

Кафедра Сверхвысокочастотной и Квантовой Радиотехники

ТОМСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ СИСТЕМ УПРАВЛЕНИЯ И РАДИОЭЛЕКТРОНИКИ (ТУСУР)

1

ИССЛЕДОВАНИЕ МНОГОРЕЗОНАТОРНОГО МАГНЕТРОНА

Руководство к лабораторной работе по дисциплинам "Микроволновые приборы и устройства", "Электронные СВЧ и квантовые приборы" "Основы СВЧ электроники" для специальности 210105 (200300) – «Электронные приборы и устройства», 210100 - «Электроника и микроэлектроника», 210302 – «Радиотехника» МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ

ТОМСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ СИСТЕМ УПРАВЛЕНИЯ И РАДИОЭЛЕКТРОНИКИ (ТУСУР)

Кафедра сверхвысокочастотной и квантовой радиотехники (СВЧиКР)

УТВЕРЖДАЮ заведующий кафедрой _____С.Н.Шарангович

ИССЛЕДОВАНИЕ МНОГОРЕЗОНАТОРНОГО МАГНЕТРОНА

Руководство к лабораторной работе по дисциплинам "Микроволновые приборы и устройства", "Электронные СВЧ и квантовые приборы" "Основы СВЧ электроники" для специальности 210105 (200300) – «Электронные приборы и устройства», 210100 - «Электроника и микроэлектроника», 210302 – «Радиотехника»

> Разработчик доц. каф.СВЧиКР Ж.М.Соколова доц. каф. СВЧ и КР Е.В.Падусова

СОДЕРЖАНИЕ

1. ВВЕДЕНИЕ	4
2.ОБЩИЕ ВОПРОСЫ ТЕОРИИ	4
2.1. Конструкция магнетрона	4
2.2. Режимы работ и характеристики в отсутствии генерации	5
2.3. Виды колебаний в магнетроне	7
2.4. Особенности движения электронов в работающем магнетроне	9
2.5. Условия синхронизации. Рабочая область	9
2.6. Рабочие характеристики магнетрона	111
2.7. Нагрузочные характеристики магнетрона	13
3. СОДЕРЖАНИЕ РАБОТЫ	14
3.1. Домашнее расчетное задание	14
3.2. Описание экспериментальной установки	15
3.3. Выполнение работы и методические указания	16
4. КОНТРОЛЬНЫЕ ВОПРОСЫ	17
5. СОДЕРЖАНИЕ ОТЧЕТА	
СПИСОК ЛИТЕРАТУРЫ	19

1. ВВЕДЕНИЕ

Целью работы является:

1) изучение физических процессов, протекающих в магнетроне;

2) экспериментальное исследование характеристик и параметров магнетрона.

Объектом исследования является пакетированный разнорезонаторный магнетрон трехсантиметрового диапазона волн непрерывного режима работы.

2.ОБЩИЕ ВОПРОСЫ ТЕОРИИ

2.1. Конструкция магнетрона

Многорезонаторный магнетрон является одним из основных типов автогенераторов большой и средней мощности сантиметрового диапазона.

Магнетрон - двух электродная лампа цилиндрической конструкции (рис. 1), помещенная между полюсами постоянного магнита, создающего поле B_0 . Анодный блок 1 выполняетсяв виде цепочки резонаторов различной формы сечения, свернутой в кольцо. Между анодом и катодом - 2 образуется кольцевая полость, называемая пространством взаимодействия - 3, в которой движется электронный поток – 4. Резонаторы связаны между собой через пространство взаимодействия, поэтому вывод высокочастотной энергии - 5 осуществляется из любого одного (конструктивно удобного) резонатора.

На анод относительно катода подается постоянное напряжение $-U_a$, которое в пространстве взаимодействия создает напряженность электрического поля $-E_0$

Рис.1. Схема устройства многорезонаторного магнетрона

2.2. Режимы работ и характеристики в отсутствии генерации

Траектории движения электронов в пространстве взаимодействия определяются воздействием на электрон одновременно двух лоренцевых сил :

F_e =- eE_0 - электрической,	(2.1)
F_m =- $e[V_0B_0]$ -магнитной,	(2.2)

где е- заряд электрона;

 E_{0} - напряженность постоянного электрического поля между анодом и катодом;

 V_{θ} - скорость электронов;

*B*₀ - индукция постоянного магнитного поля.

Сила Лоренца F_e совпадает с направлением электрического поля, направление магнитной силы Лоренца F_m в каждой точке пространства взаимодействия определяется векторным произведением - $[V_0 B_0]$. В работающем магнетроне силы F_e $u F_m$ определяются как постоянными, так и высокочастотными полями. Но если не учитывать влияние высокочастотных полей, то траектории движения электронов можно легко представить (рис. 2), В отсутствии магнитного поля (B=0) магнетрон - обычная двух электродная лампа, в которой электроны движутся по радиальным направлениям (рис.2а). Под действием магнитного поля траектории электронов искривляются (рис.2б) и тем сильнее, чем больше величина приложенного магнитного поля.

Рис.2. Траектории электронов в магнетроне при различных величинах магнитного поля: а) $B = O; \ \delta$) $B < B_{\kappa p}; \ \epsilon$) $B = B_{\kappa p}; \ \epsilon$) $B > B_{\kappa p}$.

При некотором значении $B=B_{\kappa p}$ (критическое) электроны, долетев до анода, не попадают на него, а возвращаются назад к катоду (рис.2в). При $B>B_{\kappa p}$ (рис.2г) электроны возвращаются к катоду не долетев до анода, а затем снова от катода начинают движение. Траектории электронов в пространстве взаимодействия магнетрона носят циклоидальный характер. Среднее значение скорости центра катящегося круга, описывающего циклоиду, равно

$$V_{cp} = E_0 / B, \tag{2.3}$$

а направление - вдоль зазора резонатора в пространстве взаимодействия.

Если построить зависимость анодного тока от индукции магнитного поля при U_0 =const, то получится кривая как на рис.3. Из которой следует, что при некотором значении индукции $B_{\kappa p}$ анодный ток магнетрона становится равным нулю.

Рис.3. Зависимость анодного тока в магнетроне от индукции магнитного поля

Большой практический интерес представляют зависимости анодного тока от анодного напряжения при B=const (рис. 4). Кривая при B=0 - характеристика обычного диода, подчиняется закону "степени 3/2".

Рис.4. Вольтамперные характеристики магнетрона.

При наличии магнитного поля анодный ток появляется только при напряжениях U_{θ} , для которых напряженность магнитного поля [1,2]

$$H < H_{kp} = 6.72 (U_a)^{1/2} (r_a \xi)^{-1}, \qquad (2.4)$$

где U_a в вольтах;

 r_a , r_k - радиусы анода и катода соответственно, в сантиметрах;

 $\xi = 1 - (r_k/r_a)^2$ - коэффициент размерности.

Чем больше установлена напряженность магнитного ноля в магнетроне, тем выше должно быть взято анодное напряжение для появления анодного тока. Такое значение анодного напряжения называется критическим, а полученное из (2.4) выражение для него имеет вид:

$$\boldsymbol{\mathcal{U}}_{akp} = \left(\frac{1}{\left(6.72\right)^{2}}\right) \cdot \left(\boldsymbol{H}_{kp}\right)^{2} \cdot \boldsymbol{r}_{a}^{2} \cdot \boldsymbol{\xi}^{2}$$

$$(2.5)$$

и, как видно, описывает кривую, называемую параболой критического режима (рис.5). Заштрихованная область является областью тех значений, при которых все электроны попадают на анод.

Рис.5. Парабола критического режима магнетрона.

2.3. Виды колебаний в магнетроне

Как известно, поток электронов с катода неоднороден (рис.6). В нем всегда присутствует составляющая тока с частотой ω_0 , совпадающей с резонансной частотой резонаторов анодного блока. Это приводит к самовозбуждению высокочастотных колебаний в магнетроне.

Рис.б. Форма тока с катода

Происходит это только при условиях:

 $U_a < U_{a kp}$ при $H_0 = const$, или $H_0 > H_{kp}$ при $U_a = const$,

т.е. электронный поток не должен достигать анода при первом петлеобразовании.

Поля, созданные в резонаторах при возбуждении магнетрона, сдвинуты по фазе на угол ϕ относительно друг друга. Условие замкнутости цепочки резонаторов требует, чтобы при обходе вдоль периметра пространства взаимодействия полный сдвиг фазы был равен $2\pi n$, где n - целое число. Если число резонаторов N, то это условие запишется в виде:

 $\varphi \cdot N = 2 \cdot \pi \cdot n$

Откуда следует, что разность фаз полей между резонаторами может принимать только дискретные значения

$$\varphi = 2 \cdot \pi \cdot n/N , \qquad (2.6)$$

где: n=0,1,2...N/2 – число длин волн вдоль периметра анодного блока. При n=N/2 фазовый сдвиг $\varphi = \pi$, т.е. резонаторы возбуждаются в противофазе. Такое колебание называется π -видом и наиболее часто используется в магнетронах. На рисунке 7 показано распределение поля E_~ в постранстве взаимодействия на π - виде.

Puc. 7 *Pacnpedeлeнue* высокочастотного поля *E*_~ в магнетроне при колебаниях *π*-вида.

В работающем магнетроне на движение электронов оказывают влияние помимо постоянных полей ещё и высокочастотные электрические поля резонаторов. Это влияние приводит к группировке электронов и отбору энергии от групп.

2.4. Особенности движения электронов в работающем магнетроне

Рассмотрение механизма группировки электронов в магнетроне лучше всего проделать на плоской модели прибора (рис. 8). На рис. 8.а изображено высокочастотное электрическое поле резонаторов, соответствующее фиксированному моменту времени и имеющее радиальную – E_r и тангенциальную - E_{τ} - составляющие, которые периодически изменяются по периметру анода (рис. 8.б и 8.в).

Рис.8. Изменение тангенциального и радиального электрического поля вдоль периметра анода магнетрона.

Рис.9. Суммарное электрическое поле E_{Σ} в различных точках пространства взаимодействия

Итак, кроме переменного E~, между анодом и катодом существует постоянное поле E_0 . Тогда суммарное электрическое поле

 $E_{\Sigma} = E_{0} + E_{\sim}$ в различных точках пространства взаимодействия имеет различную величину и направление (рис.9б). Действие суммарного электрического поля на электрон сводится к изменению его скорости и направления движения. Согласно рис. 9. в плоскостях *MM'* и *PP'* скорости электронов выше, чем в плоскости NN', но меньше, чем в плоскости КК'. На движущиеся электроны действует постоянное магнитное поле B_0 так, что магнитная сила $F_m = e \cdot [V \cdot B]$ отклоняет электроны в разных направлениях. В плоскости *MM'* сила F_m направлена от катода к аноду под некоторым углом; в плоскости NN' и КК'- параллельно электродам; в плоскости *PP'* - к катоду под некоторый углом.

Учитывая направление и величину $F_{\rm m}$ в разных плоскостях, можно отметить, что самые быстрые электроны плоскости КК' сносятся к электронам плоскости *MM*', а электроны из плоскости NN', имея минимальную скорость, как бы затормаживаются и оказываются настигнутыми электронами из плоскости *MM*'. Следовательно, в результате взаимодействия с радиальной составляющей переменного поля E_r электронный поток группируется в сгустки (спицы, рис.10).

Рис.10. Сгустки электронов в магнетроне имеют спицеобразный вид

2.5. Условия синхронизации. Рабочая область

Группа электронов, оказавшаяся в плоскости MM', движется против тангенциального переменного поля, тормозится им, отдавая энергию СВЧ полю. Такое взаимодействие электронов с тангенциальной составляющей поля возможно при равенстве скоростей движения электронов Vo и высокочастотного поля V_{τ} . Это условие называется условием синхронизации скоростей Vo = V_{τ} .

Выражая скорость электронов в виде

$$V_{0} = 5.96 \cdot 10^{7} \cdot \sqrt{U_{ac}}$$
 (2.7)

а скорость движения электромагнитного поля от щели до щели резонатора

$$V_{\tau} = \frac{4 \cdot \pi \cdot C \cdot r_a}{N \cdot \lambda} = \frac{\omega \cdot r_a}{n \cdot \lambda},\tag{2.8}$$

где С – скорость света;

N-число резонаторов;

λ – длина волны в рабочем режиме.

Из соотношений (2.7) и (2.8) получим выражение для потенциала синхронизации U_{ac} , т.е. напряжение на аноде, при котором выполняется условие синхронизации:

$$U_{ac} = 4.04 \cdot 10^7 \left(\frac{r_a}{N \cdot \lambda}\right)^2$$

(2.9)

Этому напряжению соответствует некоторая минимально необходимая для работы магнетрона напряженность магнитного поля $H_{\kappa p(min)}$. Когда напряженность поля превышает $H_{\kappa p(min)}$ условие синхронизации может выполняться в целой области значений напряжения на аноде U_a , больших некоторого порогового значения напряжения U_{an} . Для колебаний различных видов и гармоник, а также для колебания π - вида пороговое напряжение определяется в виде

$$U_{an} = \frac{1884H}{N \cdot \lambda} \cdot \left(r_a^2 - r_K^2\right) - 4,04 \cdot 10^7 \cdot \left(\frac{r_a}{N \cdot \lambda}\right)$$
(2.10)

где напряженность Н подставляется в эрстедах, размеры и длина волны в сантиметрах. Пороговое напряжение выше потенциала синхронизации. Таким образом, рабочая область напряжений в магнетроне определена пределами: $U_{an} \leq U_{a} \leq U_{akp}$ при B = const.

Очевидно, выражение (2.10) есть уравнение прямой линии в координатах U_a , H, которая окажется касательной к параболе критического режима в точке пересечения параболы с потенциалом синхронизации (рис.11). Заштрихованная область на рис.11 - рабочая, не заштрихованная – не рабочая область.

При фиксированной напряженности магнитного поля с изменением напряжения U_a в рабочей области изменяется ток магнетрона I_a . Связь U_a , I_a , Hдает выражение для вольтамперной характеристики магнетрона [1].

$$U_{a} = \frac{1884 \cdot H \cdot (r_{a}^{2} - r_{k}^{2})}{N \cdot \lambda} - \frac{2 \cdot U_{ac}}{\left[1 + \frac{21300}{N \cdot \lambda \cdot H}\right]^{2}} + \left[\frac{2900 \cdot I_{a} \cdot N \cdot H \cdot (r_{a} - r_{k})^{4}}{h \cdot r_{a}^{2} \cdot \sqrt{U_{a}}}\right]^{\frac{2}{3}}, \quad (2.11)$$

где h - высота анодного блока, в сантиметрах

Рис.11. Рабочая область магнетрона заштрихована.

2.6. Рабочие характеристики магнетрона

В практике эксплуатации магнетронов пользуются рабочими характеристиками, позволяющими установить такой режим работы магнетрона, при котором получаются требуемые значения мощности, к.п.д. и частоты.

Рабочие характеристики магнетрона определяют зависимость выходной мощности - $P_{g_{bblx}}$ и к.п.д. - η от напряжения на магнетроне U_a , анодного тока I_a и магнитной индукции B (рис.12). Снимаются эти характеристики при постоянной согласованной внешней нагрузке. Кривые на рис.12 называются соответственно линиями постоянной мощности, линиями постоянного к.п.д., линии постоянной магнитной индукции. Так как исследуемый магнетрон имеет фиксированную величину B из семейства зависимостей (рис.12) можно экспериментально снимать только по одной характеристике.

Электрический режим магнетрона влияет на генерируемую частоту. Примерная зависимость $v = \psi(I_a)$ при постоянной нагрузке имеет вид, показанный на рис.13. Уход частоты, обусловленный изменением тока на один ампер, называется электронным смещением частоты. Иногда снижается зависимость частоты от напряжения на аноде (U_a), но при этом следует учитывать, что диапазон изменяемых напряжений мал по сравнению с изменением анодного тока (рис.12).

Рис.12. Рабочие характеристики магнетрона. Вдоль кривых указана величина постоянная.

Рис .13 Характеристика электронного смещения магнетрона.

2.7. Нагрузочные характеристики магнетрона

Нагрузочные характеристики связывают мощность и частоту колебаний магнетрона с импедансом нагрузки Z_{μ} при постоянном значении U_a (или I_a) и магнитной индукции. Оценки этих зависимостей можно получить из анализа [4] эквивалентной схемы магнетрона (рис.14), где резонатор, работающий на π -виде колебаний, представлен сосредоточенными параметрами индуктивностью $-L_0$, емкостью- C_0 , резонансной проводимостью $-G_0$. Сопротивление нагрузки генератора, линия передачи и устройство связи даны элементами Y_{μ} , Y_0 и M соответственно. Электронный поток представлен электронной проводимостью $Y_{3л}$, соответствующей отношению первой гармоники наведенного тока к амплитуде CBЧ -напряжения на контуре. Трансформируя сопротивление нагрузки в контур генератора, получим выражения для частоты и мощности колебаний генератора в зависимости от модуля /Г/ и фазы ϕ комплексного коэф-

фициента отражения Г, характеризующего нагрузку

$$f = f_0 - 1.2 \cdot F_3 \cdot 2 \cdot \left| \Gamma \right| \cdot \sin(\varphi) / \left[1 + \left| \Gamma \right|^2 + 2 \cdot \left| \Gamma \right| \cos(\varphi) \right]$$
(2.12)

$$P = P_{0} \cdot (1 - |\Gamma|^{2}) / [1 + |\Gamma|^{2} + 2 \cdot |\Gamma| \cdot \cos(\varphi)] , \qquad (2.13)$$

где $|\Gamma| = (K_{ce} - 1)/(K_{ce} + 1)$,

f₀ - собственная частота резонаторной системы,

 $F_{\rm 3}$ - коэффициент затягивания, определяемый экспериментально при $/\Gamma/=0,2,'$

 P_{o} - мощность СВЧ колебаний магнетрона при полном согласовании /Г/ = 0;

 ϕ - фаза определяется электрической длиной L_{min} от условного конца волноводного тракта до первого минимума стоячей волны $\phi = 2\pi \cdot L_{min}/\lambda$. На практике величина L_{min} измеряется как положение одного из выбранных минимумов относительно произвольного начального положения (например, от начала линии).

Рис.14. Эквивалентная схема магнетрона.

3. СОДЕРЖАНИЕ РАБОТЫ 3.1. Домашнее расчетное задание

3.1.1. Определить величину потенциала синхронизации U_{ac} по формуле (2.9). Размеры магнетрона взять из таблицы 3.1.

3.1.2. Рассчитать «прямую» порогового напряжения U_{вп} (2.10).

3.1.3. Рассчитать параболу критического режима, пользуясь формулами (2.4) или (2.5).

3.1.4. Рассчитать вольтамперную характеристику магнетрона (2.11).

Таблица 3.1

Радиус анода r _a	Радиус като- да r _к	N	h	Н	λ
ММ	ММ	ШТ.	MM	эрстед	СМ
1	0,5	18	2	2000	3,2

Геометрические параметры исследуемого магнетрона

3.2. Описание экспериментальной установки

Структурная схема установки изображена на рис.15 (пояснения в тексте). В работе используется типовая измерительная аппаратура трёхсантиметрового диапазона.

Высокочастотный тракт установки состоит из магнетрона 1, измерительной линии типа P1-4 (2), регулируемых аттенюаторов 3 и 5, двух шайбового трансформатора полных сопротивлений 4, резонансного частотомера типа Ч2-32 (6) и измерителя мощности на основе детекторной секции (8), проградуированной при затухании, вносимом каждым из аттенюаторов по 25 дБ. Питание магнетрона осуществляется прибором УИП-1. Регулировка анодного напряжения производится с помощью ручек, находящихся на правой половине передней панели прибора УИП-I, при этом декадный переключатель напряжений должен стоять в крайнем правом положении.

Особенностью работы магнетронов является необходимость снижения напряжения накале с 6,3 В при прогреве до 5 В при подаче анодного напряжения. Для выполнения этого напряжения с УИП-1 на магнетрон подаются через приставку (рис.16). Очевидно, что величина напряжения накала снижается автоматически с подачей анодного напряжения.

Магнетрон в горячем режиме должен охлаждаться, для этого используется вентилятор 7, Между измерительным генератором и магнетроном находится измерительная линия P1-4 (2), предназначенная для измерения коэффициента стоячей волны $K_{cB} = \psi(f)$ и фазы коэффициента отражения - $L_{min} = \psi(f)$ в диапазоне частот.

Рис.15. Схема экспериментальной установки.

Puc.16. Схема снижения накала магнетрона при подаче высокого напряжения.

3.3. Выполнение работы и методические указания

3.3.1. Ознакомиться с принципом работы и правилами эксплуатации приборов типа Р1~4, Ч2-32 [5]

3.3.2. Проверить надежность фланцевых соединений узлов и элементов СВЧ-тракта.

3.5.3. На передней панели УИП-1 поставить переключатель "400-600 В" в положение "600", ручку декадного переключателя - в крайнее правое положение, ручку плавной регулировки напряжения - в крайнее левое положение.

3.3.4. Включить вентилятор в сеть, направив его на магнетрон.

3.3.5. Установить начальное положение регулируемых аттенюаторов на 25 дБ.

3.3.6. Переключатель на приставке НАКАЛ - ВЫСОКОЕ поставить а положение НАКАЛ, а тумблер ВКЛ - ВЫКЛ, на УИП-1, в положение ВКЛ. Прогреть магнетрон 5 мин.

3.3.7. Переключатель на приставке НАКАЛ - ВЫСОКОЕ поставить в положение ВЫСОКОЕ. Ручкой ПЛАВНО (УИП-1) изменять напряжение на магнетроне до появления тока магнетрона. Появление тока связано с началом генерации. Зафиксировать напряжение на аноде при значении тока анода $I_a = 0,5$ мА. С помощью регулируемого аттенюатора 3 и трансформатора сопротивлений 4 добиться минимального значения коэффициента стоячей волны K_{cB} ($K_{cBmin} < 1.2$). Значения K_{cB} определяется с помощью измерительной линии 2.

3.3.8. Определить диапазон анодных напряжений, при которых происходит генерация магнетрона. Сравнить экспериментальные результаты с расчетными, нанося экспериментальные значения анодного напряжения на построенные теоретические зависимости Ua= ψ (H). Убедиться при этом, что полученные значения напряжений лежат в области, разрешенной для π -вида колебания.

3.3.9. Снять зависимость величины мощности Рвых от . анодного напряжения и величины анодного тока . Одновременно при этом измерять частоту магнетрона.

Примечание: Если есть ток магнетрона, а детектор не измеряет мощности, то следует уменьшить величину затухания, вносимого аттенюаторами 3 и 5. При изменении мощности учитывать величину затухания, вносимого аттенюаторами.

3.3.10. Установить трансформатором сопротивлений значение K_{cB} равное 1,5. Изменяя фазу отраженной волны φ с помощью диэлектрического трансформатора 4, перемещая систему шайб от 0 до 40 мм с шагом 5 мм, измерять L_{min} , значение частоты и мощности колебаний магнетрона. Результаты измерений занести в таблицу. Провести аналогичные измерения для $K_{c6} = 1.8; 2.$

3.3.11 Переключатель приставки НАКАЛ - ВЫСОКОЕ поставить в положение НАКАЛ, тумблер ВКЛ.- ВЫКЛ в положение ВЫКЛ. Блок УИП-1 и вентилятор выключить из сети.

3.3.12. По результатам пункта 3.3.9 рассчитать, и построить зависимость к. п. д. от напряжения на аноде $\eta = \psi(Ua)$

3.3.13. По результатам пункта 3.3.10 построить зависимости частоты и мощности магнетрона от фазы коэффициента отражения. Определить значение коэффициента затягивания частоты.

4. КОНТРОЛЬНЫЕ ВОПРОСЫ

4.1. Какие основные характеристики магнетрона существуют, их примерный вид, с пояснениями.

4.2. Какова структура полей, возникающих в резонаторной системе магнетрона для различных типов колебаний?

4.3. На каком виде колебаний работают магнетроны и особенности его структуры поля?

4.4. В чём выражается влияние составляющих СВЧ - поля E_{τ} и E_r на движущийся электронный поток?

4.5. Что такое степень затягивания частоты? Покажите практическую ценность этого параметра.

4.6. Укажите природу тока анода магнетрона при *B*-const в областях:

1) выше параболы критического режима;

2) ниже параболы критического режима;

3) ниже линии порогового напряжения.

4.7. Как измеряется мощность магнетрона в данной работе?

4.8. Как измеряется частота генерируемых колебаний магнетрона?

4.9. Как измерить нагрузочные характеристики магнетрона?

4.10. Как изменяется в работе коэффициент отражения и фаза коэффициента отражения?

4.11. Как происходит группировка электронов в магнетроне?

4.12. Как возникают колебания в магнетроне?

5. СОДЕРЖАНИЕ ОТЧЕТА

В отчете должны быть представлены:

5.1. Цель работы и схемы экспериментальной установки,

5.2. Расчетные и экспериментальные вольтамперные характеристики магнетрона (таблицы и графики). Сравнить и объяснить характер их поведения.

5.3. Рассчитанная кривая параболы критического режима и линия порогового напряжения. На расчетные кривые следует нанести область экспериментально установленных напряжений U_a , соответствующих началу и концу генерации.

5.4. Экспериментальные зависимости

при H-const: $P_{\text{вых}} = \psi(U_a)$ $P_{\text{выx}} = \psi(I_a);$ $f = \psi(U_a)$ $f = \psi(I_a);$

5.5. Графики расчетных зависимостей: $\eta = \psi(I_a)$ $\eta = \psi(U_a)$

5.6. Экспериментальные зависимости $P_{_{6btx}} = \psi(\ell_{\min}) f = \psi(\ell_{\min})$, снятые при *K*_{cs}-const:

5.7 Выводы по всей работе и заключение.

Список литературы

1. Соколова Ж.М. Микроволновые приборы и устройства.- Томск: Изд.-во ТМЦДО ТУСУР, 2009.-276с.

2.Электронные приборы СВЧ: Учеб. Пособие для вузов спец. "Электронные приборы"/ Березин В.М., Буряк В.С., Гутцайт Э.М., Марин В.П. –М.: Высш. шк , 1985. –296с.

3. Лебедев И.В. Техника и приборы СВЧ. Т.П. - М.: Высшая школа, 1972.

4. Описание аппаратуры для лабораторных работ по "Технике СВЧ"/ под редакцией Ж.М. Соколовой|. - изд-во Томского института автоматизированных систем управления и радиоэлектроники, 1987 101 с.