рамана и Мандельштамма — Бриллюэна, возникающих в волокне при большой мощности накачки [5].

Рамановские усилители (RA — Raman Amplifier) строятся на основе стимулированного рамановского рассеяния, возникающего в результате распространения излучения в длинных волокнах. В рамановском усилителе оптические волны сигнала и накачки вводятся в оптоволокно через направленный разветвитель типа WDM (рис. 1.7). Энергия передается от накачки к сигналу благодаря процессу рассеяния Рамана при одновременном их распространении в волокне [5].

Рис. 1.7 — Схема волоконного рамановского оптического усилителя

С точки зрения рассеяния фотонов в твердом теле, различают рэлеевское, бриллюэновское и рамановское рассеяние. В результате рамановского рассеяния фотоны изменяют свою траекторию и отдают часть своей энергии. Рамановский эффект встречается в каждом оптическом волокне. Использование кварцевого волокна в качестве усиливающей среды в рамановском усилителе позволяет избежать сложностей при стыковке с ВОЛС, в отличие от SOA или TDFA. По существу усиление характеризуется длиной волны накачки в полосе от 300 до 2000 нм. Спектр рамановского усиления кварцевого волокна превышает ширину в 40 ТГц со смещенным пиком вблизи 13,2 ТГц (~100 нм). Способность среды усиливать оптический сигнал характеризуется рамановским коэффициентом g_R , величина которого зависит от частоты усиливаемого излучения и от свойств материала. Для кварца максимальное значение g_R сдвинуто относительно частоты излучения накачки на 13 ГГц [43].

Усиление происходит, если и информационный сигнал, и сигнал накачки имеют одинаковую поляризацию. При ортогональной поляризации обоих световых пучков рамановский эффект дает малое усиление.

На ВОЛС используются рамановские усилители двух конфигураций: распределенный (DRA — Distributed Raman Amplifier) (рис. 1.8,a) и дискретный (LRA — Lumped Raman Amplifier) (рис. 1.8, δ).

Сигналы двух ортогонально поляризованных диодов лазерной накачки мультиплексируются и объединяются в WDM для создания встречной накачки в передающем волокне. В результате распространяющийся в прямом направлении сигнал получает рамановское усиление в волокне. Использование встречной накачки уменьшает влияние шума накачки на сигнал.

Выходная характеристика распределенного рамановского усилителя зависит от свойств передающего волокна, таких как поглощение сигнала накачки, эффективная площадь A_{eff} и рамановский коэффициент усиления g_R . Мощность накачки $P_{\rm H}$ на длине волокна L определяется затуханием, вно-симым этой длиной, с коэффициентом затухания на длине волны накачки. Так для компенсации потерь мощности в ОВ на длине $L \square 40$ км от приемной стороны при $g_R \square 4 \square 10^{-14}$ м/Вт, $A_{eff} \square 50$ мкм² достаточно подать накачку $P_p \square 0,5$ Вт [43].

Неравномерность усиления является одним из важных параметров для OA, особенно в системах WDM/DWDM. В случае рамановского усилителя усиление для конкретного сигнала зависит от разности частот сигнала и накачки. Различные сигналы получают различное усиление, зависящее от разности их частоты и частоты накачки. Следовательно любой из диапазонов длин волн будет иметь некоторое колебание уровня усиления. Для уровня накачки 200 мВт в диапазоне С (1530–1560) нм, получается максимальное усиление 7,78 дБ с колебаниями уровня ~ 3,5 дБ.

Величина усиления зависит от мощности накачки и может достигать 30 дБ при мощности накачки до 1,5 Вт на длине волны 1,3 мкм. Для работы усилителя в диапазоне длин волн 1,57–1,58 мкм необходимо осуществлять накачку на волне 1,47 мкм.

Для выравнивания АЧХ, а также расширения полосы усиле-ния следует производить накачку не на одной частоте или длине волны, а на двух-трех длинах волн. Для перекрытия всего диапазона 1530–1570 нм накачка осуществляется от двух лазеров с длинами волн соответственно 1445 и 1462 нм [1]. В настоящее время полупроводниковых лазеров, способных излучать на перечисленных длинах волн мощность более 0,2 Вт, не существует. Однако для получения достаточно высокого коэффициента усиления, мощность излучения накачки должна составлять 0,5–0,8 Вт. Для получения такой мощности излучения на нужных длинах волн используются многокаскадные схемы преобразования излучения от иттербиевых волоконных лазеров в стоксово излучение на требуемой длине волны.

Для накачки распределенного рамановского усилителя, как и в EDFA, в TDFA используются встречная, сонаправленная и двухсторонняя накачка. Необходимо отметить, что в любом из трех вариантов может применяться несколько источников накачки для обеспечения требуемой полосы усиления. На практике применяется схемы со встречной и двухсторонней накачкой, так как они обеспечивают лучшие характеристики. Насыщение усиления (предельное значение коэффициента усиления) обусловлено уменьшением мощности накачки вдоль линии распространения накачки.

Усилитель Рамана может быть использован для увеличения скорости передачи существующих линий с 2,5 до 10 Гбит/с. Широкополосность усилителя превышает 5 ТГц [5].

По сравнению с широко используемыми эрбиевыми усилителями (EDFA), рамановские усилители обладают рядом преимуществ:

- широкий спектр усиления (50...100 нм);
- возможность получения усиления в стандартных OB;
- реализация лучшего отношения сигнал/шум;
- простая конструкция;

• большая, чем у EDFA, эффективность при больших мощностях накачки;

• увеличение числа каналов в существующих линиях связи без замены уже установленных EDFA.

А также следующими недостатками:

• меньшая, чем у EDFA, эффективность при меньших мощностях накачки (неудобство применения при небольшом числе каналов);

- возникновение перекрестной модуляции между усиливаемыми каналами;
- зависимость от поляризации.

Однако в последнее время в литературе появились сообщения о разработке эффективных рамановских усилителей, в которых используются специальные волокна с большим содержанием германия, обладающие низкими оптическими потерями. Этот факт, а также разработка высокоэффективных рамановских лазеров для накачки усилителя будут играть всё возрастающую роль в волоконно-оптических системах связи.

Разработка схем гибридных усилителей (рис. 1.10), включающих распределенный рамановский усилитель и эрбиевый волоконный усилитель,позволила получить равномерное усиление сигналов в полосе 82,8 нм с отклонением не более 3 дБ в пределах заданной полосы [5].

Рис. 1.10 — Структурная схема гибридного оптического усилителя с расширением полосы усиливаемых частот

В табл. 1.3 приведены сравнительные характеристики усилителей мощности на основе трех вышерассмотренных типов.

Таблица 1.3

Характеристики	SOA	ED- FA	LRA
Ширина полосы усиле-	1470	1530	1470–
ния, нм	-1610	-1590	1610
Мощность насыщения, дБм	~ 13	> 20	> 18
Коэффициент усиления, дБ	> 10	> 15	> 10
Шум-фактор, дБм	< 8	< 6	< 6,5
Поляризационная чувствительность, дБ	0,5	0,3	0,3

0					
(nabunteurne	Vanakte	пистики	<u><u><u></u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u></u>	MOULUOCTH
\sim	publimicilibil	ларакте	prict night	y CRIJIRI I CJICRI	мощности
	1			2	

Волоконный усилитель Бриллюэна работает на том же принципе, что и рамановский усилитель, за исключением того, что оптическое уси-ление обеспечивается стимулированным рассеянием Бриллюэна [5]. Он также накачивается оптически, и часть накачиваемой мощности передается сигналу через рассеяние. Физически каждый фотон накачки отдает часть энергии на создание фотона с частотой сигнала, а часть — на создание акустического фотона. Другими словами, волны накачки рассеиваются на акустической волне, движущейся через среду со скоростью звука.

Отметим отличия усиления Бриллюэна от рамановского усиления:

• усиление имеет место только при встречной схеме накачки;

• сдвиг частоты сигнала по отношению к частоте накачки меньше 10 ГГЦ (на три порядка меньше, чем у рамановского усилителя) и зависит от частоты накачки;

• спектр усиления чрезвычайно узкий (полоса усиления менее 100 МГц).

Очень узкий усиливаемый спектр не позволяет применять этот тип усилителя в широкополосных системах передачи. Реальное усиление может достигать 20–30 дБ при величине накачки около 1 мВт.

1.3.5 Методы стабилизации коэффициента усиления

В связи с развитием DWDM-систем в направлении увеличения числа длин волн передачи, возникает необходимость увеличения диапазона длин волн усиления [3]. В настоящее время полоса усиления для EDFA в области 1,55 мкм составляет порядка 35 нм. Однако, имея ввиду, что они имеют плоскую характеристику усиления в области 1,58 и 1,55 мкм, увеличение диапазона может быть достигнуто путем использования обеих полос посредством методов, основанных на использовании:

- EDFA с оптическими фильтрами, выравнивающими усиление;

- двух полос частот усиления EDFA с параллельной конфигурацией;

- каскадного соединения EDFA с частично плоским усилением и усилителя Рамана (см. рис. 1.10).

При выполнении селективного ослабления приходится принимать во внимание то, что энергия на других каналах также перераспределяется. В результате чего оптимизация системы становится сложной итерационной процедурой. Дополнительные сложности возникают, когда битовые скорости добавляемых или устраняемых каналов различны. Например, отношение сигнал / шум для передачи STM-64 (10 Гбит/с) должно быть на 6 дБ больше, чем для передачи STM-16 (2,5 Гбит/с). В последнем случае, дополнительная мощность должна быть добавлена в канал STM-64.

Кроме того, необходимо обеспечить постоянство коэффициента усиления в условиях периодического подключения и отключения части спектральных каналов, что также приводит к изменению суммарной усиливаемой мощности и, в отсутствии стабилизации, к изменению значения коэффициента усиления в результате насыщения. Изменение усиления, а следовательно, и мощности рабочих каналов приводит к увеличению количества ошибок (BER), а может привести и к выходу системы из строя.

Рассмотрим основные методы стабилизации коэффициента усиления эрбиевых оптических усилителей (EDFA) [45].

Методы стабилизации коэффициента усиления. Коэффициент усиления оптического усилителя пропорционален величине инверсной населенности активного элемента, который, в свою очередь, определяется балансом между действием накачки и спонтанных и вынужденных переходов. Поскольку управлять спонтанными переходами не представляется возможным, могут быть реализованы две возможности стабилизации уровня инверсной населенности: путем управления накачкой или насыщением. В первом случае используются электрические методы стабилизации, во втором — оптические. Возможно также совмещение электрических и оптических методов стабилизации.

Электрические методы стабилизации коэффициента усиления заключаются в корректировке мощности лазера накачки для обеспечения постоянства коэффициента усиления. Корректировка может быть упреждающей с использованием цепи обратной связи. Для повышения эффективности стабилизации коэффициента усиления может быть использована их комбинация (рис. 1.11).

Рис. 1.11 — Электрическая стабилизация коэффициента усиления EDFA

В части комбинированной схемы, отвечающей за упреждающую коррекцию накачки, разветвитель отводит часть мощности входного сигнала на фотодетектор, который выполняет его оптоэлектронное преобразование. Усиленный электрический сигнал, пропорциональный мощности входного оптического сигнала, используется для управления мощностью лазера накачки. В первом приближении необходимое для обеспечения постоянства коэффициента усиления изменение мощности накачки происходит пропорционально изменению мощности усиливаемого оптического излучения.

В части схемы, отвечающей за коррекцию накачки цепью обратной связи, два разветвителя отводят часть мощности входного и выходного сигнала на фотодетекторы, выполняющие их оптоэлектронное преобразование. Затем сигналы подаются на специальную электрическую схему, которая сравнивает реальное значение коэффициента усиления, определяемое по отношению мощностей входного и выходного сигналов, с требуемым коэффициентом усиления и соответствующим образом корректирует мощность лазера накачки.

Оптическая стабилизация коэффициента усиления. Принцип оптической стабилизации коэффициента усиления заключается в том, что усиливающая область помещается в резонатор лазера, генерирующего на нерабочей длине волны. Хорошо известное свойство лазера заключается в том, что коэффициент усиления в нем в режиме генерации в точности равен потерям в резонаторе. Если на активный элемент лазера одновременно подать внешнее излучение на негенерирующей длине волны, то выходная мощность лазера изменится, а коэффициент усиления останется прежним. Лазерное излучение, таким образом, оказывается некоторым балластным излучением, обеспечивающим постоянство коэффициента усиления. Уменьшение общей мощности входящего оптического сигнала автоматически компенсируется увеличением лазерной мощности и наоборот. Оптическая обратная связь может быть осуществлена двумя способами: с помощью кольцевого резонатора и с помощью линейного резонатора.

Кольцевой резонатор для создания оптической обратной связи состоит из отрезка стандартного волокна, соединяющего выходную часть секции оптического усилителя с входной, и узкополосного фильтра, задающего длину волны лазерного излучения.

Линейный резонатор для создания оптической обратной связи состоит из двух распределенных дифракционных отражателей, расположенных навходе и выходе усилителя. Максимумы коэффициентов отражения решеток задают длину волны лазерного излучения. Коэффициенты отражения на длинах волн сигнала и накачки должны быть равны нулю.

Совмещение оптических и электрических методов стабилизации коэффициента усиления, с одной стороны, может привести к улучшению характеристик усилителя, с другой — к чрезмерному усложнению схемы стабилизации. Поэтому целесообразность такого совме-

щения должна быть определена в каждом конкретном случае из сравнения затрат на достижение требуемой степени стабилизации. На рис. 1.12 приведена схема совмещенной оптоэлектронной стабилизации коэффициента усиления EDFA (электрическая упреждающая коррекция накачки и оптический кольцевой резонатор).

Эффективность стабилизации можно охарактеризовать следующими параметрами:

 время стабилизации Т — время восстановления заданного значения коэффициента усиления;

максимальное отклонение коэффициента усиления Δ_{max} — максимальное его отклонение от заданного значения;

 \Box смещение коэффициента усиления Δ_{∞} — установившееся по прошествии времени стабилизации его отклонение от заданного значения.

Рис. 1.12 — Совмещенная оптоэлектронная стабилизация коэффициента усиления EDFA

Эффективность стабилизации тем выше, чем меньше численные значения всех приведенных параметров

Сравнительный анализ различных схем стабилизации

В табл. 1.4 приведены результаты численного моделирования параметров, характеризующих эффективность работы вышеописанных схем стабилизации. Параметры стабилизации для рассмотренных методов при коэффициенте усиления 18 дБ, входной мощности сигнала на канал 10 дБм, что соответствует отключению 15 из 16 каналов.

Таблица 1.4

Параметры схем стабилизации [45]					
Метод стабилизации	Т, мкс	$\Delta_{ m max}$, дБ	Δ_{∞} , дБ		
Оптическая обратная связь(линейный резонатор)	> 200	2,01	0,1		
Оптическая обратная связь (кольцевой резонатор)	> 200	1,72	0,1		
Совмещенная оптоэлектронная стабилизация	> 200	1,53	0,1		
Коррекция накачки с цепью обратной связи	< 100	0,82	0,02		
Упреждающая коррекция накачки	< 5	0,11	0,11		
Комбинация упреждающей коррекцией накачки и коррекции накачки с цепью обратной связи	< 35	0,4	0,02		

Для EDFA наиболее простыми и надежными методами стабилизации коэффициента усиления являются электрические методы, что обусловлено относительно медленным изменением коэффициента усиления в EDFA без стабилизации, связанным с большим временем релаксации инверсной населенности т≈ 10 мс [13].

Наилучшими параметрами среди этих методов обладает комбинация упреждающей коррекции накачки с коррекцией накачки с использованием обратной связи, так как они отлично дополняют друг друга: упреждающая коррекция обладает малым временем стабилизации, а цепь обратной связи обеспечивает малое значение смещения коэффициента усиления. Однако быстродействие электрических методов стабилизации может оказаться недостаточным в полупроводниковых усилителях, для которых более оптимальным представляется использование оптических схем стабилизации коэффициента усиления [45].

1.4 Оптические мультиплексоры

Любой оптический мультиплексор может быть классифицирован как по физической структуре и принципу организации спектрального разделения/объединения, так и по функции, выполняемой в ВОСП с СР (см. рис. 1.1). Рассмотрим эти классификации подробней:

1.4.1 Функциональные принципы построения

Оптический мультплексор/демультиплексор в ВОСП с СР может выполнять функции:

- □ терминального мультиплексора;
- □ мультиплексора ввода/вывода;
- □ двухканального широкополосного мультиплексора.

Рассмотрим первые две функции подробнее.

Терминальный мультиплексор (ОТМ)

Терминальный мультиплексор располагается на оконечной станции. На передающей стороне ОТМ осуществляет преобразование всех сигналов, затем мультиплексирует их в один сигнал для дальнейшего усиления и передачи. На принимающей стороне ОТМ демультиплексирует сигнал WDM и отправляет сигналы к соответствующему оборудованию.

Рассмотрим для примера ОТМ OptiX BWS 320G (рис. 1.13) [39].

Оборудование включает следующие функциональные блоки: преобразования оптической длины волны; оптического мультиплексирования; оптического усиления; оптического демультиплексирования; обработки оптического канала управления; связи и управления и обработки заголовков.

Рис. 1.13 — Структура ОТМ ОрtiX BWS 320G

Мультиплексор ввода/вывода (OADM)

Мультиплексор ввода/вывода устанавливается в тракте передачи, и служит для ответвления или добавления оптических каналов. Рассмотрим для примера OADM OptiX BWS 320G (рис. 1.14).

Рис. 1.14 — Структура OADM OptiX BWS 320G: MR2 — блок мультиплексирования ввода/вывода 2-х каналов; WPA — WDM — блок предварительного усилителя; WBA — WDM — блок усилителябустера; TWC — STM-16 — передающий блок преобразования длины волны; RWC — STM-16 — принимающий блок преобразования длины волны

Он устанавливается в узле OADM, используется для ввода/вывода до 8 каналов, остальные каналы (транзитные) проходят через станцию без изменений. Выполняет функции оптического усиления и функции ввода/вывода, может осуществлять уравнивание мощности для вновь добавленных каналов и других каналов в линии, с целью обеспечения уравнивания мощности разных каналов в основном потоке. Состоит из следующих функциональных блоков: оптического усиления, обработки оптического канала управления, оптического мультиплексирования ввода/вывода, преобразования оптической длины волны (для открытых систем), связи и управления, и обработки заголовков.

1.4.2 Физические принципы построения

Выделяют следующие типы WDM-устройств, обеспечивающих мультиплексирование [1-7,24-28].

DEMUX на основе объемных микрооптических устройств

Интерференционные фильтры:

- на основе резонатора Фабри Перо (FP);
- на многослойных диэлектрических тонких пленках (DTF);
- на отражательных оптоволоконных решетках Брэгга (FBG);
- Явление угловой дисперсии:
- в трехгранной призме;
- на дифракционной решетке.

Резонатор Фабри — **Перо** работает следующим образом. Он, как и любой интерференционный фильтр, настраивается на фильтрацию одной длины волны. Он разделяет поток $\lambda_1...\lambda_n$ на два (λ_1 и $\lambda_2...\lambda_n$), выделяя несущую λ_1 из многоволнового потока. Для демульти-

плексирования п несущих необходимо установить каскадно п фильтров. Аналогично резонатору FP работает и фильтр на многослойных диэлектрических тонких пленках. И в этом случае для демультиплексирования п несущих необходимо установить каскадно п фильтров. Нужно учитывать, что затухание таких фильтров на центральной частоте полосы пропускания достаточно велико, что делает целесообразным их использование в WDM с 8–16 каналами. Другой принцип использован в фильтрах с циркулятором и отражательными OB-решетками Брэгга (рис. 1.15).

Здесь отражение волны определенной длины происходит от дифракционной решетки Брэгга соответствующего периода, сформированной в одномодовом ОВ. Отраженная волна транслируется циркулятором. Так как решетка Брэгга рассчитана на фиксированную длину волны, то для демультиплексирования n несущих необходимо сформировать каскад из n отражательных решеток Брэгга, настроенных на соответствующие длины волн.

Рис. 1.15 — Схема демультиплексора WDM на основе решетки Брэгга

Технология мультиплексирования на основе явления угловой дисперсии использует совершенно другие физические принципы. Здесь входной коллимированный пучок падает на диспергирующий элемент и пространственно разделяется им на несколько пучков в зависимости от длины волны несущей. Эти пучки, расходящиеся под различными углами, фокусируются и собираются отдельными приемными оптическими элементами. На выходе (в фокальной плоскости) этих элементов формируются изображения входного пучка, размеры которых (с помощью микролинзовых систем) юстируются так, чтобы они соответствовали диаметру сердцевины приемного (выходного) ОВ (рис. 1.16).

б

Рис. 1.16. Схема демультиплексора WDM: *а* — на отражательной призме; *б* — на отражательной плоской решетке

DEMUX на основе планарных интегральных устройств

Типы DEMUX на основе планарных интегральных устройств:

- оптоволоконные направленные разветвители (OBHP);

- интерферометры Маха — Цендера (MZI);

- дифракционная решетка на массиве волноводов (AWG).

Несмотря на значительные достижения в области технологии мультиплексирования на основе объемных микрооптических устройств, общая тенденция развития волоконнооптических систем передачи и отдельных ее устройств (в первую очередь мультиплексоров плотных и высокоплотных WDM) состоит в совершенствовании планарных технологий, которые органично сочетались бы с технологиями, используемыми при создании оптических интегральных схем (ОИС).

Наиболее простым и легко реализуемым в области планарных технологий вариантом мультиплексора WDM является мультиплексор на оптоволоконных направленных разветвителях (OBHP). Такая схема построена путем каскадного соединения однотипных ячеек разветвителей типа 2:1 (два вхо-да — один выход), дающего в итоге мультиплексор n:1.

Такой метод построения схемы имеет очевидный недостаток — высокий уровень вносимых потерь (теоретически 3 дБ/каскад). Развитием этого решения является использование интерферометров Маха — Цендера (MZI) для демультиплексоров вместо разветвителей.

Рассмотрим оптические мультиплексоры с использованием планарных волноводов. Существуют различные конфигурации устройств на основе массива планарных волноводов, например, таких как:

- многопортовые разветвители типа «звезда»;

 схемы планарных интегрально-оптических волноводных структур на основе призмы, дифракционной решетки проводящего типа, отражательной дифракционной решетки, эшелона Майкельсона;

- разветвители с плоским отражающим зеркалом;

- Arrayed Waveguide Grating (AWG).

Рис. 1.17 — Многопортовый разветвитель типа «звезда»

В ранних работах по разработке устройств WDM использовались интегральные схемы на стекле. Канальные волноводы оптических объединителей и разделителей в таких схемах фор-мируются путем ионообмена за счет диффузии легирующего материала с поверхности в подповерхностный слой стекла. В качестве легирующих присадок для натрий-кальциевых стекол использовали ионы калия, серебра, свинца и титана. Таким путем получали многопортовые разветвители типа «звезда» (рис. 1.17).

В разработках с излучением на длинах волн в области 0,85 мкм для спектрального разделения каналов использовались разделители каналов, аналогичные мультиплексорам/демультиплексорам, на выходе которых формировались узкополосные интерференционные фильтры, обеспечивающие селекцию сигнала требуемой длины волны. Недостатком такой схемы являлось сильное ослабление интенсивности сигналов на выходе вследствие деления каждого из сигналов на n каналов.

Для устранения этого недостатка необходимо было разработать планарное устройство разделения спектральных составляющих магистрального световода по отдельным каналам. С этой целью было предложено использовать в интегральных демультиплексорах планарные коллимирующие линзы и различные диспергирующие элементы (рис. 1.18).

Оказалось, что такие устройства имеют большие потери, слабое деление каналов и большие перекрестные помехи, обусловленные взаимодействием спектральных составляющих. Предельное число разделяемых каналов в подобных устройствах не превышало 10 [4].

Более плодотворной оказалась идея разделения каналов с помощью системы фазированных канальных волноводов, формирующих эшелон Майкельсона (рис. 1.19), которая в зарубежной литературе называется упорядоченной волноводной решеткой (AWG — Arrayed Waiveguide Grating).

Рис. 1.19 — Структура АWG-демультиплексора

Устройство спектрального разделения на основе AWG состоит из следующих составных элементов: входного магистрального световода; входной фокусирующей системы (объединителя каналов); фазированной (упорядоченной) волноводной решетки; выходной фокусирующей системы (пространственного делителя каналов); отводящих волноводов спектрально разделенных каналов; выходных волноводов. Все устройство выполнено по планарной интегрально-оптической технологии на кремниевой подложке и снабжено устройством стыковки с отводящими волоконными световодами или линейкой фотоприемников. Особенностью такого устройства спектрального разуплотнения каналов является его работа в одномодовом режиме, то есть все канальные волноводы должны поддерживать только одну продольную оптическую моду.

1.4.3 Технические и функциональные параметры

Функциональные параметры компонентов ВОЛС

Оптический порт. Портом является вход оптического волокна или оптического разъема, присоединенного к оптическому элементу, используемый для ввода оптической мощности.

Коэффициент передачи. Коэффициентом передачи между двумя портами является часть переданной между этими портами мощности.

Матрица передачи. Оптические свойства волоконно-оптических устройств ветвления могут быть определены в терминах матрицы коэффициентов $n \times n$, где n — число портов, а коэффициенты представляют часть мощности, передаваемой между назначенными портами. В общем случае матрица передачи T имеет вид

$$T = \begin{bmatrix} T_{11} & T_{12} & . & T_{1j} & . & T_{1N} \\ T_{21} & T_{22} & . & T_{2j} & . & T_{2N} \\ . & . & . & . & . \\ T_{i1} & T_{i2} & . & T_{ij} & . & T_{iN} \\ . & . & . & . & . \\ T_{N1} & T_{N2} & . & T_{Nj} & . & T_{NN} \end{bmatrix}$$

В случае оптического усилителя (пример EDFA) матрица передачи вырождается в один коэффициент передачи $T = [T_{11}]$.

Работу многопортового $N \times N$ распределителя можно представить, используя матрицу коэффициентов передачи.

Структурная схема многопортового $N \times N$ распределителя изображена на рис. 1.20, где і \Box 1,...,N и ј \Box 1,...,N — номера соответст*в*ующих входных и выходных портов; [Tij] — матрица передачи.

Рис. 1.20 — Структурная схема AWG

Технические параметры1

Ниже приведены спецификации параметров, которые в настоящее время используются для описания мультиплексора в сетях уплотнения WDM. Определения некоторых из этих

¹ За основу взят стандарт ITU-Т G.671, п. 3.2.

параметров также даются Исследовательской лабораторией Bell Communication GR-2883-CORE, Пункт 1 [1-11].

1. Полоса пропускания канала (BW) — интервал частот, в котором значение амплитудно-частотной характеристики аналогового передающего оптоэлектронного модуля больше или равно половине его максимального значения (рис. 1.21). Типовые полосы пропускания в текущих системах уплотнения WDM варьируются от 1,0 до 8,0 нм.

2. 0,5 ∂E полоса частот ($BW_{0,5}$) — это ширина спектра, в пределах которой разница между пиковой переданной мощностью и переданной мощностью в любой точке составляет менее 0,5 дБ (см. рис. 1.21). По соглашению 0,5 дБ полоса частот обычно равна разности максимальной и минимальной длин волн в полосе пропускания каждого канала.

Рис. 1.21 — Частотная зависимость спектральной мощности

3. Вносимые потери (IL) — уменьшение оптической мощности между входным и выходным портами пассивного элемента в децибелах, определяемое как

$$IL = -10 \lg (P_1 / P_0)$$

где P_0 — оптическая мощность, вводимая во входной порт; P_1 — оптическая мощность, полученная из выходного порта.

Максимальные и минимальные вносимые потери являются соответственно верхним и нижним пределами вносимых потерь рассматриваемого устройства и применяются во всем диапазоне длин волн, определенном для данного фильтра или WDM MUX. Под типичными вносимыми потерями понимается ожидаемое значение вносимых потерь, измеренное для определенной центральной длины волны. Обычно максимальные вносимые потери измеряются для всех длин волн в области полосы пропускания канала в 0,5 дБ полосе частот и в полном диапазоне рабочих температур. Обычно это значение равно вносимым потерям в точке пиковой мощности плюс 0,5 дБ.

4. Переходные помехи (ПП) (P_j) — показывают влияние на *j*-й канал остальных каналов ($I \square 1, ..., N, j \square i$) и численно равны отношению суммы мощностей всех каналов (кроме *j*-го) к мощности *j*-го канала

$$P_{j} = \frac{\sum_{i=1, i\neq j}^{N} \left|T_{i}\right|^{2}}{\left|T_{j}\right|^{2}},$$

где *T_i* — нормированный коэффициент передачи порта.

5. Изоляция соседнего канала определяет степень, до которой нежелательные каналы ослабляются на каждом канале добавления/

устранения, и напрямую связана с ухудшением отношения сигнал/шум и битовой скорости, обусловленным присутствием многочисленных оптических несущих. Вследствие того, что идеальная форма спектра сходна с гауссовской кривой, каналы или канал, расположенный ближе всего к каналу добавления/устранения, имеют самую плохую изоляцию. Поэтому изоляция соседнего канала представляет наихудший случай и измеряется в пределах всех соседних полос пропускания каналов.

6. *Канальный интервал* (Δf_k) представляет собой расстояние (интервал) между центральными длинами волн соседних каналов и является системным параметром, определяющим параметры компонента.

Помимо указанных параметров следует также учитывать параметры, характеризующие стабильность каждого мультиплексора при воздействии внешних факторов, таких, как температура и состояние поляризации. Это связано с тем, что при достаточно большом влиянии данных факторов полосу пропускания канала мультиплексора необходимо выбирать шире по сравнению с вариацией центральной длины волны лазера, что, в свою очередь, приведет к необходимости увеличения канальных интервалов. В связи с этим учитываются следующие три типа параметров.

7. *Поляризационно-зависимые потери* (PDL) — потери, соответствующие максимальной вариации вносимых потерь, вызванной вариацией состояния поляризации, рассматриваемой на множестве всех возможных состояний поляризации.

Для MUX/DEMUX они представляют собой потери, возникающие вследствие того, что спектральное функционирование каждого порта мультиплексора зависит от входного состояния поляризации, которое неопределимо в лазерных системах передачи. Это значение потерь имеет самую большую вариацию в пределах полосы пропускания каждого порта мультиплексора.

8. *Температурная стабильность длины волны*. Стабильность центральной длины волны определяет ее максимальное изменение применительно к каждому порту в пределах предполагаемого диапазона рабочих температур.

9. *Тепловая стабильность* — это параметр, который представляет собой максимальную вариацию потерь вставки при изменении рабочей температуры в пределах полосы пропускания каждого порта [8].

Рассмотрим для примера типовые показатели приведенных параметров для различных видов терминальных мультплексоров/демультиплесоров (табл. 1.5).

Таблица 1.5

Параметр	Интерферен- ционный фильтр	BG фильтр	AWG	Дифрак- ционная решетка			
Канальный интервал, ГГц	> 100	> 100	> 25	> 10			
Изменение λ	угловая	Деформа- ционная	темпера- турная	темпера- турная			
Потери	неодно- родные	низкие, неоднород- ные	очень низкие	очень низкие			

Сравнение технологий WDM-мультиплексирования

Переходная помеха от соседнего канала, дБ	-25 ÷ -35	-30 ÷ -35	-25 ÷ -35	-25 ÷ -35
Переходная помеха от всех каналов, дБ	очень низкая	очень низкая	-25 ÷ -35	a < -32
PDL, дБ	0,25	превосходные	0,5	0,5
Конструк-торское оформление	дискретная структура	дискретная структура	инте- гральная схема	инте- гральная схема
Размер	большой	большой	малень- кий	малень- кий
Надежность	хорошая	плохая	очень хорошая	хорошая
Цена за канал, \$	500	3000	50	30
Примечание	для малого количества каналов	для малого количества каналов	для ≥16 каналов	для ≥ 16 каналов

Требования к параметрам оптических мультиплексоров представлены в приложении.

1.5 Характеристики мультиплексорного и усилительного оборудования основных производителей WDM ВОСП

Наиболее широко на российском рынке представлено оборудование WDM следующих компаний: Alcatel, Lucent Technologies, Nortel Networks, Siemens, Huawei Technologies, NEC, ECI Telecom [36–42].

Компания Alcatel представляет на рынке семейство продуктов OPTINEX для операторов связи. Ряд продуктов DWDM оптимизирован для сетей городского масштаба. В семейство OPTINEX входят три модели оборудования DWDM. Alcatel 1686 WM-система с поддержкой 16 или 32 оптических каналов. Каждый из них способен работать на скоростях от 100 Мбит/с до 10 Гбит/с. Разновидность данной модели категории metro — Alcatel 1686 WM Metro и Alcatel 1696 Metro Span — оптимизирована для городских сетей. Для высокопроизводительных магистральных сетей подойдет модель Alcatel 1640 WM, обеспечивающая мультиплексирование до 80 оптических каналов.

Компания Lucent Technologies выпускает целую гамму оборудования синхронной передачи и оптического уплотнения, объединенных общим названием WaveStar. Оборудование DWDM компании Lucent Technologies включает в себя семейство WaveStar OLS и мультисервисную платформу Metropolis MSX. Наиболее простая система DWDM — WaveStar OLS 80G

с поддержкой до 16 оптических каналов в диапазоне 1550 нм. Данная система в модификации WaveStar OLS 400G расширяется до 80 оптических каналов, а в модификации WaveStar OLS 1.6T — до 160 каналов. Каждый из формируемых каналов может передавать информацию со скоростью 10 Гбит/с (STM-64), что соответствует пропускной способности по одному оптическому волокну 1,6 Тбит/с.

Компания **Nortel Networks** выпускает оборудования DWDM серии OPTera Long Haul 1600, обеспечивающее высокую пропускную способность, и OPTera Metro 5000, предназначенное для создания скоростных сетей масштаба города. Компания Siemens выпускает целое семейство мультиплексоров под названием TransXpress. В области DWDM предлагается широкий выбор оборудования для магистральных, региональных и городских сетей. Например, модель MTS2, созданная для магистральных сетей большой емкости и большой пропускной способности, способна передать до 640 каналов по 2,5 Гбит/с на расстояние свыше 1000 км.

Компания **Huawei Technologies** для применения на магистральных сетях разработало семейство OptiX, куда входит оборудование DWDM на 16/32 канала.

Компания **NEC** совместно с подмосковным заводом научного приборостроения PAH разработало систему SpectralWave 40/80, предназначенную для реализации магистрального узла, способного обеспечить гибкую и поэтапную организацию системы DWDM. Система SpectralWave 40/80 обладает пропускной способностью до 400 Гбит/с.

Компания ECI Telecom выпустила серию универсальных мультиплексоров XDM, в котором на одной платформе интегрированы функции мультиплексирования DWDM, кросскоммутации, маршрутизатора IP, коммутатора ATM и мультиплексоров SDH.

1.5.1 Оборудование «Пуск»

Оборудование DWDM «Пуск» предназначено для организации в одном оптическом G.652, G.654 И G.655 до 160 волокне типа оптических каналов диапазоне длин волн 1530-1605 HM с возможностью передачи каждом В В канале цифровых сигналов co скоростью 0,1оптическом ОТ до 2,5 Гбит/с (10 Гбит/с), пропускная способность — до 400 Гбит/с в одном оптическом волокне. В оборудовании предусмотрена возможность автоматического тестирования отдельных элементов и узлов для определения функционирования аппаратуры без перерыва связи. Оборудование контролируется и управляется с помощью встроенных микроконтроллеров и специализированного программного обеспечения версии ИП-1.5. Аппаратно-программный комплекс имеет стыки с рабочей станцией и местным терминалом системы технического обслуживания. Возможна реализация участков большой протяженности (до 1500 км) без регенерации цифровых сигналов. Оборудование «Пуск» позволяет осуществлять гибкое конфигурирование оптических сетей, включая сети Ethernet, IP, ATM, кабельного телевидения. Для контроля и управления, а также для организации служебной связи, используется выделенный оптический канал. Оборудование «Пуск» предназначено для применения на различных участках Взаимоувязанной сети связи России: магистральная первичная сеть, внутризоновые первичные сети, местные первичные сети, оптические сети доступа.

В табл. 1.6–1.8 приведены параметры оптических терминальных демультиплексоров, мультиплексоров ввода/вывода и линейных усилителей оборудования DWDM «Пуск».

Таблица 1.6

Наименование пара	метров		Значение параметров							
Количество оптичес	ских каналов	8 16 40		40	80			160		
Расстояние между	оптическими	200	200	100	100	50	50	100	100	50
каналами, ГГц		200	200	100	100	50	50	100	100	50
Отклонение центра	льной частоты		<u>т</u> ,	5.0		1.2		0		± 2.0
оптического канала, не более, ГГц		\pm 3,0			⊥.	9,0	± 3,0		± 5,0	
Наименование параметров			з Значение параметров							
Вносимое затухание,			6.0	75		120		14.0		16.0
не более, дБ			0,0	7,5		12,0		14,0		10,0
Ширина полосы	-3 дБ,	50.0			25.0		50.0		25.0	
оптического ка-	не менее, ГГц	50,0				23,0		50,0		23,0
нала на уровне	-20 дБ,	80.0		80.0		40.0		80.0		40 0
	не менее, ГГц		80,0		40,0		80,0			40,0

Параметры оптического демультиплексора

Поляризационно-зависимые потери, не более, дБ	0,5
Переходная помехаот смежного оптиче- ского канала, не более, дБ	- 30,0
Кумулятивная переходная помеха при максимальном числе действующих оптических каналов, не более, дБ	-25,0
Коэффициент отражения от входа, не менее, дБ	-30
Затухание отражения на выходе, не более, дБ	30,0

Таблица 1.7

Параметры оптических мультиплексоров ввода/вывода (OMBB)

Наименование параметров			Значе	ение п	араметр	ОВ
Количество оптичесь	8	16			40	
Количество ответвляемых/вводимых оптических канадов не более		4	8		16	
Расстояние между ог	птическимиканалами, ГГц	200	200	100	100	50
Отклонение централ нала, не более, ГГц	ьной частоты оптического ка-		± 5,0			± 3,0
Вносимое затуха- ние	для ответвляемых/вводимых оптических каналов, не более, дБ	6,0	,0 7,5		8,0	
Наим	енование параметров	Значение параметров				
Ширина полосы	-3 дБ, не менее, ГГц	50,0 25,0			25,0	
оптического канала на уровне	–20 дБ, не менее, ГГц	80,0 4		40,0		
Поляризационно-зависимые потери, не более, лБ		0,5				
Переходная помеха от смежного оптического кана- ла, не более, дБ		- 30,0				
Кумулятивная переходная помеха при максиальном числе действующих оптических каналов, не более, дБ		- 27,0				
Коэффициент отраже	- 30					

Таблица 1.8

Параметры линейного усилителя оптической мощности

Наименование параметров ОПУ	Значение параметров
Коэффициент шума (NF), дБ	7,0
Уровень входной суммарной мощности, дБм	-36 ~ +10
Уровень выходной суммарной мощности, дБм	+3,5 ~ +27
Коэффициент усиления, дБм	15 ~ 41
Неравномерность АЧХ, дБ	2,0
Коэффициент отражения от входа, не менее, дБ	-30
Затухание отражения на выходе, не более, дБ	30,0

1.5.2 Оборудование OptiX BWS 320G

Оптическая система передачи OptiX BWS 320G на основе технологии DWDM, разработанная Huawei Technologies Company., Ltd., является новым поколением систем оптической передачи DWDM с высоким объемом передачи на длинные расстояния. Являясь представителем серии оборудования OptiX, OptiX BWS 320G обладает гибкой конфигурацией, совместимостью. Система BWS 320G способна мультиплексировать 32 длины волны в одном оптоволокне, например, передавать 32 несущие с различными длинами волн которые в свою очередь передают сигнал STM-16 с общей пропускной способностью до 80 Гбит/с. В настоящий момент оборудование способно мультиплексировать до 32 оптических каналов 10 Гбит/с (STM-64), с общей скоростью передачи 320 Гбит/с. В системе BWS 320G применяется односторонняя передача по одному оптическому волокну с возможностью осуществления передачи в обе стороны с использованием надежной технологии мультиплексирования/демультиплексирования длины волны, технологии оптического усиления на волокне, легированном эрбием, технологии стабилизации длины волны, технологии компенсации дисперсии, технологии объединенной системы сетевого управления и технологии независимого канала управления и т.д. Это оборудование может быть построено по различным топологиям, таких как «точка — точка», «цепь», «кольцо», и может применяться для передачи информации как по магистральным каналам, так и в локально-вычислительных сетях (LAN).

В табл. 1.9–1.10 приведены параметры оптического демультиплексора и линейного усилителя оборудования OptiX BWS 320G.

Параметры оптического демультиплексора

Таблица 1.9

1 1	J 1	
Название параметра	32-канальный	16-канальный
	демультиплексор	демультиплексор
Разнесение каналов, ГГц	100	100
Вносимые потери, дБ	< 10	< 7
Коэффициент отражения, дБ	<-40	<-40
Поляризационные потери, дБ	< 0,5	< 0,5
Максимальная разница входных потерь ка-	< 3	< 3
нала, дь		
–1дБ полоса пропускания, нм	> 0,2	> 0,2
-20 дБ полоса пропускания, нм	< 1,4	< 1,4
Тип	AWG	Тонкопленочный

Таблица 1.10

Параметры линейного усилителя оптической мощности

Название параметра	32-канальная система			
	8х22 дБ	5х30 дБ	3х33 дБ	
Область усиления, нм	1535– 1561	1535– 1561	1535– 1561	
Коэффициент шума (NF), дБ	< 5,5	< 5,5	< 5,5	
Входная отражательная способность, дБ	<-30	<-30	<-30	
Максимальная мощность на выходе, дБм	20	20	20	
Время реакции системы усиления при вводе/выводе каналов, мс	< 10	< 10	< 10	
Коэффициент усиления, дБ	22 ~ 25	29 ~ 32	32 ~ 35	
Неравномерность АЧХ, дБ	< 2	< 2	< 2	
Величина поляризационной дисперсии, пс	-	-	_	
Поляризационные потери, дБ	< 0,5	< 0,5	< 0,5	

1.5.3 Оборудование SpectralWave 40/80 DWDM System (NEC)

Система SpectralWave 40/80 разработана для реализации магистрального узла, способного обеспечить гибкую и поэтапную организацию системы DWDM. Система SpectralWave 40/80 обладает пропускной способностью до 800 Гбит/с. Она поддерживает до 40 длин волн в полосе С и обеспечивает открытый интерфейс в любой комбинации сигналов STM-64, STM-16, STM-4, STM-1 и 100 Мбит/с ~ 1,25 Гбит/с. Миграция от 40 до 80 длин волн может легко осуществляться в работающей системе объединением полос С и L. Эти особенности позволяют организовывать мультисервисные широкополосные сети для предоставления широкого спектра растущих потребностей, таких как более скоростная передача голоса, данных, видеои других видов информации одновременно. Система SpectralWave 40/80 контролируется системой управления INC-100MS производства NEC, которая является интегрированной системой управления для оборудования WDM и SDH фирмы NEC.

1.5.4 Оборудование Alcatel 1640WM (Alcatel)

Мультиплексор с разделением по длинам волн Alcatel 1640WM (WM — Wavelength Multiplexer) представляет собой масштабируемое гибкое решение WDM для создания оптических сетей сверхбольшой пропускной способности и протяженности с организацией до 80, а в перспективе — до 240 оптических каналов. Данная система разработана для удовлетворения растущих потребностей в большем и более гибком диапазоне и является идеальным средством для создания оптических терминальных мультиплексоров, являющихся частью сетей с топологией «точка — точка» и оптических мультиплексоров ввода/вывода (OADM), предназначенных для использования в сетях с топологией «много точек — много точек».

1.5.5 Сравнительные характеристики оборудования

В табл. 1.10 представлена сравнительная характеристика оптических мультиплексоров ввода/вывода рассмотренных выше WDM-систем.

Таблица 1.10

Фирма	Optix BWS 320G (Huawei)	Spectral Wave 40/80 DWDM System (NFC)	1640 WM (Alcatel)	Accelink tec.(AWG DWDM Mod- ule)	«Пуск» (НТО «Ирэ-Полюс»)
Разнесение каналов, ГГц	100	_	50	100	50
Вносимые потери, дБ	< 10	14	_	5,5	8
Коэффициент отра- жения, дБ	<-40	-	_	- 45	- 30
Поляризационные потери, дБ	< 0,5	-	_	0,5	0,5
Максимальная раз- ница входных уров- ней, дБ	< 3	_	_	1	_
 –1дБ полоса про- пускания, нм 	> 0,2	_	_	> 0,4	> 0,2
-20 дБ полоса про- пускания, нм	< 1,4	_	_	< 1,2	< 0,32
Число каналов	16/32	16	16	40	40

Характеристики мультиплексоров ввода/вывода

Тип	тонкопле-	AWC	тонкопле-	AWG	тонкопленоч-
мультиплексора	ночный	Awu	ночный	Awu	ный

В табл. 1.11 дана сравнительная характеристика терминальных оптических мультиплексоров.

Таблица 1.11

Фирма	Optix BWS 320G (Huawei)	SpectralWa ve 40/80 DWDM System (NEC)	«Пуск» (НТО «Ирэ- Полюс»)
Вносимые потери, дБ	< 17	14	12
Коэффициент отражения, дБ	<-40		-30
Поляризационные потери, дБ	< 0,5	-	0,5
Максимальная разница вход- ных уровней, дБ	< 3	-	_
Область прозрачности, нм	1530-1570	1530-1562	
Число каналов	32	16	40
Тип мультиплексора	AWG	AWG	

Сравнение терминальных мультиплексоров

В табл. 1.12 представлена сравнительная характеристика оптических линейных усилителей рассмотренных выше WDM-систем передачи.

Таблица 1.12

Фирма	Optix BWS 320G (Huawei Company)	SpectralWave 40/80 DWDM System (NEC)	1640 WM (Alcatel)	«Пуск» (НТО «Ирэ-Полюс»)
Число каналов	32	40	80	-
Диапазон мощности на входе, дБм	-30 ÷ -13	-22,5 ÷ 2,5	_	-36 ÷ +10
Коэффициент шума (NF), дБ	< 5,5	6–7	5	7
Максимальная мощность на выходе, дБм	20	8–21	28	3,5–27
Коэффициент усиления, дБ	32–35	30–33	20	15–30
Неравномерность АЧХ, дБ	< 2	< 2	< 1	2
Поляризационные потери, дБ	< 0,5	_	_	_

Характеристики оптических линейных усилителей

2 МУЛЬТИПЛЕКСОРНОЕ И УСИЛИТЕЛЬНОЕ ОБОРУДОВАНИЕ ВОСП С СР

2.1 Многоволновые оптические усилители EDFA

2.1.1 Принцип действия и схемы накачки EDFA

Усилители на волокне, легированном эрбием (EDFA — Erbium-Doped Fiber Amplifier), работающие в области 1550 нм, успешно используются в современных ВОСП-СР в качестве предварительных и линейных усилителей, а также усилителей мощности. Применение EDFA позволяет передавать оптические сигналы на расстояние более 1000 км без использования электронных повторителей.

Эрбиевые волоконно-оптические усилители по сравнению с полупроводниковыми (SOA) и рамановскими (RA) обладают следующими преимуществами:

• малые (меньше 1дБ) вносимые потери при высоком коэффициенте усиления, который не чувствителен к поляризации усиливаемого света;

• малые перекрестные помехи при усилении нескольких сигналов;

• вносимые шумы на уровне квантового предела (~ 3...4 дБ);

• спектральная зависимость усиления хорошо воспроизводится от образца к образцу и слабо зависит от температуры.

К недостаткам EDFA следует отнести:

• возможность усиления только вблизи λ_p □ 1,53 мкм;

• необходимость мощного источника оптической накачки и селективного к длине волны ответвителя (WDM-модуль);

• невозможность интегрального исполнения и необходимость применения волокон большой длины [13].

На рис. 2.1 приведена энергетическая диаграмма для ионов Er^{3+} в кристаллической матрице кремниевого стекла. В спектре поглощения таких композитов наблюдаются пики на длинах волн $\lambda \Box 1,48$; 0,98; 0,8; 0,667; 0,532; 0,514 мкм, соответствующие переходам с основного уровня ${}^{4}I_{15/2}$ на уровни ${}^{4}I_{13/2}$, ${}^{4}I_{11/2}$, ${}^{4}I_{9/2}$, ${}^{4}F_{9/2}$, ${}^{4}S_{3/2}$ и ${}^{4}H_{11/2}$ соответственно. Метастабильный уровень ${}^{4}I_{13/2}$ является верхним для стимулирования излучательных

Метастабильный уровень ${}^{4}I_{13/2}$ является верхним для стимулирования излучательных переходов на нижний основной уровень ${}^{4}I_{15/2}$. Он заселяется как под воздействием накачки, так и в результате ступенчатой безызлучательной релаксации всех расположенных выше уровней. Его опустошение происходит под влиянием стимулирующих излучательных переходов ${}^{4}I_{13/2} \rightarrow {}^{4}I_{15/2}$ на длине волны $\lambda_{p} \square 1,53$ мкм, (рис. 2.1) [7].

Хотя накачка может осуществляться на длинах волн любого из пиков поглощения (см. рис. 2.1), наиболее распространенными диапазонами накачки являются $\lambda_p = 1,48$; 0,98 мкм, на которых работают мощные и миниатюрные полупроводниковые лазеры.

Диапазон накачки $\lambda_p = 0.98$ мкм. Эрбиевые волоконно-оптические усилители, накачиваемые в этом диапазоне, обладают наибольшей эффективностью накачки, а также минимальным коэффициентом шума (~ 3 дБ), близким к квантовому пределу. Выходная мощность усиленного сигнала может составлять более 500 мВт при 80 % дифференциальной эффективности преобразования фотонов накачки в фотоны сигнала. Эти свойства связаны с большим сечением поглощения и полным отсутствием стимулированного излучения и поглощения возбужденным состоянием ⁴I_{13/2} на длине волны накачки.

Накачка в диапазоне 0,98 мкм имеет большее практическое значение по сравнению с накачкой в диапазоне 1,48 мкм, т.к. большее отличие длин волн сигнала ($\lambda_c \sim 1,55$ мкм) и накачки (λ_p) уменьшает требования к селективным ответвителям в составе EDFA.

Рис. 2.1 — Диаграмма энергетических уровней для ионов Er³⁺

Диапазон накачки $\lambda_p \square 1,48$ мкм. Резонансная накачка EDFA непосредственно в метастабильный уровень ${}^4I_{13/2}$ также приводит к появлению инверсии населенности на переходе ${}^4I_{13/2} \rightarrow {}^4I_{15/2}$ и дает высокий коэффициент усиления. Это является следствием частотного сдвига и большего различия спектров поглощения и излучения этого перехода, обусловленных неоднородностью заселения тонкой структуры метастабильного уровня под действием эффекта Штарка. Этот эффект обеспечивает полосу усиления до 30 нм вблизи λ =1,53 мкм [13].

Полупроводниковый диод на длине волны 1,48 мкм дает лучший квантовый коэффициент преобразования и работает в большом диапазоне спектрального поглощения, что обеспечивает превосходную стабильность длины волны. Лазерный диод с длиной волны 1,48 мкм также вносит самый низкий коэффициент шума, потому что он достигает полной инверсии населенности метастабильного энергетического уровня.

Сравнительный анализ накачки EDFA на $\lambda p = 1,48$ мкм и $\lambda_p \square 0,98$ мкм приведен в табл. 2.1.

Длина волны, нм	1480	980
Источник света	InGaAsP/InP — ЛД Ф-П	InGaAs — ЛД с суперрешеткой
Эффективность усиления, дБ/мВт	5	10
Коэффициент шума, дБ	~ 5,5	3–4,5
Выходная мощность насыще- ния, дБм	+20	+5
Диапазон длин волн накачки, нм	широкий, 20 (1470–1490)	узкий, 2 (979–981)
Выходная мощность накачки, мВт	50–200	10–20

Таблица 2.1.	Сравнение двух	длин волн накачки	для усилителей EDFA
--------------	----------------	-------------------	---------------------

Накачка EDFA в независимости от диапазона осуществляется по четырем основным схемам (рис. 2.2,а-г). Элементами EDFA бегущей волны являются: волокно, легированное эрбием, селектив-

ный к длине волны оптический разветвитель и источник накачки — полупроводниковый лазер. Дополнительно используемые оптические изоляторы обеспечивают уменьшение влияния отражений от торцов волокна на режим работы источника сигнала для увеличения отношения сигнал-шум на выходе усилителя. Изоляторы ставят на обоих концах усилителя, чтобы минимизировать колебания и ASE или другие шумы, происходящие от отражений или непосредственно от системы связи. Все компоненты EDFA должны вносить как можно меньшие потери, отражение и переходные помехи.

Представленные схемы накачки обладают примерно одинаковыми характеристиками усиления слабого сигнала, однако для достижения более высоких ненасыщенных выходных мощностей предпочтительнее схемы с встречной накачкой (рис. 2.2,б) и с двунаправленной накачкой (рис. 2.2,в). Эрбиевые волоконные усилители отражательного типа (рис. 2.2,г) обеспечивают более высокий дифференциальный коэффициент усиления (усиление в децибелах на каждый милливатт мощности накачки), что приводит к более эффективному использованию мощности накачки и увеличивает чувствительность EDFA к ее изменениям [13].

2.1.2 Основные технические параметры и характеристики EDFA

Определим ключевые параметры, характеризующие EDFA: мощность насыщения, коэффициент усиления, мощность усиленного спонтанного излучения и шум-фактор.

Мощность насыщения Ps.o (Saturation Output Power) — определяет максимальную выходную мощность усилителя. Большее значение мощности позволяет увеличивать расстояние безретрансляционного участка. Этот параметр варьируется в зависимости от модели оптического усилителя. У мощных EDFA он может превосходить 36 дБм.

Коэффициент усиления G (Gain) определяется из отношения мощности (полезных) сигналов на входе и выходе усилителя. Величина коэффициента усиления зависит от входной мощности и стремиться к своему максимальному пределу по мере уменьшения мощности входного сигнала.

Мощность усиленного спонтанного излучения ASE (Amplified Spontaneous Emission). В отсутствии входного сигнала EDFA является источником спонтанного излучения фотонов. Спектр излучения зависит от формы энергетической зоны атомов эрбия и статистического распределения заселенностей уровней зоны. Спонтанно образованные фотоны, распространяясь по волокну в активной зоне усилителя EDFA, тиражируются, в результате чего создаются вторичные фотоны на той же длине волны, с той же фазой, поляризацией и направлением распространения. Результирующий спектр спонтанных фотонов называется усиленным спонтанным излучением. Его мощность нормируется в расчете на 1 Гц и имеет размерность ватт/герц.

Если на вход усилителя подается сигнал от лазера, то определенная доля энергетических переходов, ранее работавшая на усиленное спонтанное излучение, начинает участвовать в излучении под действием сигнала от лазера, усиливая входной сигнал. Таким образом, происходит не только усиление полезного входного сигнала, но и ослабление ASE (рис. 2.3). Оптические линии с каскадом EDFA проявляют себя лучше, когда мультиплексный сигнал представлен более узкими в спектральном отношении отдельными каналами. Использование узкополосных фильтров непосредственно перед приемным оптоэлектронным модулем, настроенных на рабочую длину волны, также помогает уменьшить уровень шума от усиленного спонтанного излучения.

Рис. 2.3 — Выходной спектр EDFA, снятый спектральным анализатором

Большие собственные временные постоянные EDFA (постоянная времени перехода в метастабильное состояние ~1 мкс, время жизни метастабильного состояния ~10 мс) устраняют кросс-модуляцию ASE в усилителе и делает более стабильной работу каскада оптических усилителей.

Мощность усиленного спонтанного излучения связана с коэффициентом усиления формулой

$$ASE = hv \frac{n_{sp}}{\eta} (G-1), \qquad (2.1)$$

где h — постоянная Планка; v — частота (Гц), соответствующая длине волны в диапазоне 1,53–1,56 мкм; n_{sp} — коэффициент спонтанной эмиссии; η — квантовая эффективность. В идеальном случае n_{sp}=η=1 при G 1 отнесенная ко входу мощность усиленного спонтанного излучения идеального квантового усилителя просто равна hv, что при $\lambda = 1,55$ мкм составляет 1,28·10⁻¹⁹ Вт/Гц в расчете на спектральную полосу 1 Гц. Размеру окна анализатора в 0,8 нм соответствует спектральное окно в 100 ГГц, что определяет приведенную к входу величину эффективной мощности усиленного спонтанного излучения 1,28 · 10⁻⁸ Вт или –48,9 дБм [15].

Шум-фактор NF (Noise Figure) определяется как отношение синал/ шум на входе (SNR_{in}) к сигнал/шум на выходе (SNR_{out}):

$$NF = \left(\frac{P_s}{P_n}\right)_{in} \left/ \left(\frac{P_s}{P_n}\right)_{out}.$$
(2.2)

Важно отметить, что мощность шума на входе является квантово-ограниченной минимальной величиной и определяется нулевыми флуктуациями вакуума $P_{n in} \Box h v \Delta v$. Мощность шума на выходе состоит из суммы мощности усиленного спонтанного излучения $ASE_{\Delta v}$ и мощности шума нулевых флуктуаций вакуума, которые проходят через усилитель без изменения: $P_{n out} \Box ASE_{\Delta v} + h v \Delta v$. Если учесть, что $P_{s out}/P_{s in} \Box G$, то шум-фактор можно выразить через коэффициент усиления и мощность усиленного спонтанного излучения

$$NF = \frac{1}{G} \left[1 + \frac{ASE}{h\nu} \right]. \tag{2.3}$$

Часто при описании EDFA значение шум-фактора указывается в децибелах. Типичные значения шум-фактора составляют 5,5 дБ [15].

Зависимость усиления от поляризации в EDFA возникает вследствие зависимости поляризации от поперечного сечения ионов эрбия в волокне из кварцевого стекла. Данное явление приводит к спаду усиления в зависимости от поляризации, известному как polarization hole-burning (PHB), или поля-ризационный провал усиления с глубиной, зависящей от степени сжатия волокна:

PHB
$$\Box 0,027C_p - 0,001C_p^2$$
 (2.4)

для коэффициента сжатия $C_P < 8$ дБ.

Также при большом количестве усилителей на линии имеет место зависимость усиления от поляризации света лазера накачки [1].

Спектральный провал усиления. Зависимое от мощности ослабление сигнала в определенном диапазоне длин волн носит название спектрального провала усиления spectral hole-burning (SHB) [7]. Это явление имеет место в EDFA, когда сильный сигнал уменьшает среднее количество ионов, способствуя тем самым возникновению спада усиления на определенной длине волны.

Исследования показали, что снижение усиления имеет тенденцию к проявлению в области длины волны 1,55 мкм со скоростью 0,3 дБ на каждый децибел [7].

Неравномерность и спад усиления EDFA приводит к негативным последствиям в системах, чувствительных к искажениям (WDM, DWDM). Отклонение усиления определяется как отношение изменения усиления на тестовой длине волны к изменению усиления на эталонной длине волны [17].

2.1.3 Математическая модель многоволнового EDFA

Моделирование поведения и характеристик EDFA осуществляется с помощью скоростных уравнений для населенностей n1,2(r, ϕ ,z,t) рабочих уровней 4I15/2 и 4I13/2 (двухуровневая модель) и уравнений распространения для оптической мощности P(z). Записав исходные уравнения модели из [13] для случая распространения нескольких сигналов и используя методы решения поставленной задачи и обозначения, описанные в [13], можно получить уравнения, характеризующие поведение многоволнового EDFA.

На рис. 2.4 схематически показана диаграмма рабочих уровней при наличии накачки и нескольких информационных сигналов.

Рис. 2.4 — Диаграмма рабочих уровней при наличии накачки и информационных сигналов

Запишем уравнение, описывающее скорость изменения концентрации частиц для верхнего уровня ${}^{4}I_{13/2}$:

$$\frac{dn_2}{dt} = \sum_{i=1}^{N} \frac{P_i^s i_i^s}{h f_i^s S_f} \left[\sigma_{ai}^s n_1(r, \varphi, z, t) - \sigma_{ei}^s n_2(r, \varphi, z, t) \right] + \frac{P_p i_p}{h f_p S_f} \left[\sigma_{ap} n_1(r, \varphi, z, t) - \sigma_{ep} n_2(r, \varphi, z, t) \right] - \frac{n_2(r, \varphi, z, t)}{\tau},$$
(2.5)

где P_i^s , P_p , i_i^s , i_p и f_i^s , f_p — мощности, нормированные интенсивности и частоты оптического излучения i-го информационного сигнала $\binom{s}{i}$ и накачки $\binom{p}{p}$ в сечении z;

$$P(z) = \int_{0}^{2\pi\infty} \int_{0}^{\infty} I(r,\varphi,z) r dr d\varphi; \qquad (2.6)$$

$$i(r,\varphi,z) = \frac{I(r,\varphi,z)}{P(z)};$$
(2.7)

I(r, ϕ ,z) — распределение интенсивности оптического излучения в волокне; $\sigma_{ai}{}^{s}$, σ_{ap} и $\sigma_{ei}{}^{s}$, σ_{ep} — эффективные сечения поглощения и излучения, описывающие свойства ионов Er^{3+} в матрице стекла, соответствующие частотам i-го информационного сигнала и накачки;

$$\alpha(\lambda) = \sigma_a(\lambda) \int_{0}^{2\pi\infty} \int_{0}^{\infty} i(r,\varphi,z) n_t(r,\varphi,z) r dr d\varphi = \sigma_a(\lambda) \tilde{A}(\lambda); \qquad (2.8)$$

$$g^{*}(\lambda) = \sigma_{e}(\lambda) \int_{0}^{2\pi\infty} \int_{0}^{\infty} i(r,\phi,z) n_{t}(r,\phi,z) r dr d\phi = \sigma_{e}(\lambda) \tilde{A}(\lambda); \qquad (2.9)$$

 $\alpha(\lambda)$ и $g^*(\lambda)$ — спектральные коэффициенты поглощения и усиления активной среды; $\Gamma = n_t S_E / S_f = n_t d_E^2 / d_f^2$ — интеграл перекрытия между распределениями оптической интенсивности i_i^s или i_p и ионов эрбия Er^{3+} ; d_E — диаметр области, легированной эрбием; d_f диаметр сердцевины волокна; $n_t(r,\phi,z,t) \Box n_1(r,\phi,z,t) + n_2(r,\phi,z,t)$ — общее число частиц (концентрация эрбия).

Графики зависимостей σ_a и σ_e представлены на рис. 2.5.

Рис. 2.5 — Эффективные сечения поглощения (σ_a) и излучения (σ_e)

Дифференциальные уравнения, описывающие распространение оптической мощности по волокну при условии $n_t(r,\phi) = n_t = const$ при r < b и $n_t(r,\phi) = 0$ при r > b (b — радиус области легирования сердцевины оптического волокна), имеют вид

$$\frac{dP_k}{dz} = \left[U_k \frac{\alpha_k + g_k^*}{\Gamma_k'} P_k + V_k \frac{g_k^*}{\Gamma_k'} mhf_k \Delta f_k \right] \int_0^{2\pi} \int_0^b \frac{n_2(r, \varphi, z, t)}{n_t} i_k r dr d\varphi - (\alpha_k + l_k) P_k,$$
(2.10)

где индекс k принимает значение $\binom{s}{j}$ для волны i-го информационного сигнала, $\binom{p}{p}$ — для волны накачки; U_k,V_k = ±1 соответствует прямому и обратному направлению распространения излучения; $\Gamma'_k = \Gamma'_k / n_t = d_E^2 / d_f^2$; I_k — коэффициент нерезонансного поглощения в сердцевине, обусловленного наличием группы OH⁻, а также рассеиванием вследствие расстеклования сердцевины с высоким значением показателя преломления или низким содержанием ионов Er^{3+} ; m = 2 — число мод одномодового оптического волокна с учетом поляризационного вырождения [13].

Уравнение (2.10) записано для излучения сигнала, накачки и усиленной спонтанной эмиссии (ASE). Для узкополосных излучений сигнала и накачки $\Delta f \rightarrow 0$, а для широкополосной ASE равно частотному шагу, используемому в вычислениях. Первое слагаемое в уравнении отвечает за усиление — чем больше эффективное сечение, диаметр сердцевины волокна и инверсия населенности, тем больше приращение сигнала. Второе слагаемое имеет обратное действие (нерезонансное поглощение и поглощение). Третье слагаемое усиливает сигнал, но отвечает за спонтанное излучение, тем самым учитывает шумы, вносимые усилителем. Таким образом шумы тем больше, чем больше инверсия населенности и эффективное сечение излучение.

Так как не представляется возможным получить аналитическое решение уравнений (2.4) и (2.10) в общем случае, используют численные методы решения.

В непрерывном режиме и при модуляции оптической несущей с частотой f > 10 кГц для описания EDFA достаточно исследовать стационарный режим, таким образом найдем решение системы уравнений (2.4), (2.10) при д/дt = 0. Также будем считать, что усиленная спонтанная эмиссия пренебрежимо мала, тогда уравнения (2.10) интегрируются при mhf $\Delta f \rightarrow 0$.

Рассмотрим случай, когда интенсивность излучения равномерно распределена по площади сечения волокна ($I(r, \phi, z) = I(z)$). Учитывая все вышесказанное, уравнения, описывающие поведение EDFA можно упростить и привести к виду

$$P(z) = \int_{0}^{2\pi} \int_{0}^{\infty} I(z) r dr d\phi = I(z) S_{f}; \qquad (2.11)$$

$$i(r, \varphi, z) = \frac{I(r, \varphi, z)}{P(z)} = \frac{1}{S_f},$$
(2.12)

где $S_f = \pi d_f^2 / 4$ — площадь поперечного сечения OB.

Подставляя выражения (2.11), (2.12) в уравнение (2.4) и, учитывая, что д/дt = 0, получаем

$$0 = n_1 \left[\frac{P_p \sigma_{ap}}{f_p} + \sum_{i=1}^{N} \frac{P_i^s \sigma_{ai}^s}{f_i^s} \right] - n_2 \left[\sum_{i=1}^{N} \frac{P_i^s \sigma_{ei}^s}{f_i^s} + \frac{P_p \sigma_{ep}}{f_p} + \frac{hS_f}{\tau} \right].$$
(2.13)

Далее, учитывая $n_t(r,\phi,z,t) = n_1(r,\phi,z,t) + n_2(r,\phi,z,t)$, выразим из (2.13) $n_{21} = n_2/n_t$:

$$n_{21} = \frac{n_2}{n_t} = \frac{\frac{P_p \sigma_{ap}}{f_p} + \sum_{i=1}^{N} \frac{P_i^s \sigma_{ai}^s}{f_i^s}}{\frac{hS_f}{\tau} + \frac{P_p (\sigma_{ap} + \sigma_{ep})}{f_p} + \sum_{i=1}^{N} \frac{P_i^s (\sigma_{ai}^s + \sigma_{ai}^s)}{f_i^s}}{f_i^s}.$$
(2.14)

Преобразуем уравнение (2.10), принимая во внимание все вышеизложенные условия, делая необходимые замены и подставляя в него выражение (2.14). В результате получим

$$\frac{dP_k}{dz} = U_k \frac{\alpha_k + g_k^*}{\Gamma'_k} P_k \int_0^{2\pi} \int_0^{2n} \frac{n_2(r, \varphi, z, t)}{n_t} i_k r dr d\varphi - P_k(\alpha_k + l_k) = P_k \Big[U_k n_t n_{21}(\sigma_{ak} + \sigma_{ek}) - l_k - \sigma_{ak} n_t d_E^2 / d_f^2 \Big].$$
(2.15)

Распишем выражение (2.15) в систему уравнений:

$$n_{21} = \frac{n_2}{n_t} = \frac{\frac{P_p \sigma_{ap}}{f_p} + \sum_{i=1}^{N} \frac{P_i \sigma_{ai}}{f_p}}{\frac{P_p \sigma_{ap}}{f_p} + \sum_{i=1}^{N} \frac{P_i^s (\sigma_{ai}^s + \sigma_{ai}^s)}{f_i^s}}{\frac{P_i^s (\sigma_{ai}^s + \sigma_{ai}^s)}{f_p}}$$

$$(2.16)$$

Таким образом, мы получили систему дифференциальных уравнений, описывающих работу многоволнового EDFA для стационарного режима без учета усиленной спонтанной эмиссии.

Из выражений (2.16) явно не прослеживается температурная зависимость, но ее можно учесть путем введения температурных коэффициентов, взятых из экспериментальных исследований [14, 43].

При разработке ВОСП необходимо изучить влияние температуры окружающей среды на усиление EDFA. Такие исследования проводились для EDFA с диодной накачкой на длинах волн накачки 0,8 и 0,98 мкм и показали, что при изменении температуры от минус 40 до плюс 60 °C усиле-ние уменьшалось с 21,6 до 20,1 дБ [14]. В [43] усиление уменьшалось со скоростью –0,07 дБ/ °C при изменении температуры от минус 20 до плюс 85 °C ($\lambda_p = 1,48$ мкм). При $\lambda_p = 0,98$ мкм изменения усиления малы, что вызвано изменением инверсии населенности [14].

Зависимость характеристик от схемы накачки (для прямой и обратной) отслеживается в математической модели с помощью коэффициента U_n [13]:

U_p = 1 — для прямой накачки;

где

U_p = -1 — для обратной накачки.

U_p = 0, P_p = 2P_p — для двунаправленной накачки лазерами с одинаковой мощностью (следует из математической модели).

Зависимости коэффициента усиления и оптимальной длины допированного волокна от параметров сигналов и накачки для EDFA с прямой накачкой

При проектировании EDFA важным является выбор оптимальной длины допированного волокна. Наличие оптимума длины волокна обусловлено наличием максимума зависимости коэффициента усиления от длины волокна. Оптимальной длиной EDF в условиях усиления одного информационного сигнала является длина волокна, на котором достигается максимальное усиление.

Однако вследствие зависимости коэффициента усиления и оптимальной длины волокна от длины волны сигнала (рис. 2.6,а,б) и мощности входного сигнала (рис. 2.6,в,г) в условиях усиления нескольких сигналов для каждого канала существует своя оптимальная длина, на которой наблюдается свой максимум коэффициента усиления для каждого канала (рис. 2.7).

Таким образом, для многоволнового усилителя под оптимальной длиной следует понимать длину волокна, на которой находится последний максимум коэффициента усиления сигнала (см. рис. 2.7).

Рис. 2.7 — Зависимость мощности сигнала от длины волокна

Следует также отметить, что мощность накачки и количество усиливаемых каналов также оказывает непосредственное влияние на коэффициент усиления и оптимальную длину для каждого канала (рис. 2.8).

Рис. 2.8 — Зависимость коэффициента усиления от мощности накачки (a) и количества каналов (б)

Bce выше приведенные зависимости показывают необходимость дополнительных структурных **EDFA** элементов В для выравнивания И стабилизации коэффициента усиления, на основе принципов рассмотренных в п. 1.3.5.

2.1.4 Характеристики и структура оборудования промышленных оптических усилителей EDFA

В табл. 2.2 приведены основные технические параметры линейных оптических усилителей типа EDFA различных производителей [36-42].

Таблица 2.2

	Optix BWS 320G (Huawei Company)	SpectralWave 40/80 DWDM System (NEC)	1640 WM (Alcatel)	«Пуск» (НТО «Ирэ- Полюс»)
Число каналов	32	40	80	
Диапазон мощно- сти на входе, дБм	$-30 \div -13$	-22,5 ÷ 2,5	-	-36 ÷ 10
Коэффициент шума NF, дБ	< 5,5	6–7	5	7
Максимальная мощность на выходе, дБм	20	8–21	28	3,5–27
Коэффициент усиления, дБ	32–35	30–33	20	15–30
Неравномерность АЧХ, дБ	< 2	< 2	< 1	2
Поляризационные потери, дБ	< 0,5	_	_	_

Сравнение оптических линейных усилителей

На рис. 2.9 приведена функциональная схема оборудования ARCOTEL WE1550. WE1550-xx — оптические усилители типа EDFA с высоконадежными лазерами накачки на 980/1480 нм.

Хорошие эксплуатационные показатели позволяют использовать данную модель в различных сетях кабельного телевидения больших и средних размеров.

Рис. 2.9 — Функциональная схема EDFA ARCOTEL WE1550

На рис. 2.10 приведен внешний вид EDFA производства Thorlabs [44].

Рис. 2.10 — Внешний вид EDFA производства Thorlabs

В табл. 2.3 приведены основные рабочие характеристики, а на рис. 2.11 и 2.12 — рабочие зависимости усилителей типа EDFA производства Thorlabs (Япония) [44].

Tuomidu 2.3. Tupumerphi yonnintenen rpen dianasonob. 5, 0, 2			
	S-BAND	C-BAND	L-BAND
дианазон длин волн, нм	1455-1485	1530-1565	1560-1600
Коэффициент усиления	> 25	> 40	> 20
(P _{вх} =-30дБм), дБ	> 23	>40	> 50
Коэффициент усиления	12		12
(P _{вх} = 0дБм), дБ	15	—	15
Коэффициент шума, дБм	< 7	< 5	< 5
Выходная мощность насыщения,		> 17	
дБм	—	>17	_
Стабильность коэф. усиления, дБ	0,001	0,005	0,005

Таблица 2.3. Параметры усилителей трех диапазонов: S, C, L

Диапазон длин волн, нм	S-BAND	C-BAND	L-BAND
	1455-1485	1530-1565	1560-1600
Рабочая температура, °С	+10 +40	0 +40	-10 +45
Цена, \$	28000	17000	19000

Рис. 2.11. — Зависимость коэффициента усиления (а) и коэффициента шума от длины волны для предусилителя (б) диапазона С

Рис. 2.12 — Зависимость коэффициента усиления и коэффициента шума (а, б), коэффициента усиления и коэффициента шума от входной мощности сигнала (в), входного и выходного сигналов (г) от длины волны для усилителя диапазона L

2.2 Мультиплексоры на интерференционных фильтрах

2.2.1 Принципы действия и структура мультиплексора

Принцип действия данного мультиплексора/демультиплексора основан на применении интерференционных (тонкопленочных) фильтров (thin films). Интерференционный фильтр состоит из нескольких чередующихся слоев прозрачного диэлектрического материала с различными показателями преломления, нанесенных на прозрачную подложку (рис. 2.13). Прозрачный диэлектрик имеет точный показатель преломления, который может изменяться от 1,42 до 2,0 (с точностью до 6 знаков после запятой), а разность показателей преломления

обычно составляет величину порядка 10-3-10-4. Толщина структуры L обычно составляет несколько десятков миллиметров.

Интерференционный фильтр отражает заданный интервал длин волн и пропускает все остальные. Для определения этого интервала необходимо рассчитать следующие параметры фильтра: показатели преломления n1, n2, толщину периодической структуры L, период следования слоев Δ и определить угол падения светового пучка на фильтр θ.

Рис. 2.13 — Конструкция интерференционного фильтра:

и — слои с показателями преломления n₁ и n₂; L — толщина структуры; Δ — период структуры, k, k', k'' волновые вектора падающей, отраженной и прошедшей световых волн; θ — угол падения волны

Расчетные формулы для определения параметров фильтра приведены в [1], а техника нанесения слоев хорошо известна в оптической промышленности, что позволяет создавать недорогие фильтры с различными спектральными свойствами.

Тонкопленочные фильтры имеют достаточную полосу пропускания для использования в системах WDM с 16 и 32 каналами.

На рис. 2.14 приведена структурная схема оптического мультиплексора/демультиплексора, состоящая из набора тонкопленочных фильтров, каждый из которых добавляет/выделяет из общего сигнала один информационный. Фильтры расположены под наклоном $\theta \square 45^\circ$ к оптической оси, чтобы отраженный свет не попадал обратно в общий сигнал.

Рис. 2.14 — Мультиплексор/демультиплексор на основе многоступенчатой системы тонкопленочных фильтров: F₁ , F₂ , ... , F_n — набор фильтров, настроенных на свою длину волны

На рис. 2.15 представлена структурная схема модуля мультиплексора/демультиплексора для выделения/ответвления одного канала из группового сигнала. Основу модуля составляют два одинаковых интерференционных фильтра находящихся в разных плечах интерферометра Маха — Цендера [21].

и интерферометра Маха — Цендера

Рассмотрим принцип действия этого устройства на примере выделения второго канала с $\lambda 2$. Групповой сигнал подается на вход 1, делится поровну и попадает на фильтры, для которых условие Брегга выполняется для оптической несущей второго канала. Далее сигнал второго канала отражается от фильтра, вновь попадает на направленный ответвитель, где когерентно складывается и поступает на вход 2. Этот модуль может так же добавлять сигнал с заданной несущей (в данном случае с $\lambda 2$) в групповой сигнал через порт 3. Структурная схема демультиплексора на основе этого модуля представлена на рис. 2.16.

Рис. 2.16 — Мультиплексор/демультиплексор на основе интерферометров Маха — Цендера

К недостаткам демультиплексоров на основе этих модулей можно отнести условие точного равенства плеч у интерферометра Маха — Цендера.

Часто при построении демультиплексоров используется структурная схема, изображенная на рис. 2.17. Из группового сигнала фильтр отражает обратно только один канал, который затем отводится с помощью циркулятора.

Рис. 2.17 — Демультиплексор на основе циркулятора

Данная схема позволяет делать решетку Брега непосредственно в оптическом волокне (волоконная решетка), как показано на рис. 2.18.

Рис. 2.18 — Конструкция интерференционного фильтра, выполненного в оптическом волокие (волоконная решетка)

Решетки записываются в специальное фоточувствительное оптическое волокно. Его можно получить, если в кремниевое волокно добавить примеси германия. Затем это волокно подвергают воздействию ультрафиолетового света, что вызывает изменения показателя преломления в сердцевине волокна. Обычно решетка Брега создается с помощью облучения волокна двумя интерферирующими ультрафиолетовыми лучами.

Для производства решеток также может быть использована фазовая маска, которая расщепляет пучок ультрафиолетового света на различные дифракционные порядки, которые, интерферируя, создают решетку внутри волокна.

2.2.2 Расчет основных характеристик

Расчет основных характеристик интерференционного фильтра основан на теории Брегговского отражения и представляет собой типичный пример связи между противоположно направленными модами [20].

На каждой границе раздела часть падающего светового пучка отражается вследствие различия показателей преломления. Отраженные волны интерферирует с падающей волной и в зависимости от длины оптической волны, усиливаются либо подавляются (рис. 2.19).

Рис. 2.19 — Брегговское отражение

Предположим, что в математической модели интерференционного фильтра толщина всех слоев одинакова, а зависимость диэлектрической проницаемости от z имеет вид

$$\varepsilon(z) = \begin{cases} e_0 n_2^2, & 0 < z < \frac{1}{2}\Delta, \\ e_0 n_1^2, & \frac{1}{2}\Delta < z < \Delta. \end{cases}$$
(2.17)

Нормальные моды невозмущенной среды представляют собой плоские волны e-ikr с волновым числом, определяемым выражением

$$k(\lambda) = \frac{2\pi}{\lambda} \sqrt{\frac{n_1^2 + n_2^2}{2}}.$$
 (2.18)

В соответствии с состоянием поляризации эти плоские волны подразделяются на TE- и TM-волны, между которыми нет связи, поскольку как возмущенная так и невозмущенная диэлектрические проницаемости являются скалярными величинами. Следовательно, связь между волнами может быть только если они имеют одинаковые состояния поляризации. Это возможно лишь для случая противоположно направленных мод, поскольку для одинаково направленных мод условие фазового синхронизма вообще не выполняется.

Характер модовой связи как для TE-, так и для TM-волн аналогичен. Отличие состоит только в том, что они имеют разные значения постоянной связи, которая вычисляется согласно выражениям:

$$\mathbf{K}(\lambda) = \begin{cases} \frac{i}{m\lambda\cos\theta} \sqrt{\frac{2}{n_2^2 - n_1^2}} \left(n_2^2 - n_1^2\right) & (TE - \hat{a}\hat{i} \,\,\text{eff}\,\,\hat{a}) \\ \frac{i}{m\lambda\cos\theta} \sqrt{\frac{2}{n_2^2 - n_1^2}} \left(n_2^2 - n_1^2\right) \cos 2\theta & (TM - \hat{a}\hat{i} \,\,\text{eff}\,\,\hat{a}) \end{cases}$$
(2.19)

Постоянные связи отличаются лишь направляющим множителем $cos(2\theta)$, который равен косинусу угла между векторами поляризации ТМ-волн. Для ТМ-волн при $\theta = 45^{\circ}$, постоянная связи обращается в нуль. Это соответствует нулевому отражению ТМ-волн при угле Брюстера.

Величина фазового рассогласования $\Delta\beta(\lambda)$, характеризующая при каком λ будет выполняться условие Брегга, определяется выражением

$$\Delta\beta(\lambda) = 2k(\lambda)\cos\theta - m\left(\frac{2\pi}{\Delta}\right). \tag{2.20}$$

В соответствии с (2.20), брегговское отражение четных порядков отсутствует, поскольку при m = 2,4,6,..., k = 0. Это соответствует случаю, когда толщина каждого слоя составляет целое число длин волн, что приводит к нулевому отражению.

Для того чтобы получить выражение для коэффициента отражения интерференционного фильтра, предположим, что для света, падающего при z = 0, выполняются следующие граничные условия: $A_1(0) = 1$, $A_2(L) = 0$, где A_1 и A_2 — нормированные амплитуды падающей и отраженной волн.

Коэффициент отражения брегговского отражателя (аппаратная функция или спектр отражения) определяется следующим образом:

$$I = \left| \frac{A_2(0)}{A_1(0)} \right|^2,$$
 (2.21)

где A₁(0) и A₂(0) — амплитуды падающей и отраженной волн. Решая уравнения связанных мод, получим:

$$I(\lambda) = \frac{K(\lambda)K(\lambda)sh^2s(\lambda)L}{s(\lambda)^2 ch^2s(\lambda)L + \left(\frac{\Delta\beta(\lambda)}{2}\right)^2 sh^2s(\lambda)L},$$
(2.22)

где s(λ) задается выражением $s(\lambda)^2 = K(\lambda)K(\lambda) - [\Delta\beta(\lambda)/2]^2$.

Таким образом, аппаратная функция (коэффициент отражения) интерференционного фильтра рассчитывается по формуле (2.22). Она состоит из основного пика с отчетливым максимумом и ряда побочных пиков.

На рис. 2.20, изображена аппаратная функция интерференционного фильтра, рассчитанного согласно выражению (2.22) со следующими параметрами: n₁ \Box 3,47, n₂ \Box 3,4704, L \Box

5,725 мм, θ □ 0°, Δ □ 0,220448 мкм. По приведенному графику можно определить полосу пропускания канала по уровню 0,5–0,14 нм.

Рис. 2.20 — Типичный вид аппаратной функции интерференционного фильтра

Для того чтобы построить демультиплексор на основе интерференционных фильтров по какой-либо из структурных схем, изображенных на рис. 2.14, 2.16, либо 2.17, необходимо рассчитать некоторые конструкционные параметры этих фильтров в соответствии с заданными требованиями к разрабатываемому демультиплексору. Определим эти параметры.

Центральная длина отраженной оптической волны λi

Прежде всего, каждый фильтр должен быть настроен на свою длину волны λ_i (i =1, 2, ..., n; n — число каналов демультиплексора) для выделения из группового сигнала одного информационного канала. Это означает, что на заданной длине волны коэффициент отражения I(λ_i) должен быть максимальным, что достигается при $\Delta\beta(\lambda_i) = 0$, т.е. когда выполняется условие Брега

$$I(\lambda_i)_{\max} = th^2(|K(\lambda_i)|L).$$
(2.23)

Из этого выражения найдем λ_i:

$$\lambda_i = \sqrt{2}\Delta_i \sqrt{n_1^2 + n_2^2} \cos\theta. \tag{2.24}$$

Из выражения видно, что на центральную длину отраженной волны влияют все конструкционные параметры фильтра, кроме толщины структуры L. Для приведенных структурных схем демультиплексоров угол θ фиксированный (0° или 45°). Показатели преломления, кроме величины фазовой расстройки, входят и в выражение постоянной связи (2.19), следовательно, оказывают влияние и на полосу пропускания фильтра. Таким образом, для настройки i-го фильтра на отражения спектра с заданной центральной длинной волны λ_i (согласно частотному плану ITU-T) необходимо подобрать для него период структуры Δ_i , который однозначно определяется выражением (2.24). Согласно этому выражению фильтр, построенный на основе параметров, соответствующих аппаратной функции, изображенной на рис. 2.21, отражает спектр с центральной длиной волны равной 1,53 мкм.

Ширина полосы пропускания (BW)

Ширина полосы пропускания фильтра определяет переходные помехи в демультиплексоре. Чем она уже, тем большее число каналов можно разместить в одном и том же частотном диапазоне. На ширину полосы пропускания интерференционного фильтра оказывает влияние значение постоянной связи (2.19), в которую входит разностью показателей преломления, и толщина структуры L.

Важно подобрать такие значения этих параметров, чтобы коэффициент отражения для λ_i был максимальным (т.е. равным 1), а ширина полосы пропускания фильтров такая, что переходные помехи P_i у демультиплексора не превысят заданных.

Таким образом, чтобы найти максимальное отражение при заданной центральной длине волны λ_i необходимо, чтобы выражение (2.23) было близко к единице (это связано с областью определения функции гиперболического тангенса):

$$I_{\max}(\lambda_i) = 0,999.$$
 (2.25)

Как было сказано выше, на максимальное отражение и ширину полосы пропускания существенное влияние оказывает длина периодической структуры L и разность показателей преломления $\Delta n = |n_2 - n_1|$. Чем уже должна быть ширина полосы пропускания, тем больше должно быть L и меньше $\Box n$. Следовательно, уравнение (2.25) можно переписать в виде

$$I_{\max}(\lambda_i, L_i, \Delta n) = 0,999.$$
 (2.26)

Из этого уравнения можно выразить только толщину структуры L_i при заданном П п:

$$L_{i} = \frac{ath(\sqrt{0.999})}{\sqrt{2}} \frac{\lambda_{i}\cos(\lambda_{i})\sqrt{n_{2}^{2} + n_{1}^{2}}}{\left|n_{2}^{2} - n_{1}^{2}\right|}.$$
(2.27)

Таким образом, для достижения у демультиплексора заданных переходных помех необходимо у фильтров варьировать величину $\Box \Box n$, а толщина структуры для i-го фильтра будет определяться выражением (2.27). Следует заметить, что толщина структуры в границах частот плана ITU-T практически не изменяется, и ее можно считать постоянной для всех фильтров, входящих в демультиплексор, а в качестве эталонной толщины взять значение $L_{int(n/2)}$.

На рис. 2.21, изображены аппаратные функции фильтров (n₁ \Box 3,47, n₂ \Box 3,4704, $\theta \Box$ 0°, $\Delta \Box$ 0,220448 мкм), настроенных на центральную длину волны 1,53 мкм, при различных значениях L.

Рис. 2.21 — Аппаратные функции тонкопленочных фильтров, рассчитанных при различных значениях L: а — 1,5; б — 5,725; в — 20 мкм

У зависимости, изображенной на рис. 2.22,а, толщина структуры рассчитана по формуле (2.27) (L — 5,725 мкм). Эта толщина является оптимальной. На рис. 2.22,б зависимость рассчитана при меньших значениях толщины, что сказывается на коэффициенте отражения, а на рис. 2.22,в — при больших, что приводит к насыщению.

Таким образом, для того чтобы программно рассчитать демультиплексор на основе интерференционных фильтров необходимо:

1) определить угол падения светового пучка на фильтры θ, исходя из схемы построения демультиплексора (рис. 2.14, 2.16, 2.17);

2) исходя из частотного плана ITU-T, выбрать центральные частоты информационных каналов λ_i и число каналов **n**;

3) рассчитать для каждого і-го фильтра значения ∆_і по формуле (2.24);

4) рассчитать значение $L_{int(n/2)}$ по формуле (2.27);

5) задать для фильтров оценочные показатели преломления n_1 и n_2 , исходя из стандартных границ для показателей преломления и величины $\Box n$;

6) варьируя значением $\Box \Box n$ добиться, чтобы максимальная переходная помеха P_{max} , была не больше, чем заданная в техническом задании P_0 .

Данную схему поясняет блок-схема на рис. 2.22.

Рис. 2.22 — Блок-схема построения демультиплексора на основе интерференционных фильтров

На рис. 2.23 изображена аппаратная функция демультиплексора на четыре канала для частотного плана 100 Ггц, рассчитанная по вышеприведенной схеме. Максимальная переходная помеха для него составляет минус 23 Дб.

Рис. 2.23 — Аппаратная функция демультиплексора на основе интерференционных фильтров

2.2.3 Характеристики и структура оборудования промышленных мультиплексоров

Alcatel 1696 Metro Span

Представляет собой мультисервисную DWDM-платформу, поддерживающую передачу широкого спектра протоколов и интерфейсов сигналов данных [36]. Конфигурация системы, включающая оконечное оборудование с волновыми адаптерами (до 32-х каналов), оптические мультиплексоры ввода/вывода с оптическими усилителями или без них и т.п., позволяет строить корпоративные, городские и региональные сети. Внешний вид стойки системы представлен на рис. 2.24.

Рис. 2.24 — Стойка системы передачи

Основные характеристики

- количество каналов до 32 с частотным разнесением 100 ГГц;
- оптический диапазон С ;

• максимальная дальность пролета без регенерации сигнала: до 75 км — в конфигурации без усилителей; до 380 км — в конфигурации с усилителями;

- HUB 8+8+8+8 каналов;
- OADM 4 или 8 каналов;
- система контроля качества передачи;

• различные системы резервирования — пассивная оптическая система резервирования, система резервирования каналов данных.

Сетевая топология

Alcatel 1696 Metro Span поддерживает сетевые топологии следующих типов:

- «точка точка»;
- «точка точка» с промежуточными узлами ввода/вывода;
- двухволоконное кольцо с одним центральным узлом концентратором (single HUB-node);
 - кольцо из двух волокон с полностью распределенной топологией (full mesh);

• кольца, соединенные между собой с использованием топологии «сквозная передача с ответвлением» (dropand-continue).

Конфигурация стойки

Специальная полка с платоместами предназначена для размещения всех основных системных плат. Лицевая сторона полки изображена на рис. 2.25.

Рис. 2.25 — Конфигурация стойки

Полка имеет ширину 533 MM (что полностью соответствует ширине стандартных стоек NEBS И ETSD. высоту 442 MM И глубину 269 мм. Полка состоит из основной части и двух расширений. В основной части полки можно установить до 24 плат. Обычно устанавливаются следующие:

- одна плата контроллера оборудования (две для мастер-полки) (ESC);
- до 16 транспондеров (TSP), пронумерованы с 1 по 16;

• один оптический мультиплексор/демультиплексор для конфигурации оконечного узла (два оптических мультиплексора/демультиплексора или OADM для поддержки двух направлений — на восток и на запад);

• одна плата для оптического канала управления и обслуживания (SPVM).

Кроме четырех слотов, выделенных для платы контроллера оборудования и оптического канала управления все остальные слоты могут принимать платы любого типа. В первом расширении устанавливаются следующие:

• два блока питания -48 В (PWS);

• один блок местного доступа для подключения портативного терминала оборудования или системы сетевого управления EML (LAN_Q);

• один блок местного доступа для связи между полками (LAN_I);

• один служебный блок (housekeeping board) с 8 входящими и 8 исходящими портами служебных интерфейсов (НК, только на мастер-полке);

• один блок удаленных сигналов тревоги (RA);

• два блока пользовательских интерфейсов (UI) (только на мастер-полке);

• по одному блоку оптической защиты каналов на каждый защищенный канал (optical SNCP/UPSR) (OPC).

Второе расширение используется для вентиляторов охлаждения. Все соединения (оптические и электрические) выполняются на передней панели, что значительно облегчает доступ. Каждая полка имеет два избыточных силовых разъема –48 В.

2.3 Мультиплексоры на фильтрах Фабри — Перо

2.3.1 Принцип действия и структура мультиплексора

Два полупрозрачных зеркала, расположенных на некотором расстоянии друг от друга образуют резонатор Фабри — Перро (рис. 2.26) [22].

Рис. 2.26 — Конструкция фильтра на основе резонатора Фабри — Перо: L — длина резонатора

Отраженный луч внутри резонатора многократно отражается от зеркал, и, если L кратно $\lambda_k/2$, то все лучи, проходящие через правое зеркало, оказываются в фазе. Длины оптических волн λ_k называются резонансными.

Данная конструкция очень чувствительна к погрешностям изготовления. Наличие очень узких максимумов приводит к тому, что при незначительном отклонении длины резонатора от заданной пик пропускания существенно смещается. Особенно критичны к погрешности длины резонатора фильтры с более высокими коэффициентами отражения зеркал.

Полоса пропускания таких фильтров достаточно широкая по сравнению с фильтрами на пленках, а аппаратная функция имеет периодический характер, что делает их применение в WDM-системах с большой плотностью размещения каналов практически невозможным.

Для фильтров Фабри — Перо можно предложить схему, показанную на рис. 2.27. С оптического волокна сигнал поступает на набор фильтров, настроенные каждый на «свою» оптическую несущую.

Рис. 2.27 — Схема оптического демультиплексора многоволнового сигнала

Интересной особенностью фильтра Фабри — Перо является возможность его динамической настройки на заданную длину волны путем изменения расстояния между зеркалами. Но высокую разрешающую способность можно реализовать только в том случае, когда коэффициент отражения зеркал близок к единице.

2.3.2 Расчет основных характеристик

Аппаратная функция фильтра Фабри — Перо определяется следующим выражением [20,22]:

$$I(\lambda) = \frac{\left(1-R\right)^2}{\left(1-R\right)^2 + 4R\left[\sin\left(2\pi\frac{Ln}{\lambda}\right)\right]^2}$$
(2.28)

где, R — коэффициент отражения зеркал; n — показатель преломления среды резонатора. Из формулы видно, что спектр пропускания фильтра имеет периодический характер. Также в выражении предполагается, что свет падает нормально на резонатор.

Таким образом, коэффициент пропускания фильтра на основе резонатора Фабри — Перо (аппаратная функция или спектр пропускания) рассчитывается по формуле (2.28).

На рис. 2.28 изображена аппаратная функция фильтра на основе резонатора Фабри — Перо, рассчитанного по формуле (2.28) со следующими параметрами: n = 1,53, L = 100 мкм, R = 0,9.

на основе резонатора Фабри — Перо

По приведенному графику можно определить полосу пропускания канала 0,5 нм.

Для того чтобы построить демультиплексор по схеме, изображенной на рис. 2.27, необходимо рассчитать некоторые конструкционные параметры фильтров в соответствии с заданными требованиями к разрабатываемому демультиплексору. Определим эти параметры.

Центральная длина отраженной оптической волны λ_i . Для того чтобы на заданной длине волны λ_i (согласно частотному плану ITU-T) пропускание фильтра было максимальным необходимо, чтобы выражение, стоящее под знаком синуса, равнялось m π , где m = 1,2,3, ..., т.е. при длине резонатора, выраженной целым числом, для пропускания оптической волны с центром на λ_i , должно выполняться следующее отношение:

$$\frac{n_i}{\lambda_i} = 1, \tag{2.29}$$

где n_i — показатель преломления для i-го фильтра; λ_i измеряется в микрометрах.

Согласно этому отношению, фильтр, построенный на основе параметров, соответствующих аппаратной функции, изображенной на рис. 2.28, пропускает спектр со следующими центральными длинами волн: 1,52239 мкм, 1,53 мкм, 1,53769 мкм (в пределах изменения λ от 1,52 до 1,54 мкм).

Ширина полосы пропускания. На ширину полосы пропускания фильтра на основе интерферометра Фабри — Перо оказывает влияние коэффициент отражения зеркал R и длина резонатора L. Чем выше коэффициент отражения зеркал R и больше значение L, тем уже будет ширина полосы пропускания.

Из-за периодичности аппаратной функции фильтра следующий максимум первого канала может попасть в спектр последнего информационного канала (рис. 2.29). Поэтому необходимо рассчитать такую длину резонатора L, чтобы период аппаратной функции был больше свободного спектрального диапазона демультиплексора $\Delta\lambda_{FSR}$ ($\Delta\lambda_{FSR} = \lambda_n - \Delta\lambda_1$). На рис. 2.29, этот период обозначен как $\Delta\lambda'_{FSR}$.

The 2.27 Annaparnas wynkuns wisibipa

Длина резонатора, при известном периоде аппаратной функции T_f и центральной длине волны λ_i находится из выражения (2.28) и равна

$$L_i = \operatorname{int}\left(\lambda_i \frac{T_f + \lambda_i}{2T_f n}\right). \tag{2.30}$$

Из формулы видно, что наибольшей длина резонатора будет для последнего канала, поэтому полученное значение можно использовать и для всех остальных фильтров входящих в демультиплексор. Величину T_f можно оценить по формуле:

$$T_f = \Delta \lambda_{FSR} \frac{3}{2} R. \tag{2.31}$$

Формула является эмпирической, полученной при условии, что последний канал демультиплексора вносит переходную помеху в первый канал не больше чем минус 25 Дб.

Значение R обычно лежит в диапазоне от 0,9 до 0,99 и для его оценки можно воспользоваться формулой

$$R = 1 - \sqrt{\Delta \lambda_k}, \qquad (2.32)$$

где $\Delta \lambda_k$ — канальный интервал демультиплексора, нм. Так как канальный интервал для всех фильтров единый, то полученный коэффициент отражения будет примерно одинаков для всех фильтров, входящих в демультиплексор.

Формула (2.32) также эмпирическая и получена при условии, что і-й канал демультиплексора вносит переходную помеху в соседний канал не больше, чем минус 25 Дб.

Таким образом, для того чтобы программно рассчитать демультиплексор на основе фильтров Фабри — Перо необходимо:

1) исходя из частотного плана ITU-T, выбрать центральные частоты информационных каналов λ_i и число каналов **n**;

2) вычислить для каждого фильтра показатель преломления резонатора n_i, исходя из отношения (2.29);

3) оценить величину L_n (длину резонатора для фильтра последнего канала) по формуле (2.30). Она будет едина для всех фильтров, входящих в демультиплексор;

4) оценить коэффициент отражения зеркал резонаторов R по формуле (2.32);

5) варьируя значением R и L_n , добиться, чтобы максимальная переходная помеха P_{max} , была не больше, чем заданная в техническом задании P_0 .

Данную схему расчета поясняет блок-схема на рис. 2.30.

Рис. 2.30 — Блок-схема построения демультиплексора на основе фильтров Фабри — Перо

2.4 Мультиплексоры на голографических дифракционных решетках

2.4.1 Принцип действия и структура мультиплексора

Принцип действия данного демультиплексора основан на пространственном разделении группового сигнала с помощью голографических дифракционных решеток записанных в фотополимерном материале (ФПМ). Фактически, это серия дифракционных решеток, настроенных на определенную длину волны, но не стоящих последовательно, а записанных в одну пространственную область ФПМ.

Применение такой технологии демультиплексирования приведет к увеличению мощности дифрагируемых лучей полезного сигнала, так как они не будут проходить через цепочку последовательно стоящих фильтров, и значительно облегчит конструкцию демультиплексора, что приведет к удешевлению устройства.

На рис. 2.31 схематически изображена схема демультиплексора на основе ФПМ, в котором записаны две голографическме дифракционные решетки пропускающего типа под разными углами к оси **x**. Падающее на ФПМ оптическое излучение с раличающимися длинами волн испытывает брэгговскую дифракцию на соответствующих дифракционных решетках. Дифракционные световые лучи распространяются под различными углами (т.е. разделяются пространственно), после чего поступают каждый на свое фотоприемное устройство (ФПУ).

Рис. 2.31 — Применение наложенных голографических решеток в ФПМ для демультиплексирования группового оптического сигнала

Более детально принцип селекции длин волн показан на рис. 2.32. Для удобства визуализации наложенные голографические решетки размещены последовательно. Пусть из оптического волокна на ФПМ падает пучок света с длинами волн λ_1 , λ_2 , ..., λ_n . Так же пусть в ФПМ записаны две решетки со своими векторами K_1 , и K_2 , соответствующими длинам волн λ_1 и λ_2 . На первой и второй решетке свет с длинами волн λ_1 и λ_2 будет дифрагировать на углы Ψ_1 и Ψ_2 , а остальные световые лучи с длинами волн λ_3 , ..., λ_n пройдут через ФПМ.

Рис. 2.32 — Принцип селекции длин волн на основе фазовых решеток

2.4.2 Математическая модель

Механизм записи дифракционных решеток в ФПМ основан на процессе радикальной фотополимеризации [31]. Основными компонентами ФПМ являются полимеризационно-

способные соединения (мономеры, олигомеры), инициатор и сенсибилизатор радикальной фотополимеризации. Композиции выпускаются либо как жидкая смесь компонентов, либо в виде пленок, представляющих собой раствор компонентов в нейтральной полимерной матрице. При изготовлении регистрирующего слоя жидкая смесь заливается между стеклянными подложками.

Полимеризация среды в интерференционном поле приводит к пространственной модуляции показателя преломления $\Delta n(r,t)$. Величина Δn определяется модуляцией плотности и поляризуемости полимера, а также модуляцией его состава вследствие диффузионного перераспределения компонентов между освещенными и неосвещенными областями регистрирующего слоя.

Кинетическое описание свободно-радикальной полимеризации включает следующие основные элементарные реакции:

1) фото(термо)распад инициатора с образованием свободных (первичных) радикалов;

2) образование активных полимерных радикалов в результате взаимодействия первичных радикалов с молекулами мономера (реакция инициирования цепи);

3) увеличение длины полимерного радикала за счет присоединения мономерных звеньев (реакция роста цепи). Скорость роста цепи характеризуется параметром роста цепи К_g;

4) переход полимерного радикала в неактивную форму с образованием конечного продукта реакции — молекулы полимера (реакция обрыва цепи). Скорость обрыва полимерной цепи характеризуется параметром обрыва K_b;

Интерференция записывающих лазерных пучков в объеме ФПМ, приводит к периодическому распределению интенсивности суммарного светового поля в поперечном направлении (вдоль границы раздела ФПК с воздухом). В тех местах, где интенсивность света больше, реакция фотополимеризации протекает быстрее. Поэтому области максимумов интерференционной картины содержат максимальное количество полимера и минимальное количество мономера, красителя и донора, которые расходуются в процессе реакции. Возникающие при этом градиенты концентрации веществ приводят к тому, что мономер, краситель и донор диффундируют из темных областей в светлые и, если экспозиция продолжается, также принимают участие в реакции фотополимеризации. Диффузия указанных компонент ФПК происходит до тех пор, пока их концентрации не выравнятся во всем слое.

Аналогичным образом возникает градиент концентрации полимера. Диффузия полимерных молекул из максимумов в минимумы ИК приводит к рассасыванию решетки и уменьшению ее дифракционной эффективности. Поскольку подвижность молекул образующегося полимера значительно меньше подвижности молекул мономера, красителя и донора, то диффузия полимера проявляется на гораздо больших временных интервалах

Показатель преломления полимера больше показателя преломления исходного мономера. Таким образом, модуляция показателя преломления Δn в ФПМ возникает как следствие модуляции концентрации полимера. Скорость изменения концентрации мономера со временем записи равна:

$$\frac{\partial M}{\partial t} = \operatorname{div}\left(D_m \operatorname{grad} M\right) - K_g K_b^{-1/2} \sqrt{\frac{\alpha \beta K I(\mathbf{r})}{1/\tau_0 + \beta M}} M^{3/2}, \qquad (2.33)$$

где I(**r**) — интенсивность светового излучения в точке с радиус-вектором **r**; D_m — коэффициент диффузии мономера; α — коэффициент поглощения красителя; К — концентрация красителя; β — параметр реакции фотоинициирования.

Изменение во времени М в некоторой точке приводит за счет процесса полимеризации к изменению во времени плотности полимерных молекул в этой точке. За счет процессов диффузии мономера происходит также вытеснение инертной компоненты. Все эти процессы в соответствии с соотношением Лоренц — Лорентца ведут к изменению показателя преломления n:

$$\frac{\partial n}{\partial t} = \Delta n_p K_g K_b^{-1/2} \sqrt{\frac{\alpha \beta K I(\mathbf{r})}{1/\tau_0 + \beta M}} \cdot \frac{M^{3/2}}{M_0} + \Delta n_i \operatorname{div}\left(D_m \operatorname{grad}\frac{M}{M_0}\right), \qquad (2.34)$$

где M₀ — начальная концентрация мономера.

Система уравнений (2.33) и (2.34) является базовой для описания процесса записи голограмм в фотополимерном материале.

Аналитическое описание динамики записи одиночных голограмм. Схема записи голограммы в полимерной среде изображена на рис. 2.33. Оптическое поле представляется суммой двух волн с векторными амплитудами \mathbf{E}_0 , \mathbf{E}_1 и волновыми векторами \mathbf{k}_0 , \mathbf{k}_1

$$\mathbf{E}_{1} = \mathbf{e}_{1}A_{1}e^{-i\mathbf{K}_{1}\mathbf{r}}; \quad \mathbf{E}_{2} = \mathbf{e}_{2}A_{2}e^{-i\mathbf{K}_{2}\mathbf{r}},$$
 (2.35)

где A_0 , A_1 медленно меняющиеся по **r** и t амплитуды волн; e_0 , e_1 — векторы поляризации этих волн.

Падающие волны интерферируют внутри полимерного слоя и формируют интерференционную картину. Предположим, что $A_0 = A_1$, и что среда обладает коэффициентом затухания α , так что интерференционная картина светового поля имеет вид:

$$I(\mathbf{r}) = I_0(\mathbf{r}) \exp[-\alpha y] \left\{ 1 + \cos(\mathbf{K} \cdot \mathbf{r}) \right\}, \qquad (2.36)$$

где $I_0(\mathbf{r}) = |A_0|^2 + |A_1|^2$ — пространственное распределение интенсивности, **К** = $\mathbf{k}_0 - \mathbf{k}_1$ — вектор решетки.

Рис. 2.33 — Пространственная геометрия (а) и векторная диаграмма (б) нестационарного взаимодействия световых волн с голографической решеткой в ФПМ для несимметричной модели записи

В кинетических уравнениях записи (2.33), (2.34) в общем случае происходит изменение амплитуд записывающих световых волн A₀, A₁, обусловленное эффектами самодифракциии на формируемой решетке в области ФМП. Данный процесс описывается системой уравнений связанных волн [31]

$$\frac{\partial A_{1}}{\partial y} = -iG_{1}n_{1}(y,t)\exp[i\Delta y]A_{0}, \qquad (2.37)$$
$$\frac{\partial A_{0}}{\partial y} = -iG_{0}n_{1}^{*}(y,t)\exp[-i\Delta y]A_{1},$$

где $n_1(y,t)$ — амплитуда решетки; $y = x/d = (\mathbf{r} \cdot \mathbf{x}_0)/d$; \mathbf{x}_0 — нормаль к границе среды; $\Delta = (\mathbf{k}_0 - \mathbf{k}_1 + \mathbf{K}) \cdot \mathbf{x}_0 d$; $\mathbf{G}_j = \omega d/(2 \cos \varphi_j)$; φ_j — углы между осью у и векторами \mathbf{k}_j внутри полимерного слоя толщиной d.

Совокупность уравнений (2.33), (2.34) и (2.37) образует замкнутую систему, описывающую процесс записи голограмм в ФПМ в соответствии с распределением интенсивности света (2.36).

Учитывая, что в процессе последовательной записи наложенных голограмм в ФПМ дифракционная эффективность каждой из них является невысокой, возмущением полей (2.35) вследствие эффектов самодифракции волн E0, E1 на записываемых решетках будем пренебрегать. Это позволяет считать амплитуды A0, A1 в (2.36) постоянными и решения (2.33), (2.34) искать в виде суммы нулевых и первых гармоник

$$M(t,\mathbf{r}) = M_0(t, y) + M_1(t, y)\cos(\mathbf{K} \cdot \mathbf{r})$$
$$n(t,\mathbf{r}) = n_0(t, y) + n_1(t, y)\cos(\mathbf{K}_1\mathbf{r})$$

Допуская, что $M_1(t,y) \square M_0(t,y)$ и $n_1(t,y) \square n_0(t,y)$, можно пренебречь влиянием первой гармоники на нулевую и, используя начальные условия

$$M_0(t=0,y)=M_0; \ \pi_0(t=0,\,y)=\pi_{st}$$

;

получим решение (2.33), (2.34) для нулевой гармоники

$$M_0(\tau, y) = M_n \left[1 + \frac{2\tau}{\pi} \exp\left(-\frac{\alpha y}{2}\right) \right]^{-2}, \qquad (2.39)$$

где $\tau = f/T_p$, $T_p^{-1} = \sqrt{\alpha\beta\tau_0}K\langle M_n I_0 \frac{K_g}{\sqrt{2K_b}}$ — время полимеризации.

Решение для амплитуды первой гармоник M₁(t,y):

$$M_{1}(\tau, y) = -\frac{8M_{0} \exp\left[-\alpha \frac{y}{2}\right]_{0}^{\tau} \exp\left[A(\tau', y)\right] M_{0}(\tau', y)^{3/2} d\tau'}{A(\tau', y) 3\pi T_{p} M_{0}^{\frac{3}{2}}},$$
(2.40)

где $A(\tau, y) = K^2 \int_0^{\tau} D_m(\tau', y) d\tau' + \frac{28}{\sqrt{M_0 \cdot 5\pi T_p}} \exp\left[-\alpha \frac{y}{2}\right]_0^{\tau} \sqrt{M_0(\tau', y)} d\tau'..$

Используя (2.39) и (2.40), найдем амплитуду первой гармоники n₁(t,y):

$$+\frac{8}{3\pi T_p M_n^{3/2}} \int_0^t M_0(t', y)^{\frac{3}{2}} dt' \left[\exp\left(-\alpha \frac{y}{2}\right) \right], \qquad (2.42)$$

$$n_{1i}(t,y) = -\frac{\delta n_i K^2}{M_n} \int_0^t D_m(t',y) M_1(t',y) dt'.$$
(2.43)

Решение (2.41) записано как функция от пространственной и временной координаты. Отсюда сразу следует, что в процессе записи, во-первых, амплитудный профиль записываемой решетки является неоднородным, во-вторых, трансформируется во времени, и в-третьих, кинетика изменения амплитуды решетки в каждой пространственной точке является различной и определяется вкладами в амплитуду голографической решетки процессов полимеризации и вытеснения инертной компоненты за счет диффузии мономера, которые пропорциональны δn_p и δn_i .

Аналитическое описание и алгоритм процесса записи наложенных голограмм. Принцип записи голографических НДР схематически показан на рис. 2.34. Каждая голо-

грамма записывается под своим углом Ψ_i , с одинаковым углом схождения записывающих лазерных пучков θ_{IW} в течение определенного времени t_i . При этом в ФПМ из-за процессов радикальнойполимеризации формируется фазовая голографическая решетка. Типовые характеристики динамики записи таких решеток, т.е. зависимости дифракционной эффективности от времени записи (экспозиции), для трех первых НДР представлены на рис. 2.35.

Моделирование механизма последовательной записи НДР в ФПМ состоит в следующем.

Рис. 2.34 — Схема последовательной записи НДР в ФПМ

Записывается первая голограмма (кривая 1, рис. 2.35,а) под углом Ψ_1 (угол между нормалью к полимеру и биссектрисой угла схождения записывающих пучков) и с начальной концентрацией мономера $M_{n1} = M_{n0}$, где M_{n0} — начальная концентрация мономера до процесса записи. По мере записи решетки мономер расходуется за счет реакции полимеризации. При достижении за время экспозиции t_1 заданной дифракционной эффективности решетки η_0 запись голограммы прекращается (рис. 2.35,а) и определяется оставшаяся концентрация мономера $M_{n2} < M_{n1}$. Отметим, что на рис. 2.35,а, пунктирной линией обозначена динамика записи дифракционной решетки, если бы запись голограммы продолжалась далее.

Рис. 2.35 — Динамика дифракционной эффективности (а) и зависимость нормированной дифракционной эффективности от расстройки Брегга (б) для трех последовательно записываемых НДР

Записывается вторая голограмма (кривая 2, рис. 2.35,а) под углом Ψ_2 (рис. 2.34), но уже с начальной концентрацией мономера M_{n2} . При достижении значения η_0 через промежуток времени t_2 запись голограммы прекращается и определяется оставшаяся концентрация мономера $M_{n3} < M_{n2}$. Далее этот процесс повторяется столько раз, сколько голограмм необходимо записать. Отметим, что время экспозиции с ростом порядкового номера записываемой голограммы и при условии равных дифракционных эффективностей увеличивается. Это связано с изменением динамики записи голограмм (рис. 2.35,а). Вследствие истощения концентрации мономера необходимо больше энергии для достижения той же дифракционной эффективности, как у предыдущих голограмм.

На основе найденных времен записи рассчитывается зависимость интенсивности дифрагированного пучка от относительной расстройки Брегга либо от угла падения считывающего голограмму луча, или от длинны оптической волны. В последних двух случаях получаем угловой или частотный спектр для устройства селекции длин волн на основе НДР, записанных в ФПМ. На основе этих спектров (аппаратных функций) определяются переходные помехи и соответствие их поставленным требованиям. На рис. 2.35,6 приведена зависимость нормированной дифракционной эффективности от расстройки Брегга для трех записанных НДР при следующих параметрах модели: $\alpha = 1$ Нп; $\delta n_p = 10^{-2}$; $\delta n_i = 10^{-2}$; d = 20 мкм; n = 1,45; $\theta_{IW} = 20^\circ$; $\Psi_1 = 0^\circ$; $\Psi_2 = 5^\circ$; $\Psi_3 = 10^\circ$. Все три голограммы записаны при условии равенства их дифракционных эффективностей ($\eta_0 = 1$ %)

Математическую модель для записи одиночной голограммы можно модифицировать на случай последовательной записи нескольких наложенных голограмм в ФПМ.

Введем в решения (2.40) и (2.41) индекс і — номер голограммы, и перепишем их с учетом истощения мономера для каждой последующей записанной решетки. Выражение для амплитуды первой гармоники концентрации мономера для і-й голограммы запишется:

$$M_{1i}(\tau, y) = -\frac{8M_{ni} \exp\left[-\alpha \frac{y}{2}\right]_{0}^{\tau} \exp\left[A_{i}(\tau, y)\right] M_{0i}(\tau', y)^{3/2} d\tau}{\exp\left(A_{i}(t, y) 3\pi T_{pi} M_{ni}^{\frac{3}{2}}\right)},$$
(2.44)

где $A_i(\tau, y) = K^2 \int_0^{\tau} D_m(\tau, y) d\tau + \frac{28}{\sqrt{M_{ni}} \cdot 5\pi T_{pi}} \exp\left(-\alpha \frac{y}{2}\right) \cdot \int_0^{\tau} \sqrt{M_{0i}(\tau, y)} d\tau;$

амплитуда нулевой гармоники

$$M_{0i}(\tau, y) = M_{ni} \left[1 + \frac{2\tau}{\pi} \exp\left(-\alpha \frac{y}{2}\right) \right]^{-2}, \qquad (2.45)$$

M_{ni} — начальная концентрация мономера на момент записи і-й голограммы, T_{pi} — время полимеризации на момент записи і-й голограммы.

Амплитуда первой гармоники показателя преломления n_{1i}(t,y):

$$n_{1i}(\tau, y) = \frac{\delta n_p}{\pi T_{pi}} \exp\left(-\alpha \frac{y}{2}\right) \int_0^{\tau} \left[\frac{28}{5} \sqrt{\frac{M_{0i}(\tau', y)}{M n_i^3}} M_{1i}(\tau, y) + \frac{8}{3\pi T_{pi}} \left(\frac{M_{0i}(\tau', y)}{M_{ni}}\right)^{3/2} \right] d\tau - \frac{\delta n_i K^2}{M_{ni}} \int_0^{\tau} D_m(\tau, y) M_{1i}(\tau, y) d\tau.$$
(2.46)

Выражение (2.46) совместно с первым уравнением (2.37) составляет основу для определения дифракционной эффективности i-й НДР

$$\eta_d(\Delta) = |A_{li}|^2 / |A_0|^2 = |G_i \int_0^1 n_{li}(\tau, y) \exp(j \cdot \Delta \cdot y) dy|^2, \qquad (2.47)$$

где $G_1 = \pi d/\lambda cos(\theta_i)$, θ_i — угол считывания i-й голограммы в фотополимере и соответственно коэффициента передачи i-го канала демультиплексора,:

$$T_i(\Delta) = \left| G_i \int_0^1 n_{\mathrm{l}i}(\tau, y, i) \exp(j \cdot \Delta \cdot y) dy \right|^2.$$
(2.48)

Относительная расстройка Δ в (2.48) связана с изменением длины оптической волны $\delta \lambda = \lambda - \lambda_i$ и угла считывания $\delta \theta = \theta - \theta_i (\delta \theta = \delta \lambda / 2n \Lambda \cos \theta_i)$

$$\Delta = \delta \theta \frac{4\pi nd}{\lambda_i} \sin \theta_i; \quad \Delta = \delta \lambda \frac{2\pi nd}{\lambda_i} \tan \theta_i;$$

относительно их значений, удовлетворяющих условию Брэгга $\sin\theta_I = 2\lambda_i/n\Lambda$.

Таким образом, выражения (2.46) и (2.48) являются математической основой для компьютерного моделирования аппаратной функция WDM-демультиплексора на основе наложенных голограмм в ФПМ.

2.4.3 Расчет основных оценочных характеристик

Для того чтобы построить демультиплексор на основе наложенных решеток в фотополимерном материале, необходимо рассчитать параметры записи этих решеток в соответствии с заданными требованиями к разрабатываемому демультиплексору.

При использовании дифракционной решетки в качестве фильтра для заданной длинны оптической волны λ_i важно определить угол θ_{di} , под которым будет дифрагировать луч. Угол определяется из условия Брэгга:

$$\sin \theta_{di} = \lambda_i / 2\Lambda, \tag{2.49}$$

где $\Lambda = \lambda_{cai} / 2 \sin(\theta_{cai})$ — период решетки. Для последовательной записи голограмм период решеток одинаков, т.к. угол записи всех голограмм постоянен, а изменяется только наклон ФПМ на угол $\Delta \Psi$. Учитывая это, перепишем (2.49) в виде

$$\theta_{di} = \arcsin\left(\frac{\lambda_i}{2\Lambda}\right) + \Delta \Psi(i-1). \tag{2.50}$$

Величина $\Delta \Psi$ определяется при заданной величине канального интервала Δf_k из условия обеспечения требуемого уровня переходных помех между каналами. Дифференцируя (2.50), найдем изменение θ_{di}

$$\delta \Theta_d = \Theta_{di} - \Theta_{di-1} \cong \frac{\Delta \lambda_k}{2\Lambda \cos \Theta_i},$$

где $\Delta\lambda_k = \Delta f_k c/f^2$. Для обеспечения углового разрешения дифракционных максимумов смежных каналов необходимо выполнение условий

$$\delta \theta_d > \delta \theta > \Delta \theta, \tag{2.51}$$

где $\Delta \theta = \lambda/D$ — угловая расходимость падающего светового пучка с апертурой D; $\delta \theta = \Lambda/d$ — угловая селективность голографической решетки. Угловая селективность определяет такой угловой разнос дифрагированных лучей, при котором переходные помехи будут удовлетворять поставленным требованиям.

Следовательно оценочное значение $\Delta \Psi$ найдется как

$$\Delta \Psi \ge 2\delta \theta. \tag{2.52}$$

Максимальную достижимую дифракционную эффективность голографических решеток можно оценить по формуле

$$\eta_{d\max} \approx 1/\mathbf{n},\tag{2.53}$$

где **n** — число наложенных решеток в ФПМ.

Для заданной толщины решетки d и оценки (2.53) из выражения для дифракционной эффективности

$$\eta_{di} = \sin^2 \left[\frac{\pi n_{1i} d}{\lambda_i \cos \theta_{0i}} \right]$$
(2.54)

можно определить требуемую амплитуду решетки n_{1i}, и соответственно необходимое время ее формирования в процессе записи.

Относительную ширину полосы пропускания каждого канала можно оценить по формуле

$$\frac{\Delta \lambda_i}{\lambda_i} = \frac{\Lambda}{d} \operatorname{ctg} \theta_i.$$

2.5. Мультиплексоры на основе AWG

На сегодняшний день существуют различные устройства для мультиплексирования/демультиплексирования оптического потока, у каждого из которых есть свои достоинства и недостатки. Одним из приоритетов является возможность создания WDM/DWDMустройств с применением интегрально-оптической технологии [3,27].

Интегральная оптика успешно применяется для создания решеток на основе массива планарных волноводов различной длины между двумя планарными линзами смесителями AWG (Arrayed Waveguide Gratings).

Решетки на основе массива волноводов AWG используются для того, чтобы перераспределять сигналы различных длин волн (каналы) между двумя наборами волокон или выделять (демультиплексировать) отдельные каналы составного сигнала в отдельные волокна. Эта технология сейчас становится основной для производителей мультиплексоров и демультиплексоров систем DWDM. Благодаря легко масштабируемой структуре, она может широко применяться в системах с сотнями каналов [27-29].

2.5.1 Принципы действия и структура мультиплексора

Устройство работает следующим образом. Если на вход планарной структуры подсоединить одномодовый световод и подавать по нему оптические сигналы с несколькими спектральными составляющими (на длинах волн $\lambda_1, \lambda_2, \lambda_3, ..., \lambda_n$) в магистральный канал, то в первом фокусирующем элементе, выполняющем роль коллиматора, свет равномерно разделится и будет распространяться по канальным волноводам с разными длинами пробега, отличающимися постоянным интервалом. За счет материальной и волноводной дисперсии разные длины волн достигнут второго фокусирующего элемента с разными фазами. В зависимости от фаз световые пучки разных спектральных составляющих, выходящие из этого фокусирующего элемента, будут интерферировать и создавать равномерное угловое спектральное распределение, направляя различные спектральные составляющие в разные выходные каналы. К выходным каналам на торцевом конце планарного устройства может быть подсоединена линейка фотодиодов или линейка со встроенными стандартными одномодовыми волокнами для транспортировки оптических сигналов на различных длинах волн к оптоэлектронным блокам. Особенностью рассмотренной волноводной структуры является ее обратимость. Она может использоваться в качестве как мультиплексора так и демультиплексора [27].

Одной из конфигураций AWG является планарный оптический многопортовый разветвитель в форме таблетки с портом входа λ_0 и группой выходных портов $\lambda_0^0, \lambda_1^0, ..., \lambda_n^0$, расположенной симметрично относительно λ_0 на периферии волновода слева, и группой внутренних выходных портов $\lambda_0^i, \lambda_1^i, ..., \lambda_n^i$, расположенной симметрично группе выходных портов на периферии справа (рис. 2.36).

Рис. 2.36 — Многопортовый разветвитель

Внутренние выходные порты соединены через массив световодов с плоским отражающим зеркалом. Входной поток $\lambda_0 = \sum \lambda_i$ (i =1,2, ..., n) подается в оптический волновод и распределяется по всем внутренним портам, откуда он распространяется по массиву световодов (с разным фазовым запаздыванием) до зеркала, отражается и подается со стороны внутренних выходных портов в тот же волновод, где происходит интерференция входной и отраженных волн [29].

Еще одной конфигурацией планарных дисперсионных устройств, является устройство с волноводами массива одинаковой длины, но с участками различных замедлений.

Существует еще одна модификация AWG, называемая Cross Array Waveguide (XWG) или Crossing Focal Points Waveguide (XFP-WG) (рис. 2.37).

Рис. 2.37 — Конфигурация AWG (а) и XWG (б)

Ее отличие заключается в том, что у AWG приращение длины Δl между соседними волноводами начинается с нижнего волновода, который имеет наименьшую длину, тогда как у XWG наименьшую длину имеет средний волновод массива, а приращение длины Δl происходит в обе стороны от него, поэтому верхний и нижний крайние волноводы имеют наибольшую длину [29].

Приведенные выше конфигурации интегрально-оптических решеток на основе массива планарных волноводов, по сути, относятся к одному и тому же устройству (AWG, см. рис. 2.36), но с небольшими конструктивными изменениями.

2.5.2 Математическая модель

Многопортовый N×N мультиплексор AWG

Многопортовый N×N мультиплексор/демультиплексор AWG осуществляет мультиплексирование или демультиплексирование входного многочастотного информационного сигнала. Структурная схема многопортового N×N мультиплексора AWG изображена на рис. 2.38, где i = 1,...,N и j = 1, ..., N — номера соответствующих входных и выходных портов; $[T_{ij}]$ — матрица передачи.

Рис. 2.38 — Структурная схема AWG

Взаимосвязь входных и выходных сигналов AWG может быть представлена в виде

$$\begin{bmatrix} E_{1}^{out}(\omega_{1}...\omega_{k}...\omega_{N})\\ E_{2}^{out}(\omega_{1}...\omega_{k}...\omega_{N})\\ \vdots\\ E_{j}^{out}(\omega_{1}...\omega_{k}...\omega_{N})\\ \vdots\\ E_{j}^{out}(\omega_{1}...\omega_{k}...\omega_{N})\\ \vdots\\ E_{N}^{out}(\omega_{1}...\omega_{k}...\omega_{N}) \end{bmatrix} = \begin{bmatrix} T_{11} & T_{12} & ...T_{1j} & ...T_{1N}\\ T_{21} & T_{22} & ...T_{2j} & ...T_{2N}\\ \vdots & ... & ... & ...\\ T_{i1} & T_{i2} & ...T_{ij} & ...T_{iN}\\ \vdots & ... & ... & ...\\ T_{i1} & T_{i2} & ...T_{ij} & ...T_{iN}\\ \vdots & ... & ...\\ T_{N1} & T_{N2} & ...T_{Nj} & ...T_{NN} \end{bmatrix} \times \begin{bmatrix} E_{1}^{in}(\omega_{1}...\omega_{k}...\omega_{N})\\ E_{2}^{in}(\omega_{1}...\omega_{k}...\omega_{N})\\ \vdots\\ E_{i}^{in}(\omega_{1}...\omega_{k}...\omega_{N})\\ \vdots\\ E_{i}^{in}(\omega_{1}...\omega_{k}...\omega_{N}) \end{bmatrix}.$$
(2.55)

Здесь входной и выходной многочастотные информационные сигналы во входных и выходных портах имеют вид:

$$E_{i}^{in}(\omega_{1}...\omega_{k}...\omega_{N}) = \sum_{k=1}^{N} f_{i}(\omega_{k});$$
$$E_{j}^{out}(\omega_{1}...\omega_{k}...\omega_{N}) = \sum_{k=1}^{N} \sum_{i=1}^{N} T_{ij}^{\omega_{k}} \cdot f_{i}(\omega_{k}),$$

где і — номер входного порта; j — номер выходного порта; k — текущий номер частоты, на которой передается информационный сигнал.

Если сигнал есть только на i-м входном порте на k-й частоте, то выходной сигнал, регистрируемый на j-м порте, можно записать:

$$f_j^{out}(\omega_k) = T_{ij}^{\omega_k} f_i^{in}(\omega_k).$$

Таким образом, задавшись массивом входных сигналов и зная матрицу передачи [T_{ij}], можно рассчитать сигнал на выходе мультиплексора AWG. Поэтому для получения массива выходных информационных сигналов далее рассчитываются элементы T_{ij}.

Физическая схема AWG мультиплексора

Для определения элементов T_{ij} матрицы передачи [T_{ij}] в выражении (2.55) воспользуемся физической схемой преобразования входного оптического сигнала f_{in} в AWG (рис. 2.39).

AWG состоит из массива волноводов, на концах которого находятся две линзы FPR1 и FPR2, имеющие одинаковые геометрические размеры.В выходной плоскости FPR1 x_1 помещены K волноводов массива AW симметрично относительно оси x_1 , которые располагаются на расстоянии d_w друг от друга. Длины AW отличаются на постоянную величину Δl , которая является равной целому числу (m — порядок решетки) длин волн устройства λ_0 внутри AW. Входные и выходные волноводы находятся в произвольных местах d_i и d_0 соответственно.

Входной, выходной и волноводы массива характеризуются своей мощностью, нормализованной профилем модового поля $b_i(x)$, $b_0(x)$ и $b_g(x)$ соответственно.

Расчет элементов матрицы передачи

В силу линейности рассматриваемой оптической системы AWG преобразование входного оптического сигнала f_{in} может быть представлено в виде последовательности операторов преобразования над ним:

$$\left[T\left(f_{in}\right)\right] = T3 \otimes T2 \otimes T1\left(f_{in}\right),$$

соответствие операторов преобразования T1, T2, T3 физическому прохождению сигнала f_{in} через AWG показано на рис. 2.40.

Рис. 2.40 — Соответствие операторов преобразования физическому прохождению сигнала

Последовательно рассчитывая операторы преобразования, можно проследить прохождение сигнала через элементы устройства AWG, а также рассчитать элементы T_{ij} матрицы передачи.

Операторы преобразования представим, используя математическую Фурье-модель AWG и обозначения, принятые в [23].

Расчет оператора Т1

Оператор T1 преобразует входное поле f_{in} в поле, находящееся за линзой FPR1 (плоскость x_1 на рис. 2.40) и выполняет следующие действия.

Поле в хо

Входное поле во входной плоскости $f_{in}(x_0, v)$ на частоте v может быть написано как

$$f_{in}(x_0, d_i, v) = b_i^v(x_0 - d_i)$$

где $b_{i}^{v}(x)$ — мощность, нормализующая профиль модового поля входного волновода на частоте v, который расположен симметрично относительно источника и зависит только от ширины и показателя преломления входного волновода, но не от его положения.

Поскольку мы будем иметь дело только с отдельным частотным возбуждением и для упрощения обозначения устраним частоту v и зависимость полей от положения d_i и будем использовать их, когда необходимо. Запишем

$$f_{in}(x_0) = b_i^{\rm V}(x_0 - d_i), \qquad (2.56)$$

где х — переход к новой координате ($x = x_0 - d_i$).

Поле x_1^-

Для удобства будем рассматривать поле, которое существует перед плоскостью x_1 (обозначим его $f_1(x_1^-)$) и после плоскости (обозначим его $f_{1d}(x_1^+)$). Это необходимо, так как поле, которое будет рассчитано в плоскости x_1^+ , включает только переданное поле, транспортируемое модами AW. Такая же ситуация будет иметь место и в плоскости x_3 .

Поле, излучаемое в первом FPR в области Фраунгофера (дифракция в дальней зоне) и под параксиальным приближением (лучи, идущие под небольшими углами к оси линзы) и освещающее плоскость x_1^- , может быть записано как

$$f_{1}(x_{1}) = \frac{1}{\sqrt{\alpha}} F_{in}^{+}(f) \left| f = \frac{x_{1}}{\alpha} \right| = \frac{1}{\sqrt{\alpha}} F_{in}^{+}\left(\frac{x_{1}}{\alpha}\right),$$
(2.57)

где $F_{in}^+(f)$ — прямое преобразование Фурье входной функции $f_{in}(x_0)$; α — пространственный частотный фактор, который включает длину волны, фокусное расстояние, и записывается как

$$\alpha = \frac{\lambda L_f}{n_s},$$

где L_f — фокусное расстояние; n_s — показатель преломления FPR1.

Поле x_1^+

Поле, освещающее AWs, частично связано с направляемыми модами каждого из волноводов массива. Если связью между волноводами можно пренебречь, то направляемое поле, подводимое к AW, может быть выражено через сумму каждого из индивидуальных направляемых мод

$$f_{1d}(x_1) = \sum_{r=-\frac{N-1}{2}}^{\frac{N-1}{2}} a_r \cdot b_g(x_1 - r \cdot d_w),$$

где $b_g(x)$ — мощность, нормализующая профиль модового поля любого волновода в массиве, который расположен симметрично относительно источника; a_r — коэффициент воздействия на волновод r, который может быть рассчитан со следующим наложением интеграла:

$$a_r = \int_{-\infty}^{\infty} f_1(x_1) \cdot b_g(x_1 - r \cdot d_w) dx_1 \, .$$

После математических упрощений, поле в x_1^+ может быть записано как:

$$f_{1d}(x_1) = \sum_{r=-\infty}^{\infty} g_1(r \cdot d_w) \cdot b_g(x_1 - r \cdot d_w) = (g_1(x_1) \cdot \delta_\omega(x_1)) * b_g(x_1) , \qquad (2.58)$$

где символ * — операция свертки;

$$g_1(x_1) = \left(f_1(x_1) * b_g(-x_1)\right) \cdot \prod\left(\frac{x_1}{K \cdot d_w}\right).$$
(2.59)

где П() — прямоугольная функция окна, определяемая в виде
$$\Pi\left(\frac{x_1}{K \cdot d_{w1}}\right) = \begin{cases} 1, & si \left|x_1\right| \le \frac{K \cdot d_{w1}}{2} \\ 0, & si \left|x_1\right| > \frac{K \cdot d_{w1}}{2} \end{cases}.$$

Чтобы получить окончательное выражение для оператора T1, подставим (2.57) в (2.58), (2.59):

$$f_{1d}(x_1) = \sum_{r=-\infty}^{\infty} g_1(r \cdot d_w) \cdot b_g(x_1 - r \cdot d_w) =$$
$$= \left\{ \left(F_{in}^+(x_1) * b_g(-x_1) \right) \cdot \Pi\left(\frac{x_1}{K \cdot d_w}\right) \delta_{\omega}(x_1) \right\} * b_g(x_1).$$
(2.60)

Таким образом, из формулы (2.60) видно, что оператор T1 преобразует входное поле f_{in} в поле $f_{1d}(x_1)$ и учитывает при этом:

– преобразование Фурье $F_{in}^{+}(f)$, которое осуществляет линза;

– функцию осуществления выборки δ_ω(x₁), формируется вследствие наличия К волноводов массива;

– прямоугольную функцию окна П(), которая является апертурой массива волноводов.

Расчет оператора Т2

Оператор T2 производит преобразование поля, прошедшего через массив волноводов AW (плоскость x_2).

Поле х₂

Пренебрегая затуханием в AWs, поле на выходе AWs можем рассматривать как пространственно-фазовую модуляцию поля на входе. Если длины смежных волноводов отличаются на постоянную целую величину Δl , которая является кратной действующей длине волны в массиве, то есть

$$\Delta l = \frac{m\lambda_0}{n_c} = \frac{mc}{n_c v_0};$$

$$\varphi(x_2, v) = \exp\left[-j2 \cdot \pi \cdot m\left(\frac{v}{v_0}\right) \cdot \left(\frac{x_2}{d_w}\right)\right],$$

где $\phi(x_2,v)$ — фазовый набег в каждом волноводе; т — порядок решетки; n_c — показатель преломления в волноводах; v_0 — рабочая частота, тогда распространение через AW может быть смоделировано простым умножением функции

$$f_2(x_2) = [g_1(x_2) \cdot \delta_{\omega}(x_2) \cdot \varphi(x_2, \nu)] * b_g(x_2).$$
(2.61)

В результате оператор T2 осуществляет преобразование поля на выходе AW через (2.61).

Расчет оператора ТЗ

Оператор T3 преобразует поле на выходе AW в поле, находящееся за линзой FPR2 (плоскость x_3).

Поле x_3^-

Поле в конце FPR2 может теперь быть рассчитано как

$$f_{3}(x_{3}) = \frac{1}{\sqrt{\alpha}} F_{2}^{+}(f) \left| f = \frac{x_{3}}{\alpha} \right| = \frac{1}{\sqrt{\alpha}} F_{2}^{+} \left(\frac{x_{3}}{\alpha} \right),$$
(2.62)

где F_2^+ — прямое преобразование Фурье поля $f_2(x_2)$. Далее будем использовать аналогичные обозначения для других полей, связанных преобразованием Фурье ($F_i() = F(f_i)$).

Проведя математические расчеты и преобразования, в конечном итоге получаем следующее выражение для расчета поля в конце FPR2:

$$f_3(x_3, d_i, \mathbf{v}) = \frac{1}{d_w} \cdot B_g\left(\frac{d_i}{\alpha}\right) \cdot B_g\left(\frac{x_3}{\alpha}\right) \cdot \sum_{r=-\infty}^{\infty} f_M\left(x_3 + d_i + \frac{m\alpha}{d_w \mathbf{v}_0}\mathbf{v} - \frac{r\alpha}{d_w}\right),\tag{2.63}$$

где $f_M(x_3) = b_i(-x_3) * \left[\frac{K \cdot d_w}{\alpha} \cdot \operatorname{Sinc} \left(\frac{K \cdot d_w}{\alpha} \cdot x_3 \right) \right].$

обозначение Здесь используем полное $f_3(x_3, d_i, v)$ для того, чтобы показать В явном виде, выражение (2.63)распределение что дает поля в плоскости x_3^- , вызванное входным возбуждением, расположенным в положении d_i на частоте у.

Поле x_3^+

Наконец световое излучение, освещающее выходную плоскость FPR2, сформировано с направляемыми модами волноводов на выходе и связано с распределением в плоскости x_3 в положении d_0 через свертку светового поля и выходную мощность нормализованного профиля моды волновода, то есть

$$f_{3d}(x_3) = f_3(x_3, d_i, \nu) * b_o(x_3 - d_0).$$
(2.64)

Таким образом, через выражение (2.64) рассчитывается оператор Т3, который преобразует поле на выходе AW в поле, находящееся за линзой FPR2 и при этом учитывает:

- преобразование Фурье, которое осуществляет вторая линза;
- положение входных и выходных канальных волноводов;
- частоту, на которой передается сигнал;
- расстояние между соседними волноводами в массиве.

Коэффициент передачи

Последовательно подставляя (2.61) в (2.63), (2.64), получим элементы матрицы передачи [T_{ij}]

$$T_{ij}^{\omega_{k}} \approx \frac{1}{d_{w}} \cdot B_{g}\left(\frac{d_{i}}{\alpha}\right) \cdot B_{g}\left(\frac{d_{0}}{\alpha}\right) \times \\ \times \int_{-\infty}^{\infty} \left\{ \sum_{r=-\infty}^{\infty} f_{M}\left(x_{3} + d_{i} + \frac{m\alpha}{d_{w}v_{0}}v - \frac{r\alpha}{d_{w}}\right) \right\} \cdot b_{0}(x_{3} - d_{0})dx_{3}.$$
(2.65)

После применения свойства линейности интеграла к (2.65) мы можем записать результирующее выражение для элементов матрицы передачи [T_{ij}]:

$$T_{ij}^{\omega_k} = \frac{1}{d_w} \cdot B_g\left(\frac{d_i}{\alpha}\right) \cdot B_g\left(\frac{d_0}{\alpha}\right) \cdot \sum_{r=-\infty}^{\infty} q_M\left(d_i + d_0 + \frac{m\alpha}{d_w v_0}v - \frac{r\alpha}{d_w}\right),\tag{2.66}$$

где

$$q_M(x) = b_0(-x) * f_M(x) = (b_0(-x) * b_i(-x)) * \left[\frac{K \cdot d_w}{\alpha} \cdot \operatorname{Sinc}\left(\frac{K \cdot d_w}{\alpha} \cdot x\right)\right].$$
(2.67)

Приближение Гаусса

Теперь, выражений для упрощения учтем, что входной пучок имеет гауссово распределение модового профиля с радиусом модового профиля ω_i, ω₀, ω_g. В этой ситуации выражения (2.66) и (2.67) могут быть упрощены до следующих окончательных выражений:

$$T_{ij}^{\omega_{k}} = \sqrt{2\pi} \frac{\omega_{in}}{d_{w}} \exp\left\{-\left(\frac{\pi\omega_{in}}{\alpha}\right)^{2} \left(d_{in}^{2} + d_{out}^{2}\right)\right\} \sum_{r=-\infty}^{\infty} q_{M} \left(d_{in} + d_{out} + \frac{m\alpha}{d_{w}\nu_{0}}\nu - \frac{r\alpha}{d_{w}}\right);$$

$$q_{M}(x) = \exp\left(-\left(\frac{x}{\sqrt{2}\omega_{i}}\right)^{2}\right) \operatorname{Re} al \left\{ erf\left(\frac{\pi K d_{w}\omega_{i}}{\sqrt{2}\alpha} + j\frac{x}{\sqrt{2}\omega_{i}}\right)\right\}.$$
(2.68)

Учтя центральное расположение входного информационного потока (d_{in} = 0), получаем

$$T_{ij}^{\omega_k} = \sqrt{2\pi} \frac{\omega_{in}}{d_w} \exp\left\{-\left(\frac{\pi\omega_{in}}{\alpha}d_{out}\right)^2\right\} \sum_{r=-K/2}^{K/2} q_M \left(d_{out} + \frac{m\alpha}{d_w v_0} v - \frac{r\alpha}{d_w}\right).$$
(2.69)

2.5.3. Расчет основных оценочных характеристик

Прежде, чем начинать моделировать AWG-мультиплексор на компьютере, необходимо знать основные конструктивные параметры устройства:

- рабочую длину волны λ_0 ;
- расстояние между волноводами в массиве d_w;
- число волноводов в массиве К;
- фокусное расстояние L_f;
- пространственно-частотный фактор α;
- дифракционный порядок т;
- разница длин волноводов Δl.
- Для оценки основных конструктивных параметров устройства необходимо знать:
- число каналов N;
- канальный интервал $\Delta \lambda$;

-эффективные показатели преломления сердцевины оболочки $n_c,$ подложки n_0 и материала линзы $n_s.$

– радиусы модовых полей входных, выходных и волноводов массива ω_i , ω_0 и ω_g соответственно.

Канальный интервал и число портов. Канальный интервал длины волны $\Delta\lambda$ и число каналов длины волны N — наиболее важные параметры для проектирования AWGмультиплексора. Обычно канальный интервал длины волны $\Delta\lambda$ выбирается согласно ITUсетки 50, 100, или 200 ГГц (приложение).

Свободный спектральный диапазон и дифракционный порядок. После получения сведений о величине канального интервала $\Delta\lambda$ и числа каналов длин волн N можно рассчитать свободный спектральный диапазон $\Delta\lambda_{FSR}$:

$$\Delta\lambda_{FSR} = N\Delta\lambda \tag{2.70}$$

и дифракционный порядок т:

$$m \le \frac{n_c \lambda_0}{n_g N \Delta \lambda}; \quad m = \text{floor}\left(\frac{\lambda_c}{\Delta \lambda_{FSR}}\right).$$
 (2.71)

Различие длины Δ**I волноводов массива.** Различие длины ΔI между соседними волноводами массива рассчитывается следующим образом:

$$\Delta l = m \frac{\lambda_0}{n_c}.$$
(2.72)

Фокусное расстояние L_f . Фокусное расстояние линзы L_f можно определить по следующей формуле:

$$L_f = \frac{D \cdot d}{\lambda \cdot C},\tag{2.73}$$

где C = (0,8...1,2) — коэффициент, учитывающий, что сигнал имеет распределение Гаусса; (рекомендуется брать C = 1); D — диаметр выходного пучка (за линзой); D = Kd_w; d — диаметр входного пучка (перед линзой); d = $2\omega_i$; λ — длина волны входного сигнала.

Число Число волноводов массиве. волноводов массива Κ в не доминирующий параметр устройства AWG, потому что Δλ и N не зависят от него. Величина выбирается ИЗ условия. чтобы свет. дифрагированный Κ в свободную спектральную область, был собран апертурой массива. Как правило, это число должно быть больше в 2–3 раза дифракционного порядка т.

 $K = (2-3) \cdot m$ (рекомендуется $K = 2,3 \cdot m$). (2.74)

Расчет переходной помехи. Переходная помеха на канал ј может быть рассчитана из следующей формулы:

$$P_{j} = \frac{\sum_{i=1, i \neq j}^{N} |T_{i}|^{2}}{|T_{j}|^{2}}.$$
(2.75)

2.5.4 Характеристики и структура промышленных мультиплексоров

ALCATEL 1626 LIGHT MANAGER WDM/DWDM-система на основе AWG. Внешний вид стойки оборудования представлен на рис. 2.41 [36].

Рис. 2.41 — Внешний вид ALCATEL 1626 LIGHT MANAGER

Емкость системы: 1626 LIGHT MANAGER поддерживают до 192 каналов по 10 Гб/с в C-band с 25 ГГц-интервалом. Сетка частот соответствует стандарту ITU. Оптический спектр от 1530 до 1568,6 нм. 1626 LIGHT MANAGER совместимы с будущим введением 40 Гб/с приемоответчиков и 40 Гб/с концентратора (4x10 Гб/с).

Дальность передачи: Дальняя дистанция (LH) для расстояний до 700 км, сверхдальняя дистанция (VLH) для расстояний до 1500 км. Ультрадальняя дистанция (ULH) для расстояний до 4000 км.

Гибкость трафика: 0–100 %-ная способность ввода/вывода

Конфигурация стойки. Функциональная и компактная полка с платоместами предназначена для размещения всех основных системных плат (рис. 2.42).

Рис. 2.42 — Изображение лицевой (а) и торцевой (б) стороны полки

• Слоты 3–18 (ширина 25 мм) предназначены для одной полноразмерной, либо двух плат в половину высоты (рис. 2.42)

• Платы питания устанавливаются в два верхних угла (плата PWR).

• Слоты 1–2 и 19–20 (ширина 20 мм) выделены для поднабора плат, к примеру контроля оборудования и усилителя полосы.

В частности, до 16 транспондеров могут быть установлены в слоты 3–18 (максимальная плотность для WDM-систем).

Полка размещается в стандартной стойке 600 × 300 мм.

Сетевые приложения. 1626 LIGHT MANAGER может использоваться для следующих приложений/

Оптический терминальный мультиплексор в конфигурации «точка — точка». Два главных сетевых элемента требуются для этого приложения: терминальный MUX/DEMUX трибутарных сигналов и повторитель линии (EDFA) который усиливает оптический агрегатный сигнал без медиа-конвертирования. Схема организации связи представлена на рис. 2.43.

Транспондер Тх — первое звено в цепи передачи, он конвертирует «черно-белый» сигнал с клиентского оборудования в окрашеный сигнал с требуемыми для WDM параметрами. Мультиплексорный модуль может мультиплексировать до 192 каналов в С-полосе, предоставляя оптический сигнал, для передачи по ОВ. Бустер усиливает сигнал, для увеличения его оптической мощности. Оптические линейные усилители усиливают пришедший на них ослабленный вследствие затухания в волокне сигнал. На оконечной станции пришедший оптический сигнал усиливается предусилителем, демультиплексируется и посылается на Rx транспондер, преобразующий «цветной» сигнал в «черно-белый».

Рис. 2.43 — Конфигурация «точка — точка»

Оптический мультиплексор ввода/вывода в конфигурации «многоточ-ка — многоточ-ка». 1626 LIGHT MANAGER предоставляет различные конфигурации. Одной из них является Band–OADM. Band–OADM предоставляет способность до 100 % ввода/отвода от передаваемого трафика. Опера-ция ввода/вывода осуществляется на 14 длинах волн с интервалом 25 ГГц (рис. 2.44).

Рис. 2.44 — Конфигурация «многоточка — многоточка»

Тенденции в развитии AWG. В настоящее время ведутся исследования по созданию двумерного массива планарных волноводов [30]. Это обеспечивает дифракцию в двух плоскостях и увеличение числа мультиплексированных каналов в N раз (N — число каналов в одномерном AWG). Схема такого двухмерного мультиплексора представлена на рис. 2.45.

Такой MUX может быть использован в высокотехнологичных разработках процессоров и шинной структуры оптических компьютеров.

На рис. 2.46 изображена двухмерная картина выходного поля размерностью 10×10 каналов при подаче 100 каналов на входе мультиплексора.

Рис. 2.46 — Картина выходного поля на выходе 2D-AWG-демультиплексора

3 ЛАБОРАТОРНЫЙ ПРАКТИКУМ

Рекомендации по проведению лабораторных работ и оформлению отчетов

1. Получить вариант для выполнения лабораторной работы у преподавателя.

2. Выполнить расчетное задание согласно своему варианту.

3. Ознакомиться с руководством пользователя по работе с приложением по моделированию.

4. Запустить приложение.

5. Пройти тест-контроль.

6. Выполнить пункты экспериментального задания согласно своему варианту.

7. Оформить отчет о проделанной лабораторной работе в приложении MS Word.

Отчет о проделанной работе должен содержать следующие разделы:

1) цель работы;

2) краткая теория;

- 3) результаты расчетного задания;
- 4) результаты экспериментального задания;

5) выводы по проделанной работе.

3.1 Лабораторная работа № 1. Оптические многоволновые EDFA усилители

1 Цель работы

Изучение принципов действия и компьютерное исследование основных характеристик и параметров многоволновых эрбиевых волоконно-оптических усилителей для прямой и обратной схем накачки.

2 Указания по выполнению работы

Исходные данные для выполнения работы задаются преподавателем из табл. 3.1.

Таблица 3.1

N⁰	Тип		3		n	A.)
варианта	усилителя	\mathbf{r}_{s} , mdt	Λ_{s} , HM	$\mathbf{r}_{n}, \mathbf{MDT}$	11	$\Delta \lambda$, HM
1	линейный	0,01	1520	250	16	1,6
2	мощности	0,001	1530	200	24	0,4
3	линейный	0,005	1535	280	16	0,8
4	мощности	0,002	1525	250	24	0,8
5	линейный	0,02	1540	270	8	1,6
6	мощности	0,05	1550	300	8	1,2
7	мощности	0,01	1560	290	8	0,8
8	линейный	0,001	1555	250	8	0,4
9	мощности	0,005	1520	200	16	0,8
10	линейный	0,002	1530	280	24	0,8
11	мощности	0,02	1535	250	16	0,4
12	линейный	0,05	1525	270	16	1,2
13	линейный	0,01	1540	300	16	0,8
14	мощности	0,001	1550	250	8	1,6
15	линейный	0,005	1560	200	8	0,4
16	мощности	0,002	1555	280	24	0,4
17	линейный	0,02	1520	250	24	0,4
18	мощности	0,05	1530	270	16	0,8
19	мощности	0,01	1535	300	24	0,4
20	линейный	0,001	1525	300	24	0,4

Исходные данные для выполнения работы

3. Порядок выполнения работы

При выполнении лабораторных работ к исследованию рекомендуются следующие структурные схемы усилителей:

• усилитель мощности с обратной схемой накачки;

• линейный усилитель с прямой схемой накачки.

Для заданного типа усилителя необходимо выполнить следующие пункты.

1. Исследовать зависимость оптимальной длины L_{opt} и максимального коэффициента усиления K_{max} от мощности сигнала P_s в диапазоне от 0,001 до 0,5 мВт для $\lambda_p = 1480$ нм и $\lambda_p = 980$ нм (P_p и λ_s определяются из варианта задания).

2. Исследовать зависимость максимального коэффициента усиления K_{max} от мощности накачки P_p в диапазоне от 100 до 300 мВт, для $\lambda_p \square$ 1480 нм и $\lambda_p \square$ 980 нм (P_s и λ_s определяются из варианта задания).

3. Исследовать зависимость максимального коэффициента усиления K_{max} от длины волны сигнала λ_s в диапазоне 1530–1560 нм для $\lambda_p \square 1480$ нм и $\lambda_p \square 980$ нм (P_s и P_p определяются из варианта задания).

4. Исследовать зависимость максимального коэффициента усиления K_{max} от температуры в диапазоне от минус 20 до плюс 40 °C, для $\lambda_p \square 1480$ нм и $\lambda_p \square 980$ нм (λ_s , P_s и P_p определяются из варианта задания).

5. Исследовать зависимость максимального коэффициента усиления K_{max} первого канала от количества каналов при равных входных мощностях каждого канала для $\lambda_p \square$ 1480 нм и $\lambda_p \square$ 980 нм (P_s , λ_s , $\Delta\lambda$, и P_p определяются из варианта задания).

6. Для многоканального усилителя исследовать зависимость максимального коэффициента усиления K_{max} первого канала от межканального интервала по длине волны $\Delta\lambda$ от 0,4 до 1,6 нм (λ_s , P_s, P_p и количество каналов определяются из варианта задания).

7. Для многоканального усилителя при равных мощностях входных сигналов определить оптимальную длину усилителя (все параметры задаются вариантом задания). Выбрать фильтр для выравнивания АЧХ. Произвести расчет параметров усилителя используя сначала фильтр на входе, а затем — фильтр на выходе. Для обоих фильтров сохранить:

• АЧХ усилителя без фильтра, АЧХ фильтра и АЧХ усилителя с фильтром;

• зависимости входной мощности, выходной мощности и выходной мощности после фильтра от номера канала;

• зависимости мощности сигнала в каждом канале от длины волокна при оптимальной длине волокна.

8. Определить неравномерность АЧХ усилителя и АЧХ усилителя с фильтром.

9. Для многоканального усилителя при неравных мощностях входных сигналов определить оптимальную длину усилителя (все параметры задаются вариантом задания). Выбрать фильтр для выравнивания выходной мощности. Произвести расчет параметров усилителя, используя сначала фильтр на входе, а затем — на выходе. Для обоих фильтров сохранить:

• АЧХ усилителя без фильтра, АЧХ фильтра и АЧХ усилителя с фильтром;

• зависимости входной мощности, выходной мощности и выходной мощности после фильтра от номера канала;

• зависимости мощности сигнала в каждом канале от длины волокна при оптимальной длине волокна.

10. Определить неравномерность выходной характеристики усилителя без фильтра и с фильтрами.

4 Контрольные вопросы

1. Какие виды оптических усилителей вы знаете?

2. Атомами какого редкоземельного метала наиболее часто легируют волокно, используемое в усилителях на допированном волокне?

3. В каком диапазоне длин волн работает EDFA?

4. Перечислите области применения EDFA по классификации.

5. Какая минимальная частота модуляции позволяет считать режим работы EDFA стационарным?

6. Какие межканальные интервалы соответствуют DWDM-стандарту?

7. Какие стандартные длины волн накачки используются в EDFA?

8. Какая максимальная мощность накачки может быть реализована одним лазерным диодом в настоящее время?

9. Какие методы используются для увеличения полосы усиления EDFA?

10. Каковы достоинства и недостатки EDFA по сравнению с другими видами оптических усилителей?

11. Назовите основные параметры EDFA.

3.2 Лабораторная работа № 2. Демультиплексоры на интерференционных и Фабри— Перо фильтрах

1 Цель работы

Изучение принципов действия и компьютерное исследование характеристик и параметров оптических демультиплексоров на основе интерференционных фильтров и фильтров Фабри — Перо.

2 Расчетное задание

2.1 Выбор параметров моделирования DEMUX на ИФ и фильтрах Фабри — Перо

1. Согласно своему варианту задания, из табл. 3.2 получить исходные данные для расчета демультиплексора.

2. По таблице ITU-Т найти число каналов n и центральные частоты λ_i.

Таблица 3	.2
-----------	----

Попомотри			Вариант				
параметры	1	2	3	4	5		
Диапазон длин волн,	1528,77–	1528,77–	1546,12–	1539,77–	1535,82–		
HM*	1532,68	1536,61	1554,13	1549,32	1538,98		
Δf_k , ГГц	100	200	400	200	100		
Р _{0,} Дб	20	22	25	26	22		
Тип [И.Ф]**	B.P.	Р.Ф.П.	И.МЦ.	B.P.	Р.Ф.П.		
n ₁ [И.Ф]***	1,458	1,56	1,55	1,458	1,51		
	Вариант						
			Вариант				
Параметры	6	7	Вариант 8	9	10		
Параметры Диапазон длин волн,	6 1549,32–	7 1533,47–	Вариант 8 1546,12–	9 1535,04–	10 1530,33–		
Параметры Диапазон длин волн, нм*	6 1549,32– 1553,33	7 1533,47– 1542,94	Вариант 8 1546,12– 1554,13	9 1535,04– 1557,36	10 1530,33– 1536,61		
Параметры Диапазон длин волн, нм* Δf _k , ГГц	6 1549,32– 1553,33 100	7 1533,47– 1542,94 200	Вариант 8 1546,12– 1554,13 400	9 1535,04– 1557,36 500	10 1530,33– 1536,61 200		
Параметры Диапазон длин волн, нм* Δf _k , ГГц P ₀ , Дб	6 1549,32– 1553,33 100 21	7 1533,47– 1542,94 200 9	Вариант 8 1546,12– 1554,13 400 25	9 1535,04– 1557,36 500 18	10 1530,33– 1536,61 200 24		
Параметры Диапазон длин волн, нм* Δf _k , ГГц P ₀ , Дб Тип [И.Ф]**	<u>6</u> 1549,32– 1553,33 100 21 И.МЦ.	7 1533,47– 1542,94 200 9 B.P.	Вариант 8 1546,12– 1554,13 400 25 Р.Ф.П	9 1535,04– 1557,36 500 18 И.МЦ.	10 1530,33– 1536,61 200 24 B.P.		

Исходные данные для выполнения работы

Окончание табл. 3.2

Попомотри			Вариант		
параметры	11	12	13	14	15
Диапазон длин волн,	1550,92-	1550,92–	1533,47–	1533,47–	1541,35–
HM*	1554,13	1560,61	1557,36	1557,36	1550,92
Δf_k , ГГц	100	200	600	1000	200
Р₀, Дб	23	20	18	19	24
Тип [И.Ф]**	Р.Ф.П.	И.МЦ.	B.P.	Р.Ф.П.	И.МЦ.
n ₁ [И.Ф]***	1,557	1,533	1,458	1,55	1,565

* — центральные максимумы первого и последнего канала;

** — тип демультиплексора, построенного на интерференционных фильтрах: И.М.-Ц — Интерферометр Маха — Цендера; Р.Ф-П. — резонатор Фабри — Перо; В.Р. — волоконная решетка;

*** — значение показателя преломления n₁ для демультиплексора, построенного на интерференционных фильтрах.

2.2 Исследование оптического демультиплексора на основе интерференционного фильтра

1. Определить угол падения светового пучка на фильтр, исходя из полученной в задании схемы построения демультиплексора.

2. Рассчитать период структуры для всех тонкопленочных фильтров, входящих в демультиплексор и толщину фильтров для $\Delta n = 10^{-2}$, 10^{-3} и 10^{-4} . Толщину всех фильтров считать постоянной. Результаты расчета для всех Δn занести в таблицу.

Поромотр	№ фильтра			
Параметр	1	2		n
λ_i				
$\Delta_{ m i}$				
$L_{int(n/2)}$				

2.3 Исследование оптического демультиплексора на основе фильтров Фабри — Перо

1. Найти показатели преломления среды резонатора для каждого фильтра.

2. Оценить значение коэффициента отражения зеркал.

3. Оценить значение длины резонатора для фильтра, настроенного на отражение спектра с максимальной центральной длинной волны. Это значение будем считать постоянным для всех фильтров демультиплексора. Результаты расчета занести в таблицу.

Попомотр	№ фильтра			
параметр	1	2		n
λ_i				
n				
R				
L				

3 Порядок выполнения работы

Занести в расчетную программу количества каналов демультиплексора и центральные частоты, отражаемые фильтрами.

3.1 Исследование оптического демультиплексора на основе интерференционного фильтра

1. Исследовать зависимость переходных помех от Δn . Для этого необходимо определить переходные помехи демультиплексора при различных значениях Δn , вычисленных в расчетном задании (перед расчетом Р необходимо определить BW). Результаты занести в таб-лицу:

Попомотр		Δn	
параметр	10^{-2}	10^{-3}	10^{-4}
ВW (ППК)			
P _{min}			
P _{max}			

По таблице построить зависимость $P_{max}(\Delta n)$. В отчете также отобразите полученные графики аппаратных функций демультиплексоров и рассчитанные графики переходных помех при различных значениях Δn . Объясните, чем вызвано различие в переходных помехах.

2. Найти оптимальную разницу показателей преломления, при которой максимальный уровень переходных помех будет равен $P_0 \pm 1$ дБ. Для этого необходимо на основе аппроксимации зависимости P_{max} (Δn) найти Δn , который удовлетворял бы уравнению $P_{max}(\Delta n)=P_0 \pm 1$ дБ. Обозначим его как Δn_{opt} .

3. Рассчитать конструкционные параметры фильтров, при Δn_{opt} . На основе полученных параметров смоделировать аппаратную функцию демультиплексора и рассчитать переходные помехи. Результаты занести в таблицу.

Параметр	№ фильтра				
	1	2		n	
λ_{i}					
Δn_{opt}					
$\Delta_{ m i}$					
$L_{int(n/2)}$					
В (ППК)					
Р					

В отчете отобразить смоделированный график аппаратной функции демультиплексора и рассчитанный график переходных помех. Объяснить чем вызван полученный вид зависимости переходных помех от номера канала.

4. Для демультиплексора с оптимальными параметрами пронаблюдать влияние всех соседних каналов на каждый канал в отдельности. Объяснить чем вызван полученный вид зависимости переходных помех от номера ка-нала.

3.2 Исследование оптического демультиплексора на основе фильтров Фабри — Перо

1. Исследовать зависимость переходных помех от коэффициента отражения зеркал. Для этого необходимо определить переходные помехи демультиплексора для двух соседних каналов с номерами int(n/2) и int(n/2)+1 при R = 0.9, 0.95 и 0.99 (перед расчетом Р необходимо определить BW). Результаты занести в таблицу:

Параметр		R	
	0,90	0,95	0,99
ВW (ППК)			
P _{min}			
P _{max}			

По таблице построить зависимость $P_{max}(R)$. В отчете отобразить полученные графики аппаратных функции демультиплексоров (только для двух исследуемых каналов) и рассчитанные графики переходных помех при различных значениях R. Объяснить чем вызвано различие в переходных помехах и почему были взяты каналы с номерами int(n/2) и int(n/2)+1.

2. Исследовать зависимость переходных помех от длины резонатора. Для этого необходимо определить переходные помехи демультиплексора для первого и последнего канала при L =L_{расчетное}, L_{расчетное} – 10 % и L_{расчетное}+10 %_е (перед расчетом Р необходимо определить BW). Результаты занести в таблицу.

Поромотр		R	
параметр	Lpacyethoe	$L_{\text{pacчетноe}} - 10 \%$	L _{pacчethoe} + 10 %
ВW (ППК)			
\mathbf{P}_{\min}			
P _{max}			

По таблице построить зависимость $P_{max}(R)$. В отчете отобразить полученные графики аппаратных функции демультиплексоров (только для первого и последнего каналов) и рассчитанные графики переходных помех при различных значениях L. Объяснить чем вызвано различие в переходных помехах и почему были взяты каналы с первым и последним номерами.

3. Найти оптимальный коэффициент отражения зеркал, при котором максимальный уровень переходных помех будет равен $P_0 \pm 1$ дБ. Для этого необходимо на основе аппроксимации (либо экстраполяции) зависимости $P_{max}(R)$ найти R, который удовлетворял бы уравнению $P_{max}(R)=P_0 \pm 1$ дБ. Обозначим его как R_{opt} .

4. Найти оптимальную длину резонатора для последнего фильтра, при котором максимальный уровень переходных помех будет равен $P_0\pm 1$ дБ. Для этого необходимо на основе аппроксимации (либо экстраполяции) зависимости $P_{max}(L)$ найти такую L, которая удовлетворяла бы уравнению $P_{max}(L)=P_0\pm 1$ дБ. Обозначим ее как L_{opt} .

5. Рассчитать конструкционные параметры фильтров при R_{opt} и L_{opt}. На основе полученных параметров смоделировать аппаратную функцию демультиплексора и рассчитать переходные помехи. Результаты занести в таблицу.

Пологоста	№ фильтра				
Параметр	1	2		n	
λ_{i}					
n					
R _{opt}					
L _{opt}					

В отчете отобразить смоделированный график аппаратной функции демультиплексора и рассчитанный график переходных помех. Объяснить чем вызван полученный вид зависимости переходных помех от номера канала.

6. Для демультиплексора с оптимальными параметрами пронаблюдать влияние всех соседних каналов на каждый канал в отдельности. Объяснить чем вызван полученный вид зависимости переходных помех от номера канала.

3.3. Заключительная часть

Сравнить переходные помехи обоих демультиплексоров. Сделать выводы о возможности построения демультиплексора на интерференционных фильтрах и фильтрах Фабри — Перо.

4. Контрольные вопросы

1. Что такое волоконно-оптическая линия связи (ВОЛС)? Изобразите обобщенную схему ВОЛС. Назовите основные элементы ВОЛС.

2. Какие вы знаете виды оптических демультиплексоров? В чем достоинства и недостатки каждого из них?

3. Как классифицируются оптические демультиплексоры?

4. На каких длинах волн работают WDM- и DWDM демультиплексоры?

5. Назовите основные характеристики оптических демультиплексоров.

3.3 Лабораторная работа № 3. Демультиплексоры на голографических дифракционных структурах

1 Цель работы

Изучение принципов действия и компьютерное исследование характеристик и параметров оптического демультиплексора на основе наложенных дифракционных решеток, записанных в ФПМ.

2 Расчетное задание

1. Согласно своему варианту задания, из таблицы исходных данных в п. 3.3 по табл. ITU-Т найти число каналов (решеток) n и центральные частоты λ_i.

2. Оценить угол изменяется наклона ФПМ ($\Delta \Psi$) по формуле (2.51).

3. Найти углы θ_i под которым будут дифрагировать лучи с длинами волн λ_i по формуле (2.50).

4. Оценить толщину ФПМ по формуле (2.52).

5. Оценить максимальную достижимую дифракционную эффективность голограмм по формуле (2.53).

3 Экспериментальное задание

1. Задать параметры демультиплексора, исходя из таблицы 3.3 исходных данных, и материальные параметры ФПМ: $\delta_{ni} = 10 - 3$, $\delta_{np} = 10 - 2$, s = 1, $D = 1 \cdot 10 - 15$, n = 1,45. Для параметров демультиплексора число наложенных решеток, шаг углов наклона ФПМ и толщину ФПМ взять из расчетного задания;

2. Определить максимально достижимую дифракционную эффективность η_{dmax} для наложенных голограмм при отсутствии оптического затухания. Для этого необходимо определить такую дифракционную эффективность, при которой максимум кривой динамики записи последней голограммы проходил бы через η_{dmax} . Занести в таблицу получившиеся времена записи для каждой голограммы и максимумы относительной брегговской расстройки Δi .

№ голограммы	Время записи, сек	Δi

3. Исследовать зависимость дифракционной эффективности от относительной брегговской расстройки $Kd(\Delta)$. Пронаблюдать изменения суммарных переходных помех на каждый канал и соответствие их требуемым нормам (P₀). Для этого переходные помехи перевести в децибелы и отразить в отчете в виде таблиц и графиков. Если переходная помеха слишком большая, необходимо увеличить шаг углов наклона ФПМ, либо толщину ФПМ и повторить пп. 2 заново;

4. Повторить пп. 2–3, для оптического затухания в 3 Нэп. Сделать выводы о влиянии оптического затухания в ФПМ на динамику записи голограмм и дифракционные характеристики.

5. Сделать выводы по использованию оптического демультиплексора на основе наложенных дифракционных решеток, записанных в ФПМ, как устройства селекции каналов в ВОСП. Выявить достоинства, недостатки и провести сравнительный анализ исследуемого демультиплексора по сравнению с исследуемыми ранее демультиплексорами.

Таблица 1

Поромотри	Вариант				
параметры	1	2	3	4	5
L, мкм	60	40	50	60	70
λ _{зап} , нм	640	680	700	750	800
$\theta_{3a\pi}$, град	20	15	10	30	15
	6	7	8	9	10
L, мкм	80	90	100	110	120
λ _{зап} , нм	850	900	950	630	1100
$\theta_{3a\pi}$, град	10	15	20	10	18
	11	12	13	14	5
L, мкм	70	40	50	60	70
λ _{зап} , нм	730	990	620	785	700
$\theta_{3a\pi}$, град	13	15	12	13	10

Исходные данные для выполнения работы

4 Контрольные вопросы

1. В чем заключается процесс полимеризации?

2. Перечислите основные механизмы записи голограммы в фотополимерном материале (ФПМ).

3. Как формируются наложенные голограммы в ФПМ?

4. В чем отличие демультиплексоров на основе наложенных голограмм в ФПМ от остальных существующих демультиплексоров?

3.4 Лабораторная работа № 4. Демультиплексоры на основе массива планарных волноводов

1 Цель работы

Изучение принципа работы и математической модели оптического демультиплексора на основе массива планарных волноводов AWG, а также компьютерное исследование его параметров и характеристик.

2 Расчетное задание

1. Согласно своему варианту задания, из табл. 3.4 получить исходные данные для расчета демультиплексора

2. Для выполнения лабораторной работы необходимо рассчитать основные конструктивные параметры демультиплексора AWG (λ_0 ; d_w ; K, L_f; α ; m; Δl). Данные параметры могут быть рассчитаны по формулам п. 2.5.3.

Таблица 1

Параметры	Вариант				
	1	2	3	4	5
Диапазон, ТГц	192,1–194,6	194,1– 196,1	192,5–196,1	192,1–196,1	192,9–195,9
Канальный интервал, ГГц	100	200	100	200	100
Пополютру			Вариант		
Параметры	6	7	8	9	10
Диапазон, ТГц	193,7– 195,3	192,2– 195,4	192,5– 195,7	193,6–195,7	193,5–192,7
Канальный интервал, ГГц	50	100	100	50	100
Папансатру	Вариант				
Параметры	11	12	13	14	15
Диапазон, ТГц	195,2– 196,9	194,5– 196,5	194,7–196,3	195,2–196,8	193,1–196,7
Канальный интервал. ГГп	100	100	100	200	100

Исходные данные для выполнения работы

Примечание. Внешние параметры: $\omega_i = \omega_g = \omega_0 = 7,16$ мкм. Материальные параметры: $n_c = 1,454; n_0 = 1,451; n_s = 1,453$.

3 Порядок выполнения работы

1. Для выполнения лабораторных работ необходимо ввести рассчитанные значения основных конструктивных параметров демультиплексора AWG (λ_0 , d_w ; K, L_f ; α ; m; Δl) в соответствующие поля программного обеспечения.

2. Исследовать одиночный канал

2.1. Выбрать произвольный канал (например центральный канал 0).

2.2. Исследовать неоднородность коэффициента передачи одного канала в частотной области:

• определить коэффициент передачи и вносимое затухание на центральной частоте;

• определить полосу частот по уровню –3 дБ;

• определить полосу частот по уровню –20 дБ;

• определить частоты первого левого и правого боковых лепестков и вносимые ими затухания;

• определить влияние выбранного канала на центральных частотах соседних каналов слева и справа (вносимое затухание).

2.3. Исследовать неоднородность коэффициента передачи одного канала в пространственной области:

• определить коэффициент передачи и вносимое затухание в положении порта;

• определить ширину светового поля (мкм) по уровню -3 дБ;

• определить ширину светового поля (мкм) по уровню –20 дБ;

• определить положения первого левого и правого боковых лепестков и вносимые ими затухания;

• определить влияние выбранного канала на выходных портах соседних каналов слева и справа (вносимое затухание).

3. На одной из частот оптического диапазона исследовать влияние конструктивных параметров (K, d_w , L_f , m):

- на коэффициент передачи;
- положение выходного порта d₀;

• смещение центральной частоты канала в положении выходного порта;

• полосу пропускания на уровне –3 и –20 дБ.

4. Исследовать совокупность каналов.

4.1. Исследовать суммарное поле на выходе, определить положение выходных портов.

4.2. Исследовать зависимость переходных помех от номера каналов.

4.3. Определить оптимальный разнос каналов, при котором выходные характеристики AWG-мультиплексора соответствуют требованиям РД (переходные помехи от соседнего канала и т.д.).

4.4. Подобрать, используя результаты п. 3, конструктивные параметры AWGмультиплексора, так, чтобы его основные характеристики соответствовали требованиям РД, изложенным в приложении.

4 Контрольные вопросы

1. Какие межканальные интервалы соответствуют DWDM-стандарту?

2. Какие виды оптических демультиплексоров вы знаете?

3. Какие основные параметры демультиплексоров и требования к ним вы знаете?

4. Какие основные параметры разработанных АWG-мультиплексоров вам известны?

5. Назовите основные структурные схемы демультиплексора AWG и их отличия?

6. Поясните принцип работы демультиплексора AWG?

7. На чем основана математическая модель AWG-мультиплексора?

8. Какое влияние оказывают на выходной сигнал основные конструктивные параметры AWG?

9. Какие достоинства и недостатки AWG по сравнению с другими видами оптических мультиплексоров?

4 ПРОГРАММНОЕ ОБЕСПЕЧЕНИЕ ЛАБОРАТОРНОГО ПРАКТИКУМА

4.1 Моделирование оптических многоволновых EDFA-усилителей

4.1.1. Функциональное назначение системы, область применения и ограничения

Компьютерная лабораторная работа «Компьютерное исследование многоволновых эрбиевых волоконно-оптических усилителей» предназначена для расчета рабочих характеристик многоволновых эрбиевых волоконно-оптических усилителей (EDFA) в учебных целях [34]. Данная разработка может быть использована при обучении студентов технических вузов по направлениям «Оптика и телекоммуникации» как в качестве лабораторной работы, так и в качестве инструмента для расчета и оптимизации EDFA при курсовом проектировании протяженных волоконно-оптических систем передачи со спектральным разделением (ВОСП-СР), использующих EDFA в качестве одного из основных элементов.

Программное обеспечение представляет собой пакет программ генерации форм для задания параметров EDFA, отображения результатов расчета, вывода методического пособия и описания программного обеспечения с гипертекстовой навигацией. Пакет включает 20 вариантов заданий для проведения лабораторных работ, а также прикладные программы по проведению необходимых вычислений, предусматривающих численное решение системы нелинейных дифференциальных уравнений и описывающих многоволновый EDFA в стационарном режиме. В основу разработанного программного обеспечения положена математическая модель одноволнового EDFA [13], обобщенная для случая многоволновых EDFA и дополненная учетом температурной зависимости. Одним из ограничений модели является отсутствие учета усиленной спонтанной эмиссии (ASE). В п. 2.1.3 приведена математическая модель, положенная в основу программного обеспечения.

Компьютерная лабораторная работа (далее программа), представляет собой компьюпрограмму, которая терную состоит ИЗ методического посо-(теоретические положения задания выполнения бия И для работы). входного теста и оболочки моделирования. Программа может функционировать под управлением операционных систем Windows всех поколений, начиная с Windows 95. Для нормального функционирования программы компьютер должен быть оснащен не менее чем 16 Мб оперативной памяти и не менее чем 6 Мб свободного места на жестком диске. Сама программа занимает около 0,25 Мб дисковой памяти и не требует установки.

4.1.2 Работа с программой

После того, как выбран номер варианта, программа автоматически выставляет тип усилителя в соответствии с вариантом и загружает соответствующие задания для выполнения пунктов. Далее программа создает папку с названием работы в директории Мои документы, где сохраняет все результаты работы в виде графических файлов с названиями, соответствующими номеру пункта и номеру графика в пункте, например «punkt1-1.emf». При нажатии кнопки Начать работу отображается окно Bce параметры (рис. 4.1). Вся информация из данного окна отображается в отчете, генерируемом в конце работы. После окончания работы графические данные в виде сохраненных файлов не удаляются. Поэтому при необходимости повторного выполнения той же самой работы можно начать сразу с соответствующего пункта. При последующей генерации отчета все графики будут вставлены

в отчет.

В ходе выполнения работы предусмотрен выбор типа усилителя (как в соответствии с вариантом так и самостоятельно):

- усилитель мощности (прямая схема накачки);

- линейный усилитель (обратная схема накачки).

Компьютерное исследование многоволновых з	рбиевых волоконно-оптических усилителей	
Файл Работа Параметры Помощь		
☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐	Пособие Тест Выполнение Окощь О программе	
EDFA	×	Параметры 🗙
Внешний вид EDFA Выбор варианта Все параметры Рез	ультаты расчетов Подготовка отчета Методическое пособие Помощь	Параметры накачки
С отобразить паранетры сигналов Параметры накачки Дляна волны, ни 980 • 1490 Выбор скены накачки Прямая накачка С Ріп К Изолятор К Сорг С	н накажи в отдельном окже Паранетры информационных сигналов NP Длина вольцие бажмоши, иют 1 1500 0.0011 2 1532 0.0011 3 1534 0.0013 4 1538 0.0017 5 1538 0.0017 5 1538 0.0017 6 1540 0.0014 7 1542 0.0019 Количество входных сигналов 8 1	Панна волеции Мошность АВТ 980 1480 300 Параметры сигналов Количество входных сигналов 3 1 Мошности сигналов, АВТ Саностоятельно 1001 Остотоятельно 1001 № длина волеции рак мощи, АВТ 1 1500 00011 2 1532 00011
накачки	тошпости как полов, тот Нерзенье мощности у 0.001 Межканальный интереал, нм	3 1534 0.0013 4 1536 0.0014
0%	Самостоятельно 🔽 1 🗶 Сброс	5 1538 0.0017 6 1540 0.0014
Параметры допированного волокна: О Поределить самостоятельно	ЗАДАНИЕ	7 1542 0.0019 8 1543 0.00095
 По умолчанию 	Исспедовать зависимость максимального коэффициента усиления К от моциности накачки P в лианазоне от 100 до 300 мВт. лия	Использовать фильто
1. Длина усилителя, м 30 2. Дначето области напрозвана, нам 1 3. Дначето сездивание золоска, нам 1 4. Консентроцка наме Зробки е22 1.05 5. Вренен часная негастой троски, нах 10	¹ πατα λ ₂ =1430ma it λ ₂ =980ma. P _g =0.01 mW, λ _g =1520 nm	Возвонарни АКИ Возвонарни АКИ Возвонарни АКИ Возвонарни АКИ На окуде долагена На окуде долагена На окуде долагена
This program h	as been made by Dovolnov E.A.	🗸 ок

Рис. 4.1 — Внешний вид окна «Все параметры» лабораторной работы № 1

В соответствии с выполняемым пунктом задания, текст которого загружается при выборе варианта и номера пункта автоматически, исполнителю необходимо ввести исходные параметры расчета в окне все параметры (см. рис. 4.1):

1) допированного волокна: длину волокна, диаметр сердцевины волокна, диаметр допированной области, концентрацию ионов эрбия, время жизни метастабильного уровня;

2) источника накачки: длину волны источника накачки (1480, 980 нм), мощность (50– 300 мВт), схема накачки (прямая, обратная);

3) информационных сигналов:

- количество сигналов на входе усилителя (1-150);

– длину волны (1400–1600 нм) — предусмотрено использование разных межканальных интервалов, установка длин волн для каждого канала производится самостоятельно, использование стандартизованных WDM-частотных планов с шагом 1000–50 ГГц;

входную мощность (0–0,5 мВт) — предусмотрено использование одинаковых входных мощностей для всех входных сигналов, самостоятельной установки из доступного диапазона и автоматической установки различной мощности в пределах заданного диапазона;

4) использование фильтра для выравнивания АЧХ усилителя — фильтр на входе, фильтр на выходе, без фильтра;

5) использование фильтра для выравнивания выходных мощностей сигналов — фильтр на выходе, без фильтра.

Для заданных параметров производится расчет следующих характеристик усилителя EDFA, выводимых в графической форме:

1) зависимость мощности накачки от длины усилителя;

2) зависимости мощностей выходных сигналов от длины усилителя;

3) зависимость коэффициента усиления от длины волны при заданной длине усилите-

ля;

4) АЧХ фильтра.

При нажатии кнопки **Расчет** в окне *Все параметры* осуществляется моделирование характеристик усилителя и открывается окно *Результаты расчетов* (рис. 4.2).

По результатам расчета заполняются таблицы с информацией, требуемой в задании к выполняемому пункту. После выполнения пункта программа строит необходимые графики в отдельном окне, где также есть возможность для записи выводов по проделанному пункту и перехода к выполнению следующего.

При возвращении к выполнению пункта, который был уже сделан, данные в таблицах с информацией, требуемой в задании, и выводы по нему сохраняются в последней редакции исполнителя. Однако при выходе из программы данные о выполнении работы сохраняются только в графическом виде в формате *.emf в поддиректории с названием выполняемой работы в каталоге **Мои документы**. При этом сохраняются только те графики, которые необходимы для оформления отчета по работе.

Рис. 4.2 — Внешний вид окна «Результаты расчетов» лабораторной работы № 1

После выполнения последнего пункта задания или по желанию исполнителя в любой момент выполнения работы происходит генерация отчета по форме, принятой в вузеразработчике программы, включающей информацию об исполнителе работы, требуемые в задании графики (полученные в результате выполнения работы), а также выводы, написанные исполнителем по каждому пункту.

После генерации отчета работа заканчивается. Для выполнения другого варианта необходимо запустить программу заново.

До начала и во время выполнения работы в программе предусмотрена возможность обращения к методическому пособию (рис. 4.3,*a*) и описанию программного обеспечения (рис. 4.3,*б*). Данные документы оформлены в виде гипертекстовых документов с соответствующей навигацией внутри с помощью гипертекстовых ссылок, находящихся в верней части окон.

а

Рис. 4.3 — Внешний вид окон «Методическое пособие» (*a*) и «Описание программы» (б)

4.2 Моделирование оптических демультиплексоров на тонкопленочных и Фабри — Перо фильтрах

1 Общее описание

1.1 Функциональное назначение системы, область применения и ограничения

Компьютерная лабораторная работа WDMEncore «Исследование оптических демультиплексоров на основе интерференционных фильтров и фильтров Фабри — Перо» предназначена для расчета и оптимизации характеристик оптических демультиплексоров в учебных целях [33]. Данная разработка может быть использована при обучении студентов технических вузов по направлению «Телекоммуникации» как в качестве лабораторной работы, так и в качестве инструмента для расчета и оптимизации данных демультиплексоров при курсовом проектировании волоконно-оптических систем передачи со спектральным разделением (ВОСП-СР), использующих демультиплексоры на основе интерференционных фильтров или фильтров Фабри — Перо в качестве одного из основных элементов.

Программное обеспечение представляет собой пакет программ генерации форм для задания параметров обоих демультиплексоров, отображения результатов расчета и вывода методических рекомендации по работе с гипертекстовой навигацией. Пакет включает 15 вариантов заданий для проведения лабораторных работ, а также прикладные программы по проведению необходимых вычислений, предусматривающих численный расчет преобразований, описывающих волновые процессы в интерференционных фильтрах и фильтрах Фабри — Перо. Ограничения для модели, описывающей работу интерференционного фильтра, является одинаковая толщина всех слоев и отсутствие обратного отражения, а для модели описывающей работу фильтра Фабри — Перо — нормальное падение света из торца оптического волокна на фильтр и отсутствие обратного отражения от фильтра. В пп. 2.2, 2.3 приведены математические модели, положенные в основу программного обеспечения.

1.2 Краткое описание системы и ее технические характеристики

Компьютерная лабораторная работа (далее программа) представляет собой компьютерную программу, которая также содержит методическое пособие и руководство пользователя, входного теста и оболочки моделирования. Программа может функционировать под управлением операционных систем Windows всех поколений, начиная с Windows 95. Для нормального функционирования программы компьютер должен быть оснащен не менее чем 16 Мб оперативной памяти и не менее чем 8 Мб свободного места на жестком диске. Сама программа занимает около 20 Мб дисковой памяти и не требует установки.

Оболочка моделирования построена по модальному принципу и предусматривает последовательное компьютерное моделирование каждого типа демультиплексора с возможностью сравнения их работы по результатам вычисления перекрестных помех. В оболочке моделирования предусмотрен тестовый контроль, выполняемый в отдельном окне.

1.3 Запуск программы и выход из программы

Запуск программы осуществляется выполнением файла WDMEncore.exe, расположенного в папке WDMEncore. После запуска на экране компьютера появляется главное окно программы. Оно содержит главное меню, панель инструментов, панели для ввода исходных данных, расчетные таблицы и графики. Выход из программы осуществляется нажатием кнопки 🖾 в верхнем правом углу главного окна.

2 Работа с программой

В дальнейшем предполагается, что пользователь имеет определенные навыки работы в операционной системе Windows 95, 98, МЕ, 2000, ХР, VISTA.

При работе с программой для перемещения между полями ввода и нажатии на кнопки удобней использовать манипулятор «мышь».

Для моделирования демультиплексоров исполнителю необходимо ввести исходные параметры:

1) число оптических каналов (1–150);

2) центральные длины волн каналов (1400-1600 нм);

3) интерференционных фильтров: показатели преломления периодической структуры, толщину и период структуры, угол падения света из торца оптического волокна на мультиплексор, полосу пропускания;

4) фильтров Фабри — Перо: показателя преломления, коэффициента отражения зеркал, толщину структуры, полосу пропускания.

Для заданных параметров производится расчет для каждого демультиплексора следующих характеристик:

1) графика аппаратной функции (для интерференционного фильтра — зависимости коэффициента отражения от длины оптической волны, для фильтра Фабри — Перо — зависимость коэффициента прохождения от длины оптической волны);

2) графика и таблицы перекрестных помех (зависимости перекрестных помех от номера канала).

Настройка фильтра на заданную длину волны производится путем изменения его внутренних параметров.

После выполнения последнего пункта задания или по желанию исполнителя в любой момент выполнения работы происходит генерация отчета по форме, принятой в вузеразработчике программы, включающей информацию об исполнителе работы, требуемые в задании графики (полученные в результате выполнения работы).

После генерации отчета работа заканчивается. Для выполнения новой работы (другого варианта) необходимо выбрать пункт главного меню **Файл** — **Новый**.

Далее более подробно остановимся на программных окнах.

2.1 Главное окно

В главном окне (рис. 4.4) осуществляется ввод данных и расчет параметров каждого демультиплексора. Оно состоит:

• из файлового меню, где отображаются все функции программы;

• панели инструментов, где дублируются некоторые важные элементы файлового меню;

- закладок вида моделирования;
- панелей ввода основных параметров демультиплексора;
- области построения графиков.

Также, при загрузке приложения появляется окно помощи, где отображаются подсказки по выполняемому пункту лабораторной работы.

Рис. 4.4 — Главное окно программы WDMEncore

Главное меню состоит из трех разделов: **Файл**, **Работа** и **Помощь**. Рассмотрим пункты каждого раздела.

Файл

📄 Новый	Замена исходных данных, данными по умолчанию	
🛅 Открыть файл	Открыть файл с исходными данными*	
📕 Сохранить файл	Сохранить исходные данные в файл*	
👿 Отчет в MSWord	Импортировать результаты моделирования в приложение MSWord	
🛐 Параметры графиков	Параметры, отвечающие за внешний вид отображаемых графиков	
* Файл с данными имеет расширение .wdg		

Работа

💯 Пособие	Электронный вариант учебного пособия
📝 Тестирование	Прохождение теста
Nh	Пересчитать текущий график
🜌 Обновить весь	по всему диапазону

диапазон	
Обновить выбранный	Пересчитать текущий график
диапазон	по диапазону, выбранному пользователем
Копировать график в	Копировать текущий график в буфер
буфер	обмена в виде битового изображения

Помощь

🕐 Помощь	Руководство пользования программой
🎗 О программе	Информация о разработчиках программы

2.2 Панель редактирования центральных частот для каналов демультиплексора

Для ввода числа каналов (*n*) и центральных длин волн (λ_1 , λ_2 , ..., λ_n), предназначена панель, находящаяся в левой части главного окна (рис. 4.5). Эти данные являются общими для моде-

лирования демультиплексоров на основе интерференционного и фильтров Фабри — Перо. В верхней части панели через счетчик задается число каналов демультиплексора, а ниже в таблицу вводятся центральные длины волн (в микрометрах), исходя из ITU-T плана.

По завершению заполнения таблицы необходимо нажать клавишу *Enter*, либо выбрать пункт файлового меню *Работа* \rightarrow *Обновить весь диапазон*. Если пользователь в таблицу ввел неверные данные, то панель заголовка окрасится в красный цвет.

Ниже таблицы расположены кнопки автоматического заполнения таблицы центральных длин волн:

• *Авто* (1,*N*) — распределяет равномерно длины волн между первым и последним каналами;

• *Asmo* (1,2) — заполняет таблицу длин волн с шагом ($\lambda_2 - \lambda_1$).

2.3. Закладки вида моделирования

Для моделирования параметров демультиплексоров предназначены закладки, расположенные снизу инструментальной панели (рис. 4.6).

Рис. 4.6 — Пункты моделирования

Первые две закладки отображают аппаратные функции и параметры демультиплексора на интерференционных (тонкопленочных) фильтрах и фильтрах Фабри — Перо, а третья рассчитывает переходные помехи в каждом демультиплексоре и отображает их в табличном и графическом видах.

2.4 Моделирование демультиплексора

Первые две закладки моделирования демультиплексора состоят из трех областей: графика аппаратной функции, панели выбора фильтров и панели параметров выбранного фильтра. Рассмотрим эти области более подробно.

Аппаратная функция демультиплексора (рис. 4.7). Зависимость отображает саму аппаратную функцию и центральные частоты, занесенные в таблицу, в виде вертикальных линий и числовых подписей снизу. Активный канал (параметры фильтра которого в данный момент можно редактировать) выделяется цветом.

Рис. 4.5 панель для задания длин волн

Рис. 4.7 — Область построения зависимости аппаратной функции

Границы просмотра длин волн можно изменять (увеличивать часть аппаратной функции), если левой кнопкой мыши слева на право выделить необходимый участок на графике (рис. 4.8).

Границы отображения графика всей аппаратной функции определяются автоматически. Для ручного задания границ отображения необходимо воспользоваться панелью *Границы расчета* λ (рис. 4.9). В однострочные редакторы при отключенном переключателе *Автоматически* заносятся частоты, в пределах которых будет произведен расчет аппаратной функции. Для перехода обратно в режим автоматических границ необходимо включить переключатель *Автоматически*.

Значение координат по осям *x* и *y*, выводятся автоматически в строк статуса, при перемещении над графиком мышью. При этом на графике положение курсора будет указано розовым перекрестьем на всю область.

Рис. 4.8 — Исходный вид аппаратной функции (а) и вид после увеличения (б)

Параметры отображения графиков можно изменить в разделе **Файл** → **Параметры** графиков (см. подразд. 2.1).

Панель выбора фильтров (рис. 4.10). Панель служит для выбора из списка соответствующего фильтра, параметры которого можно модифицировать (выбранный фильтр подсвечивается на панели и на графике аппаратной функции демультиплексора).

Панель позволяет отключать/включать фильтры с помощью независимых переключателей слева от номера фильтра. Для отображения одного фильтра необходимо дважды по нему щелкнуть мышью.

Кнопки *Все* и *Нем* предназначены для выбора либо для исключения из расчета всех фильтров.

Панель параметров выбранного фильтра (рис. 4.11). Панель состоит из таблицы, где отображаются параметры выбранного фильтра. Для интерференционных и фильтров Фабри — Перо набор параметров будет различен.

Напротив каждого параметра расположен независимый переключатель, с помощью которого можно выбирать единые для всех фильтров параметры. При включенном переключателе модификация параметра в любом из фильтров автоматически повлечет изменение этого параметра и у других фильтров.

По завершению модификации параметров необходимо нажать клавишу *Enter*, либо выбрать пункт файлового меню *Работа* — *Обновить весь диапазон* или *Работа* — *Обновить выбранный диапазон*. Если пользователь в таблицу ввел неверные данные, то панель заголовка окрасится в красный цвет.

2.5 Расчет переходных помех

Для расчета уровня переходных помех, необходимо определить полосу пропускания каждого фильтра (в панели параметров фильтра обозначена как *ППК, нм*). Для этого нужно исключить из расчета все фильтры кроме выбранного, увеличить аппаратную функцию и, удерживая клавишу **Ctrl**, **Shift** или **Alt**, мышью выделить область по уровню 0,5 (рис. 4.12).

Далее необходимо перейти на третью вкладку программы **Пер. пом**. (рис. 4.13). На ней будут отображены переходные помехи для соответствующего демультиплексора. Справа (панель *Каналы*) будет отображен список выбора каналов для расчета переходных помех (в децибелах):

Все — расчет суммарных переходных помех от всех соседних каналов, для всех фильтров;

1..N — расчет переходных помех от каждого соседнего канала в отдельности для выбранного канала. Суммарная переходная помеха, для текущего канала, отображается в таблице в пункте *Sum*.

Рис. 4.13 — Информационное окно

Рассчитанные переходные помехи отображаются в табличном и графическом видах. Для включения/отключения отображения переходных помех для какого-либо типа демультиплексора можно воспользоваться панелью *График для фильтров*.

2.6 Окно помощи

Окно помощи (рис. 4.14) предназначено для методического пособия, порядка выполнения лабораторной работы и руководства пользователя.

Рис. 4.14 — Информационное окно

4.3 Моделирование оптических демультиплексоров на голографических дифракционных структурах

1 Общее описание

1.1 Функциональное назначение системы, область применения и ограничения

Компьютерная лабораторная работа «Исследование оптических демультиплексоров на основе наложенных голограмм в фотополимерном материале» предназначена для исследования процессов голографической записи наложенных дифракционных решеток в фотополимерных материалах, расчета и оптимизации характеристик оптических демультиплексоров на их основе [35].

Программное обеспечение представляет собой приложение, в котором задаются параметры записи и считывания наложенных голограмм, материальные параметры фотополимерного материала и отображаются результаты расчета в виде графиков и таблиц. Приложение включает 15 вариантов заданий для проведения лабораторных работ, предусматривающих численный расчет интегральных преобразований, описывающих процессы записи и считывания наложенных голограмм в фотополимерном материале. В основу расчетов положена оригинальная математическая модель процесса последовательной голографической записи наложенных дифракционных решеток в поглощающих ФПМ при угловом мультиплексировании (см. подразд. 2.4).

1.2 Краткое описание системы и ее технические характеристики

Компьютерная лабораторная работа (далее программа), представляет собой компьютерную программу, которая также содержит методическое пособие и руководство пользователя, входного теста и оболочки моделирования. Программа может функционировать под управлением операционных систем Windows всех поколений, начиная с Windows 95. Для нормального функционирования программы компьютер должен быть оснащен не менее чем 16 Мб оперативной памяти и не менее чем 8 Мб свободного места на жестком диске. Сама программа занимает около 20 Мб дисковой памяти и не требует установки.

Оболочка моделирования построена по модальному принципу и предусматривает последовательное исследование на основе компьютерного моделирования различных характеристик демультиплексора.

1.3 Запуск программы и выход из программы

Запуск программы осуществляется выполнением файла PolyGrating.exe, данный файл расположен в папке **PolyGrating**. После запуска на экране компьютера появляется главное окно программы. Оно содержит главное меню, панель инструментов, панели для ввода исходных данных расчетные таблицы и графики. Выход из программы осуществляется нажатием кнопки 🖾 в верхнем правом углу главного окна.

2 Работа с программой

В дальнейшем предполагается, что пользователь имеет определенные навыки работы в операционной системе Windows 95, 98, 2000, ME, XP, VISTA.

При работе с программой для перемещения между полями ввода, и нажатий на кнопки удобней использовать манипулятор «мышь».

Для моделирования демультиплексора, исполнителю необходимо ввести следующие исходные параметры:

1) для фотополимерного материала: среднее значение показателя преломления и его изменение при фотополимеризации, коэффициент диффузии компонент, толщину, коэффициент поглощения;

2) для условия записи: длину волны оптического изучения, число голограмм, угол схождения записывающих пучков, набор углов наклона ФПМ для записи каждой решётки.

Для заданных параметров производится расчет следующих основных характеристик, представленных в графической или табличной формах:

3) кинетику голографической записи наложенных голографических решеток и их дифракционных эффективностей;

4) дифракционную эффективность наложенных голограмм от относительной брэгговской расстройки;

5) перекрестные помехи в каждом канале.

По полученным результатам расчета производится оценка вносимых потерь и селективных свойств исследуемого демультиплексора.

Настройка голографической решетки на заданную длину волны производится путем изменения углов наклона фотополимерного материала для каждой голографической решетки во время ее записи.

Приложение позволяет осуществить оптимизацию материальных параметров фотополимерного материала для достижения определенного уровня перекрестных помех при заданном числе каналов, либо при известных материальных параметрах фотополимерного материала и заданном числе каналов, определить максимальную дифракционную эффективность, которая будет у всех каналов на выходе демультиплексора.

2.1 Главное окно

В главном окне (рис. 4.15) осуществляется ввод исходных данных и расчет параметров записи и считывания наложенных голографических решеток. Оно состоит:

• из файлового меню, где отображаются все функции программы;

• панели инструментов, где дублируются некоторые важные элементы файлового меню;

• закладок вида моделирования (запись голограмм, считывание голограмм и расчётная таблица);

• панелей ввода основных параметров;

• области построения графиков.

Рис. 4.15 — Главное окно программы PolyGrating

Главное меню состоит из тртх разделов: **Файл**, **Работа** и **Помощь**. Рассмотрим пункты каждого раздела.

Файл

📔 Новый	Замена исходных данных данными по умолчанию
🛅 Открыть файл	Открыть файл с исходными данными*

📕 Сохранить файл	Сохранить исходные данные в файл*	
👿 Отчет в MSWord	Импортировать результаты моделирования в приложение MSWord	
* Файл с данными имеет расширение .glm.		

Работа

🏴 Пособие	Электронный вариант учебного пособия
🧖 Тестирование	Прохождение теста
Рассчитать	Пересчитать текущий график или таблицу
Остановит расчет	Остановка текущего расчета
Копировать график в буфер	Копировать текущий график в буфер обмена в виде битового изображения

Помощь

🕐 Помощь	Руководство пользования программой
🦧 О программе	Информация о разработчиках программы

2.2 Панель параметров записи голограммы

В левой части главного окна расположена панель *Производство* для задания значений параметрам записи голограмм (рис. 4.16):

- числа наложенных голограмм;
- толщины ФПМ, мкм;
- длины световой волны, на которой происходит запись голограмм, нм;
- дифракционной эффективности всех записанных голограмм;

• таблицы для задания углов схождения θ, углов поворота ФПМ Ψ и времен записи каждой голографической решетки (при отключенной опции *Оптимальное t*). Число строк в таблице определяется значением поля ввода данных № голограмм.

Переключатель **Оптимальное** *t* предназначен для отображения дополнительного столбца таблицы *t*, *cek*, в который вводятся заданные пользователем времена записи каждой голограммы.

2.3 Панель материальных параметров ФПМ

В правой части главного окна расположена панель для задания материальных параметров ФПМ (рис. 4.17): затухания в ФПМ; амплитуды решетки: δn_i , δn_p ; скорости диффузии мономера *d*; показателя преломления ФПМ.

Производство					
3	3 🕂 Nº голограмм				
20	Толщ	ина ФПМ			
620	620 Длинна волы				
1 740.2					
- 0m	Г Оптимальное t				
N⁼	№ <i>Ө</i> , град <i>Ч</i> , град <i>t</i> , сек				
1	20	-10	0,8		
2	20	-5	0,8		
3	20	0	0,8		

Рис. 4.16 — Панель параметров моделирования

Материал				
Параметр Значение				
Затухание	1			
ni	1,78e-3			
np	1e-2			
s	1			
d*1e-15	1			
n	1,45			

Рис. 4.17 — Панель материальных параметров

2.4 Моделирование записи наложенных голограмм

Первая закладка главного окна производит численной моделирование записи наложенных голограмм (рис. 4.18). В закладке находится график динамики записи последовательноналоженных голограмм в ФПМ (зависимость дифракционной эффективности каждой из наложенных голограмм в ФПМ от времени экспозиции). Черная горизонтальная линия значение дифракционной эффективности K_{d0} .

Рис. 4.18 — Зависимость динамики записи НГР

В панели *Расчет* можно изменить просмотр времени записи голограмм и шаг построения графиков.

2.5 Моделирование записи наложенных голограмм

Вторая закладка главного окна производит численное моделирование считывания наложенных голограмм (рис. 4.19). В закладке находится график зависимости интенсивности дифрагируемого луча от относительной расстройки Брэгга Δ . В панели *Расчет* задаются минимальное и максимальное значения расчета Δ и шаг. С помощью переключателя *Логариф-мический масштаб* можно отобразить зависимости в децибелах.

Рис. 4.19 — Зависимость дифракционной эффективности от длины оптической волны

2.6 Расчетная таблица

Вторая закладка главного окна производит численное моделирование считывания наложенных голограмм (рис. 4.20). В закладке находится табличное представление результатов моделирования. В ней для каждой голограммы отображаются следующие параметры:

• Mn — начальная относительная концентрация мономера на момент записи голограммы;

- t время записи голограммы, сек;
- I, Single интенсивность дифрагированного луча;
- Івнес интенсивность перекрестных помех от соседних решеток;
- ISum суммарная интенсивность дифрагированного луча: ISum = ISingle + Івнес.

N≗	Mn	Тр	t, сек	delta	Кд, %	l, Single	Івнес.	lSum
1	1	1,4142135	0,4131691	-35,19560;	0,0099983	9,998E-03	1,483E-03	1,148E-02
2	0,9182463	1,4758267	0,4581398	-17,66502	0,0100005	1,000E-02	2,462E-03	1,246E-02
3	0,8390709	1,5438874	0,5105812	0	0,0099996	1,000E-02	4,000E-02	5,000E-02
4	0,7626224	1,6194226	0,5725441	17,665022	0,0100005	1,000E-02	2,464E-03	1,246E-02
5	0,6890140	1,7037306	0,6465187	35,195602	0,0100013	1,000E-02	1,485E-03	1,149E-02

Рис. 4.20 — Таблица расчетных параметров

2.7 Окно помощи

Окно помощи (рис. 4.21) предназначено для отображения хода выполнения лабораторной работы, методического пособия и руководства пользователя.

Рис. 4.21 — Информационное окно

2.8 Окно тестирования

Перед началом выполнения лабораторной работы и в процессе выполнения (*Работа* → *Тестирование*), можно пройти тестирование по теме «Создания демультиплексоров на основе интерференционных и Фабри — Перро фильтров» (рис. 4.22).

Тест контроль лабораторной работы: Сравнение характеристик WDM демультиплексоров				
Вопрос	Выбор ответов			
Вопрос 12	C Ответ 1			
	Ответ 2			
	Ответ 3			
	• Omer4			
	Далее Си Осталось 2 вопросов из 10			

Рис. 4.22 — Окно тест-контроля

Слева расположена область вопросов, справа — область вариантов ответов. Внизу расположена кнопка перехода на следующий вопрос, общее количество и количество оставшихся вопросов. По окончании теста выдается оценка по пяти бальной шкале.

4.4. Моделирование оптических демультиплексоров на основе массива планарных волноводов

1. Общее описание

1.1. Назначение системы

Программа предназначена для проведения лабораторной работы у студентов специальности 210401 по курсу «Мультиплексорное оборудование оптических цифровых систем связи» [32].

1.2. Краткое описание системы и ее технические характеристики

Компьютерная лабораторная работа (далее программа), представляет собой компьютерную программу, которая также содержит методическое пособие, руководство пользователя. Программа может функционировать под управлением операционных систем Windows 98, 2000, XP, Vista. Для корректного функционирования программы компьютер должен быть оснащен не менее чем 256 Мбайтами оперативной памяти и не менее чем 100 Мбайтами свободного места на жестком диске. Программа занимает около 20 Мбайт дисковой памяти и установки не требует.

1.3 Запуск программы

Запуск программы осуществляется выполнением файла AWG.exe, расположенного в папке AWG. Запуск возможен также выбором пункта *Запуск* в пункте *AWG* меню программы. После запуска на экране компьютера появляется главное окно AWG, содержащее все пункты лабораторной работы (рис. 4.23).

2 Работа с программой

2.. Общие замечания

Некоторые окна программы являются модальными. Это означает, что пункты главного меню и другие окна будут недоступны, пока не будет закрыто текущее активное окно. Для закрытия окон используйте кнопку **Закрыть**. Во время работы с программой для выбора пунктов меню, перемещения между полями ввода, и нажатий на кнопки удобней использовать манипулятор «мышь».

2.2 Работа с главным меню AWG

Данное окно является исходным местом старта любого пункта лабораторной работы. Интерфейс окна **AWG** (рис. 4.23).

С помощью файлового меню и панели кнопок возможно произвести экспорт/импорт пользовательских параметров, генерацию отчета по проделанной работе в текстовый процессор MS Word, получить доступ к методическому пособию, пройти тест-контроль и непосредственный доступ к выполнению работы.

🈿 Исследование мультиплексора на	основе массива фазирующих волноводов	
Файл Работа Параметры Помощь		
— 📁 Гранить Новый <u>О</u> ткрыть Сохранить	👿 🔅 🥑 📓 🧖 🕜 Отчет Пособие Тест Выполнение Помощь О программе	
Новый Открыть Сокранить Паранетры Сокранить Исходные параметры Исходные параметры Искодные параметры Искодные параметры Инскол каналов, N 16 Централизма частота, Гц 10059 Показ прел. оболожи 10059 Показ прел. оболожи 1454 Показ прел. оболожи 150 Показ прел. оболожи 120 Разница длин воли в насс. 250 Показ прел. оболожи 150 Показ прел. оболожи	Отет Пособие Тет Выполнение Помощь О программе РССЕЛЕ ДОВАНИЕ ОДИНОГО КАНАЛА 0,55 0,45 0	2
Высорканалов Канала 8 (Частота = 132,3 ТГц) ✓ Канала 8 (Частота = 132,3 ТГц) ✓ Канала 5 (Частота = 132,3 ТГц) Фанкцы расира 132,0 ГГц) Ранкцы расира Исатота = 132,0 ГГц) Ранкцы расира Исатота = 132,0 ГГц) Простр. расирад. Фотом 10002193 По Роки 10002193	Пространственное распределение Дополнительно Конал: Канал: 1,324E014 ▼ Пл -32 аБ. ГГц [1,36] Макс. Т: [0,5772 ПП -20 аБ. ГГц [37,34] Вн. зат. аБ: [2,383] ПП -20 аБ. ГГц [37,34] Вн. зат. аБ: [2,383] Канал 2 (Частоя = 192,3 ГГц) Канал 1 (Частоя = 193,3 ГГц) ↓ Канал 1 (Частоя = 193,1 ГГц) ↓	иляет провести очного канала. Для этого необходимо выбрать исследуемые каналы на панели выбора каналов.

Рис. 4.23 — Главное окно программы

На рис. 4.24 приведен вид панели инструментов, которая на протяжении всей работы находится в верхней части главного окна.

Рис. 4.24 — Панель инструментов

Данное окно является исходным местом старта любого пункта лабораторной работы. Рассмотрим содержимое главного меню по пунктам.

1. **«Новый»** вызывает заполнение всех параметров расчета параметрами по умолчанию.

2. «Открыть» вызывает диалог открытия сохраненных параметров пользователя.

3. «Сохранить» вызывает диалог сохранения параметров пользователя.

4. **«Отчет»** генерирует отчет по проделанной работе в MS Word.

5. «Пособие» вызывает методическое пособие по лабораторной работе.

6. «**Тест**» вызывает тестовое окно для проверки знаний пользователя.

7. **«Выполнение»** вызывает пункты программы, выполнение которых предусмотрено заданием.

- 8. «Помощь» генерирует помощь по пользованию программой.
- 9. «О программе» вызывает окно с информацией о разработ-
- чиках

программы.

2.2.1 Работа с окном «Новый»

Окно предназначено для заполнения вкладки параметров параметрами по умолчанию. По умолчанию выбирается 16-канальный MUX со 100 ГГц диапазоном.

2.2.2 Работа с окном «Открыть»

После нажатия кнопки «**Открыть**» открывается диалоговое окно выбора файла с пользовательскими параметрами, находящимися в файлах с расширением .ini.

2.2.3 Работа с окном «Сохранить»

Сохраняет пользовательские параметры в ini-файл.

2.2.4 Работа с окном «Отчет»

Окно предназначено для генерирования отчета в текстовом процессоре Word. В отчет заносится вся информация по проделанной работе, включая исходные параметры, названия пунктов, цель работы, и графики с подписями.

Внимание! Генерация отчета происходит после выполнения основной части лабораторной работы.

2.2.5 Работа с окном «Пособие»

Кнопка вызывает методическое пособие по выполнению лабораторной работы в электронном виде.

2.2.6 Работа с окном «Тест»

Кнопка вызывает тестирование по пройденному материалу (рис. 4.25). Тест-контроль предназначен для проверки и закрепления знаний пользователя. Тестовые вопросы подобраны так, чтобы при прочтении материала выполнение теста не вызывало затруднений.

Рис. 4.25 — Вид окна «Тестирование»

После выбора правильного ответа на каждый из десяти предложенных вопросов необходимо нажать кнопку *Далее*. После прохождения тестирования выдается результат с рекомендацией.

2.2.7 Работа со списком Моделирование

В ниспадающем списке присутствуют следующие пункты: Расчет параметров, Моделирование, Распределение поля

Рассмотрим их назначение.

При выборе пункта *Расчет параметров* вызывается окно расчета параметров (рис. 4.26).

Здесь Исходные параметры предназначены для ввода исходных параметров, Расчетные параметры — для ввода требуемых по расчету параметров. Если при вводе параметров допущена ошибка ввода, либо параметры рассчитаны неверно, то панель соответствующего заголовка в панели Статус окрашивается в красный цвет. Таким образом, данное окно обучает расчету основных параметров мультиплексора. На панели Выбор каналов производится выбор каналов, подлежащих расчету. На панели Границы расчета выставляются границы расчета в пространственной и временной областях. При постановке галочки Автоматически эти параметры вычисляются автоматически. Для расчета любого пункта необходимо нажать кнопку Расчет при включенном окне этого пункта.

Параметры 🔀							
Исходные параметры							
Число каналов, N			16				
Центральная частота, Гц				193,1E12			
Канальны	й интервал	. Γι	ı	100E9			
Показ. пр	ел. сердцев	зин	ы	1,454			
Показ. прел. оболочки					51		
Показ. прел. линзы					1,453		
Шar dw, м	1			26,61E-6			
Радиус мо	ад, поля w, i	м		7,16E-6			
Положени	е вх. волн.	d_i	n, м	0			
Расчетные данные							
Спектральный диапазон, м			i, м	128,128E-010			
Дифракционный порядок			120				
Разница длин волн. в масс., м				12,9E-005			
Фокусное расстояние, м			6E-2				
Число волн. в масс.			250				
Выбор каналов							
🔲 Канал -8 (Частота = 192,3 ТГц) 🛛 🔼							
🗹 Канал -7 (Частота = 192,4 ТГц) 📃							
IVI Канал -6 (Частота = 192,5 П ц) □ Канал -5 (Частота = 192,6 ГГц)							
Границы расуета 🔽 Автоматически							
Простр	распред		Час	r na	аспред		
OT Dout	-30E-4		Οτ ν		192.6E12		
С шагом	1E-6		Culari	лм	0.0005E12		
До Dout	30E-4		До у		193,8E12		
Статус							
Расчетные данные верны							
Ошибок ввода нет							
Расчет							
Расчет							

Моделирование предназначено для моделирования основных характеристик AWGмультиплексора. Это пункты: Исследование одиночного

канала,

Зависимость от параметров,

Исследование совокупности каналов.

Рассмотрим их подробнее.

Рис. 4.26 — Окно «Параметры»

Исследование одиночного канала

Окно предназначено для исследования одиночного канала, полосы его пропускания, положения выходного порта, коэффициента передачи и вносимых потерь (рис. 4.27). При моделировании возможен выбор требуемых рассчитываемых каналов в окне параметры.

Рис. 4.27 — Вид окна «Исследование одиночного канала»

После расчета в соответствии с панелью «Параметры» выбор канала осуществляется с помощью выпадающего списка *Канал*. При этом параметры канала автоматически вычисляются программой, избавляя от сложной работы обучаемого, и отображаются в текстовых полях в дополнительном окне. Расчет проводится одновременно в пространственной и частотной областях в диапазоне, выбранном в окне Параметры. Переключение между пространственным и частотным распределением осуществляется вкладками *Пространственное распределение* и *Частотным распределение*. Двойным щелчком по графику либо нажатием соответствующей кнопки в левом верхнем углу графика осуществляется переключение к виду в децибелах, при котором наиболее удобно определяется вносимое затухание, полоса пропускания канала.

Нажатием кнопки Показывать метки максимумов включаются отключаются метки максимумов, которые позволяют определить положения выходных портов.

Зависимость от параметров

Окно предназначено для влияния конструктивных параметров на одиночный канал, его полосы пропускания, положения выходного порта, коэффициента передачи и вносимых потерь. Данная опция позволяет избавиться от утомительного расчета основных характеристик канала при различных параметрах. Также с помощью этой процедуры возможен подбор оптимальных параметров AWG-мультиплексора согласно зависимости характеристик от данных параметров (рис. 4.28).

Рис. 4.28 — Вид окна «Исследование зависимости от параметров»

Для расчета необходимо выбрать тип расчета в списке *Тип расчета*. После расчета в соответствии с панелью «Параметры» различные зависимости выбираются путем выбора в поле *Просмотр*. Переключение между пространственными и частотными зависимостями осуществляется вкладками *Пространственное распределение* и *Частотное распределение*. Если на графике видна угловатость (рис. 4.28) либо странное поведение кривых необходимо уменьшить шаг расчета в параметрах.

Исследование совокупности каналов

Окно предназначено для исследования совокупности каналов (рис. 4.29). В данном окне производится вычисление суммарного поля на выходе в пространственной и частотной областях. Это позволяет наглядно посмотреть уровень переходных помех. Отметки максимумов позволяют подобрать оптимальное расположение выходных портов. Также в окне производится расчет зависимости кумулятивной переходной помехи от канала, что избавляет от долгих расчетов вручную.

Рис. 4.29 — Вид окна «Исследование совокупности каналов»

Переключение между пространственным, частотным распределениями и кумулятивной помехой после их расчета осуществляется выбором соответствующих вкладок.

Распределение поля

Окно предназначено для получения детального распределения поля в плоскости мультиплексора (рис. 4.30). После выбора ширины, высоты и масштаба в соответствующих полях и нажатия кнопки **Расчет** вид распределения поля отображается на экране (рис. 4.30).

Рис. 4.30 — Вид окна «Распределение поля»

2.3 Работа с окном «Помощь»

Окно предназначено для генерации руководства пользователя по пользованию программой

2.4 Работа с окном «О программе»

Окно предназначено для получения информации о разработчиках программы.

2.5. Работа с окном «Параметры»

Окно предназначено для отображения и выбора следующих параметров:

В децибелах — включает/выключает отображение текущих зависимостей параметров в децибелах;

Автоматический расчет границ — включает/выключает автоматический расчет границ;

Показывать метки максимумов — включает/выключает отображение меток максимумов.

Литература

1. Слепов Н.Н. Современные технологии цифровых оптоволоконных сетей связи (ATM, PDH, SDH, SONET и WDM / Н.Н. Слепов. – М. : Радио и связь, 2003. – 468 с.

2. Волоконно-оптические сети и системы связи / О.К. Скляров. – С-Пб : Лань, 2018. – 268 с.

3. Волоконно-оптические системы связи / Р. Фриман ; пер. с англ.; под ред. Н.Н. Слепова. – 3-е изд., доп. – М. : Техносфера, 2006. – 495 с.

4. Оптические телекоммуникационные системы. Учебник для вузов/ В. Н. Гордиенко, В. В. Крухмалев, А. Д. Моченов, Р. М. Шарафутдинов . Под ред. Профессора ; под ред В. Н. Гордиенко. – М: Горячая линия – Телеком, 2011. – 368 с.

5. Заславский К.Е. Волоконно-оптические системы передачи со спектральным уплотнением : учеб. пособие для вузов / К.Е. Заславский. – Новосибирск : СибГУТИ, 2005. – 136 с.

6. Жирар Андрэ. Руководство по технологии и тестированию систем WDM / Андрэ Жирар ; пер. с англ.; под ред. А.В. Шмалько. – М. : EXFO, 2001 – 264 с.

7. Листвин В.Н. DWDM системы: научное издание / Листвин В.Н. Трещиков В.Н. – М. : Издательский Дом «Наука», 2013. – 300 с.

8. Измерительное, монтажное и кроссовое оборудование для сетей связи. Каталог 2002. – М. Группа компаний ТКС. – 2002. – 67 с. – Режим доступа : <u>http://www.tkc.ru/katalog/katalog2002.html</u> (дата обращения 18.09.2022).

9. РД 45.286-2002 Аппаратура волоконно-оптической системы передачи со спектральным разделением. Технические требования . – 2002. – 21 с.

10. РД 45.186-2001 Аппаратура волоконно-оптических усилителей для применения на взаимоувязанной сети связи Российской Федерации. Технические требования.

11. Семенов А.Б. Волоконная оптика в локальных и корпоративных сетях связи / А.Б. Семенов. – М. : Компьютер Пресс, 1998. – 302 с.

12. Цифровые и аналоговые системы передачи : учеб. для вузов / В.И. Иванов, В.Н. Гордиенко, Г.Н. Попов [и др] ; ред. В.И. Иванов. – 2-е изд. – М. : Горячая линия-Телеком, 2003. – 230 с.

13. Братчиков А.Н. Эрбиевые волоконные усилители / А.Н. Братчиков, А.П. Шеремета, Т.А. Садеков // Зарубежная электроника. – 1997. – № 12.

14. Устройства распределения сигналов в ЛВОС // РЭ (состояние и тенденции развития). – 1992. – № 1. – С. 145–178.

15. Сетевые технологии DWDM – Технические параметры EDFA [Электронный ресурс]. – Режим доступа : www.lan.tt.ru

16. Сетевые технологии DWDM – Классификация EDFA по способам применения [Электронный ресурс]. – Режим доступа : <u>www.lan.tt.ru</u> (дата обращения 18.09.2022).

17. Убайдулаев Р.Р. Волоконно-оптические сети / Р.Р. Убайдулаев. – М. : ЭКО-ТРЕНДЗ, 1998.

18. Курков А.С. Эрбиевые волоконно-оптические усилители / А.С. Курков, О.Е. Наний // LIGHTWAVE Russian edition. – 2003. – № 1.

19. Убайдулаев Р.Р. Протяженные ВОЛС на основе EDFA / Р.Р. Убайдулаев // LIGHTWAVE Russian edition. – 2003. – № 1.

20. Ярив А. Оптические волны в кристаллах / А. Ярив, П. Юх ; пер. с англ. – М. : Мир, 1987. – 616 с.

21. Скворцов Б.В. Оптические системы передачи : учеб. для вузов / Б.В. Скворцов [и др.] ; под ред. В.И. Иванова. – М. : Радио и связь. – 1994. – 224 с.

22. Ищенко Е.Ф. Открытые оптические резонаторы / Е.Ф. Ищенко // М. : Советское радио, 1980.

23. Molina-Fernández. Improved AWG Fourier optics model / Molina-Fernández // Opt. Express. – 2004. – V. 12. – P. 4804–4821.

24. Дианов Е.М. От Тера – эры к Пета – эре / Е.М. Дианов // Вестник российской Академии наук. – 2000. – Т. 70. – № 11. – С. 1010–1015.

25. Наний О.Е. Основы технологии спектрального мультиплексирования каналов передачи / О.Е. Наний // Lightwave Russion Edition. – 2004. – № 12. – С. 47–52.

26. Apollo Photonics. APSS Apollo Application Note on Array Waveguide Grating (AWG) Design, simulation and layout APN – APSS – AWG [Электронный ресурс]. – Режим доступа : www.apollophotonics.com (дата обращения 18.09.2022).

27. Берикашвили В.Ш. Базовые элементы высокоскоростных волоконно-оптических систем связи со спектральным уплотнением каналов / В.Ш. Берикашвили, З.А. Засовин, А.В. Соколов // Радиотехника. – 2004. – № 12. – С. 31–38.

28. Волоконно-оптические системы передачи (ВОСП) [Электронный ресурс]. – Режим доступа : <u>www.fot.ru</u> (дата обращения 18.09.2022).

29. Гончаров А.А. Интегрально-оптическое устройство спектрального уплотнения и разуплотнения каналов связи / А.А. Гончаров, В.В. Светиков, К.К. Свидзинский, В.А. Сычу-гов, Б.А. Усиевич // Радиотехника. – 2004. – № 12. – С. 54–60.

30. Pascual Munoz. The cross waveguide grating: proposal, theory and applications / Pascual Munoz, Daniel Pastor, Jose Capmany // Opt. Express. -2005. -V. 13. $-N_{2}$ 8. -P. 2961–2968.

31. Довольнов Е.А. Волновая фильтрация и мультиплексирование в волоконнооптических системах передачи на основе высокоэффективных фотополимерных дифракционных решеток / Е.А. Довольнов, В.В. Кузнецов, С.Н. Шарангович // Методы и устройства передачи и обработки информации : Межвуз. сб. науч. тр. – Вып. 3 ; под ред. В.В. Ромашова, В.В. Булкина. – СПб. : Гидрометеиздат, 2003. – С. 105–115.

32. Лялюк А.П. Компьютерная лабораторная работа «Исследование оптического мультиплексора на основе массива планарных волноводов» / А.П. Лялюк, В.Г. Миргород, С.Н. Шарангович. – М. : ВНТИЦ, 2006. – № 50200501791.

33. Кузнецов В.В. Компьютерная лабораторная работа «Исследование оптических демультиплексоров на основе интерференционных фильтров и фильтров Фабри — Перо / В.В. Кузнецов, С.Н. Шарангович. – М. : ВНТИЦ, 2006. – № 50200501792.

34. Довольнов Е.А. Компьютерная лабораторная работа «Компьютерное исследование многоволновых эрбиевых волоконно-оптических усилителей» / Е.А. Довольнов, С.Н. Шарангович. – М. : ВНТИЦ, 2006. – № 50200501793.

35. Кузнецов В.В. Компьютерная лабораторная работа «Исследование оптических демультиплексоров на основе наложенных голограмм в фотополимерном материале» / В.В. Кузнецов, С.Н. Шарангович. – М. : ВНТИЦ, 2006. – № 50200501796.

36. Alcatel-Lucent 1696 Metrospan (Metro WDM) [Электронный ресурс]. – Режим доступа : <u>http://www.alcatel-lucent.com</u> (дата обращения 18.09.2022)..

37. WaveStar® OLS 1.6T, Lucent's core DWDM system [Электронный ресурс]. – Режим доступа: <u>http://www.alcatel-lucent.com/wps/portal/products</u> (дата обращения 18.09.2022).

38. Nortel's Wavelength Division Multiplexer (WDM) Portfolio [Электронный ресурс]. – Режим доступа: <u>http://products.nortel.com</u> (дата обращения 18.09.2022).

39. Оборудование оптической передачи OptiX [Электронный ресурс]. – Режим доступа : <u>http://www.huawei.ru/products/catalog/optix(</u> дата обращения 18.09.2022).

40. SpectralWave 40/80. Overview [Электронный ресурс]. – Режим доступа: <u>http://www.nec.co.uk/Spectral_Wave_4080.aspx</u> (дата обращения 18.09.2022).

41. ECI Telecom Technologies [Электронный ресурс]. – Режим доступа: <u>http://www.eci-telecom.com</u> (дата обращения 18.09.2022). .

42. Научно-Техническое Объединение "ИРЭ-Полюс" [Электронный ресурс]. – Режим доступа: <u>http://www.ntoire-polus.ru/company.html</u> (дата обращения 18.09.2022).

43. Розенштерн Э. Оптоэлектроника/ Э Розенштерн, Б. Винтер; пер. с англ. – М. : Техносфера, 2004. – 590 с.

44. S,L,C –band optical amplifiers / Catalog THORLABS [Электронный ресурс]. – Режим доступа : <u>http://www.eurolase.ru/thorlabs.html</u> (дата обращения 18.09.2022).
45. Борисов М.А. Методы стабилизации коэффициента усиления оптических усилите-

лей// LIGHTWAVE Russian edition. – 2005. – № 6. –С.34-36.

Приложение

РД 45.286-2002 Аппаратура волоконно-оптической системы передачи со спектральным разделением. Технические требования

Таблица 1

Параметры оптических усилителей передачи (усилитель мощности)

Наименование параметров от усилителя передач	Значение параметров	
	минимальный, дБм	-17,5
уровень входной суммарной мощности	максимальный, дБм	+16,0
	минимальный, дБм	+3,5
у ровень выходной суммарной мощности	максимальный, дБм	+27,0
Vaabbuuuau	минимальный, дБм	14,0
коэффициент усиления	максимальный, дБм	28,0
Неравномерность коэффициента усиления в задан волн не более, дБ	2,0	
Шум фактор в заданном диапазоне рабочих длин в (при минимальном уровне суммарной входной мог	7,0	
Коэффициент отражения от входа, не менее, дБ	-30	
Затухание отражения на выходе, не более, дБ	30,0	

Таблица 2

Параметры оптических промежуточных усилителей (линейный усилитель)

Наименование параметров с	Значение пара-	
промежуточного усил	ителя	метров
	минимальный, дБм	-36,0
у ровень входной суммарной мощности	максимальный, дБм	+10,0
Уровень выходной суммарной мощности	минимальный, дБм	+3,5
	максимальный, дБм	+27,0
	Окончание табл. 2	
Наименование параметров с	Значение пара-	
промежуточного усил	метров	
Varhering	минимальный, дБм	15,0
Коэффициент усиления	максимальный, дБм	41,0
Неравномерность коэффициента усиления в зада волн не более, дБ	2,0	
Шум фактор в заданном диапазоне рабочих дли (при минимальном уровне суммарной входной м	7,0	

Коэффициент отражения от входа, не менее, дБ	-30
Затухание отражения на выходе, не более, дБ	30,0

Таблица 3

Параметры оптических усилителей приема (предусилитель)

Наименование параметро	Значение пара- метров	
Уровень входной суммарной	минимальный, дБм	-36,0
мощности	максимальный, дБм	+1,0
	минимальный, дБм	-10,0
у ровень выходной суммарной мощности	максимальный, дБм	+17,0
Vaabbuuuaur vaurauur	минимальный, дБм	10,0
коэффициент усиления	максимальный, дБм	33,0
Неравномерность коэффициента усиления в заданн не более, дБ	3,0	
Шум фактор в заданном диапазоне рабочих длин в (при минимальном уровне суммарной входной мол не более, дБ	6,0	
Коэффициент отражения от входа, не менее, дБ	-30	
Затухание отражения на выходе, не более, дБ		30,0

Таблица 4

Параметры оптических терминальных мультиплексоров

Количество оптических каналов	8 16 40		0) 80		160			
Расстояние между оп- тическими каналами, ГГц	200	200	100	100	50	50	100	100	50
Наименование пара- метров	Значение параметров								
1. Отклонение цен- тральной частоты оп- тического канала, не более, ГГц	±5			±3		±5			
2. Вносимое затухание, не более, дБ	6 7,5 12		2	2 14		16			
 3. Ширина полосы оп- тического канала на уровне: –3 дБ, не менее, ГГц –20 дБ, не менее, ГГц 	50 80			25 40			50 80	25 40	
4. ЛР № 1 потери, не более, дБ	0,5				•				

5. Переходная помеха	
от смежного оптиче-	20
ского канала, не более,	-50
дБ	
6. Кумулятивная пере-	
ходная помеха при	
максимальном числе	25
действующих оптиче-	-25
ских каналов,	
не более, дБ	
7. Коэффициент отра-	
жения на входе и вы-	-30
ходе, не более, дБ	

Таблица 5

Параметры двухканальных широкополосных оптических мультиплексоров/демультиплексоров

Наименование параметров	Значение параметров
Вносимое затухание, не более, дБ	0,7
Вносимое затухание, не более, дБ	25,0
Коэффициент отражения от входа, не менее, дБ	-40,0
Затухание отражения на выходе, не более, дБ	40,0

Таблица 6

Параметры оптических мультиплексоров ввода/вывода (OMBB) в зависимости от числа оптических каналов и расстояния между ними, а также числа вводимых/выводимых оптических каналов

Наиме	Значение параметров					
Количество оптичест	ких каналов	8	16	5	4	0
Количество ответвля налов, не более	емых/вводимых оптических ка-	4 8 16				6
Расстояние между ог	ттическими каналами, ГГц	200 200 100 100				50
Отклонение централ не более, ГТц	ьной частоты оптического канала,	+/-5,0				+/-3,0
Вносимое затухание	для ответвляемых/ вводимых оптических каналов, не более, дБ'	6,0 7,5		8,0		
	для ответвляемых/ вводимых оптических каналов, не более, дБ;	12,0	15,0		15,0 16,0	

Ширина полосы оптического канала на уровне	–3 дБ, не менее, ГТц	50,0	25,0
	–20 дБ, не менее, ГГц	80,0	40,0

Окончание табл. 6

Наименование параметров	Значение параметров
Поляризационно-зависимые потери, не более, дБ	0,5
Переходная помеха от смежного оптического канала, не более, дБ	-30,0
Кумулятивная переходная помеха при максимальном числе действующих оптических каналов, не более, дБ	-27,0
Коэффициент отражения от входа, не менее, дБ	-30
Затухание отражения на выходе, не более, дБ	30,0

Таблица 7

Частотный план DWDM по рекомендации МСЭ-Т G.694.1

τ	Номинальное значение длины волны, нм			
12,5	25	50	100	
(1)	(2)	(3)	(4)	(5)
195.9375	_	_	_	1530.04
195.9250	195.925	_	_	1530.14
195.9125	_	_	_	1530.24
195.9000	195.900	195.90	195.9	1530.33
195.8875	_	_	_	1530.43
195.8750	195.875	_	_	1530.53
195.8625	-	—	_	1530.63
195.8500	195.850	195.85	_	1530.72
195.8375	-	—	_	1530.82
195.8250	195.825	_	_	1530.92
195.8125	_	_	_	1531.02
195.8000	195.800	195.80	195.8	1531.12
195.7875	-	—	_	1531.21

Продолжение табл. 7

(1)	(2)	(3)	(4)	(5)
195.7750	195.775	_	-	1531.31
195.7625	_	_	-	1531.41
195.7500	195.750	195.75	-	1531.51
195.7375	_	_	-	1531.60
195.7250	195.725	_	-	1531.70
195.7125	_	_	_	1531.80
195.7000	195.700	195.70	195.7	1531.90
195.6875	_	_	_	1532.00
195.6750	195.675	_	-	1532.09
195.6625	_	_	-	1532.19
193.1375	_	_	-	1552.22
193.1250	193.125	_	-	1552.32
193.1125	—	—	-	1552.42
193.1000	193.100	193.10	193.1	1552.52
193.0875	—	-	-	1552.62
193.0750	193.075	_	-	1552.73
193.0625	-		—	1552.83
193.0500	193.050	193.05	—	1552.93
193.0375	—	1	—	1553.03
193.0250	193.025		—	1553.13
193.0125	—	1	—	1553.23
193.0000	193.000	193.00	193.0	1553.33
192.9875	-	_	—	1553.43
192.9750	192.975	-	-	1553.53
192.9625	-	-	-	1553.63
184.7750	184.775	_	-	1622.47
184.7625	—	_	—	1622.58
184.7500	184.750	184.75	_	1622.69

Таблица 8

Номинальное значение длины волны, нм	Номинальная центральная частота, ТГц
Интервал между каналами 20 нм	
1270	236.057
1290	232.397
1310	228.849
1330	225.407
1350	222.068
1370	218.826
1390	215.678
1410	212.618
1430	209.645
1450	206.753
1470	203.940
1490	201.202
1510	198.538
1530	195.942
1550	193.414
1570	190.950
1590	188.548
1610	186.206

Частотный план CWDM по рекомендации МСЭ-Т G.694.2

Список основных сокращений и обозначений

- ASE мощность усиленного спонтанного излучения
- *АW* массив волноводов
- *АWG* массив фазирующих волноводов
- **BER** количество битовых ошибок
- ВОА оптический усилитель мощности
 - **В***W* полоса частот
- **DRA** распределенный рамановский усилитель
- *DWDM* уплотненное спектральное мультиплексирование
 - **EDFA** усилитель на волокне, легированным эрбием
- **EDTFA** усилитель на теллуритовом волокне, легированном эрбием
 - *FP* резонатор Фабри Перо
 - *FPR* линза
 - *IL* вносимые потери
 - LOA линейный оптический усилитель
 - LRA дискретный рамановский усилитель
 - *MZI* интерферометр Маха-Цендера
 - *NF* коэффициент шума
 - *ОА* оптический усилитель
- *ОАDM* оптический мультиплексор ввода/вывода
 - *ОD* оптический демультиплексор
 - *ОМ* оптический мультиплексор
 - *ОТМ* оптический терминальный мультиплесор
 - *ОР* оптический тракт
 - **OSA** полупроводниковые усилители
- **OSA-FP** полупроводниковые усилители на Фабри-Перо
- **OSA-TW** полупроводниковые усилители бегущей волны
 - *OSC* оптический служебный канал
 - *PDL* поляризационно-зависимые потери
 - *РНВ* зависимость усиления от поляризации
 - РОА предварительный оптический усилитель
 - **RA** рамановские усилители
 - Rx приемный модуль
 - *Тх* передающий модуль
 - *SHB* спектральный провал усиления
 - **STM** синхронный транспортный модуль
 - *XWG* cross Array Waveguide
- *XFP-WG* crossing Focal Points Waveguide
 - *WDM* спектральное мультиплексирование
 - АТМ асинхронный транспортный модуль
 - АЧХ амплитудно-частотная характеристика
 - **ВОСП** волоконно-оптическая система передачи
 - *МСЭ* международный союз электросвязи
 - КПД коэффициент полезного действия
 - *ОВ* оптическое волокно
 - *ОВНР* оптоволоконный направленный разветвитель
 - *ОИС* оптическая интегральная схема
 - *СР* спектральное разделение

G — коэффициент усиления усилителя

*P*_{out sut} — мощность насыщения

- *P*_{in} водимая в оптический элемент мощность
- А_{eff} эффективная площадь
- *g*_{*R*} рамановский коэффициент усиления
- *P_н* мощность накачки
- *L* длина волокна
- Т время стабилизации усилителя
- Δ_{max} максимальное отклонение коэффициента усиления
 - Δ_∞ смещение коэффициента усиления
 - λ_{*p*} резонансная длина волны усиления
 - *h* постоянная Планка
 - v частота
 - *n_{sp}* коэффициент спонтанной эмиссии EDFA
 - η квантовая эффективность
- $n_{1,2}$ населенности 1 и 2 уровней активного вещества
- σ_a эффективное сечение поглощения
- σ_e эффективное сечение излучения
- P_i^{s} мощность оптического излучения
- *P_p* мощность оптической накачки
- *i*^s нормированная интенсивность оптического излучения
- *i*_p нормированная интенсивность оптической накачки
- f_i^s частота оптического излучения
- *f*_p частота оптической накачки
- α(λ) спектральный коэффициент поглощения активной среды
- $g^*(\lambda)$ спектральный коэффициент усиления активной среды
 - *d*_E диаметр области, легированной эрбием
 - *d_f* диаметр сердцевины волокна
 - *l_k* коэффициент нерезонансного поглощения в сердцевине
 - S_f площадь поперечного сечения OB
 - *L* толщина периодической структуры
 - Δ период следования слоев
 - θ наклон фильтров
 - λ длина волны
 - е диэлектрическая проницаемость
 - *k* волновой вектор
- $K(\lambda)$ постоянная связи мод
- $\Delta\beta(\lambda)$ фазовое рассогласование
 - *I*_{max} максимальное отражение от тонкопленочного фильтра
 - *∆n* разность показателей преломления
 - *P*_{max} максимальная переходная помеха
 - $I(\lambda)$ аппаратная функция фильтра Фабри-Перо
- Δλ_{FSR} свободный спектральный диапазон демультиплексора
 - *L_i* длина резонатора
 - T_f период аппаратной функции
 - *R* коэффициент отражения

- Δλ_{*k*} канальный интервал демультиплексора
- М концентрация мономера
- *D_m* коэффициент диффузии мономера
- α коэффициент поглощения красителя
- К концентрация красителя
- β параметр реакции фотоинициирования
- М₀ начальная концентрация мономера
- φ угол между осью и вектором k
- $\Delta \Psi$ изменение наклона $\Phi \Pi M$
 - Λ период голографической решетки
- $\eta_{\partial \max}$ максимально достижимая дифракционная эффективность
 - *T_i* входные/выходные порты мультиплексора
 - *f*_{in} входной сигнал
 - *f*_j^{out} выходной сигнал
 - [*T_{ij}*] матрица передачи
 - *т* порядок дифракционной решетки массива волноводов
 - *d_i* положение входного волновода
 - *d*₀ положение выходного волновода
 - b(x) профиль модового поля
- $F_{in}^{+}(f)$ прямое преобразование Фурье входной функции $f_{in}(x_0)$
 - *α* пространственный частотный фактор
 - L_f фокусное расстояние линзы
 - *n_s* показатель преломления линзы
 - *n*_c показатель преломления сердцевины
 - *f*_{1d} профиль поля, освещающего массив волноводов
 - *а_r* коэффициент воздействия на г волновод
- П() функция окна
- $\delta_{\omega}(x_1)$ функция осуществления выборки
- Δl различие между волноводами в массиве волноводов
- $\phi(x_2, v)$ фазовый набег в каждом волноводе
 - *v*₀ рабочая частота
 - *F*₂ поле, прошедшее массив волноводов
 - F_2^+ прямое преобразование Фурье поля $f_2(x_2)$
 - *F*₃ поле перед второй линзой AWG
 - F_{3d} поле на выходной плоскости AWG
 - erf интеграл ошибки
 - К число волноводов в массивов
 - L_f фокусное расстояние
 - *d*_w расстояние между волноводами в массиве
 - *ω*_{*i*} радиус модового поля

Учебное издание

Шарангович Сергей Николаевич

МУЛЬТИПЛЕКСОРНОЕ И УСИЛИТЕЛЬНОЕ ОБОРУДОВАНИЕ МНОГОВОЛНОВЫХ ОПТИЧЕСКИХ СИСТЕМ ПЕРЕДАЧИ

Учебное пособие

Редактор Н.С. Голикова Корректор О.В. Полещук Компьютерная верстка Г.В. Черновой

Подписано в печать 20.04..10. Формат 70×100/16. Усл. печ. л. 12,57. Тираж 50. Заказ 491.

Томский государственный университет систем управления и радиоэлектроники. 634050, Томск, пр. Ленина, 40. Тел. (3822) 533018.