Министерство образования и науки Российской Федерации Федеральное государственное бюджетное образовательное учреждение

высшего профессионального образования «Томский государственный университет систем управления и радиоэлектроники»

Кафедра электронных приборов

ЭЛЕКТРОДИНАМИКА И МИКРОВОЛНОВАЯ ТЕХНИКА

Методические указания по самостоятельной работе для студентов направления «Электроника и микроэлектроника» (Специальность 210105 – Электронные приборы и устройства)

Башкиров Александр Иванович

Электродинамика и микроволновая техника = Электродинамика и микроволновая техника: Методические указания по самостоятельной работе «Электроника микроэлектроника» ДЛЯ студентов направления 210105 Электронные приборы устройства) (Специальность И А.И. Башкиров. Министерство образования и науки Российской Федерации, Федеральное государственное бюджетное образовательное учреждение профессионального образования Томский государственный высшего университет систем управления и радиоэлектроники, Кафедра электронных приборов. - Томск: ТУСУР, 2012. - 20 с.

Целью преподавания дисциплины «Электродинамика и микроволновая техника» является подготовка специалистов к проектированию, эксплуатации и исследованию микроволновых направляющих и колебательных систем, многоплечих микроволновых устройств на основе изучения студентами базовых физических принципов функционирования основных элементов микроволновой техники.

Задачи дисциплины заключаются в изучении и освоении студентами современных подходов и методов, используемых для анализа и расчета электромагнитных полей в микроволновых направляющих и колебательных системах; изучении основных методов анализа и проектирования многоплечих микроволновых устройств.

Пособие предназначено для студентов очной и заочной форм, обучающихся по направлению «Электроника и микроэлектроника» (Специальность 210105 — Электронные приборы и устройства)» по дисциплине «Электродинамика и микроволновая техника».

Министерство образования и науки Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования «Томский государственный университет систем управления и радиоэлектроники»

Кафедра электронных приборов

УΊ	BEP	ЖДАЮ
Заг	з.каф	едрой ЭП
		С.М. Шандаров
~	>>	2012 г.

ЭЛЕКТРОДИНАМИКА И МИКРОВОЛНОВАЯ ТЕХНИКА

Методические указания по самостоятельной работе для студентов направления «Электроника и микроэлектроника» (Специальность 210105 – Электронные приборы и устройства)

Pa3	работ	гчик
	 	_А.И. Башкиров
~	>>	2012 г

Содержание

Введение	6
Раздел 1 Введение	
1.1Содержание раздела	7
1.2 Методические указания по изучению раздела	
1.3 Вопросы для самопроверкиОшибка! Закладка не определе	
Раздел 2 Основные уравнения электродинамики	
2.1 Содержание раздела	
2.2 Методические указания по изучению раздела	
2.3 Вопросы для самопроверки	
Раздел 3 Плоские электромагнитные волны в неограниченных	
непоглощающих, поглощающих, анизотропных средах и на границе	
раздела сред.	8
3.1 Содержание раздела	
3.2 Методические указания по изучению раздела	8
3.3 Вопросы для самопроверки	8
Раздел 4 Излучение и дифракция электромагнитных волн	
4.1 Содержание раздела	9
4.2 Методические указания по изучению раздела	9
4.3 Вопросы для самопроверки	9
Раздел 5 Общая теория направленных электромагнитных волн	. 10
5.1 Содержание раздела	. 10
5.2 Методические указания по изучению раздела	
5.3 Вопросы для самопроверки	. 10
Раздел 6 Электродинамика микроволновых направляющих и	
колебательных систем.	. 10
6.1 Содержание раздела	. 10
6.2 Методические указания по изучению раздела	. 11
6.3 Вопросы для самопроверки	. 11
Раздел 7 Интегральные параметры регулярной направляющей системы	. 12
7.1 Содержание раздела	. 12
7.2 Методические указания по изучению раздела	. 12
7.3 Вопросы для самопроверки	. 12
Раздел 8 Методы анализа многоплечих микроволновых устройств	. 13
8.1 Содержание раздела	. 13
8.2 Методические указания по изучению раздела	. 13
8.3 Вопросы для самопроверки	. 13
Раздел 9. Микроволновые устройства.	. 13
9.1 Содержание раздела	. 13
9.2 Методические указания по изучению раздела	. 14
9.3 Вопросы для самопроверки	
10 Лабораторные работы	. 15

11 Практические занятия	16
12 Подготовка к контрольной работе	16
Заключение	17
Рекомендуемая литература	17

Введение

Целью «Электродинамика преподавания дисциплины И микроволновая техника» специалистов является подготовка К проектированию, эксплуатации И исследованию микроволновых направляющих и колебательных систем, многоплечих микроволновых устройств на основе изучения студентами базовых физических принципов функционирования основных элементов микроволновой техники.

Задачи дисциплины заключаются в изучении и освоении студентами современных подходов и методов, используемых для анализа и расчета электромагнитных полей в микроволновых направляющих и колебательных системах; изучении основных методов анализа и проектирования многоплечих микроволновых устройств.

В результате изучения дисциплины студент должен:

- *знать*: принципы использования физических эффектов в вакууме, плазме и в твердом теле в приборах и устройствах микроволновой электроники; конструкции, параметры, характеристики и методы моделирования приборов микроволновой электроники;
- *уметь*: применять методы расчета параметров и характеристик приборов микроволновой электроники; применять методы моделирования и проектирования приборов и устройств микроволновой электроники; анализировать информацию о новых типах микроволновых приборов.
- *владеть*: методами экспериментальных исследований параметров и характеристик материалов, приборов и устройств микроволновой электроники; современными программными средствами моделирования и проектирования приборов микроволновой электроники; методикой расчета основных узлов приборов микроволновой электроники.

Дисциплина «Электродинамика и микроволновая техника» относится к федеральной компоненте цикла специальных дисциплин (СД. Ф.4) **ос**новной образовательной программы по направлению подготовки «Электроника и микроэлектроника» (специальность 210105 — Электронные приборы и устройства).

Для изучения дисциплины «Электродинамика и микроволновая техника» необходимо усвоение:

- дисциплины естественно-научного цикла «Методы математической физики» (дифференциальные уравнения в частных производных, волновые уравнения);
- дисциплины общепрофессионального цикла «Материалы и элементы электронной техники» (основные физические процессы в диэлектриках и способы их описания, магнитные материалы и элементы общего назначения).

Раздел 1 Введение 1.1 Содержание раздела

Электромагнитное поле как особая форма движущейся материи. Основные задачи, возникающие при изучении, исследовании, проектировании электронных приборов, оптоэлектронных приборов, и роль электродинамики в решении этих задач.

1.2 Методические указания по изучению раздела

При изучении раздела «Введение» следует обратить внимание на обоснование факта существования электромагнитного поля, особенности микроволнового диапазона, достижения микроволновой техники.

Раздел 2 Основные уравнения электродинамики **2.1** Содержание раздела

Уравнения Максвелла в интегральной и дифференциальной формах и их физическое содержание. Материальные уравнения. Граничные условия для электромагнитного поля. Уравнение баланса мощностей в электромагнитном поле. Векторные и скалярные потенциалы. Уравнения Лапласа и Пуассона. Уравнения Максвелла в комплексной форме. Волновые уравнения.

2.2 Методические указания по изучению раздела

При изучении раздела «Основные уравнения электродинамики» следует обратить внимание на уравнения Максвелла в интегральной и дифференциальной формах, понимание их физического смысла, умение использовать их при решении простейших задач электродинамики, на уравнения Лапласа и Пуассона.

- 1. Запишите уравнения Максвелла в интегральной форме. Поясните все обозначения.
- 2. Запишите уравнения Максвелла в дифференциальной форме. Поясните все обозначения.
 - 3. Назовите основные следствия из уравнений Максвелла.
- 4. Запишите материальные уравнения для изотропной среды, не обладающей дисперсией. Поясните все обозначения.
 - 5. Что такое граничные условия для электромагнитного поля?
- 6. Объясните физический смысл слагаемых, входящих в уравнение баланса энергии электромагнитного поля.
 - 7. Дайте определение электростатического потенциала.

- 8. Запишите уравнение Лапласа. Поясните все обозначения.
- 9. Запишите уравнение Пуассона. Поясните все обозначения.
- 10. Запишите математическую формулировку одномерного волнового уравнения. Поясните все обозначения.
- 11. В чем состоит достоинство комплексного метода при описании гармонических плоских волн?

Раздел 3 Плоские электромагнитные волны в неограниченных непоглощающих, поглощающих, анизотропных средах и на границе раздела сред.

3.1 Содержание раздела

Решение волновых уравнений для случая плоских волн в неограниченных средах. Поверхности равных фаз и равных амплитуд. Особенности распространения Поляризация волн. плоских электромагнитных волн в непоглощающих, поглощающих изотропных диэлектриках, проводниках. Скин-эффект. Глубина проникновения. Волновое сопротивление среды. Плоские волны в анизотропных средах. Эффект Фарадея и Коттона-Мутона.

Отражение и преломление плоских волн на границе раздела двух сред. Нормальное падение плоских волн. Наклонное падение горизонтально и вертикально поляризованной волны. Явление полного внутреннего отражения. Граничные условия Леонтовича.

3.2 Методические указания по изучению раздела

При изучении раздела «Плоские электромагнитные волны в неограниченных непоглощающих, поглощающих, анизотропных средах и на границе раздела сред» следует обратить внимание на общее выражение для поля плоской волны, распространяющейся в произвольном направлении, виды поляризации электромагнитных волн, поперечный характер поля плоской волны, особенности структуры плоской волны в среде с потерями, плоские волны в анизотропных средах, отражение плоских волн на границе раздела двух сред.

- 1. Запишите ДЛЯ математическое выражение напряженности электрического ПОЛЯ плоской электромагнитной волны, распространяющейся произвольном направлении. Поясните В все обозначения.
- 2. Какое поле называют поляризованным, а какое неполяризованным?
- 3. Чем отличаются волны с линейной, эллиптической и круговой поляризациями?

- 4. Запишите математическое выражение для фазовой скорости света через материальные параметры среды распространения. Поясните все обозначения.
 - 5. Что такое фронт волны?
- 6. Как определяется коэффициент затухания электромагнитной волны?
 - 7. Что такое толщина скин-слоя?
- 8. Запишите тензор магнитной проницаемости намагниченного феррита. Поясните все обозначения.
 - 9. Опишите явление полного внутреннего отражения.
 - 10. Запишите граничные условия Леонтовича.

Раздел 4 Излучение и дифракция электромагнитных волн 4.1 Содержание раздела

Электродинамические потенциалы. Неоднородные волновые уравнения. Элементарный электрический излучатель: электрическое и магнитное поле в ближней и дальней зоне. Мощность и сопротивление излучения. Эквивалентные источники электромагнитного поля. Структура поля. Диаграмма направленности.

Понятие дифракции. Предельные случаи дифракции. Дифракция плоской электромагнитной волны на цилиндре. Дифракция плоской электромагнитной волны на отверстии. Приближения Френеля и Фраунгофера.

4.2 Методические указания по изучению раздела

При изучении раздела «Излучение и дифракция электромагнитных волн» следует обратить внимание на физический смысл эффектов запаздывания и учет этих эффектов при математическом описании излучения электромагнитных волн, различия полей источников в ближней и дальней зонах, постановку задачи дифракции, приближения Френеля и Фраунгофера.

- 1. Дайте определения электродинамических потенциалов.
- 2. Запишите условие калибровки Лоренца, поясните его физический смысл.
- 3. Запишите векторное и скалярное уравнения для потенциалов электромагнитного поля.
- 4. Запишите выражение для поля сферической волны. Опишите характер ее распространения.
 - 5. Опишите характер поля диполя Герца в ближней зоне.

- 6. Опишите характер поля диполя Герца в дальней зоне.
- 7. Что такое диаграмма направленности излучателя электромагнитных волн.
 - 8. Нарисуйте диаграмму направленности диполя Герца.
 - 9. Дайте определение сопротивления излучения.
 - 10. В чем заключается явление дифракции электромагнитных волн?
- 11. В чем заключаются дифракционные приближения Френеля и Фраунгофера?

Раздел 5 Общая теория направленных электромагнитных волн **5.1** Содержание раздела

Общие свойства направляемых электро-магнитных волн. Типы волн: электрические (Е – волны), магнитные (Н – волны), Т - волны. Волновое уравнение и его решение для произвольной направляющей системы. Фазовая, групповая скорости, дисперсия, явление отсечки электромагнитных волн.

5.2 Методические указания по изучению раздела

При изучении раздела «Общая теория направленных электромагнитных волн» следует хорошо понимать, что представляют собой электрические или E — волны, магнитные или H — волны, поперечные или T — волны.

5.3 Вопросы для самопроверки

- 1. Какая направляемая волна является магнитной?
- 2. Какая направляемая волна является Е волной?
- 3. В каких направляющих системах возможно существование T волн?
- 4. Как связаны между собой продольные и поперечные составляющие поля в однородной направляющей системе?
 - 5. Что такое критическая частота, критическая длина волны?
 - 6. Что такое дисперсия в направляющей системе?
- 7. Что такое дисперсионная характеристика направляющей системы?

Раздел 6 Электродинамика микроволновых направляющих и колебательных систем.

6.1 Содержание раздела

Классификация направляющих систем. Распространение волн между двумя параллельными плоскостями. Решение волнового уравнения

для волн типа Н- и Е- в прямоугольном волноводе. Диаграмма критических длин волн. Структура полей и токов. Круглый волновод. Волны в коаксиальной линии, полосковой линии передачи, двухпроводной линии.

Условия существования медленных волн. Пространственные гармоники. Дисперсионные характеристики. Основные типы замедляющих систем - спиральные, гребенчатые, стержневые, резонаторные, используемые в микроволновых устройствах.

Возбуждение электромагнитных волн в направляющих системах. Принцип возбуждения полей возбуждающими устройствами.

Элементы возбуждения.

Особенности колебательных систем микроволнового диапазона. Основные типы объемных резонаторов. Типы колебаний. Структура полей и токов. Основные параметры резонаторов.

6.2 Методические указания по изучению раздела

При изучении раздела «Электродинамика микроволновых направляющих и колебательных систем» следует обратить внимание на методику решения волнового уравнения для волн типа Н- и Е- в прямоугольном волноводе, на основные свойства различных типов волноводов, области применения волноводов различных типов, принципы возбуждения различных типов электромагнитных волн в волноводах, на общность в расчете резонаторов и волноводов.

- 1. Какие типы волн существуют в прямоугольных волноводах?
- 2. Какой физический смысл имеют символы m и n, обозначающих тип волны в прямоугольном волноводе.
 - 3. Дайте определение длины волны в волноводе.
 - 4. Дайте определение критической длины волны в волноводе.
 - 5. Дайте определение фазовой скорости в волноводе.
- 6. Сформулируйте граничные условия для E волн в прямоугольном волноводе.
- 7. Сформулируйте граничные условия для H волн в прямоугольном волноводе.
- 8. Как образуется поле колебаний в резонаторах, выполненных на базе отрезков волновода?
- 9. Какой физический смысл имеют индексы в обозначении типов колебаний?
- 10. Как вычислить резонансную частоту произвольного типа колебаний в прямоугольном резонаторе?

11. Дайте определение собственной и нагруженной добротности объемного резонатора.

Раздел 7 Интегральные параметры регулярной направляющей системы

7.1 Содержание раздела

Эквивалентные параметры линии передачи. Коэффициенты отражения, коэффициенты стоячей волны, бегущей волны, входное сопротивление линии передачи, сопротивление нагрузки.

Круговая диаграмма полных сопротивлений.

Основные режимы работы линии передачи. КПД и согласование линии передачи с нагрузкой. Физический смысл согласования. Максимальная отдача мощности генератора в нагрузку. Максимальный коэффициент полезного действия линии передачи. Общие принципы согласования нагрузки с линией передачи.

7.2 Методические указания по изучению раздела

При изучении раздела «Интегральные параметры регулярной направляющей системы» следует обратить внимание на физический смысл эквивалентных параметров линии передачи, определение параметров линии передачи с помощью круговой диаграммы полных сопротивлений, общие принципы согласования линий передачи.

- 1. Что такое эквивалентное напряжение в линии передачи?
- 2. Что такое эквивалентный ток в линии передачи?
- 3. Что такое волновое сопротивление линии передачи?
- 4. Поясните отличие волнового сопротивления линии передачи от характеристического.
- 5. Дайте определения коэффициентов отражения по напряжению и току.
 - 6. Что такое коэффициент стоячей волны?
 - 7. Назовите основные режимы работы линии передачи.
 - 8. Поясните физический смысл согласования.
 - 9. Как определяется КПД линии передачи?
- 10. При каком условии линия передачи имеет максимальный КПД? Запишите выражение для него.

Раздел 8 Методы анализа многоплечих микроволновых устройств

8.1 Содержание раздела

Волновые матрицы рассеяния, сопротивления, проводимостей, передачи. Зависимость элементов матрицы рассеяния от положения плоскостей отсчета фаз. Основные свойства многополюсников и их матриц.

8.2 Методические указания по изучению раздела

«Методы изучении раздела анализа многоплечих микроволновых устройств» следует обратить внимание на обоснование использования волновых матриц для анализа многополюсников в диапазоне, физический смысл микроволновом элементов нормированные токи, напряжения, рассеяния, матрицу рассеяния, основные свойства матрицы рассеяния

8.3 Вопросы для самопроверки

- 1. Дайте определение многополюсника в микроволновом диапазоне.
- 2. Как определяется число плеч и число полюсов в многополюснике?
 - 3. Дайте определение линейного многополюсника.
- 4. Почему в микроволновом диапазоне для характеристики многополюсника удобно использовать волновые матрицы.
 - 5. Дайте определение матрицы рассеяния многополюсника.
- 6. Поясните физический смысл диагональных элементов матрицы рассеяния.
- 7. Поясните физический смысл недиагональных элементов матрицы рассеяния.
- 8. Как вводятся нормированные ток и напряжение в линии передачи?
- 9. Как связаны элементы нормированной и ненормированной матрицы рассеяния?
- 10. Как связаны элементы матрицы рассеяния с положением плоскостей отсчета фаз?
- 11. Назовите основные свойства матриц рассеяния взаимных и недиссипативных многополюсников.

Раздел 9. Микроволновые устройства.

9.1 Содержание раздела

Устройства, узкополосного согласования – одношлейфные

двухшлейф-ные трансформаторы. трансформаторы, Согласованные Частотно-селективные аттенюаторы. нагрузки, устройства микроволновые фильтры, амплитудно-частотная характеристика фильтров нижних частот (ФНЧ), фильтров верхних частот (ФВЧ). Устройства широкополосного согласования. Волноводные тройники. Направленные ответвители. Принципы действия, конструкции, Делители. характеристики, методы анализа и синтеза, компьютерное моделирование Магнитные материалов. проектирование. свойства ферритовых Фазовращатели, Ферритовые микроволновые устройства. вентили, циркуляторы. Управляемые фильтры. Сверхпроводящие микроволновые устройства.

9.2 Методические указания по изучению раздела

При изучении раздела «Микроволновые устройства» следует обратить внимание на устройства согласования, согласованные нагрузки, микроволновые фильтры, направленные ответвители, ферритовые микроволновые устройства.

- 1. Зарисуйте конструкции основных типов согласованных нагрузок.
- 2. Сформулируйте теорему Фостера для идеального реактивного двухполюсника.
 - 3. Запишите матрицу рассеяния для идеального аттенюатора.
 - 4. Зарисуйте конструкции основных типов аттенюаторов.
- 5. Нарисуйте амплитудно-частотные характеристики фильтров нижних частот, верхних частот.
- 6. Назовите основные принципы работы устройств широкополосног согласования.
- 7. Какие ограничения накладываются на ширину полосы согласования?
 - 8. Запишите матрицу рассеяния симметричного тройника.
 - 9. Поясните принцип действия Е тройника и Н тройника.
- 10. Опишите принцип работы направленных ответвителей со связью через отверстия.
- 11. Опишите принцип работы направленных ответвителей на связанных линиях.
- 12. Назовите основные типы невзаимных фазовращателей и проведите сравнительный анализ.
 - 13. Запишите матрицу рассеяния идеального циркулятора.
- 14. Поясните принцип действия взаимных ферритовых фазовращателей.

10 Лабораторные работы

В процессе выполнения лабораторных занятий студент не только закрепляет теоретические знания, но и пополняет их. Вся работа при выполнении лабораторной работы разбивается на следующие этапы: вступительный, проведение эксперимента и обработка результатов.

В процессе домашней подготовки студент проверяет качество усвоения проработанного материала по вопросам для самоконтроля, относящимся к изучаемой теме. Без проведения такой предварительной подготовки к лабораторной работе студент не допускается к выполнению эксперимента.

Помимо домашней работы студенты готовятся к выполнению эксперимента также на рабочем месте: они уточняют порядок выполнения работы, распределяют рабочие функции между членами бригады. В ходе аудиторной подготовки преподаватель путем собеседования выявляет и готовности каждого степень студента К проведению эксперимента и знание им теоретического материала. Студенты, не подготовленные к выполнению работы или не представившие отчеты по предыдущей работе, к выполнению новой работы могут быть не допущены и все отведенное время для лабораторной работы должны находиться в лаборатории, изучать по рекомендованной литературе тот материал, с которым они не познакомились дома. К выполнению работы они могут быть допущены только после собеседования и в часы сверх расписания по договоренности с преподавателем. Все пропущенные лабораторные работы по уважительным или неуважительным причинам могут быть выполнены в конце семестра на дополнительных занятиях.

Второй этап работы — проведение эксперимента в лаборатории. На этом этапе очень важно, чтобы студент выполнил самостоятельно и грамотно необходимые измерения и наблюдения, укладываясь в отведенное для этого время. При организации своей работы для проведения эксперимента целесообразно исходить из рекомендаций, изложенных в руководствах для выполняемой лабораторной работы.

На последнем этапе работы студент производит обработку данных измерений и анализ полученных результатов.

Отчет студента по работе должен быть индивидуальным. Анализ результатов является важной частью отчета.

Ниже приведены названия лабораторных работ.

- 1. Исследование электромагнитного поля в прямоугольном волноводе
 - 2. Исследование электромагнитного поля в круглом волноводе
 - 3. Исследование объемных резонаторов
- 4. Исследование дифракции электромагнитных волн и линзы Френеля

11 Практические занятия

На практических занятиях студенты рассматривают варианты задач. Целью занятий является углубление понимания процессов, происходящих при исследовании микроволновых направляющих и колебательных систем, многоплечих микроволновых устройств на основе изучения студентами базовых физических принципов функционирования основных элементов микроволновой техники, а также заключается в изучении и освоении студентами современных подходов и методов, используемых для анализа и расчета электромагнитных полей в микроволновых направляющих и колебательных системах; изучении основных методов анализа и проектирования многоплечих микроволновых устройств.

Перед практическими занятиями студент должен повторить лекционный материал, ответив на вопросы для самоконтроля по необходимой теме, а также просмотреть рекомендации по решению типичных задач этой темы. Темы практических занятий приведены ниже.

6 семестр

- 1. Уравнения Максвелла и граничные условия. Электростатические поля. Электромагнитные поля постоянных токов
- 2. Плоские электромагнитные волны в безграничных средах. Отражение и преломление плоских волн от плоской границы раздела двух сред
 - 3. Излучение электромагнитных волн
- 4. Направляющие системы E и H волн. Прямоугольные волноводы. Круглые волноводы

7 семестр

- 1. Коаксиальные, полосковые, двухпроводные линии передач
- 2. Согласование линии передачи с нагрузкой, применение диаграммы сопротивлений и проводимостей
 - 3. Матричный анализ микроволновых устройств

На практических занятиях проводятся тестовые опросы и контрольные работы.

12 Подготовка к контрольной работе

Студенты выполняют четыре контрольных работы. Контрольные работы проводятся по следующим темам:

6 семестр:

- 1. Уравнения Максвелла и граничные условия.
- 2. Плоские электромагнитные волны в безграничных средах. Излучение электромагнитных волн.

7 семестр

1. Коаксиальные, полосковые, двухпроводные линии передач.

2. Согласование линии передачи с нагрузкой, применение диаграммы сопротивлений

При выполнении контрольной работы каждому студенту выдается индивидуальное задание, включающее в себя теоретическую часть (тестовый опрос) и три задачи, выбранные из предложенных задач для самостоятельного решения (задачи представлены в методическом указании к практическим занятиям).

Заключение

В итоге изучения тем студент должен твердо, как минимум знать следующие вопросы.

- 1. Основные уравнения электродинамики
- 2. Плоские электромагнитные волны в неограниченных непоглощающих, поглощающих, анизотропных средах и на границе раздела сред
 - 3. Излучение и дифракция
 - 4. Общая теория направленных электромагнитных волн
- 5. Электродинамика микроволновых направляющих и колебательных систем
- 6. Интегральные параметры регулярной инаправляющей системы (коэффициенты отражения и стоячей волны, входное сопротивление и сопротивление нагрузки)
 - 7. Круговая диаграмма полных сопротивлений
 - 8. Режимы работы, КПД и согласование
- 9. Методы анализа многоплечих микроволновых устройств волновые матрицы рассеяния, сопротивления, проводимостей и передачи
- 10. Микроволновые устройства: согласования, фильтры, делители, направленные ответвители и др.
- 11. Принципы действия, конструкции, характеристики, методы анализа и синтеза
 - 12. Компьютерное моделирование и проектирование
 - 13. Ферритовые и сверхпроводящие микроволновые устройства.

Рекомендуемая литература

- 1. Башкиров А.И. Исследование дифракции электромагнитных волн и линзы Френеля: Методические указания к лабораторному практикуму. Томск: TУСУР, 2012. 16 с. http://edu.tusur.ru/training/publications/1034.
- 2. Башкиров А.И. Исследование объемных резонаторов: Методические указания к лабораторному практикуму. Томск: ТУСУР, 2012. 11 с. http://edu.tusur.ru/training/publications/1042.

- 3. Башкиров А.И. Исследование электромагнитного поля в круглом волноводе: Методические указания к лабораторному практикуму. Томск: ТУСУР, 2012. 12 с., http://edu.tusur.ru/training/publications/1036.
- 4. Башкиров А.И. Исследование электромагнитного поля в прямоугольном волноводе: Методические указания к лабораторному практикуму. Томск: ТУСУР, 2012. 13 с., http://edu.tusur.ru/training/publications/1041.
- 5. Боков Л.А., Замотринский В.А., Мандель А.Е. Электродинамика и распространение радиоволн: Учебное пособие. Томск: ТУСУР, 2012. 301 с., http://edu.tusur.ru/training/publications/738.
- 6. Гошин Г.Г., Замотринский В.А., Шангина Л.И. Устройства СВЧ и антенны: Учебное методическое пособие. Томск: ТУСУР, 2012. 163 с., http://edu.tusur.ru/training/publications/715.
- 7. Григорьев А.Д. Электродинамика и микроволновая техника: Учебник. 2-е изд. СПб.: Изд-во "Лань", 2007. 704 с. ISBN: 978-5-8114-0706-4. http://e.lanbook.com/books/ element.php?pl1 cid=25&pl1 id=118
- 8. Григорьев А.Д. Электродинамика и техника СВЧ: Учебник для вузов. М.: Высшая школа, 1990 г. -335 с. (9кз. -21).
- 9. Замотринский В.А., Соколова Ж.М., Падусова Е.В.; Шангина Л.И. Электромагнитные поля и волны: Учебное пособие для вузов. Томск: ТУСУР, 2007. 188 с. (экз. 80), (УМП для практических занятий).
- 10. Замотринский В.А., Соколова Ж.М., Падусова Е.В., Шангина Л.И. Электродинамика и распространение радиоволн: Учебное методическое пособие. Томск: Томский межвузовский центр дистанционного образования, 2005. 225 с. (экз. 3).
- 11. Замотринский В.А., Соколова Ж.М., Падусова Е.В., Шангина Л.И. Электродинамика и распространение радиоволн: Учебный практикум. Томск: ТМЦДО, 2001. 156 с. (экз. 17).
- 12. Замотринский В.А., Шангина Л.И. Устройства СВЧ и антенны. Часть 1. Устройства СВЧ: Учебное пособие. Томск: ТУСУР, 2012. 223 с., http://edu.tusur.ru/training/publications/712.
- 13. Мандель А.Е., Боков Л.А., Соколова Ж.М. Электродинамика и распространение радиоволн: Учебно-методическое пособие по организации самостоятельной работы студентов. Томск: ТУСУР, 2010. 37с., http://portal.openteam.ru/training/publications/15.
- 14. Никольский В.В., Никольская Т. И. Электродинамика и распространение радиоволн: Учебное пособие для вузов. М.: Наука, 1989.-543 с. (экз. -35).
- 15. Петров Б.М. Электродинамика и распространение радиоволн: Учебник для вузов. М.: Горячая линия Телеком, 2007. 558 с. (экз. 100).

- 16. Татур Т.А. Основы теории электромагнитного поля: Справочное пособие. М.: Высшая школа, 1989 г. 271 с. (экз. 11).
- 17. Фальковский О.И. Техническая электродинамика: Учебник. 2-е изд., стер СПб.: Изд-во "Лань", 2009. 432 с. ISBN: *978-5-8114-0980-8*
- 18. Федоров Н.Н. Основы электродинамики: Учебное пособие для вузов. М.: Высшая школа, 1980 г. 398 с. (экз. 30).

Учебное пособие

Башкиров А.И.

Электродинамика и микроволновая техника Методические указания по самостоятельной работе

Усл. печ. л. Препринт Томский государственный университет систем управления и радиоэлектроники 634050, г.Томск, пр.Ленина, 40