
Министерство науки и высшего образования Российской Федерации ТОМСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ СИСТЕМ УПРАВЛЕНИЯ И РАДИОЭЛЕКТРОНИКИ (ТУСУР)

В.П. Обрусник

Т.Н. Зайченко

ЭЛЕКТРИЧЕСКИЕ МАШИНЫ

Учебно-методическое пособие по практическим занятиям и самостоятельной работе студентов

TOMCK 2023

УДК 621.313 ББК 31.261 О-245

Рецензент:

Легостаев Н.С., профессор кафедры промышленной электроники ТУСУР, канд. техн. наук

Обрусник, Валентин Петрович

О-245 Электрические машины: Учебно-методическое пособие по практическим занятиям и самостоятельной работе студентов/В.П. Обрусник, Т.Н. Зайченко. — Томск: Томский государственный университет систем управления и радиоэлектроники, 2023. — 44 с.

Изложены вопросы выполнения расчетных работ в рамках практических занятий и самостоятельной работы студентов. Приведены примеры выполнения контрольных работ и содержание домашних индивидуальных заданий для самостоятельного выполнения, основные формулы, описывающие главные статические и динамические режимы работы электрических машин, а также контрольные и тестовые вопросы для проверки усвоения материала.

Рекомендуется для студентов очной и очно-заочной формы обучения при изучении дисциплин «Электрические машины», «Электрические машины и электропривод» и т.п.

Одобрено на заседании каф. ПрЭ протокол № 24 от 8.11.2023

УДК 621.313 ББК 31.261

- © Обрусник В.П., Зайченко Т.Н., 2023
- © Томск. гос. ун-т систем упр. и радиоэлектроники, 2023

СОДЕРЖАНИЕ

I	Контрольная работа 1 (КР1). Расчет параметров и	
	построение механических характеристик	
	двигателя постоянного тока	4
2	Контрольная работа 2 (КР2). Расчет параметров	
	асинхронного двигателя	.10
3	Индивидуальное задание 1 (ИЗ1). Расчет характеристик	
	электропривода постоянного тока	18
4	Индивидуальное задание 2 (ИЗ2). Расчет характеристик	
	асинхронного электропривода	21
5	Основные формулы и выражения для расчетов параметров и	
	характеристик электрических машин	23
	5.1 Для двигателя постоянного тока с независимым	
	возбуждением (ДПТ НВ)	23
	5.2 Для трехфазных асинхронных двигателей (АД)	24
6	Вопросы для проверки знаний по электрическим машинам и	
	электроприводу	28
	6.1 Для двигателей постоянного тока с независимым	
	возбуждением (ДПТ НВ)	28
	6.2 Для трехфазных асинхронных двигателей (АД)	29
	6.3 Для мехзвена двигателей и их характеристик в	
	замкнутых системах регулирования (САР)	29
7	Примеры тестовых вопросов по	
	электрическим машинам и электроприводу	31
8	Учебно-методические материалы по	
	электрическим машинам и электроприводу	.44

1 КОНТРОЛЬНАЯ РАБОТА 1 (КР1). РАСЧЕТ ПАРАМЕТРОВ И ПОСТРОЕНИЕ МЕХАНИЧЕСКИХ ХАРАКТЕРИСТИК ДВИГАТЕЛЯ ПОСТОЯННОГО ТОКА

Содержание задания

Двигатель постоянного тока (ДПТ) независимого возбуждения (НВ) имеет **номинальные** данные:

питающее напряжение $U_{\rm H}$ 100 B,
ток нагрузки $I_{\rm H}$
скорость вращения $\omega_{_{\! H}}$
сопротивление якоря $R_{\rm s}$
коэффициент полезного действия $\eta_{\rm H}$ 0,84.

Необходимо:

- 1. Построить естественную механическую характеристику (MX).
 - 2. Построить искусственную МХ для случаев:
 - а) напряжение на якоре составляет 40 % от номинального;
 - б) поток возбуждения уменьшен на 40 %;
- в) имеется последовательно включенное сопротивление в $\underline{6}$ раз превышающее сопротивление якоря;
- г) якорь шунтируется сопротивлением 4,8 [Ом] и в сеть включается через последовательное сопротивление 6 [Ом].
- 3. Определить значение скорости при номинальной нагрузке для всех характеристик пункта 2.
- 4. Определить КПД при номинальной нагрузке для характеристики пункта 2, \underline{r} контрольной работы.
 - 5 Привести схему включения ДПТ для пункта 4.

Примечание. КПД в пункте 4 рассчитывается для пунктов 2, а, 2, б, 2, в либо 2, г согласно варианту. Для этого же пункта необходимо привести схему включения ДПТ.

Рейтинг контрольной – 10 баллов:

Пункты 1, 2, а, б, в, г, по 1,5 балла = 7,5 балла.

Пункт 4 - 2 балла.

Пункт 5 - 0.5 балла.

Выполнение пунктов контрольной работы

Все расчеты и построения ведутся в относительных единицах:

$$\omega_* = \frac{\omega}{\omega_0}, \quad I_* = \frac{I}{I_{_{
m H}}}, \quad M_* = \frac{M}{M_{_{
m H}}}, \quad U_* = \frac{U}{U_{_{
m H}}}, \quad \varPhi_* = \frac{\varPhi}{\varPhi_{_{
m H}}},$$

$$R_* = \frac{R}{R_{_{
m H}}}, \quad R_{_{
m H}} = \frac{U_{_{
m H}}}{I_{_{
m H}}}.$$

Общее уравнение МХ ДПТ НВ в относительных единицах имеет вид:

$$\omega_* = \left(\omega_{0i^*} = \frac{U_* \cdot K_{\text{III}}}{\mathcal{D}_*}\right) - \left(\Delta \omega_{*i} = M_* \frac{R_{\text{g}^*} + R_{\text{II}^*} \cdot K_{\text{III}}}{\mathcal{D}_*^2}\right),$$

где
$$K_{\mathrm{III}}=rac{R_{\mathrm{III}}}{R_{\mathrm{II}}+R_{\mathrm{III}}}.$$

Для естественной и искусственных МХ формулы имеют частный вид (см. далее по тексту).

Все характеристики линейные (прямые линии), поэтому строятся по $\partial \textbf{\textit{eym}}$ точкам с координатами $\omega_{0i^*}, M_* = 0$ и $\Delta \omega_{*_{\text{H}i}} = \omega_{0i^*} - \Delta \omega_{_{\text{H}i^*}}$ при $M_* = M_{_{\text{H}^*}} = 1$.

Пункт 1: построение естественной МХ.

Для этой характеристики $R_{\Pi^*}=0,\ U_*=1,\ \Phi_*=1,\ K_{\Pi^*}=1$ и получается

$$\omega_{*_{\rm e}} = (\omega_{0{\rm e}^*} = 1) - M_* \cdot R_{{\rm g}^*},$$
 где $R_{{\rm g}^*} = \frac{R_{{\rm g}} \cdot I_{{\rm H}}}{U_{{\rm H}}} = \frac{1 \cdot 10}{100} = 0, 1 = \Delta \omega_{{\rm He}^*}.$
$$\omega_{{\rm He}^*} = 1 - 0, 1 = 0, 9. \tag{1}$$

Естественная МХ построена на рис. 1 под номером 1.

Пункт 2, а: искусственная МХ при напряжении якоря 40 % от $U_{\rm H}$. Здесь $U_*=0,4$, $\Phi_*=1$, $K_{\rm III}=1$, $R_{\rm II}*=0$, уравнение МХ:

$$\omega_{*_{u}} = (U_{*} = 0,4) - M_{*} \cdot R_{*}.$$

Характеристика показана на рис. 1 под номером 2, а, она проходит из точки $\omega_{0u^*}=0,4$ *параллельно* естественной МХ, так как $\Delta\omega_{{\rm H}u^*}=R_{{\rm g}^*}=0.1.$ Получаем

$$\omega_{\text{He}*} = 0.4 - 0.1 = 0.3.$$
 (2)

Пункт 2, б: искусственная МХ при потоке возбуждения на 40 % меньше номинального.

Для этой характеристики имеем:

$$\Phi_* = 0,6, U_* = 1, K_{\text{III}} = 1, R_{\text{II}*} = 0$$

$$\omega_{\phi^*} = \left(\omega_{0\phi^*} = \frac{1}{\Phi_* = 0.6}\right) - \left(M_* \cdot \frac{R_{\pi^*}}{\Phi_*^2 = 0.36} = \Delta\omega_{\phi^*}\right).$$

Получаем: $\omega_{0\phi^*} = 1,67$ $\Delta\omega_{\phi_H^*} = 0,28$.

$$\omega_{\text{Hd}*} = 1,67 - 0,28 \approx 1,4.$$
 (3)

Характеристика построена на рис. 1 и обозначена 2, б.

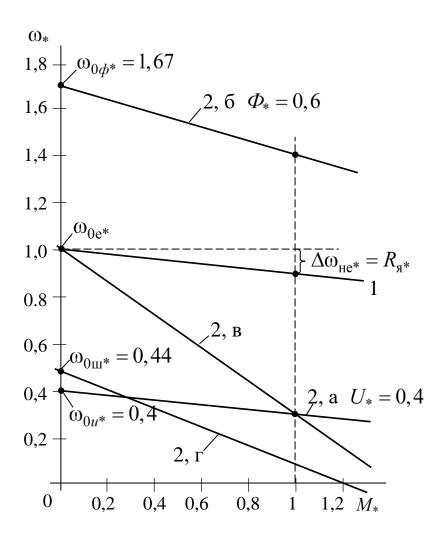


Рис. 1 — Графики механических характеристик ДПТ НВ

Пункт 2, в: искусственная МХ при $R_{\text{п}} = 6R_{\text{я}}$.

Для этой характеристики имеем:

$$\Phi_* = 1, U_* = 1, K_{\text{III}} = 1, R_{\text{II}^*} = 6R_{\text{Я}^*}, \text{ уравнение MX}$$

$$\omega_{\text{II}^*} = 1 - M_* \cdot 7R_{\text{Я}^*},$$

$$\omega_{\text{III}^*} = 1 - 7 \cdot 0, 1 = 0, 3.$$
(4)

Показана на рис. 1 под номером 2, в. Она проходит на оси ω_* через точку $\omega_{0\pi^*}=1$ со значительно большим наклоном (в 6 раз), чем естественная MX.

Пункт 2, г: искусственная МХ при $R_{\rm m} = 4.8$ [Ом], $R_{\rm n} = 6$ [Ом].

Для этой характеристики:

$$\Phi_* = 1, \ U_* = 1, \ K_{\text{III}} = \frac{R_{\text{III}}}{R_{\text{II}} + R_{\text{III}}} = \frac{4.8}{6 + 4.8} = 0,44.$$

$$R_{\text{II}}^* = \frac{R_{\text{II}} \cdot I_{\text{H}}}{U_{\text{II}}} = \frac{6 \cdot 10}{100} = 0,6.$$

Получаем уравнение

$$\omega_{\text{III}*} = (K_{\text{III}} = \omega_{0\text{III}*}) - (\Delta\omega_{\text{III}*} = M_* \cdot (R_{\text{g}*} + R_{\text{II}*} \cdot K_{\text{III}})).$$

$$\omega_{0\text{III}*} = 0,44 \quad \Delta\omega_{\text{IIII}*} = 1 \cdot (0,1+0,6\cdot0,44) \approx 0,364.$$

$$\omega_{\text{IIII}*} = 0,44-0,364 = 0,076 \approx 0,08.$$
(5)

На рис. 1 характеристика показана под номером 2, г. Она проходит из точки $\omega_{0m^*}=0.44$ с наклоном большим, чем естественная MX, но меньшим, чем MX 2, в.

Пункт 3: значения скорости при $M_{\rm H^*} = 1$ для всех МХ в пункте 2.

$$\omega_{i\mathrm{H}} = \omega_{0\mathrm{e}} \cdot \omega_{\mathrm{H}i^*}.$$
 (6)
 $\omega_{0\mathrm{e}} = \frac{U_{\mathrm{H}}}{C},$
 $C = \frac{U_{\mathrm{H}} - I_{\mathrm{H}} \cdot R_{\mathrm{H}}}{\omega_{\mathrm{H}}} = \frac{100 - 10 \cdot 1}{90} = 1 \; [\mathrm{B \cdot c}].$
 $\omega_{0\mathrm{e}} = \frac{100}{1} = 100 \; [\mathrm{p/c}].$

Значения $\omega_{_{\!\!H\!i^*}}$ берутся, как полученные по формулам (1)÷(5).

Получаем:

$$\omega_{\text{HM}} = \omega_{0e} \cdot \omega_{\text{HM}^*} = 100 \cdot 0, 3 = 30 \text{ p/c.}$$
 (7)

$$\omega_{H\phi} = \omega_{0e} \cdot \omega_{H\phi^*} = 100 \cdot 1, 4 = 140 \text{ p/c.}$$
 (8)

$$\omega_{\text{HII}} = \omega_{0e} \cdot \omega_{\text{HII}}^* = 100 \cdot 0, 3 = 30 \text{ p/c.}$$
 (9)

$$\omega_{\text{HIII}} = \omega_{0e} \cdot \omega_{\text{HIII}^*} = 100 \cdot 0,08 = 8 \text{ p/c.}$$
 (10)

Пункт 4: определить КПД при номинальной нагрузке для МХ по п. 2, г.

Общие номинальные потери мощности

$$\Delta P_{\rm H} = \Delta P_{\rm H\Pi ep} + \Delta P_{\rm H\Pi oc} = U_{\rm H} \cdot I_{\rm H} (1 - \eta_{\rm H}) =$$

= 100 \cdot 10(1 - 0,84) = 160 Bt.

Номинальные переменные потери

$$\Delta P_{\text{H TIPP}} = I_{\text{H}}^2 \cdot R_{\text{g}} = 10^2 \cdot 1 = 100 \text{ Bt.}$$

Номинальные постоянные потери

$$\Delta P_{\text{H \Pi OC}} = \Delta P_{\text{H}} - \Delta P_{\text{H \Pi EP}} = 160 - 100 = 60 \text{ Bt.}$$

Переменные потери для i-й MX

$$\Delta P_{i\,\text{nep}} = \Delta P_{\text{H\,\Piep}} \left(\frac{M_c}{M_{\text{H}}} \right)^2 \cdot \frac{1}{\Phi_*^2} \cdot \left(1 + \frac{R_{\text{II}}}{R_{\text{g}}} \cdot K_{\text{III}} \right) + \frac{U^2 \cdot K_{\text{III}}}{R_{\text{III}}}.$$

Это выражение (2.64) из учебного пособия [1].

Для МХ по пункту 2, г имеем:

$$\Phi_* = 1$$
, $R_{_{\rm II}} = 6$ [OM], $R_{_{\rm III}} = 4.8$ [OM], $R_{_{\rm SI}} = 1$ [OM], $U = U_{_{\rm H}} = 100$ B, $K_{_{\rm III}} = 0.44$.

Получаем:

$$\Delta P_{i \text{ nep}} = 100 \cdot 1^2 \cdot 1 \left(1 + \frac{6}{1} \cdot 0,44 \right) + \frac{100^2 \cdot 0,44}{4,8} = 1280 \text{ Bt.}$$
 (11)

Постоянные потери для i-й MX:

$$\Delta P_{i\,\text{noc}} = \Delta P_{\text{H\,noc}} \left(\frac{\omega_{\text{H}i}}{\omega_{\text{H}}}\right)^2,$$

формула (2.62) из учебного пособия [1].

Для МХ по п. 2, г

$$\omega_{\text{HIII}} = 8 \text{ p/c},$$

см. рассчитанное по пункту 3.

Получаем,

$$\Delta P_{i\,\text{noc}} = 60 \cdot \left(\frac{8}{90}\right)^2 \approx 0.5 \text{ Bt} \to 0. \tag{12}$$

Значение КПД определяется по формуле (2.63) учебного пособия [1].

$$\begin{split} \eta_i &= \frac{\omega_{ci} \cdot M_c}{\omega_{ci} \cdot M_c + \Delta P_{i\,\text{пер}} + \Delta P_{i\,\text{пос}}} \\ \text{при } M_c &= M_{\text{H}}, \ \omega_{ci} = \omega_{\text{ппн}} = 8 \text{ p/c}, \\ M_{\text{H}} &= \frac{P_{\text{H}}}{\omega_{\text{H}}} = \frac{U_{\text{H}} \cdot I_{\text{H}} \cdot \eta_{\text{H}}}{\omega_{\text{H}}} = \frac{100 \cdot 10 \cdot 0.84}{90} = 9 \text{ [H·м]}. \\ \eta_{i\text{H}} &= \frac{\omega_{\text{ппн}} \cdot M_{\text{H}}}{\omega_{\text{III}} \cdot M_{\text{H}} + \Delta P_{i\,\text{пер}}} = \\ &= \frac{8 \cdot 9}{8 \cdot 9 + 1280 + 0} = 0.053, \end{split}$$

то есть всего 5,3 %, что очень мало.

Выполненные в п. 4 расчеты КПД подтверждают теоретическое положение, что регулирование скорости ДПТ НВ реостатное за счет $R_{\rm II}$ и с дополнительным шунтированием якоря за счет $R_{\rm III}$ дает очень большие потери мощности и применение такого регулирования на практике может быть только *кратковременным*.

Схема включения двигателя для п. 2, г представлена на рисунке 2.

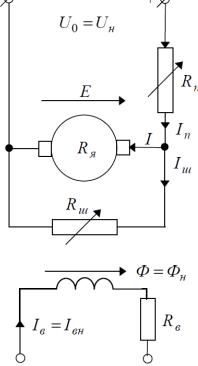


Рис. 2 — Схема включения ДПТ НВ для п. 2, г

2 Контрольная работа 2 (КР2). Расчет параметров асинхронного двигателя

Содержание задания

Трехфазный асинхронный двигатель (АД) имеет номинальные данные для одной фазы: напряжение **220** В, частота сети **50** Гц, мощность **4,0** кВт, пусковой ток **55** А, номинальный ток **9** А, перегрузочная способность по моменту **3**, номинальная скорость **1400** об/мин, момент холостого хода **0,07** от номинального, момент инерции **0,035** кг·м², коэффициент мощности **0,8**.

Необходимо определить:

- 1. Индуктивное сопротивление X_{κ} , активное сопротивление статора R_1 и ротора R_2' (приведенное), если их соотношение γ равно **0,8**.
- 2. Естественный пусковой момент двигателя и установить является ли он достаточным для запуска двигателя при номинальном моменте нагрузки.
- 3. Как изменится относительно естественных значений максимальный и пусковой моменты, если за счет добавочного *реактивного сопротивления в статоре* пусковой ток ограничивается до $\alpha = 2.5$ от номинального значения ($I_{1\pi u} = \alpha \cdot I_{1H}$).
- 4. Остановится или нет двигатель, работающий с моментом нагрузки **1,2** номинального значения, если напряжение сети уменьшится на **25** %.
- 5. Каким будет время переходного процесса приема и сброса нагрузки на естественной характеристике.
- 6. Какой будет длительность свободного торможения (выбегом) при моменте на валу, равном **0,6** номинального значения.
- 7. Чему равны КПД и входная мощность двигателя при номинальной нагрузке.
 - 8. Привести схему включения для пункта 3.
- 9. Построить приближенно, по рассчитанным в пунктах 2 –4 параметрам EMX и ИМХ двигателя.

Рейтинг контрольной – 10 баллов

Пункты 1, 2, 4 -9 — по 1 баллу — 8 баллов. Пункт 3 — 2 балла.

Записываем исходные данные АД	
Напряжение статора $U_{1\phi H}$, В	.220
Частота напряжения статора f_{1H} , Γ ц	.50
Мощность $P_{\rm H}$, кВт	.4,0
Номинальный ток фазы статора $I_{1\phi H}$, А	9
Пусковой ток $I_{1пe}$, А	.55
Перегрузочная способность по моменту, $\lambda_{_{M}}$.3
Скорость вращения $n_{\rm H}$, об/мин	.1400
Коэффициент мощности $\cos\phi_{\scriptscriptstyle H}$	0,8
Момент инерции ротора J , $\kappa \Gamma \cdot \text{м}^2 \dots$	0,035
Отношение сопротивлений $\gamma_e = R_1/R_2'$	0,8

Выполнение пунктов контрольной работы

Пункт 1: определение значений R_2' , R_1 , X_{κ} при заданном значении $\gamma_e=0.8$.

Значение активного сопротивления ротора R_2'

$$R_2' = \frac{S_{\kappa e} \cdot U_{1 \phi H} / I_{1 \pi e}}{\sqrt{S_{\kappa e}^2 (1 + 2\gamma_e) + 1}},$$
(4.27)

где

$$S_{\kappa e} = 1.2 \cdot S_{\mathrm{H}} \left(\lambda_{\scriptscriptstyle M} + \sqrt{\lambda_{\scriptscriptstyle M}^2 - 1} \right), \tag{4.22}$$

$$S_{\rm H} = \frac{n_{0e} - n_{\rm H}}{n_{0e}}. (4.25)$$

Здесь и *далее* номера формул взяты из разделов 4.5 и 4.6 учебного пособия [1], они приведены также в разделе 7 настоящего методического пособия.

Значение синхронной скорости n_{0e} в исходных данных не указано. Очень важно правильно задать значение n_{0e} , иначе допустив ошибку в расчетах по первой формуле KP2 все по-

следующие расчеты будут неверными. Для АД из рассматриваемого варианта KP2 $n_{0e} = 1500$ об/мин.

Используя исходные данные настоящей KP2 получаем результаты

$$S_{\rm H} = \frac{1500 - 1400}{1500} \simeq 0,07.$$

$$S_{\rm Ke} = 1,2 \cdot 0,07 \left(3 + \sqrt{3^2 - 1}\right) \simeq 0,47.$$

$$R'_2 = \frac{0,47 \cdot 220/55}{\sqrt{0,47^2 \left(1 + 2 \cdot 0,8\right) + 1}} \simeq 1,49 \text{ [OM]}.$$

$$R_1 = R'_2 \cdot \gamma_e = 1,49 \cdot 0,8 \simeq 1,19 \text{ [OM]}.$$

$$X_{\kappa} = \sqrt{\left(\frac{U_{1\phi \rm H}}{I_{1\pi e}}\right)^2 - \left[R'_2 \left(1 + \gamma_e\right)\right]^2} =$$

$$= \sqrt{\left(\frac{220}{55}\right)^2 - \left[1,49 \cdot \left(1 + 0,8\right)\right]^2} \simeq 2,97 \text{ [OM]}.$$

Пункт 2: определить M_{ne^*} и установить, достаточен ли он для запуска АД при номинальной нагрузке двигателя ($M_{ne^*} = 1$).

Для запуска двигателя при номинальной нагрузке должно выполняться условие:

$$M_{\Pi e^*} \ge 1, 1 \cdot (M_{\Pi^*} = 1).$$

Значение $M_{\mathrm{n}e^*}$ определяется по формуле (4.19) при S=1:

$$M_{\Pi e^*} = \frac{2 \cdot \lambda_{M} (1 + \gamma_{e} \cdot S_{Ke})}{\frac{S_{Ke}}{1} + \frac{1}{S_{Ke}} + 2 \cdot \gamma_{e} \cdot S_{Ke}} = \frac{2 \cdot 3 (1 + 0.8 \cdot 0.47)}{\frac{0.47}{1} + \frac{1}{0.47} + 2 \cdot 0.8 \cdot 0.47} \approx 2.45.$$

Поскольку выполняется условие

$$(M_{\Pi e^*} = 2,45) \ge (1,1 \cdot M_{H^*} = 1),$$

то двигатель запускается.

Пункт 3: Как изменятся относительно соответствующих естественных значений максимальный $M_{\text{ки}^*}$ и пусковой $M_{\text{пи}^*}$ моменты, если за счет добавочного реактивного сопротивления в статоре $X_{1\text{д}}$ пусковой ток ограничивается до $\alpha=2,5$ от номинального значения ($I_{1\text{пи}}=\alpha\cdot I_{1\text{н}}$)?

В данном пункте задания необходимо найти:

$$rac{M_{_{\mathrm{K}e}}}{M_{_{\mathrm{K}u}}}$$
 и $rac{M_{_{\mathrm{\Pi}e}}}{M_{_{\mathrm{\Pi}u}}}$ либо $rac{M_{_{\mathrm{K}e^*}}}{M_{_{\mathrm{K}u^*}}}$ и $rac{M_{_{\mathrm{\Pi}e^*}}}{M_{_{\mathrm{\Pi}u^*}}}.$

Расчеты будем выполнять, как и ранее, в относительных единицах.

При этом
$$M_{{}_{\mathrm{K}e^*}}=\frac{M_{{}_{\mathrm{K}e}}}{M_{{}_{\mathrm{H}}}}=\lambda_{{}_{M}},$$
 а $M_{{}_{\mathrm{\Pi}e^*}}=\frac{M_{{}_{\mathrm{\Pi}e}}}{M_{{}_{\mathrm{H}}}}=1,1$ из пункта 2.

Для расчета максимального $M_{{}_{\mathrm{K}\!{}^{\!4}}}$ и пускового моментов $M_{{}_{\mathrm{\Pi}\!{}^{\!4}}}$ нужно определить добавочное сопротивление $X_{1_{\mathrm{J}}}$.

Определяем $X_{1\pi}$:

$$X_{1\text{д}} = \sqrt{\left(\frac{U_{1\text{H}}}{\alpha \cdot I_{1\text{H}}}\right)^2 - R_{\kappa}^2} - X_{\kappa}, \tag{4.39}$$

где $R_{\kappa} = R_1 + R_2' = 1{,}19 + 1{,}49 \approx 2{,}7$ [Ом].

Получаем,

$$X_{1\text{д}} = \sqrt{\left(\frac{220}{2,5\cdot9}\right)^2 - 2,7^2} - 2,97 = 6,43 \text{ [Om]}.$$

Величина $M_{\text{ки*}}$ при $X_{1_{\text{Л}}}$:

$$M_{\text{KM*}} = \left(M_{\text{KM*}} = \lambda_{M}\right) \cdot \frac{\sqrt{R_{1}^{2} + X_{K}^{2}} + R_{1}}{\sqrt{\left(X_{K} + X_{1,1}\right)^{2} + R_{1}^{2}} + R_{1}} = \left(\lambda_{M} = 3\right) \cdot \frac{\sqrt{1,19^{2} + 2,97^{2}} + 1,19}{\sqrt{\left(2,97 + 6,43\right)^{2} + 1,19^{2}} + 1,19} \approx 1,23.$$

Значение критического момента АД при $X_{1д} = 6,43$ [Ом] уменьшается относительно его значения для естественной МХ в

$$\frac{M_{\text{кe*}} = \lambda_{\text{M}} = 3}{M_{\text{кw*}} = 1,23} \simeq 2,4$$
 раза.

Пусковой момента АД при $X_{1\pi}$:

$$M_{_{\Pi \Pi^*}} = M_{_{\Pi^*}}(S=1) = \frac{2M_{_{K\Pi^*}}(1 + S_{_{K\Pi}} \cdot \gamma_{_{\Pi}})}{\frac{1}{S_{_{K\Pi}}} + \frac{S_{_{K\Pi}}}{1} + 2 \cdot S_{_{K\Pi}} \cdot \gamma_{_{\Pi}}},$$

где

$$S_{\text{KM}} = \frac{R_2'}{\sqrt{\left(X_{\kappa} + X_{1\pi}\right)^2 + R_1^2}}; \qquad (7.2.2)$$

$$\gamma_{\text{M}} = \frac{R_1 + R_{1\pi}}{R_2' + R_{2\pi}'}.$$

При добавочном реактивном сопротивлении $X_{1\text{д}}$

$$S_{\text{KM}} = \frac{R_2'}{\sqrt{\left(X_{\text{K}} + X_{1\text{J}}\right)^2 + R_1^2}} = \frac{1,49}{\sqrt{\left(2,97 + 6,43\right)^2 + 1,19^2}} \approx 0,16;$$

$$M_{\text{MM*}} = \frac{2M_{\text{KM*}}\left(1 + S_{\text{KM}} \cdot \gamma_{\text{M}}\right)}{\frac{1}{S_{\text{KM}}} + \frac{S_{\text{KM}}}{1} + 2 \cdot S_{\text{KM}} \cdot \gamma_{\text{M}}} = \frac{2 \cdot 1,23\left(1 + 0,16 \cdot 0,8\right)}{\frac{1}{0,16} + \frac{0,16}{1} + 2 \cdot 0,16 \cdot 0,8} \approx 0,41;$$

Значение пускового момента АД при $X_{1д} = 6,43$ [Ом] уменьшается относительно его значения для естественной МХ в

$$\frac{M_{\Pi e^*} = 1,1}{M_{\Pi u^*} = 0,41} \simeq 6$$
 pas.

Пункт 4: Остановится или нет АД, работающий с моментом нагрузки 1,2 номинального значения (M_{c^*} = 1,2), если напряжение сети уменьшится на 25 %?

Чтобы двигатель не остановился, должно выполняться условие

$$M_{KU^*} \ge 1, 1 \cdot M_{C^*}.$$

При изменении напряжения

$$M_{\scriptscriptstyle{\mathrm{KH}}^*} = \left(M_{\scriptscriptstyle{\mathrm{K}}e^*} = \lambda_{\scriptscriptstyle{M}}\right) \cdot \left(\frac{U_{1\varphi}}{U_{1\varphi_{\mathrm{H}}}}\right)^2.$$

Для данных контрольной работы получаем

$$M_{\text{\tiny KM}^*} = 3 \cdot 0.75^2 \approx 1.7.$$

 $(M_{\text{\tiny KM}^*} = 1.7) \ge \lceil 1.1 (M_{c^*} = 1.2) = 1.32 \rceil.$

Двигатель не остановится.

Пункт 5: Каким будет время приема и сброса нагрузки на естественной МХ?

$$t_{\text{пр}} = t_{\text{сб}} = J \cdot \frac{\Delta \omega_{\text{H}}}{M_{\text{H}}} = J \cdot \frac{\omega_{0} \cdot S_{\text{H}}}{M_{\text{H}}}. \tag{2.61}$$

$$\omega_{0} = \frac{n_{0}}{9,55} = \frac{1500}{9,55} = 157 \text{ р/c}, \ S_{\text{H}} = 0,07 \text{ (определяется в п.1)},$$

$$J = 0.035 \text{ кг·м}^{2} \text{ (задано)},$$

$$M_{\text{H}} = \frac{P_{\text{H}}}{\omega_{\text{H}}} = \frac{4 \cdot 10^{3} \cdot 9,55}{1400} = 27,3 \text{ [H·м]}.$$

Получаем:

$$t_{\text{пр}} = t_{\text{co}} = 0.035 \cdot \frac{157 \cdot 0.07}{27.3} = 0.014 \text{ c.}$$

Пункт 6: Длительность торможения выбегом при $M_{_{C}} = 0,6 M_{_{\rm H}}$ равна

$$t_{\text{выб}} = J \frac{\omega_c}{M_c = 0.6M_{\text{H}}}.$$
 (2.64)

Так как

$$S_c = \frac{\omega_0 - \omega_c}{\omega_0},$$

TO

$$\omega_c = \omega_0 (1 - S_c).$$

При $S \leq S_{\kappa}$ механические характеристики АД являются практически линейными, поэтому

$$\frac{M_c}{M_{\rm H}} = \frac{S_c}{S_{\rm H}}.$$

Отсюда

$$S_c = S_{\rm H} \frac{M_c}{M_{\rm H}}.$$

Таким образом,

$$\begin{split} S_c &= S_{^{_{\rm H}}} \frac{M_c}{M_{^{_{\rm H}}}} = 0,07 \cdot 0,6 = 0,042 \\ \omega_c &= \omega_0 \left(1 - S_c\right) = 1500 \left(1 - 0,042\right) = 1500 \cdot 0,958 = 1437 \ \text{p/c} \\ t_{_{\rm BM}6} &= 0,035 \cdot \frac{1437}{0,6 \cdot 27,3} = 3,07 \ \text{c.} \end{split}$$

Пункт 7: Входная мощность трехфазного АД

$$P_1 = I_{1H\Phi} \cdot U_{1H\Phi} \cdot (m = 3) = 9 \cdot 220 \cdot 3 = 5940 \text{ Bt.}$$

 $P_H = P_1 \cdot \cos \varphi_H \cdot \eta_H.$

Отсюда номинальное значение КПД:

$$\eta_{H} = \frac{P_{H}}{P_{1} \cdot \cos \varphi_{H}}.$$

$$\eta_{H} = \frac{4000}{5940 \cdot 0.8} = 0.84.$$

Схема включения АД представлена на рис. 3, МХ приведены на рис. 4.

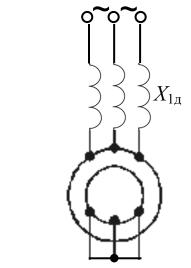


Рис. 3 — Схема включения АД с $X_{1\pi}$

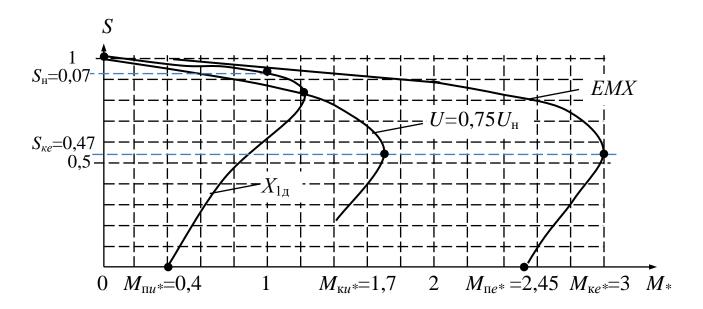


Рис. 4 — Естественная и искусственные механические характеристики асинхронного двигателя

3 ИНДИВИДУАЛЬНОЕ ЗАДАНИЕ № 1 (ИЗ1). РАСЧЕТ ХАРАКТЕРИСТИК ЭЛЕКТРОПРИВОДА ПОСТОЯННОГО ТОКА

В ИЗ1 рассчитываются параметры и характеристики ДПТ НВ согласно теоретическим положениям главы 2 учебного пособия по ЭМ [1]. Содержание вариантов ИЗ1 приведено в Приложении 2. Каждый исполнитель получает свой вариант, исходные данные для которого выбираются из табл. П2 в Приложении П2. Ниже приведен пример содержания ИЗ1 по варианту 34.

Исходные данные

Двигатель постоянного тока с независимым возбуждением имеет номинальные данные:

напряжение якоря $U_{\scriptscriptstyle \mathrm{H}}$ [В]	120
ток якоря $I_{\scriptscriptstyle \mathrm{H}}$ [A]	115
отдаваемая мощность $P_{_{\mathrm{H}}}$ [кВт]	11,3
коэффициент полезного действия $\eta_{_{\rm H}}$	0,82
скорость вращения $n_{\rm H}$ [об/мин]	685
перегрузочная способность по току λ_I	2,4
сопротивление цепи якоря $R_{\rm g}$ [Ом]	0,1
момент инерции на валу J [кг·м²]	2,6

Рассчитать

- 1. Параметры для естественной МХ.
- 2. Сопротивление для автоматического пуска двигателя с токоограничением при числе ступеней *m*, равном определить .
- 3. Сопротивление динамического торможения в одну ступень.
- 4. Сопротивление для реверса (противовключение), в том числе его добавку к ступеням пускового реостата.
 - 5. Напряжение якоря, допустимое для прямого пуска.
- 6. Начальный тормозной момент двигателя, при уменьшении скачком напряжения якоря на <u>30</u>%. Определить предельно допустимое значение этого понижения.

- 7. Параметры М.Х. двигателя с неноминальным магнитным потоком для увеличения номинальной скорости на <u>40</u>%. Определить при этом допустимое значение электромагнитного момента при номинальном токе якоря.
- 8. Параметры М.Х. двигателя, обеспечивающие *уменьшение* его номинальной скорости в <u>4</u> раза при номинальном токе якоря.
- 9. Отклонения скорости на механических характеристиках с параметрами по пункту 8 при изменениях момента нагрузки на ± 20 % от номинального значения.
- 10. Потери мощности и КПД двигателя при работе с номинальным моментом нагрузки на М.Х. с параметрами по пунктам 7 и 8 для одной искусственной характеристики по заданию преподавателя.

Построить

- 1. Механические характеристики: естественную, реостатного пуска, динамического торможения и противовключения (на одном рисунке).
- 2. Искусственные МХ с параметрами двигателя для условий пунктов 7 и 8 (на одном рисунке).
- 3. Временные диаграммы изменения момента и скорости двигателя для циклов работы:
 - а) пуск без нагрузки (вхолостую), прием нагрузки, работа при номинальной нагрузке, сброс нагрузки, торможение противовключением до остановки;
 - б) пуск, работа, динамическое торможение в одну ступень до остановки все при номинальной нагрузке.

Для диаграмм определить длительности переходных процессов на каждой ступени пуска, и пуска в целом, приема и сброса нагрузки, тормозных режимов. Отдельно установить время торможения «выбегом» без нагрузки.

Примечание: исполнители получают от преподавателя только один вариант а или б.

Полный объем примера выполнения ИЗ1 приведен в учебном пособии по ЭМ [1].

Рейтинг ИЗ1

1. Расчет в пунктах 1÷7 и 10 по 1 баллу	— 8 б.
2. Расчеты в пунктах 8 и 9 по 1 баллу	— 2 б.
3. Построение MX согласно пунктам	
1 и 12 по 2 балла	— 4 б.
4. Расчеты и построение временных диаграмм	— 4 б.
5. Оформление пояснительной записки	— 2 б.
6. Защита выполненного ИЗ1	— 5 б.

Всего — 25 б.

4 ИНДИВИДУАЛЬНОЕ ЗАДАНИЕ № 2 (ИЗ2). РАСЧЕТ ХАРАКТЕРИСТИК АСИНХРОННОГО ЭЛЕКТРОПРИВОДА

В ИЗ2 рассматриваются расчеты параметров и характеристик трехфазного асинхронного двигателя (АД) согласно теоретическим положениям главы 4 учебного пособия по ЭМ [1]. Содержание ИЗ2 (его задание) приведено в Приложении 3 учебного пособия. Каждый исполнитель получает свой вариант из табл. ПЗ в Приложении ПЗ. Ниже приведен пример содержания ИЗ2 по варианту 12.

Момент инерции ротора J, $\kappa \Gamma \cdot M^2 \dots 0,1$

2. Рассчитать

Номинальные данные АД

- 1. Параметры и величины естественной МХ; записать по ним формулу этой МХ.
 - 2. Сопротивления обмоток R_1 , R'_2 , X_1 , X'_2 .
- 3. Параметры и формулу искусственной МХ при пуске АД с ограничением пускового тока в пределах $I_{1\pi}/I_{1\pi}=\underline{1.8}$ за счет $R_{\pi 1}$.
 - 4. Параметры и формулы МХ динамического торможения.
- 5. Параметры и формулы искусственных МХ при частотах $f_{\rm 1_{MAK}}/f_{\rm 1_H}=\underline{1,2}$ и $f_{\rm 1_{MUH}}/f_{\rm 1_H}=\underline{0,8}$ для закона регулирования:
 - a) $U_1/f_1 = \text{const}$;
 - б) $U_1 = \text{const.}$

- 6. Время прямого пуска и динамического торможения при моменте нагрузки $M_c/M_{_{
 m H}} = \underline{0,6}$.
 - 7. Время приема и сброса нагрузки на естественной МХ.
- 8. Время торможения до останова свободным выбегом при заданном в пункте 2.6 моменте нагрузки на валу двигателя.
- 9. Входную мощность и КПД двигателя на естественной М.Х. при номинальном моменте нагрузки ($M_c = M_{_{
 m H}}$).

Построить

- 1. Механические характеристики АД в относительных единицах с параметрами, рассчитанными в пунктах задания 2.1÷2.5 (на одном рисунке).
- 2. Диаграммы для момента $M_*(t)$ и скорости $\omega_*(t)$ прямого пуска и динамического торможения при $M_c/M_{_{
 m H}}=\underline{0.6.}$

Рейтинг ИЗ2

1. Расчет в пунктах 1÷5 задания по 1 баллу	— 5 б.
2. Расчеты в пунктах 7 – 9 задания по 1 баллу	— 3 б.
2. Расчеты в пункте 6 задания	— 4 б.
3. Построение МХ	— 3 б.
4. Построение временных диаграмм	— 4 б.
5. Оформление пояснительной записки	— 1 б.
6. Защита выполненного ИЗ2	— 5 б.

Всего — 25 б.

5 ОСНОВНЫЕ ФОРМУЛЫ И ВЫРАЖЕНИЯ ДЛЯ РАСЧЕТОВ ПАРАМЕТРОВ И ХАРАКТЕРИСТИК ЭЛЕКТРИЧЕСКИХ МАШИН

5.1 Для двигателя постоянного тока с независимым возбуждением (ДПТ НВ)

1. Уравнение механических характеристик (МХ) для ДПТ HB, в относительных единицах

$$\omega_* = \frac{U_*}{\Phi_*} \cdot K_{\text{III}} - M_* \frac{R_{\text{g}} + R_{\text{II}^*} \cdot K_{\text{III}}}{\Phi_*^2}.$$
 (2.18)

Здесь

$$K_{\text{III}} = \frac{R_{\text{III}}}{R_{\Pi} + R_{\text{III}}}, \quad M_* = I_* \cdot \Phi_*, \quad \omega_* = \frac{\omega}{\omega_0},$$

$$U_* = \frac{U}{U_{\text{H}}}, \quad \Phi_* = \frac{\Phi}{\Phi_{\text{H}}}, \quad I_* = \frac{I}{I_{\text{H}}}, \quad M_* = \frac{M}{M_{\text{H}}},$$

$$R_{\text{H}} = R_{\text{H}} \cdot \frac{I_{\text{H}}}{U_{\text{H}}}, \quad R_{\Pi^*} = R_{\Pi} \cdot \frac{I_{\text{H}}}{U_{\text{H}}}.$$
(2.21)

Примечание: здесь и далее номера формул ставятся такими же, как в учебном пособии [1].

2. Выражения для определения потерь мощности и КПД ДПТ HB.

Полные потери мощности в номинальном режиме

$$\Delta P_{\rm H} = \Delta P_{\rm H \ nep} + \Delta P_{\rm H \ noc}. \tag{2.58}$$

$$\Delta P_{\mathrm{H}} = U_{\mathrm{H}} \cdot I_{\mathrm{H}} \left(1 - \eta_{\mathrm{H}} \right). \tag{2.57}$$

$$\Delta P_{\rm H\ nep} = I_{\rm H}^2 \cdot R_{\rm g}. \tag{2.59}$$

$$\Delta P_{\rm H\ noc} = \Delta P_{\rm H} - \Delta P_{\rm H\ nep}. \tag{2.60}$$

$$\Delta P_{i\,\text{moc}} = \Delta P_{\text{H\,moc}} \left(\frac{\omega_{ci}}{\omega_{\text{H}}}\right)^2.$$
 (2.62)

$$\Delta P_{i \text{ nep}} = \Delta P_{\text{H nep}} \left(\frac{M_c}{M_{\text{H}}} \right)^2 \cdot \frac{1}{\Phi_*^2} \left(1 + \frac{R_{\text{II}}}{R_{\text{g}}} \cdot K_{\text{III}} \right) + \frac{U^2 \cdot K_{\text{III}}}{R_{\text{III}}}. \quad (2.64)$$

$$\eta_i = \frac{\omega_{ci} \cdot M_c}{\omega_{ci} \cdot M_c + \Delta P_{i \text{ nep}} + \Delta P_{i \text{ noc}}}.$$
(2.63)

Расчеты выполняются в последовательности записи формул.

3. Формулы для динамических режимов.

Электромеханическая постоянная времени МХ (механической характеристики), на которой идет переходный процесс

$$T_{Mi} = J \cdot \frac{\Delta \omega_i}{\Delta M_i} = J \cdot \frac{R_{\text{LIS}}}{\left(C \cdot \Phi_*\right)^2}, \tag{2.61}$$

где $R_{\text{ця}} = R_{\text{я}} + R_{\text{п}} \cdot K_{\text{п}}$.

Время приема и сбора нагрузки

$$t_{\text{IID}} = t_{\text{co}} \simeq 4 \cdot T_{\text{Mi}}. \tag{2.6.1,a}$$

Время торможения выбегом

$$t_{\rm BG} = J \cdot \frac{\omega_{\rm Haq} = \omega_{c}}{M_{c}}.$$
 (2.64)

5.2 Для трехфазных асинхронных двигателей (АД)

Базовые выражения

Синхронная скорость

$$\omega_0 = \frac{2\pi \cdot f_1}{p} \text{ [p/c]}, \quad n_0 = \frac{60 \cdot f_1}{p} \text{ [об/мин]},$$

$$\omega_0 \approx n_0/9,55.$$
(4.1)

Скольжение АД

$$S = \frac{\omega_0 - \omega}{\omega_0}$$
 или $S = \frac{n_0 - n}{n_0}$. (4.2)

Уравнение для *естеетвенной* МХ

$$M_{e^*} = \frac{2\lambda_{\scriptscriptstyle M} \left(1 + \gamma_e \cdot S_{\scriptscriptstyle Ke}\right)}{\frac{S_{\scriptscriptstyle Ke}}{S} + \frac{S}{S_{\scriptscriptstyle Ke}} + 2\gamma_e \cdot S_{\scriptscriptstyle Ke}},\tag{4.19}$$

где

$$S_{\text{Ke}} = 1, 2 \cdot S_{\text{H}} \left(\lambda_{M} + \sqrt{\lambda_{M}^{2} - 1} \right), \tag{4.22}$$

$$\gamma_e = \frac{R_1}{R_2'}.$$

$$S_{\rm H} = \frac{n_{0e} - n_{\rm H}}{n_{0e}} = \frac{\omega_{0e} - \omega_{\rm H}}{\omega_{0e}}.$$
 (4.25)

Формулы для определения «собственных» сопротивлений силовых цепей АД

Активного в роторе

$$R_2' = \frac{S_{\kappa e} \cdot U_{1\phi H} / I_{1\pi e}}{\sqrt{S_{\kappa e}^2 (1 + 2\gamma_e) + 1}}; \tag{4.27}$$

активного в статоре

$$R_1 = R_2' \cdot \gamma_e; \tag{4.27,a}$$

суммарного индуктивного

$$X_{\kappa} = X_1 + X_2' = \sqrt{\left(\frac{U_{1\phi H}}{I_{1\Pi e}}\right)^2 - \left[R_2' \cdot (1 + \gamma_e)\right]^2}.$$
 (4.28)

Здесь γ_e задано, $S_{{\rm K}e}$ найдено по (4.22).

Формулы для определения добавочных сопротивлений

В цепи ротора и статора АД для ограничения пускового тока до величины

$$I_{1\pi e} = \alpha \cdot I_{1H}$$
,

где $\alpha = 2 \div 25$, заданы:

добавочные активные сопротивления

$$R_{1\text{I}} = R'_{2\text{I}} = \sqrt{\left(\frac{U_{1\text{H}}}{\alpha \cdot I_{1\text{H}}}\right)^2 - X_{\kappa}^2} - R_{\kappa};$$
 (4.38)

добавочные индуктивные сопротивления

$$X_{1\text{I}} = X'_{2\text{I}} = \sqrt{\left(\frac{U_{1\text{H}}}{\alpha \cdot I_{1\text{H}}}\right)^2 - R_{\kappa}^2 - X_{\kappa}},$$
 (4.39)

где $R_{\kappa} = R_1 + R_2'$.

Формулы для искусственных МХ АД и их составляющих (в относительных единицах)

Искусственные МХ

$$M_{*_{\rm H}} = \frac{2M_{*_{\rm KH}} \left(1 + S_{_{\rm KH}} \cdot \gamma_{_{\rm H}}\right)}{\frac{S}{S_{_{\rm KH}}} + \frac{S_{_{\rm KH}}}{S} + 2 \cdot S_{_{\rm KH}} \cdot \gamma_{_{\rm H}}}.$$
 (7.2.1)

Составляющие искусственных МX (в относительных единицах)

Критическое сопротивление

$$S_{\text{\tiny KM}} = \frac{R_2' + R_{2\pi}'}{\sqrt{\left(X_{\kappa} + X_{\pi}\right)^2 \cdot f_{1^*}^2 + \left(R_1 + R_{1\pi}\right)^2}}; \tag{7.2.2}$$

критический момент

$$M_{*_{\text{KM}}} = \frac{M_{*_{\text{KE}}} \left(\frac{U_{1\phi}}{U_{1\phi\text{H}}}\right)^{2} \cdot \left(\sqrt{R_{1}^{2} + X_{\kappa}^{2}} \pm R_{1}\right)}{f_{1*} \left[\sqrt{\left(X_{\kappa} + X_{\pi}\right)^{2} \cdot f_{1*}^{2} + \left(R_{1} + R_{1\pi}\right)^{2}} \pm \left(R_{1} + R_{1\pi}\right)\right]}. \quad (7.2.3)$$

Здесь

$$\gamma_u = \frac{R_1 + R_{1_{\pi}}}{R_2' + R_{2_{\pi}}'};$$

$$f_{1*} = \frac{f_1}{f_{1H}},$$

 $R_{1\text{д}}, \quad R_{2\text{д}}', \quad X_{1\text{д}} = X_{2\text{д}}' = X_{\text{д}}$ определяются по выражениям (4.38), (4.39).

Следует помнить, что добавочные сопротивления и величина f_{1*} вводятся в выражения (7.2.2) и (7.2.3) *только соответственно* условиям задания на расчеты, но *не одновременно*.

6 ВОПРОСЫ ДЛЯ ПРОВЕРКИ ЗНАНИЙ ПО ЭЛЕКТРИЧЕСКИМ МАШИНАМ И ЭЛЕКТРОПРИВОДУ

6.1 Для двигателей постоянного тока с независимым возбуждением (ДПТ НВ)

- 1. Сформулировать центральный закон для ЭМ закон электромагнитной индукции. Его две составляющие части и вза-имосвязь с ними.
- 2. Рассказать об устройстве и принципе действия электромашины постоянного тока.
- 3. Рассказать об основных характеристиках генератора постоянного тока с независимым возбуждением (ГПТ НВ): холостого хода и внешних.
- 4. Нарисовать электрическую принципиальную схему двигателя постоянного тока с независимым возбуждением (ДПТ НВ), пояснить ее составляющие (рис. 2.6).

Примечание: приведенные номера рисунков и формул соответствуют таковым в учебном пособии для ЭМ [1].

- 5. Построить по заданию преподавателя одну из механических характеристик (МХ) ДПТ НВ по выражению (2.18) в относительных единицах.
- 6. Изобразить графически относительно естественной МХ одну из характеристик тормозных режимов (по заданию преподавателя): динамического торможения, торможения противовключением за счет реверса, торможение противовключением при спуске груза, генераторное торможение с рекуперацией энергии в сеть. Участки тормозных режимов выделить жирной линией (см. рис. 2.18 и 2.19 учебного пособия [1]).
 - 7. Как запустить ДПТ НВ?
 - 8. Как среверсировать ДПТ НВ?
- 9. Перечислить способы регулирования скорости ДПТ НВ, какой из них является лучшим и почему?
- 10. Как определить электромеханическую постоянную времени на любой МХ ДПТ НВ?
 - 11. Как определить время торможения выбегом?

6.2 Для трехфазных асинхронных двигателей (АД)

- 12. Пояснить устройство и принцип действия трехфазных АД (рис. 4.1). Почему *асинхронность* (неодинаковость) вращения ротора и магнитного потока статора является центральной основой принципа действия АД?
 - 13. Что есть скольжение АД?
- 14. Что характеризуют показатели критического момента M_{κ} и критического скольжения на МХ АД?
 - 15. Как зависит момент Ад от напряжения статора?
- 16. Способы регулирования скорости АД (перечислить), какой является лучшим и почему?
 - 17. Как запустить АД?
- 18. По заданию преподавателя нарисовать относительно естественной МХ одну из искусственных: при пониженном напряжении статора, при добавочном активном сопротивлении в роторе, при добавочном активном сопротивлении в статоре, при пониженной частоте питающего напряжения.
- 19. Нарисовать МХ динамического торможения АД, как на неё влияют постоянный ток в цепи статора и активное сопротивление в цепи ротора?
- 20. На каких МХ АД можно опускать груз подъемного механизма?
- 21. Какими способами можно перевести АД в генераторный режим с рекуперацией энергии в сеть?
- 22. Как определить длительность свободного торможения (выбегом) АД?

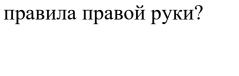
6.3 Для мехзвена двигателей и их характеристик в замкнутых системах регулирования (САР)

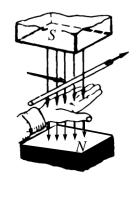
- 23. Почему нужно приводить параметры и величины рабочего механизма (РМ) к валу двигателя?
- 24. Какие законы являются базовыми для формул приведения величин РМ к валу двигателя?
- 25. Влияние передаточного числа мехзвена на приводимые величины.

- 26. Охарактеризовать типовые механические характеристики РМ.
- 27. Пояснить состав и назначение элементов и цепей типовой структуры подчиненного регулирования электромеханической системы (ЭМС).
- 28. В чем сущность настройки ЭМС на технический и симметричный оптимумы (ТО и СО)?
- 29. Типовые механические характеристики ЭМС и влияние на них регуляторов скорости и момента классов П, ПИ, ПИД.
- 30. Уравнение движения ЭМС, его составляющие величины, использование в инженерной практике.

7 ПРИМЕРЫ ТЕСТОВЫХ ВОПРОСОВ ПО ЭЛЕКТРИЧЕСКИМ МАШИНАМ И ЭЛЕКТРОПРИВОДУ

1 Электрическая машина – это


	1
1	совокупность конструктивно объединенных и перемещае-
	мых относительно друг друга элементов
2	электромеханическое устройство, осуществляющее преобра-
	зование механической энергии в электрическую
3	электромеханическое устройство, осуществляющее преобра-
	зование электрической энергии в механическую
4	электромеханическое устройство, осуществляющее взаим-
	ное преобразование механической и электрической энергии


2. Какое физическое явление поясняет рисунок?

<u> </u>	
1	Явление возникновения силы, действующей на проводник с
	током
2	Явление возникновения продольной силы, действующей на
	движущейся проводник
3	Явление возникновения ЭДС в движущемся проводнике
4	Явление возникновения тока в движущемся проводнике

3. Какая ошибка допущена при пояснении

1	Неверно расположена ладонь: силовые линии должны
	входить в тыльную сторону ладони
2	Неверно расположена ладонь: большой палец необходимо
	совместить с направлением силовых линий магнитного
	поля
3	Неверно расположена ладонь: с направлением перемеще-
	ния необходимо совмещать 4 вытянутых пальца
4	Неверно указаны полюса магнитного поля: силовые линии
	должны выходить из северного полюса N и входить в юж-
	ный полюс S

4. Пересчет скорости n [об/мин] в скорость ω [рад/с] производится по формуле:

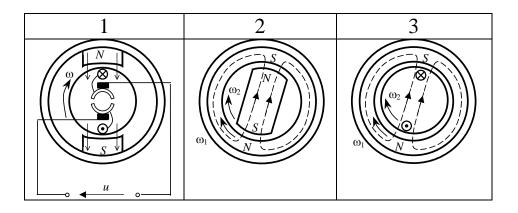
	1 1 2
1	$\omega = n / 60$
2	$\omega = n \cdot \pi$
3	$\omega = n \cdot \pi / 60$
4	$\omega = n \cdot 2\pi / 60$
5	$\omega = n \cdot 2\pi \cdot 60$
6	$\omega = n \cdot 9,55$
7	$\omega = n/9,55$

5. Вращающееся магнитное поле создается системой переменного тока

1	Однофазной
2	Только двухфазной
3	Только трехфазной
4	Многофазной

6. По способу включения обмотки возбуждения электрические машины подразделяются на

1	Электрические машины с магнитным и электромагнитным
	возбуждением
2	Электрические машины с независимым, последователь-
	ным, параллельным и смешанным возбуждением
3	Коллекторные и бесколлекторные
4	Машины постоянного и переменного тока


7. По способу создания магнитного потока электрические машины подразделяются на

1	Электрические машины с магнитным и электромагнитным
	возбуждением
2	Электрические машины с независимым, последователь-
	ным, параллельным и смешанным возбуждением
3	Коллекторные и бесколлекторные
4	Машины постоянного и переменного тока

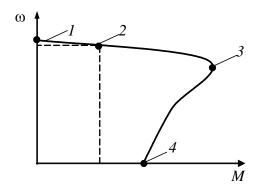
8. На каком рисунке изображено условное графическое обозначение асинхронной электрической машины?

1	2	3	4	5	6	7
						$C \longrightarrow OB$

9. Какой из рисунков иллюстрирует устройство и принцип действия асинхронного двигателя?

10. Чему равна частота вращения магнитного поля статора асинхронного двигателя в об/мин?

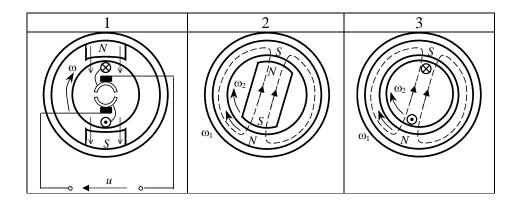
1	2	3	4
60 f	60 <i>f</i>	$2\pi f$	$2\pi f$
	p	p	


11. Дан трехфазный асинхронный двигатель с номинальными данными:

Питающее напряжение -220 В; частота питающего напряжения -50 Гц; номинальная скорость -2800 об/мин; номинальная мощность -15 кВт. Чему равна синхронная скорость (скорость вращения магнитного поля статора) данного двигателя?

1	2	3	4	5
2000	2500	3000	3500	4000

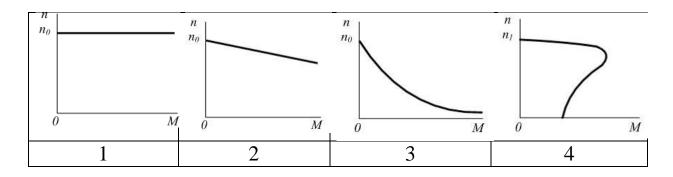
12. Какая из точек на графике механической характеристики соответствует моменту начала пуска в ход электродвигателя?


- 1. точка 1
- 2. точка 2
- 3. точка 3
- 4. точка 4
- 5. ни одна из указанных

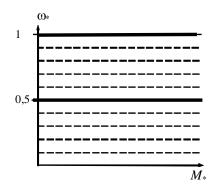
13. На каком рисунке изображено условное графическое обозначение синхронной электрической машины?

1	2	3	4	5	6	7
				-m-{ (D		$C \longrightarrow OB$

14. Какой из рисунков иллюстрирует устройство и принцип действия синхронного двигателя?

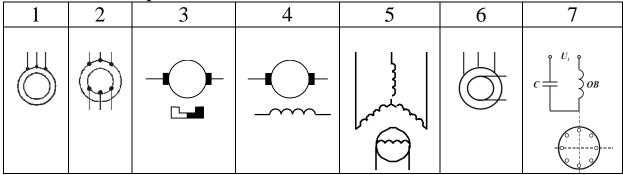


15. Дан трехфазный синхронный двигатель с номинальными данными:


Питающее напряжение — 220 В; частота питающего напряжения — 50 Γ ц; номинальная скорость — 1500 об/мин; номинальная мощность — 10 кВт. Сколько пар полюсов имеет данный двигатель?

1	2	3	4	5	6	7	8	9	10
1	2	3	4	5	6	7	8	9	10

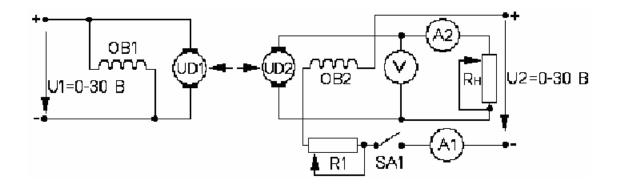
16. На каком рисунке изображена механическая характеристика синхронного двигателя?



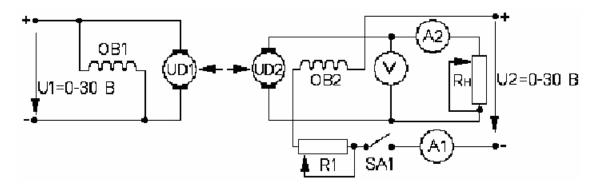
17. Искусственная механическая характеристика синхронного двигателя, изображенная на рисунке, соответствует

1	пониженному напряжению питания
2	повышенному напряжению питания
3	пониженной частоте питающего напряжения
4	повышенной частоте питающего напряжения

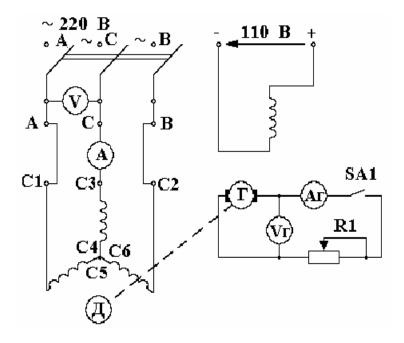
18. На каком рисунке изображено условное графическое обозначение электрической машины постоянного тока?

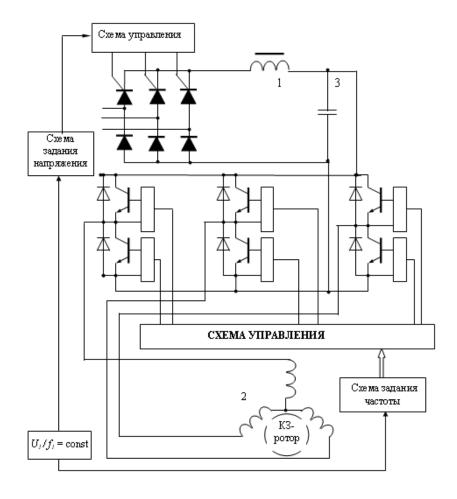

19. Обязательным элементом выпрямителя является:

1	трансформатор
2	вентильный блок
3	сглаживающий фильтр


20. Преобразователь постоянного напряжения в переменное называется:

1	трансформатор
2	выпрямитель
3	инвертор
4	генератор
5	двигатель


- 21. На рисунке приведена схема для исследования электромашинного генератора постоянного тока независимого возбуждения. Какой из приборов служит для измерения тока обмотки возбуждения генератора?
 - Амперметр А1
 - Амперметр А2
 - Вольтметр V
 - На схеме нет такого прибора


22. На рисунке приведена схема для исследования электромашинного генератора постоянного тока независимого возбуждения. Какой из приборов служит для измерения тока якоря двигателя?

- Амперметр А1
- Амперметр А2
- Вольтметр V
- На схеме нет такого прибора
- 23. На рисунке приведена схема для исследования характеристик асинхронного двигателя. Какой из приборов служит для измерения тока статора двигателя?

- Амперметр А
- Амперметр Аг
- Вольтметр V
- Вольтметр Vг
- 24. Для чего может служить схема, изображенная на рисунке?
 - Для управления асинхронным двигателем с фазным ротором
 - Для управления асинхронным двигателем с короткозамкнутым ротором
 - Для управления двигателем постоянного тока
 - Для управления синхронным двигателем

25. Вы нашли информацию о двигателях, приведенную ниже. Сколько двигателей из приведенных в таблице имеют 4 полюса?

Назначение и эксплуатационные характеристики электродвигателя A4

Электродвигатели асинхронные А4 с короткозамкнутым ротором предназначены для привода механизмов, не требующих регулирования частоты вращения (насосов, вентиляторов, дымососов и др.). В двигателях установлены подшипники качения с пластической смазкой. Контроль температуры подшипников осуществляется термопреобразователями сопротивления

По требованию заказчика электродвигатели могут быть изготовлены: на другие мощности, напряжение и частоту сети, а также для работы в условиях тропического климата с учетом требований контракта.

Структура обозначения А4-450У-12У3

А - Асинхронный трехфазный электродвигатель с короткозамкнутым ротором;

4 - номер серии;

355, 400, 450 - габарит (высота оси вращения, мм);

Х, У, ХК, УК - условная длина станины;

4, 6, 8, 10, 12 - ЧИСЛО ПОЛЮСОВ;

У3 - климатическое исполнение.

Таблица 1. Основные технические характеристики двигателей А4

Типоразмер Мо	ощность, кВ [.]	т Напряжение, В	астота вращения (синх об/мин	р.), КПД, %	scos ф1	Масса, кг
А4-400XK-4У3	400	<u> </u>		94,2		2190
A4-400X-4У3	500		1500	94,7	0,87	2330
А4-400У-4У3	630			95,1		2630
А4-400XK-6У3	315			93,6	0,84	2220
A4-400X-6У3	400		1000	94,0	0,86	2380
А4-400У-6У3	500	6000		94,4	0,85	2650
A4-400X-8У3	250	8000	750	93,4	0,84	2340
А4-400У-8У3	315		750	93,8	0,85	2610
А4-400У-10У3	250		600	92,5	0,77	2590
A4-450X-4У3	800		1500	92,0	0,88	2580
А4-450У-6У3	800		1000	95,0	0,86	3050
А4-450У-8У3	630		750	94,5	0,83	3250

- 1
- 2
- 3
- 4

26. Вы нашли информацию о двигателях, приведенную ниже. Сколько двигателей из приведенных в таблице имеют 4 пары полюсов?

Назначение и эксплуатационные характеристики электродвигателя А4

Электродвигатели асинхронные A4 с короткозамкнутым ротором предназначены для привода механизмов, не требующих регулирования частоты вращения (насосов, вентиляторов, дымососов и др.). В двигателях установлены подшипники качения с пластической смазкой. Контроль температуры подшипников осуществляется термопреобразователями сопротивления

По требованию заказчика электродвигатели могут быть изготовлены: на другие мощности, напряжение и частоту сети, а также для работы в условиях тропического климата с учетом требований контракта.

Структура обозначения А4-450У-12У3

- А Асинхронный трехфазный электродвигатель с короткозамкнутым ротором;
- 4 номер серии;
- **355, 400, 450** габарит (высота оси вращения, мм);
- Х, У, ХК, УК условная длина станины;
- 4, 6, 8, 10, 12 ЧИСЛО ПОЛЮСОВ;
- y_3 климатическое исполнение.

Таблица 1. Основные технические характеристики двигателей А4

Типоразмер М	ощность, кВт	Напряжение,	Частота вращения (синхр об/мин	o.), КПД, %	Scos ф1	Масса, кг
A4-400XK-4У3	400			94,2		2190
A4-400X-4У3	500		1500	94,7	0,87	2330
A4-400Y-4Y3	630			95,1		2630
А4-400XK-6У3	315			93,6	0,84	2220
A4-400X-6У3	400		1000	94,0	0,86	2380
А4-400У-6У3	500	/000		94,4	0,85	2650
A4-400X-8У3	250	6000	750	93,4	0,84	2340
А4-400У-8У3	315		750	93,8	0,85	2610
А4-400У-10У3	250		600	92,5	0,77	2590
A4-450X-4У3	800		1500	92,0	0,88	2580
А4-450У-6У3	800		1000	95,0	0,86	3050
А4-450У-8У3	630		750	94,5	0,83	3250

- 1
- 2
- 3
- 4

27. Вы производите поиск информации о двигателе серии 5АИ. Чему равен пусковой ток двигателя без токоограничения?

Характеристики электродвигателя 5АИ 56 В4 ІМ1001

- 0,73 A
- 2,1 x 0,73 A
- 2,2 x 0,73 A
- 4,4 x 0,73 A
- 28. Вы нашли информацию о двигателях, приведенную ниже. Сколько двигателей из приведенных в таблице имеют синхронную скорость 1000 об/мин?

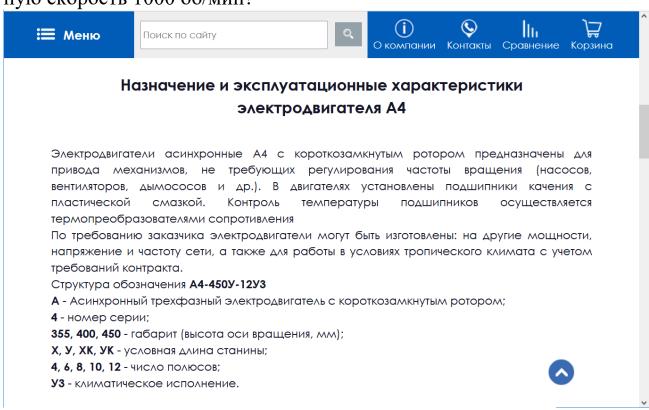


Таблица 1. Основные технические характеристики двигателей А4

			частота вращения (синхр об/мин	p.).		
Типоразмер М	ощность, кВ	т Напряжение, В	об/мин	′′КПД, %	cos ф1	Масса, кг
А4-400XK-4У3	400			94,2		2190
A4-400X-4У3	500		1500	94,7	0,87	2330
A4-400Y-4Y3	630			95,1		2630
А4-400XK-6У3	315			93,6	0,84	2220
A4-400X-6У3	400		1000	94,0	0,86	2380
А4-400У-6У3	500	4000		94,4	0,85	2650
A4-400X-8У3	250	6000	750	93,4	0,84	2340
А4-400У-8У3	315		750	93,8	0,85	2610
А4-400У-10У3	250		600	92,5	0,77	2590
A4-450X-4У3	800		1500	92,0	0,88	2580
А4-450У-6У3	800		1000	95,0	0,86	3050
А4-450У-8У3	630		750	94,5	0,83	3250

- 1
- 2
- 3
- 4
- 29. Какие режимы работы опасны для двигателя при проведении экспериментальных исследований?
 - все ответы правильные;
 - Ток двигателя превышает допустимое значение;
 - Скорость двигателя превышает допустимое значение;
 - Момент двигателя превышает допустимое значение;
- 30. Какие режимы работы опасны для генератора независимого возбуждения при проведении экспериментальных исследований?
 - режим короткого замыкания;
 - Режим холостого хода;
 - Обрыв цепи обмотки возбуждения;
 - Обрыв цепи обмотки якоря;

8 УЧЕБНО-МЕТОДИЧЕСКИЕ МАТЕРИАЛЫ ПО ЭЛЕКТРИЧЕСКИМ МАШИНАМ И ЭЛЕКТРОПРИВОДУ

Основная литература

1. Обрусник В.П. Электрические машины: Учебное пособие. — Томск: ТУСУР, 2007 — 207 с.

Дополнительная литература

- 2. М. М. Кацман. Электрические машины. М.: Академия, $2012.-496\ c.$
- 3. Электрические машины / А. П. Епифанов, Г. А. Епифанов. СПб.: Лань, 2017. 300 с.[Электронный ресурс]: Режим доступа https://e.lanbook.com/reader/book/95139/#2 (дата обращения: 1.11.2023).
- 4. Уваров С.С. Технические средства автоматизации и управления. Электродвигатели: учебное пособие / С.С. Уваров. Москва: РУТ (МИИТ), 2021. 143 с. Текст: электронный // Лань: электронно-библиотечная система.[Электронный ресурс]: Режим доступа: https://e.lanbook.com/book/269633 (дата обращения: 1.11.2023).
- 5. Кацман М.М. Электрические машины. М.: Высшая школа, 1990. 463 с.
- 6. Ключев В.И. Теория электропривода. М.: Энергия, $2004. 580 \,\mathrm{c}.$
- 7. Москаленко В.В. Электрический привод. М.: Энергоатомиздат, 1991. 316 с.
- 8. Справочник по электрическим машинам. В 2-х т. / Под ред. И.П. Копылова и Б.К. Клокова. М.: Энергоатомиздат, 1988. T.1. 456 с.
- 9. Справочник по электрическим машинам. В 2-х т. / Под ред. И.П. Копылова и Б.К. Клокова. М.: Энергоатомиздат, 1988. T.2. 688 с.
- 10. Юферов Ф.М. Электрические машины атоматических устройств. М.: Высшая школа, 1988. 479 с.