Министерство образования и науки Российской Федерации

Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования «ТОМСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ СИСТЕМ УПРАВЛЕНИЯ И РАДИОЭЛЕКТРОНИКИ»

Радиотехнический факультет

Кафедра телекоммуникаций и основ радиотехники (ТОР)

Демидов А.Я.

Многоканальные системы цифровой радиосвязи

Методическое пособие по самостоятельной работе по специальности 210302 "Радиотехника". **Многоканальные системы цифровой радиосвязи:** Методическое пособие по самостоятельной работе/ А.Я.Демидов. ТУСУР.-2012. 45 с

Изложены краткие теоретические сведения, основные расчетные соотношения, численные примеры решения типовых задач и банк задач по разделам: модуляция в каналах цифровой связи; скорость передачи информации в канале связи; псевдослучайные последовательности; энергетический потенциал радиолинии; защита каналов связи при передаче сообщений в условия радиоэлектронной борьбы; Разработано в соответствии с программой курса «Многоканальные системы цифровой радиосвязи» и предназначено для студентов радиотехнического факультета, по специальностям 210302 — "Радиотехника"

© Томский Государственный Университет Систем Управления и Радиоэлектроники, 2012

СОДЕРЖАНИЕ

C	ОДЕРЖАНИЕ	3
2.	Общие требования к студентам при проведении практических занятий по дисциплине	e4
3.	Тема: Модуляция в каналах цифровой связи	4
	3.1 Цель занятия	
	3.2 Краткие сведения по теории	4
	3.2.1 Квадратурная амплитудная модуляция КАМ (QAM)	
	3.2.2 Дифференциальная квадратурная амплитудная модуляция ДКАМ (DQAM)	6
	3.2.3 Ортогональное частотное мультиплексирование данных OFDM	8
	3.3 Упражнения для самостоятельной работы	11
	3.4 Пример решения задач	12
	3.5 Контрольные вопросы	12
4	Тема: Скорость передачи информации в канале связи	12
	4.1 Цель занятия	
	4.2 Краткие сведения по теории	12
	4.3 Упражнения для самостоятельной работы	15
	4.4 Пример решения задач	16
	4.5 Контрольные вопросы	17
5.	Тема: Псевдослучайные последовательности	17
	5.1 Цель занятия	17
	5.2 Краткие сведения по теории	17
	5.2.1 Квазиортогональные двоичные последовательности	18
	5.2.2. М-последовательности и их свойства	19
	5.2.3. Предпочтительные пары М-последовательностей	26
	5.2.4. Максимальные связные множества М-последовательностей	28
	5.2.5. Составные последовательности на основе двух и более М-	
	последовательностей	29
	5.3 Упражнения для самостоятельной работы	
	5.4 Пример решения задач	33
	5.5 Контрольные вопросы	34
6.	Тема: Основные параметры радиолиний, определяющие энергетические потенциалы.	35
	6.1 Цель занятия	35
	6.2 Краткие сведения по теории	35
	6.3 Упражнения для самостоятельной работы	38
	6.4 Пример решения задач	39
	6.5 Контрольные вопросы	39
7.	Тема: Защита каналов связи при передаче сообщений в условия радиоэлектронной	
бо	рьбы	40
	7.1 Цель занятия	40
	7.2 Краткие сведения по теории	40
	7.2.1. Имитоэащита передаваемых сообщений	
	7.2.2 Помехозащита радиолиний	41
	7.2.3. Уравнение помехозащиты	
	7.3 Упражнения для аудиторных занятий	43
	7.4 Упражнения для самостоятельной работы	
	7.5 Пример решения задач	
	7.6 Контрольные вопросы	44

1. Введение

Настоящая работа предназначена для студентов очной обучения, изучающих дисциплину 'Системы и сети связи"по специальности "Комплексная защита объектов информатизации" и имеет целью повысить эффективность усвоения названной дисциплины путем методического руководства самостоятельными занятиями студентов.

2. Общие требования к студентам при проведении практических занятий по дисциплине.

На консультации у каждого студента должен быть конспект лекций по курсу, данное методическое руководство, постоянная рабочая тетрадь и вычислительные средства, краткие теоретические сведения, приводимые в данном методическом руководстве, хоть и включают все необходимые расчётные соотношения, являются недостаточными и служат только ориентиром при работе над лекциями и учебниками.

3. Тема: Модуляция в каналах цифровой связи

3.1 Цель занятия

Закрепить знания о современных видах цифровой модуляции в системах связи и способах ее реализации.

3.2 Краткие сведения по теории

В цифровой связи модуляцией называется запись (отображение) бит вектора (символа) сообщения в параметры аналогового физического сигнала, согласованного с каналом связи. (адаптированного к передачи в канале связи.)

Символ сообщения (слово) может содержать от *одного* до *т бит*. Сигнал с записанным *символов сообщения*, называется *символом модуляции*. Если в символ модуляции отображается один *бит* сообщения, то модуляция называется *двухпозиционной*, в противном случае – *многопозиционной*.

Символ сообщения состоящий из m бит имеет $M=2^m$ состояний, такое же количество состояний должен иметь символ модуляции, т.е он должен быть выбран из ансамбля (множества) S_M $\{s_1(t), s_2(t), \dots s_M(t)\}$ сигналов, определенных на интервале символа.

Тип ансамбля S_M и метод отображения на него символов сообщения полностью определяют вид модуляции.

Расстояние между парой сигналов для ансамбля S_{M} называется межсимвольным расстоянием и определяется следующим образом

$$d_{ij} = \sqrt{\int_T [s_i(t) - s_j(t)]^2 dt},$$

где T — интервал определения символа

Для ансамбль S_M вводится минимальное межсимвольное расстояние d_{min} , которое определяется как минимальное из всех d_{ii} .

Квадратурное представление узкополосного сигнала, квадратурный модулятор.

Известно, что любой узкополосный сигнал можно представить в виде:

$$S(t) = s(t)\cos[\omega_0 t + \varphi(t)] \tag{3.1}$$

где s(t) и $\phi(t)$ медленно меняющиеся функции времени, а ширина спектра сигнала намного меньше его центральной частоты, т.е $\Delta\omega << \omega_0$.

Перепишем выражение ля символа модуляции в виде:

$$S(t) = s(t)[\cos\omega_0 t \cos\varphi(t) - \sin\omega_0 t \sin\varphi(t)]$$
(3.2)

Введем медленно меняющиеся функции i(t) и q(t)

$$i(t) = s(t)cos\varphi(t)$$
 $q(t) = -s(t)sin\varphi(t),$
тогда (3.2) запишется в виде:
 $S(t) \ i(t)cos\omega_0 t + q(t)sin\omega_0 t$ (3.3)

Такое представление узкополосного сигнала называется квадратурным: i(t) называется синфазной огибающей сигнала, q(t) — квадратурной огибающей сигнала, а $cos\omega_0 t$ и $sin\omega_0 t$ синфазной и квадратурной несущими, соответственно.

Функции а $cos\omega_0 t$ и $sin\omega_0 t$ должны быть ортогональны на интервале определения символа модуляции.

Если символ модуляции мы определяем согласно (3), то модуляция узкополосным сигналом есть отображение (запись) бит символов сообщения на квадратурные огибающие i(t) и g(t), а способ отображения полностью определяет вид модуляции.

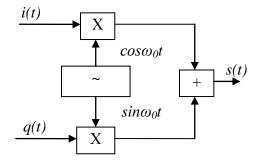


Рис.3.1 Квадратурный модулятор

3.2.1 Квадратурная амплитудная модуляция КАМ (QAM)

Не теряя общности, с целью упрощения понимания процесса формирования *QAM* - символов, квадратурные амплитуды на интервале символа модуляции мы можем положить константными, т.е.

$$i(t) = Is \ u \ q(t) = Os.$$

При QAM модуляции сообщение разбивается на группы бит (символы сообщения) по m бит в символе и каждый символ сообщения таблично отображается на квадратурные амплитуды

$$Is = k_{MO\partial} I$$
 U $Qs = k_{MO\partial} Q$,

где k_{mod} — коэффициент модуляции, выравнивающий в среднем по ансамблю энергию на символ модуляции для различного количества состояний $M = \log^{2m}$ символа модуляции (выравнивает энергетику мнопозиционных сигналов)

Для некоторых четных значений M таблицы отображений бит символа сообщения на амплитуды I и Q, положение сигнального вектора на плоскости I, Q и _коэффициент модуляции приведены ниже. Согласно таблицам первая половина бит сообщения отображается на синфазную амплитуду I, вторая на квадратурную Q.

Минимальное межсимвольное расстояние \mathbf{d}_{\min} уменьшается с увеличением количества состояний M символа модуляции и в нормированном виде равно $\mathbf{d}_{\min} = 2 \; k_{\scriptscriptstyle MOO}$.

3.2.2 Дифференциальная квадратурная амплитудная модуляция ДКАМ (DQAM)

При дифференциальной модуляции параметры физического сигнала зависят не от текущего состояния бит в символе сообщения, а определяются состоянием всех предыдущих символов сообщения (модуляция с памятью). Дифференциальная модуляция при некоторой потере в помехозащищенности позволяет значительно упростить и удешевить реализацию приемника (не требуется фазовая синхронизация).

В настоящее время наиболее широко используется модуляция: $\pi/4$ DQPSK-дифференциальная модуляция с минимальным сдвигом фазы на $\pi/4$.

Символ модуляции

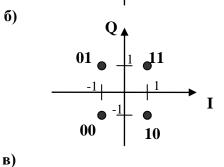
$$S_k(t) = A(t)\cos(\omega_0 t + \varphi_k) = A(t)[\cos\varphi_k\cos\omega_0 t - \sin\varphi_k\sin\omega_0 t],$$

где $\varphi_k = \varphi_{k-1} + \Delta \varphi_k$ - фаза \mathbf{k}^{th} символа, $\Delta \varphi_k$ - приращение фазы несущей относительно предыдущего символа.

В приближении $A(t)=\cos t$, квадратуры запишутся в виде: $I_k=\cos \phi_k$, $Q_k=\sin \phi_k$ Каждой паре бит сообщения ставится в соответствие приращение фазы в соответствии с таблицей 6 . Упрощенная схема модулятора $\pi/4$ DQPSK приведена на рис.3.2

Таблица 1 QAM-2

b_0	I	Q	BPSK
1	1	0	
0	-1	0	


Таблица 2 QAM-4

$b_0(b_1)$	I(Q)	QPSK
0	-1	
1	1	

Таблица 3 QAM-16

$b_0b_1(b_2b_3)$	I(Q)
00	-3
01	-1
11	1
10	3

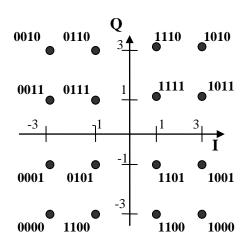


Рис 3.2. Сигнальные созвездия для BPS:K (a), QPSK(б), QAM-16(в)

Таблица 4 QAM-64

b_0b	I(Q)
$_{1}b_{2}(b_{3}b_{4}b_{5})$	
000	-7
001	-5
011	-3
010	-1
110	1
100	3
101	5
	_

Таблица 5

	· · · · · · · · · · · · · · · · · · ·
Модуляция	K_{MOD}
BPSK	1
QPSK	$1/\sqrt{2}$
QAM-16	$1/\sqrt{10}$
QAM-64	$1/\sqrt{42}$

Таблица 6. Модуляция $\pi/4DQPSK$

b_0b_1	$\Delta \phi_k$
00	+π/4
01	$+3\pi/4$
10	-π/4
11	-3π/4

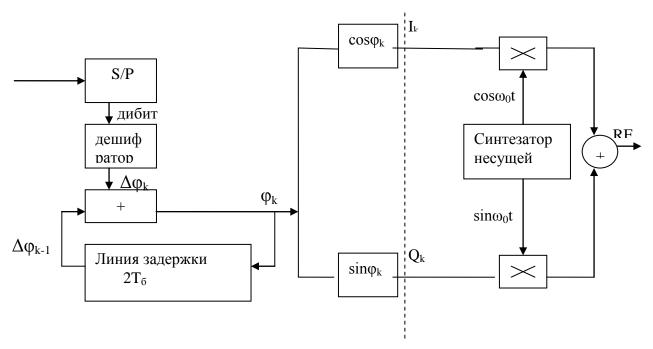


Рисунок 3.3 Схема модуляции $\pi/4$ DQPSK

3.2.3 Ортогональное частотное мультиплексирование данных OFDM

Ортогональное частотное мультиплексирование данных является многопозиционной модуляцией, при которой в один символ модуляции отображается вектор сообщения содержащий от нескольких десятков до нескольких тысяч бит. Символ модуляции при таком отображении носит название символ OFDM

При OFDM вектор сообщения $B = \{b_0 \ b_1 \ b_2 \dots b_{L-1}\}$, состоящий из L бит, разбивается на N групп, рис.2.4. Каждая из N групп может содержать, в общем случае, разное количество бит, для упрощения примем количество бит в группах принимается равным M ($M \ge 1$). Рисунок 2.4 иллюстрирует разбиение вектора сообщения на N групп по два бита в каждой.

1- груі		2- груг		3-я группа	N- груг	
b_0	b_1	b_2	b_3			b_{L-1}

Рис.3.4.

Определим длину *символа OFDM* равной T_{OFDM} . На интервале T_{OFDM} определим составную систему ортогональных функций $\{cos2\pi f_nt, sin2\pi f_nt\}$, где n=0, 2, ... N-1. Условием ортогональности данной системы является

$$f_n = \frac{n}{T_{OFDM}}$$
; $f_m - f_l = \frac{|m - l|}{T_{OFDM}}$; $m, l = 0, ..., N-1;$ (3.4)

Т.е. при выполнении (2.4)

$$\int_{T_{OEDM}} \cos 2\pi f_i t \cdot \cos 2\pi f_j t = 0$$
 при $i
eq j$

$$\int_{T_{OFDM}} \cos 2\pi f_i t \cdot \sin 2\pi f_j t = 0 \qquad \text{при } i \neq j \qquad i, j = 0, \dots, N-1$$

$$\int_{T_{OFDM}} \sin 2\pi f_i t \cdot \sin 2\pi f_j t = 0 \qquad \text{при } i \neq j$$

и на интервале T_{OFDM} укладывается целое количество периодов функций $\{cos2\pi f_n t, sin2\pi f_n t\}$

Отобразим n- ω группу бит на несущую с частотой f_n по правилам QAM-M модуляции, , при этом группа из m бит отображается на коэффициенты I_n и Q_n по правилам, рассмотренными ранее. Так при m=1 на каждой несущей имеем модуляцию BPSK, при m=2 - QPSK, при m=4 - QAM-16 и т.д.

OFDM символ является суперпозицией сигналов на всех несущих.

$$S(t) = \sum_{n=0}^{N-1} I_n \cos 2\pi f_n t + \sum_{n=0}^{N-1} Q_n \sin 2\pi f_n t$$
 (3.6)

Перейдем к дискретному преобразованию Фурье на интервале T_{OFDM} . В качестве ортогонального базиса используем систему комплексных экспоненциальных функций Выражение (6) представляет OFDM символ как непрерывную функцию на интервале T_{OFDM} есть не что иное как ряд Фурье

Перейдем к дискретному преобразованию Фурье на интервале T_{OFDM} . В качестве ортогонального базиса используем систему комплексных экспоненциальных функций $\{e^{i2\pi\!f_n t}\}$ При выполнении условия (4), эта система ортогональна на интервале T_{OFDM} ,

$$\int_{T_{OFDM}} e^{i2\pi f_n t} e^{-i2\pi f_k t} = 0 \qquad \text{при} \quad n \neq k$$
(3.7)

Дискретизированный символ $S_{OFDM}(t_k)$ на интервале T_{OFDM} определяется через обратное дискретное преобразование Фурье

$$S_{OFDM}(t_k) = Re\{\sum_{n=0}^{N-1} C_n e^{i2\pi n t_n t_k}\}.$$
 (3.8)

Комплексные коэффициенты C_n являются спектральными коэффициентами, они связаны с коэффициентами I_n и Q_n в (6)

$$C_n = I_n + iQ_n$$

Дискретное преобразование Фурье (5) обычно определяют в числовой форме

$$S_k = \sum_{n=0}^{N-1} C_n e^{\frac{i2\pi nk}{N}}.$$
 (3.9)

 S_k – отсчеты во времени, C_n – спектральные коэффициент

Переход от (8) к (9) осуществляется с учетом следующих соотношений:

 $t_k = \Delta k, \, \Delta = T_{OFDM}/N$ – период дискретизации, $f_n = n/T_{OFDM}\,$ частота n^{th} несущей,

N – кол-во отсчетов дискретного OFDM символа.

Т.о. *OFDM* символ является результатом обратного дискретного преобразования Фурье (ОДПФ), на коэффициенты которого отображаются биты вектора сообщения Структурная схема формирователя OFDM символа приведена на рис.2.5. Общее количество бит (L), которое переносит один OFDM символ определяется следующим образом

$$L = mN = Nlog_2M$$
,

где N - количество ортогональных несущих;

m — число бит в группе;

M – кол-во точек в QAM созвездии, $M = 2^m$.

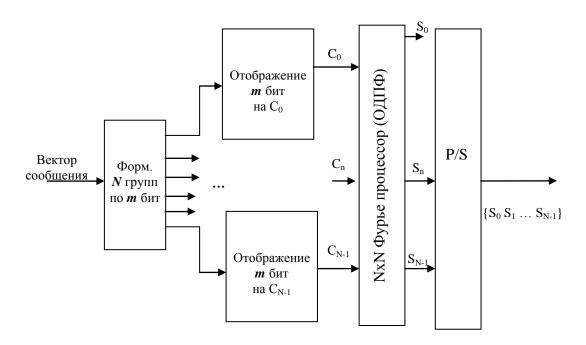


Рис.3.5. Структурная схема формирователя OFDM символа Фурье процессором

3.3 Упражнения для самостоятельной работы

Задача 1. Для векторов сообщений, приведенных в таблице, определить количество символов модуляции, изобразить положения сигнального вектора каждого символа на плоскости I,.Q, определить минимальное межсимвольное расстояние

Вариант	Модуляция	Сообщение	d_{\min}
1	QPSK	010010111	
2	QAM-16	0011010010111001	
3	QAM-64	110011100100	

 $3a\partial a ua$ 2. Для модуляции $\pi/4DQPSK$ в приближении постоянной огибающей и начальной фазы несущей $\phi_0=0$ на плоскости I,.Q изобразить переходы сигнального вектора для бит сообщения

Вариант	сообщение
1	0001101000111011
2	1111001001010100
3	1010100000111011
4	0100011010011101
5	0010110001001111
6	1101100010110100

Задача 3. Длина OFDM символа равна 6.4 мкс. Определить частотный интервал между ортогональными несущими Сколько бит сообщения переносит один OFDM символ при количестве ортогональных несущих N, определить ширину спектра W OFDM символа

Вариант	Модуляция	N	L(бит/символ)	W (Гц)
1	BPSK	121		
2	QPSK	1600		
3	QAM-16	48		
4	QAM-64	840		
5	QAM-256	470		

Задача 4. Стандарт IEEE 802a (WiFi) для передачи данных использует 48 ортогональных несущих, процессор БПФ на 64 точки формирует OFDM символ длительностью 3,2 мкс.

Определить ширину спектра OFDM символа, частотный разнос между ортогональными несущими.

Задача 5. В DVBT стандарте цифрового телевещания OFDM символ длительностью T_S может быть определен в полосе 6 МГц, 7 МГц, 8 МГц. БПФ выполняется на 2048 и 8192 точек

3.4 Пример решения задач.

Сообщение состоит из двух полей- служебного поля, содержащего 96 бит и поля данных, содержащего 1200 бит, каждое из полей передается одним OFDM символом. При передачи служебного поля используется модуляция BPSK, а при передачи поля данных модуляция QAM-64. Определить минимально необходимую размерность обратного дискретного преобразования Фурье для формирования OFDM символов.

Решение: При модуляции BPSK каждая несущая переносит один бит, поэтому для передачи служебного поля необходимо 96 ортогональных несущих. При модуляции QAM-64 каждая несущая переносит 6 бит, поэтому для передачи поля данных необходимо 200 ортогональных несущих. Размерность ОДПФ должна быть не менее 200.

3.5 Контрольные вопросы

- 1.Поясните термин «символ модуляции».
- 2. Чем определяется форма и спектр узкополосного сигнала.?
- 3. Как зависит минимальное межсимвольное расстояние при многопозиционной квадратурной модуляции от количества возможных состояний символа., на что влияет этот параметр.?
- 4. Почему для формирования OFDM символа должно выполняться условие ортогональности парциальных несущих, к чему приводит нарушение этого условия.?
- 5. Можно ли при формировании OFDM символа применять на разных поднесущих применять КАМ модуляцию с разной структурой созвездий.

4 Тема: Скорость передачи информации в канале связи

4.1 Цель занятия

4.2 Краткие сведения по теории

На передающем конце канала связи скорость передачи информации определяется выражением

R = Fs log 2 M, (бит/с),

где Fs - скорость передачи символов модуляции (в Бодах), М - число возможных состояний одного символа.

При передаче аналогового сообщения (телефонный сигнал, изображение, телеметрический сигнал и др.) по цифровому каналу связи при малой вероятности ошибки На бит (10^{-6}) цифровой канал связи практически не вносит искажений в передаваемое аналоговое сообщение. Искажения аналогового сообщения возникают при преобразовании аналогового сообщения в цифровое при дискретизации аналогового сообщения во времени (формировании выборок аналогового сообщения) и квантовании (оцифровке) выборок по амплитуде. Эти отклонения переданного по каналу связи сигнала от исходного неискаженного аналогового сигнал вследствие случайного характера передаваемых сообщений аналоговых являются случайным процессом характеризуются И среднеквадратической ошибкой дискретизации Ел сообшения времени И среднеквадратической ошибкой квантования Екв выборок по амплитуде.

Величины **£**д и **£**кв являются независимыми и результирующая среднеквадратическая величина искажения аналогового сообщения при преобразовании его в цифровое сообщение равна

$$\varepsilon = \sqrt{\varepsilon_{\rm L}^2 + \varepsilon_{\rm KB}^2}$$

Среднеквадратические ошибки **Ед, Екв, Е** вычисляются относительно максимального значения аналогового сигнала.

Аналоговый сигнал с максимальной амплитудой $\pm U_C$ делится на L>>1. амплитудных уровней с шагом квантования Δ , который примем одинаковым для всех амплитудных уровней сигнала, так что при L>>1. $U_C = L\Delta/2$.

Максимальная ошибка квантования не превышает величины $\Delta/2$, а среднеквадратическое значение шумов квантования равно а $\sigma = \Delta/2\,\sqrt{3}$. Отсюда, если все уровни квантования равновероятны,

$$\mathbf{\varepsilon}_{\text{KB}} = \frac{\sigma}{Uc} = \frac{1}{\sqrt{3}L}$$

Число уровней квантования L выбирается таким образом, чтобы оно было представимо двоичным кодом с числом информационных разрядов (бит) k, так, что $L=2^k$. Оцифровка выборок осуществляется в АЦП.

Передача оцифрованных выборок аналогового сигнала по цифровой линии связи называется передачей аналогового сигнала методом кодово-импульсной модуляции

(КИМ), а для телефонного сигнала по традиции методом импульсно-кодовой модуляции (ИКМ). В приемном устройстве оцифрованные выборки с помощью ЦАП преобразуются в амплитудные выборки - в сигнал с амплитудно-импульсной модуляцией (АИМ). Далее сигнал с АИ М поступает на устройство интерполяции или экстраполяции для восстановления значений аналогового сигнала в интервалах времени между выборками. Погрешность интерполяции (экстраполяции) и есть погрешность дискретизации аналогового сообщения по времени.

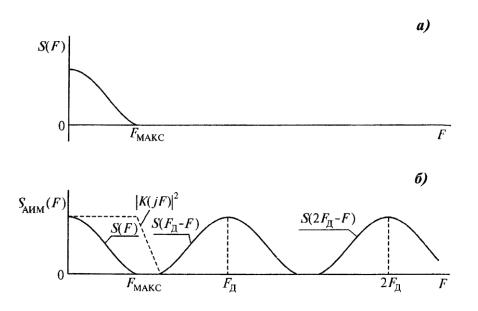


Рис. 4.1. **а** - спектр мощности S(F) исходного аналогового сообщения; **б** - спектр мощности $S_{AUM}(F)$ сигнала с AUM (Fд - частота дискретизации аналогового сообщения по времени)

На рис. 4.1 показан спектр мощности сигнала с АИМ при дискретизации аналогового сигнала со спектром мощности S(F), который условно ограничен некоторой максимальной частотой F_{MAKC} , т.е. такой максимальной частотой, выше которой мошность аналогового

сообщения может считаться пренебрежимо малой.

На этом рисунке пунктиром показан квадрат амплитудно-частотной характеристики интерполирующего фильтра K(jF) для выделения спектра S(F) из спектра $S_{AUM}(F)$.

Из рис.4.1 следует, что должно выполняться условие Fд, $> 2F_{MAKC}$. Однако, из-за конечной крутизны спада частотной характеристики фильтра в полосу фильтра K(jF) попадают компоненты спектральной полосы S(Fg), создавая помеху дискретизации. Для телефонного сигнала и вещательного телевизионного сигнала значения Fg выбираются экспериментально методами экспертной оценки качества воспроизводимого сигнала. Так

для телефонного сигнала Международным союзом электросвязи установлена частота дискретизации $F_{\rm Z} = 8$ кгц, что при $F_{\rm MAKC} = 3400$ $\Gamma_{\rm U}$ дает значение $k_{\rm Z} = F_{\rm Z} / 2$ $_{\rm MAKC} = 1,15$. Для телевизионных сигналов с $F_{\rm MAKC} = 6$ М $\Gamma_{\rm U}$ выбирают $k_{\rm Z} = 1,15$ - 1,25, так что частота дискретизации $F_{\rm Z}$ для сигнала яркости может быть взята не более 15 М $\Gamma_{\rm U}$ ($F_{\rm Z} = 13,5$ М $\Gamma_{\rm U}$ стандарта «Секам»). Итак, скорость передачи аналоговых сообщений по цифровому каналу связи можно определить выражением $R = F_{\rm Z} \log 2$ L .

4.3 Упражнения для самостоятельной работы

Задача 1. При квадратурной амплитудной модуляции (КАМ) образуются два независимых канала связи, синфазный и квадратурный, в каждом из которых используется L амплитудных значений сигнала (L/2 положительной полярности и L/2 отрицательной полярности), итого $M = L^2$. При L = 2 получаем известную QPSK (ФМ4).

Требуется определить скорость передачи информации в канале соответствии с предлагаемой таблицей для модуляции сигнала методом КАМ.

Число (L) КАМ	2	4	8	16	32	64	128
сигнала							
Fs (Гц)	9600	9600	9600	9600	4800	4800	4800
Число бит на один							
символ							
R (бит/с)							

Задача 2. Отношение амплитуды сигнала к среднеквадратической ошибке квантования (отношение сигнал/ шум квантования по амплитуде) есть

$$\frac{U_{\rm C}}{\sigma_{\rm KB}} = \frac{1}{\varepsilon_{\rm KB}} = \sqrt{3}L = \sqrt{3} \cdot 2^{\rm k}.$$

На сколько дБ измениться отношение сигнал/шум квантования при увеличении величины k на: а) один разряд; б) на два разряда?

Задача 3. При передаче телеметрических сообщений требуется обеспечить погрешность измерений не хуже 1 %. Полагая, что ошибка квантования ${\bf \epsilon}_{\rm KB} < 0.5\%$,

определить необходимое число разрядов АЦП при оцифровке выборок телеметрического сигнала.

Задача 4. При передаче телевизионного сигнала цифровым методом требуется обеспечить отношение сигнал/шум квантования не менее 50 дБ. Определить число разрядов АЦП, необходимых для оцифровки выборок телевизионного сигнала.

Задача 5. Определить требуемую скорость передачи сигнала яркости телевизионного сигнала при следующих условиях:

- Fд =15 МГц.
- динамический диапазон средней яркости сцен составляет 30 дБ;
- человеческий глаз различает не более 10 градаций яркости в отдельной сцене.

Задача 6. Определить скорость передачи цветного ТВ сигнала при следующих условиях:

- F д == 13,5 МГц для сигналов как яркости, так и цветности;
- динамический диапазон сигнала яркости 42 дБ;
- динамический диапазон сигналов цветности (два цветовых сигнала) не более 24 дБ;
- при передаче ТВ сигнала используется сжатие сигнала с коэффициентом сжатия 50.

Задача 7. При передаче изображений земной поверхности качество изображения задается разрешающей способностью оптико-электронной системы наблюдения с параметрами:

- число пикселей (элементов разрешения) в одном кадре цифрового фотоаппарата равно 16 миллионов (разрешающая способность 16 Мегапикселей);
- число градаций яркости изображения должно быть не менее 256;
- · число передаваемых кадров в секунду равно 5.

Определить требуемую пропускную способность канала передачи изображений.

4.4 Пример решения задач

Требуется определить скорость передачи телефонного сигнала методом ИКМ при следующих условиях:

- -Гд == 8 КГц:
- шум квантования не заметен на слух при отношении средней мощности телефонного сигнала к мощности шумов квантования 23 дБ;
- -пикфактор(отношение максимального уровня к среднему значению) сигнала равен 15 дБ;
- средняя мощность сигнала (динамический диапазон) имеет разброс, равный 30 дБ, определяемый разбросом громкостей разговора различных абонентов, разбросом коэффициентов передачи микрофонов, абонентских линий и др. Для уменьшения динамического диапазона использовать компандер, который уменьшает динамический диапазон среднего уровня сигнала с 30 до 10 дБ.

Решение:

Скорость передачи т телефонного сигнала при ИКМ равна

$$R = F_{\pi} \log 2 L \, \text{бит/c}$$
,

где L требуемое число уровней квантования по амплитуде выборок сигнала и $L=2^k$ при их оцифровке.

Из исходных данных следует, что при отношении средней мощности сигнала к мощности шумов квантования 23 дБ, отношение пикового значения сигнала к мощности шумов квантования должно быть равно 23 + 15 == 38 дБ.

С учетом возможности уменьшения среднего значения сигнала на 10 дБ отношение пикового значения амплитуды сигнала к среднеквадратическому значению шумов квантования должно быть не менее 48 дБ.

Из уравнения 20 (lg $\sqrt{3L}$) = 48 д Б получаем L > 145 и при двоичном представлении оцифрованных выборок L < 2^k получаем k == 8 и R = Fд.8 = 64 кбит/с.

4.5 Контрольные вопросы

- 1. Что такое «шумы квантования», поясните природу их появления.
- 2. Что такое «выборка сигнала»?
- 3. Из каких условий и почему выбирается частота дискретизации аналогового сигнала?
- 4. Как связана скорость передачи информации со скоростью передачи символа модуляции, в каких единицах они выражаются?
- 5. Почему скорость передачи информации зависит от отношения сигнал-шум?
- 6. Зависит ли скорость передачи аналогового сообщения от динамического диапазона изменения амплитуды аналогового сигнала.?

5. Тема: Псевдослучайные последовательности

5.1 Цель занятия

Освоить методы формирования и изучить основные свойства ансамблей бинарных псевдошумовых последовательностей, на основе которых формируются сигналы для систем связи с кодовым уплотнением каналов и систем широкополосной связи

5.2 Краткие сведения по теории

При выборе ансамбля сигналов в системах широкополосной связи обычно принимают во внимание следующие свойства широкополосных сигналов:

объем ансамбля и база сигналов,

корреляционные и взаимные корреляционные свойства сигналов,

правило формирования сигналов ансамбля.

Корреляционные и взаимные корреляционные свойства сигналов - одни из основных характеристик, которые определяют возможность использования того или иного ансамбля сигналов. Взаимные корреляционные функции должны иметь «малые» значения максимальных и боковых выбросов, в некоторых случаях достаточно

нормализации распределения значений ВКФ с малой дисперсией. Корреляционные и взаимные корреляционные функции — это временные характеристики сигналов, определяющие степень зависимости сигналов при различных временных сдвигах. Сигналы еще характеризуются частотной корреляционной функцией, определяющей степень связанности сигналов при частотном сдвиге. В пространстве над плоскостью (время-частота) временная и частотная корреляционные функции образуют поверхность, которая называется поверхностью (функцией) неопределенности. Частотные корреляционные функции приобретают очень важное значение при связи с объектами, движущимися с большой скоростью, например, в спутниковых системах связи.

5.2.1 Квазиортогональные двоичные последовательности

Для формирования сложных сигналов используются ортогональные и квазиортогональные двоичные последовательности.

Ортогональные последовательности (Уолша, Хаара, Радемахера и др.) имеют небольшой ансамбль, равный или меньший их длине, и ортогональность только в точке, т.е. при нулевом сдвиге. Их взаимные корреляционные функции имеют большие боковые выбросы. В связи с этим ортогональные последовательности для систем связи с асинхронным уплотнением каналов или со свободным доступом при разделении по форме находят очень ограниченное применение: их использование возможно только в синхронных системах, а также при комбинационном объединении

Для систем со свободным доступом целесообразно использовать такие двоичные сигналы, которые имеют минимальные боковые выбросы Такие последовательности называются квазиортогональными. Среди квазиортогональных сигналов наибольшее применение нашли М-последовательности.

Большим классом являются составные двоичные последовательности, которые образуются ИЗ двух более исходных последовательностей. Составные последовательности формируются для увеличения объема ансамбля сигналов, для получения большой длины последовательности, в том числе и при ограничении быстродействия используемых микросхем. Составные последовательности могут быть образованы из исходных М-последовательностей одинаковой длины для увеличения объема ансамбля. К этим последовательностям можно отнести последовательности Голда, сформированные путем поразрядного сложения по модулю двух М-последовательностей, а также последовательности, сформированные на основе более двух последовательностей (некоторые из них будут рассмотрены ниже). Одна из исходных М-последовательностей может быть меньшей длины (например, при получении последовательностей Касами, которые также подробнее будут рассмотрены).

5.2.2. М-последовательности и их свойства

М-последовательности находят широкое применение для формирования широкополосного сигнала. Они используются сами непосредственно для модуляции несущей или на их основе формируются двоичные последовательности, называемые составными. Это обусловлено прежде всего тем, что М-последовательности имеют очень хорошую периодическую автокорреляционную функцию (ПАКФ) и генерируются с помощью простой схемы: m - разрядного регистра, охваченного обратной связью через сумматор по модулю 2..

М-последовательности называют также последовательностями максимальной длины, последовательностями сдвигового регистра, линейными рекуррентными последовательностями. Длина последовательности $N = 2^m - 1$. Это максимальная длина, которую можно получить с помощью регистра сдвига с m разрядами с линейной обратной связью.

Каждая М-последовательность характеризуется проверочным полиномом h(x)

$$h(x) = h_0 x^m + h_1 x^{m-1} + \dots + h_{m-1} x + h_m,$$
(5.1)

который определяет проверочное уравнение

$$h_0 u_i \oplus h_1 u_{i-1} \oplus h_2 u_{i-2} \oplus \dots \oplus h_m u_{i-m} = 0,$$
 (5.2)

Или

$$u_{i+m} = h_m u_i \oplus h_{m-1} u_{i+1} \oplus \dots \oplus h_1 u_{i+m}. \tag{5.3}$$

В выражениях (3.2) и (3.3) суммирование проводится по модулю 2, коэффициенты h_j могут принимать значения 0 или 1. Выражение (5.3) есть рекуррентное правило определения любого символа М-последовательности по предыдущим m символам.

Последовательность коэффициентов $\{h_j\}$, j=0,...,m представляет собой так называемое характеристическое уравнение , которое определяет обратные связи в генераторе М-последовательности: j-й разряд регистра сдвига подключен к обратной связи (ко входу сумматора по модулю 2), если $h_j=1$, выход j-го разряда не связан с сумматором по модулю 2, если $h_j=0$.

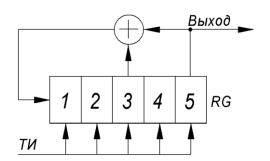


Рис.5.1. Генератор М-последовательности длиной N = 31, характеристическое уравнение IO0I0I

h(x)Полиномы ДЛЯ сокращения записи обозначают восьмеричном представлении: характеристическое уравнение справа разбивается на группы по три двоичных символа, если в последней группе число символов окажется меньше трех, то слева дописывается соответствующее число нулей, каждая группа прочитывается как двоичное число. Например, используемый выше полином $h(x) = x^5 + x^2 + 1$, имеющий характеристическое уравнение 100101, можно записать в восьмеричном коде как 45, а характеристическое уравнение для 10000001001 m=10(проверочный $h(x) = x^{10} + x^3 + 1$) запишется как 2011. Все проверочные полиномы заданной степени пронумерованы. Условно выбирается полином 1 - это полином с минимальным числом ненулевых коэффициентов. Для этого полинома можно определить α, которое является корнем уравнения $h_1(x) = 0$, α называется примитивным элементом. Полином за номером 3 имеет корень уравнения $h_3(\beta) = 0$, $\beta = \alpha^3$ - третью степень примитивного элемента и т.д. Таким образом, номер полинома i совпадает со степенью примитивного элемента α^i , которая обращает в нуль рассматриваемый проверочный полином. Номера полиномов и их восьмеричное представление приведены в для $m=2 \div 34$ и в приложении /1/ для $m=3\div11$.

Пример. Полином 45 для m=5 приводится в приложении 1 под номером 1, полином под номером 3 записывается как 75=111101. Покажем, что если α – корень уравнения $45=100101=x^5+x^2+1=0$, т.е. $h_1(\alpha)=\alpha^5+\alpha^2+1=0$, то $\beta=\alpha^3$ является корнем уравнения $75=111101=x^5+x^4+x^3+x^2+1=0$, т.е. $h_3(\beta)=\beta^5+\beta^4+\beta^3+\beta^2+1=0$. Подставляем $\beta=\alpha^3$ в $h_3(\beta)$, получим

$$\alpha^{15} + \alpha^{12} + \alpha^9 + \alpha^6 + 1 = \alpha^{12}(\alpha^3 + 1) + \alpha^6(\alpha^3 + 1) + 1$$
.

Ho
$$\alpha^5 = \alpha^2 + 1$$
 и $\alpha^6 = \alpha^3 + \alpha$.

$$h_{3}(\beta = \alpha^{3}) = (\alpha^{3} + \alpha)^{2}(\alpha^{3} + 1) + (\alpha^{3} + \alpha)(\alpha^{3} + 1) + 1 = (\alpha^{6} + \alpha^{2})(\alpha^{3} + 1) + \alpha^{6} + \alpha^{4} + \alpha^{3} + \alpha + 1 =$$

$$= \alpha^{9} + \alpha^{5} + \alpha^{6} + \alpha^{2} + \alpha^{6} + \alpha^{4} + \alpha^{3} + \alpha + 1 = \alpha^{9} + \alpha^{4} + \alpha^{3} + \alpha = \alpha^{4}(\alpha^{5} + 1) + \alpha^{3} + \alpha =$$

$$= \alpha^{6} + \alpha^{3} + \alpha = \alpha^{3} + \alpha + \alpha^{3} + \alpha = 0,$$
T.e.

показано, что $\beta = \alpha^3$ является корнем уравнения $h_3(\beta) = 0$.

Именно номера полиномов будут использоваться при рассмотрении составных последовательностей с хорошими корреляционными свойствами.

Остановимся подробнее на свойствах М-последовательностей. Схема генератора М-последовательности, аналогичная представленной на рис.5.1, может давать N различных последовательностей в зависимости от начального состояния регистра сдвига. Все эти последовательности будут циклическими сдвигами одной последовательности.

М-последовательность содержит (N+1)/2 «единиц» и (N-1)/2 «нулей». Вес последовательности (число «единиц») W = (N+1)/2. В последовательности содержатся все возможные комбинации из m двоичных символов, кроме комбинации, состоящей из одних нулей. Это свойство обусловило название М-последовательностей как последовательностей максимальной длины.

Например, М-последовательность 0010111 содержит 4 «единицы» 3 «нуля». Вес последовательности равен 4. Количество «единиц» и «нулей" не будет меняться при циклических сдвигах последовательности: по 4 «единицы» и 3 «нуля» будет содержаться и в последовательности 1110010, и в других циклических сдвигах. Рассмотренные последовательности будут содержать все возможные комбинации по 3 символа: последовательность 0010111.001... можно представить последовательностью комбинаций 001, 010, 101, 011, 111, 110, 100. Порядок следования комбинаций будет различным для различных последовательностей. Это как раз определяет случайных последовательностей (ПСП).

В М-последовательности содержится 0.5(N+1) блоков, т.е. последовательностей одинаковых элементов. Например, в последовательности 0010111 содержится 4 блока: 00, 1, 00, 111. Такое число блоков приближает М-последовательность к оптимальным последовательностям, которые имеют малые значения максимальных боковых выбросов $K\Phi$. Для оптимальной системы число блоков должно быть равным N/2.

М-последовательность имеет двухуровневую ПКФ: $R(\tau=0)=N$, $R(\tau\neq0)=-1$, независимо от длины N . Значение $R(\tau\neq0)=-1$ является

Рис. 5.2 Периодическая корреляционная функция М-последовательности

минимальным для длины $N=2^m-1$ при любом m, что и определяет оптимальность М-последовательности. Разница между главным выбросом ПКФ $R(\tau=0)=N$ и ее боковыми выбросами $R(\tau\neq 0)=-1$ при увеличении N возрастает, и при $N\to\infty$ ПКФ М-последовательности приближается к КФ гауссовского белого шума, которая представляется в виде дельта-функции

$$R(\tau) = \frac{N_{III}}{2} \delta(\tau)$$
, N_{III} - спектральная плотность шума.

На рис.5.2 представлена ПКФ М-последовательности

Одно из важнейших свойств М-последовательностей - свойство сдвига и сложения, которое заключается в том, что поэлементная сумма по модулю 2 двух циклических сдвигов даст ту же М-последовательность со сдвигом, отличным от двух исходных. Если обозначить через C_k - к-ый сдвиг, то свойство сдвига и сложения можно записать в виде:

$$C_k + C_j = C_l. ag{5.4}$$

Нулевой циклический сдвиг — это М-последовательность с начальным блоком, состоящим из первых (m-1) «нулей» и одной «1» (на последнем месте).

Таким, образом, 00...01 - начальный блок нулевого циклического сдвига Мпоследовательности. Фактически - это начальные состояния разрядов регистра сдвига генератора М-последовательности с вынесенными сумматорами (рис.5.1), при этом «1» записывается в первый разряд, а в остальные – «0». При таком определении нулевого циклического сдвига свойство сдвига и сложения (3.4) можно записать в виде:

$$\left(x^{k} + x^{j}\right) = x^{i} \left(\operatorname{mod} h(x)\right). \tag{5.5}$$

Это уравнение - сравнение по модулю h(x) означает, что двучлен $(x^k + x^j)$ является остатком от деления x^i на h(x), при этом следует иметь в виду, что все операции (сложение, умножение, деление) проводятся по модулю 2.

Каждый циклический сдвиг можно записать (N-1)/2 вариантами сумм из двух других циклических сдвигов и единственным образом в виде суммы из n циклических сдвигов, номера которых меньше m, при этом n может принимать значения от 1 до m:

$$C_i = \sum_{i=0}^{m-1} a_i C_i , (5.6)$$

коэффициенты a_i принимают два значения 0 или 1; при этом среди всех m значений этих коэффициентов только n равны 1, а остальные - 0, $n = \overline{1,m}$.

Пример. Определим, в виде каких сумм циклических сдвигов можно представить C_6 и C_5 при $h(x) = x^3 + x + 1$. Для этого проводим деление x^6 и x^5 на h(x).

x^6	$x^3 + x + 1$
$x^6 + x^4 + x^3$	$x^3 + x + 1$
$x^4 + x^3$	- 1-й остаток → $C_6 = C_4 + C_3$
$x^4 + x^2 + x$	
	- 2-й остаток $\rightarrow C_6 = C_3 + C_2 + C_1$
$x^3 + x^2 + x$	
$x^3 + x + 1$	
	- 3-й остаток $\rightarrow C_6 = C_2 + C_0$.
$x^2 + 1$	

В результате деления получили 3 вида остатков, которые дают представление шестого циклического сдвига в виде соответствующих сумм $C_6 = C_4 + C_3 = C_3 + C_2 + C_1 = C_2 + C_0 \,.$

Пятый циклический сдвиг можно представить суммой уже из 3 циклических сдвигов, номера которых меньше m=3.

Состав суммы (5.6), т.е. значения коэффициентов a_i , можно определить, используя генератор М-последовательности со встроенными сумматорами. На рис. 5.3 представлена такая схема для N=7, $h(x)=x^3+x+1$. Под соответствующими разрядами RG представлены их состояния в последующих тактах (слева записаны номера тактов). Состояние i-го разряда дает значение коэффициента a_{i-1} , а номер такта совпадает с номером циклического сдвига. Справа записаны суммы вида (5.6) для различных циклических сдвигов.

Разберем еще одно свойство М-последовательностей, которое редко приводится в литературе. Это свойство определяет связи между последовательностями, их проверочными полиномами.

Оказывается, если $\{U_k\}_p$ - М-последовательность с номером p, а q- любое число, $q=\overline{1,(N-1)}$, то последовательность $\{U_k\}_r$, полученная выбором $q\cdot k-x$ элементов p-й последовательности $d_k=U_{q\cdot k}$, также является М-последовательностью. При этом, при $q=2^r$, $r=\overline{0,(m-1)}$ получается та же p-я последовательность, только другой ее циклический сдвиг. Если $q\neq 2^r$ и наибольший общий делитель (N,q)=1, то полученная последовательность имеет ту же длину N, и ее номер определяется из соотношения

$$p \cdot q = r(\bmod N). \tag{5.7}$$

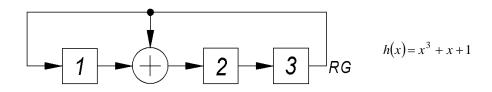


Рис.5.3

Номер	Состояние RG			C
такта	a_0	a_1	a_2	C_i
0	1	0	0	C_0
1	0	1	0	C_1
2	0	0	1	C_2
3	1	1	0	$C_3 = C_0 + C_1$
4	0	1	1	$C_4 = C_1 + C_2$
5	1	1	1	$C_5 = C_0 + C_1 + C_3$
6	1	0	1	$C_{3} = C_{0} + C_{1}$ $C_{4} = C_{1} + C_{2}$ $C_{5} = C_{0} + C_{1} + C_{3}$ $C_{6} = C_{0} + C_{2}$
7	1	0	0	

Если $(N,q) \neq 1$, получим М-последовательность меньшей длины N/(N,q). Операция преобразования одной последовательности в другую (или в другой циклический сдвиг) называется децимацией по индексу q. Рассмотрим связи между последовательностями и полиномами на примере.

Пример. Последовательность длиной N=31, m=5, находящаяся в приложении 1 под номером 1, характеризуется проверочным полиномом $45=100101=x^5+x^2+1$ и имеет вид: 0000100101100111110001101110101. Составим последовательность из 2^{τ} ее элементов: 0010010110011111100011011101010. Сопоставление полученной последовательности с исходной позволяет сделать вывод, что получена та же последовательность, но другой циклический сдвиг.

Составим последовательность из 3к-х элементов последовательности 1. Получим последовательность: 0001010110100001100100111110111, которая является 20-м

циклическим сдвигом последовательности 3, характеризующейся проверочным полиномом $75=111101=x^5+x^4+x^3+x^2+1$.

Рассмотрим другие индексы децимации q.

q = 4,8,16 приводят к последовательности 1. q = 5 приводит к последовательности 5 с проверочным полиномом 67 = 110111= x^5 + x^4 + x^2 + x + 1 . К этому же полиному приводят децимации по q = 9,10,18,20 . Покажем это для q = 9 . Полинома с номером 9 в таблице нет. Используем свойство, что умножение номера полинома на 2^r - приводит к той же последовательности. Проводим умножение 9 на 2 последовательно 5 раз (можно делить на 2), результата представляем по модулю 31. Получим: 9, 18, 36 = 5, 10, 20, 40 = 9. Из полученных значений выбираем минимальное, которое и определяет номер полученного полинома.

К полиному 3 приводят, кроме q=3, еще децимации по индексам: q=6,12,17,24. Децимации по индексу q=7 приводят к полиному 7 (а также q=14,19,25,28). Децимация q=11 даст последовательность 11 с проверочным полиномом $73=111011=x^5+x^4+x^3+x+1$ (а также q=13,21,22,26). Децимация с q=15 приводит к последовательности 15 с проверочным $51=101001=x^5+x^3+1$, а также q=23,27,30,29.

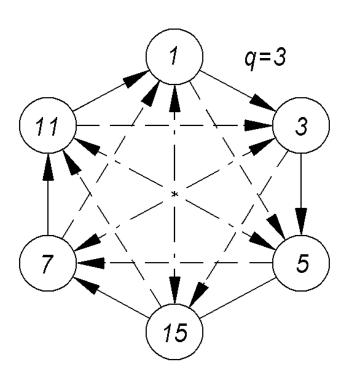


Рис.5.4. Диаграмма децимаций М-последовательности длиной N=31: -q=3 - при обходе по часовой стрелке и q=11 - при обходе против часовой стрелки, --q=5 и q=7 соответственно, $-\cdot-q=15$

Из рассмотренного примера можно сделать вывод, что все М-последовательности длиной 31 связаны между собой с индексами децимации q = 3,5,7,11,15. Все рассмотренные связи можно привести в виде диаграммы (рис.5.4).

Выше определены связи одного полинома с другими. Теперь нетрудно установить связи всех полиномов между собой. Для этого просмотреть цепи переходов полиномов при различных q.

Пусть q=3. Переход полинома 1 в полином 3 условно обозначим $1\to 3$. Полином 3 при q=3 переходит в полином 5: $r=3\cdot 3=9=5$. Цепь продолжается: $1\to 3\to 5\to 15$. Дальнейшие вычисления дают, что $15\to 7$, $7\to 11$, $11\to 1$. Таким образом, имеем замкнутую цепь, в которой участвуют все полиномы:

$$1 \rightarrow 3 \rightarrow 5 \rightarrow 15 \rightarrow 7 \rightarrow 11 \rightarrow 1$$
.

Эта цепь на рис 5.4 представлена в виде шестиугольника.

Следует отметить, что при обходе цепи в одном направлении имеем децимации с q=3, а при обходе в другом направлении получаем децимации с q=11 (переход $11\to 1$ указывает на значение индекса децимации так же, как переход $1\to 3$).

Пусть теперь q = 5. С этим индексом децимации имеем цепь $1 \rightarrow 5 \rightarrow 7 \rightarrow 1$, в которой участвует только половина полиномов. При обходе в обратном направлении имеем q = 7. Вторая цепь объединяет другие полиномы: $3 \rightarrow 15 \rightarrow 11 \rightarrow 3$, Эти цепи представлены на рис. 3.12 в виде треугольников.

Наконец, пусть q = 15. Это дает попарную связь полиномов: $1 \rightarrow 15 \rightarrow 1$ - полином 1 переходит в полином 15 с q = 15, и полином 15 переходит в полином 1 с таким же индексом децимации. Следует отметить, что q = 15. определяет связь обратных полиномов: полином 15 является обратном первому. Другие пары обратных полиномов: $3 \rightarrow 7$ и $5 \rightarrow 11$.

Таким образом, все полиномы образуют объединенную систему, что хорошо видно на рис.6.4.

5.2.3. Предпочтительные пары М-последовательностей

М-последовательности находят широкое применение благодаря относительной просторе их генерации, а также «хорошей» периодической функции корреляции. Однако в ряде применений, в частности в многоканальных системах со свободным доступом, основной характеристикой сигналов является их функция взаимной корреляции. Для этой функции М-последовательности в общем случае дают большие выбросы. Максимальный выброс периодической функции взаимной корреляции достигает величины $6\sqrt{N}$, где N-

длина последовательности.

Однако среди М-последовательностей заданной длины можно выбрать такие пары последовательностей, для которых взаимные периодические корреляционные функции имеют три уровня:

$$\{-1, -t(m), t(m)-2\}$$
, $t(m)=1+2^{[(m+2)/2]}$. (5.8)

где [x] - целая часть числа x.

Эти пары М-последовательностей называют предпочтительными парами /12/.

В ряде работ показано, что номера k и l предпочтительных пар полиномов должны быть связаны между собой соотношением

$$k \cdot q = l(\bmod N), \tag{5.9}$$

где q - определяющий номер, принадлежит полной группе номеров полиномов заданной степени. В указанных выше и других работах определены значения q, дающие предпочтительные пары, для $m \le 17$. Для некоторых m значения q приведены в табл.5.1.

Таблица 5.1

Значения определяющих номеров q				
m	N	q		
5	31	3, 5		
6	63	5, 11		
77	127	3, 5,9, 11,23		
9	511	3, 5, 13, 17, 19, 47		
10	1023	5, 13, 17, 25, 49, 511		
11	2047	3, 5,9,13, 17, 33, 35, 43, 57, 95, 107		

Чтобы выбрать полином, составляющий с заданным полиномом $h_k(x)$ предпочтительную пару, надо провести умножение k на одно из значений q, приведенных в табл.5.1. Если результат не принадлежит полной группе полиномов заданной степени, то значение l следует уточнить. Для этого полученное значение l надо m раз умножить или разделить на 2 по модулю N. Минимальное значение из всех полученных результатов и будет уточненным номером l_y парного полинома.

Для определения предпочтительных пар удобно пользоваться диаграммой децимаций. Воспользуемся рис. 5.4 для определения предпочтительных пар для N=31. Для этой длинны предпочтительные пары образуются при q=3,5 (табл.5.1).

Поэтому полином 1 составляет предпочтительную пару с полиномами 3 и 5, а также с полиномами 11 (переход от полинома 11 к полиному 1 при q=3) и с полиномом 7 (переход от полинома 7 к полиному I при q=5). Аналогично можно найти предпочтительные пары для любого полинома. Например, полином 3 образует

предпочтительные пары с полиномами 5 и 15, а также с полиномами 1 и 11. Для N=31 только связь с q=15 не дает предпочтительной пары.

Определим предпочтительные пары для m=10, N=1023.

Найдем для полинома 7 предпочтительные пары:

$$q=5$$
 $l=7\cdot 5=35$ $q=49$ $l=7\cdot 49=343$

$$q=13$$
 $l=7\cdot 13=91$, $q=511$ $l=7\cdot 511=3577=508 \pmod{1023}$

$$q = 17$$
 $l = 7 \cdot 17 = 119$, $l_y = 127$.

Следовательно, получены следующие предпочтительные пары, содержащие полином 7: 7-35, 7-91, 7-119, 7-343, 7-127.

5.2.4. Максимальные связные множества М-последовательностей

Предпочтительные пары М-последовательностей могут объединяться в множества, которые называются связными. В таком множестве любая пара является предпочтительной. Мощность таких множеств, т.е. число полиномов, входящих в одно множество, различно - от 0 до максимального значения M_m . Связное множество максимальной мощности M_m называется максимальным связным множеством. В табл.5.2 приводятся мощности множества всех М-последовательностей и максимальных связных множеств, а также максимальные значения взаимной корреляционной функции для всех М-последовательностей $U_{\delta \max}$ и для предпочтительных пар t(m).

Таблица 5.2 Мощности множеств М-последовательностей и максимальных связных множеств и максимальные значения их корреляционных функций

m	Длина последовательности	Число М- последовательностей	$U_{\delta \max}$	M_{m}	t(m)
3	7	2	5	2	5
4	15	2	9	0	9
5	31	6	11	3	9
6	63	6	23	2	17
7	127	18	41	6	17
8	255	16	95	0	33
9	511	48	113	2	33
10	1023	60	383	3	65
11	2047	176	287	4	65
12	4095	144	1407	0	129
13	8191	630	≥703	4	129
14	16383	756	≥5631	3	257
15	32767	1800	≥2047	2	257
16	65535	2048	≥4095	0	513

Анализ табл. 5.2 позволяет сделать следующие выводы: ансамбль М-последовательностей небольшой. Например, для m=10 имеется только

60 М-последовательностей;

предпочтительные пары при m>5 имеют меньшие значения боковых выбросов корреляционной функции, чем все множество М-последовательностей, и с ростом m эта разница увеличивается. Иными словами, предпочтительные пары целесообразно использовать при большой длине последовательностей $N>10^3$;

число М-последовательностей, составляющих максимальное связное множество, является небольшим, $M_m = 0 + 6$. При $m = 0 \mod 4$ предпочтительные пары отсутствуют, и для m = 4,8,12,16 $M_m = 0$. Максимальное значение $M_m = 6$ принимает для небольшой длины последовательности N = 127. Это значит, что можно определить такие шесть М-последовательностей, которые дадут трехуровневый взаимно-корреляционный спектр. На рис. 3.14 представлена диаграмма предпочтительных связей для N = 127. На диаграмме стрелки указывают направление определения номера полинома при заданном q.

Чтобы не загромождать рисунок, предпочтительные связи с q = 5,9,11,23 показаны только для полинома 1. Аналогичные связи существуют для каждого полинома.

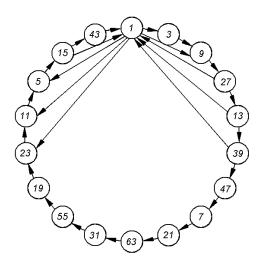


Рис. 5.5. Диаграмма предпочтительных связей для N = 127 (каждые 6 последовательных полиномов образуют максимальную связную систему)

5.2.5. Составные последовательности на основе двух и более Мпоследовательностей

На основе М-последовательностей можно построить ансамбль квазиортогональных двоичных последовательностей, объем которого во много раз превосходит число М-последовательностей.

Эти составные последовательности образуют последовательности не максимальной длины, проверочные полиномы которых $h_H(x)$ могут быть представлены произведением

проверочных полиномов исходных М-последовательностей $h_H(x) = \prod_{i=1}^n h_i(x)$. Для их формирования можно использовать регистр сдвига, охваченный обратными связями в соответствии с полиномом $h_H(x)$, число разрядов регистра определяется его степенью. Эти последовательности можно также формировать с использованием n регистров сдвига, охваченных обратными связями в соответствии с полиномами $h_i(x)$. Выходы регистров сдвига суммируются по модулю 2. Длина последовательности равна $HOK(N_i)$ - наименьшему общему кратному длин N_i исходных последовательностей.

Среди таких последовательностей широко известны последовательности Голда, которые формируются на основе двух М-последовательностей одинаковой длины N. Структурные схемы генератора последовательностей Голда для m=5 N=31 $h_1(x)=x^5+x^2+1$, $h_2(x)=x^9+x^4+x^2+x+1$ представлены на рис.5.7. (а - при использовании 10-разрядного регистра сдвига, б - при использовании двух 5-разрядных регистров).

Любое относительное изменение сдвигов исходных М-последовательностей приводит к формированию, новой последовательности. Поэтому ансамбль последовательностей Голда равен N+2: он состоит из различных последовательностей, формируемых при различных сдвигах, и двух исходных М-последовательностей.

Самым интересным в этом методе формирования большого ансамбля сигналов является при выборе предпочтительных пар исходных последовательностей корреляционная функция вновь образованной последовательности принимает такие же $\{-1, -t(m), t(m)-2\}$ как И корреляционная значения функция предпочтительных пар. В отличии от М-последовательностей для последовательности Голда трехуровневыми будут периодические и авто- и взаимно корреляционные функции.

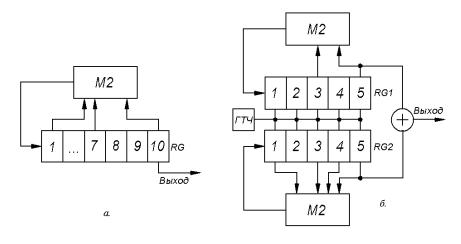


Рис.5.7 Формирование последовательностей Голда, $N = 31 h_H(x) = x^{10} + x^9 + x^3 + 1 = (x^5 + x^2 + 1)(x^5 + x^4 + x^2 + x + 1)$

Для увеличения ансамбля сигналов можно использовать сложение по модулю 2 трех Мпоследовательностей одинаковой длины. Ансамбль сигналов при этом будет равен $N^2 + 3(N+1)$: слагаемое N^2 обусловлено различными сдвигами двух исходных последовательностей относительно третьей, а 3(N+1) - это число последовательностей при сложении двух М-последовательностей из трех. Например: для m=3 ансамбль последовательностей Голда будет содержать более 10^6 сигналов длиной N=1023. Схему сложения трех М-последовательностей для получения большого ансамбля двоичных сигналов ОНЖОМ использовать при различной длине исходных последовательностей. Большое множество последовательностей Касами получается, если две последовательности имеют длину $N=2^m-1$, m - четное, а третья - $N_3=2^{m/2}-1$. Касами показал, что две последовательности длиной N должны быть предпочтительной парой q = t(m), третья последовательность является последовательностью меньшей длины (длина N_3 укладывается $2^{m/2}+1$ раз в N). Связь третьей последовательности с первой определяется $q_3 = S(m) = i + 2^{m/2}$. Третий полином будет не примитивным, но его номер и восьмеричное представление приводятся в таблицах для длины N.

В табл. 5.4 приведены примеры исходных последовательностей m=10, дающих большое множество последовательностей Касами.

Таблица 5.4

Полиномы исходных					
П	последовательностей				
2415	2707	0051			
2011	3515	0075			
2443	3733	0073			
3301	2347	0075			
3575	3265	0051			
3771	3133	0073			
2157	3531	0045			
3515	2745	0067			
2773	2617	0073			
2033	3471	0057			
2461	3067	0057			
3023	2363	0075			
3543	3117	0067			
2745	2641	0051			
2431	3427	0067			
3177	2377	0075			
3525	2461	0051			

В отличие от последовательностей Голда последовательности Касами имеют пять уровней корреляционной функции: $\{-1, -t(m), t(m)-2, -S(m), S(m)-2\}$ и максимальное значе-

ние выбросов корреляционных функций последовательностей Касами не превышает максимального значения t(m) для последовательностей Голда.

Объем ансамбля последовательностей Касами при $m = 2 \mod 4$ равен $2^{m/2} \left(2^m + 1 \right)$, а при $m = 0 \mod 4 \left[2^{m/2} \left(2^m + 1 \right) - 1 \right]$.

Для m=10 ансамбль содержит 32800 последовательностей Касами. В заключение приведем сравнение рассмотренных последовательностей по объему ансамбля и максимальным значениям корреляционных функций $U_{\delta \max}$ для m=10. Сравнительные данные сведены в табл.5.5.

Таблица 5.5 Сравнение М-последовательностей, последовательностей Гоулда и Касами для m=10

П	Объем ансамбля	$U_{\delta\mathrm{max}}$	
М-последовательность	60	383	
Максимальные связные множе	3	65	
Последовательности Гоулда	на основе предпочтительных пар	1025	65
	на основе предпочтительных троек (нормальные сдвиги)	$7 \cdot 10^5$	65
Последовательности Касамі	32800		

5.3 Упражнения для самостоятельной работы

Задача 1.. По проверочному уравнению $1+x+x^3$ записать характеристическое уравнение, определить длину М-последовательности, нарисовать схему ее формирования.

Задача 2. Записать М-последовательность, формируемую с помощью проверочного полинома $x^3 + x^2 + 1$, используя проверочное уравнение (5.3). Составить схему формирования М-последовательности и проверить, сформирует ли эта схема полученную последовательность.

Задача 3. Записать проверочные полиномы степени 5, если их восьмеричные представления 45, 75, 67. Какова длина М-последовательности?

Задача 4. Убедиться, что полином с восьмеричным представлением 75 имеет номер 3 (номер 1 имеет полином с восьмеричным представлением 45), m=5.

Задача 5. Записать проверочные полиномы степени 7, если их восьмеричные представления 211, 367, 325. Записать обратные полиномы и представить их в восьмеричном виде. Проверить полученные результаты по таблице приложения 1.

Задача 6. Сформировать М-последовательность с проверочным полиномом 23. Определить число 0 и I в последовательности. Убедиться, что последовательность содержит все возможные комбинации по m символов, кроме нулевой. Чему равно m?

Задача 7. Представить периодическую корреляционную функцию М-последовательности длиной 7 и 15 на одном рисунке. Как будет меняться КФ при увеличении длины?

Задача 8. Определить порождающий полином М-последовательности, если проверочный полином а) $x^3 + x^2 + 1$, б) $x^4 + x + 1$. По заданному проверочному уравнению сформировать М-последовательность и убедиться, что нулевой ее сдвиг описывается порождающим полиномом.

Задача 10. По проверочному полиному $x^3 + x^2 + 1$ определить, какой циклический сдвиг дадут суммы по модулю 2 следующих сдвигов: а) нулевого и второго, б) второго и третьего, 3) нулевого и первого, г) нулевого и четвертого. Записать все сдвиги М-последовательности и, суммируя соответствующие сдвиги по модулю 2, убедиться в правильности полученных ответов.

Задача 11. Проверочный полином М-последовательности $x^3 + x^2 + 1$. Определить, суммы каких двух циклических сдвигов дадут 6-й циклический сдвиг? Сколькими вариантами сумм из двух циклических сдвигов можно получить каждый циклический сдвиг для заданной длины последовательности? Для любой длины последовательности? Задачу решить, выписав все циклические сдвиги.

Задача 12. Для длины 63 какие децимации приведут к образованию последовательностей той же длины?

Задача 13. Определить требуемое быстродействие микросхем, если требуется сформировать двоичную последовательность длительностью 10 мс. с базой $B = 10^6$. Какую базу можно реализовать при использовании МС серии 564, 133,106?

Задача 14. Для М-последовательности с проверочным полиномом

 $h(x) = x^3 + x + 1$ определить последовательность, образованную в результате децимаций по индексу 3. Определить номер полученной последовательности, ее проверочный полином (по табл. приложения 1). Провести проверку, используя понятие нулевого сдвига.

Задача 15. Определить предпочтительные пары, для проверочных полиномов степени m: a) 5,7, m = 5, б) 5,11, m = 6, в) 9, m = 7, Γ) 11, m = 9, π) 7, m = 10.

Задача 16. Определить исходные последовательности (номера и их полиномы) для образования большого множества последовательностей Касами длиной 63. Чему равен объем ансамбля? Составить схему формирования последовательностей Касами, используя полученные проверочные полиномы.

5.4 Пример решения задач.

Для полинома 7 требуется определить предпочтительные пары для m=10, N=1023.

Решение.

Найдем для полинома 7 предпочтительные пары:

$$q=5$$
 $l=7\cdot 5=35$ $q=49$ $l=7\cdot 49=343$

$$q = 13$$
 $l = 7.13 = 91$, $q = 511$ $l = 7.511 = 3577 = 508 \pmod{1023}$

$$q = 17$$
 $l = 7 \cdot 17 = 119$, $l_y = 127$.

Следовательно, получены следующие предпочтительные пары, содержащие полином 7 - 7-35, 7-91, 7-119, 7-343, 7-127.

5.5 Контрольные вопросы

- 1. Почему М-последовательность называется псевдослучайной последовательностью
- 2. Что такое номер М-последовательности? Существует ля связь между номерами Мпоследовательностей одинаковой длины?
- 3. Как можно упростить процедуру вычисления КФ ФМ сложных сигналов, КФ АМ сложных сигналов? Чем будут различаться эти процедуры для ФМ и АМ сложных сигналов
- 4. Какие виды сложных сигналов рекомендуется использовать для получения сигналов с большой базой B, если быстродействие используемых MC не позволяет получать непосредственно двоичную последовательность длиной N=B?
- 5. Что такое линейная рекуррентная последовательность? Какие другие названия этих последовательностей еще известны?
- 6. Что такое нелинейная рекуррентная последовательность? Какое отличие ее от линейной рекуррентной последовательности по построению схемы формирования, объему ансамбля и корреляционным свойствам?
- 7. Каковы отличительные положительные качества М-последовательностей? Каковы недостатки М-последовательностей?
- 8. Сколькими способами можно получить любой циклический сдвиг Мпоследовательности в виде суммы циклических сдвигов, номера которых меньше степени проверочного полинома? Сколько слагаемых может быть в этих суммах?
- 9. Какой циклический сдвиг принимается за нулевой? Что имеют общего нулевые циклические сдвиги различных последовательностей?
- 10. В чем состоит сущность свойства децимации М-последовательности?
- 11. Какое правило может быть использовано при объединения нескольких двоичных последовательностей для формирования производных, составных сигналов?
- 12. При какой степени проверочного полинома можно получить предпочтительные пары?
- 13. Оценить порядок отношения максимального бокового выброса к значению главного выброса КФ двух последовательностей, составляющих предпочтительную пару, при

большой длине последовательности?

- 14. Что такое последовательность Голда? Как последовательности Голда отличаются от М-последовательностей по схеме формирования, объему ансамбля и корреляционным свойствам?
- 15. Какие нужно взять М-последовательности, чтобы на их основе сформировать последовательности Голда с трехуровневыми КФ? Каким будет максимальный выброс авто- и взаимной корреляционной функций последовательностей Голда?
- 16. Чем отличаются авто- и взаимные корреляционные функции следующих ансамблей последовательностей: М-последовательности (предпочтительные пары) и последовательности Голда на основе двух М-последовательностей (также
- 17. Что дает объединение трех М-последовательностей? Чем отличается большое множество последовательностей Касами от последовательностей Голда, сформированных на основе трех М-последовательностей (по объему ансамбля, схеме формирования, корреляционным свойствам)?

6. Тема: Основные параметры радиолиний, определяющие энергетические потенциалы

6.1 Цель занятия

Освоить методику расчета энергетических параметров радиолинии канала связи

6.2 Краткие сведения по теории

Энергетический потенциал радиолинии определяется величиной отношения энергии бита E_6 к спектральной плотности шумов N_0 ($h_2 = E_6/N_0$) на выходе приемной антенны радиостанции в зависимости от параметров радиолинии и мощности излучения передающей станции, коэффициентов усиления передающей и приемной антенн, дальности радиосвязи, условий распространения радиосигнала, уровня шумов приемной системы, методов модуляции и кодирования. Если передающее устройство с изотропной антенной излучает в свободное пространство мощность P_0 , то в точке приема, находящейся на расстоянии r от передатчика, плотность потока мощности, проходящую через единичную площадку (вектор Умова Пойнтинга) есть $P_0 = P_0 / 4\pi r^2$. Если антенна передающей станции имеет коэффициент усиления $P_0 = P_0 / 4\pi r^2$, где $P_0 = P_0 / 4\pi r^2$

Мощность, перехватываемая приемной антенной, есть Pc = PoSnp, где $S_{\Pi P}$ эффективная площадь приемной антенны, Pc мощность на выходе приемной атенны.

Например, для параболической круглой приемной антенны с диаметром апертуры d эффективная площадь антенны есть $S_{\Pi P}=k_{un}\,\pi d^2/4$, где k_{un} коэффициент использования поверхности (КИП) антенны (k ип ==0,55+0,7). В общем случае $S_{\Pi P}=(\lambda^2/4\pi)$ Gпр , где λ длина волны, G пр коэффициент усиления приемной антенны.

Обозначим через L коэффициент, характеризующий все потери в мощности сигнала на трассе распространения радиосигнала от антенны передатчика до выхода приемной антенны за счет поглощения радиосигнала в атмосфере Земли, рассогласования поляризационных характеристик передающей и приемной антенн, погрешностей наведения приемной и передающей антенн друг на друга, потерь при ослаблении сигнала при его замираниях и др. Тогда

$$P_{\rm C} = \frac{P_{\rm \Pi} G_{\rm \Pi} S_{\rm \Pi P}}{4\pi r^2 L} = \frac{P_{\rm \Pi} G_{\rm \Pi} G_{\rm \Pi P} \lambda^2}{(4\pi r)^2 L}.$$
 (6.1)

Спектральную плотность шумов, приведенную к выходу приемной антенны, обозначим через No ,где No = kT ,где k - постоянная Больцмана, T – шумовая. Тогда

$$\frac{P_{\rm C}}{N_{\rm 0}} = \frac{P_{\rm \Pi}G_{\rm \Pi}G_{\rm \Pi P}\lambda^2}{\left(4\pi r\right)^2 kTL}$$

Умножим левую и правую часть равенства на τ_0 длительность информационного бита τ_0 =l/R, где R - скорость передачи информации.

$$\frac{P_{\rm C}\tau_{\rm 0}}{N_{\rm 0}} = \frac{E_{\rm 6}}{N_{\rm 0}} = h^2 = \frac{P_{\rm H}G_{\rm H}G_{\rm HP}\lambda^2}{\left(4\pi r\right)^2 kTRL}.$$

Соотношения между параметрами выше полученного уравнения принято записывать в децибелах следующим образом

$$P_{\Pi}G_{\Pi} = \left(\frac{4\pi r}{\lambda}\right)^{2} - 228,6 - \frac{G_{\Pi P}}{T} + h^{2} + R + L$$
, дБ,

где $(4\pi r/\lambda)^2$ называется ослаблением сиинала в свободном пространстве для изотропных передающей и приемной антенн. Постоянная Больцмана 10 lgk = -228,6. Параметр Gпp/T называется добротностью приемной системы.

Шумовая температура приемной системы, приведенная к выходу приемной антенны, равна

$$T = T_{\rm A} + \frac{\left(1 - \eta_{\Phi}\right)T_0}{\eta_{\Phi}} + \frac{T_{\rm \PiP}}{\eta_{\Phi}} ,$$

где T_A шумовая температура приемной антенны, η_Φ - коэффициент передачи фидера, То температура окружающей фидер среды, $T_{\Pi P}$

шумовая температура приемника, которая фактически определяется шумами входного малошумящего усилителя (МШУ).

Величина (1- η_{Φ}) $T_0 = T_{\Phi}$ есть шумовая температура.

Потери мощности в Фидере есть $L\phi == 1/\eta_{\Phi}$ и $T_{\Phi} = (1-1/L\phi)T_0$

Шумы приемной антенны есть шумы принимаемых излучений внешних источников, таких как космические шумы, шумы атмосферы и Земли. Внешние шумы характеризуют своей яркостной температурой Тя

Шумовая температура в главном лепестке диаграммы направленности направленной приемной антенны есть $T_A == \eta_A T$ я, где η_A ($\eta_A = 0.7 \div 0.8$) доля мощности, излучаемой антенной в главном лепестке диаграммы направленности, как если бы приемная антенна использовалась в качестве передающей, Тя яркостная температура внешних излучений, принимаемых в главном лепестке диаграммы направленности антенны.

Шумы атмосферы это шумы трассы распространения радиосигнала, рассматриваемой как фидер. Тогда яркостная температура атмосферы есть $T_A = (1 - 1/L_A) T_{III}$ где $T_{III} = 275 \text{ K}$, L_A потери сигнала в атмосфере за счет поглощения радиосигнала.

Потери радиосигнала в средах с поглощением или рассеянием сигнала

Рассмотрим распространение радиосигнала в однородной среде вдоль пространственной координаты x. Обозначим плотность потока мощности при x=0 как P_{C0} , а в точке x как P_{C0} . Уменьшение мощности сигнала вдоль оси x за счет его поглощения или рассеяния на ма лом отрезке пути dx есть dPc/dx. Тогда для однородной среды можно записать уравнение

$$-\frac{dP_{\rm C}}{dx} = \mu P_{\rm C},\tag{6.2}$$

где μ есть удельный коэффициент поглощения ($\mu = \mu n$) или рассеяния ($\mu = \mu p$), показывающий долю поглощенного или рассеянного сигнала. Далее для простоты будем рассматривать только процесс поглощения радиосигнала. Величина $1/\mu$ имеет размерность длины и называется длиной свободного пробега излучения в среде $\Lambda = 1/\mu$.

6.3 Упражнения для самостоятельной работы

 $\it 3adaчa~1.$ Для изотропной передающей антенны, излучающей мощность $\it Pn~u~csofo$ пространства без потерь выведите формулу для плотности потока мощности через единичную площадку на расстоянии $\it r~o$ т передающей антенны.

Задача 2. Определить коэффициент усиления круглой зеркальной антенны на частоте 6 ГГц при КИП kun = 0,6 для диаметров апертуры, указанных в таблице

d , м	15	2,4	4,8	7	12
G,dB					

Задача 3.. Ширина диаграммы направленности по уровню половинной мощности в одной плоскости определяется выражением $\theta_0 = 70 \ \lambda \ / d$ град, где λ

длина волны, d размер апертуры в данной плоскости. Коэффициент усиления антенны, создающий эллиптический луч с шириной θ_{01} и θ_{02} по главным осям эллипса, определяется согласно рекомендациям МСЭ выражением:

$$G = 44,44 - 10lg \theta_{01} - 10lg \theta_{02}$$
.

Требуется определить:

- 1. Коэффициент усиления антенны ретранслятора КА: а) с глобальным лучом $\theta_0 = 17^\circ$;
- б) с эллиптическимлучом 5^0 х 11^0 , покрывающим территорию России.
- 2. Коэффициент усиления антенны с прямоугольной апертурой 10см x 20см на частоте 10 ГГц.

Задача 4. Определить яркостную температуру трассы распространения радиосигнала в дожде, если ослабление радиосигнала в дожде составляет: а) 1 О дБ; б) 30 дБ.

Задача 5. Провести расчет энергетических потенциалов радиолиний «Ретранслятор КА - наземная станция» системы спутниковой связи с геостационарным

КА и определить необходимый диаметр зеркальной приемной антенны стационарной наземной станции спутниковой связи при следующих условиях:

- · диапазон частот 4/6 ГГц;
- · угловая зона обслуживания КА 5^0 х 10^0 ;
- \cdot станция спутниковой связи находится на краю зоны обслуживания и работает при угле места 5^0 ;
- · мощность ствола ретранслятора в квазилинейном режиме равна 8 Вт. Ствол предназначен для организации 800 каналов с МДЧР со скоростью 64 Кбит/с

в каждом канале. Изучаемая мощность для станций, находящихся на краю зоны обслуживания увеличивается по сравнению со станциями в середине зоны обслуживания. Принять, что для рассматриваемой наземной станции выделяется мощность ретранслятора 0,02 Вт;

· наземная станция одноканальная и работает на прием (и передачу) со скоростью 64 Кбит/с. Вид модуляции радиосигнала четырехфазная относительная. фазовая манипуляция. Требуемая вероятность ошибки на бит не более 10⁻⁶. Метод приема сигнала когерентный. Остальные необходимые параметры радиолинии рассчитать или задать при выполнении расчета энергетического потенциала радиолинии.

6.4 Пример решения задач.

Разделить в уравнении (2) переменные и проинтегрировать обе части уравнения. Решить уравнение и найти выражение для Pc как функцию от Pco, μ и x.

Определить в дБ ослабление радиосигнала Lп.

$$L \pi = 10 lg(Pco/Pe) = \gamma_{\pi} x$$
, дБ

и найти выражение для γ_n - удельного поглощения в дБ/км (для x, выраженного в км) через ранее определенную величину μ .

Решение: В уравнении $-\frac{dP_{\rm C}}{dx} = \mu P_{\rm C}$ разделяем переменные $\frac{dP_{\rm C}}{P_{\rm C}} = -\mu dx$ и интегрируем обе части

равенства $\int_{P_{C0}}^{P_{C}} \frac{dP_{C}}{P_{C}} = -\mu \int_{0}^{x} dx$. Отсюда получаем $\ln P_{C0} = -\mu x$.

 $\ln \frac{P_C}{P_{C0}} = -\mu x$ и окончательно $P_C = P_{C0} e^{-\mu x}$

Перейдем к децибелам:

10
$$\lg\left(\frac{P_{C0}}{P_{C}}\right) = \mu x \lg e = 0,434 \mu x = \gamma_{\Pi} x,$$

где погонное поглощение сигнала $\gamma \pi = 0.434 \mu$ дБ/м. Если x измеряется в км, то $\gamma \pi = 434$ дБ/км.

6.5 Контрольные вопросы

- 1. Что такое коэффициент усиления антенны, как он влияет на энергетику радиолинии
- 2. Что такое эффективная площадь антенны, как она влияет на энергетику радиолинии
- 3. Вероятность битовой ошибки в канале связи определяется:
 - а) отношением мощности полезного сигнала к мощности помехи на входе приемника;
 - б) формой сигнала
 - в)отношением энергии сигнала на бит к спектральной плотности мощности помехи, приведенным к входу приемника;

- г) видом модуляции;
- д) от рабочего диапазона частот.

Выберете правильный ответ

4. Перечислите факторы влияющие на ослабление сигнала в линии связи.

7. Тема: Защита каналов связи при передаче сообщений в условия радиоэлектронной борьбы

7.1 Цель занятия

При выполнении практических расчетных работ учащиеся должны освоить основные методы защиты каналов передачи сообщений в условия радиоэлектронной борьбы.

7.2 Краткие сведения по теории

Сценарий РЭБ определяет следующие четыре основных требования радио телекоммуникационной системе:

- 1. Безопасность передачи сообщений с целью обеспечения невозможности раскрытия противником содержания передаваемой информации (обеспечение конфиденциальности или криптозащиты передаваемых сообщений).
- 2. Защита каналов связи от доступа к ним противника, который может навязывать ложные сообщения для дезорганизации работы системы связи или перехвата управления технической системой. Защита каналов связи от поддельных сообщений называется имитозащитой каналов связи. В гражданских системах к этой задаче также относятся защита подписей на документах от подделок, защита электронных паролей доступа в систему, защита кредитных карточек, охранных сигнализаций и др.
- 3. Обеспечение энергетической скрытности излучаемых радиосигналов с целью предотвратить обнаружение противником факта работы радиолинии и возможность пеленгации радиоизлучающих средств с целью их уничтожения.
- 4. Защита радиолиний от радиоэлектронного подавления помехами от станций помех противника.

7.2.1. Имитоэащита передаваемых сообщений

Имитозащита передаваемых сообщений осуществляется криптографическим способом. Для этого к передаваемому сообщению добавляются избыточные биты для обнаружения ошибок в приемном устройстве. Каждый избыточный бит должен зависеть от значений всех информационных бит. На информационные и избыточные биты накладывается шифропоследовательность. В этом случае для создания ложного сообщения противник должен передать некие k информационные биты и правильно угадать необходимые для этих k бит значения r избыточных бит. Вероятность этого события есть $P_{\Pi} = (1/2)^{r}$.

7.2.2 Помехозащита радиолиний

Способность радиолинии работать в условиях воздействия естественных помех называется помехоустойчивостью. Способность радиолинии работать в условиях воздействия организованных помех называется помехозащищенностью.

Помехозащита разделяется на два класса: 1) пространственная помехозащита (за счет низкого уровня боковых лепестков приемной антенны, по которым действует помеха, формирование «нулей» диаграммы направленности приемной антенны в направлении на источник помех); 2) сигнальная помехозащита за счет широкополосных методов модуляции.

При сигнальной помехозащите спектр излучаемого сигнала искусственно расширяется за счет применения фазоманипулированных псевдошумовых сигналов (ПШС) или псевдослучайной перестройки рабочей частоты (ППРЧ), либо за счет комбинированного метода модуляции ПШС-ППРЧ.

Если противник ставит заградительную шумовую помеху во всей полосе частот сигнала, так что на входе приемной антенны радиостанции спектральная плотность шумовой заградительной помехи есть Non , то вероятность ошибки на бит в приемнике будет определяться величиной

$$h^2 = \frac{E_6}{N_0 + N_{\rm OH}},$$

где E_6 - энергия бита полезного принимаемого сигнала на выходе приемной антенны, No спектрапьная плотность аддитивных шумов приемной системы

Из теории потенциальной помехоустойчивости следует, что вероятность ошибки на бит определяется только энергией на бит и не зависит от формы сигнала (с широкополосной модуляцией, узкополосной модуляцией и др.)

$$No\pi = P\pi / \Delta f$$
,

где P_{Π} - мощность помехи на выходе приемной антенны, Δf - полоса частот широкополосного сигнала.

При Non>>No для порогового значения $h^2 = h$ пор получим

$$h_{\Pi OP}^2 = \frac{E_6}{N_{0\Pi}} = \frac{P_C \tau_0}{P_{\Pi}/\Delta f} = \frac{P_C \Delta f}{P_{\Pi} R},$$

41

где τ_0 = 1/ R длительность информационного бита, R - скорость передачи информации. Обозначим через базу широкополосного сигнала B. Отношение B = Δf / R = Δf τ_0 >>1. Тогда сигнальная помехозащита, определяемая как такое отношение помеха-сигнал (Рп/Рс), при котором обеспечивается работа радиолинии с заданным качеством (обеспечивается требуемое отношение h^2 пор), равна Рп/Рс = B/h^2 пор.

Отсюда следует, что помехозащита радиолинии повышается при уменьшении скорости передачи информации R, расширении полосы частот широкополосного сигнала $1 \Delta f$ и уменьшении величины h^2 пор. В помехозащищенных радиолиниях критерий оптимальности помехоустойчивого кода - максимальный энергетический выигрыш кода.

7.2.3. Уравнение помехозащиты

Радиолиния должна быть работоспособной при ЭИИМ станции помех Рпх Спх, где Рпх - мощность помехового сигнала на входе передающей антенны станции помех, Спх - коэффициент усиления передающей антенны станции помех. Величина Рпх Спх задается моделью РЭБ. Тогда ЭИИМ станции РсСс в радиолиниях без замираний сигнала определяется из уравнения помехозащиты

$$PcGc = PпxG пx + h^2пор - B - G_{БОК} + (r_c/r_п)^2$$
 дБВт,

где $G_{\rm EOK}$ - относительный уровень бокового лепестка (или «нуля» диаграммы направленности приемной антенны) в направлении на помеху, $\mathbf{r}_{\rm c}$ дальность связи,

 $\mathbf{r}_{\scriptscriptstyle \Pi}$ - расстояние от станции помех до приемника радиостанции.

. Смена рабочей частоты при ППРЧ или формы ПШС в радиолинии должна происходить по закону, неизвестному противнику т. е. этот закон должен определяться устройством криптозащиты (шифратором). На рис.8.1 показан вид радиосигнала с ППРЧ.

Противнику выгодно ставить не заградительную шумовую помеху, а более энергетически выгодные помехи, к которым относятся:

- 1) узкополосные помехи;
- 2) ретранслированные помехи;

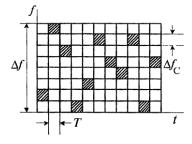


Рис. 7.1. Частотно-временная диаграмма сигнала с ППРЧ

(Т время работы радиолинии на одной частоте)

- 3) несущая, модулированная по частоте шумовым сигналом в части или во всей полосе сигнала Δf ;
- 4) хаотическая, импульсная шумовая помеха с большой скважностью.

В разрабатываемой радиолинии должны быть предусмотрены меры, парирующие вышеуказанные помехи, чтобы вынудить противника ставить наименее энергетически выгодную для него заградительную шумовую помеху во всей полосе частот широкополосного сигнала. При этом противник создает помехи и своим собственным радиосредствам в максимально широкой полосе частот.

Узкополосные помехи должны быть подавлены в приемнике режекторными фильтрами. Ретранслированные помехи могут быть полностью подавлены при быстрой ППРЧ. Хаотические импульсные помехи могут быть сделаны малоэффективными при перемежении символов и использовании мощного кода с исправлением ошибок.

7.3 Упражнения для аудиторных занятий

Задача 1. При передаче команд управления полетом летательного аппарата требуется обеспечить имитозащиту передаваемых команд с вероятностью ложного формирования команды не более 10⁻⁹. При криптографическом способе обеспечения имитозащиты определить число избыточных бит кода с обнаружением ошибок, которое нужно передавать с каждой командой. Какие дополнительные кодовые методы защиты передаваемых команд можно предложить для стирания команд, принятых противником и ретранслированных им через некоторое время для дезорганизации работы командной радиолинии?

Задача 2. Станция помех находится на расстоянии 30 км от нашей станции спутниковой связи, работающей в режиме ППРЧ. Каково допустимое максимальное время передачи сообщений на одной частоте, чтобы исключить воздействие ретранслированных помех на радиолинию?

7.4 Упражнения для самостоятельной работы

Задача 1. Перевозимая станция помех системе спутниковой связи в диапазоне частот 8 ГГц для постановки помех спутниковому ретранслятору имеет антенну диаметром 5 м и мощность излучения 10 кВт. Определите ЭИИМ станции помех.

Задача 2. Станция помех спутниковому ретранслятору в диапазоне частот 8 ГГц имеет ЭИИМ 90 дБВт. Используя уравнение помехозащиты радиолиний, определить требуемую ЭИИМ станции спутниковой связи при следующих условиях:

- скорость передачи информации R == 2,4 кбит/с;
- полоса частот используемого псевдошумового сигнала в радиолинии 36 МГц (полоса частот одного ствола спутникового ретранслятора);
- $r_c = r_{\pi}$
- пространственная помехозащита спутникового ретранслятора не используется;
- требуемая величина E_6 /No на выходе приемной антеины ретранслятора составляет величину 8 дБ.

При излучаемой станцией спутниковой связи мощности радиосигнала 50 Вт определить необходимый диаметр передающей антенны станции спутниковой связи, при котором обеспечивается помехозащита радиолинии.

Задача 3. Для дополнительной защиты радиолинии от узкополосных помех при использовании ПШС предложите свои варианты построения устройства, вырезающего узкополосные помехи из спектра псевдошумового сигнала.

Задача 4. Пусть на входе приемника ствола ретранслятора с прямой ретрансляцией сигналов действует многоканальный сигнал с результирующей мощностью P_C и помеха мощностью P_Π . Ретранслятор имеет коэффициент усиления k, который меняется таким образом, чтобы выполнялось условие k^2 ($P_C + P_\Pi$) = P_0 = const, Γ де P_0 номинальная выходная мощность усилителя мощности в ,линейном режиме.

Требуется определить мощность полезного сигнала k^2 Pc на выходе усилителя мощности и поведение коэффициента усиления ствола ретранслятора k в зависимости от входного отношения мощностей помеха-сигнал.

7.5 Пример решения задач.

В качестве генератора синхропоследовательности шифратора можно использовать генератор М последовательности на регистре сдвига с обратными связями. Определить период М-последовательности, если длина регистра сдвига m = 64, а частота следования символов М-последовательности равна 2,048 Мбит/с.

Решение:

Число бит на периоде M-последовательности равно $N==2^m-1$ Длительность одного бита M - последовательности $\tau=1/2,048.\ 10^{-6}\approx0,5$ мкс .

7.6 Контрольные вопросы

- 1. Что такое криптостойкость кода, чем она обеспечивается?
- 2. При передаче засекреченного телефонного сигнала нужно ли обеспечивать имитозащиту передаваемых сигналов. Если нет, объяснить почему?.

- 3. Поясните физический смысл параметров, входящих в уравнение помехозащиты
- 4. Что такое имитационная помеха.?
- 5. Что такое скрытность работы радиолинии, какими средствами она может быть обеспечена.?
- 6. Почему противнику не выгодно ставить широкополосную помеху для вывода канала связи из рабочего состояния?