Министерство науки и высшего образования Российской Федерации Томский государственный университет систем управления и радиоэлектроники

Якушевич Г.Н.

ИССЛЕДОВАНИЕ КАСКАДОВ С ОЭ С ПОСЛЕДОВАТЕЛЬНОЙ ОС ПО ТОКУ, ПАРАЛЛЕЛЬНОЙ ПО НАПРЯЖЕНИЮ И КОМБИНИРОВАНОЙ ОС

Методические указания по лабораторной работе, практическим занятиям и самостоятельной работе для студентов радиотехнических специальностей

УДК 621.375 ББК 32.846.2 Я49

Рецензент:

Мещеряков А.А., доцент кафедры радиотехнических систем ТУСУР, канд. техн. наук

ИССЛЕДОВАНИЕ КАСКАДОВ С ОЭ С ПОСЛЕДОВАТЕЛЬНОЙ ОС ПО ТОКУ, ПАРАЛЛЕЛЬНОЙ ПО НАПРЯЖЕНИЮ И КОМБИНИРОВАНОЙ ОС

Якушевич Г.Н.

К Я49 «Исследование каскадов с ОЭ с последовательной ОС по току, параллельной по напряжению и комбинированной ОС»: Методические указания по лабораторной работе, практическим занятиям и самостоятельной работе для студентов радиотехнических специальностей / Якушевич Г.Н. Томск: Томск .гос. унт-систем упр. и радиоэлектроники, 2023.-12 с.

Методические указания содержат описание компьютерной лабораторной работы, выполняемой в ходе изучения дисциплины «Схемотехника» в среде Qucs. Методические указания содержат так же краткую вводную теоретическую часть, расчетные соотношения, расчетное задание, контрольные вопросы требования по оформлению отчета.

Одобрено на заседании каф. РТС протокол № 5.от 01.12.2022 г.

УДК 621.375 ББК 32.846.2

> © Якушевич Г.Н. 2023 г. © Томск гос. ун-т систем упр. и радиоэлектроники, 2023 г.

ОГЛАВЛЕНИЕ

1 ЦЕЛЬ РАБОТЫ. РАСЧЕТНЫЕ СООТНОШЕНИЯ ДЛЯ КАСКАДА ПОСЛЕДОВАТЕЛЬНОЙ ОС ПО ТОКУ		
2 МОДЕЛИРОВАНИЕ В ПРОГРАМНОМ ПРОДУКТЕ QUCS	•••••	5
3 МОДЕЛИРОВАНИЕ КАСКАДА С ОЭ С ПОСЛЕДОВАТЕЛЬНОЙ ТОКУ С ВАРЬИРОВАНИЕМ ПАРАМЕТРОВ		
4 РАСЧЕТНЫЕ СООТНОШЕНИЯ ДЛЯ КАСКАДА С ОЭ С ПАРАЛЛ ОС ПО ТОКУ ПО НАПРЯЖЕНИЮ		
5 МОДЕЛИРОВАНИЕ КАСКАДА С ОЭ С ПАРАЛЛЕЛЬНОЙ НАПРЯЖЕНИЮ		
6 РАСЧЕТНЫЕ СООТНОШЕНИЯ ДЛЯ КАСКАДА С КОМБИНИРОВАНОЙ ОС		
7 МОДЕЛИРОВАНИЕ КАСКАДА С ОЭ С КОМБИНИРОВАНОЙ ОС	•••••	10
8 ВЫВОДЫ ПО РЕЗУЛЬТАТАМ МОДЕЛИРОАВАНИЯ	•••••	11
9 КОНТРОЛЬНЫЕ ВОПРОСЫ	•••••	11
10 СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ	••••	11

1 ЦЕЛЬ РАБОТЫ. РАСЧЕТНЫЕ СООТНОШЕНИЯ ДЛЯ КАСКАДА С ОЭ С ПОСЛЕДОВАТЕЛЬНОЙ ОС ПО ТОКУ

Цель работы: Исследование влияния последовательной ОС по току, параллельной ОС по напряжению и комбинированной ОС на основные параметры каскада с ОЭ.

Расчетные соотношения для каскада с ОЭ с последовательной ОС по току

На рис. 1 приведена схема каскада с ОЭ с последовательной ОС по току.

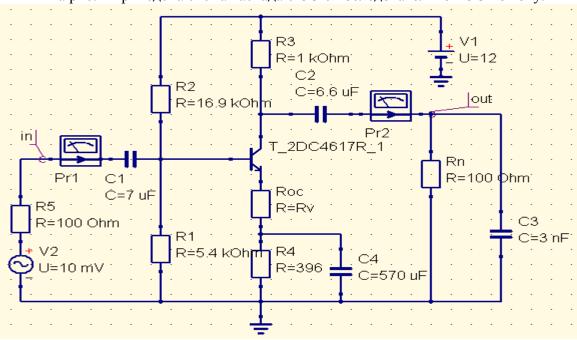


Рисунок 1Схема каскада с ОЭ с последовательной ОС по току

Коэффициент усиления каскада с ОЭ с последовательной ОС по току равен

$$K_{OC} \! = \! \! \frac{K_0}{1 \! + \! S_0 R_{OC}} \! \approx \! \frac{R_{\Im KB}}{R_{OC}} \, , \label{eq:Koc}$$

где K_O = $S_O\,R_{H\, \Im KB}\,$ - коэффициент усиления по напряжению каскада с ОЭ без ОС, S_0 =1/(r_3 + Δr) - крутизна транзистора, r_3 =25.6[мВ]/ I_3 [мА], Δr ≈1..2 Ома, I_3 ток эмиттера транзистора, $K_{0C}\,$ - заданный коэффициент усиления по напряжению каскада с ОЭ с ОС, $R_{H\, \Im KB}$ = $R3\,$ // $R_{H\, -}$ эквивалентное параллельное сопротивление R3 сопротивления Rn нагрузки по переменному току.

Тогда для заданного коэффициента усиления K_{OC} с последовательной ОС по току сопротивление ОС R_{OC} рассчитывается по формуле

$$R_{OC} = \frac{K_0 - K_{OC}}{K_{OC} S_0}.$$

Номинал эмиттерного сопротивления равен R4=R9-Roc, где R9=396 Ом. Входное сопротивление каскада с ОЭ с последовательной ОС по току равно

$$R_{BXOC} = R_{BXOO} + (H_{210} + 1)R_{OC}$$
,

где H_{21} — коэффициент усиления по току каскада с ОЭ, R_{BX} $_{OЭ}=r_{B}$ + $(1+H_{21}$ $_{OЭ})(r_{2}+\Delta r)$ - входное сопротивление каскада с ОЭ, r_{B} — сопротивление базы транзистора.

Коэффициент усиления по току каскада с ОЭ с последовательной ОС по току равен

$$K_{IOC} \approx K_{IOG} = H_{213}$$
.

Задание1. Для своего варианта задания из табл. 2 для Ko = 37 дБ (71раз) рассчитать Roc, Rex oc u R4.

Варианты заданий

Вариант	1	2	3	4	5	6	7
Кос дБ (раз)	31 (35)	28 (25)	26 (20)	23.5 (15)	20 (10)	17.5 (7.5)	14 (5)

Результаты расчетов привести в таблице

			Таблица
Кос	Roc	Rex oc	<i>R</i> 4

2 МОДЕЛИРОВАНИЕ В ПРОГРАМНОМ ПРОДУКТЕ QUCS

Чтобы открыть программный продукт Ques щелкните два раза по ярлыку

откроется главное окно, затем щелкните два раза по вкладке «Справка», откроется содержание «Справки».

Содержание

- 1. Быстрый старт Аналоговое моделирование.
- 2. Быстрый старт Цифровое моделирование.
- 3. Быстрый старт Оптимизация.
- 4. Краткое описание действий.
- 5. Работа с подсхемами.
- 6. Краткое описание математических функций.
- 7. Перечень специальных символов.
- 8. Создание согласованных схем.
- 9. Описание установленных файлов Qucs.
- 10. Описание форматов файлов Qucs.

Изучить содержание разделов 1,4,5 программного продукта Qucs.

3 МОДЕЛИРОВАНИЕ КАСКАДА С ОЭ С ПОСЛЕДОВАТЕЛЬНОЙ ОС ПО ТОКУ С ВАРЬИРОВАНИЕМ ПАРАМЕТРОВ

Собрать в Qucs схему каскада с ОЭ с последовательной ОС по току приведенную на рис. 2. Добавить к схеме виды моделирования и уравнения для расчета ЧХ (см. рис.3). Присвоить имя файлу и сохранить в папке на рабочем столе.

Рисунок 3Схема каскада с ОЭ с последовательной ОС по току с варьированием параметров

В развертке параметров одно значение Roc взять равным 0.1 Ома (ЧХ без ОС), а второе равное рассчитанному (ЧХ с ОС).

Для запуска моделирования нажмите кнопку моделирования на панели инструментов (или используйте меню: Моделирование->Моделировать). Чтобы увидеть результаты моделирования в классе компонентов "диаграммы", который выбирается автоматически нажмите на "Декартовая", перейдите в рабочую область и поместите ее, нажав левую кнопку мыши. Открывается диалоговое окно, где можно выбрать, что следует показать в новой диаграмме.

Промоделировать. Результаты моделирования представить в виде ЧХ, приведенных на рис. 4 и в виде таблицы.

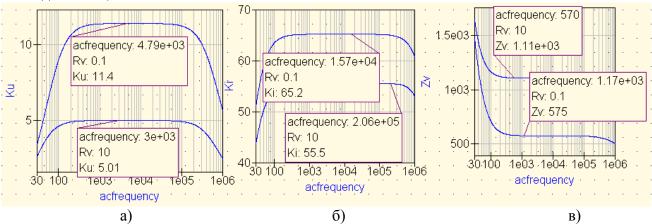


Рисунок 4ЧХ коэффициента усиления по напряжению Ku (a), коэффициента усиления по току Ki (б) и входного сопротивления Zv (в)

Таблица

	Ku	Ki	Zv
Без ОС			
С последовательной ОС по току			

4 РАСЧЕТНЫЕ СООТНОШЕНИЯ ДЛЯ КАСКАДА С ОЭ С ПАРАЛЛЕЛЬНОЙ ОС ПО ТОКУ ПО НАПРЯЖЕНИЮ

На рис. 5 приведена схема каскада с ОЭ с параллельной ОС по напряжению.

Рисунок 5Схема каскада с ОЭ с параллельной ОС по напряжению

Коэффициент усиления по напряжению каскада с ОЭ с параллельной ОС равен $K_{UOC} = S_0 \, R_{HOC} \sim$,

где $R_{H\ OC}$ = Rn экв R_{OC} / (Rn экв + R_{OC}) - сопротивление нагрузки по переменному току, Rn экв = Rn R3 / (Rn + R3) - сопротивление нагрузки каскада с ОЭ.

Выражение для сопротивления параллельной ОС R_{OC} запишется

$$R_{OC} = R_{BX\,OC} (1 + K_{U\,OC}),$$

где $R_{BX\ OC}$ — входное сопротивление каскада с ОЭ с параллельной ОС по напряжению, заданное из условия согласования с сопротивлением генератора R_{Γ} : $R_{BX\ OC} = R_{\Gamma}$.

С учетом коэффициента усиления по напряжению каскада с ОЭ с параллельной ОС выражение для сопротивления параллельной ОС R_{OC} запишется

$$R_{BX OC} = R_{OC} / (1 + K_{U OC}).$$

Коэффициент усиления по току каскада с ОЭ с параллельной ОС по напряжению равен

$$K_{IOC} = K_{UOC} R_{BXOC} / R_{HOC} \sim S_0 R_{BXOC}$$
.

Задание2. Для своего варианта задания из табл. 2 рассчитать Roc, K_{UOC} , Rbx ос и K_{IOC} .

Таблица 2

Варианты заданий

Вариант	1	2	3	4	5	6	7
Сопротивление	25	50	75	100	150	200	300
генератора R_{Γ}							

Результаты расчетов привести в таблице

Таблица

Roc	K_{UOC}	Rex oc	K_{IOC}

5 МОДЕЛИРОВАНИЕ КАСКАДА С ОЭ С ПАРАЛЛЕЛЬНОЙ ОС ПО НАПРЯЖЕНИЮ

Собрать в Qucs схему каскада с ОЭ с параллельной ОС по напряжению, приведенную на рис.5. Добавить к схеме виды моделирования и уравнения для расчета ЧХ (см. рис.6). Присвоить имя файлу и сохранить в папке на рабочем столе.

В развертке параметров одно значение Roc взять равным 100 кОм (ЧХ без ОС), а второе равное рассчитанному (ЧХ с ОС).

Для запуска моделирования нажмите кнопку моделирования на панели инструментов (или используйте меню: Моделирование->Моделировать). Чтобы увидеть результаты моделирования в классе компонентов "диаграммы", который выбирается автоматически нажмите на "Декартовая", перейдите в рабочую область и поместите ее, нажав левую кнопку мыши. Открывается диалоговое окно, где можно выбрать, что следует показать в новой диаграмме.

Промоделировать. Результаты моделирования представить в виде ЧХ, приведенных на рис. 7.

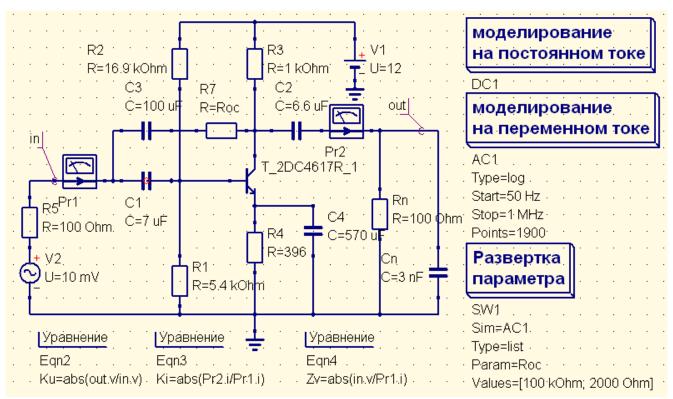


Рисунок 6Схема каскада с ОЭ с параллельной ОС по напряжению с варьированием параметров

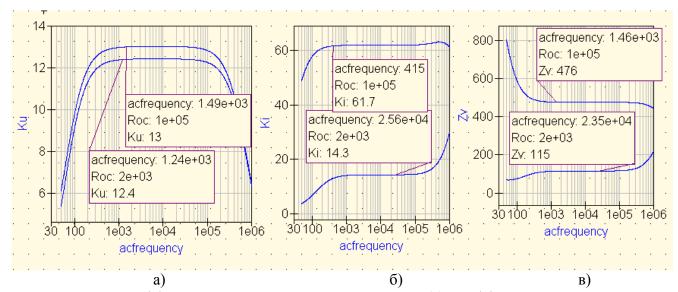


Рисунок 7ЧХ коэффициента усиления по напряжению Ku (a), коэффициента усиления по току Ki (б) и входного сопротивления Zv (в)

Результаты моделирования представить в таблице.

Таблица

	Ku	Ki	Zv
Без ОС			
С параллельной ОС по напряжению			

6 РАСЧЕТНЫЕ СООТНОШЕНИЯ ДЛЯ КАСКАДА С ОЭ С КОМБИНИРОВАНОЙ ОС

Roc T 2DC4617R R7 R=100 **D**hm R=Re R=100 Ohm J≒10 m′

На рис. 8 приведена схема каскада с ОЭ с комбинированной ОС.

Рисунок 8Схема каскада с ОЭ с комбинированной ОС

Из условия согласования по входу и выходу каскада с ОЭ с комбинированной ОС $RocRe \ 3\kappa 6 = Rn^2$ сопротивление параллельной ОС по напряжению Roc равно

$$Roc = Rn^2 / Reэкв$$
,

где Rn – сопротивление нагрузки, Re экв – эквивалентное сопротивление последовательной ОС по току.

Эквивалентное сопротивление последовательной ОС по току равно

$$Re$$
 экв = $Rn / K_{UOC} = r_{\Im} + \Delta r + Re$,

где $K_{U OC}$ – заданный коэффициент усиления по напряжению каскада с ОЭ с комбинированной ОС.

Тогда сопротивление последовательной ОС по току равно

$$Re = Re \ \Im \kappa \varepsilon - (r_{\Im} + \Delta r).$$

Коэффициент усиления по напряжению каскада с ОЭ с комбинированной ОС равен

$$K_{UOC} = S_{0\ni} R_{HOC} \sim$$
,

где эквивалентная крутизна каскада с ОЭ с комбинированной ОС равна

 $S_{03} = 1 / Re \ _{3}\kappa e$, сопротивление нагрузки по переменному току равно

 $R_{H\ OC}$ $\sim =Rn$ экв R_{OC} / (Rnэкв + $R_{OC})$, Rnэкв = $Rn\ R3$ / $(Rn\ +$ R3) - сопротивление нагрузки каскада с ОЭ

Входное сопротивление каскада с ОЭ с комбинированной ОС равно

$$R_{BXOC} = Roc / (1 + K_{UOC}).$$

Коэффициент усиления по току каскада с ОЭ с комбинированной ОС равен

$$K_{IOC} = K_{UOC} R_{BXOC} / R_{HOC} \sim S_0 R_{BXOC}$$
.

Номинал эмиттерного сопротивления равен R4=Rэ – Re, Rэ=396 Ом.

Задание 3 Для своего варианта задания из табл. 3 рассчитать Roc, K_{UOC} , Rbx ос и K_{IOC} .

Таблица 3

Варианты заданий

Вариант	1	2	3	4	5	6	7
Сопротивление	25	50	75	100	150	200	300
генератора R_{Γ}							

Результаты расчетов привести в таблице

		Гаолица			
Roc	Re	K_{UOC}	Rex oc	K_{IOC}	

7 МОДЕЛИРОВАНИЕ КАСКАДА С ОЭ С КОМБИНИРОВАНОЙ ОС

Собрать в Qucs схему каскада с ОЭ с параллельной ОС по напряжению, приведенную на рис.8. Добавить к схеме виды моделирования и уравнения для расчета ЧХ (см. рис.9). Присвоить имя файлу и сохранить в папке на рабочем столе.

В развертке параметров для последовательной ОС по току одно значение Re взять равным 0.1 Ома (ЧХ без ОС), а второе равное рассчитанному (ЧХ с ОС).

В развертке параметров для параллельной ОС по напряжению одно значение Roc взять равным рассчитанному для Re равным $0.1~{\rm Oma}$, а второе равное рассчитанному для Re своего варианта.

Для запуска моделирования нажмите кнопку моделирования на панели инструментов (или используйте меню: Моделирование->Моделировать). Чтобы увидеть результаты моделирования в классе компонентов "диаграммы", который выбирается автоматически нажмите на "Декартовая", перейдите в рабочую область и поместите ее, нажав левую кнопку мыши. Открывается диалоговое окно, где можно выбрать, что следует показать в новой диаграмме.

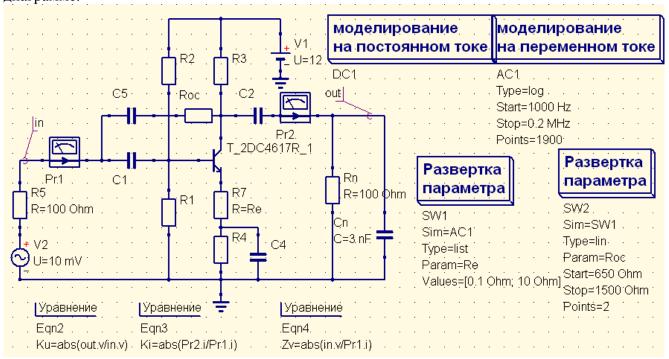


Рисунок 9Схема каскада с ОЭ с комбинированной ОС с варьированием параметров

Промоделировать. Результаты моделирования представить в виде ЧХ, приведенных на рис. 10 и в таблице.

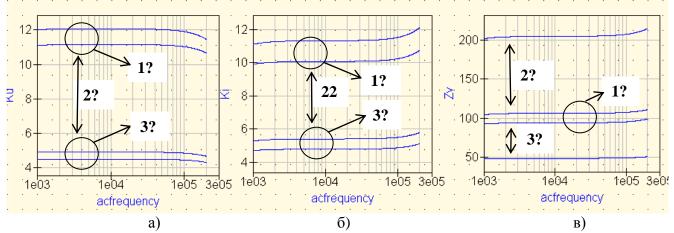


Рисунок 10ЧХ коэффициента усиления по напряжению Ku (a), коэффициента усиления по току Ki (б) и входного сопротивления Zv (в)

Таблица

	Ku	Ki	Zv
Re= R8=			

8 ВЫВОДЫ ПО РЕЗУЛЬТАТАМ МОДЕЛИРОАВАНИЯ

Выводы должны содержать ссылки на рисунки, объяснение поведений характеристик, физику поведения, сравнение характеристик при варьировании параметров.

9 КОНТРОЛЬНЫЕ ВОПРОСЫ

- 1. Как определить последовательную ОС по току?
- 2. Как определить параллельную ОС по напряжению?
- 3. Как изменяются параметры каскада с ОЭ при введении последовательную ОС по току?
- 4. Как изменяются параметры каскада с ОЭ при введении параллельной ОС по напряжению?
- 5. Какие достоинства комбинированной ОС?
- 6. Коэффициент усиления по напряжению каскада с ОЭ с последовательной ОС по току?
- 7. Коэффициент усиления по току каскада с ОЭ с параллельной ОС по напряжению?
- 8. Условие согласования каскада с ОЭ с комбинированной ОС?
- 9. Входное сопротивление каскада с ОЭ с параллельной ОС по напряжению?
- 10. Какой тип ОС параллельной ОС по напряжению?
- 11. Какой тип ОС последовательной ОС по току?

10 СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ

1 Каскады с ОЭ с последовательной ОС по току, параллельной ОС по напряжению и комбинированной ОС: Учебное методическое пособие по лабораторной работе, практическим занятиям и самостоятельной работе / Якушевич Г. Н. — 2019. 11 с. . [Электронныйресурс]: — Режим доступа: https://edu.tusur.ru/publications/9135 (дата обращения 01.12.2022 г.)

2 Красько, А. С. Схемотехника аналоговых электронных устройств: Учебное пособие [Электронный ресурс] / А. С. Красько. — Томск: ТУСУР, 2006. — 180 с. — Режим доступа: https://edu.tusur.ru/publications/938 (дата обращения 01.12.2022 г.)