Министерство науки и высшего образования Российской Федерации

Федеральное государственное бюджетное образовательное учреждение высшего образования Томский государственный университет систем управления и радиоэлектроники (ТУСУР)

Ю.А. Бурачевский

ИЗУЧЕНИЕ СВОЙСТВ ДИЭЛЕКТРИКОВ В ПОЛЕ ПЛОСКОГО КОНДЕНСАТОРА

Методические указания по выполнению лабораторных работ по физике для студентов всех специальностей

Томск

УДК 537.226.1 ББК 22.2 Б 912

Рецензент

Зенин А.А., доцент, канд. техн. наук

Одобрено на заседании кафедры физики, протокол № 104 от 16.04.2023.

Бурачевский, Юрий Александрович

Б 912 Изучение свойств диэлектриков в поле плоского конденсатора: методические указания по выполнению лабораторных работ / Ю. А. Бурачевский. – Томск: Томский гос. университет систем управления и радиоэлектроники, 2023. – 15 с.

Представлена краткая теория поляризации диэлектриков. Показана связь между емкостью плоского конденсатора и относительной диэлектрической проницаемостью. Описана экспериментальная установка определения емкости конденсатора по методу, основанному на исследовании временной зависимости напряжения на конденсаторе при его разряде, а также методика проведения измерений и обработки результатов.

Для студентов ТУСУРа, обучающихся по всем направлениям подготовки и специальностям.

УДК 537.226.1 ББК 22.3

©Бурачевский Ю. А., 2023

© Томск. гос. ун-т систем упр. и радиоэлектроники, 2023

Оглавление

ВВЕДЕНИЕ	4
1 КРАТКАЯ ТЕОРИЯ	4
2 ОПИСАНИЕ ЭКСПЕРИМЕНТАЛЬНОЙ УСТАНОВКИ	7
3 ЗАДАНИЕ	9
4 ПОРЯДОК ВЫПОЛНЕНИЯ РАБОТЫ	9
5 КОНТРОЛЬНЫЕ ВОПРОСЫ	. 14
СПИСОК РЕКОМЕНДУЕМОЙ ЛИТЕРАТУРЫ	.15

ВВЕДЕНИЕ

Вещества, которые не проводят электрический ток, называются диэлектриками или изоляторами. При внесении диэлектрика во внешнее электрическое поле происходит поляризация диэлектрика, состоящая в том, что в диэлектрике возникает отличный от нуля суммарный дипольный электрический момент молекул вещества, из которого состоит твёрдый диэлектрик. Из-за этого в тонких слоях у поверхностей диэлектрика возникают связанные заряды, называемые поверхностными поляризационными зарядами. Это приводит, к уменьшению напряжённости электрического поля в диэлектрике по сравнению с её значением в вакууме. Это уменьшение характеризуется относительной диэлектрической проницаемостью, которая определяется как отношение напряжённости электрического поля в вакууме к величине напряжённости в диэлектрике.

Целью данной работы является определение величины относительной диэлектрической проницаемости и нормальной составляющей вектора поляризации для различных диэлектриков, помещённых в электрическое поле плоского конденсатора.

1 КРАТКАЯ ТЕОРИЯ

Под действием электрического поля заряды разных знаков в каждой молекуле смещаются относительно друг друга. В результате каждая молекула будет обладать электрическим дипольным моментом

$$\vec{p}_i = \alpha \varepsilon_0 \vec{E},$$

(1.1) где α – поляризуемость молекулы;

 $ec{E}$ — напряжённость электрического поля в месте нахождения молекулы внутри диэлектрика.

Поляризация диэлектрического образца приводит к тому, что в приповерхностных слоях диэлектрика, прилегающих к электродам, появляются заряды противоположного электродам знака. Их поверхностная плотность заряда равна $+\sigma'$ и $-\sigma'$. (Рис. 1.1). Это связанные заряды. Заряды диполей, расположенных внутри диэлектрика, компенсируют друг друга. В результате поляризации результирующее электрическое поле внутри диэлектрика E равно разности между внешним электрическим полем E_0 и полем связанных зарядов E'.

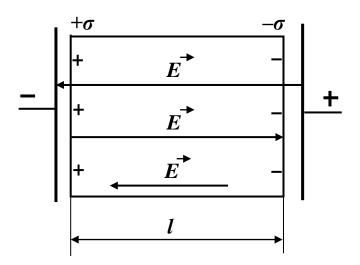


Рисунок 1.1 – Диэлектрик в однородном электрическом поле

Из рисунка 1.1 следует, что образец в целом приобретает электрический момент, модуль которого равен

$$P = ql = \sigma' \cdot Sl, \tag{1.2}$$

где S – площадь заряженной поверхности;

 σ' – поверхностная плотность связанных зарядов;

l – длина образца.

С другой стороны поляризация диэлектрика характеризуется дипольным моментом единицы объёма, который называется вектором поляризации.

$$\vec{p} = n \sum_{i=1} \vec{p}_i, \tag{1.3}$$

где n – концентрация элементарных диполей.

Модуль электрического момента всего образца

$$P = pV = pSl, (1.4)$$

где V – объём образца.

Приравнивая (1.2) и (1.4) получим:

$$\sigma' \cdot Sl = pSl. \ \sigma' \cdot Sl = pSl.$$
 (1.5)

Отсюда $p = \sigma'$.

Или в общем случае

$$\sigma' = P_n, \tag{1.6}$$

где P_n – нормальная составляющая вектора поляризации.

Поверхностная плотность связанных зарядов равна нормальной составляющей вектора поляризации в данной точке диэлектрика.

Вектор поляризации можно записать и по-другому

$$\vec{P} = \alpha \cdot \varepsilon_0 n \vec{E}. \tag{1.7}$$

Перепишем (1.7) в виде

$$\vec{P} = \chi \varepsilon_0 \vec{E},\tag{1.8}$$

где $\chi = \alpha \cdot n - (xu)$ диэлектрическая восприимчивость. Макроскопическая безразмерная величина, характеризующая поляризуемость единицы объёма.

Напряженность поля для двух бесконечных заряженных плоскостей

$$E' = \frac{\sigma'}{\varepsilon_0} = \frac{p}{\varepsilon_0}.$$
 (1.9)

$$\vec{E} = \vec{E}_0 + \vec{E}'.$$

Или в скалярной форме

$$E = E_0 - E' = E_0 - \frac{p}{\varepsilon_0} = E_0 - \frac{\chi \varepsilon_0 E}{\varepsilon_0} = E_0 - \chi E,$$

или $E + \chi E = E_0$.

Отсюда

$$E = \frac{E_0}{1+\chi} = \frac{E_0}{\varepsilon}. ag{1.10}$$

Относительная диэлектрическая проницаемость

$$\varepsilon = 1 + \chi. \tag{1.11}$$

Относительная диэлектрическая проницаемость показывает, во сколько раз электрическое поле ослабляется внутри диэлектрика.

Чем больше относительная диэлектрическая проницаемость, тем больше ёмкость конденсатора. Для плоского конденсатора ёмкость определяется выражением

$$C = \frac{\varepsilon \varepsilon_0 S}{d},\tag{1.12}$$

где $\varepsilon_0 = 8,85 \cdot 10^{-12} \, \Phi/\text{м} -$ электрическая постоянная;

S — площадь проводящей обкладки (электрода);

d – расстояние между электродами.

2 ОПИСАНИЕ ЭКСПЕРИМЕНТАЛЬНОЙ УСТАНОВКИ

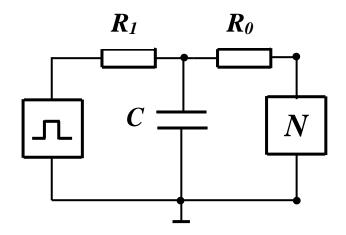
Метод измерения основан на исследовании временной зависимости напряжения на конденсаторе при его заряде или разряде через сопротивление электрической схемы. (Более подробно это явление, называемое релаксационными процессами в RC — цепи, изучается в курсе электротехники).

Для выполнения лабораторной работы используется схема измерений, изображённая на рис. 2.1. Схема состоит из генератора сигналов , резистора R1, конденсатора C с твёрдым диэлектриком (резистор и конденсатор образуют RC — цепочку) и осцил N афа . Генератор служит для подачи прямоугольных импульсов напряжения на RC — цепочку.

Осциллограф служит для регистрации формы импульса напряжения на конденсаторе. В качестве осциллографа используется контроллер, моделирующий экран трубки осциллографа на экране монитора.

После подачи прямоугольного импульса напряжения в цепи возникает ток, и конденсатор заряжается до напряжения U_0 . Весь процесс зарядки конденсатора описывается уравнением.

$$U = U_0 \left[1 - \exp\left(\frac{t}{\tau}\right) \right], \tag{2.1}$$


где $\tau = r \cdot C$ – постоянная времени;

r – входное сопротивление.

Так как внутреннее сопротивление генератора много меньше зарядного сопротивления RI и входного сопротивления осциллографа (контроллера) R_0 , то величину входного сопротивления r можно найти

$$r = \frac{R_1 \cdot R_0}{R_1 + R_0}. (2.2)$$

Причём $R_1 = (1.30 \pm 0.05)$ МОм, $R_0 = (1.30 \pm 0.05)$ МОм.

 R_0 — входное сопротивление осциллографа Рисунок 2.1 — Схема измерений.

После окончания действия импульса напряжения конденсатор разряжается через сопротивления R_1 , R_0 . Разряд конденсатора описывается уравнением

$$U = U_0 \left[\exp\left(-\frac{t}{\tau}\right) \right]. \tag{2.3}$$

При подаче на RC – цепочку прямоугольных импульсов напряжения характер изменения напряжения на конденсаторе имеет вид, изображённый на рис. 2.2.

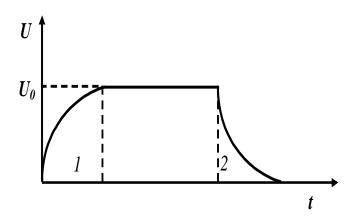


Рисунок 2.2 – Вид сигнала после прохождения RC – цепочки.

Передний фронт импульса (1) описывается выражением (2.1), а задний фронт импульса (2) – выражением (2.3).

- 3.1 Исследовать задний фронт импульса напряжения. Убедиться в справедливости выражения (2.3).
 - 3.2 Определить ёмкость конденсатора.
- 3.3 Рассчитать относительную диэлектрическую проницаемость диэлектрика.
- 3.4 Определить нормальную составляющую вектора поляризации.
- 3.5 Оценить погрешность определения относительной диэлектрической проницаемости.

4 ПОРЯДОК ВЫПОЛНЕНИЯ РАБОТЫ

- 4.1 Запустить лабораторную работу.
- 4.1.1 Ознакомиться с видом лабораторного макета (рис. 4.1) и его органами управления.

- 1 переключатель «Сеть»; 2 панель лабораторного макета;
- 3 переключатель данной лабораторной работы; 4 плоский конденсатор с твердым диэлектриком; 5 прорезь для установки диэлектрика.

Рисунок 4.1 – Внешний вид лабораторного макета.

4.1.2 В прорезь 5 плоского конденсатора, находящегося снизу вертикальной боковой левой панели **макета** вставить исследуемую пластину твёрдого диэлектрика. Это прямоугольная пластина площадью 100 см².

- 4.1.3 Включить питание макета, нажав переключатель «Сеть».
- 4.1.4 Убедиться, что все остальные переключатели выключены.
- 4.1.5 Включить питание данной лабораторной работы переключателем, находящемся ниже панели, под надписью «Плоский конденсатор».
- 4.1.6 Включить питание компьютера и дождаться загрузки «Windows».
- 4.1.7 На экране монитора после загрузки открыть папку «Лаборатория». В открывшемся окне выбрать из списка лабораторных работ «Изучение свойств диэлектриков в поле плоского конденсатора». Открыть данную работу. Во вновь открывшемся окне появится стенд (панель) данной лабораторной работы (рисунок 4.2), на котором расположены экран осциллографической трубки, электронная таблица и набор кнопок управления
- 4.1.8 По вертикали ось напряжения, по горизонтали ось времени. Слева вверху электронная таблица измеренных данных.
 - 4.2 Проведение измерений.
- 4.2.1 На экране осциллографической трубки появится задний фронт импульса исследуемого сигнала и зеленые вертикальные линии (указатели времени), и горизонтальные красные линии (указатели напряжения).
- 4.2.2 Установить курсор мышки на указатель левой вертикальной зеленой линию (), нажать и, удерживая левую кнопку мышки на вертикальной части указателя, установить вертикальную линию на начало спада импульса напряжения. Затем курсор мышки установить на
- правую вертикальную зеленую линию (L). Нажать и, удерживая левую кнопку мышки на вертикальной части указателя совместить с левой зеленой линией. Это положение является началом отсчета (t=0).
- 4.2.3 Нижнюю горизонтальную красную линию совместить с горизонтальным участком спада импульса напряжения. Для этого установить курсор мышки на указатель нижней горизонтальной красной линии (┕), нажать и, удерживая левую кнопку мышки на горизонтальной части указателя и установить горизонтальную красную линию в нужное положение. Аналогичным образом совместить верхнюю красную горизонтальную линию с началом спада импульса

напряжения. Для этого установить курсор мышки на указатель верхней горизонтальной красной линии (, , установить горизонтальную красную линию в нужное положение.

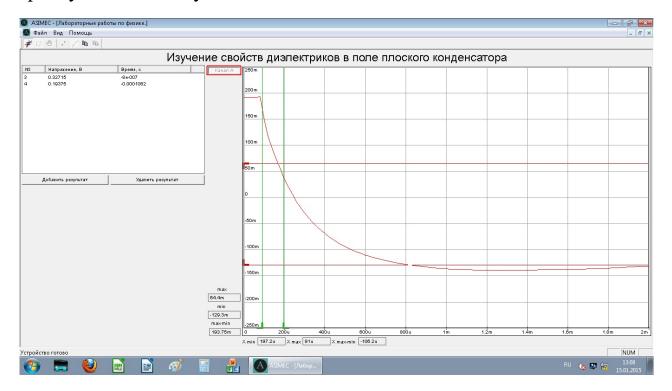


Рисунок 4.3 – Вид экрана монитора (Стенд).

- 4.2.4 Нажать кнопку в электронной таблице «Добавить результат». В электронной таблице появятся значения начального напряжения U_0 и начального времени $t \approx 0$.
- 4.2.5 Снять зависимость напряжения от времени (получить 8-10 экспериментальных точек). Для чего установить курсор мышки на правую зеленую вертикальную линию. Нажать и, удерживая левую кнопку мышки переместить правую зеленую вертикальную линию примерно на 1/2 цены деления горизонтальной шкалы экрана осциллографа. Верхнюю красную горизонтальную линию совместить с точкой пересечения правой зеленой вертикальной линии с осциллограммой спада напряжения. Нажать кнопку в электронной таблице «Добавить результат». В электронной таблице появятся значения текущего напряжения U и текущего времени t.
- 4.2.6 Повторить пункт 4.2.5 необходимое число раз, каждый раз перемещая правую вертикальную зеленую линию примерно на 1/2 цены деления горизонтальной шкалы экрана осциллографа и совме-

щая верхнюю горизонтальную линия с точкой пересечения кривой спада напряжения с вертикальной зеленой линией.

- 4.2.7 Если записанный в электронный журнал результат неверен, то его можно удалить. Для этого выделяют ошибочную запись и нажимают кнопку «Удалить результат».
- 4.2.8 После завершения измерений для одного образца вытащить первый образец. С помощью микрометра измерить несколько раз толщину образца и определить среднее значение толщины. Результаты занести в таблицу 4.1. Вставить другой образец, если он будет предоставлен преподавателем, и повторить все п.п. 4.2 для другого образца.
- 4.2.9 После завершения всех измерений, данные из электронной таблицы переписать в таблицу 4.1 рабочей тетради.
 - 4.3 Обработка результатов измерений.
- 4.3.1 Проверить экспоненциальный характер убывания амплитуды напряжения, построив зависимость $\ln \binom{U_0}{U} = f(t)$ методом наименьших квадратов.
- 4.3.2 Для построения прямой с помощью метода наименьших квадратов на экране монитора установить курсор мышки на ярлык «Погрешность измерений» и щелкнуть левой кнопкой мышки два раза. На экране монитора открывается таблица, куда вносятся экспериментальные данные.

	Диэлектрик			Диэлектрик					
	Толщина		Толщина		MM	Толщина		MM	Прим.
	t, MC	U, B	$ln(U_o/U)$	t, MC	<i>U</i> , B	$ln(U_o/U)$			
№									
1							$\varepsilon(U) = 5\%$		
2							$\varepsilon(U) = 5\%$ $\varepsilon(t) = 5\%$		
3							$\sigma(d)=0.01$		
							MM		
.							$S = 100 \text{ cm}^2$		
7									
8							$\varepsilon(S)=5\%$		

4.3.3 Определить угловой коэффициент прямой и рассчитать значение ёмкости конденсатора

$$C = \frac{\Delta t}{r \cdot \Delta \ln \left(\frac{U_0}{U}\right)},\tag{4.1}$$

где
$$r = \frac{R_1 \cdot R_0}{R_1 + R_0}$$
.

- 4.3.4 Оценить погрешность определения ёмкости конденсатора.
- 4.3.5 С помощью формулы для ёмкости плоского конденсатора (1.12) определить величину относительной диэлектрической проницаемости исследуемого диэлектрика и оценить её погрешность.
- 4.3.6 Рассчитать поверхностную плотность связанных поляризационных зарядов и модуль нормальной составляющей вектора поляризации, воспользовавшись выражениями (1.9) и (1.10).
- 4.3.7 Сделать общий вывод по лабораторной работе, в котором привести значения полученных параметров с учётом погрешности измерений.
 - 4.3.8 Выключить данную программу на компьютере. После за-

крыть все окна на экране монитора.

- 4.3.9 Выключить компьютер.
- 4.3.10 Выключить питание макета, нажав переключатель «Сеть».

5 КОНТРОЛЬНЫЕ ВОПРОСЫ

- 5.1 Какова цель работы?
- 5.2 Какой принцип лежит в основе метода измерения?
- 5.3 Поясните работу измерительной схемы.
- 5.4 Как определяется ёмкость конденсатора в данной лабораторной работе?
- 5.5 Как рассчитать погрешность измерения ёмкости конденсатора?
- 5.6 Как рассчитать погрешность определения относительной диэлектрической проницаемости?
- 5.7 Сформулируйте физический смысл относительной диэлектрической проницаемости.
 - 5.8 Что такое явление поляризации диэлектриков?
 - 5.9 Что такое свободные и связанные заряды?
- 5.10 Почему напряжённость электрического поля в диэлектрике уменьшается?
 - 5.11 Сформулируйте физический смысл вектора поляризации.
- 5.12 Как связаны между собой вектор поляризации и поверхностная плотность связанных поляризационных зарядов?
- 5.13 Каким образом можно рассчитать поверхностную плотность связанных поляризационных зарядов?

СПИСОК РЕКОМЕНДУЕМОЙ ЛИТЕРАТУРЫ

1 Савельев И. В. Курс общей физики. В 3 т. Т. 2. Электриче-

- ство и магнетизм. Волны. Оптика [Электронный ресурс]: учебное пособие / И. В. Савельев. СПб.: Лань, 2018. 500 с. Режим доступа: https://e.lanbook.com/book/98246. (дата обращения: 10.04.23)
- 2 Бурачевский Ю. А. Электричество и магнетизм: учебно-методическое пособие по аудиторным практическим занятиям и самостоятельной работе [Электронный ресурс] / Ю. А. Бурачевский. 2018. 137 с. Режим доступа: https://edu.tusur.ru/publications/7729. (дата обращения: 10.04.23)
- 3 Зенин А.А. Общие требования и правила оформления отчета о лабораторной работе по физике: Методические указания [Электронный ресурс] / А.А. Зенин. Томск: ТУСУР, 2019. 20 с. Режим доступа: https://edu.tusur.ru/publications/8957. (дата обращения: 10.04.23)
- 4 Мухачев В. А. Оценка погрешностей измерений [Электронный ресурс] / метод.указания к лабораторной работе / В. А. Мухачев, А. Л. Магазинников. Томск : Томск. гос. ун-т систем упр. и радиоэлектроники, 2012. 24 с. Режим доступа: https://edu.tusur.ru/publications/1099. (дата обращения: 10.04.23)