Министерство образования и науки Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования «Томский государственный университет систем управления и радиоэлектроники»

Кафедра электронных приборов

Голографические методы в фотонике и оптоинформатике

АДАПТИВНЫЙ ГОЛОГРАФИЧЕСКИЙ ИНТЕРФЕРОМЕТР

Методические указания к лабораторной работе для студентов направления «Фотоника и оптоинформатика»

2012

Шмаков, Сергей Сергеевич Шандаров, Станислав Михайлович

Адаптивный голографический интерферометр = Голографические методы в фотонике и оптоинформатики: методические указания к лабораторной работе для студентов направления «Фотоника и оптоинформатика» / С.С. Шмаков, С.М. Шандаров; Министерство образования и науки Российской Федерации, Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования Томский государственный университет систем управления и радиоэлектроники, Кафедра электронных приборов. - Томск: ТУСУР, 2012. - 15 с.

Целью данной работы является ознакомление с принципом работы адаптивного голографического интерферометра на основе встречного двухпучкового взаимодействия в кубическом фотрефрактивном кристалле класса симметрии 23, определение зависимости амплитуды выходного сигнала от амплитуды фазовой модуляции (или амплитуды колебаний зеркала).

Пособие предназначено для студентов очной и заочной форм, обучающихся по направлению «Фотоника и оптоинформатика» по дисциплине «Голографические методы в фотонике и оптоинформатики».

Министерство образования и науки Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования «Томский государственный университет систем управления и радиоэлектроники»

Кафедра электронных приборов

УТВЕРЖДАЮ Зав. кафедрой ЭП ______С.М. Шандаров «___» _____2012 г.

Голографические методы в фотонике и оптоинформатике

АДАПТИВНЫЙ ГОЛОГРАФИЧЕСКИЙ ИНТЕРФЕРОМЕТР

Методические указания к лабораторной работе для студентов направления «Фотоника и оптоинформатика»

> РАЗРАБОТЧИКИ: ассистент каф. ЭП С.С. Шмаков

профессор каф. ЭП ____ С.М. Шандаров

Содержание

Введение	5
Теоретическая часть	5
2.1 Теория взаимодействия фазово-модулированных световых пучков н	ia
отражательных решетках в фоторефрактивном кристалле	5
2.2 Встречное взаимодействие в кристаллах срезов (111) и (110)	9
2.3. Встречное взаимодействие в кристаллах среза (100) при линейной	
поляризации сигнального пучка	10
2.4 Контрольные вопросы	10
Экспериментальная часть	11
3.1 Оборудование	11
3.2 Задание	11
3.3 Порядок выполнения работы и методические указания	12
3.4 Содержание отчета	14
Список литературы	14

1 Введение

Голография – это универсальный метод регистрации и воспроизведения волновых полей с целью выявления необходимой информации как об объекте, являющемся источником излучения, так и о характере волнового поля.

Впервые идея голографического метода записи и восстановления изображений была высказана в 1948 г. английским ученым Д. Габором, которому за это открытие в 1971 г. была присуждена Нобелевская премия по физике. В Советском Союзе первые работы по голографии были выполнены Ю. Н. Денисюком в период с 1958 по 1962 гг.

Развитию голографического метода способствовали работы Н. Г. Басова, А. М. Прохорова и Ч. Таунса, приведшие к созданию мощного источника когерентного излучения – лазера. Это открытие позволило американским ученым Э. Лейту и Ю. Упатниексу в 1962 г. получить первые лазерные голограммы диффузно отражающих объектов.

В настоящий момент практические применения голографии достаточно многообразны и в настоящей лабораторной работе рассматривается применение голографии в интерферометрических исследованиях. Здесь она позволяет осуществлять интерференцию волновых фронтов, существовавших в различные моменты времени, а также изучать объекты сколь угодно сложной формы. Наибольшее распространение получили метод двойной экспозиции и интерферометрия в реальном времени. В первом случае на голограмме записываются два различных состояния одного и того же объекта, изображения которых при восстановлении интерферируют, во втором – наблюдение объекта в разных состояниях производится через голограмму в присутствии восстанавливающего луча.

Голографическая интерферометрия используется, в частности, для исследования вибраций. Это имеет большое практическое значение для неразрушающего контроля качества деталей. На широко распространенных голографических деформаций методах исследования основан неразрушающий контроль качества изделий В промышленности. Голографическая интерферометрия позволила значительно расширить изучение фазовых объектов. Она успешно применяется в аэродинамических исследованиях и в физике плазмы.

2 Теоретическая часть

2.1 Теория взаимодействия фазово-модулированных световых пучков на отражательных решетках в фоторефрактивном кристалле

На рис. 2.1 показана геометрия встречного взаимодействия сильной волны накачки (P), сохраняющей правую круговую поляризацию и амплитуду C_{P2} , со слабой фазово-модулированной сигнальной волной (S), имеющей произвольную поляризацию на входной грани x = 0 кристалла класса симметрии 23.

Рисунок 2.1 – Геометрия встречного взаимодействия волны накачки, имеющей правую круговую поляризацию и волновой вектор **k**_P, с сигнальной волной произвольной поляризации и волновым вектором **k**_S в кубическом гиротропном фоторефрактивном кристалле.

В приближении неистощаемой накачки световые поля волн, взаимодействующих на формируемой ими в гиротропном кристалле отражательной фоторефрактивной решетке, представим в следующем виде:

$$\mathbf{E}_{P}(x) = C_{P2}\mathbf{e}_{2}\exp(-ik_{0}n_{2}x)\exp\left(-\frac{\alpha}{2}x\right), \qquad (2.1)$$

$$\mathbf{E}_{s}(x,t) = \left\{ C_{s1}(x,t)\mathbf{e}_{1}^{*}\exp(ik_{0}n_{1}x) + C_{s2}(x,t)\mathbf{e}_{2}^{*}\exp(ik_{0}n_{2}x) \right\}\exp\left(\frac{\alpha}{2}x\right), \quad (2.2)$$

где $\mathbf{e}_{1,2} = (\mathbf{y}_0 \pm i\mathbf{z}_0)/\sqrt{2}$ - соответствующие собственным волнам левой и правой круговой поляризации единичные векторы, а $n_{1,2} = n_0 \pm \rho/k_0$ - показатели преломления этих собственных волн; $k_0 = 2\pi/\lambda$ - волновое число для вакуума; n_0 и α - показатель преломления и коэффициент поглощения для невозмущенного кристалла; ρ - его удельное оптическое вращение.

Для синусоидальной фазовой модуляции с амплитудой φ_m и частотой Ω векторную амплитуду сигнальной волны на входной грани кристалла представим в виде следующего разложения по гармоникам:

 $\mathbf{E}_{S}(0,t) = \left(C_{S1}^{0}\mathbf{e}_{1}^{*} + C_{S2}^{0}\mathbf{e}_{2}^{*}\right) \left[J_{0}(\phi_{m}) + i2J_{1}(\phi_{m})\sin\Omega t + 2J_{2}(\phi_{m})\cos2\Omega t + ...\right], (2.3)$ где $J_{n}(\phi_{m})$ - функция Бесселя *n*-го порядка. Картина интерференции световых волн сигнала и накачки в кристалле в этом случае будет нестационарной, с вектором решетки $\mathbf{K} = 2k_{0}n_{0}\mathbf{x}^{0}$ и контрастом

$$m(x,t) = \frac{2C_{S1}(x,t)C_{P2}^{*}}{|C_{P2}|^{2}\exp(-\alpha x)} = m^{(0)}(x) + \frac{1}{2}[m^{(1)}(x)\exp(i\Omega t) + +m^{(1)*}(x)\exp(-i\Omega t) + m^{(2)}(x)\exp(i2\Omega t) + m^{(2)*}(x)\exp(-i2\Omega t) + ...]$$
(2.4)

с амплитудами гармоник $m^{(n)}(x) = 2C_{S1}^{(n)}(x)C_{P2}^*/[|C_{P2}|^2 \exp(-\alpha x)]$, подлежащими определению.

Формирование фоторефрактивной голограммы связано с перераспределением пространственного заряда по донорным и ловушечным центрам. В рамках приближения малых контрастов ($m \square 1$) и одноуровневой модели зонного переноса можно получить, что в установившемся режиме имеют место стационарные колебания поля пространственного заряда на гармониках частоты модуляции, с амплитудами

$$E_1^{(n)}(x) = -im^{(n)}(x)\frac{E_{SC}}{1+in\Omega\tau}.$$
(2.5)

Если фазовая модуляция сигнального пучка происходит с частотой $\Omega >> 1/\tau$, то благодаря инерционности фоторефрактивного отклика поле пространственного заряда решетки можно считать стационарным во времени, то есть пренебрегать его временными гармониками $E_1^{(1)}$, $E_1^{(2)}$, и другими. С использованием приведенных выше соотношений (2.4) и (2.5) амплитуда стационарной составляющей поля пространственного заряда может быть получена в виде

$$E_1^{(0)}(x) = -im^{(0)}(x)E_{SC} = -i\frac{2C_{S1}^{(0)}(x)C_{P2}^*}{|C_{P2}|^2\exp(-\alpha x)}E_{SC}.$$
(2.6)

В кристаллах силленитов перераспределение заряда по кристаллу имеет более сложный характер, чем в одноуровневом приближении. В них могут одновременно формироваться амплитудные (абсорбционные) решетки, обусловленные эффектом фотоиндуцированного изменения поглощения света. Однако значительная инерционность этих процессов позволяет при достаточно больших частотах модуляции и в этом случае использовать для описания амплитуды поля пространственного заряда соотношение (2.6), а амплитуду первой пространственной гармоники абсорбционной решетки представить в виде

$$\Delta \alpha_1^{(0)}(x) = m^{(0)}(x) \alpha_g, \qquad (2.7)$$

где α_g - эффективный параметр, характеризующий пространственнонеоднородные фотоиндуцированные изменения поглощения в кристалле. Учитывая, что фазовая и абсорбционная составляющие решетки могут иметь произвольный пространственный сдвиг относительно интерференционной картины, выразим компоненты тензора относительной диэлектрической проницаемости кристалла на частоте световой волны в виде

$$\varepsilon_{mn}(x) = \varepsilon_{mn}^{0} + \frac{\Delta \varepsilon_{mn}^{ph}(x)}{2} \exp(iKx) + \frac{\Delta \varepsilon_{mn}^{ph*}(x)}{2} \exp(-iKx) - -i\delta_{mn}\frac{n_{0}}{k_{0}} \left[\frac{\Delta \alpha_{1}^{(0)}(x)}{2} \exp(iKx) + \frac{\Delta \alpha_{1}^{(0)*}(x)}{2} \exp(-iKx) \right] , \quad (2.8)$$

где $K = |\mathbf{K}| = 2\pi/\Lambda$, Λ - пространственный период голограммы и δ_{mn} единичный симметричный тензор второго ранга. Компоненты тензора диэлектрической проницаемости ε_{mn}^{0} невозмущенного кристалла с учетом оптического поглощения и естественной оптической активности, а также возмущения этих компонент $\Delta \varepsilon_{mn}^{ph}$ полем пространственного заряда решетки определяются известными выражениями.

Использование традиционного подхода метода медленно меняющихся амплитуд позволяет на основе приведенных выше соотношений получить следующие уравнения, описывающие пространственную эволюцию амплитуд гармоник $C_{S1}^{(0)}(x)$ и $C_{S2}^{(0)}(x)$ фазово-модулированной сигнальной волны в кубическом гиротропном кристалле:

$$\begin{cases} \frac{dC_{S1}^{(0)}}{dx} = -\frac{1}{2} \left(\Gamma_E - \Gamma_a \right) C_{S1}^{(0)}, \\ \frac{dC_{S2}^{(0)}}{dx} = -\frac{1}{2} \Gamma_I \exp(i2\rho x) C_{S1}^{(0)}. \end{cases}$$
(2.9)

Здесь коэффициент $\Gamma_a = \alpha_g$ характеризует эффективность встречного взаимодействия на амплитудной составляющей отражательной решетки, а коэффициенты $\Gamma_E = g_E n_0^3 k_0 E_{SC}$ и $\Gamma_I = g_I k_0 n_0^3 E_{SC}$ выражаются через тензорные свертки g_I и g_E , описывающие соответственно вклад во встречное взаимодействие на её фазовой составляющей внутримодовых (без изменения собственного показателя преломления) и межмодовых процессов.

Таким образом, при высокочастотной фазовой модуляции слабого сигнального пучка его взаимодействие с сильным немодулированным пучком накачки, имеющим правую круговую поляризацию, на отражательной решетке, которую можно считать стационарной во времени, приводит к изменению только средних значений амплитуд собственных волн $C_{S1}^{(0)}(x)$ и $C_{S2}^{(0)}(x)$ с левой и правой круговой поляризацией. Решения для них с учетом разложения (2.3) могут быть получены из системы уравнений (2.9) в виде

$$C_{S1}^{(0)}(x) = C_{S1}^0 \operatorname{J}_0(\varphi_m) \exp\left[\frac{(\Gamma_a - \Gamma_E)}{2}x\right], \qquad (2.10)$$

$$C_{S2}^{(0)}(x) = \left[C_{S2}^0 - \frac{\Gamma_I C_{S1}^0}{i4\rho + \Gamma_a - \Gamma_E} \left\{ \exp\left[\frac{(\Gamma_a - \Gamma_E)}{2}x\right] \exp(i2\rho x) - 1 \right\} \right] J_0(\varphi_m) . \quad (2.11)$$

Гармоники с номерами n = 1, 2, 3... не изменяются по амплитуде в процессе взаимодействия на стационарной решетке с немодулированной волной накачки.

Интенсивность сигнального пучка после взаимодействия на отражательной решетке на выходной грани кристалла (вне его, при x = -d), может быть получена с использованием соотношений (2.2), (2.3), (2.10) и (2.11) в следующем виде:

$$I_{s}(-d,t) = \left[M^{(0)}(-d) + M^{(1)}(-d)\sin\Omega t + M^{(2)}(-d)\cos2\Omega t + \dots \right] \times \\ \times (1 - R^{2}) \tilde{I}_{s0} \exp(-\alpha d),$$
(2.12)

где R - френелевский коэффициент отражения; $\tilde{I}_{s_0} \Box (1-R^2) |\mathbf{E}_s(0)|^2$ - интенсивность сигнального пучка в кристалле на его входной грани (при x = 0); $M^{(n)}$ – относительные амплитуды гармоник, которые зависят от ориентации образца относительно кристаллографических осей.

2.2 Встречное взаимодействие в кристаллах срезов (111) и (110)

Как известно, при ориентации вектора К отражательной решетки вдоль кристаллографических направлений вида <111> и <110> межмодовые процессы отсутствуют ($\Gamma_{I} = 0$). Если вектор **К** направлен вдоль осей вида <110>, то и $\Gamma_E = 0$, поэтому в образцах среза (110) возможно только внутримодовое взаимодействие абсорбционной составляющей на отражательной голограммы. Для каждого ИЗ срезов с ЭТИХ ДВУХ правополяризованной волной накачки будет взаимодействовать только составляющая сигнальной волны с левой круговой поляризацией.

В простейшем случае, когда на входную грань x = 0 кристалла среза (111) падает сигнальная волна, имеющая левую круговую поляризацию $(C_{S2}^0 = 0, C_{S1}^0 \neq 0)$, относительные амплитуды гармоник могут быть получены в виде

$$M^{(0)}(-d) = 1 - J_0^2(\varphi_m) \{ 1 - \exp[(\Gamma'_E - \Gamma'_a)d] \}, \qquad (2.13)$$

$$M^{(1)}(-d) = -4 \operatorname{J}_{0}(\varphi_{m}) \operatorname{J}_{1}(\varphi_{m}) \exp\left[\frac{\Gamma_{E}' - \Gamma_{a}'}{2}d\right] \sin\left[\frac{\Gamma_{E}'' - \Gamma_{a}''}{2}d\right], \qquad (2.14)$$

$$M^{(2)}(-d) = 4 \operatorname{J}_{0}(\varphi_{m}) \operatorname{J}_{2}(\varphi_{m}) \left\{ \exp\left[\frac{\Gamma_{E}' - \Gamma_{a}'}{2}d\right] \cos\left[\frac{\Gamma_{E}'' - \Gamma_{a}''}{2}d\right] - 1 \right\}.$$
(2.15)

где коэффициенты связи $\Gamma_{E,a} = \Gamma'_{E,a} + i\Gamma''_{E,a}$ в общем случае считаются комплексными.

Как следует из уравнения (2.14), для реализации модуляции интенсивности сигнального пучка на частоте первой гармоники (линейного режима фазовой демодуляции) в кристалле среза (111) хотя бы один из этих коэффициентов должен иметь отличную от нуля мнимую часть. Для случая $\Gamma''_E \neq 0$ это означает, что пространственный сдвиг фазовой составляющей отражательной решетки относительно интерференционной картины отличается от значения $\delta x_{ph} = \Lambda/4$, характерного для диффузионного механизма формирования поля пространственного заряда. Если $\Gamma''_a \neq 0$, то

абсорбционная решетка не является синфазной ($\delta x_a = 0$) или противофазной ($\delta x_a = \Lambda/2$) с интерференционной картиной.

2.3. Встречное взаимодействие в кристаллах среза (100) при линейной поляризации сигнального пучка

Для образцов с ориентацией (100) вклад во встречное взаимодействие фазовой решетки максимален и обусловлен межмодовым взаимодействием, характеризуемым коэффициентом Г₁. В пренебрежение амплитудной составляющей решетки, здесь возможны только межмодовые процессы взаимодействия. приближении, линейной В ЭТОМ при поляризации сигнальной волны плоскости, составляющей В угол θ_{s0} с кристаллографическим направлением [010], относительные амплитуды гармоник определяются следующими выражениями:

$$M^{(0)}(-d,\phi_m) = 1 + J_0^2(\phi_m) \frac{\Gamma_I}{2\rho} \sin(\rho d) \left[\sin(\rho d - 2\theta_{S0}) + \frac{\Gamma_I}{4\rho} \sin(\rho d) \right], \quad (2.16)$$

$$M^{(1)}(-d,\phi_m) = J_0(\phi_m) J_1(\phi_m) \frac{\Gamma_I}{\rho} \sin(\rho d) \cos(\rho d - 2\theta_{s0}), \qquad (2.17)$$

$$M^{(2)}(-d,\phi_m) = J_0(\phi_m) J_2(\phi_m) \frac{\Gamma_I}{\rho} \sin(\rho d) \sin(\rho d - 2\theta_{S0}).$$
(2.18)

В соответствии с соотношениями (1.17) и (1.18), в кристаллах среза (100), в зависимости от ориентации вектора входной поляризации сигнального пучка, можно реализовать как квадратичный, так и линейный режим фазовой демодуляции.

2.4 Контрольные вопросы

- 1. Формирование фоторефрактивной голограммы
- 2. Интенсивность сигнального пучка

3. Внутримодовое взаимодействие на абсорбционной составляющей отражательной голограммы

- 4. Межмодовые процессы взаимодействия
- 5. Амплитуда выходного сигнала
- 6. Амплитуда фазовой модуляции
- 7. Фазомодулированный сигнальный пучок
- 8. Частота первой гармоники
- 9. Частота второй гармоники
- 10. Селективный вольтметр

11. Зависимость амплитуды выходного сигнала от амплитуды фазовой модуляции

3 Экспериментальная часть 3.1 Оборудование

В лабораторную установку входят следующие устройства: твердотельный лазер; делительный кубик; светодиод; изображающая линза; неподвижное зеркало; колеблющееся зеркало; четвертьволновая пластина; поляризатор; кристалл; фотодиод; селективный вольтметр; осциллограф; генератор; микроамперметр.

Структурная схема экспериментальной установки приведена на рис. 3.1.

1 - твердотельный лазер; 2 – делительный кубик; 3 – светодиод; 4 – изображающая линза; 5 – неподвижное зеркало; 6 – колеблющееся зеркало; 7,10 – четвертьволновая пластина; 8 – поляризатор; 9 – кристалл; 11, 12 – фотодиод; 13 – селективный вольтметр; 14 – осциллограф; 15 – генератор; 16 – микроамперметр

Рисунок 3.1 – Схема экспериментальной установки для исследования эффектов фазовой демодуляции при самовоздействии фазовомодулированных световых пучков на отражательных решетках в кристаллах силленитов

3.2 Задание

2.1. Получить систему уравнений (2.9). Для этого можно использовать методику получения связанных волн.

2.2. Вывести формулу для интенсивности суперпозиции двух полей, распространяющихся в одном направлении, причем начальная фаза одного поля равна φ_0 , а другого меняется по гармоническому закону с амплитудой φ_m и частотой Ω : $\varphi_m sin\Omega t$.

2.3. Собрать и настроить экспериментальную установку согласно рис. 3.1.

2.4. Снять зависимость амплитуды выходного сигнала от амплитуды фазовой модуляции (или амплитуды колебаний зеркала).

2.5. Для расчета зависимостей взять у преподавателя компьютерную программу.

2.6. Написать отчет о проделанной работе.

3.3 Порядок выполнения работы и методические указания

3.3.1. Порядок выполнения работы определен заданием.

3.3.2. Подготовка установки к проведению эксперимента

Элементы 3 и 4 на рис. 3.1 необязательны. Элемент 8 также может отсутствовать. Проверить правильность настройки четвертьволновых пластинок 7 и 10 (рис. 3.1).

Фотодиодом 12 будет регистрироваться интенсивность поля $I_{\rm S}$, которое является результатом интерференции прошедшего фазомодулированного сигнального пучка и дифрагировавшего на голографической решетке в кристалле 9 опорного пучка. Интенсивность такого поля будет изменяться в зависимости от амплитуды фазовой модуляции $\phi_{\rm m}$ на частоте первой гармоники, т.е. Ω , или на частоте второй гармоники $\Omega_{\rm m}$. Это будет зависеть от фазы ϕ_0 . Выделять гармоники позволяет селективный вольтметр 13 (рис. 3.1). Амплитуда сигнала наблюдается на осциллографе 14.

3.3.3. В ходе выполнения работы необходимо снять зависимость амплитуды выходного сигнала от амплитуды фазовой модуляции (или амплитуды колебаний зеркала). Амплитуда фазовой модуляции меняется при помощи генератора 15 (рис. 3.1), сигнал с генератора наблюдаются на осциллографе.

Для совмещения теоретической кривой с экспериментальными данными необходимо будет подбирать амплитуду сигнального пучка и его поляризацию, в случае использования кристалла среза (100). Для этого сначала необходимо снять зависимость постоянной составляющей выходного сигнала от амплитуды фазовой модуляции, которая снимается следующим образом.

1. Выставляется амплитуда фазовой модуляции U_c с помощью генератора 15, при этом в таблицу записывается размах синусоиды, наблюдаемой на осциллографе.

2. Записывается показание с фотодиода 11 *I_P* и с фотодиода 12 *I_{SCH}* (сигнальный пучок с включенные пучком накачки).

3. Перекрывается пучок накачки после ЧВП 10. После релаксации решетки (от 30 до 60 с) записывается показание фотодиода 12 *I*_{SEH} (сигнальный пучок без накачки)

4. Открывается пучок накачки. Далее повторяются пункты с 1 до полного снятия зависимости.

5. Снять зависимость амплитуды первой гармоники от амплитуды фазовой модуляции.

Данные удобнее записывать в следующую таблицу 3.1.

Таблица 3.1 – Результаты

U _c	$\mathrm{U}_{1\Gamma}$	I_{SCH}	$I_{S \overline{ ext{b}} ext{H}}$	I_P

На рис. 3.2. показан пример зависимости от амплитуды колебаний отражателя для относительной амплитуды первой (а) и второй (б) гармоник в спектре модуляции интенсивности линейно поляризованного сигнального пучка, при встречном взаимодействии в кристалле $Bi_{12}TiO_{20}$:Fe, Cu среза (100) с циркулярно поляризованной волной накачки. Значения входного поляризационного угла θ_{S0} : 0^0 (1), 30^0 (2), 45^0 (3). Кружки, ромбы и квадраты – эксперимент, кривые – расчет.

Рисунок 3.2 – Пример зависимости амплитуд первой и второй гармоник от амплитуды фазовой модуляции

Чтобы выяснить до какого значения амплитуды фазовой модуляции необходимо снимать зависимость, нужно первоначально посмотреть характер первой гармоники. У нее должен быть выраженный первый максимум (рис. 3.2, а) и далее минимум. До этого минимума вам необходимо снять зависимость. Для получения качественных результатов рекомендуется взять не менее 15 экспериментальных точек.

3.4 Содержание отчета

3.4.1. При составлении отчета необходимо руководствоваться общими требованиями и правилами оформления отчета о лабораторной работе.

3.4.2. В соответствующих разделах отчета необходимо представить:

1) задание;

2) схему устройства;

4) таблицы экспериментальных данных;

5) результаты расчетов, предусмотренных заданием;

6) выводы.

Список литературы

1. Shandarov S.M., Kolegov A.A., Burimov N.I., Bykov V.I., Petrov V. M., Kargin Yu.F.. Two-wave mixing on reflection dynamic gratings in sillenite crystals under phase modulation of signal beam // Physics of Wave Phenomena. - 2009. - V. 17, - No 1. - P. 39 - 44.

2. Петров М.П., Степанов С.И., Хоменко А.В. Фоторефрактивные кристаллы в когерентной оптике. - СПб: Наука, 1992. – 320 с.

3. Шандаров С.М., Буримов Н.И., Кульчин Ю.Н., Ромашко Р.В.,. Толстик А.Л, Шепелевич В.В. Динамические голограммы Денисюка в кубических фоторефрактивных кристаллах // Квантовая электроника. 2008. 38. 11. - С.1059-1069.

4. Шандаров С.М., Шандаров В.М., Мандель А.Е., Буримов Н.И. Фоторефрактивные эффекты в электрооптических кристаллах: монография. – Томск: Томск. гос. ун-т систем упр. и радиоэлектроники, 2007. – 242 с.

5. Ярив А., Юх П. Оптические волны в кристаллах: Пер с англ. – М.: Мир, 1987. – 616 с.

Учебное пособие

Шмаков Сергей Сергеевич Шандаров Станислав Михайлович

Адаптивный голографический интерферометр

Методические указания к лабораторной работе по дисциплине «Голографические методы в фотонике и оптоинформатики»

Усл. печ. л. Препринт Томский государственный университет систем управления и радиоэлектроники 634050, г.Томск, пр.Ленина, 40