МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ

ТОМСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ СИСТЕМ УПРАВЛЕНИЯ и РАДИОЭЛЕКТРОНИКИ (ТУСУР)

Кафедра сверхвысокочастотной и квантовой радиотехники (СВЧиКР)

Оптоэлектронные и квантовые приборы и устройства

УСТРОЙСТВО ВВОДА ИНФОРМАЦИИ В ОПТИЧЕСКУЮ СИСТЕМУ

Методические указания к лабораторной работе для студентов специальности 210401 - Физика и техника оптической связи

2011

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ

ТОМСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ СИСТЕМ УПРАВЛЕНИЯ И РАДИОЭЛЕКТРОНИКИ (ТУСУР)

Кафедра сверхвысокочастотной и квантовой радиотехники (СВЧиКР)

УТВЕРЖДАЮ Зав. каф. СВЧиКР _____ С.Н.Шарангович «____»____2011.

Оптоэлектронные и квантовые приборы и устройства

УСТРОЙСТВО ВВОДА ИНФОРМАЦИИ В ОПТИЧЕСКУЮ СИСТЕМУ

Методические указания к лабораторной работе для студентов специальности 210401 - Физика и техника оптической связи

Разработчик: Доц. Каф. СВЧиКР

_____Г.Г.Кущ

СОДЕРЖАНИЕ

1. ЦЕЛЬ РАБОТЫ	4
2. ВВЕДЕНИЕ	4
3. ОСНОВНЫЕ ВОПРОСЫ ТЕОРИИ	5
3.1.Устройство акустооптического модулятора	8
3.2.Дифракция света на ультразвуковых волнах	8
3.3.Основные характеристики и параметры АОМ	10
4. РАСЧЕТНАЯ ЧАСТЬ	13
5. ЛАБОРАТОРНОЕ ЗАДАНИЕ	17
6. СОДЕРЖАНИЕ ОТЧЕТА	19
7. КОНТРОЛЬНЫЕ ВОПРОСЫ	
СПИСОК ЛИТЕРАТУРЫ	
ПРИЛОЖЕНИЕ А	

1. ЦЕЛЬ РАБОТЫ

Ознакомление студентов с принципом действия и важнейшими характеристиками акустооптического модулятора света (AOM), используемого в качестве устройства ввода в оптическую систему обработки информации.

2. ВВЕДЕНИЕ

Оптические методы обработки информации нашли в настоящее время широкое применение. Основная сущность этих методов заключается в том, что подлежащая обработке информация записывается на оптический транспарант в виде функции пропускания или изменения показателя преломления, а затем зондируется когерентным или некогерентным пучком света. Анализ светового изображения, полученного после транспаранта и преобразованного оптической системой, дает параметры исследуемого соотношения.

Основными достоинствами оптических систем является:

1) Большая информационная ёмкость.

изображение содержит Оптическое две или три независимых переменных, (координаты) в то время, как электрический сигнал имеет только одну независимую переменную – время. Поэтому информационная оптического сигнала некоторого изображения, ёмкость В виде значительно больше объёма информации, передаваемого за время Δt передаваемого за то же время электрическим сигналом.

Пример: информация о телевизионном кадре передаётся за 40 мсек. Если смена кадра производится за 1 мкс., то выигрыш в количестве

передаваемой информации составит 4×10^4 .

2) Многоканальность.

Поскольку оптическое изображение зависит от нескольких переменных, то одна из них служит в качестве независимой переменной (информативной), а вторая – в качестве параметра, определяющего номер канала. В этом случае обработка информации ведется параллельно по многим каналам.

Пример: если размер фотографического кадра составляет 36 мм, а ширина дорожки одного канала составляет 100 мкм, то число параллельных каналов составит 360.

3) Высокое быстродействие.

Быстродействие РЛС с оптической обработкой информации -10^{12} - 10^{14} Бт/с, с электронной -10^{6} - 10^{8} . Оптические системы обладают высоким быстродействием, поскольку в принципе скорость обработки информации определяется скоростью света. Так операция двумерного преобразования Фурье, осуществляемая обычной сферической линзой, выполняется за

время распространения света в системе. При длине оптической системы 30 см время обработки = 1 нс.

На практике скорость обработки ограничивается скоростью ввода и вывода информации в оптическую систему. Тем не менее, оптические вычислительные системы оказываются более производительными по сравнению с лучшими ЭВМ в 10³-10⁴ раз.

С помощью оптических систем достаточно просто выполняются операции умножения, интегрирования, преобразования Фурье, Френеля, Гильберта, вычисление функций корреляции, свёртки и т.д. Оптические устройства делятся на когерентные и некогерентные. В некогерентных системах используются некогерентные источники света. В когерентные источники – квантовые генераторы

3. ОСНОВНЫЕ ВОПРОСЫ ТЕОРИИ

Структурная схема систем оптической обработки сигналов приведена на рис. 3.1.

Рис. 3.1 – источник света; 2 – преобразователь входных сигналов в оптический аналог; 3 – оптическое вычислительное устройство; 4 – преобразователь выходного сигнала; 5 – источник информации; 6 – получатель информации.

Для выполнения заданного алгоритма обработки на аналоговое оптическое вычислительное устройство поступают оптические сигналы, в которых закодирована информация, выдаваемая источником информации (рис. 3.2). Преобразование электрических сигналов в оптические выполняется преобразователем входных сигналов в оптический аналог. После выполнения заданного алгоритма обработки аналоговое оптическое вычислительно устройство формирует на выходе системы распределения комплексных амплитуд и фаз света, в которых содержатся результаты обработки сигналов, поступающих от источника информации.

Преобразователь входных сигналов является устройством ввода информации (транспорант) в оптическую обрабатывающую систему, поэтому требования к нему во многом зависят от тех требований, которые предъявляются к системе обработки информации. Например, при

системы, предназначенной разработке оптической для обработки сигналов, поступающих на антенную решетку, требования к устройствам определяться характеристиками РЛС: ввода будут дальностью обнаружения, разрешающей способностью по направлению, полосой пропускания, динамическим диапазоном (ДД) обрабатываемых сигналов, образом, устройство ввода быстродействием. Таким должно быть многоканальным (50 – 100 канал), иметь высокую чувствительность, широкую полосу пропускания (десятки МГц), идентичные характеристики отдельных каналов, низкий уровень собственных шумов, большой ДД обрабатываемых сигналов (не менее 40дБ). В качестве устройств ввода применяются различные типы пространственно-временных модуляторов света, принцип работы которых основан на взаимодействии света с динамическими неоднородностями, реализуемыми различными физическими эффектами в твердых и жидких веществах. Для модуляции света используются электро и магнитооптические эффекты, явления фотоупругости и фоторефракции, рассеяния света и др. На основе явления фотоупругости созданы АОМ света, которые находят широкое применение в оптических системах.

Рисунок 3.2. Функциональная схема АОАС

3.1. Устройство <u>акустооптического</u> модулятора

Для работы в реальном масштабе времени в качестве транспарантов используют различные быстродействующие пространственные модуляторы света (рис.3.3). Наибольшее распространение в настоящее время получили акустооптические модуляторы, принцип действия которых основан на явлении дифракции

света на ультразвуковых колебаниях. Модулятор света работает следующим образом. Входной сигнал **S**(t), помошью с пьезоэлектрического преобразователя 1, возбуждает в прозрачном для (светозвукопровод), образце 2 упругие колебания света распространяющиеся в нём со скоростью υ. В силу конечности υ поверхности, колебания. возникшие которой расположен V на преобразователь, (х = 0) в момент времени t достигнут точки с координатой х внутри образца с некоторым запаздыванием, равным $t_0 = \frac{x}{x^2}$.

Поэтому величина колебаний в различных точках

Рисунок 3.3. Устройство АОМ

образца для фиксированного момента времени будет пропорциональна

 $S(t-\frac{x}{\vartheta})$.

Таким образом, зависимость величины колебаний от координаты х будет повторять временную зависимость входного сигнала S(t). Возникновение упругих колебаний в образце приводит к изменению его показателя преломления. Для изотропной среды:

$$n = n_0 + \Delta n = n_0 + \frac{n_0^3 P U}{2},$$

где Р - эффективный фотоупругий коэффициент, U - величина деформации среды.

Так как величина деформации изменяется от точки к точке, то показатель преломления образца также будет промодулирован по закону изменения входного сигнала.

Поскольку скорость звуковой волны $\vartheta = (3-10)10^3$ м\с много меньше (на 5 пор.) скорости света в среде, то можно считать, что в каждый момент времени свет будет взаимодействовать с неподвижной средой, у которой коэффициент преломления меняется от точки к точке. Оптические лучи, проходящие через различные участки модулятора, испытывают различные фазовые сдвиги

$$\Psi(x) = \frac{2\pi}{\lambda} n(x)d \tag{3.1}$$

Таким образом, световая волна, выходящая из модулятора, представляет собой пространственно-модулированную по фазе волну, отображающую форму входного сигнала. Амплитудную характеристику или пропускание модулятора тогда можно записать следующим образом:

$$T_E(x) = P_D(x)e^{-i\Psi(x)}$$

3.2. Дифракция света на ультразвуковых волнах.

Дифракция света на ультразвуковых волнах (УЗВ) была впервые предсказана Бриллюэном и независимо от него Мандельштамом, а экспериментально обнаружена спустя несколько лет Дебаем и Сирсом, Люка и Бикаром. Различают два вида (режима) дифракции, которые отличаются разными дифракционными спектрами: Рамана – Ната и Брэгга.

Дифракция Рамана – Ната наблюдается на низких частотах при небольшой длине взаимодействия (глубине акустического поля). При нормальном падении света, т.е. параллельно волновому фронту звуковой волны. Дифракционный спектр Рамана – Ната (Р – Н) представляет собой расположенные симметрично по обе стороны от прошедшего пучка равностоящие друг от друга дифракционные максимумы. При наклонном падении света интенсивность *тах* уменьшается, но их угловые направления остаются неизменными (см. рис. 3.4).

Направления дифракционных максимов можно найти из соотношения [1]:

$$\sin \Theta_m = \frac{m \cdot \lambda_o}{\Lambda_o},$$

где $m = 0; \pm 1; \pm 2; ...$ - номер дифракционного *max*;

λ_о – длина световой волны в веществе;

Λ_о – длина звуковой волны;

Рисунок 3.4. Ход лучей при дифракции Рамана – Ната

1 – падающий свет; 2 – звукопровод; 3- звуковая волна; 4 – пьезопреобразователь; 5 – дифракционный *max* m – го порядка; 6 – экран; ℓ - длина взаимодействия (апертура акустической волны); Λ_0 – длина звуковой волны; d – толщина пьезопреобразователя; Θ_m – угол отклонения дифрагированного луча.

Интенсивность света в m – том дифракционном максимуме определяется по формуле:

$$\mathbf{J}_{\mathrm{m}} = \mathbf{J}_{\mathrm{o}} \cdot \mathbf{I}_{\mathrm{m}}^{2} \cdot (\Delta \Phi),$$

где J_о – интенсивность света падающего луча;

I_m – функция Бесселя m – го порядка;

 $\Delta \Phi$ – аргумент функции Бесселя.

Частота света в m – ом максимуме, сдвинута относительно частоты падающего света ω на величину, пропорциональную акустической частоте $f_{\rm o}$, и равна $\omega + {\rm m} f_{\rm o}$.

О дифракции Брэгга говорят в том случае, когда дифракционный спектр состоит из 2 максимумов, соответствующих значениям m = 0; m = 1 (рис. 3.5). Дифракционные max - 1 и высших порядков отсутствуют.

Интенсивность первого максимума будет наибольшей, если свет падает под углом к волновому фронту акустической волны, удовлетворяющим условие Брэгга:

$$\sin\Theta_{\rm B} = \frac{\lambda_{\rm o}}{2\Lambda_{\rm o}} n$$
,

где $\Theta_{\rm E}$ – угол Брэгга; n – показатель преломления среды.

Дифракция Брэгга имеет место на высоких частотах при большой длине взаимодействия света с акустической волной.

Физическая интерпретация этих 2 – х различных типов дифракций состоит в следующем [2]: при λ_0 = const на низких звуковых частотах (при малой длине взаимодействия ℓ) направление распространения падающего света внутри области взаимодействия остается прямолинейным и оптическая неоднородность среды, связанная с изменением показателя преломления n влияет только на фазу света, прошедшего через акустический столб. Для света роль акустической волны в этом случае сводится к созданию, движущейся со скоростью акустической волны, фазовой решетки с периодом, равным периоду звуковой волны. Такая ситуация соответствует дифракции Рамана – Ната.

Рисунок 3.5. Ход лучей при дифракции Брэгга

1 – падающий свет; 2 – звукопровод; 3 – звуковая волна; 4 – пьезопреобразователь; 5 – дифрагированный свет; 6 – прошедший свет; L – толщина звукопровода (значение базы АОЯ).

При увеличении акустической частоты f_0 (либо длины взаимодействия ℓ) направление распространения падающего света нельзя считать прямолинейным, а возникшую фазовую структуру – только фазовой решеткой. Свет испытывает как фазовые, так и амплитудные возмущения и постепенно происходит переход от дифракции на фазовой решетке (дифракция Рамана - Ната) к рассеянию на объемной периодической структуре (дифракция Брэгга). В переходной области между режимами Рамана – Ната и Брэгга при падении света под углом Брэгга помимо первого максимума наблюдаются дифракционные максимумы высших порядков. Максимум интенсивности имеет брэгговский (первый) максимум. На ВЧ акустооптические взаимодействия приобретают целиком объемный характер, и происходит селективное отражение света под углом

Брэгга от движущейся периодической структуры, созданной ультразвуковой волной.

Таким образом, вид дифракции зависит от величины безразмерного параметра

$$\Theta = \frac{2 \cdot \pi \cdot \ell \cdot \lambda_{o}}{\Lambda_{o}^{2}}, \qquad (3.2)$$

где ℓ – длина звукового столба.

При $\Theta << 1 -$ имеет место дифракция Рамана – Ната.

При $\Theta >> 1$ – дифракция Брэгга. Значение $\Theta \approx 1$ соответствует переходной области. Однако иногда [3] отмечается, что эти условия являются достаточно сильными уже при $\Theta \leq 0,3$ для дифракции Рамана – Ната, и при $\Theta \geq 4\pi$ для дифракции Брэгга (исключение составляют НЧ процессоры). Но иногда для АО устройства условие $\Theta \geq 4\pi$ не выполняется. Тем не менее, часто представляется возможным пренебречь интенсивностью высших дифракционных порядков по сравнению с интенсивностью первого и описывать характеристики этого прибора в предположении брэгговской дифракции.

3.3. Основные характеристики и параметры АОМ

3.3.1. Частотная характеристика АОМ

Под частотной характеристикой AOM следует понимать зависимость интенсивности дифрагированного максимума (в относительных единицах) от частоты подаваемого на ячейку ВЧ сигнала.

Пусть E(x) профиль амплитуды луча лазера в центре модулятора, x – направление распространения акустической волны. Оптический луч света можно представить в виде суперпозиции плоских волн:

$$E(x) = \int_{-\pi}^{\pi} A_{f}(\Theta) exp\left(j\frac{2 \cdot \pi \cdot n}{\lambda_{o}}\right) sin\Theta_{x} d\Theta,$$

где А_f – угловой спектр;

 Θ – угол, под которым распространяется плоская волна.

Допустим, что падающий пучок света имеет гауссово распределение. Тогда:

$$|\mathbf{E}(\mathbf{x})|^{2} = \mathbf{I}_{o} \exp\left(-2 \cdot \mathbf{x}^{2} / \mathbf{W}_{o}^{2}\right),$$

 W_o – радиус перетяжки лазерного пучка на уровне $\frac{1}{e^2}$ от максимальной интенсивности.

Тогда интенсивность выходного оптического пучка, соответствующая частоте звукового сигнала, равна:

$$I(f) = \frac{I_{o}}{2} + I_{o} \left\{ J_{1} \left(\frac{\boldsymbol{\alpha} \cdot \boldsymbol{\pi}}{2} \right) \exp \left(-\frac{\boldsymbol{\pi}^{2} \cdot f^{2} \cdot \boldsymbol{\tau}^{2}}{8} \right) \cos(2 \cdot \boldsymbol{\pi} \cdot f \cdot t) + \right. \\ \left. + \sum_{n=1}^{\infty} (-1)^{n} \cdot J_{2n+1} \left(\frac{\boldsymbol{\alpha} \cdot \boldsymbol{\pi}}{2} \right) \cdot \exp \left[-(2 \cdot n \cdot t)^{2} \frac{\boldsymbol{\pi}^{2} \cdot f^{2} \cdot \boldsymbol{\tau}^{2}}{8} \right] \cdot \cos[(2 \cdot n + 1)2 \cdot \boldsymbol{\pi} \cdot f \cdot t] \right\},$$
(3.3)

где $\tau = \frac{2 \cdot W_o}{v_{sp}}$ - время, за которое акустическая волна

пересекает область перетяжки оптического пучка на уровне $\frac{1}{e^2}$;

- f частота модуляции;
- α индекс модуляции;
- $J_1 \phi$ ункция Бесселя.

В выражении (3.3) J₁ – полезный модулированный сигнал. Линейность модуляции определяется функцией Бесселя, а модуляционная частотная характеристика – экспоненциальным множителем. Остальные члены определяют гармоники, генерируемые при акустическом взаимодействии.

Рисунок 3.6. Частотная модуляционная характеристика при аналоговой акустооптической модуляции

 I_1 – интенсивность дифракционного максимума на данной частоте; I_0 – интенсивность недифрагированного света.

Имея частотную характеристику, можем определить:

- 1) эффективность дифракции η
- 2) спад частотной характеристики

$$\beta = 10 \lg \left[\exp \left(-\frac{\pi^2 \cdot f_o^2 \cdot \tau^2}{8} \right) \right]$$
(3.4)

3)ширину полосы модуляции

$$\delta f = \frac{c}{\pi} \cdot \frac{\sqrt{\beta}}{\tau}, \qquad (3.5)$$

 Γ де с ≈ 1,4 – const

3) радиус перетяжки оптического пучка

$$W_{o} = \frac{c \cdot v_{_{3B}} \cdot \sqrt{\beta}}{2 \cdot \pi \cdot \delta f}, \qquad (3.6)$$

4) время, за которое акустическая волна пересекает световой пучок

$$\tau = \frac{D}{v_{_{3B}}},\tag{3/7}$$

где D-диаметр входного пучка

5) параметр, связывающий ширину полосы модуляции с частотой модуляции

$$\mathbf{R} = \frac{1.4 \cdot \boldsymbol{\eta} \cdot \sqrt{\boldsymbol{\beta} \cdot \boldsymbol{\upsilon}_{_{3B}}}}{4 \cdot \boldsymbol{\delta} \mathbf{f} \cdot \boldsymbol{\lambda}_{_{o}}} \cdot \frac{1}{\mathbf{f}_{_{3B}} \cdot \boldsymbol{\ell}},$$

где η – эффективность дифракции

6) параметр взаимодействия акустической и световой волн

$$\mathbf{Q} = \frac{2 \cdot \boldsymbol{\pi} \cdot \boldsymbol{\lambda}_{o}}{\boldsymbol{\eta} \cdot \boldsymbol{v}_{_{3B}}^2} \cdot \ell \cdot \mathbf{f}_{_{3B}}$$

3.3.2. Эффективность дифракции

Одним из основных параметров АОМ является количество света, дифрагирующего в первый дифракционный максимум. Характеристикой этого параметра является эффективность дифракции η , под которой обычно понимают отношение интенсивности дифрагированного света I_{α} к интенсивности падающего I_0 в невозмущенной среде. Тогда выражение для эффективности дифракции удобно представить в виде

$$\eta = \eta_m \frac{Sin^2 \left[\frac{\pi l \lambda_{cs}}{2v^2_{a\kappa} n} (f_0 + \Delta f) \Delta f \right]}{\left[\frac{\pi l \lambda_{cs}}{2v^2_{a\kappa}} (f_0 + \Delta f) \Delta f \right]^2},$$
(3.9)

где $\eta_m = \frac{1}{54} (\frac{\lambda c_{\theta}}{\lambda_{a\kappa}})^2 M_2 P_a \frac{l}{h}$ -максимальная эффективность дифракции

(при выполнении условия Брэгга);

 P_a – акустическая мощность в Вт, λ – в мкм;

h – высота преобразователя;

$$M_{2} = \frac{n_{o}^{0} \cdot p^{2}}{c \cdot x_{a\kappa}^{3}} -$$
коэффициент добротности материала;

*n*_o – показатель преломления среды;

p- упругооптический коэффициент;

ρ – плотность материала;

 $\upsilon_{a\kappa}$ – скорость звука в среде

Р_а- требуемая акустическая мощность исходя из заданных геометрических размеров и типа звукопровода

$$P_{a\kappa} = \frac{1}{2} \cdot \frac{\lambda^2_0 \cdot h}{M_2 \cdot l}$$
(3.10)

Зная акустическую мощность можно определить электрическую входную мощность-с помощью следующего выражения

$$\mathbf{P}_{a\kappa} = k^2 P_{\mathfrak{N}.\mathfrak{G}\mathfrak{X}} \tag{3.11}$$

где *k* - коэффициент электромеханической связи материала пьезослоя.

3.3.3. Быстродействие АОМ

Быстродействие устройства ввода определяется либо максимальным числом *бит*, вводимых в систему обработки информации за 1 с, либо минимальным временем ввода аналогового сигнала в устройство обработки τ:

$$\tau = \frac{\mathrm{D}}{v_{_{3\mathrm{B}}}},\tag{3.12}$$

где D – апертура входного светового пучка;

υ_{зв} – скорость звука, с которой распространяется акустическая волна в среде. Эту величину можно определить как:

$$v_{_{3B}} = \frac{\mathbf{n} \cdot \mathbf{F} \cdot \boldsymbol{\lambda}_{_{0}} \cdot \mathbf{f}_{_{3B}}}{\mathbf{d}_{_{n}}}, \qquad (3.13)$$

где λ_0 – длина волны светового пучка;

n – порядковый номер дифракционного максимума;

F – фокусное расстояние линзы;

 $f_{_{3B}}$ — частота акустической волны, на которой наблюдается дифракция;

d_n – расстояние между основным (не дифрагированным) и дифрагированным пучком света.

Быстродействие АОМ можно охарактеризовать и как время нарастания импульса t_r с 10% до 90% от максимального:

$$t_r = \frac{\tau}{1.5}$$
 (3.14)

4. РАСЧЕТНАЯ ЧАСТЬ

4.1. Рассчитать геометрические и электрические параметры АОМ

Рисунок.4.1. Геометрия АОМ

-----Расчёт геометрических размеров пьезопреобразователя

Основной функцией, выполняемой пьезопреобразователем, является возбуждение ультразвуковой волны в материале звукопровода. При этом возникают вопросы эффективной трансформации электрической энергии в ультразвуковую и обратно. Электрического и акустического согласования преобразователей и влияния различных конструктивных элементов (электродов, клеев, промежуточных слоев, тыльных нагрузок), которое необходимо учитывать при разработке AOM. Для обеспечения колебаний заданной частоты и для нормальной работы AOM, в целом, необходимо произвести выбор материала для изготовления пьезопреобразователя AOM и рассчитать его геометрические размеры. Необходимые данные для расчета представлены в таблице 4.1.

Наименования	Буквенное	Значения			
параметра	обозначения	параметра			
Ширина светового	D_{CB}	2 мм			
пучка					
Средняя частота ультразвуковых калебаний	f _{ако}	13 МГц	28МГЦ		
Скорость звука в воде Скорость звука в ниобат-лития	υ _{ako}	1497 м/с	6570 м/с		

ТАБЛИЦА № 4.1.ИСХОДНЫЕ ДАННЫЕ ДЛЯ РАСЧЕТА АКУСТООПТИЧЕСКОЙ ЯЧЕЙКИ

4.1.1. Согласно методике расчета, изложенной в [1], длину волны ультразвука Λ_0 в звукопроводе на частоте ВЧ-сигнала f_{ako} можно определить по формуле

$$\Lambda_0 = \frac{v_{a\kappa 0}}{f_{a\kappa 0}} \tag{4.1.}$$

4.1.2. По условию дифракции Брэгга длина пути *l*, на котором происходит взаимодействие светового пучка с ультразвуком, должна выбираться исходя из неравенств [1].

$$l >> \frac{\Lambda_0^2}{\lambda_{_{CB}}}$$
 , $l = \frac{\theta \cdot n}{\pi \lambda_{_{CB}}} \frac{\upsilon_{_{a\kappa}}}{f_{_{B}}}$, (4.2)

где *θ* – параметр, характерезующий режим дифракции; *n* – коэффициент преломления света в звукопроводе.

Длина пластинки пьезопреобразователя, независимо от того из какого материала она изготовлена, должна выбираться из условий (4.1.2). 4.1.3. Для определения длины волны ультразвука, распространяющегося в пьезопреобразователе, можно использовать формулу (4.1).

4.1.4. Толщину пластинки пьезопреобразователя определим по формуле

$$d = \frac{\Lambda_{np}}{2}, \qquad (4.3)$$

где Λ_{np} - скорость звука в материале, из которого изготоовлен преобразователь.

4.1.5. Ширина пластинки пьезопреобразователя (ширина акустического взаимодействия), независемо от материала, из которого она изготовлена, для акустооптических модуляторов выбирается из соотношения $h = \frac{\sqrt{d \cdot \Lambda_{np}}}{2}$ (4.4.)

Оптимальное значение *h* - определяется из условия, что из-за расходимости ультразвукового пучка на всей длине апертуры мощность уменьшается в 2 раза, т.е.

$$h = \sqrt{4v^2_{a\kappa}\tau/(f_{a\kappa} - \Delta f_{a\kappa})},$$

где $\tau = \frac{D}{v_{a\kappa}}$ – время, за которое звук проходит апертуру света.

∆ƒ -полуширина полосы рабочих час Данные расчета размеров пьезопреобразователей сведем в таблицу 4.2.

,	1 1 1	1 I	
Материал пьезопреобразова теля.	Длина пьезопреобразов ателя. <i>l</i> (мм)	Ширина пластинки пьезопреобразова	Толщина пластинки пьезопреобразов
		теля. h (мм)	ателя. d (мкм)
LiNbO ₃			
BaTiO ₃			
Кварц			

Таблица 4.2. Геометри	неские размеры пьезог	преобразователей.
-----------------------	-----------------------	-------------------

4.2. Расчет параметров акустооптических модуляторов

Произведем расчет геометрических размеров светозвукопровода AOM и основных его параметров. Активная среда ячейки (светозвукопровод)-определяет эффективность AOM, разрешающую добротность.

4.2.1.Ширина полоски возбудителя h и база звукопровода b связаны между собой соотношением [2]

$$h = \sqrt{\Lambda_0 b} / 2$$

Отсюда можно найти базу звукопровода b.

4.2.2. Разрешающая способность ячейки оценивается числом элементов разрешения (линейной апертурой светового пучка), укладывающихся в пределах угла отклонения.

• Естественная расходимость пучка

$$\Delta \phi = \frac{\lambda_0}{D}$$

сканирования

- Общий диапазон углового $\theta = \lambda_0 \frac{\Delta f_{a\kappa}}{v_{a\kappa}}$
- Число элементов разрешения в функции ширины полосы ультразвука Δf_{ax} определяется

$$N = \frac{\theta}{\Delta \phi} = \frac{\theta \cdot D}{\lambda_0} = \Delta f_a \frac{D}{\upsilon_{a\kappa}} = \Delta f_a \cdot \Delta T$$

Апертура входного оптического пучка D АОМ ориентировочно определяется из (16б), если задана разрешающая способность по частоте δf .

4.2.3. Требуемая минимальная разрешающая способность по частоте (при выбранном приемнике) определяется

$$\delta f_{\min} = v_{a\kappa} / D \tag{4.5}$$

4.2.4.. Длина звукопровода ячейки *l*, необходимая для обеспечения расчетной полосы частот определяется из формул [2].

$$\Delta f_n = \frac{1.8n v_{a\kappa}^2}{l\lambda_0 f_0}$$
 для изотропной дифракции. (4.6)

4.2.5. В режиме дифракции Брэгга, угол падения светового луча на поверхность ультразвуковых волн должен иметь величину, определяемую выражением [1].

$$\sin \theta_{B} = \frac{\lambda_{0}}{2\Lambda_{0}n}$$
 для изотропной дифракции

Интервал допустимых углов падения оптического луча относительно брэгговского $\Delta \theta_B$ определяется исходя из того, что точки,

соответствующие уровню половинной мощности звуковой волны, при которых свет ослабляется в $4/\pi^4$ раз (на 4дБ), располагаются под углами:

$$\Delta \theta_{B} = \pm 0.45 \frac{\Lambda_{0}}{l}$$

5. ЛАБОРАТОРНОЕ ЗАДАНИЕ

Экспериментальному исследованию предлагается жидкостный АОМ на дистиллированной воде.

5.1. Порядок выполнения работы

5.1.1. Внимательно ознакомиться с теорией, описанной в разделах 1, 2, 3.

5.1.2. Исследовать частотную характеристику акустооптического модулятора. Для этого собрать экспериментальную установку рис. 5.1.

Рисунок 5.1.Структурная схема экспериментальной установки 1 – Не-Ne лазер; 2 – AOM; 3 – усилитель; 4 – генератор высокой частоты; 5 – прерыватель (диск с отверстиями); 6 – фотодиод; 7 – приемник (осциллограф С – 75); D₁ – диафрагма, ограничивающая апертуру входного светового луча; D₂ – диафрагма для выделения дифрагированного максимума.

5.1.3. Настроить исследуемую ячейку на режим дифракции (Рамана – Ната, либо режим Брэгга). При этом:

- 1) включить лазер;
- 2) включить генератор ВЧ. Настроить его на соответствующую центральную частоту.

Примечание. Центральную частоту звукового генератора f_o , для снятия частотной характеристики жидкостной АОЯ можно выбирать в пределах от $f_o = 14$ МГц до 28 МГц (по выбору преподавателя).

3)перемещая столик, на котором расположен АОМ, перпендикулярно падающему световому лучу, получить дифрагированный луч. (Для визуального наблюдения дифракции, перед прерывателем поставить экран);

4)подавая дифрагированный луч через прерыватель на фотодиод, снять частотную характеристику исследуемого АОМ. Результаты эксперимента занести в таблицу 5.1.

Таблица 5.1. Результаты эксперимента

<u> </u>			
f _{3B}			
$\alpha_{\text{дел}} - \alpha_{\text{III}} = \alpha_n$			

5) по результатам эксперимента построить график $I = F(f_{_{3B}})$.

5.1.4. Используя полученные выше результаты, определить:

1) полосу частот модуляции Δf по уровню 3 дБ.

5.1.5. Определить скорость звука акустической волны в исследуемом AOM на экспериментальной установке, структурная схема которой представлена на рис. 5.2.

Рис. 5.2. Структурная схема

1 – лазер ЛГ; 2 – коллиматор; $D_{1,2}$ – диафрагмы; 3 – АОМ; 4 – линза; Э – экран; 5 – усилитель ВЧ (УЗ – 5); 6 – генератор ВЧ (Г – 102); 7 – микроскоп.

Порядок выполнения:

- 1) с помощью коллиматора получить параллельный световой пучок;
- 2) диафрагмой D₁ вырезать нужный размер апертуры (по заданию преподавателя);
- 3) на AOM подать модулирующий сигнал на соответствующей частоте (по указанию преподавателя);
- 4) на экране, поставленном после АОМ пронаблюдать дифракцию;
- 5) поставить собирающую линзу;
- в фокусе линзы поставить микроскоп и произвести измерение d_n (расстояние от основного луча, прошедшего прямо до дифрагированного, n = 1, 2, 3, ... - порядок дифракционного максимума);
- 7) измерения по п. 5.1.5. проделать на 8 10 частотах;
- 8) определить скорость звука по формуле (3.13);
- 9) определить быстродействие исследуемого AOM по формуле (3.14);
- 10) определить разрешающую способность исследуемого АОМ.
- 11) эффективность дифракции исследуемой ячейки η (3.9);
- 12) Расчетные данные внести в таблицу 5.2.

Таблица 5.2.	Расчетные данные
--------------	------------------

	Эффективно	
Входная мощность –	СТЬ	
Р _{ЭЛ.ех.} ,	дифракции	
	$\eta_{.}$	
Число разрешимых	Акустическую	
элементов N	мощность	
	$P_{a\kappa}$	
Разрешающая	ПОЛОСА	
способность б	МОДУЛЯЦИ	

6. СОДЕРЖАНИЕ ОТЧЕТА

В отчет должны входить:

6.1. Краткое описание работы АОМ в соответствующем режиме (Брэгга, Рамана – Ната).

6.2. Структурные схемы измерений, по которым выполнялись эксперименты.

6.3. Описание порядка выполнения работы.

6.4. Результаты измерений по всем пунктам, предусмотренным программой работ в форме таблиц, графиков и необходимых числовых расчетов.

6.5. Статистическая обработка результата измерений скорости звука в исследуемом АОМ.

6.6. Обсуждение полученных экспериментальных результатов.

6.7. Выводы по проделанной работе.

6.8. Список учебников, учебных пособий и другой литературы, использованной студентом при подготовке к работе в процессе ее оформления.

7. КОНТРОЛЬНЫЕ ВОПРОСЫ

7.1. Какая цель преследуется в данной работе?

7.2. Поясните режим дифракции Брэгга.

7.3. Чем отличается Брэгговский режим дифракции от режима Рамана – Ната?

7.4. Какую роль выполняет устройство ввода?

7.5. Какие параметры являются основными в устройствах ввода и от чего они зависят?

7.6. Как снять частотную характеристику АОМ?

7.7. От чего зависит быстродействие АОМ?

7.8. Что такое разрешающая способность АОМ и как ее определить?

7.9. От чего зависит полоса модуляции в АОМ? Как ее можно определить?

7.10. Как измерить скорость звука в среде?

7.11. Каким образом экспериментально можно определить интенсивность дифрагированного луча?

7.12. Как измерить расстояние между дифракционными максимумами?

7.13Основные достоинства оптических методов обработки информации.

7.14.На чем основан принцип действия АОМ ?

7.15.Из каких соотношений можно найти направления дифракционных максимумов при дифракции Рамана-Ната ?

7.16.На какую величину сдвинута частота света в m-ом максимуме относительно частоты ω падающего света при дифракции Рамана-Ната?

7.17..При каком режиме дифракции направление распространения падающего света остается прямолинейным и на что, при этом, влияет оптическая неоднородность среды?

7.18..Используя выражение, определяющее безразмерную величину $\theta = \frac{2\pi L \lambda_0}{\lambda_1^2}$, укажите вид дифракции.

8.СПИСОК ЛИТЕРАТУРЫ

- 1. Ребрин Ю. К. Управление оптическим лучом. М.: Советское радио, 1977. 366 с.
- 2. Магдич Л. Н., Молчанов Л. Н. Акустооптические устройства и их применения. М.: Советское радио, 1978. 112 с.
- 3. Кулаков С. В. Акустооптические методы и техника обработки информации. Межвузовский сборник. Ленинград: Ленинградский электротехнический институт, 1980. 145 с.
- 4. Зюбрик А. И., Бурак Я. В., Савицкий В. К. Акустоэлектроника. Львов: Изд-во Львов. гос. ун-та, 1980. 100 с.
- 5. Ушаков В.Н и др. Оптические устройства в радиотехнике: Учеб. пособие для вузов.- М.: Радиотехника, 2005. -240 с. (70 экз.) базовый учебник
- **6.** Наумов К.П., Ушаков В.Н. Акустооптические сигнальные процессоры: Учеб. пособие для вузов. М.: САЙНС-ПРЕСС, 2002. -80 с. (**20**).

ПРИЛОЖЕНИЕ А

ОСНОВНЫЕ ПАРАМЕТРЫ АОМ НА ДИСТИЛЛИРОВАННОЙ ВОДЕ, НЕОБХОДИМЫЕ ДЛЯ РАСЧЕТА.

 $\lambda_0 = 0,63$ мкм - длина волны He-Ne лазеоа

 $f_o = M\Gamma \mu$ – резонансная частота акустической волны, подаваемой на ячейку (по заданию преподавателя).

n_o = 1,33 – показатель преломления среды (вода)

υ_{зв} = 1500 м/с – скорость, с которой акустическая волна распространяется в воде (справочные данные)

F = 1000 мм – фокусное расстояние линзы

 $M_2 = 160 \cdot 10^{-15} c^3 / \kappa \Gamma - коэффициент добротности материала (воды)$

h=– высота преобразователя (ширина полоска, к которому подводится сигнал).

l= м - длина взаимодействия акустической и оптической волн в воде

 $\rho = 1000 \ \kappa \Gamma / m^3 - плотность$ материала P = 0,312 - упругооптический коэффициент

