Тепломассообмен

Учебно-методическое пособие для студентов специальности 210201 - Проектирование и технология радиоэлектронных средств

TOMCK 2012

Министерство образования и науки Российской Федерации

Федеральное государственное бюджетное образовательное учреждение

> «ТОМСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ СИСТЕМ УПРАВЛЕНИЯ И РАДИОЭЛЕКТРОНИКИ»

Тепломассообмен

Учебно-методическое пособие для студентов специальностей 160905 - Техническая эксплуатация транспортного радиооборудования и 210201 -Проектирование и технология радиоэлектронных средств

2012

Тепломассообмен: Учебно-методическое пособие для студентов специальности 210201 Проектирование и технология радиоэлектронных средств / Сост. Чернышев А.А.- Томск: Томский гос. ун-т систем управления и радиоэлектроники, кафедра КИПР. - 40 с. В учебно-методическом пособии собраны материалы для расчетов тепловых и влажностных режимов РЭС. Пособие может быть также использовано для проведения инженерных расчетов тепловых и влажностных режимов РЭС при выполнении проектов конструкторского профиля, связанных с принятием окончательных технических решений и оформлением комплекта конструкторских документов на изделие. Составлено на основе материалов практикоориентированных работ Г.Н.Дульнева, Н.Н.Тарновского, Л.Л.Роткопа, Ю.Е.Спокойного и Л.А. Коледова, выпущенных в 70-е годы прошедшего века и более не издававшихся. Может быть использовано студентами различных специальностей при выполнении соответствующих учебных заданий.

> © Чернышев А.А. (составление), 2012. © Кафедра КИПР Томского гос. ун-та систем управления и радиоэлектроники, 2012.

Содержание

Предисловие	5
Часть 1. Определение коэффициентов теплоотдачи	
и теплопередачи	6
Часть 2. Тепловые сопротивления и тепловые проводимости	8
Часть 3. Расчеты тепловых режимов РЭС коэффициентными	
методами	22
Часть 4. Обеспечение влагозащиты интегральных микросхем	33

Предисловие

Настоящее пособие составлено в связи с настоятельной необходимостью иметь в университете достаточное количество экземпляров методик расчетов тепловых и влажностных режимов РЭС, с одной стороны, простых и не требующих значительного времени на их освоение, а с другой - дающих возможность принимать на основе расчетов инженерные решения. К сожалению, весьма удачные в этом отношении работы Г.Н.Дульнева, Н.Н.Тарновского, Л.Л.Роткопа, Ю.Е.Спокойного и Л.А. Коледова, выпущенные в 70-е годы прошедшего века, более не издавались и превратились в библиографическую редкость. Выпущенные примерно в то же время отраслевые стандарты по расчету тепловых и влажностных режимов РЭС также прекратили свое существование. Пособие составлено как факсимильное издание: нами специально отобраны и включены в него наиболее востребованные страницы книг указанных выше авторов. Для удобства пользователей, которые могут при необходимости обратиться к первоисточникам, сохранена рубрикация и нумерация формул оригиналов. Следует отметить, что представленные материалы многократно апробированы в расчетах, проводившихся в разные годы на кафедре КИПР ТУ СУ Ра, и сопоставлены с результатами экспериментов. Это позволяет нам рекомендовать исполнителям расчетов принимать максимальную погрешность расчетов соответствующих температур и перегревов равной ±10 К (разумеется, при правильном выборе тепловой модели радиоаппарата).

Часть 1.

Определение коэффициентов теплоотдачи и теплопередачи¹

Перенос тепла излучением. Связь между результирующим тепловым потоком P_{ij} , излучаемым с поверхности тела *i*, площадью S_i . к поверхности другого тела *j* с площадью S_j может быть найдена на основе законов теплового излучения и имеет вид

$$P_{ij} = \varepsilon_{nij} C_0 \left[(T_i / 100)^4 - (T_j / 100)^4 \right] S_i \varphi_{ij}, \qquad (2-17)$$

где ε_{nij} — приведенная степень черноты тел і и j; ϕ_{ij} — коэффициент облученности i-го тела j-м; T_i , T_j — значения абсолютных температур тел i и j; C_0 — коэффициент излучения абсолютно черного тела, равный 5,67 sm/(M^2 -град)⁴.

Методы расчета величин є_{пі} и φ_{ij} для конкретных условий теплообмена рассматриваются в прилож. 1.

Представим зависимость (2-17) в форме, аналогичной закону Ньютона—Рихмана (2-14) для конвективного теплообмена:

$$P_{ij} = a_{nij} (t_i - t_j) S_i, \qquad (2-18)$$

где α_{nij} — коэффициент теплообмена излучением (лучистый коэффициент теплообмена) между поверхностями *i* и *j*. Если поверхность *i* находится в неограниченной среде, то t_j равно температуре среды t_c .

В формуле (2-18) вся сложность процесса теплообмена излучением сконцентрирована в одной величине — α_{nij} , структуру которой нетрудно определить, приравнивая правые части формул (2-17) и (2-18):

$$\begin{aligned} \alpha_{nij} &= \varepsilon_{nij} \varphi_{ij} f(t_i, t_j), \qquad (2-19) \\ f(t_i, t_j) &= 5,67 \cdot 10^{-8} \frac{(t_i + 273, 2)^4 - (t_j + 273, 2)^4}{t_i - t_j} = \\ &= 5,67 \cdot 10^{-8} (t_i + t_j + 546, 4) \left[(t_i + 273, 2)^2 + (t_j + 273, 2)^2 \right] \\ &+ (t_j + 273, 2)^2 \right] em/(m^2 \cdot pad). \end{aligned}$$

Если температуры t_i и t_j близки так, что $0.5 < T_i/T_i < 1$, то с погрешностью не больше 10% расчеты $f(t_i, t_j)$ целесообразно вести по приближенной формуле

$$f(t_i, t_j) = 0,227 (T/100)^3, T = 0,5 (T_i + T_j).$$
 (2-20a)

Тепловое сопротивление и тепловая проводимость при теплообмене излучением определяются по формулам:

$$R_{ij} = \frac{1}{\alpha_{nij}S_i}, \quad \sigma_{ij} = \alpha_{nij}S_i. \quad (2-21)$$

¹ Выдержки из книги: Дульнев Г.Н., Тарновский Н.Н. Тепловые режимы электронной аппаратуры. - Л.: Энергия, 1971 - 248 с.: ил.

Тепловое сопротивление контакта двух поверхностей. В месте контакта поверхностей двух тел поток тепла преодолевает тепловое сопротивление, вызванное неплоскопараллельностью и волнистостью поверхностей, а если последние устранены, то микронеровностями обеих поверхностей.

Для металлических поверхностей, имеющих в месте контакта только микронеровности, величина теплового сопротивления определяется физикомеханическими свойствами материала, чистотой обработки поверхностей и удельным давлением сжатия. При удельной нэгрузке $N > 200 \kappa \Gamma/cm^2$ удельное тепловое сопротивление контакта практически не зависит от величины нагрузки. Такие удельные нагрузки имеются, например в контактах созданных с помощью резьбовых соединений.

Ориентировочные значения величные коэффициента теплопередачи контакта различных пар контактирующих материалов приведены в табл. ПІ-1. Тепловые сопротивления контактов, встречающихся в радиоэлектронных устройствах, в настоящее время изучены мало Поэтому данные, приведенные в табл. ПІ-1, следует рассматривать как сугубо ориентировочные.

Таблица ПІ-І

Коэффициент К_{јш} теплопередачи в контакте различных пар контактирующих материалов [14, 39]

Материал	Услоныя контакта	К _{јш} вт/(м ² -град)
Медь — алюминий	Чистота обработки у5, удельная нагрузка свыше 100 кГ/см ²	12-104
Мель — мель	То же	10.104
Медь — латунь	•	5,5.104
Медь — люралюминий	•	5,0.104
Дюралюминий — дюр- алюминий		4,0.104
Сталь — медь		1,2.10
Сталь — дюралюминий		8,4.103
Сталь — сталь	•	1,5.103
Металл — краска-ме- талл	•	500
Металл — металл	Два листа толщиной 1-3 мм сох- динены внахлест при помощи заклепок. Длина листов 25- 200 мм, расстояние между за- клепками 20-40 мм	(3 - 6,4) 104
Металл — стекло	Контакт стеклянного баллона электронной лампы с металли- ческим экраном	(0,6-2,3) 104
Сталь — сталь	Чистые гладкие поверхности, вы- сокое давление	2,6 · 10 ³
Сталь — сталь	Резьбовое соединение	1,7.103
Сталь — дюралюминий	Чистые гладкие поверхности, вы- сокое давление	3,1.103

Часть 2.

Тепловые сопротивления и тепловые проводимости1

П1-1. Тепловая проводимость стенок и оболочек различной конфигурации без источников энергии

Плоская, цилиндрическая и шаровая стенки. На рис. П1-1 изображены плоская стенка, а также цилиндрическая и шаровая оболочки, ограниченные изотермическими поверхностями с температурами t_1 и t_2 ; коэффициент теплопроводности λ не изменяется с температурой, внутренние источники и стоки тепла отсутствуют. В § 2-4 показано, что при сформулированных условиях тепловой коэффициент F_{ij} равен тепловой соврами сопротивлению R_{ij} , т. е.

Рис. ПІ-1. Стенки различной формы: а — плоская; б — цилиндрическая; в — шаровая

$$F_{ij} = R_{ij}; \quad \sigma_{ij} = \frac{1}{R_{ij}}, \quad (\Pi 1-1)$$

где индексы i = 1, j = 2 соответствуют номерам изотермических поверхностей.

На основании (2-10) и (ПІ-1) нетрудно найти выражения для тепловых сопротивлений R_0 плоской стенки и $R_{\rm u}$, $R_{\rm m}$ цилиндрической и шаровой оболочек:

$$R_{\pi} = \frac{\delta}{\lambda S_{\pi}}, \quad R_{\mu} = \frac{1}{2\pi\lambda L} \ln \frac{l_2}{l_1}, \quad R_{\mu} = \frac{1}{4\pi\lambda} \left(\frac{1}{l_1} - \frac{1}{l_2} \right), \quad (\Pi 1-2)$$

где о - толщина плоской стенки; l1 и l2 - внутренний и внешний радиусы

цилиндрической и шаровой оболочек; S_п — площадь стенки, нормальная потоку тепла; L — длина цилиндра.

Рассмотрим плоскую стенку, состоящую из *n* разнородных слоев, толщины и коэффициенты теплопроводности которых δ_i и λ_i . Поверхности стенки омываются газом или жидкостью с температурами t_{c1} и t_{c2} ; коэффициенты теплообмена от сред к поверхностям равны α_1 и α_2 (рис. П1-2). Известно, что тепловое сопротивление последовательно соединенных стенок и сред

$$R = \frac{1}{\alpha_1 S_{\pi}} + \sum_{i=1}^{n} \frac{\delta_i}{\lambda_i S_i} + \frac{1}{\alpha_2 S_{\pi}}, \qquad (\Pi 1-3)$$

а разность температур ($t_{c1} - t_{c2}$) связана с потоком *P* зависимостью:

Рис. П1-2. Составные стенки: последовательно (а) и параллельно (в) соединенные; б, г — схемы соединения тепловых сопротивлений для случаев (а) и (в)

Если заданы температуры t_1 и t_{n+1} внутренней и наружной стенок, то выражение для теплового сопротивления неоднородной стенки примет вид

$$R = \sum_{i=1}^{n} \frac{\delta_i}{\lambda_i S_{\Pi}}.$$
 (II1-5)

Тепловое сопротивление цилиндрической неоднородной стенки, состоящей из *n* слоев, определяется по формуле

$$R = \frac{1}{2\pi L} \left(\frac{1}{\alpha_1 l_1} + \sum_{i=1}^n \frac{1}{\lambda_i} \ln \frac{l_{i+1}}{l_i} + \frac{1}{\alpha_2 l_{n+1}} \right)$$
(fil-6)

где λ_i, l_i — коэффициент теплопроводности материала и радиус *i*-го цилиндрического слоя

П1-6. Тепловые сопротивления лучистому потону

Сопротивление и проводимость потоку тепла, переносимому излучением от тела *i* к телу *j*, определены зависимостями (2-21):

$$R_{ij} = \frac{1}{\alpha_{\pi \ ij}S_i}, \quad \sigma_{ij} = \alpha_{\pi \ ij}S_i,$$

где $\alpha_{\pi i j}$ — коэффициент теплообмена излучением между поверхностями *i*-го и *j*-го тел; S_i — площадь излучающей поверхности тела *i*.

Структура коэффициента $\alpha_{n \ ij}$ представлена зависимостью (2-19), расчеты по которой сводятся к определению трех параметров: приведенной степенью черноты $\varepsilon_{n \ ij}$ системы тел i, j, коэффициента облученности ϕ_{ij} в этой системе и функцией $f(t_i, t_j)$, зависящей от температур t_i и t_j поверхностей i и j. Последняя зависимость выражена формулой (2-20) и представлена в табл. П1-10. Если температуры t_i и t_j поверхностей мало отличаются, то величина $f(t_i, t_j)$ может быть вычислена по приближенной формуле

$$f = 0,227 \left(\frac{T}{100}\right)^3 em/(m^2 \cdot epad), \qquad (\Pi 1-87)$$

где $\overline{T} = 0.5 (\overline{T}_i + \overline{T}_j)$ — среднее значение абсолютных температур поверхностей і и *j*.

Напомним физический смысл параметров φ_{ij} и $\varepsilon_{n\,ij}$. Коэффициенты облученности, или угловые коэффициенты φ_{ij} показывают, какая часть P_{ij} лучистого потока P_i , испускаемая телом *i* в полупространство, падает на другое тело *j*, находящееся с ним в лучистом теплообмене, т. е. $\varphi_{ij} = P_{ij}/P_i$. Аналогично φ_{ji} показывает, какая часть P_{ji} лучистого потока P_j , испускаемого телом в полупространство, падает на другое тело *i*, т. е. $\varphi_{ji} = P_{ji}/P_j$.

Степень черноты характеризует излучательную способность реального тела по сравнению с излучательной способностью абсолютно черного тела.

Значение в изменяется в пределах от нуля до единицы. В табл. П1-9 приведены значения суммарных степеней черноты различных технических материалов и покрытий.

Коэффициенты облученности φ тел характеризуют геометрические свойства излучения и зависят только от размеров и формы тел, их взаимной ориентации. Степени черноты є характеризуют физические особенности излучения тела, приведенные степени черноты $\varepsilon_{n\,ij}$ зависят как от степеней черноты ε_i , ε_j тел *i*, *j*, так и от коэффициентов облученности φ_{ij} :

$$\mathbf{e}_{\mathbf{D}\ ij} = \mathbf{e} (\mathbf{e}_i \ \mathbf{e}_j, \ \mathbf{\phi}_{ij}, \ \mathbf{\phi}_{ji}).$$

Таблица П1-9

Степень черноты различных поверхностей

Материал и состояние поверхности	Температура. С	Стенень черноты
Алюминий; тщательно полированная пластина Алюминий; сильно окислен	$\begin{array}{c} 200-600\\ 35-500\\ 100-500\\ 100-500\\ 50-350\\ 100\\ 93\\ 25\\ 300-800\\ 22\\ 22\\ 20\\ 22\\ 200\\ 70-350\\ 100\\ 20\\ 22\\ 200\\ 70-200\\ 100\\ 25\\ 20-300\\ 20\\ 20-100\\ 100\\ 40-100\\ 20\\ 20\\ 20\\ 20\\ 20\\ 20\\ 20\\ 20\\ 20\\ $	$\begin{array}{c} 0,04-0,06\\ 0,20-0,31\\ 0,33-0,31\\ 0,16-0,22\\ 0,37-0,41\\ 0,066\\ 0,075-0,085\\ 0,80-0,82\\ 0,86-0,92\\ 0,06\\ 0,22\\ 0,075\\ 0,06\\ 0,22\\ 0,075\\ 0,030\\ 0,072\\ 0,57\\ 0,030\\ 0,072\\ 0,57\\ 0,44\\ 0,07-0,08\\ 0,23-0,27\\ 0,93\\ 0,92\\ 0,92\\ 0,92\\ 0,92\\ 0,92-0,96\\ 0,96-0,98\\ 0,89-0,90\\ 0,90\\ \end{array}$
 » оронзовая	100 100 100 100	$\begin{array}{c} 0,51\\ 0,28\\ 0,28-0,67\\ 0,09\\ 0,56\\ 0,4-0,8\end{array}$

	150						[1					ļ													17.19
	112																												_	16,59	16,89
	1-tu																							-					16,00	16,29	16.59
	1.15																											15.43	15,71	16,00	16,30
	130			-				_			-	-					_						_		_		14,87	15,15	15,43	15.72	10'91
	1:15			_																			-			14,32	14,59	14.87	15.15	15.44	15,73
	120		-											_											13.79	11.05	1,32	14.60	14.88	15.16	5,45
	112							—				—		-										13.27	13,53	13,79	1 90'FI	14.33	1.61	1.89	12,17
	110		—				-			—											—		12.76	13.01	13.27	1.53	9, 50	14.07	4.34	14.62	14,90
	101					—								— 	—							12,27	12,51	12,76	13.02	13.24	13.54	13,61	14,03	14.36	14,64
	100					_									—						11,79	12,03	12.27	12,52	12.77	13.03	13,29	13.55	13, 82	14.10	14,38
	91 5									_										11,32	11.55	11,79	12.03	12,23	12.53	12,78	13.04	13,30	13,57	13,84	14,12
	90						_	—											10,87	11.09	11,32	11.56	11 80	12,04	12,29	12.54	12.80	13,06	13,32	3,59	13.87
	\$\$		—		—													10,42	10.64	10,87	11.10	11.33	11.57	11.81	12.05	12,30	12,36	12.82	13.08	13,35	13,62
	50 1						 										66'6	10.21	10.43	10,65	10,87	11.11	11.34	11.58	11,82.	12.07	2,32	2.58	2.84	3.11	3,38
	7.5	—							— 		-	-				9,57	9.78	10,00	10.21	10.43	10,66	10.88	11.12	11.35	11,60	11,34	12,09	12,35	12.61	12.87	13.14
ا ج	20	<u> </u>	=	=	=	=					=			=	9.17	9.37	9,58	9.79	0.00	10,22	10,44	10.67	06'0	11.13	1.37	11.62	11.86	12.12	12.37	12.64	12.90
'i'	05							-				—		8.77	8,97	9 . 17	9.37	9.58	9.79 1	10,01	0,23	0.46	0.68	10.92	11.15	11.40	11,64	68.11	12,15	12.41	12.67
	60				 .	—	—	_					8,39	3.58	8.78	8.57	9,18	9,38	9.59	18'6	0.03	10,25	0.47	12.01	10.04	81.11	11.42	11.67	1.92	12.18	12 44
	\$5			*****				-		_	—	8.02	8,20	8,39	8.58	8.78	15'8	9,19	9.39	19'6	9,82	10.04	10,27	10.50	10.73	10,97	11.21	11.45	11.71	11.96	12.22
	50		_	_	_						7,66	7.84	8,02	8,21	8.40	8,59	8,79	66,8	9.20	9.41	9.62	1 -8-6	20.01	10.29	10.52	10.76	00'11	11,24	11,49	11.74	12.00
				·						7.31	7.48	7,66	7,84	8.03	8.21	8,41	S.60	8,80	10'6	9.22	9.43	0,65	9,87	60.01	10.32	10,55	10.79	11.03	11.28	11.53	11,79
	ut				—		-		6,97	7.14	7,31	7,48	7.66	7.85	8,03	8,23	8.42	8.62	8,82	6.03	9.24	9.45	9,67	68'5	10,12	10,35	10,59	10,83	11.07	11,32	11.57
	35							6.64	6,80	6.97	7,14	1:31	6t'L	7.67	7,86	8,05	8,24	8.44	8.64	8.84	9,05	92 ° i	9.48	9,70	9.93	10,15	10,39	10.63	10,87	11,12	11,37
	30						6.32	6.48	6.64	6.81	6,98	7.15	7.32	7,50	7,69	7.87	8,06	8,26	8.46	8.66	8.87	9.08	9.20	9.51	9,73	9.96	61,01	10.43	10,67	10,01	11.16
	25					10'9	212	9.32	6,48	65	6,81	3, 98	7.16	1.34	7,52	2.70	68.7	8.08	8,28	8,48	8,63	8.90	9,11	9,33	9,55	9.77	10,00	10.24	10,47	10.72	10,96
	20				- 11.	98.	03	.17 6	33	49 64.	999.	,82 (8	-1-	.35	51	.72	16.	111	8,31	3.51	8.72	1.33	11	,36	65,6	9,81	10.05	0,28	0.52	0,77
	15		—	43	57 5	72 5	87 6	02 6	18	34 6	50 6	67 6	84 7	10	61.	37 7	56	,75 7	т. Т.	14	34 5	24 8	.75 8	5 26	18	40 5	13	.86	1 60'0	0.33	0.57
	0	—	15	29 5	43 5	58 5	72 5	87 6	8	19 6	35 6	51 6	9 83	86 7	00 7	21 7	40 7	58 7	7 77	3 16	17 8	37 8	58 8	8 61	0 0	22 5	45 9	68	1 16	0,14	1 1 66.0
		÷	2 5.	5 5.	6 5	14 5.	38 5.	3 5	88 6	34 6.	30 6.	<u>36 6.</u>	3 6	10 6.	38 7.	36 7.	24 7.	12 7.	51 7.	81 7.	20 8.	30 8,	11 8,	52 8,	83 9.	35 9.	27 9.	50 9	73 9.	31 96	,20 16
	,	¥.+	5.6	5,1	2.5	5.4	5.5	5.7	32	9.6	6.5	6.5	6.5	6,7	6.	7.(7.5	7.4	× -	1.	0 8.(5 8.5	0 8.	5 8,0	0 8,	5 9,(0 9.2	11 5	6 0	5 9.	01 0
-	<u>-0</u>	l "	2	12	20	25	8	35	₽	÷	20	55	8	65	102	12	8	3	8	95	₫	ļŝ	É	=	1	12	12	<u>∽</u>] ₹	₹	15

Таблица ПІ-10

•

Ниже будут рассмотрены значения φ_{ij} и $\varepsilon_{n\,ij}$ для разных пар тел *i* и *j* при разпообразной их орнентации.

Теплообмен между неограниченными плоскопараллельными плоскостями (i = 1, j = 2). В этом случае приведенная степень черноты и коэффициент облученности равны:

$$e_{n 12} = \frac{1}{\frac{1}{\epsilon_1} + \frac{1}{\epsilon_2} - 1}, \quad \varphi_{12} = \varphi_{21} = 1.$$
 (III-88)

Из формулы (П1-93) следует, что если $\varepsilon_1 \gg \varepsilon_2$, то ε_{n12} определяется величиной, меньшей степени черноты, т. е. $\varepsilon_n \approx \varepsilon_2$. Для тел с большим зна-

Рис. П1-12. Лучистый теплообмен между телами в замкнутом пространстве: а — тело-1 внутри тела 2, б — тело 2 охватывает плоское или выпуклое тело 1; в— система из двух вогнутых тел 1 и 2

чением степени черноты $\varepsilon_{п12}$ приближенно может быть принято

$$\varepsilon_{n \ 12} \approx \varepsilon_1 \varepsilon_2, \quad \varepsilon_1, \ \varepsilon_2 > 0.8.$$
(II1-89)

Теплообмен между телом и его оболочкой. На рис. П1-12, а и б представлены следующие системы двух тел: тело 1 находится в замкнутой полости тела 2, тело 2 охватывает плоское или выпуклое тело 1.

Для рассматриваемых систем двух тел значения φ_{12} , φ_{21} , ε_{n12} могут быть найдены по формулам.

$$\varphi_{12} = 1, \quad \varphi_{21} = \frac{S_1}{S_2};$$

$$\varepsilon_{n \ 12} = \frac{1}{\frac{1}{\varepsilon_1} + \varphi_{21} \left(\frac{1}{\varepsilon_2} - 1\right)},$$
(II1-90)

где S_1 и S_2 — площади поверхностей тел I и 2.

Теплообмен излучением в замкнутой системе из двух вогнутых серых тел (рис. П1-12, в). Приведенная степень черноты такой системы тел

$$\boldsymbol{\varepsilon}_{\mathbf{n12}} = \frac{1}{1 + \varphi_{12} \left(\frac{1}{\varepsilon_1} - 1 \right) + \varphi_{21} \left(\frac{1}{\varepsilon_2} - 1 \right)} . \tag{\Pi1-91}$$

Определение величин ϕ_{12} и ϕ_{21} представляет, как правило, значительные математические трудности.

Теплообмен излучением между двумя произвольно расположенными в пространстве серыми поверхностями с высокой степенью черноты (ε_1 , $\varepsilon_2 \ge 0,8$). Приведенная степень черноты в этом случае может быть определена по формуле (П1-89), а коэффициент облученности φ_{12} для некоторых систем тел находится из приводимых ниже графиков рис П1-13 — П1-15. Второй коэффициент облученности φ_{21} связан с φ_{12} зависимостью:

$$\varphi_{21} = \varphi_{12} S_1 / S_2 \quad . \tag{11-92}$$

Коэффициенты облученности характеризуют геометрические свойства систем тел, в которых происходит теплообмен излучением.

Рассмотрим замкнутую систему из п тел, в которой требуется определить результирующее излучение от *і*-й поверхности к остальным (n-1) поверхностям.¹ В этом случае справедливы следующие зависимости:

$$\sum_{j=1}^{n} \varphi_{lj} = 1, \quad \varphi_{lj} S_l = \varphi_{jl} S_j.$$
(III-93)

Если известно значение коэффициента облученности между двумя ограниченными поверхностями, то коэффициент облученности между одной из поверхностей и внешним пространством легко определить из уравнения (П1-93). Например, прямоугольными поверхностями ду двумя параллельными

Рис. П1-13. Коэффициент облученности между одинаковыми прямоугольниками, лежащими в параллельных плоскостях

> межи 2

1

05 9 0,4 Ø 8 0.3

Рис. П1-14. Коэффициент облученности между одинаковыми кругами, лежащими в параллельных плоскостях

Рис. ПІ-15. Коэффициент облученности между прямоугольниками с общей стороной, лежа-ЩИМИ во взаимно-перпендикулярных плоскостях

2 3 4 6 8 10

0.1 0.2 0.4 0.6 1

коэффициент облученности Ф12 может быть найден из рис. ПІ-13, тогда коэффициент облученности между поверхностью 1 и окружающим пространством

$$\varphi_{10} = 1 - \varphi_{12}. \tag{\Pi1-94}$$

¹ Если при этом система тел сообщается с окружающим пространством, то ее можно также рассматривать как замкнутую, мысленно вводя «натянутую» поверхность.

П1-4. Тепловые сопротивления на границе раздела поверхности твердого тела и жидкой или газообразной среды в условиях естественной конвенции

Определяющие критерии. Структура теплового сопротивления R_{ij} или тепловой проводимости σ_{ij} между поверхностью *i* твердого тела и средою *j*=с определена в § 2-4 и представлена выражением (2-15). Если конвективный теплообмен происходит от поверхности *i* к поверхности *j* через жидкую или газообразную прослойку, то тепловое сопротивление и тепловая проводимость имеют вид (2-16). Ниже будут рассмотрены выражения для коэффициентов теплообмена α_{ic} или коэффициента теплопередачи k_{ij} , входящих в формулы (2-15) и (2-16), для различных типичных для радиоэлектронных устройств случаев.

Для расчета этих коэффициентов потребуется оценивать следующие критериальные величины:

критерий Нуссельта Nu =
$$\frac{\alpha_{\kappa}L}{\lambda_{f}}$$
;
критерий Грасгофа Gr = $g\beta (l - l_{c}) \frac{L^{3}}{v_{f}^{2}}$;
критерий Прандтля Pr = $\frac{v_{f}}{a_{f}}$;
критерий Рейнольдса Re = $\frac{vL}{v_{f}}$,

где α_{κ} — конвективная составляющая коэффициента теплообмена; λ_i , a_j , ν_i , β — коэффициенты соответственно теплопроводности, температуропроводности, кинематической вязкости и объемного расширения газа или жидкости; g — ускорение силы тяжести; v — скорость потока газа или жидкости; L — геометрический параметр, характерный для тела данной конфигурации.

Тепло обмен различных тел в неограниченном пространстве при естественной коввекции. Если (GrPr) = $(10^{-3} \div 5 \cdot 10^2)$, то коэффициент конвективного теплообмена с удовлетворительной точностью можно определить по формуле

$$\alpha_{\rm K} = A_{\rm I} \left(\frac{t - t_{\rm c}}{d^5} \right)^{1/8} \, sm/(m^2 \cdot cpa\partial) \tag{\Pi1-50}$$

где d — диаметр проводника, м; t и t_c — температуры поверхности проволоки и среды вдали от тела. В коэффициент A₁ вошли все физические параметры среды:

$$A_{1} = 1,18 \left(\beta g \operatorname{Pr}\right)_{m}^{1_{i_{g}}} \frac{\lambda_{m}}{v_{m}^{1_{i_{g}}}} \operatorname{sm}/(\mathfrak{m}^{1_{i_{g}}} \cdot \operatorname{spad}^{9_{i_{g}}})$$
(II1-51)

где индекс *m* означает, что физические параметры среды определены при температуре $t_m = 0.5$ ($t + t_c$). Значения A_1 для воздуха и воды, рассчитанные по формуле (П1-51), приведены в табл. П1-3. Физические параметры сухого воздуха и воды на линии насыщения приведены в табл. П1-4, П1-5.

Таблица П1-3

Значения А1 для воздуха и воды

_	Значения А, при температуре 1 _т . *С									
Среда	0	20	-40	60	80	100	120			
Воздух	0,291	0,29 5	0,300	0,306	0,310	0,315	0,32			
Вода	9,35	13,1	15,7	17,6	19,0	20 ,0				

Таблица П1-4

Физические параметры сухого воздуха при H = 760 мм pm. cm.

<i>t.</i>	р.	с _р ,	λ·10 ² ,	v-10 ⁶ ,	₽r
'C	кг·м ³	дж (кг-град)	вт (ж-град)	M ² сек	
50 20 0 10 20 30 40 50 60 70 80 90 100 120	1,584 1,395 1,293 1,247 1,205 1,165 1,128 1,093 1,060 1,029 1,000 0,972 0,946 0,898	1010 1010 1000 1000 1000 1000 1000 100	2,04 2,28 2,44 2,51 2,60 2,68 2,76 2,83 2,90 2,97 3,05 3,13 3,21 3,34	9,23 12,79 13,28 14,16 15,06 16,00 16,96 17,95 18,97 20,02 21,09 22,10 23,13 25,45	0,728 0,716 0,707 0,705 0,703 0,701 0,699 0,698 0,698 0,696 0,694 0,692 0,690 0,688 0,688

Таблица П1-5

Физические параметры воды на линии насыщения

¢;	р.	с _р .	λ	v+10 ⁶	β+10 ⁴	Pr
°Ċ	кг/м ³	дж:(ке-град)	вт (м-град)	м ³ /сек	1/град	
0 10 20 30 40 50 60 70 80 90 100	999,9 999,6 998,2 995,6 992,2 988,0 983,2 977,7 971,8 965,3 958,3	4230 4220 4210 4200 4200 4200 4210 4220 422	0,552 0,575 0,600 0,618 0,635 0,647 0,660 0,667 0,667 0,674 0,680 0,682	1,790 1,306 1,006 0,805 0,659 0,556 0,478 0,415 0,366 0,326 0,295	$ \begin{array}{c}0,63 \\ +0,70 \\ 1,82 \\ 3,21 \\ 3,87 \\ 4,49 \\ 5,3 \\ 5,8 \\ 6,3 \\ 7,0 \\ 7,5 \\ \end{array} $	13,7 9,56 7,06 5,5 4,3 3,56 3,00 2,56 2,23 1,95 1,75

Ταδιица ПІ-6

Расчетные формулы для коэффициентов теплообмена тел в условнях естественной конвекции в неограниченной среде

	Закон степени 1/4		Закон степени 1/3	
Рассматриваемое тело	ми Андоф Тип	иомер формулы	тихмоф бин	номер формулы
Шары, горизонтальные ци- линдры с диаметром d	$\alpha_{\rm K} = A_2 \left(\frac{t-t_{\rm C}}{d}\right)^{1/4}$	(П1-53)	$lpha_{\mathbf{k}} = A_3 \left(t - t_{\mathbf{c}}\right)^{1/3}$	(III-57)
Вертикальные пластины, ии- линдры с высотой h	$\alpha_{\rm K} = A_2 \left(\frac{t-t_{\rm c}}{h}\right)^{1/4}$	([T1-54)	$\alpha_{\rm K} = A_3 \left(t - t_{\rm C}\right)^{1/3}$	([[1-58)
Горизонтальная пластина, рассеивающая тепловой по- ток вверх; І _{мин} меньший размер пластин	$\alpha_{\rm K} = 1.3 {\rm A}_2 \left(\frac{t-t_{\rm c}}{t_{\rm MBH}}\right)^{1/4}$	(11-55)	$\alpha_{\rm k} = 1, 3A_3 (t - t_c)^{1/3}$	(01-59)
Горизонтальная пластина, рассенизющая тепловой по- ток винз	$\alpha_{\rm K} = 0.7 {\rm A}_2 \left(\frac{t-t_{\rm C}}{t_{\rm MBH}}\right)^{1/4}$	(II1-56)	$\alpha_{\rm k} = 0.7A_3 (t - t_{\rm c})^{1/3}$	(09-11))

Рассмотрим теплообмен илоской и цилиндрических поверхностей в неограниченном пространстве; здесь следует различать два случая.

Если определяющий размер (L, мм) плоской или цилиндрической поверхности и ее температурный напор (t — t_c) удовлетворяют перавенству

$$t - t_{\rm c} \leq \left(\frac{840}{L}\right)^3, \tag{i11-52}$$

то движение жидкости подчиняется закону степени 1/4. в противном случае имеет место теплообмен по закону степени 1/3.

В табл ПІ-6 приведены расчетные формулы для коэффициента конвективного теплообмена различных тел, находящихся в неограниченной среде, в условиях естественной конвекции.

В коэффициенты А2 и А3 вошли эсе физические параметры среды:

$$A_{2} = 0,54 \ (\beta g \ Pr)_{m}^{1/4} \frac{\lambda_{m}}{v_{m}^{1/2}} \ sm/(m^{7/4} \cdot rpad^{5/4});$$
$$A_{3} = 0,135 \ (\beta g \ Pr)_{m}^{1/3} \frac{\lambda_{m}}{v_{m}^{2/3}} \ sm/(m^{2} \cdot rpad^{4/3}).$$

Значения A₂ и A₃ для воздуха и воды, рассчитанные по этим формулам, приведены в табл. П1-7 и П1-8.

Таблица П1-7

Значения А2 для воздуха и воды

	Значения А2 при температуре 1m. °С											
Среда	10	20	30	40	6 0	\$ 0	100	120	140	150		
Воздух	1,40 90	1,38 105	1,36 127	1,34 149	1,31 178	1,29 205	1.27 227	1,26	1,25	1.245		

Таблица ПІ-8

Значения Аз для воздуха и воды

_	Значения А _з при температуре t _m °C									
Среда	0	20	· 40	60	80	100	150			
Воздух	1,69 102	1,61 198	1,53 290	i,45 363	1,39 425	1,33 480	1,23 610			

Тепловая проводимость между поверхностями тел, отделенных друг от друга прослойкой, заполненной жидкостью или газом. Выражение для коэффициента теплопередачи k через плоскую (k_n), цилиндрическую ($k_{\rm L}$) и шаровую прослойки ($k_{\rm L}$) имеют вид

$$k_{\rm II} = \frac{\varepsilon_{\rm K} \lambda_{\rm J}}{\delta} , \quad k_{\rm II} = \frac{2\varepsilon_{\rm K} \lambda_{\rm J}}{d_1 \ln \frac{d_2}{d_1}} , \quad k_{\rm III} = \frac{\varepsilon_{\rm K} \lambda_{\rm J} d_2}{d_1 \delta} , \qquad (\Pi 1-60)$$

где ε_{κ} — коэффициент конвекции; λ_{i} — коэффициент теплопроводности среды

Коэффициент A_5 зависит от температуры $t_m = 0.5$ ($t_1 + t_2$) и для воздуха равен:

 $\bullet \begin{array}{c} t_m, \ C \ . \ . \ . \ . \ . \ . \ 0 \ 50 \ 100 \ 200 \\ A_5 \ . \ . \ . \ . \ . \ . \ . \ . \ 0, 63 \ 0, 58 \ 0, 56 \ 0, 44 \end{array}$

Теплообмен при давлении, отличном от нормального. Конвекция в неограниченном простганстве и в ограниченных прослойках изменяется с давлением газа. Если конвективные коэфрациенты теплообмена и теплопередачи при нормальном давлении H_0 равны $\alpha_{\rm K}$ и $k_{\rm K}$, а при давлении $H = \alpha_{\rm KH}$, $k_{\rm KH}$, то между этими параметрами при -1 мм рт.ст. < H < 10 ат существует следующая связы:

$$\alpha_{\kappa H} = \alpha_{\kappa} \left(\frac{H}{H_0}\right)^{2n}, \quad k_{\kappa H} = k_{\kappa} \left(\frac{H}{H_0}\right)^{2n}. \tag{\Pi1-64}$$

Показатель степени в формуле (П1-64) соответствует показателю степени при разности температур ($t - t_c$) или ($t_1 - t_2$) в формулах (П1-50), (П1-54) - (П1-59), (П1-62), (П1-63). Например, для теплообмена между поверхностью тела и неограниченной средой при законе теплообмена 1/4 и для теплопередачи через неограниченные и ограниченные прослойки 2n = 0,5.

П1-5. Тепловые сопротивления на границе раздела поверхности твердого тела и жидкой или газообразной среды; условия вынужденной конвекции

Теплообмен при вынужденном движении жидкости вдоль плоской поверхности. Выражения, определяющие коэффициент теплообмена при этих условиях, представляются в виде зависимости между критериями Нуссельта Nu_f, Рейнольдса Re_f и Прандтля Pr_f или Pr_w

$$\operatorname{Nu}_{f} = \frac{\alpha}{\lambda_{f}} l$$
, $\operatorname{Re} = \frac{vl}{v_{f}}$, $\operatorname{Pr}_{f} = \frac{v_{f}}{a_{f}}$, $\operatorname{Pr}_{W} = \frac{v_{W}}{a_{W}}$,

где индексы f и W означают, что физические параметры определяются либо при температуре жидкости (f), либо при температуре стенки (W).

Различают три режима течения жидкости: ламинарный, турбулентный и переходный. Ламинарное течение переходит в турбулентное при критическом значении числа Рейнольдса Re_{кр}. Если жидкость движется вдоль плоской стенки в неизотермических условиях, то Re_{кр} = 4-10⁴.

При ламинарном движении жидкости (Ref < 4 104) критериальное уравнение для среднего коэффициента теплообмена имеет вид

$$Nu_{f} = 0.66 \operatorname{Re}_{f}^{0.50} \operatorname{Pr}_{f}^{0.43} \left(\frac{\operatorname{Pr}_{f}}{\operatorname{Pr}_{W}} \right)^{0.25}.$$
 (II1-75)

За определяющую температуру здесь принята температура набегающего потока l_{f} , а за определяющий размер — длина стенки l в направлении потока. Влияние физических свойств жидкости и их зависимости от температуры учитываются в формуле (П1-75) параметром $\Pr_{f}^{0,43}$, а влияние направления температурного напора и теплового потока (от жидкости к стенке или наоборот) — параметром (\Pr_{f}/\Pr_{w})^{0.25}.

Опытным путем установлено, что для газов при небольших температурных напорах (меньше сотен градусов) коэффициент теплообмена практически не зависит от соотношения температур газа и стенки, если физические параметры выбираются по температуре (t_i) потока. В частности, полагая для воздуха $\Pr_f^{0.43} = 0.86$, а $(\Pr_f/\Pr_W)^{0.25} = 1$, получим из (П1-75):

$$Nu_f = 0.57 \sqrt{Re_f}.$$
 (11-76)

Эта зависимость представлена ниже в форме, удобной для практических расчетов:

 $\operatorname{Re}_{f} \cdot 10^{-3}$. . 5 10 15 20 25 30 40 50 60 80 Nu_f 41 56 68 81 90 100 115 127 140 160

Расчет коэффициента теплообмена следует проводить в следующем порядке: находят критерии Re_{f} , Pr_{f} , Pr_{W} , и если $\text{Re}_{f} < 4 \cdot 10^{4}$, то — по формуле (П1-75), а для воздуха по (П1-76) определяют значение критерия Nuf и далее коэффициент теплообмена

$$\alpha = \operatorname{Nu}_{f} \frac{\lambda_{f}}{l} = \frac{P}{(t_{W} - t_{f}) S}, \qquad (\Pi 1-77)$$

где P — рассенваемый стенкой тепловой поток; S — площадь теплоотдающей поверхности стенки; $t_{\rm uv}$ — средняя температура стенки.

$$Nu_f = 0.032 \text{Re}_f^{0.8} \cdot (\Pi 1.79)$$

для

Определяющая температура и определяющий размер те же, что и в предыдущем случае. Зависимость (П1-79) представлена ниже:

Приведенные выше формулы были получены при исследовании теплообмена плоской плиты, омываемой потоком жидкости; для оценочных расчетов возможно использовать эти формулы для определения коэффициентов теплообмена цилиндрических поверхностей, омываемых продольным потоком жидкости.

Теплообмен тел различной конфигурации, омываемых поперечным потоком воздуха. Различными исследователями проделано большое число опытов по определению коэффициента теплообмена тел различной формы, омываемых поперечным потоком воздуха. В радиоэлектронных аппаратах, охлаждаемых вынужденным потоком воздуха, протекающим через аппарат, поперечному обтеканию могут подвергаться радиодетали самой различной конфигурации. Целесообразно ввести для таких тел характерный размер, определяемый по какому-нибудь общему принципу. В качестве характерного размера плоской плиты обычно используют ее длину / в направлении омывающего потока, а для шара и цилиндра — их диаметр d. Для этих тел, так же как и для тел иной формы, О. Кришер предложил в качестве характер-ного размера выбирать длину l' обтекания тела потоком жидкости. Длина обтекания для цилиндра и шара $l' = 0.5 \pi d$, а для пластины l' = l, метод определения длины обтекания l'ясен также из рис. П1-11. Если в качестве характерного размера рассматривать l', то выражение для критериев Рейпольдса и Нуссельта примет вид

$$\operatorname{Re}_{l'} = \frac{vl'}{v_{f}}, \quad \operatorname{Nu}_{l'} = \frac{\alpha l'}{\lambda_{f}}.$$

При значениях критерия Рейнольдса 10 < Re < 10⁵ критериальное уравнение конвективного теплообмена тел, омываемых поперечным потоком воздуха, при ошибке не более 20% может быть представлено в виде:

$$Nu_{l'} = 0.8 \sqrt[l]{Re_{l'}}$$
 (II1-80)

Формулу (П1-80) можно использовать для оценочных расчетов коэффициента теплообмена тел, находящихся в замкнутом пространстве и омываемых поперечным потоком воздуха. Определяющий размер в этом случае равен l', а скорость движения воздуха около тела рассчитывается по формуле

$$v = G_V / F_{\rm cp},\tag{\Pi1-81}$$

где G_V — объемный расход воздуха, протекающего через ограниченное пространство; $F_{\rm cp}$ — площадь среднего сечения, свободного для прохождения потока воздуха.

Рассмотрим метод расчета параметров l' и F_{cp} тел различной конфигурации, находящихся внутри аппарата и омываемых поперечным потоком воздуха. Обозначим площадь теплоотдающей поверхности *j*-й детали через S_j , а длину траектории воздушного потока вдоль этой поверхности через l'_j , тогда

$$l' = \frac{\sum_{j=1}^{n} l'_{j} S_{j}}{\sum_{j=1}^{n} S_{j}}, \qquad (\Pi 1-82)$$

где п — число деталей в аппарате.

Для вентилируемых радиоэлектронных аппаратов средняя площадь сечения F_{ср} может быть в первом приближении оценена по предложенной Т. А. Абдрахмановым формуле

$$F_{\rm cp} = F_{\rm an} (1 - k_3), \quad k_3 = \frac{V_{\rm A}}{V}, \quad (\Pi 1-83)$$

где F_{an} — площадь сечения пустого корпуса аппарата в направлении, нормальном потоку; V_{d} — объем всех деталей, шасси и других твердых частей нагретой зоны аппарата; V — объем пустого корпуса.

Часть 3. Расчеты тепловых режимов РЭС коэффициентными методами

4.2. РАСЧЕТ ТЕПЛОВОГО РЕЖИМА РЭА ПРИ ЕСТЕСТВЕННОМ ВОЗДУШНОМ ОХЛАЖДЕНИИ

Тепловой режим РЭА при естественном воздушном охлаждении зависит от многих факторов. Связь между перегревом нагретой зоны и влияющими факторами можно представить в виде [8].

$$\boldsymbol{\vartheta}_{\mathbf{s}} = \prod_{i} K_{i}, \qquad (4.36)$$

где ϑ_3 — перегрев нагретой зоны относительно температуры окружающей среды, а каждый коэффициент K_i зависит от одного параметра (фактора), влияющего на величину ϑ_3 . Величина перегрева нагретой зоны аппаратов в герметичном и перфорированном корпусах, работающих при нормальном атмосферном давлении и при отсутствии наружного обдува корпуса и внутреннего перемешивания воздуха, определяется в основном удельной мощностью нагретой зоны и коэффициентом перфорации, т. е.

$$\boldsymbol{\vartheta}_3 = K_{q_3} K_{\boldsymbol{\Pi}}, \tag{4.37}$$

где K_{q_3} — коэффициент, зависящий от удельной мощности нагретой зоны; K_{μ} — коэффициент, зависящий от коэффициента перфорации.

Удельная мощность нагретой зоны определяется как частное от деления мощности P_3 , рассеиваемой нагретой зоной, на условную поверхность нагретой зоны S_3 :

$$q_3 = P_3 / S_3,$$
 (4.38)

где условная поверхность напретой зоны определяется по формуле

$$S_{3} = 2[l_{1}l_{2} + (l_{1} + l_{2}) l_{3}K_{3}].^{\sim}$$
(4.39)

Здесь l_1l_2 — горизонтальные размеры корпуса аппарата; l_3 — вертикальный размер корпуса аппарата; K_3 — коэффициент заполнения.

Коэффициент перфорации определяется как отношение площади перфорационных отверстий S_п к площади оснований корпуса аппарата:

$$\Pi = S_{\mathrm{II}}/2l_1 l_2. \tag{4.40}$$

При создании методики расчета использовались экспериментальные данные по тепловым режимам реальных РЭА различного конструктивного исполнения: на шасси, с кассетами и смешанной конструкции. Аппараты имели герметичный либо перфорированный корпус. Тепловой режим этих РЭА определялся при нормальном и пониженном атмосферном давлении, причем в некоторых случаях для интенсификации теплообмена применялись либо наружный обдув корпуса, либо внутреннее перемешивание воздуха. Из анализа экспериментальных данных следует, что перегрев нагретой зоны нелинейно возрастает с ростом удельной мощности зоны и уменьшается с ростом коэффициента перфораций, асимптотически приближаясь к некоторой постоянной величине. Поэтому поведение K_{qs} и $K_{п}$ можно описать зависимостями вида

$$K_{q_3} = a_1 q_3 + a_2 q_3^2 + a_3 q_3^2, \qquad (4.41)$$

$$K_{a} = a_{2} + \frac{1}{a_{3} + a_{4}\Pi}, \qquad (4.42)$$

¹ Выдержки из книги: Роткоп Л.Л., Спокойный Ю.Е. Обеспечение тепловых режимов при конструировании радиоэлектронной аппаратуры. М.: Сов.радио. 1976. 232 с.: ил.

и вычислить их по формуле

$$K_{q_3} = 0,1390q_3 - 0,1223 \cdot 10^{-3} q_3^2 + 0,0698 \cdot 10^{-6} q_3^3, \qquad (4.43)$$

$$K_{n} = 0,29 + \frac{1}{0,41 + 4,95\Pi}$$
 (4.44)

Зависимости K_{q_3} и K_{π} от q_3 и П представлены на рис. 4.4 и 4.5 (на рис. 4.4 $K_{q_3} = \vartheta_2$).

Рис. 4.4. Зависимость перегрева нагретой зоны от удельной мощности рассеивания.

Рис. 4.5. Зависимость K_п от коэффициента перфораций.

Аналогично было найдено выражение для определения перегрева корпуса герметичного аппарата ($\vartheta_4 = K_{q\kappa}$), работающего в нормальных условиях. Этот перегрев зависит от удельной мощности корпуса аппарата q_{κ} , определяемой по

$$q_{\mathrm{K}} = P_{\mathrm{S}} / S_{\mathrm{K}}, \tag{4.45}$$

где

$$S_{\rm R} = 2[l_1 l_2 + (l_1 + l_2) l_3]. \tag{4.46}$$

С использованием экспериментальных данных уравшение для K_{qr} имеет вид

$$K_{q_{\rm K}} = \vartheta_1 = 0,1472q_{\rm K} - 0,2962 \cdot 10^{-3} q_{\rm K}^2 + 0,3127 \cdot 10^{-6} q_{\rm K}^3 \qquad (4.47)$$

и графически представлено на рис. 4.6.

Наличие наружного обдува и изменение атмосферного давления снаружи влияет на величину перегрева корпуса ϑ_1 относительно температуры окружающей среды. Наличие внутреннего перемешивания и изменение атмосферного давления внутри корпуса влияет на величину перегрева ($\vartheta_2 - \vartheta_1$) нагретой зоны относятельно температуры корпуса аппарата.

В общем случае перегрев нагретой зоны определяется как

$$\vartheta_3 = \vartheta_1 K_{H1} K_v + + (\vartheta_2 - \vartheta_1) K_{H2} K_w, \quad (4.48)$$

Рис. 4.6. Зависимость перегрева корпуса от удельной мощности.

где K_{H1} — коэффициент, зависящий от величины атмосферного давления спаружи корпуса аппарата H_1 ; K_v — коэффициент, зависящий от скорости наружного обдува корпуса аппарата v; K_{H2} — коэффициент, зависящий от величины атмосферного давления впутри корпуса аппарата H_2 ; K_W — коэффициент, зависящий от скорости перемешивания воздуха в аппарате W:

$$W = a \frac{G_{\rm B}}{V_{\rm B}},\tag{4.49}$$

где $G_{\rm B}$ — производительность вентилятора; $V_{\rm B}$ — объем воздуха в апнарате; a=0,6 м⁴/кг.

Учитывая, что с ростом давления среды внутри и вне корпуса аппарата, скоростей наружного обдува и внутреннего перемешивания перегрев нагретой зоны уменьшается, коэффициенты K_{H1} , K_v , K_{H2} и K_W определялись в виде (4.42). Найденные с использованием экспериментальных данных по тепловым режимам реальных радиоэлектронных аппаратов уравнения для расчета коэффициентов K_{H1} , K_v , K_{H2} и K_W имеют следующий вид:

$$K_{H1} = 0.82 + \frac{1}{0.925 + 4.6 \cdot 10^{-5} H_1}, \qquad (4.50)$$

$$K_v = \frac{1}{1+0.347v},$$
 (4.51)

$$K_{H^2} = 0,8 + \frac{1}{1,25+3,8\cdot10^{-5}H_2},$$
(4.52)

$$K_{W} = 0,08 + \frac{1}{1,09 + 0,27W}.$$
(4.53)

Их графики показаны на рис. 4.7—4.10. Представленные выше коэффициенты получены в следующем диапазоне изменения исходных данных: $0 \le q_3 \le 600 \text{ Br/m}^2$; $0 \le \Pi \le 0.8$, $0 \le q_R \le 400 \text{ Br/m}^2$, $700 \le H \le 1.2 \cdot 10^5 \text{ Па}$, $0 \le v \le 3.0$, $0 \le W \le 4.0$.

При определении вида зависимости величины перегрева поверхности элемента относительно температуры окружающей среды исходим из следующих рассуждений: тепловой поток, рассеиваемый элементом, поступает в нагретую зону и в окружающую среду, т. е.

где $P_{3,1}$ — тепловой поток, рассенваемый элементом; $\vartheta_{3,1}$ — перегрев поверхности элемента относительно температуры окружающей среды; ϑ_3 — перегрев нагретой зоны относительно температуры окружающей среды; $\sigma_{3,1,3}$ — тепловая проводимость между поверхностью элемента и нагретой зоной; $\sigma_{3,1,6}$ — тепловая проводимость между поверхностью элемента и окружающей средой.

Из (4.54) следует, что

$$\vartheta_{_{\mathfrak{I}\mathfrak{I}}} = \vartheta_{_{\mathfrak{I}}} \left[\frac{\sigma_{_{\mathfrak{I}\mathfrak{I}}\mathfrak{I}}}{\sigma_{_{\mathfrak{I}\mathfrak{I}}\mathfrak{I}} + \sigma_{_{\mathfrak{I}\mathfrak{I}}\mathfrak{C}}} + \frac{P_{_{\mathfrak{I}\mathfrak{I}}}}{\vartheta_{_{\mathfrak{I}}}(\sigma_{_{\mathfrak{I}\mathfrak{I}}\mathfrak{I}} + \sigma_{_{\mathfrak{I}\mathfrak{I}}\mathfrak{C}})} \right], \tag{4.55}$$

так как

$$\vartheta_3 = P_3 / \sigma_{3c}; \quad q_{3\pi} = P_{3\pi} / S_{3\pi}; \quad q_3 = P_3 / S_3$$

где оз с — тепловая проводимость между нагретой зоной и окружающей средой; S_{эл} — площадь теплоотдающей поверхности элемента (при на-

личии радиатора учитывается и поверхность радиатора), то (4.55) можно переписать так:

$$\vartheta_{\mathfrak{s}\mathfrak{n}} = \vartheta_{\mathfrak{s}} \left[\frac{\sigma_{\mathfrak{s}\mathfrak{n}\mathfrak{s}}}{\sigma_{\mathfrak{s}\mathfrak{n}\mathfrak{s}} + \sigma_{\mathfrak{s}\mathfrak{n}\mathfrak{c}}} + \frac{q_{\mathfrak{s}\mathfrak{n}}\sigma_{\mathfrak{s}\mathfrak{c}}S_{\mathfrak{s}\mathfrak{s}}}{q_{\mathfrak{s}}S_{\mathfrak{s}\mathfrak{n}}(\sigma_{\mathfrak{s}\mathfrak{n}\mathfrak{s}} + \sigma_{\mathfrak{s}\mathfrak{n}\mathfrak{c}})} \right], \tag{4.56}$$

т. е. перегрев поверхности элемента можно представить в виде

$$\vartheta_{\mathfrak{s}\mathfrak{n}} = \vartheta_{\mathfrak{s}} \left(a + b \, \frac{q_{\mathfrak{s}\mathfrak{n}}}{q_{\mathfrak{s}}} \right)$$
 (4.57)

Найденные методом наименьших квадратов с использованием экспериментальных данных по тепловым режимам реальных радиоэлектронных аппаратов коэффициенты a и b равны соответственно: a = 0.75; b = 0.25.

Рис. 4.7. Зависимость K_{H1} от давления окружающей среды: а) $0 \ll H_1 \ll 2.6 \cdot 10^3$ Па; б) $0 \ll H_1 \ll 130 \cdot 10^3$ Па.

Рис. 4.8. Зависимость K_{H_2} от давления среды внутри аппарата: a) $0 \leq H_2 \leq 12.8 \cdot 10^3$ Па; б) $0 \leq H \leq 130 \times 10^3$ Па.

Формула (4.56) не учитывает особенностей монтажа элементов. Разработка методики, учитывающей особенности монтажа и конструкции элемента, позволит повысить точность расчета температуры поверхности элемента.

Приведенные зависимости позволяют определить среднеповерхностную температуру нагретой зоны и температуры поверхности элементов РЭА при естественном воздушном охлаждении.

На основании сравнения расчетных и экспериментальных данных были построены гистограммы погрешностей расчета перегревов нагретой зоны (рис. 4.11) и элементов (рис. 4.12). Анализ гистограмм показал, что среднеквадратическая погрешность предлагаемой методики составляет 8 К при расчете перегрева поверхности элемента. Следовательно, погрешность этой методики имеет точность, рекомендованную нами в предыдущем параграфе для инженерных расчетов. Методика достаточно универсальна и при использовании рис. 4.4—4.10 является простой.

Рис. 4.9. Зависимость K_v от скорости обдува.

Рис. 4.10. Зависимость K_W от скорости неремешивания.

Для облегчения пользования методикой теплового расчета РЭА с естественным воздушным охлаждением приведем ряд алгоритмов и примеры расчета по ним.

Порядок расчета теплового режима блока в герметичном корпусе

1. Рассчитывается поверхность корпуса блока по (4.46), где l_1l_2 — горизонтальные размеры корпуса блока; l_3 — вертикальный размер корпуса блока (рис. 4.13).

2. Определяется условная поверхность нагретой зоны по (4.39).

3. Определяется удельная мощность корпуса блока по (4.45).

4. Рассчитывается удельная мощность нагретой зоны по (4.38).

5. Находится коэффициент ϑ_1 в зависимости от удельной мощности корпуса блока (рис. 4.6).

6. Находится коэффициент Ф₂ в зависимости от удельной мощности нагретой зоны (рис. 4.4).

7. Находится коэффициент K_{H1} в зависимости от давления среды вне корпуса блока H₁ (рис. 4.7).

8. Находится коэффициент K_{H2} в зависимости от давления среды внутри корпуса блока H_2 (рис. 4.8).

9. Определяется перегрев корпуса блока

$$\boldsymbol{\vartheta}_{\mathbf{R}} = \boldsymbol{\vartheta}_{\mathbf{1}} \boldsymbol{K}_{H\mathbf{1}}. \tag{4.58}$$

10. Рассчитывается перегрев нагретой зоны

$$\boldsymbol{\vartheta}_{3} = \boldsymbol{\vartheta}_{\mathrm{K}} + (\boldsymbol{\vartheta}_{2} - \boldsymbol{\vartheta}_{1}) K_{H2}. \tag{4.59}$$

11. Определяется средний перегрев воздуха в блоке

$$\vartheta_{\mathbf{B}} = \mathbf{0}, \mathbf{5} \left(\vartheta_{\mathbf{R}} + \vartheta_{\mathbf{3}} \right). \tag{4.60}$$

12. Определяется удельная мощность элемента

$$\gamma_{\partial n} = P_{\partial n} / S_{\partial n}, \qquad (4.61)$$

где $P_{\partial n}$ — мощность, рассеиваемая элементом (узлом), температуру которого требуется определить; $S_{\partial n}$ — площадь поверхности элемента (вместе с радиатором), омываемая воздухом.

- 13. Рассчитывается перегрев поверхности элемента по (4.57).
- 14. Рассчитывается перегрев окружающей элемент среды

$$\vartheta_{\mathfrak{s}\mathfrak{c}} = \vartheta_{\mathfrak{s}} \left(0.75 + 0.25 \frac{q_{\mathfrak{s}\mathfrak{n}}}{q_{\mathfrak{s}}} \right)^{\bullet}$$
(4.62)

15. Определяется температура корпуса блока

$$T_{\rm R} = \vartheta_{\rm R} + T_{\rm c}, \qquad (4.63)$$

где T_c — температура окружающей блок среды.

16. Определяется температура нагретой зоны

$$T_3 = \theta_3 + T_c. \tag{4.64}$$

17. Находится температура поверхности элемента

$$T_{\mathfrak{D}\mathfrak{I}} = \mathfrak{V}_{\mathfrak{D}\mathfrak{I}} + T_c. \tag{4.65}$$

18. Находится средняя температура воздуха в блоке

$$T_{\mathbf{B}} = \vartheta_{\mathbf{B}} + T_{\mathbf{c}}.\tag{4.66}$$

19. Находится температура окружающей элемент среды

$$T_{\rm pc} = \Theta_{\rm pc} + T_{\rm c}. \tag{4.67}$$

Порядок расчета теплового режима блока в герметичном корпусе с внутренним перемешиванием

1. Рассчитывается поверхность корпуса блока по (4.46).

2. Рассчитывается условная поверхность нагретой зоны по (4.39).

3. Находится удельная мощность корпуса блока по (4.45).

4. Находится удельная мощность нагретой зоны по (4.38).

5. Определяется коэффициент ϑ₁ в зависимости от удельной мощности корпуса блока (рис. 4.6).

6. Определяется коэффициент v2 в зависимости от удельной мощности нагретой зоны (рис. 4.4).

7. Находится коэффициент К_{и1} в зависимости от атмосферного давления вне корпуса блока H_1 (рис. 4.7).

8. Рассчитывается объем воздуха в блоке

$$V_{\rm B} = l_1 l_2 l_3 (1 - K_3). \tag{4.68}$$

9. Рассчитывается средняя скорость перемешивания воздуха в блоке по (4.49) (при пониженном давлении внутри корпуса блока в (4.49) должна входить производительность вентилятора с учетом изменения давления).

10. Определяется коэффициент К_W в зависимости от средней скорости перемешивания (рис. 4.10).

11. Определяется перегрев корпуса блока по (4.58).

12. Определяется перегрев нагретой зоны

$$\vartheta_3 = \vartheta_1 (K_{H1} - 1) + \vartheta_2 K_{\boldsymbol{w}}. \tag{4.69}$$

13. Определяется средний перегрев воздуха в блоке

$$\vartheta_{\rm B} = 0.75 \vartheta_{\rm 3}. \tag{4.70}$$

14. Находится удельная мощность элемента по (4.61).

15. Рассчитывается перегрев поверхности элемента по (4.57).

16. Рассчитывается перегревокружающей элемент среды по (4.62). 17. Находится температура корпуса блока по (4.63).

18. Находится температура нагретой зоны, поверхности элемента, средняя температура воздуха в блоке и температура окружающей элемент среды по формулам (4.64) — (4.67).

Порядок расчета теплового режима блока в герметичном корпусе с наружным обдувом

1. Рассчитывается поверхность корпуса блока по (4.46).

2. Рассчитывается условная поверхность нагретой зоны по (4.39).

3. Определяется удельная мощность корпуса блока по (4.45).

4. Определяется удельная мощность нагретой зоны по (4.38).

5. Находится коэффициент 🖓 в зависимости от удельной мощности корпуса блока (рис. 4.6).

6. Находится коэффициент ϑ_2 в зависимости от удельной мощности нагретой зоны (рис. 4.4).

7. Находится коэффициент К_{н2} в зависимости от давления внутри корпуса блока H_2 (рис. 4.8).

8. Рассчитывается перегрев между нагретой зоной и корпусом блока

$$\vartheta_{21} = (\vartheta_2 - \vartheta_1) K_{H2}. \tag{4.71}$$

9. Рассчитывается перегрев корпуса блока с наружным обдувом

$$\vartheta_{\kappa} = q_{\kappa} / (12 + 4, 17v), \qquad (4.72)$$

где v — скорость обдува (при пониженном давлении в (4.72) должна входить скорость с учетом изменения давления).

10. Определяется перегрев нагретой зоны блока с наружным обду-

$$\vartheta_3 = \vartheta_{\rm F} + \vartheta_{24}. \tag{4.73}$$

Рис. 4.13. Схемы блока в герметичном исполнении.

11. Определяется средний перегрев воздуха в блоке по (4.70).

12. Рассчитывается удельная мощность элемента, перегревы его поверхности и окружающей среды по (4.61), (4.57), (4.62).

13. Находятся температуры корпуса блока, нагретой зоны, поверхности элемента, воздуха в блоке и окружающей элемент среды по формулам (4.63) --- (4.67).

Порядок расчета теплового режима блока в герметичном оребренном корпусе

1. Определяется поверхность неоребренного корпуса блока по (4.46).

2. Спределяются условная поверхность нагретой зоны, удельная мощность неоребренного корпуса блока, удельная мощность нагретой зоны по формулам (4.39), (4.45), (4.38).

3. Определяется коэффициент 🕅 в зависимости от удельной мощности корпуса блока (рис. 4.6).

4. Определяется коэффициент ϑ_2 в зависимости от удельной мощности нагретой зоны (рис. 4.4).

5. Рассчитывается перегрев между нагретой зоной и корпусом неоребренного блока

$$\vartheta_{21} = \vartheta_2 - \vartheta_1. \tag{4.74}$$

6. Рассчитывается поверхность оребренного корпуса блока

$$S_{\rm KP} = S_{\rm KH} + S_{\rm p}, \tag{4.75}$$

где S_{кн} — поверхность корпуса, не занятая ребрами; S_p — поверхность ребер.

7. Рассчитывается удельная мощность оребренного корпуса блока

$$q_{\rm kp} = P/S_{\rm kp}.\tag{4.76}$$

8. Определяется коэффициент ϑ_{1p} в зависимости от удельной мощности оребренного корпуса блока (рис. 4.6).

9. Находятся коэффициенты K_{H1} и K_{H2} в зависимости от атмосферного давления вне и внутри корпуса блока — H₁ и H₂ (рис. 4.7 и 4.8). 10. Рассчитывается перегрев оребренного корпуса блока

$$\vartheta_{\rm H} = \vartheta_{\rm 1D} K_{\rm H1}. \tag{4.77}$$

11. Рассчитывается перегрев нагретой зоны с оребренным корпусом

$$\boldsymbol{\vartheta}_{3} = \boldsymbol{\vartheta}_{\mathrm{R}} + (\boldsymbol{\vartheta}_{2} - \boldsymbol{\vartheta}_{1}) K_{H2} \tag{4.78}$$

12. Рассчитывается средний перегрев воздуха в блоке по (4.70).

13. Определяется удельная мощность элемента, перегревы его поверхности и окружающей среды по (4.61), (4.57) и (4.62).

14. Находятся температуры поверхности корпуса блока, нагретой зоны, поверхности элемента, воздуха в блоке и окружающей элемент среды по (4.63) — (4.67).

Порядок расчета теплового режима блока в перфорированном корпусе

1. Рассчитываются: поверхность корпуса блока, условная поверхность нагретой зоны, удельная мощность корпуса блока, удельная мощность нагретой зоны по (4.46), (4.39), (4.45) и (4.38).

2. Находятся коэффициенты ϑ_1 и ϑ_2 в зависимости от удельной мощности корпуса блока и удельной мощности нагретой зоны (рис. 4.4 и 4.6).

Рис. 4.14. Конфигурации перфорационных отверстий,

3. Находятся коэффициенты K_{H1} и K_{H2} в зависимости от давления вне и внутри корпуса блока — H_1 , H_2 (рис. 4.7 и 4.8).

4. Рассчитывается площадь перфорационных отверстий. Для прямоугольных отверстий (рис. 4.14,6 и в) $S = nl_1l_3$, где n — количество отверстий; l_1 — горизонтальный размер отверстия; l_3 — вертикальный размер отверстия. Для круглых отверстий (рис. 4.14,*a*) $S = n\pi d^2/4$, где d — диаметр отверстия.

5. Рассчитывается коэффициент перфораций по (4.40).

6. Находится коэффициент K_{π} в зависимости от коэффициента перфораций (рис. 4.5).

7. Определяется перегрев корпуса блока

$$\vartheta_{\mathbf{R}} = \vartheta_1 K_{H1} K_{\mathbf{n}} \cdot \mathbf{0}, 93. \tag{4.79}$$

8. Определяется перегрев нагретой зоны

$$\boldsymbol{\vartheta}_{3} = 0.93 K_{\mathrm{H}} \Big[\boldsymbol{\vartheta}_{1} K_{\mathrm{H}} + \left(\boldsymbol{\vartheta}_{2} \frac{1}{0.93} - \boldsymbol{\vartheta}_{1} \right) K_{\mathrm{H}2} \Big].$$
(4.80)

9. Определяется средний перегрев воздуха в блоке

$$\vartheta_{\rm B} = \vartheta_3 \cdot 0, 6. \tag{4.81}$$

10. Рассчитываются удельная мощность элемента, перегрев поверхности элемента, перегрев окружающей элемент среды по (4.61), (4.57) и (4.62).

11. Находятся температуры корпуса блока, нагретой зоны, поверхности элемента, воздуха в блоке, окружающей элемент среды по (4.63) — (4.67).

Пример. Определить тепловой режим блока в герметичном корпусе и его элементов. Мощность, рассеиваемая в блоке, P=30 Вт; мощность, рассеиваемая двумя элементами: 1) $P_{3\pi}=2,8$ Вт; 2) $P_{3\pi}=2,2$ Вт; горизонтальные размеры корпуса блока $l_1=0,160$ м, $l_2=0,180$ м, вертикальный размер корпуса блока $l_3=0,190$ м; площадь поверхности элементов: 1) $S_{3\pi}=8\cdot10^{-3}$ м², 2) $S_{3\pi}=118\cdot10^{-3}$ м²; коэффициент заполнения $K_3=0,3$; температура окружающей среды $T_c=293$ К (+20°C); давление окружающей среды $H_1=H_2=0,1$ МПа.

I. Рассчитывается поверхность корнуса блока по (4.46)

 $S_{\rm K} = 2[0,160 \cdot 0,180 + (0,160 + 0,180) \cdot 0,190] = 0,187 {\rm M}^2$.

2. Определяется условная поверхность нагретой зоны по (4.39)

 $S_3 = 2[0,160 \cdot 0,180 + (0,160 + 0,180) \cdot 0,190 \cdot 0,3] = 0,096 \text{ M}^2.$

3. Определяется удельная мощность корпуса блока по (4.45)

$$q_{\rm H} = 30/0, 187 = 160 \, {\rm Bt/M^2}.$$

4. Рассчитывается удельная мощность нагретой зоны по (4.38)

$$q_3 = 30/0,096 = 312 \text{ Bt/m}^2$$
.

5. Находится коэффициент в зависимости от удельной мощности корпуса блока (рис. 4.6)

$$\vartheta_1 = 17,5$$
 K.

6. Находится коэффициент в зависимости от удельной мощности нагретой зоны (рис. 4.4)

$$\vartheta_2 = 33.0 \text{ K}$$

7. Находится коэффициент, зависящий от атмосферного давления вне корпуса (рис. 4.7,*a*)

$$K_{\rm H1} = 1,0.$$

8. Находится коэффициент, зависящий от давления внутри корпуса блока (рис. 4.8)

 $K_{\rm H2} = 1,0.$

9. Определяется перегрев корпуса блока по (4.58)

$$\vartheta_{\kappa} = 17,5 \cdot 1,0 = 17,5$$
 K.

10. Рассчитывается перегрев нагретой зоны по (4.59)

$$\vartheta_3 = 17,5 + (33 - 17,5) \cdot 1,0 = 33$$
 K.

11. Определяется средний перегрев воздуха в блоке по (4.60)

$$\vartheta_{B} = 0,5(33+17,5) = 25,3 \text{ K}$$

12. Определяется удельная мощность элементов по (4.61)

1)
$$q_{\mathfrak{d},\mathfrak{n}} = 2,8/8 \cdot 10^{-3} = 350 \text{ Bt/M}^2,$$

2)
$$q_{3\pi} = 2,2/118 \cdot 10^{-3} = 18,6 \text{ Bt/m}^2$$
.

13. Рассчитывается перегрев поверхности элементов по (4.57)

1)
$$\vartheta_{3,3} = 33 \left(0,75 \pm 0,25 - \frac{350}{312} \right) = 34 \text{ K},$$

2)
$$\vartheta_{3,1} = 33\left(0,75+0,25\ \frac{18,6}{312}\right) = 25,2$$
 K

14. Рассчитывается перегрев окружающей элементы среды по (4.62)

1)
$$\vartheta_{sc} = 25, 3\left(0, 75 + 0, 25 - \frac{350}{312}\right) = 26, 1 \text{ K},$$

2)
$$\vartheta_{sc} = 25, 3\left(0, 75 + 0, 25 \frac{18, 6}{312}\right) = 19, 3 \text{ K}.$$

Определяется температура корпуса блока по (4.63)
 T_к = 17,5+293=310,5 К.

16. Определяется темнература нагретой зоны по (4.64)

$$T_3 = 33 + 293 = 326$$
 K

17. Находится температура поверхности элементов по (4.65)

$$T_{2\pi} = 34 + 293 = 327 \text{ K},$$

2)
$$T_{2\pi} = 25,2+293 = 318,2$$
 K.

18. Находится средняя температура воздуха в блоке по (4.66)

$$T_{\rm B} = 25,3 + 293 = 318,2 {\rm K}$$

19. Находится температура окружающей элементы среды по (4.67)

1)
$$T_{\rm sc} = 26, 1 + 293 = 319, 1 \, {\rm K},$$

2)
$$T_{\rm sc} = 19,3 + 293 = 312,3$$
 K.

Обеспечение влагозащиты интегральных микросхем¹

Общая характеристика окружающей среды и влагостойкости материалов. Необходимость ИМС герметизирующих влагозашиты возникает при использовании герметизирующих конструкций, изготовприменением органических полимерных ленных материалов С (см. рис. 5.14, 5.21—5.23). В отличие от неорганических эти материалы обладают повышенными значениями влагопоглощения и вла- гопроницаемости.

Окружающий воздух практически всегда представляет собой паровоздушную смесь. Содержание паров воды в воздухе при различных температурах определяется из рис. 5.28.

Рис. 5.28. Содержание паров воды в воздухе при различных температурах и относительной влажности (1 - 100%: 2-90%; 3 - 85%; 4-80%; 5-70%; 6-65%; 7- 50%; 8 - 40%)

¹ Выдержки из книги: Конструирование и технология микросхем. Курсовое проектирование. Под редакцией Л. А. Коледова - М.: Высшая школа, 1984 - 232 с.: ил.

Количество поглощенной герметизирующей конструкцией из воздуха влаги М увеличивается с повышением парциального давления паров воды *р*H₂O (закон Генри):

$$\mathbf{M} = \mathbf{\Gamma} \cdot \boldsymbol{p} \mathbf{H}_2 \mathbf{O} \tag{5.12}$$

где Г - коэффициент растворимости.

Коэффициент Γ (c^{2}/M^{2}) определяет количество влаги, которое способен поглотить материал в данных климатических условиях. Скорость процесса поглощения влаги материалом определяется коэффициентом диффузии молекул воды D (M^{2}/c) в материале. Коэффициент влагопроницаемости B (c) характеризует способность материала поглощать влагу и определяется количеством воды, прошедшим через мембрану из этого материала при наличии разности давлений паров воды по обе стороны мембраны. Коэффициент B отражает процесс выравнивания концентраций влаги в двух объёмах, разделённых мембраной из испытуемого материала и имеющие в начальный момент различные концентрации влаги. Коэффициенты B, D и Γ связаны между собой соотношением:

$$\mathbf{B} = \mathbf{D} \cdot \mathbf{\Gamma} \tag{5.13}$$

Значения коэффициентов В, **D** и Г различных герметизирующих полимерных материалов приведены в табл. 5.7.

Зная значения влажностных коэффициентов, можно расчетным путем оценить влагозащитные свойства материалов и герметизирующих конструкций на их основе.

Исходные данные для обеспечения влагозащиты ИМС. Исходные данные для расчета влагозащиты микросхем: Tc - температура окружающей среды, К; φ - относительная влажность окружающей среды, %; p_o - парциальное давление паров воды окружающей среды, Па; $p_{\kappa p}$ - критическое давление паров воды, приводящее к отказу ИМС, Па; S - площадь герметизирующей оболочки, через которую влага диффундирует в корпус, m^2 ; d — толщина герметизирующей оболочки, м; V - внутренний объем корпуса, о котором происходит растворение влаги, m^3 ; В - коэффициент влагопроницаемости герметизирующей оболочки, с; D — коэффициент диффузии молекул влаги в герметизирующей оболочке, m^2/c , Γ - коэффициент растворимости влаги в материале, окружающем ИМС, c^2/m^2 .

Рассчитывают время влагозащиты ИМС τ , с, в течение которого обеспечивается безотказная работа ИМС. Влагостойкость ИМС оценивают из расчета влияния влаги на самый чувствительный к ее воздействию элемент или компонент ИМС.

Влагостойкость полых корпусов. Корпусы, имеющие свободный внутренний объем, называются полыми. Влагозащита таких корпусов оценивается временем *τ*, в течение которого давление паров

Таблица 5.7

Значения влажностных коэффициентов различных герметизирующих полимерных материалов

Материал	Влажностн	ые коэффицие	нты	Назначение материала
	B, c	D, M^2/c	$\Gamma, c^2/M^2$	1
Фторопласт-4	$1 \cdot 10^{-16}$	8,34·10 ⁻¹³	12,0.10-5	
Полиэтилен	$6,27 \cdot 10^{-16}$	6,4·10 ⁻¹³	9,8·10 ⁻⁴	
Полистирол	$4.22 \cdot 10^{-15}$	3,32.10-11	12,6.10-5	
Пластмасса К-124_38	$1.66 \cdot 10^{-16}$	8.34.10-14	$2,0.10^{-3}$	Полый пластмассовый корпус
Пластмасса В4-70	$2,5 \cdot 10^{-16}$	3,06.10-13	8,3.10-4	То же
Компаунд ЭК-16 «Б»	2,08.10-16	6,4·10 ⁻¹³	3,25.10-4	Герметизация заливкой, рис. 5.21-5.23
Кремнийорганический эла- стомер	8.2.10 ⁻¹⁵	8.2.10 ⁻¹²	1,0.10-3	Герметизация заливкой
Компаунд ЭКМ	4,1.10-16	7,1.10-13	5,77.10-4	Бескорпусная корпусная герме- тизация полупроводниковых ИМС, рис. 5.24, а
Пресематериал ЭФП-63	1,83.10 ⁻¹⁶	6,1·10 ⁻¹³	3,0.10-4	Корпусная герметизация, рис. 5.14
Пресематериал К-81-39с	$3.5 \cdot 10^{-16}$	8·10 ⁻¹³	4,37.10-4	То же
Порошковый компаунд ПЭП-177	8,0.10-16	1,14.10 ⁻¹²	7,0.10-4	Бсскорпусная герметизация толсто- пленочных ГИС вих- ревым напылением
Тиксотропный компаунд Ф-47	8,5.10-16	1,5.10 ⁻¹²	5,7.10-4	Герметизация толстопленочных ГИС обволакиванием
Тиксотропный компаунд ЭК-91	6,0.10-16	3.10-12	2.10-4	То же
Таблетируемый компаунд ПЭК-19	7,8·10 ⁻¹⁶	2,1.10-12	3,7.10-4	Герметизация заливкой, рис. 5.21—5.23
Эмаль ЭП-91	7,0.10-16	1,08.10 ⁻¹²	6,5.10-4	Бескорпусная герметизация по- лупроводниковых ИМС, рис. 6.24, а
Эмаль КО-97	8,2.10-16	$1,1.10^{-13}$	7,45.10-4	То же
Лак УР-231	5,2.10-16	3,5.10-12	1,48.10-4	Бескорпусная герметизация тонкопленочных ГИС
Лак ФП-525	4,5.10-16	1,18.10-12	3,8.10-4	То же
Клей ВК-3	2,9.10-16	8,0.10-13	3,6.10-4	Герметизация корпусов клее- вым швом
Клей ВК-9	$3.3 \cdot 10^{-16}$	6,5.10-13	5,63.10-4	То же

воды внутри корпуса достигает критического значения $p_{\kappa p}$, при котором наступает отказ ИМС:

$$\tau = \tau_0 + \tau_1 , \qquad (5.14)$$

где τ_0 - время увлажнения материала оболочки; τ_1 - время натекания влаги во внутренний объём корпуса.

Значение τ_0 зависит от толщины оболочки d и коэффициента диффузии D молекул воды в материале оболочки:

$$\tau_0 = d^2 / (6D).$$
 (5.15)

Рис. 5.14. Конструкция пластмассового корпуса 2102(201.14-1)

Рис. 5.21. Конструкция металлополимерного корпуса «Тропа»

Рис. 5.22. Конструкция металлополимерного корпуса «Пенал»

Рис. 5.23. Конструкция металлополимерного корпуса «Акция»

Рис. 5.24. Конструкции бескорпусных полупроводниковых ИМС и способы их установки на плату: а -ИМС серии БК-734 с гибкими выводами; б -ИМС серии БК-776 с жёсткими выводами

Формула предполагает, что насыщение материала влагой осуществляется только путем молекулярной диффузии в оболочку корпуса. Обычно τ_0 следует учитывать при толщине оболочки корпуса d > 0,1 мм.

Время натекания влаги

$$\tau_1 = \frac{V \Gamma d}{BS} \ln\left(\frac{p_0}{p_0 - p_{\kappa p}}\right). \tag{5.16}$$

Тогда время т составит

$$\tau = \frac{V\Gamma d}{BS} \ln\left(\frac{p_0}{p_0 - p_{\kappa p}}\right) + \frac{d^2}{6D}.$$
(5.17)

В большинстве случаев внутри полых корпусов находится воздух, который обладает определенной влажностью. Если в начальный момент времени в корпусе ИМС имеется влага с парциальным давлением p_{μ} то τ уменьшается:

$$\tau = \frac{V T d}{BS} \ln \left[\frac{p_0 (p_{\rm KP} - p_{\rm H})}{(p_0 - p_{\rm KP}) (p_0 - p_{\rm H})} \right] + \frac{d^2}{6D}.$$
(5.18)

В формулах (5.16) -(5.18) Г- коэффициент растворимости влаги в воздухе, равный 7,4- $10^6 \text{ c}^2/\text{m}^2$.

Если для герметизации ИМС выбран стандартный пластмасса вый или металлополимсрный корпус, то время влагозащиты рассчитывают, исходя из влажности внешней среды в условиях хранения и эксплуатации ИМС и давления $p_{\kappa p}$. В зависимости от чувствительности к влаге элементов ИМС значение $p_{\kappa p}$ можно принять равным 0,85-0,95 p_o , так как при этих значениях $p_{\kappa p}$ влага приводит к внезапному или к постепенному отказу ИМС.

Пример. Определить время влагозащиты ИМС в металлополимерном корпусе при T = 293 К. $V = 2 \cdot 10^{-7}$ м³, $d = 3 \cdot 10^{-3}$ м, $S = 5, 3 \cdot 10^{-6}$ м². Использован заливочный компаунд ЭК-16 «Б».

Определяем время насыщения влагой компаунда по (5.15):

$$\tau_0 = \frac{(3 \cdot 10^{-3})^2}{6 \cdot 6 \cdot 4 \cdot 10^{-13}} = 2,26 \cdot 10^6 \, c \approx 26 \, \text{cyr}.$$

Общее время влагозащиты

 $\tau = 26 + 135 = 161$ сут.

При заполнении внутреннего объема корпуса кремнийорганическим эластомером, имеющим коэффициент $\Gamma = 1 \cdot 10^{-3} c^2/m^2$, при $p_{\kappa p} = 0.85 \cdot p_o$ время натекания влаги

$$\tau_1 = \frac{2 \cdot 10^{-7} \cdot 10^{-3} \cdot 3 \cdot 10^{-3}}{5, 3 \cdot 10^{-6} \cdot 2, 08 \cdot 10^{-6}} \ln\left(\frac{1}{1-0, 85}\right) = 10, 2 \cdot 10^8 \text{ c} \approx 1180 \text{ cyr} \approx 32, 3 \text{ года.}$$

При
$$p_{\mu} = 0,5 \cdot p_{o}$$

 $\tau_{1} = \frac{2 \cdot 10^{-7} \cdot 10^{-3} \cdot 3 \cdot 10^{-3}}{5,3 \cdot 10^{-6} \cdot 2,08 \cdot 10^{-6}} \ln \frac{1(0,85-0,5)}{(1-0,85)(1-0,5)} = 8,35 \cdot 10^{8} c \approx 9700 \text{ сут} \approx 24,5 \text{ года}.$

Приведенные расчеты предполагают отсутствие пор, трещин в герметизирующем материале и других путей ускоренного поступления влаги в корпус. Путем ускоренной диффузии влаги может произойти поверхностная диффузия по границе раздела выводов с герметизирующим покрытием, что уменьшает время *т*.

С другой стороны, расчет не учитывает явлений адсорбции влаги на внутренних стенках полого корпуса, которые должны повысить τ . Тем не менее в приведенном примере герметизация с использованием эластомера удовлетворяет ТУ на срок хранения ИМС.

Влагостойкость монолитных корпусов. Потеря работоспособности ИМС, герметизированных в монолитные корпусы (см. рис. 5.14), вызывается поглощением герметизирующим материалом влаги и увлажнением поверхности ИМС. При достижении критической концентрации, соответствующей критическому давлению *р*_{ко} паров воды, наступает отказ ИМС. Время, в течение которого на поверхности ИМС достигается критическая концентрация влаги, определяют из выражения

$$\tau = -\frac{4d^{2}}{\pi^{2}D} \ln \left[\frac{\pi^{2}}{8} \left(1 - \frac{p_{\rm KP}}{p_{0}} \right) \right]. \tag{5.19}$$

Как видно, оно определяется толщиной герметизирующего материала, коэффициентом диффузии молекул воды в нем и отношением $p_{\kappa p} / p_o$. Формула (5.19) предполагает, что с поверхностью ИМС полимер имеет слабую адгезию.

Пример. Определить минимальную толщину монолитного пластмассового корпуса, обеспечивающего безотказную работу ИМС в течение 30 суток при $p_{\kappa p} = 0.9 p_o$. Материал корпуса - пресспорошок ЭФП-63.

Из (5.19) и табл. 5.6 находим

$$d = \sqrt{\frac{3,142\cdot3)\cdot2,4\cdot3600\cdot6,1\cdot10^{-13}}{4\ln[3,142/8(1-0,9)]}} = 1,36\cdot10^{-3} \text{ M} = 1,36 \text{ MM}.$$

Герметизирующая оболочка такой толщины обеспечивает требуемую влагозащиту при отсутствии в ней дефектов.