Министерство образования и науки Российской Федерации

Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования

«Томский государственный университет систем управления и радиоэлектроники»

Радиотехнический факультет

Кафедра телекоммуникаций и основ радиотехники

Вершинин А.С. Эрдынеев Ж.Т.

Космические и наземные системы радиосвязи и телевещания

Методические указания по выполнению курсовой работы

Томск 2012

Министерство образования и науки Российской Федерации

Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования

«Томский государственный университет систем управления и радиоэлектроники»

Кафедра телекоммуникаций и основ радиотехники

УТВЕРЖДАЮ Заведующий кафедрой ТОР _____Ворошилин Е.П. _____2012 г.

Космические и наземные системы радиосвязи и телевещания

Методические указания по выполнению курсовой работы

Разработчики: ассистент каф. ТОР Вершинин А.С. студент гр. 168 _____Эрдынеев Ж.Т.

Оглавление

Задание на работу: 5	
Список рекомендуемой литературы: 5	
Методические указания к выполнению задания:	
1. Расчет коэффициента неготовности интервала ЦРРЛ,	
обусловленного показателями надежности аппаратуры12	
1.1 Расчет коэффициента аппаратурной неготовности интервала	
ЦРРЛ без применения резервирования (конфигурация 1+0)12	
1.2 Расчет коэффициента аппаратурной неготовности интервала	
ЦРРЛ при использовании постанционного резервирования	
(конфигурация 1+1)13	
2. Расчет потерь распространения радиосигнала в свободном	
пространстве	
3. Расчет ослабления радиосигнала в атмосферных газах14	
4. Построение и анализ профиля радиорелейного интервала15	
4.1 Классификация трасс	
4.2 Анализ трассы	
5. Расчет множителя ослабления на открытых интервалах17	
5.1 Отражение от водных поверхностей	
5.2 Отражение от поверхностей, отличных от водных	
5.3 Расчет множителя ослабления по интерференционным формулам 21	
5.4 Определение размеров зоны отражения	
5.5 Оценка влияния неровностей отражающей поверхности	
5.6 Расчет коэффициента отражения от плоской поверхности23	
5.7 Расчет коэффициента отражения от гладкой выпуклой	
поверхности (Коэффициент расходимости)	
5.8 Учет ослабления за счет диаграммы направленности25	
5.9 Учет затенения зоны отражения	
6. Расчет дифракционных потерь распространения	
6.1 Определение числа препятствий	
6.2 Аппроксимация препятствий	
6.3 Расчет дифракционных потерь за счет препятствия	
6.4 Расчет дифракционных потерь на сферической Земле	
7. Расчет запаса на тепловые замирания	
7.1 Расчет запаса на замирания для «чистой» атмосферы	
8. Расчет неустойчивости в условиях субрефракции	
9. Расчет неустойчивости, обусловленной интерференционными	
замираниями	
9.1 Расчет неустойчивости для приземных интервалов	
9.2 Расчет неустойчивости для высокогорных интервалов	
9.3 Расчет неустойчивости для горных интервалов	

9.4 Расчет неустойчивости на частотах выше 20 ГГц......45 10. 10.3 Эффективность приема с частотным и пространственным показателей качества. обусловленных 11 Расчет Расчет показателей качества, обусловленных влиянием дождей .52 12. Расчет показателей качества, обусловленных субрефракционными 13. 14.2 Нормирование коэффициента неготовности для реальных ЦРРЛ.56

Задание на работу:

- 1. Определить число пролетов;
- 2. Построить профиль пролетов;
- 3. Привести краткую характеристику используемой аппаратуры;
- 4. Рассчитать коэффициент неготовности интервала ЦРРЛ, обусловленного показателями надежности аппаратуры;
- 5. Рассчитать потери распространения радиосигнала в свободном пространстве;
- Рассчитать неустойчивость в условиях интерференционных замираний и субрефракции;
- 7. Рассчитать эффективность разнесенного приема;
- 8. Рассчитать нормированные и результирующие значения показателей качества.

Список рекомендуемой литературы:

- 1. ГОСТ Р.53363-2009. Цифровые радиорелейные линии. Показатели качества. Методы расчета. М. Стандартинформ, 2010.
- 2. Справочник по радиорелейной связи,/под ред. Бородича С.В.- М.: Радио и связь, 1981
- Радиорелейные линии: инженерно-технический справочник /под ред. Бородича С.В.-М.: Связь, 1970
- Маглицкий Б.Н. Расчет качественных показателей цифровых радиорелейных линий: Методические указания по дипломному проектированию.- Новосибирск, СибГУТИ, 2003
- 5. Тимищенко М.Г. Проектирование радиорелейных линий М.: Связь, 1976
- Справочник по цифровым радиорелейным системам.- Женева. МСЭ. Бюро радиосвязи, 1996.
- 7. Системы связи и РРЛ / Калашиков Н.И., Меркадер Л.П., Тимищенко М.Г. – М.: Связь, 1977
- Радиорелейные и спутниковые системы передачи /под ред. Немировского А.С. - М.: Радио и связь, 1986
- 9. Мордухович Л.Г., Степанов А.П. Системы радиосвязи: курсовое проектирование. М.: Радио и связь, 1987

Таблица 1 – Исходные данные

Исходные					Номера и	варианто	В			
данные	1	2	3	4	5	6	7	8	9	10
Тип аппаратуры	Гц-лим	Harris Eclipse 7	МИК-РЛ4Р+	Мик- РЛПР	Harris Globestar 13	аянд-рліяр	МИК- РЛ4С	МИК- РЛ6С	TADIRAN	Флокс- 4
Диапазон частот, ГГц	7,25- 7,55	7,5	3,7- 4,2	10,7- 11,7	12,7- 13,2	17,7- 19,7	3,7- 4,2	5,92- 6,42	15	3,6- 4,2
Мощность сигнала на выходе прд, дБм	28	20	28	19	26	19	24	24	16	20
Пороговый уровень сигнала, дБм при BER= 10 ⁻⁶	-88	-85,5	-88	-81	- 118, 5	-91	-68	-68	-82,5	86
Реальная чувствительно сть антенны, дБм	-85	-81,5	-85	-78	-114	-88	-64	-64	-79,5	-83
Диаметр антенны, м	1,0	1,2	1,8	1,0	0,6	0,6	1,8	1,0	0,6	1,2
Коэффициент усиления передатчика антенны, дБ	35	37	34	39	35,7	38	34	31	36,3	31
Потери вАФТ передатчика, дБ	-	5,3	-	-	0,06	-	-	-	0,6	-
Потери в АВТ приемника, дБ	-	5,4	-	-	0,06	-	-	-	0,6	-
Скорость передачи, Мбит/с	8	32	9,8	37	4	2	155,5 2	155,5 2	32	34
Конфигурация системы	1+0	1+1	1+0	2+0	2+0	1+1	1+1	1+0	2+0	1+1
Модуляция	QPS K	QA M-4	QA M-16	QPS K	QPS K	QPS K	QAM -128	QAM -128	QA M-4	QA M-64
Длина пролета, км	30	45	15	40	50	25	30	35	25	55

Продолжение таблицы 1

Исходные				Н	омера в	арианто	В			
данные	11	12	13	14	15	16	17	18	19	20
Тип аппаратуры	Ericsson Mini	МИК- РЛ11С	ФЛОКС- лайт	Мик- РЛ15Р+	NEC-700	МИК- РЛ15С	MLink-G-L	МИК- РЛ25Р+	МИК- РЛ7РМ	МИК- РЛ40Р+
Диапазон частот, ГГц	7,9- 8,4	10,7 - 11,7	1,7- 2,69	14,4 - 15,3 5	10,7 - 11,7	14,5 - 15,3 5	13	25,2 5- 27,5	7,25 - 7,55	39,5 - 40,5
Мощность сигнала на выходе прд, дБм	26	26	20	26	30	21	25	18	30	18
Пороговый уровень сигнала, дБм при BER=10 ⁻⁶	-76	-72	-90	-84	-74	-67	- 90,5	-69	-92	-76
Реальная чувствитель ность антенны, дБм	-72	-68	-86	-80	-71	-64	87,5	-65	-88	-72
Диаметр антенны, м	0,6	1,8	1,0	0,6	1,8	1,0	1,8	0,6	1,0	0,3
Коэффицие нт усиления передатчика антенны, дБ	32	41	29	36	44	41	45	40	35	39
Потери вАФТ передатчика , дБ	0,5	-	-	-	0,09 5	-	-	-	-	-
Потери в АВТ приемника, дБ	0,5	-	-	-	0,09 5	-	-	-	-	-
Скорость передачи, Мбит/с	8	155, 52	2	19,6	140	155, 52	4	117, 6	9,8	19,6
Конфигурац ия системы	1+0	1+1	1+1	2+0	3+0	1+0	1+0	1+1	2+0	1+0
Модуляция	QP SK	QA M- 64	OQP SK	QA M- 16	QA M- 16	QA M- 128	QA M-4	QA M- 64	QP SK	QA M- 16
Длина пролета, км	40	15	80	25	30	20	30	35	40	25

Таблица 2 – Параметры распределения эффективного вертикального градиента диэлектрической проницаемости воздуха.

Климатический	Летние	месяцы	Зимние	месяцы
район (Номер	$ar{g}$, 10^{-8} m $^{-1}$	<i>σ</i> , 10 ⁻⁸ м ⁻¹	$ar{g}$, 10^{-8} m $^{-1}$	<i>σ</i> , 10 ⁻⁸ м ⁻¹
варианта)	-		-	
1) Северо-запад	-9	7	-8	3
ЕТР*(Кольский				
полуостров,				
Карелия), а также			-10	5
Приоалтика и				
Респуолика				
веларусь Северо-				
(Архані слыская				
ооласть,				
республика Коми)				
2) Пентральные	-10	8	-8	5
районы ЕТР*	10	0	0	5
3) Юго-запал	_9	75	-7	354
ЕТР* (Курская и	-	7,0	,	5,5
Воронежская				
области), а также				
прилегающая				
территория				
Украины				
4) Степные	-8	8,5	-7	4,55,5
районы				
Поволжья, Дона,				
Краснодарского и				
Ставропольского				
краев			-	
5) Восточные	Область по	вышенной	-9	6
районы средней	рефра	акции		
полосы ЕТР*	0	16		
(Башкирия,	Область суб	брефракции		
пермскии краи)	-9	7		
б) Оренбургская	-6	7	-9	3,54
область и				
прилегающие				

районы Юго-				
Востока ЕТР*				
7) Районы	-13	10	-12	6,5
Прикаспийской				
низменности				
8) Степная	-7	9	-15	5,5
полоса Южной				
Сибири и				
Казахстана				
9) Средняя	-10	9		
полоса Западно-				
Сибирской				
низменности				
10) Восточная	-7	9	-15	6,5
Сибирь (Якутия,				
Красноярский				
край)				
 Прибайкалье 	-8	8	-9	4,5
(прибрежные				
районы)				
12) Забайкалье	-(610)	10	-(1012)	78
(континентальны				
е районы)				
13) Приамурье,	-11	8,5	-8	3,5
Приморье,				
Сахалин				
14)	-7	7	-15	6
Субарктический				
пояс Сибири				
15) Черноморское	Область по	вышенной	-10	5,5
побережье	рефра	акции		
Кавказа	-(1011)	910		
	Область суб	брефракции		
	-10	6		
16) Камчатка	-8,5	5,8	-	+
*Европейская терри	итория России	1		

								-	-	-		- (17		
П	эслед	цние	цифр	ы											
	Н	омер	a			Относительная координата $K = \frac{1}{R}$									
	студе	енчес	ского)	0.0	0.1	0.2	03	0.4	0.5	0.6	0.7	08	00	1.0
	б	ылет	a		0.0	0.1	0.2	0.5	0.4	0.5	0.0	0.7	0.8	0.9	1.0
00	20	40	60	80	73	63	76	74	72	65	57	63	76	89	103
01	21	41	61	81	73	60	72	71	70	66	58	57	68	83	98
02	22	42	62	82	73	57	68	68	66	65	61	55	61	77	93
03	23	43	63	83	73	55	62	65	63	63	61	56	56	70	88
04	24	44	64	84	73	54	56	61	59	60	57	53	63	63	83
05	25	45	65	85	73	53	55	55	55	56	57	52	57	67	78
06	26	46	66	86	73	53	43	47	50	50	52	55	52	51	73
07	27	47	67	87	73	54	38	44	46	47	51	51	47	47	68
08	28	48	68	88	73	54	36	29	35	40	42	47	49	42	63
- 09	29	49	69	89	73	54	36	23	24	32	37	42	46	39	58
10	30	50	70	- 90	74	63	90	89	86	72	55	60	77	91	105
11	31	51	71	91	74	59	85	86	85	78	61	54	67	84	100
12	32	52	72	92	74	55	79	83	81	79	68	54	58	77	95
13	33	53	73	93	74	52	70	79	78	77	73	60	53	69	90
14	34	54	74	94	74	50	61	74	74	74	74	65	52	61	85
15	35	55	75	95	74	50	50	66	70	70	71	68	54	54	80
16	36	56	76	96	74	51	41	55	64	65	67	68	57	48	75
17	37	57	77	97	74	53	55	35	41	55	60	62	66	59	70
18	38	58	78	- 98	74	55	33	28	42	54	57	61	60	40	65
19	39	59	79	99	74	56	35	20	26	44	52	57	59	38	60

Таблица 3 – Высотные отметки точек профиля пролета $y(K_i)$

Методические указания к выполнению задания:

- По заданной длине пролета и протяженности ЦРРЛ определить общее число пролетов. Один из пролетов должен иметь длину R₀ (см. табл. 1).
- В краткой характеристике аппаратуры указывают, для какой сети она предназначена (магистральной, зоновой или местной), особенности плана распределения рабочих частот, системы резервирования.
- 3. Проверить неравенство (14.3) и (14.4).
- В случае невыполнения неравенств, провести поиск технического решения, обеспечивающего положительный результат расчета показателей качества.
- 5. Рекомендуется рассмотреть следующие мероприятия:
 - 5.1. Оптимизация времени восстановления работоспособности отказавших узлов ЦРРС путем сокращения времени подъезда к ЦРРС или уменьшения времени доступа к узлам ЦРРС (размещение оборудования в аппаратных помещения);
 - 5.2. Использование частичного или полного резервирования;
 - 5.3. Увеличение высот подвеса антенн ЦРРС;
 - 5.4. Увеличение наклона интервала ЦРРЛ;
 - 5.5. Увеличение энергетического потенциала ЦРРЛ за счет:
 - выбора антенн с большими коэффициентами усиления,
 - использование более мощных ПРД,
 - использование более чувствительных ПРМ,
 - уменьшения потерь в антенно-волноводном тракте;
 - 5.6. Применение вертикальной поляризации

5.7 Использование различных видов разнесенного приема (частотного, пространственного, комбинированного);

5.8 Переход в более низкий частотный диапазон

Мероприятия, реализация которых приведет к изменению расчетных значений составляющих показателей качества, представлены в таблице 4.

Таблица 4 – Мероприятия по улучшению показателей качества.

Составляющие	показателей	Мероприятие
качества		
К _{нег.апп}		По перечислениям 1), 2)
$SESR_{ m cydped}$, $K_{ m He}$	г.субреф	По перечислениям 3), 5), 8)
K _{нег.мл} , SES.	R _{мл}	По перечислениям 3), 4), 5), 7), 8)
$SESR_{d}, K_{Hell}$	г.д.	По перечислениям 6), 5), 8)

1. Расчет коэффициента неготовности интервала ЦРРЛ, обусловленного показателями надежности аппаратуры

1.1 Расчет коэффициента аппаратурной неготовности интервала ЦРРЛ без применения резервирования (конфигурация 1+0)

Расчет проведен в соответствии [1]. В зависимости от конструктивного оформления радиорелейного оборудования распределяют узлы ЦРРС по двум группам: Гр1 – узлов, работающих вне помещения (на открытом воздухе), и Гр2 – узлов, работающих в помещении (аппаратной).

1) Проводится расчет наработки на отказ узлов, входящих в каждую группу $T_{rp j}$.

$$T_{zpj} = (T_1^{-1} + T_2^{-1} + \dots + T_i^{-1})^{-1},$$
(1.1)

где T_i - средняя наработка на отказ i-го узла j-й группы, j=1,2 (см. техническую документацию оборудования).

2) Проводится расчет коэффициента аппаратурной неготовности для каждой группы с учетом своего значения.

$$K_{ner.ann1} = \frac{T_{e12p1}}{T_{cp1}},\tag{1.2}$$

$$K_{\text{He2.ann2}} = \frac{T_{s12p2}}{T_{2p2}}.$$
 (1.3)

где *Т_{еј грј}*- среднее время восстановления работоспособности узла, ч.

Значения T_{e1cp1} оцениваются предварительно для каждой группы.

3) Коэффициент для одной станции ЦРРС1 рассчитывается по следующей формуле:

$$K_{\text{her.ann}(\text{UPPC1})} = K_{\text{her.ann1}} + K_{\text{her.ann2}}.$$
(1.4)

4) Рассчитывается значение коэффициента для интервала:

$$K_{\text{her.ann}} = K_{\text{her.ann}(\mu PPC1)} + K_{\text{her.ann}(\mu PPC2)}.$$
(1.5)

1.2 Расчет коэффициента аппаратурной неготовности интервала ЦРРЛ при использовании постанционного резервирования (конфигурация 1+1)

Расчет проводится в следующем порядке:

- 1) Распределяются узлы по категориям:
 - 1 нерезервируемые узлы нрб;
 - 2 резервируемые узлы рб.

2) Выполняется действия в соответствии с формулами (1.1)-(1.3)

3) Рассчитывается коэффициент аппаратурной неготовности с учетом работы системы резервирования:

$$K_{her.ann(ЦРРС1)} = K_{her.ann1(hpf)} + K_{her.ann2(hpf)} + + (K_{her.ann1(pf)} + K_{her.ann2(pf)})^2$$
(1.6)
4) Выполняются действия аналогично с пунктами 1) - 3)
для ЦРРС2.

5) По формуле (1.5) рассчитывается значение *К*_{нег.ann} – коэффициента аппаратурной неготовности интервала.

При кратности резервирования, отличной от (1+1), значение коэффициента аппаратурной неготовности интервала $K_{her.ann}$ рассчитывается по формулам:

- для конфигурации (2+1):

$$K_{\text{hee.ann}} = K_{\text{hee.}(np\delta)} + 1,5 (K_{\text{hee.}(p\delta)})^2;$$
(1.7)

$$K_{\text{ner.ann}} = K_{\text{ner.(np\delta)}} + 2 \left(K_{\text{ner.(p\delta)}} \right)^2; \tag{1.8}$$

- для конфигурации (7+1):

$$K_{\text{here.ann}} = K_{\text{here.}(\text{hpf})} + 4 \left(K_{\text{here.}(\text{pf})} \right)^2; \tag{1.9}$$

- для конфигурации (5+2):

$$K_{hec.ann} = K_{hec.(hp\delta)} + 7 \left(K_{hec.(p\delta)} \right)^3;$$
 (1.10)

2. Расчет потерь распространения радиосигнала в свободном пространстве

Потери распространения радиосигнала L_0 , дБ, в свободном пространстве на интервале длиной R, км, при частоте радиосигнала f, ГГц, рассчитывают по формуле согласно [1]:

$$L_0 = 92,45 + 20 \lg(f) + 20 \lg(R).$$
(2.1)

3. Расчет ослабления радиосигнала в атмосферных газах

Расчет проводится в соответствии [1].

В соответствии с заданным климатическим районом, в которой располагается интервал ЦРРЛ, определяется наибольшее (июль, август) среднемесячное значение согласно [2]:

- температуры воздуха t, °С;

- атмосферного давления *p*, мбар;

- плотности водяного пара (абсолютной влажности воздуха) ρ , г/м³.

Рассчитывается удельное ослабление радиосигнала в кислороде воздуха, дБ/км, по формуле:

$$\gamma_0 = \left[\frac{7.2 \cdot r_t^{2.8}}{f^2 + 0.34 \cdot r_p^2 r_t^{1.6}} + \frac{0.62 \cdot \xi_3}{(54 - f)^{1.16 \cdot \xi_1} + 0.83 \cdot \xi_2}\right] \cdot f^2 \cdot r_p^2 \cdot 10^{-3}, \quad (3.1)$$

где *f* измеряется в ГГц, $r_p = p/1013, r_t = 288/(273 + t);$

$$\begin{split} \xi_1 &= r_p^{0,717} \cdot r_t^{-1,8132} \cdot \exp[0,0156(1-r_p) - 1,6515 \cdot (1-r_t)];\\ \xi_2 &= r_p^{0,5146} \cdot r_t^{-4,6368} \cdot \exp[-0,1921(1-r_p) - 5,7416 \cdot (1-r_t)];\\ \xi_1 &= r_p^{0,3414} \cdot r_t^{-6,585} \cdot \exp[0,2130(1-r_p) - 8,5854 \cdot (1-r_t)]. \end{split}$$

Рассчитывается удельное сопротивление радиосигнала в водяном паре γ_{H20} , дБ/км, по формуле:

$$\begin{split} \gamma_{H20} = & \left\{ \frac{3,98 \cdot \eta_1 \cdot \exp\left[2,23(1-r_t)\right]}{(f-22,235)^2 + 9,42\eta_1^2} \cdot g(f,22) + \frac{11,96 \cdot \eta_1 \cdot \exp[0,7(1-r_t)]}{(f-183,31)^2 + 11,14\eta_1^2} \right. \\ & + \frac{0,081 \cdot \eta_1 \cdot \exp[6,44(1-r_t)]}{(f-321,226)^2 + 6,29\eta_1^2} + \frac{3,66 \cdot \eta_1 \cdot \exp[1,6(1-r_t)]}{(f-325,153)^2 + 9,22\eta_1^2} \right. \\ & + \frac{25,37 \cdot \eta_1 \cdot \exp[1,09(1-r_t)]}{(f-380)^2} + \frac{17,4 \cdot \eta_1 \cdot \exp[1,46(1-r_t)]}{(f-448)^2} \\ & + \frac{844,6 \cdot \eta_1 \cdot \exp[0,17(1-r_t)]}{(f-557)^2} \cdot g(f,557) \\ & + \frac{290 \cdot \eta_1 \cdot \exp[0,41(1-r_t)]}{(f-752)^2} \cdot g(f,752) \\ & + \frac{8,3328 \cdot \eta_2 \cdot \exp[0,99(1-r_t)]}{(f-1780)^2} \cdot g(f,1780) \right\} \times f^2 \cdot \rho \cdot r_t^{2.5} \cdot 10^{-4} \end{split}$$

где
$$\eta_1 = 0.995 \cdot r_p \cdot r_t^{0.68} + 0.006 \cdot \rho;$$

 $\eta_2 = 0.735 \cdot r_p \cdot r_t^{0.5} + 0.0353 \cdot \rho \cdot r_t^4;$

$$g(f,f_i) = 1 + \left(\frac{f-f_i}{f+f_i}\right)^2.$$

Рассчитывается ослабление в атмосферных газах A_a , дБ, на интервале ЦРРЛ длиной R, км, по формуле:

$$A_a = (\gamma_0 + \gamma_{H20})R. \tag{3.2}$$

4. Построение и анализ профиля радиорелейного интервала

Построение и анализ профиля радиорелейного интервала производят в порядке указанном ниже в соответствии с [1].

Рассчитывается эквивалентный радиус Земли а₃, м,

$$a_3 = \frac{6370000}{1 - 3185000 \cdot g},\tag{4.1}$$

где *g* - значение эффективного вертикального градиента диэлектрической проницаемости воздуха, 1/м.

Рассчитывается линию условного нулевого уровня на интервале длиной:

$$y = \frac{R^2}{2 \cdot a_3} \cdot K_i (1 - K_i), \qquad (4.2)$$

где $K_i = \frac{R_i}{R}$ – относительная координата текущей і-ой точки; R_i – расстояние до текущей точки, м.

Используя множество значений из таблицы, наносятся высотные отметки рельефа местности относительно условного нулевого уровня. Соединяя высотные отметки отрезками линий, строится профиль рельефа местности.

В соответствии с заданными высотами антенн h_1 , h_2 , ставятся на точках 0 и R соответствующие высоты антенн относительно профиля местности и соединяются прямой линией.

Определяется просвет трассы H(g), как минимальная разность высот между профилем радиорелейного интервала и прямой, соединяющей центры левой и правой антенн, с высотами h_1 , h_2 соответственно [3]:

$$H(g) = H(0) + \Delta H(g), \qquad (4.3)$$

где *H*(0) – значение просвета при отсутствии рефракции, определяемое из профиля местности;

 $\Delta H(g)$ – приращение просвета при изменении g.

$$\Delta H(g) = -\frac{R^2}{4} \cdot g \cdot K_{mp} \cdot (1 - K_{mp}), \qquad (4.4)$$

где *К_{тр}* - относительная координата наивысшей точки профиля пролета.

При прохождении трассы над водной поверхностью или же при отсутствии профиля местности значение просвета трассы *H* и расстояние до определяющей его точки рассчитывается по формулам [1]:

$$H = \frac{\left(h_1 - \frac{R_1^2}{2} + h_2 + \left(h_2 - \frac{R_2^2}{2} + h_3\right)\right) \cdot R_1}{R_1 = \frac{R(1+b)}{2}}, \quad (4.5)$$

где $R_2 = R - R_1;$ $b = 2 \cdot \sqrt{\frac{m+1}{2m}} \cos\left(\frac{\pi}{3} + \frac{1}{3} \arccos\left[3\frac{c}{2}\sqrt{\frac{3m}{(m+1)^3}}\right]\right);$ $m = \frac{R^2}{4a_3[h_2 + h_1]}; \ c = \frac{h_1 - h_2}{h_2 + h_1}.$

4.1 Классификация трасс

В зависимости от величины просвета интервалы подразделяются на следующие:

1) Открытые, для которых $H > H_0$, где H_0 , м, соответствует радиусу минимальной зоны Френеля:

$$H_{0} = \sqrt{\frac{1}{3} \frac{\lambda \cdot R_{1} \cdot (R - R_{1})}{R}} = \sqrt{\frac{1}{3} \lambda \cdot R \cdot K_{mp} (1 - K_{mp})}.$$
 (4.6)

2) Полуоткрытые, для которых $H_0 \ge H > 0$;

3) Закрытые, для которых H < 0.

Определяют относительный просвет на трассе:

$$p(g) = H(g)/H_0 \tag{4.7}$$

4.2 Анализ трассы

Под анализом трассы понимается процедура определения такого значения g из диапазона его возможных значений, при котором трасса переходит из открытой в полуоткрытую. При этом выделяется два поддиапазона, один из которых соответствует условиям, когда трасса не будет открытой (поддиапазон О), то есть либо полуоткрытой, либо закрытой (поддиапазон ПЗ) [1].

1) Определяется нижнюя и верхнюя границы диапазона возможных изменений g, м⁻¹, как $g_{\mu} = \max(g_{\kappa pum}, g - 4, 3\sigma)$ и $g_{e} = g + 4, 3\sigma$ соответственно, где g и σ – среднее значение и среднеквадратическое значение отклонение эффективного вертикального градиента диэлектрической проницаемости воздуха, $g_{\kappa pum} = -31, 4 \cdot 10^{-4}$ (критическая рефракция).

2) Для условий средней рефракции с помощью приведенных выше процедур строят профиль интервала и проводится классификация трассы. Значение $H(g) \leq 0$ означает, что трасса выбрана некорректно и следует увеличить высоту подвеса антенн либо выбрать другую трассу.

3) При H(g) > 0 определяет граничное значение $g_{c}(H(g_{c}) = H_{0})$:

$$g_{z} = g - 4 \frac{H_{0} - H(g)}{R^{2} K(1 - K)}.$$
(4.8)

4) Если значение g_{2} принадлежит диапазону (g_{μ}, g_{6}) , то оно определяет поддиапазоны О и ПЗ как (g_{μ}, g_{2}) и (g_{2}, g_{6}) соответственно.

5) Если значение g_{e} не принадлежит диапазону (g_{μ}, g_{θ}), то:

при $H(g) < H_0$ поддиапазон $O = \emptyset$ и при всех возможных значениях g трасса не будет открытой, то есть $\Pi 3 = (g_{\mu}, g_{\theta});$

при $H(g) > H_0$ поддиапазон ПЗ = Ø и при всех возможных значениях g трасса будет открытой, то есть $O = (g_\mu, g_e)$.

5. Расчет множителя ослабления на открытых интервалах

На открытых интервалах радиорелейных линий ослабление может носить интерференционный характер, так как в точку приема кроме прямой волны могут приходить одна или несколько волн отраженных от земной поверхности. Расчет множителя ослабления в этом случае проводят в порядке, приведенном ниже согласно [1].

5.1 Отражение от водных поверхностей

Условием отражения является равенство углов падения и отражения. Так как разность между высотами антенн, как правило, значительно меньше длины интервала, то предполагаемое точки отражения будут располагаться вблизи середины интервала ближе к менее поднятой над уровнем моря антенне [3].

Расстояние от левой антенны до точки отражения может быть найдено, как:

$$R_1 = \alpha_1 \cdot \alpha_2. \tag{5.1}$$

Таким образом, если на расстоянии R_1 от левой антенны на профиле имеется водный объект, он может служить источником отраженной волны.

Рисунок 5.1 – Схема отражения радиоволны от водной поверхности [1].

Разность хода между прямым и отраженным лучами рассчитывается по формулам:

при $g \ge g_{\kappa p}$:

$$\Delta r = \sqrt{(a_3 + h_1)^2 + a_3^2 - 2a_3(a_3 + h_1)\cos\alpha_1} + \sqrt{(a_3 + h_2)^2 + a_3^2 - 2a_3(a_3 + h_2)\cos\left(\frac{R}{a_3} - \alpha_1\right)} - \sqrt{(a_3 + h_1)^2 + (a_3 + h_2)^2 - 2(a_3 + h_1)(a_3 + h_2)\cos\left(\frac{R}{a_3}\right)}$$
(5.2)

при $g < g_{\kappa p}$:

$$\Delta r = \frac{[H(g)]^2}{2R \cdot K(1-K)}.$$
(5.3)

5.2 Отражение от поверхностей, отличных от водных

При отражении от плоских участков отраженная волна формируется в некоторой зоне, охватывающей точку отражения. Геометрическая точка отражения определяется путем построения зеркального изображения одной из антенн относительно MN (AN=NK на рис. 5.2). Плоскость отражения проводится через ближайшие друг другу точки пересечения трассы с изолиниями высот [3].

Рисунок 5.2 - К отражению на плоских участках интервалов [3].

На пересеченной местности зонами отражения являются наиболее выступающие препятствия. Чаще всего источниками отражений служат неоднородности рельефа, например холмы [3].

В случае неоднородностей рельефа местности необходимо подбирать аппроксимацию таких препятствий (рис. 5.3 и 5.4):

1) На профиле параллельно линии AB проводится прямая A'B', отстоящая от вершины неоднородности на расстоянии

Δу, которое ограничивается величиной минимальной зоны Френеля (4.6);

2) Определяется расстояние r, между точками пересечения прямой А'В' неоднородности рельефа 3)

Если выполняется условие

$$/(\Delta y = H_0) \ge 10, \tag{5.4}$$

то неоднородность может быть аппроксимировано сферой, проходящей через её наивысшую точку, причем радиус сферы b рассчитывается по формуле:

$$b = \frac{r^2}{8\Delta y}.$$
(5.5)

Если же $r/_{\Lambda\nu} < 10$, то не однородность следует рассматривать как сформированную локально плоскими участками.

Рисунок 5.3 – К отражению на пересеченных интервалах с малопротяженными неоднородностями [3].

Рисунок 5.4 – К отражению на пересеченных интервалах с протяженными неоднородностями [3].

Разность хода между прямой и отраженной от земной поверхности радиоволнами определяется с помощью выражения (5.3).

5.3 Расчет множителя ослабления по интерференционным формулам

Модуль множителя ослабления рассчитывается по формуле [1]:

$$V = \sqrt{1 + \Phi^2 - 2\Phi \cos[2\pi(p(g))^2/3]},$$
(5.6)

где Φ – модуль коэффициента отражения от подстилающей поверхности;

$$p(g)$$
 – относительный просвет в точке отражения:
 $p(g) = \sqrt{6 \cdot \Delta r \lambda}$ (5.7)

Угол скольжения определяют по формуле:

$$\theta = \frac{\Delta r}{H(g)} = \frac{H(g)}{2R \cdot K(1-K)}$$
(5.8)

При наличии на трассе *q* точек отражения модуль множителя ослабления рассчитывают по формуле:

$$V = \sqrt{\left(1 + \sum_{j=1}^{q} \Phi_j \cos \gamma_j\right)^2 + \left(\sum_{j=1}^{q} \Phi_j \sin \gamma_j\right)^2},$$
(5.9)

где γ – сдвиг фаз между прямой и отраженной волнами.

Расчет модуля коэффициента отражения от подстилающей поверхности Ф производится в порядке указанном ниже.

5.4 Определение размеров зоны отражения

Размеры зоны отражения, формирующей отраженную волну (см. рисунок 5.5), вдоль трассы и в перпендикулярном к ней направлении определяется по формулам [1]:

$$X = R \frac{\sqrt{\frac{\lambda}{3} \left(\frac{\lambda}{3} + 2\Delta r\right)}}{\left(\frac{\lambda}{3} + \frac{\Delta r}{2 \cdot K(1-K)}\right)} = R \frac{\sqrt{\frac{R\lambda}{3} \left(\frac{R\lambda}{3} + \frac{[H(g)]^2}{K(1-K)}\right)}}{\left(\frac{R\lambda}{3} + \frac{[H(g)]^2}{4(K(1-K))^2}\right)}$$
(5.10)

$$Y = \sqrt{R} \frac{\sqrt{\frac{\lambda}{3}} \left(\frac{\lambda}{3} + 2\Delta r\right)}{\left(\frac{\lambda}{3} + \frac{\Delta r}{2 \cdot K(1 - K)}\right)} = \sqrt{R} \frac{\sqrt{\frac{\lambda}{3}} \left(\frac{\kappa \lambda}{3} + \frac{(H(Q))}{K(1 - K)}\right)}{\left(\frac{R\lambda}{3} + \frac{(H(Q))^2}{4(K(1 - K))^2}\right)}$$
(5.11)

Смещение центра зоны C_M , м, относительно точки отражения *С* определяется по формуле:

$$C_{M} = \frac{R(1-2K)}{\binom{1}{2}} / \binom{1+\frac{3\Delta r}{2\lambda K(1-K)}}{\binom{1}{2}} = \frac{R(1-2K)}{\binom{1}{4\lambda R(K(1-K))^{2}}}.$$
 (5.12)

Выражения (5.10)-(5.12) справедливы для плоских участков трасс.

Рисунок 5.5 – Зона отражения [1].

5.5 Оценка влияния неровностей отражающей поверхности

Для оценки влияния неровностей отражающей поверхности в пределах зоны отражения применяется критерий Релея [1].

При высоте неровностей:

$$\Delta h \le \Delta h_{max} \approx \frac{\lambda \cdot H(g)}{(8 \div 16)\Delta r} = \frac{\lambda \cdot R \cdot K(1 - K)}{(4 \div 8)H(g)}$$
(5.13)

Отражение считают зеркальным, а коэффициент отражения по модулю таким же, как при отражении от гладкой поверхности.

Если $\Delta h > \Delta h_{max}$, то учитывается диффузный характер отражений, для чего коэффициент отражения умножают на величину:

$$p_{s} = max \left\{ exp\left(-\frac{(4\pi\chi)^{2}}{2}\right), exp\left(-2\pi\chi\right) \right\},$$
(5.14)

где $\chi = \sigma_h(\sin\theta)\lambda$,

 σ_h - стандартное отклонение гауссовского распределения вероятности высоты неровностей в пределах зоны отражения ($\sigma_h \approx 0.32 \Delta h$).

Если зона отражения полностью попадает на водную поверхность, то $p_s = 1$.

5.6 Расчет коэффициента отражения от плоской поверхности

Значение модуля коэффициента отражения от гладких плоских поверхностей при горизонтальной $\Phi_{nn,e}$ и вертикальной $\Phi_{nn,e}$ поляризациях вычисляется по формулам [1]:

$$\Phi_{nn,\epsilon} = \left| \frac{\sin \theta - \sqrt{\varepsilon - i60\sigma\lambda - \cos^2 \theta}}{\sin \theta + \sqrt{\varepsilon - i60\sigma\lambda - \cos^2 \theta}} \right|, \tag{5.15}$$

$$\Phi_{nne} = \left| \frac{(\varepsilon - i60\sigma\lambda)\sin\theta - \sqrt{\varepsilon - i60\sigma\lambda - \cos^2\theta}}{(\varepsilon - i60\sigma\lambda)\sin\theta + \sqrt{\varepsilon - i60\sigma\lambda - \cos^2\theta}} \right|,$$
(5.16)

Электрические параметры различных видов земной поверхности: диэлектрическая проницаемость ε и проводимость σ , меняются в широких пределах; в таблице 5.1 даны их ориентировочные значения.

1 40111	ruomidu ett strentpil nepalitet pil nepepilitet [e].				
Вид	ε	σ, См/м			
поверхности					
Бетон	4,4 4,6	0,025 0,035			
Асфальт	3,18	0,001			
Кирпич	15 17	$(7 \dots 8) \cdot 10^{-5}$			
Сухой грунт	3	$4 \cdot 10^{-4} \cdot f^2 + 8 \cdot 10^{-4} \cdot f - 0,004$			
		$3 \le f \le 40$			
Грунт	15				
средней	<i>f</i> < 5	0,038f ^{1,63}			

Таблица 5.1 – Электрические параметры поверхностей [3].

сухости	11,7 + 3,3/5(10 - f)	$0,25 \le f < 15$
	$5 \leq f < 11$	$-0,002f^2 + 0,4f - 2,41$
	$59,36f^{-0,7155}$	$15 \leq f < 60$
	$11 \le f < 30$	-
	$13,53f^{-0,2825}$	
	$30 \le f < 60$	
Влажный	30	
грунт	<i>f</i> < 1,8	$0,165f^{1,2735}$
	-10,73lnf + 36,44	$0,25 \le f < 15$
	$1,8 \le f < 11$	7,28 <i>lnf</i> — 14,5
	$59,36f^{-0,7155}$	$15 \le f < 60$
	$11 \leq f < 30$	
	$13,53f^{-0,2825}$	
	$30 \le f < 60$	
Морская	70	5
вода (20°С)	<i>f</i> < 3	f < 1
	43	9
	$27 + \frac{1}{20(23 - f)}$	$14 + \frac{7(f-8)}{7(f-8)}$
	$3 \leq f < 23$	$1 \leq f < 8$
	$571f^{-0,978}$	$-0,02f^2 + 2,4f - 3,92$
	$23 \le f < 60$	$8 \le f < 60$
Пресная	80	0,18f ^{1,92}
вода (20°С)	<i>f</i> < 7	<i>f</i> < 12
	33	$-0,02f^2 + 2,4f - 3,92$
	$\frac{47}{13(20-f)}$	$12 \le f < 60$
	$7 \le f < 20$	
	$1875 f^{-1,231}$	
	$20 \le f < 60$	

Частота указана в ГГц.

5.7 Расчет коэффициента отражения от гладкой выпуклой поверхности (Коэффициент расходимости)

При отражении от гладкой выпуклой поверхности из-за расходимости отраженных волн величина коэффициента отражения оказывается меньше, чем в случае плоской поверхности. Для количественной оценки модуля коэффициента отражения вводится понятие коэффициента расходимости, *D*, значение которого рассчитывается по формуле [1].

$$D = \left[1 + \frac{32\Delta y \cdot K^2 (1 - K)^2 R^2}{r^2 H(g)}\right]^{-1/2}, \qquad (5.17)$$

при этом значение r (см. рис. 5.4) не должно превышать значения X (5.10), а $\Delta y = H_0$.

Для водных поверхностей:

$$D = min\left(1, \left[1 + \frac{4 \cdot K^2 (1 - K)^2 R^2}{a_3 H(g)}\right]^{-1/2}\right),$$
(5.18)

5.8 Учет ослабления за счет диаграммы направленности

Отраженная волна ослаблена ДН антенн за счет углов $\Lambda_1 \approx H(g)/R_1$ и

 $\Lambda_1 \approx H(g)/(R - R_1)$ (см. рис. 5.1), что эквивалентно уменьшению коэффициента отражения в *B* раз:

 $B = 10^{0,05F}$, (5.19) где $F = F_{\Pi P \square}(\Lambda_1) + F_{\Pi P M}(\Lambda_2)$, дБ – суммарное ослабление изза направленности антенн. Значения $F_{\Pi P \square}(\Lambda_1)$ и $F_{\Pi P M}(\Lambda_2)$ определяются из реальных диаграмм направленности антенн.

Для антенн с осевой симметрией в отсутствии конкретной информации о диаграмме излучения можно воспользоваться эталонными диаграммами направленности антенн [4]. При этом если отношение диаметра *d* радиорелейного интервала к рабочей длине волны превышает 100, то:

$$G_{x}(\Lambda) = \begin{cases} G_{max} - 2.5 \cdot 10^{-3} \left(\frac{d}{\lambda}\Lambda\right)^{2} & 0 < \Lambda < \Lambda_{m}, \\ G_{1} & \Lambda_{m} < \Lambda < \Lambda_{r}, \\ 32 - 25lg\Lambda & \Lambda_{m} < \Lambda < 48^{\circ}, \\ -10 & 48^{\circ} < \Lambda < 180^{\circ}. \end{cases}$$
(5.20)

Если отношение диаметра радиорелейного антенны к рабочей длине волны меньше 100, то:

$$G_{\chi}(\Lambda) = \begin{cases} G_{max} - 2.5 \cdot 10^{-3} \left(\frac{d}{\lambda}\Lambda\right) & ^{2} & 0 < \Lambda < \Lambda_{m}, \\ G_{1} & \Lambda_{m} < \Lambda < 100 \frac{\lambda}{d}, \\ 52 - 10lg \frac{d}{\lambda} - 25lg\Lambda & 100 \frac{\lambda}{d} < \Lambda < 48^{\circ}, \\ 10 - 10lg \frac{d}{\lambda} & 48^{\circ} < \Lambda < 180^{\circ}. \end{cases}$$
(5.21)

где Л – угол отклонения от оси, град;

G_{max} – максимальный коэффициент усиления, дБи;

 $G_1 = 2 + 15 \lg (d/\lambda)$ – коэффициент усиления первого бокового лепестка, дБи;

$$\Lambda_m = 20 \frac{\lambda}{d} \sqrt{G_{max} - G_1}, \tag{5.22}$$

$$\Lambda_r = 15,85 \left(\frac{d}{\lambda}\right)^{-0.6}.$$
(5.23)

5.9 Учет затенения зоны отражения

Если известно, что в зоне отражения часть поверхности ΔX не является отражающей (см. рисунок 5.6), то коэффициент отражения умножают на величину [1]:

$$S = \left(1 - \frac{\Delta X}{X}\right). \tag{5.24}$$

где $\Delta X = \Delta X_{затен} + \Delta X_{накл};$ (5.25)

 ΔX_{3ameh} – затененная часть зоны отражения;

 $\Delta X_{_{HaKn}}$ – часть зоны отражения, рассеивающая энергию под углами, отличными от θ .

Рисунок 5.6 – Схема отражения радиоволны от плоской поверхности при частичном затенении и наклоне зоны отражения [3].

Окончательно модуль коэффициента отражения для каждой конкретной геометрической точки отражения рассчитывается как:

 $\Phi = \Phi_{nn} DS p_s B.$ (5.25) При наличии на трассе одной или нескольких точек отражения, модули коэффициентов отражения которых отличны от нуля, множитель ослабления рассчитывается согласно (5.6) и (5.9) соответственно.

6. Расчет дифракционных потерь распространения

На полуоткрытых и закрытых интервалах происходит дифракционное ослабление радиоволны за счет препятствий, расположенных в минимальной зоне Френеля. Расчет дифракционных потерь распространения проводят в порядке, приведенном ниже согласно [1].

6.1 Определение числа препятствий

Радиорелейный интервал разделяют на подынтервалы, первый из которых – от начала интервала до вершины ближайшего затеняющего препятствия; последний – от вершины последнего препятствия до конца интервала: началом и концом остальных подынтервалов является вершины соседних затеняющих препятствий [1].

Линия может огибать препятствия, при этом часть ее может совпадать с поверхностью объекта (см.рисунок 6.1).

Рисунок 6.1 – Схема распространения радиоволны на радиорелейном интервале с препятствиями [3].

6.2 Аппроксимация препятствий

Аппроксимация двух соседних затеняющих препятствий

Два соседних затеняющих препятствия допускается аппроксимировать одним эквивалентным, если оба препятствия образованы рельефом местности (см. рисунок 6.2) и выполняется неравенство [1]:

$$\lg\left(\pi - \arcsin\sqrt{R(x_2 - x_1)/[x_2(R - x_1)]}\right) > 0,408,\tag{6.1}$$

где x_1 и x_2 – расстояния до ближайших друг к другу точек излома линии, соответствующих данным препятствиям.

Рисунок 6.2 – Аппроксимация нескольких препятствий одним эквивалентным [3].

Не подлежат объединению:

А) препятствия, образованные объектами застройки и/или растительности, если расстояния между их ближайшими кромками превышает $\sqrt{3}H_0$

Б) препятствия, образованные объектами различной породы;

B) не объединяются затеняющее и полузатеняющее препятствия.

Аппроксимация цилиндром

Во многих случаях дифракция на препятствиях, таких, как здания и холмы, может быть представлена как дифракция на полуплоскостях. Однако моделирование полуплоскостью затеняющего препятствия с протяженной вершиной обычно приводит к недооценке ослабления. Аппроксимацией такого препятствия служит цилиндр [3].

Рисунок 6.3 – Определение радиуса цилиндра, аппроксимирующего неоднородность рельефа [3].

На рисунке 6.3 показана геометрия препятствия, включающего несколько точек отметки высот. Здесь:

w – ближайшая точка предыдущего затеняющего препятствия,

х – ближайшая к левому концу интервала точка рассматриваемого препятствия,

у – ближайшая к правому концу интервала точка рассматриваемого препятствия,

z – ближайшая точка следующего затеняющего препятствия,

p – точка отметки высоты рельефа, предшествующая *x*,

q – точка отметки высоты рельефа, предшествующая у,

v – точка пересечения касательных лучей, проведенных от соседних затеняющих препятствий.

Радиус цилиндра определяется разностью наклонов участков p - x и y - q, а также расстоянием между точками p и q. Разность наклонов указанных участков с учетом эквивалентного радиуса Земли вычисляется как:

$$t = \frac{h_x - h_p}{d_{px}} + \frac{h_y - h_q}{d_{yq}} - \frac{d_{pq}}{a_s},$$
(6.2)

где $d_{ij} = R_j - R_i$, а сам радиус:

$$a_{u} = \left[d_{pq} / t \right] (1 - \exp\left(-4\nu\right))^{3}, \tag{6.3}$$

здесь *v* – параметр дифракции (определяется далее) для эквивалентной полуплоскости с вершиной в точке *v*.

Реальные объекты застройки (здания и сооружения) часто можно аппроксимировать полуплоскостями. Такая аппроксимация справедлива в тех случаях, когда размеры препятствия вдоль трассы меньше диаметра сечения существенного эллипсоида ($\sqrt{3}H_0$) лля распространения в этом направлении. Когда же информация о застройке представлена в виде кварталов, нельзя точно определить количество и, тем более положение полуплоскостей. В этом случае такие объекты следует описывать с помощью цилиндров, радиусы которых находятся из профиля местности (рис. 6.4) [3]:

$$a_{\nu} = \left[\frac{d_{\nu}}{(tg\alpha_1 + tg\alpha_2)} \right] (1 - \exp(-4\nu))^3, \tag{6.3}$$

 $a_{\mu} = \left[\frac{d_{\mu}}{(tg\alpha_1 + tg\alpha_2)} \right] (1 - \exp(-4v))^3, \tag{6.3}$ где d_{μ} – расстояние между точками касания цилиндрического препятствия, м.

Рисунок 6.4 – Определение параметров цилиндра, аппроксимирующего местный предмет [3].

6.3 Расчет дифракционных потерь за счет препятствия

Препятствия, аппроксимируемые полуплоскостью

Дифракционные потери на препятствии, аппроксимируемом полуплоскостью $L_D(v)$, дБ (см. рисунок 6.5) определяют по формулам [1]:

$$L_{D}(v) = \begin{cases} 6.9 + 20lg \left(\sqrt{(v-0,1)^{2} + 1} - v - 0.1 \right) & npu \ v > 0.7 \\ 0 & npu \ v \le 0.7 \end{cases}$$
(6.4)
$$v = \theta \sqrt{\frac{2d_{1}d_{2}}{\lambda(d_{1} + d_{2})}} = h \sqrt{\frac{2(d_{1} + d_{2})}{\lambda d_{1}d_{2}}}.$$
(6.5)

Препятствия, аппроксимируемые цилиндром

Дифракционные потери на препятствии, аппроксимируемом цилиндром (см. рисунок 6.6), дБ, находятся из выражения [1]:

$$L_{\mu} = L_{D}(v) + T(m, n), \tag{6.6}$$

где $L_D(v)$ – дифракционные потери, вносимые эквивалентным ребром, вершина которого образована пересечением касательных, проведенных к цилиндрическому препятствию со стороны передающей и приемной антенн. Эти потери определяются по выражению (6.4).

T(m,n) – дополнительные потери, дБ, связанные с округлой формой препятствия радиусом a_u :

$$T(m,n) = (8,2+12,0n)m^b, \tag{6.7}$$

$$b = 0.73 + 0.27[1 - \exp(-1.43n)], \tag{6.8}$$

Рисунок 6.6 – Цилиндрическое препятствие [3].

Последовательность препятствий

На рисунке 6.7. вершина каждого препятствия моделируется поверхностью цилиндра, но на месте цилиндра может быть и полуплоскость.

Для каждого из затеняющих препятствий рассчитывается значение ослабления $L_{Audp 3}$ по формуле (6.4) для полуплоскости или (6.6) – для цилиндра.

Рассчитываются значение поправки C_N зависящее от взаимного расположения препятствий на интервале [1]:

$$C_N = \sqrt{\frac{P_a}{P_b}},\tag{6.10}$$

где
$$P_a = (r_1)_1 \prod_{i=1}^{N} [(r_2)_i] ((r_1)_1 + \sum_{j=1}^{N} [(r_2)_j]),$$
 (6.11)

$$P_b = (r_1)_1 (r_1)_N \prod_{i=1}^{N} [(r_1)_i + (r_2)_i], \qquad (6.12)$$

 $(r_1)_i$ – расстояние от вершины затеняющего препятствия до вершины предыдущего затеняющего препятствия или левой антенны, если затеняющее препятствие первое;

 $(r_2)_i$ - расстояние от вершины затеняющего препятствия до вершины следующего затеняющего препятствия или правой антенны, если затеняющее препятствие последнее.

Значение суммарных дифракционных потерь на множестве препятствий, дБ:

$$L_{\mu d p \Sigma} = \sum_{i=1}^{N} (L_{\mu d p 3})_{i} + (L'_{\mu d p 2})_{1} + \sum_{i=1}^{N} (L''_{\mu d p 2})_{i} - 20 lg C_{N}, \quad (6.13)$$

где $(L_{\mathcal{J}_{udp}\,3})_i$ – потери дифракции для *i*-го затеняющего препятствия, дБ;

 $(L'_{Ju\phi p})_1$ – потери на подынтервале между левой антенной и первым препятствием, вносимое, полузатеняющимся препятствием с максимальным закрытием (если таковое имеется), дБ.

 $\left(L_{\mathcal{J}u\phi p}^{"}\right)_{i}$ - потери на интервале между границами i-го и (i+1)-го затеняющих препятствий или правой антенной, вносимое полузатеняющим препятствием с максимальным закрытием, (если таковое имеется), дБ.

Рисунок 6.7 – Дифракция на последовательности препятствий [3].

6.4 Расчет дифракционных потерь на сферической Земле

Существуют трассы, где затеняющий эффект вызывает сферическая поверхность Земли (трассы, проходящие над водными поверхностями или над участками равнинной местности). В этом случае затеняющую поверхность моделируют сферой радиусом *a*₃, а интервалы условно называют «сферическими» [1].

В некоторых редких случаях необходимо учитывать электрические характеристики поверхности Земли с помощью нормированного коэффициента проводимости земной поверхности *K*, определяемое формулами [3]:

- для горизонтальной поляризации:

$$K_{z} = (2\pi a_{3}/\lambda)^{-1/3} [(\varepsilon - 1)^{2} + (60\lambda\sigma)^{2}]^{-1/4}$$
(6.14)

 $K_{2} = K_{2} [\varepsilon^{2} + (60\lambda\sigma)^{2}]^{1/2}$ (6.15)

Значения ε и σ приведены в таблице 5.1.

Формулы для расчета дифракционных потерь, дБ, имеют следующий вид:

$$L_{\underline{J}u\phi p} = \begin{cases} -[F(X) + G(Y_1) + G(Y_2)] & H(g) < 0, \\ [F(X) + G(Y_1) + G(Y_2)](H/H_0 - 1) & H_0 \ge H(g) > 0, \\ 0 & H(g) > H_0. \end{cases}$$
(6.16)

где X – нормированная длина трассы между антеннами при нормированных высотах Y_1 и Y_2 .

В постоянных единицах

$$X = \left(\frac{\pi}{\lambda a_{3}^{2}}\right)^{1/3} R, \qquad Y = 2\left(\frac{\pi^{2}}{\lambda^{2} a_{3}}\right)^{1/3} h, \qquad (6.17)$$

где *h* – высота антенны над сферической поверхностью, м.

Слагаемое
$$F(X)$$
 определяется формулой:

$$F(X) = 11 + 10lg(X) - 17,6,$$
(6.18)

а слагаемые, определяемые высотами антенн, вычисляются как:

$$G(Y) = 17,6(Y - 1,1)^{1/2} - 5\lg(Y - 1,1) - 8 \quad \partial \pi Y > 2, \tag{6.19}$$

$$G(Y) = 20\lg(Y + 0.1Y^3) \quad \partial \pi 10K < Y < 2. \tag{6.20}$$

$$G(Y) = 2 + 20lgK + 9lg(Y/K)[lg(Y/K) + 1] \partial_{\pi}K/10 < Y < 10K, \quad (6.21)$$

$$G(Y) = 2 + 20 lg K$$
 $\partial_{\pi R} Y < K/10,$ (6.22)

7. Расчет запаса на тепловые замирания

Расчет запаса на замирания при заданных условиях рефракции согласно [3].

1) Расчет ослабления L_{Σ} , дБ: $L_{\Sigma} = \begin{cases} L_0 + A_a - \min(V, 0) & \partial \pi \text{ открытых интервалов} \\ L_0 + A_a + L_{\beta u \phi p} & \partial \pi \text{ полуоткрытых и закрытых интервалов} \end{cases}$ где L_0 – потери в свободном пространстве, дБ; (7.1)

 A_a – ослабление в атмосферных газах, дБ;

множителя ослабления поля V значение свободного пространства, дБ;

 $L_{Дифр}$ – дифракционные потери распространения, дБ.

2) Расчет мощности сигнала на входе приемника $P_{\Pi PM}$, дБВт, по формуле:

 $P_{\Pi PM} = P_{\Pi P\Pi} + G_{\Pi P\Pi} + G_{\Pi PM} - L_{\phi,\Pi P\Pi} - L_{\phi,\Pi PM} - L_{\Sigma}.$ (7.2)где *Р_{ПРЛ}* – мощность передатчика, дБВт;

 $G_{\Pi P \Pi}$ – коэффициент усиления передающей антенны, дБи;

 $G_{\Pi PM}$ – коэффициент усиления приемной антенны, дБи;

 $L_{\phi,\Pi P \Pi}$ – потери в антенно-волноводном тракте передатчика, дБ;

 $L_{\phi.\Pi PM}$ – потери в антенно-волноводном тракте приемника, дБ;

3) Расчет запаса на тепловые замирания F_m , дБ; $F = P_{\Pi PM} - P_{\Pi PM pean},$ (7.3)

где P_{ПРМ реал} – реальная чувствительность приемника (при заданном BER), дБВт;

7.1 Расчет запаса на замирания для «чистой» атмосферы

- 1) Расчет ослабления L_{атм}, дБ: $L_{amm} = L_0 + A_a$ (7.4)
- 2) Расчет мощности сигнала на входе приемника *Р*_{ПРМ}, дБВт, по формуле:

$$P_{\Pi PM} = P_{\Pi P\mathcal{A}} + G_{\Pi P\mathcal{A}} + G_{\Pi PM} - L_{\phi,\Pi P\mathcal{A}} - L_{\phi,\Pi PM} - L_{amm}.$$
 (7.5)

3) Расчет запаса на тепловые замирания
$$F_m$$
, дБ;
 $F_m = P_{\Pi PM} - P_{\Pi PM pean}$, (7.6)

8. Расчет неустойчивости в условиях субрефракции

Расчет неустойчивости в условиях субрефракции проводят в следующем порядке согласно [1].

 Если трасса открытая, то составляющая неустойчивости р_{субреф}, обусловленная субрефракцией, равна нулю.

2) По формулам (7.1)-(7.3) вычисляют запас на замирания F при вертикальном градиенте диэлектрической проницаемости $g = g_B = \overline{g} + 4,3\sigma$.

3) Если F > 0, то вероятность появления субрефракционных замираний $P_{cvбpe\phi}$ и значение $p_{cvбpe\phi}$ принимают равным нулю.

4) Если рассчитанное значение F = 0, то принимается $g_0 = g$ и по табличным данным значений интеграла вероятности определяется величина $P_{cvбpedb}$, как функция нормированного параметра:

$$n = \frac{g_0 - \bar{g}}{\sigma}.\tag{8.1}$$

Для вычисления *P*_{субреф} можно воспользоваться полиномиальной аппроксимацией:

$$P_{cy\delta pe\phi} = \frac{1}{\sqrt{2\pi}} (a_1 t + a_2 t^2 + a_3 t^3 + a_4 t^4 + a_5 t^5) \exp\left(-\frac{n^2}{2}\right), \quad (8.2)$$

r_{De} t = 1/(1 + 0.2316419n),
 $a_1 = 0.31938153,$
 $a_2 = -0.356563782,$
 $a_3 = 1.781477937,$
 $a_4 = -1.821255978,$
 $a_5 = 1.330274429.$

Составляющая неустойчивости, обусловленная субрефракцией, %, определяется:

$$p_{cy\delta pe\phi} = 100 P_{cy\delta pe\phi}.$$
(8.3)

5) Если рассчитанное значение F < 0, то диапазон (g_c, g_b) делят пополам.

6) Определяют запас на замирания F при $g = 0,5(g_r, g_B)$. Если $F \neq 0$, то далее поиск величины g_0 проводят в поддиапазоне $\left(g_{e}, \frac{g_e + g_B}{2}\right)$ при F < 0 или в поддиапазоне $\left(\frac{g_e + g_B}{2}, g_B\right)$ при F > 0 путем его дальнейшего деления на два и вычисления F для g на границе между образованными поддиапазонами.

7) В зависимости от значения F повторяют действия с 4 по 7 пункт.

9. Расчет неустойчивости, обусловленной интерференционными замираниями.

Причина интерференционных замираний (многолучевых) замираний – сложение при приеме нескольких волн, имеющих различные пути распространения. Это прямая волна и волна, отраженная от слоистых неоднородностей тропосферы, а также отраженная от поверхности Земли. Многолучевые замирания подразделяют на плоские и частотно-селективные. Плоские замирания определяют устойчивость работы РРЛ, частотно-селективные вызывают искажения сигнала РРЛ [3].

Общая неустойчивость вследствие интерференционных замираний $\rho_{_{MI}}$ определяется по формуле:

 $\rho_{_{MI}} =$

 $\rho_{n\pi} + \rho_{cen}$

(9.1)

В зависимости от рабочей частоты расчеты проводятся отдельно для частот ниже 20 ГГц и выше 20 ГГц.

Для частот ниже 20 ГГц в зависимости от средней высоты трассы *h*, вычисляемой по формуле:

h =

 $(h_1 + h_1)/2$,

(9.2)

интервалы подразделяют на следующие группы:

- *h* ≤ 800 м − приземные интервалы, расчет для которых приведен в 9.1;
- 800 < h ≤ 1200 м горные интервалы, расчет для которых приведен в 9.3;
- h > 1200 м высокогорные интервалы, расчет для которых приведен в 9.2;

Для частот выше 20 ГГц расчет приведен в 9.4.

9.1 Расчет неустойчивости для приземных интервалов

В зависимости от наличия или отсутствия поверхностных отражений приземные трассы подразделяются на пересеченные и слабопересеченные.

Условно трассу при одинарном приеме можно отнести к <u>пересеченной</u>, если максимальное значение коэффициента отражения от земной поверхности Φ не превышает 0,8. При $\Phi \ge 0,8$ трасса (интервал) считается <u>слабопересеченной [3]</u>.

Расчет $\rho_{_{M\!A}}$ на пересеченных трассах

1) Расчет плоских замираний.

1.1) Вычислить параметр ρ_0 %, по формуле:

$$\rho_0 = C \cdot f^{1,5} \begin{cases} 2,05 \cdot 10^{-5} R^3 & npu \ R \le 20 \\ 4,1 \cdot 10^{-4} R^2 & npu \ R > 20 \end{cases}$$
(9.3)

где f в ГГц, R в км; C – множитель, зависящий от местоположения трассы и ее средней высоты над уровнем моря:

C = 1 для сухопутных пересеченных интервалов;

C = 2 для приморских районов акватории Северного Ледовитого океана;

 $C = 5 - 0,007h + 4 \cdot 10^{-6}h^2$ для приморских районов теплых и умеренных морей.

1.2) Рассчитать процент времени нарушения связи за счет плоских замираний в условиях наихудшего месяца:

$$\rho_{nn} = \rho_0 \cdot 10^{-\frac{F}{10}},\tag{9.4}$$

где F – наименьшее значение запаса на тепловые замирания (7.3)

2) Расчет селективных замираний:

2.1) Вычислить значение запаса на селективные замирание, дБ:

$$F_{cen} = -20lg\left(\frac{\pi Cs}{\sqrt{12}f}F(M) \cdot F(Rf)\right),\tag{9.5}$$

где Cs — скорость передачи, Гбит/с; f — в ГГц; F(M) — функция, зависящая от вида модуляции и числа уровней модуляции M;

$$F(M) = \frac{\sqrt{M} - 1}{\log_2 M} - \partial \pi \, \mu \mu \phi poblax \, cucmem \, c \, QAM \, u \, TCM, \qquad (9.6)$$

$$F(M) = \frac{1}{tg(\pi/M)log_2M} - \partial \pi \, \mu \mu \phi poblax \, cucmem \, c \, PSK.$$
(9.7)

F(Rf) – функция, приведенная на рис.9.1 для приморских и сухопутных интервалов.

Значение функции F(Rf) можно определить из выражения:

$$F^{2}(Rf) = \frac{\sum_{n} \left[(2n-1)^{2} \left(1 - erf\left[\frac{\overline{\Delta \varepsilon} + \frac{3 \cdot 10^{-4}}{Rf} (2n-1)}{\sqrt{2} \sigma_{\varepsilon}} \right] \right) \right]}{\sum_{n} \left[\left(1 - erf\left[\frac{\overline{\Delta \varepsilon} + \frac{3 \cdot 10^{-4}}{Rf} (2n-1)}{\sqrt{2} \sigma_{\varepsilon}} \right] \right) \right]},$$
(9.8)

erf(...) обозначает функцию ошибок от соответствующего аргумента;

 $\overline{\Delta \varepsilon}$ и σ_{ε} – среднее значение и СКО скачка диэлектрической проницаемости воздуха

 $\overline{\Delta \varepsilon} = -0.6 \cdot 10^{-6}$ и $\sigma_{\varepsilon} = 1.7 \cdot 10^{-6}$ – для сухопутных интервалов;

 $\overline{\Delta \varepsilon} = -3.2 \cdot 10^{-6}$ и $\sigma_{\varepsilon} = 1.7 \cdot 10^{-6}$ – для приморских интервалов;

2.2) Рассчитать процент времени нарушения связи за счет селективных замираний в условиях наихудшего месяца:

$$\rho_{cen} = \rho_0 \cdot 10^{-F_{cen}/10}.$$
(9.9)

Расчет $\rho_{\scriptscriptstyle M\! n}$ на слабопересеченных трассах

Расчет плоских замираний 1)

1.1) Вычислить параметр вероятности появления замираний, %, по формуле:

40

$$a_0 = 4,4416, a_1 = 38,67, a_2 = -505,89, a_3 = 4240,7, a_4 = -15669, a_5 = 21517 - для приморских трасс;
 $a_0 = 1,3025, a_1 = 32,303, a_2 = -639,61, a_3 = 5463, a_4 = -20494, a_5 = 28203 - для сухопутных трасс.$
 $x = \frac{2A}{\pi^{3/2}} \sum_{n=1}^{n_{max}} \frac{1}{\sqrt{n}} \exp\left(-\frac{8}{3}A^2 \left[p(\bar{g}) - \sqrt{6n}\right]^2\right),$ (9.11)$$

где n – номер интерференционного минимума, а n_{max} - наибольшее его значение;

$$n_{max} = trunc\left(\frac{\left[p(g_{\kappa pum})\right]^2}{6}\right),\tag{9.12}$$

где *trunc* – округление до ближайшего меньшего целого.

$$A = \frac{1}{\sigma} \sqrt{\frac{\lambda}{10^9 R^3 K (1 - K)}}.$$
(9.13)

Здесь К – относительная координата в точки отражения при средней рефракции.

1.2) Рассчитать процент времени нарушения связи за счет плоских замираний в условиях наихудшего месяца:

$$\rho_{nn} = \rho_0 \cdot 10^{-F_m/10}.$$
(9.14)
где F_m рассчитано согласно (7.6)

Расчет селективных замираний

2.1) Вычислить значение запаса на селективные замирания F_{con} , дБ:

$$F_{cen} = -20lg\left(\frac{\pi Cs}{\sqrt{12}f}(1 - \Phi/2)F(M) \cdot \Psi(Rf, \Phi)\right),\tag{9.15}$$

где Cs – скорость передачи, Гбит/с; F(M) вычисляется согласно (9.6) и (9.7),

Ф – максимальное значение модуля коэффициента отражения от подстилающей поверхности ни интервале в условиях повышенной рефракции,

 $\Psi(Rf, \Phi)$ – функция, графики которой приведены на рис. 9.2 и 9.3 для приморских и сухопутных интервалов соответственно.

Значение функции $\Psi(Rf, \Phi)$, можно определить из выражения: $\Psi^{2}(Rf, \Phi) = \frac{\sum_{n} |(2n-1)^{2} F_{n}(Rf, \Phi)|}{\sum_{n} |F_{n}(Rf, \Phi)|},$ (9.16)

где

$$F_{n}(Rf,\Phi) = \frac{1}{\pi} \left(1 - erf\left[\frac{\overline{\Delta\varepsilon} + \frac{3 \cdot 10^{-4}}{Rf} (2n-1) \frac{4(1-\Phi)}{(2-\Phi)^{2}}}{\sqrt{2}\sigma_{\varepsilon}}\right] \right) F_{1}(\Phi) + \frac{1}{2\pi} \left(1 - erf\left[\frac{\overline{\Delta\varepsilon} + \frac{3 \cdot 10^{-4}}{Rf} (2n-1)}{\sqrt{2}\sigma_{\varepsilon}}\right] \right) F_{2}(\Phi), \quad (9.17)$$

 $F_{1}(\Phi)$ и $F_{2}(\Phi)$ определяются выражениями:

43

$$F_1(\Phi) = \frac{1}{\sqrt{\Phi}} \ln\left(\frac{1+\sqrt{2\Phi-\Phi^2}}{1-\Phi}\right), \quad F_2(\Phi) = \frac{(1-\Phi)^2(1+0.5(1-\Phi)^2)}{\sqrt{\Phi}(1-0.5(1-\Phi)^2)}$$

9.2 Расчет неустойчивости для высокогорных интервалов

Расчет плоских замираний.

1) Вычислить параметр вероятности появления замираний, %:

 $\rho_0 = K \cdot F(h) R^{2,5} f^{1,5} (1 + |\varepsilon_h|)^{-1,2}, \qquad (9.18)$

где K – геоклиматический коэффициент, значение которого для сухопутных и надводных интервалов равны 4,1 · 10⁻⁴ и 4,9 · 10⁻³, соответсвтенно; f в ГГц; R в км; ε_h - наклон трассы, мрад;

F(h) - высотный множитель, определяемый средней высотой трассы.

Для сухопутных интервалов:

$$F(h) = 10^{0,001(h-800)}, (9.19)$$

Для надводных интервалов:

$$F(h) = 10^{-0,0004(h-100)}.$$
(9.20)

2) Рассчитать дополнительное ослабление уровня сигнала V_m , дБ, за счет прохождения через слоистые неоднородности тропосферы:

$$V_m = \frac{q \cdot 10^5}{9} R f^2, \tag{9.21}$$

где q – коэффициент, вычисляемый по формуле:

$$q = (a_1 x + a_2 x^2 + a_3 x^3) 10^{-8}, (9.22)$$

где

$$x = (180/\pi 10^3) \varepsilon_h$$
, $a_1 = 20,16$, $a_2 = -15,4$, $a_3 = 3,03$.

3) Рассчитать процент времени нарушения связи за счет плоских замираний в условиях наихудшего месяца:

$$\rho_{nn} = \rho_0 \cdot 10^{-(F_m - V_m)/10}. \tag{9.23}$$

9.3 Расчет неустойчивости для горных интервалов

На горных интервалах РРЛ неустойчивость, обусловленная интерференцонными замираниями, рассчитывается согласно выражению:

$$\rho_{M\pi} = \rho_{M\pi(n)} + \frac{\rho_{n\pi(n)} - \rho_{M\pi(n)}}{400} (h - 800), \qquad (9.24)$$

где $\rho_{MR(n)}$ – неустойчивость, обусловленная интерференционными замираниями на приземных интервалах (см. п.9.1);

*ρ*_{*n*,*(вс)*} – неустойчивость, обусловленная интерференционными замираниями на высокогорных интервалах (см. формулу 9.23).

9.4 Расчет неустойчивости на частотах выше 20 ГГц.

Расчет проводиться в соответствии с [3].

1) Расчет плоских замираний

1.1) Рассчитать геоклиматический коэффициент, пользуясь данными в районе расположения интервала:

$$K = 10^{-3,9-0,003dN_1} s_a^{-0,42}, (9.25)$$

где dN_1 – градиент преломляющий способности нижнего слоя атмосферы (см. Приложение А);

 s_a - параметр, характеризующий неровность местности (см. Приложение Б).

1.2) Вычислить параметр вероятности появления замираний, %:

 $\rho_0 = KR^{3,2}(1+\varepsilon_h)^{-0.97} \cdot 10^{0.032f-0.00085h_L}$ $e h_L = \min(h_1, h_2); f \text{ B} \Gamma \Gamma \mu.$ (9.26)

1.3) Вычислить значение процента времени,
$$p_t$$
:
 $\rho_t = \rho_0 \cdot 10^{-F/10}$. (9.27)

1.4) Рассчитать значение глубины замираний
$$A_t, \partial E$$
:
 $A_t = 25 + 1,2(lg\rho_0).$ (9.28)

1.5) Рассчитать процент времени нарушения связи за счет плоского замираний:

$$\rho_{n\pi} = \begin{cases} \rho_t & npu \ F \ge A_t \\ 100 \left(1 - exp(-10^{-q_a F/20}) \right) & npu \ F < A_t \end{cases}$$
(9.29)

где *q_a* – вспомогательный параметр:

$$q_a = 2 + \left(1 + 0.3 \cdot 10^{-F/20}\right) \cdot 10^{-0.016F} \left(q_t + 4.3 \left(10^{-\frac{F}{20}} + \frac{F}{800}\right)\right). (9.30)$$

$$q_t = \frac{(q_a' - 2)}{(1 + 0.3 \cdot 10^{-F/20}) 10^{-0.016A_t}} - 4.3 \left(10^{-\frac{A_t}{20}} + \frac{A_t}{800} \right), \quad (9.31)$$

$$q'_{a} = -\frac{1}{A_{t}} \cdot 20lg \left[-ln \left(\frac{100 - \rho_{t}}{100} \right) \right], \tag{9.32}$$

2) Расчет селективных замираний

2.1) Вычислить среднее время задержки отраженного сигнала на интервале, нс:

$$\tau_{cp} = 0.7 \left(\frac{R}{50}\right)^{1,3}.$$
 (9.33)

2.2) Определить коэффициент активности замираний по формуле:

$$\eta = 1 - \exp\left(-0.2\left(\frac{\rho_0}{100}\right)^{0.75}\right),\tag{9.34}$$

2.3) Вычислить значение запаса на селективные замирания F_{cen} с использованием данных о сигнатуре цифровой системы радиосвязи:

$$F_{cen} = -10 \lg \left(2,15 \left(W_{M} \cdot 10^{-\frac{B_{M}}{20}} \frac{\tau_{cp}^{2}}{|\tau_{0,M}|} + W_{HM} \cdot 10^{-\frac{B_{HM}}{20}} \frac{\tau_{cp}^{2}}{|\tau_{0,HM}|} \right) \right), \quad (9.35)$$

где $W_{M(nM)}$ в ГГц, $B_{M(nM)}$ в дБ - Параметры сигнатуры измеряются в лабораторных условиях и должны быть предоставлены производителем оборудования. Сигнатуры современных цифровых систем почти прямоугольные, а их ширина W приблизительно равна $(1,1...1,2)f_c$ где f_c – ширина полосы частот, численно равная скорости передачи символов и, соответственно, обратно пропорциональна длительности символа T_c . Высота сигнатуры зависит от формата модуляции, скорости передачи данных и наличии корректоров. Она определяет значение глубины замирания, при котором BER достигает порогового значения 10^{-6} или 10^{-3} .

Стандартное значение времени задержки: $\tau_{0,M(HM)} = 6,3$ *нс*.

При наличии информации о значении нормализованной сигнатуры $K_{H,M(HM)}$, F_{cen} вычисляется как:

$$F_{cen} = -10lg \left(2,15 \left(K_{n,M} + K_{n,NM} \right) \left(\frac{\tau_{cp}}{T} \right)^2 \right).$$
(9.36)

Теоретическое значение нормализованной сигнатуры определяется выражением:

$$K_{_{H,M}(_{H,M})} = \frac{T_c^2 W_x 10^{-B_{_{M}(_{H,M})}/20}}{\tau_{0,_{M}(_{H,M})}},$$
(9.37)

Где T – период, соответствующий скорости передачи символов в системе, нс.

2.4) Процент времени нарушения связи за счет селективных замираний рассчитывается согласно выражению:

$$\rho_{cen} = 100\eta \cdot 10^{-\frac{\Gamma_{cen}}{10}}.$$
(9.38)

10. Расчет эффективности разнесенного приема

Пункт 10 пропускается при отсутствии разнесенного приема.

10.1 Эффективность приема с пространственным разнесением

Неустойчивость, обусловленная многолучёвостью, может быть в значительной степени уменьшена при использовании разнесенного приема.

Эффективность приема с пространственным разнесением рассчитывается в следующем порядке согласно [1]:

- Вычислить коэффициент активности многолучевого замирания η (9.34) [5]. На частотах ниже 20 ГГц η = 1.
- Вычислить квадрат коэффициента неселективной корреляции:

$$K_{nn}^2 = 1 - \frac{I_{nn}}{\eta} P_{nn}, \tag{10.1}$$

где $P_{nn} = \rho_{nn}/100;$

 $\rho_{n,n}$ – значение процента времени нарушения связи на основной трассе за счет плоского замирания;

*I*_{*nл*}- коэффициент улучшения за счет разнесенного приема, вычисляемой по формуле:

$$I_{nn} = \left[1 - exp[F(S, f, R, P_0)]\right] 10^{F_m/10},$$
(10.2)

где $P_0 = \rho_0 / 100;$

 $F(S, f, R, P_0)$ — функция, параметрами которой является: разнос по вертикали центров приемных антенн, частота, длина и вероятность появления замираний.

 $F(S, f, R, P_0) = \begin{cases} -(C_h P_0)^{-1} & npu \ f < 20 \ \Gamma \Gamma u \\ -2,5 \cdot 10^{-4} (max[3, min(S, 23)])^{0,87} R^{0,48} P_0^{-1.04} & npu \ f > 20 \ \Gamma \Gamma u \\ npu \ f > 20 \ \Gamma \Gamma u \end{cases}$ (10.3) где C_h - коэффициент, вычисляемой по формулам:

- для слабопересеченных интервалов:

$$C_h = \sqrt{C_{och} C_{\partial on}},\tag{10.4}$$

$$C_{och(\partial on)} = 19.5 \cdot \exp\left[-8.09x_{och(\partial on)}\right],\tag{10.5}$$

где $x_{och(don)}$ – параметр по (9.11) для основной и дополнительной трассы.

Для пересеченных интервалов:

$$C_h = 1,287 \cdot 10^5 (S \cdot min[f, 11])^{-2}.$$
 (10.6)

3) Вычислить квадрат коэффициента корреляции при селективных замираниях; (0.8238 ири r < 0.5)</p>

$$K_{cer}^{2} = \begin{cases} 0.0236 & npu r_{w} \le 0.3\\ 1 - 0.195(1 - r_{w})^{0.109 - 0.13} lg(1 - r_{w}) & npu 0.5 < r_{w} \le 0.9628 & (10.7)\\ 1 - 0.3957(1 - r_{w})^{0.5136} & npu r_{w} > 0.9628 \end{cases}$$

где коэффициент корреляции *r*_w относительных амплитуд:

$$r_{w} = \begin{cases} 1 - 0.9746(1 - K_{nn}^{2})^{2,170} & npu \ K_{nn}^{2} \le 0.26, \\ 1 - 0.6921(1 - K_{nn}^{2})^{1,034} & npu \ K_{nn}^{2} > 0.26. \end{cases}$$
(10.8)

 Вычислить вероятность неустойчивой работы P_{nn d}, обусловленной плоскими замираниями:

$$P_{nn\,d} = \frac{P_{nn}}{I_{nn}}.$$
(10.9)

 Вычислить вероятность неустойчивой работы работы *P_{cen d}*, обусловленной селективными замираниями:

$$P_{cend} = \frac{P_{cen}^2}{\eta (1 - K_{cen}^2)},$$
(10.10)

где
$$P_{cen} = \rho_{cen} / 100.$$

- 6) Вычислить общую вероятность неустойчивой работы $P_{_{MI}d} = (P_{_{Cen}d}^{0,75} + P_{_{nI}d}^{0,75})^{4/3}.$ (10.11) 7) Для получения неустойчивости в %, $\rho_{_{MI}d}$ необходимо
 - умножить на 100 правые части уравнений (10.9)-(10.11).

10.2 Эффективность приема с частотным разнесением

Порядок определения значения ρ_{MRd} при частотном разнесении Δf аналогичен порядку, используемому в расчетах для пространственного разнесения, но за место формулы 10.2 применяют формулу [1]:

$$I_{n\pi f} = \left[\frac{K+1}{2} C_f P_{n\pi}\right]^{-1},$$
 (10.12)

где *К* – число рабочих стволов в системе резервирования (K+1).

Коэффициент C_f рассчитывают в зависимости от характера интервала следующим образом:

для пересеченных сухопутных интервалов по формуле

$$C_f = 17 \left[\frac{\Delta f}{f}\right]^{-1}; \tag{10.13}$$

 для пересеченных интервалов, проходящих в приморских районах, по формуле

$$C_f = 2,5 \left[\frac{\Delta f}{f}\right]^{-1,2};$$
 (10.14)

- для слабопересеченных интервалов по формуле:

$$C_f = 0.812[p(g)]^{-3.7} \left[\frac{\Delta f}{f}\right]^{-1.512 - 0.56\ln(p(\bar{g}))}, \quad (10.15)$$

где $p(\bar{g})$ – просвет трассы в точке отражения при средней рефракции;

- для слабопересеченных интервалов с большими просветами, перепадом высот корреспондирующих пунктов более 800 м и средней высоты трассы $\bar{h} \leq 800$ м при $x \geq 0,3$ (9.11) по формуле

$$C_f = 3.4 \left[\frac{\Delta f}{f}\right]^{-0.8}$$
 (10.16)

10.3 Эффективность приема с частотным и пространственным разнесением

Для обеспечения устойчивости работы РРЛ на отдельных неблагоприятных интервалах целесообразно использование пространственного разнесения в дополнение к уже имеющемуся частотному разнесению [1].

Процедура расчета зависит от количества используемых в системе приемников (2 или 4).

В случае двух приемников:

1) Вычислить коэффициент неселективной корреляции:

 $K_{nn} = K_{nns} \cdot K_{nnf}$, (10.17) где K_{nns} и K_{nnf} – коэффициенты корреляции при плоских замираниях, рассчитанных для пространственного и частотного разнесения и использованием значений I_{nns} и I_{nnf} , соответственно. Далее процедура ведется как в случае пространственного разнесения согласно пункту 10.1.

В случае четырех приемников:

1) Вычислить коэффициент активности многолучевых замираний η (см.9.34).

2) Рассчитать параметр разнесения m_{nn} :

$$m_{nn} = \eta^3 (1 - K_{nnf}^2) (1 - K_{nnf}^2), \qquad (10.18)$$

где *К_{пл s}*и *К_{пл f}* те же, что и в формуле (10.17).

3) Вычислить вероятность неустойчивой работы P_{nnd} , обусловленную плоскими замираниям:

$$P_{n\pi\,d} = \frac{P_{n\pi}^4}{m_{n\pi}}.$$
(10.19)

4) Найти квадрат эквивалентного коэффициента корреляции *К*_{лл} при плоских замираниях из выражения:

 $K_{n\pi}^2 = 1 - \sqrt{\eta} \cdot (1 - K_{n\pi S}^2) (1 - K_{n\pi f}^2).$ (10.20) 5) Рассчитать эквивалентный коэффициент корреляции $K_{n\pi}$ при селекции замираниях, используя ту же процедуру, что и для пространственного разнесения (10.7).

6) Вычислить вероятность неустойчивой работы *P*_{сел d}, обусловленную селективными замираниями:

$$P_{cen\,d} = \left[\frac{P_{cen}^2}{\eta(1 - K_{cen}^2)}\right]^2,\tag{10.21}$$

где *Р_{сел}* то же, что и в (10.10)

7) Общая вероятность неустойчивой работы $P_{M\pi d}$ рассчитывается согласно (10.11).

11. Расчет показателей качества, обусловленных интерференционными замираниями

Расчет показателей качества, обусловленных интерференционными замираниями, выполняют в следующем порядке согласно [1].

1) Если выполняется неравенство $\rho_{MR} < 0,000385$ то коэффициент сильнопораженных секунд $SESR_{MR}$, %, и коэффициент неготовности $K_{Hee. MR}$, %, обусловленные интерференцией на интервале, принимают равными

$$\begin{aligned} &SESR_{\scriptscriptstyle M\!\Pi} = \rho_{\scriptscriptstyle M\!\Pi}; \\ &K_{\scriptscriptstyle Her. \ M\Pi} = 0; \end{aligned}$$

и дальнейших вычислений не требуется.

2) Рассчитать эффективный запас на замирание $F_{3\phi}$:

$$F_{_{9\phi}} = \sqrt{10^{-F/10} + 10^{-F_{cen}/10}},\tag{11.1}$$

где *F* – значение запаса на тепловое замирание, при котором рассчитывают неустойчивость, вызванную плоским замиранием, дБ;

 F_{cen} — запас на селективное замирание, при котором рассчитывают неустойчивость, вызванную селективным замиранием, дБ.

3) Рассчитать медианное значение длительности замираний τ_M , с, при многолучевом распространении:

$$\tau_M = C_M F_{i\phi} (4/f)^{0.5}$$

где *С_М* – коэффициент, с, который рассчитывают по формулам:

- для слабопересеченных и приморских интервалов:

$$C_M = (0,002 + (0,272\psi)^{2,1})^{-1},$$
 (11.2)
- лля пересеченных интервалов:

$$C_{\rm W} = (0\ 001 + (0\ 106{\rm w})^{1,9})^{-1} \tag{11.3}$$

где
$$\psi$$
 – параметр трассы вычисляют по формуле:
 $\psi = R^2 p(\bar{g}) \cdot 10^{-4},$ (11.4)

где $p(\bar{g})$ – относительный просвет при средней рефракции в наиболее высокой точке интервала или в точке отражения для слабопересеченного интервала.

4) Рассчитать СКО длительности замираний
$$\sigma_{\tau}$$
, дБ:
 $\sigma_{\tau} = 3,694 + \frac{250,541}{(-V_{\partial E})^{-1,5}} + 4lg\frac{f}{4}$, (11.5)

где $-V_{\partial E} = 20 lg F_{\partial \phi}$ – глубина замираний, дБ.

5) Определить долю замираний α_{τ_H} , продолжительностью более $\tau_H = 10$ с;

$$\alpha_{\tau_H} = \frac{1}{2} \Big[1 - sign(x_H) \cdot \Big(1 - [a_1 t + a_2 t^2 + a_3 t^3] e^{-x_H^2} \Big) \Big].$$
(11.6)

где $t = 1/(1 + 0.47047|x_H|),$ $a_1 = 0.3480242, a_2 = -0.0958798, a_3 = 0.7478556;$

$$sign(x_{H}) = \begin{cases} 1 & x_{H} \ge 0\\ -1 & x_{H} < 0' \end{cases}$$
(11.7)

$$x_{H} = \frac{4,343}{2\sigma_{\tau}} ln\left(\frac{\tau_{H}}{\tau_{M}}\right) - \frac{\sqrt{2}\sigma_{\tau}}{8,686}.$$
(11.8)

6) Вычислить коэффициент сильнопораженных секунд SESR_{мл}, %, обусловленный интерференцией на интервале:

$$SESR_{M\pi} = (1 - \alpha_{\tau_H})\rho'_{M\pi},$$
 (11.9)

7) Вычислить интерференционную составляющую коэффициента неготовности *К*_{нег. мл.}, %:

$$K_{\mu e_{2. M, n}} = z \cdot \alpha_{\tau \mu} \rho'_{M, n}, \qquad (11.10)$$

где *z* – коэффициент пересчета от «наихудшего» месяца к «среднему году», равный 1/4; 1/3; 1/7 для сухопутных, приморских и горных районов соответственно.

12. Расчет показателей качества, обусловленных влиянием дождей

При дождях высокой интенсивности ослабление сигнала СВЧ возрастает до такой степени, что необходимый для качественной работы радиолинии уровень сигнала перестает обеспечиваться. Это приводит к резкому увеличению коэффициента ошибок и связь прерывается.

Показатели качества, обусловленные влиянием дождей, рассчитывают в следующем порядке согласно [1]:

1) Рассчитать интенсивность
$$J_{Д1}$$
, мм/ч:
 $J_{Д1} = \xi \cdot 2,5 \cdot 10^5 \cdot \text{Ш}^{-2} (\mathcal{A} + 25)^{-0,3},$ (12.1)

где *ξ* – коэффициент, учитывающий особенности различных территорий (см. прил. В);

Д(Ш) – долгота (широта) середины интервала, град.

2) Определить погонное затухание сигнала в дожде, $д \overline{b}/\kappa m$, с интенсивностью $J_{\pi 1}$ [6]:

$$\gamma = K \left(J_{\text{A}1} \right)^{\alpha}, \tag{12.2}$$

где *К*, *α* –коэффициенты:

$$K = [K_H + K_V + (K_H - K_V)\cos 2\tau]/2,$$
(12.3)

$$\alpha = [K_H \alpha_H + K_V \alpha_V + (K_H \alpha_H - K_V \alpha_V) \cos 2\tau]/2K, \qquad (12.4)$$

 τ – угол наклона вектора поляризации волны относительно горизонта, рад, для вертикальной, горизонтальной и круговой поляризации принимается равным $\pi/2$, 0, $\pi/4$, соответственно. Значения параметров $K_{H,V}$ и $\alpha_{H,V}$ рассчитываются согласно выражением:

$$K_{H,V} = 10^{q}, q = \sum_{j=1}^{4} \left(a_j exp \left[-\left[\frac{lg(f) - b_j}{c_j} \right]^2 \right] \right) + m \cdot lg(f) + n, (12.5)$$

$$\alpha_{H,V} = \sum_{j=1}^{5} \left(a_j exp \left[-\left[\frac{lg(f) - b_j}{c_j} \right]^2 \right] \right) + m \cdot lg(f) + n, \quad (12.6)$$

коэффициенты для которых приведены в табл. 12.1-12.4

	· 1	1			
j	a_j	b_j	Cj	т	n
1	-5,33980	-0,10008	1,13098		
2	-0,35351	1,26970	0,45400	-0,18961	0,71147
3	-0,23789	0,86036	0,15354		
4	-0,94158	0,64552	0,16817]	

Таблица 12.1 – Коэффициенты для вычислений К_н [6].

Таблица 12.2 – Коэффициенты для вычислений К_V [6]

j	a _j	bj	C _j	m	n
1	-3,80595	0,56934	0,81061		
2	-3,44965	-0,22911	0,51059	-0,16398	0,63297
3	-0,39902	0,73042	0,11899		
4	-0,50167	1,07319	0,27195		

Таблица 12.3 – Коэффициенты для вычислений *а_H* [6]

j	a _j	b _j	c _j	m	n
1	-0,14318	1,82442	-0,55187		
2	0,29591	0,77564	0,19822		
3	0,32177	0,63773	0,13164	0,67849	-1,95537
4	-5,37610	-0,96230	1,47828		
5	16,1721	-3,29980	3,43990		

Таблица 12.4 – Коэффициенты для вычислений α_H [6]

j	a _j	b _j	c _j	m	n
1	-0,07771	2,33840	-0,76284		
2	0,56727	0,95545	0,54039		
3	-0,20238	1,14520	0,26809	-0,053739	0,83433
4	-48,2991	0,791669	0,116226		
5	48,5833	0,791459	0,116479		

3) Определяется вспомогательный параметр B_1 : $B_1 = lg[0, 19J_{d1}].$ (12.7)

4) Определяется энергетический параметр интервала:

$$E = \alpha B_1 + lg(\overline{F}/(\gamma R)).$$
 (12.8)

Рассчитывается вспомогательный параметр B_2 , соответствующий интенсивности дождя, определяющий переход интервала в состояние неготовности:

$$B_2 = B_1 \cdot \sum_{i=1}^{6} A_i E^i.$$
(12.9)

$$\begin{split} & r_{\mathcal{A}e} A_{1} = (\alpha B_{1} - \varepsilon_{1})^{-1}; \\ & A_{2} = \varepsilon_{1} A_{3}^{3}; \\ & A_{3} = [2\varepsilon_{2}^{2} + (\alpha B_{1} - \varepsilon_{1})\varepsilon_{2}S_{3} + (\alpha B_{1} - \varepsilon_{1})^{2}\varepsilon_{4} + 5\varepsilon_{2}^{3}]A_{1}^{7}; \\ & A_{5} = [6(\alpha B_{1} - \varepsilon_{1})^{2}\varepsilon_{2}\varepsilon_{4} + 3(\alpha B_{1} - \varepsilon_{1})^{2}\varepsilon_{3}^{2} + 14\varepsilon_{4}^{4} + (\alpha B_{1} - \varepsilon_{1})^{3}\varepsilon_{5} \\ & + 21(\alpha B_{1} - \varepsilon_{1})^{2}\varepsilon_{2}S_{3}]A_{1}^{9}; \\ & A_{6} = \begin{bmatrix} 7(\alpha B_{1} - \varepsilon_{1})^{3}\varepsilon_{2}\varepsilon_{5} + 7(\alpha B_{1} - \varepsilon_{1})^{3}\varepsilon_{3}\varepsilon_{4} + 42\varepsilon_{2}^{5} + (\alpha B_{1} - \varepsilon_{1})^{4}\varepsilon_{6} + \\ + 84(\alpha B_{1} - \varepsilon_{1})\varepsilon_{2}^{2}\varepsilon_{3} + 28(\alpha B_{1} - \varepsilon_{1})^{2}\varepsilon_{3}^{2}\varepsilon_{2} + 28(\alpha B_{1} - \varepsilon_{1})^{2}\varepsilon_{2}^{2}\varepsilon_{4} \end{bmatrix} A_{1}^{11}; \\ & \varepsilon_{1} = 0,43429\Psi; \\ & \varepsilon_{2} = 0,43429\Psi \ln(d) - 0,217145\Psi^{2}; \\ & \varepsilon_{3} = 0,217145\Psi^{2}\ln^{2}(d) - 0,43429\Psi^{2}\ln(d) + 0,144763\Psi^{3}; \\ & \varepsilon_{4} = 7,28316 \cdot 10^{-2} \cdot \Psi \ln^{3}(d) - 0,43429\Psi^{2}\ln^{2}(d) + 0,43429\Psi^{3}\ln(d) + 0,10857\Psi^{4}; \\ & \varepsilon_{5} = 1,80954 \cdot 10^{-2} \cdot \Psi \ln^{3}(d) - 0,28953\Psi^{2}\ln^{3}(d) + 0,65143\Psi^{3}\ln^{2}(d) - \\ & -0,43429\Psi^{4}\ln(d) + 8,68581 \cdot 10^{-2} \cdot \Psi^{5}; \\ & \varepsilon_{6} = 3,61908 \cdot 10^{-3} \cdot \Psi \ln^{5}(d) - 0,14476\Psi^{2}\ln^{4}(d) + 0,65143\Psi^{3}\ln^{3}(d) - \\ & -0,8686\Psi^{4}\ln^{2}(d) + 0,43429\Psi^{5}\ln(d) + 7,28316 \cdot 10^{-2} \cdot \Psi^{6}; \\ & d = R^{0.545B_{1}}; \\ & \Psi = 3,5088 \cdot 10^{-2}B_{1}R^{0.33}. \\ & 5) \qquad \text{Onpegenseres napamerp} AS_{\mu}, \%: \\ & AS_{\mu} = 10^{-[2+2(B_{2}-B_{1})+0,2387|B_{2}-B_{1}|^{2,5682}]. \end{aligned}$$

обусловленный дождями, согласно выражению:

$$K_{\text{Her,}_{\text{H}}} = \begin{cases} AS_{\mu} & AS_{\mu} \ge 3,2 \cdot 10^{-5} \\ 0 & AS_{\mu} < 3,2 \cdot 10^{-5} \end{cases}$$
(12.11)

7) Вычислить дождевую составляющую коэффициента сильнопораженных секунд (SESR_n, %) согласно выражению:

$$SESR_{\mu} = \begin{cases} AS_{\mu} \cdot Q & AS_{\mu} < 3,2 \cdot 10^{-5} \\ 0 & AS_{\mu} \ge 3,2 \cdot 10^{-5} \end{cases}$$
(12.12)

где значение коэффициента *Q* рассчитывается по формуле:

$$Q = 0,1227 \cdot \amalg^{0,7456} \cdot \mathcal{A}^{0,1140} \cdot AS_{\pi}^{-0,1227}.$$
 (12.13)

13. Расчет показателей качества, обусловленных субрефракционными замираниями.

Ослабления СВЧ за счет дифракционных потерь в условиях субрефракции имеют обычно большую продолжительность (от нескольких десятков до нескольких часов), в то время как продолжительность интерференционных замираний составляет секунды-десятки секунд. Большая продолжительность субрефракционных замираний обусловлена инерционностью сопровождающихся их метеорологических процессов, например приземных туманов, инверсий влажности и температуры. Таким образом, можно приближенно считать что, субрефракционные замирания, глубина которых превышает значение запаса на замирания на интервале, будут приводить к неготовности интервала [3].

Показатели качества, обусловленные субрефракционными замираниями, рассчитывают в следующем порядке согласно [1]:

1) Определить параметр
$$AS_{\text{субрефр}},\%$$
:
 $AS_{\text{субрефр}} = z \cdot p_{\text{субрефр}},$ (13.1)

где $p_{\text{субрефр}}$ – составляющая неустойчивости, обусловленная субрефракцией (см. формулу 8.3)

z – коэффициент пересчета от «наихудшего» месяца «среднему году», равный 1/4 для сухопутных интервалов и 1/3 – для приморских интервалов.

2) Вычислить субрефракционную составляющую коэффициента неготовности К_{нег.субрефр}, %:

$$K_{\text{нег.субрефр}} = \begin{cases} AS_{\text{субрефр}} & \text{при } AS_{\text{субрефр}} \ge 3,2 \cdot 10^{-5} \\ 0 & \text{при } AS_{\text{субрефр}} < 3,2 \cdot 10^{-5} \end{cases}$$
(13.2)

3) Вычислить субрефракционную составляющую коэффициента сильнопораженных секунд SESR_{субрефр}, %:

$$SESR_{\rm субрефр} = \begin{cases} 0 & \text{при } AS_{\rm субрефр} \ge 3,2 \cdot 10^{-5} \\ p_{\rm субрефр} & \text{при } AS_{\rm субрефр} < 3,2 \cdot 10^{-5} \end{cases}$$
(13.3)

14.1 Нормирование SESR для реальных ЦРРЛ

Нормирование показателей качества для реальных ЦРРЛ со скоростью передачи, ниже 150336 кбит/с, проводится в соответствии с рекомендацией МСЭ-Р F.1668 [7]. Согласно [7] для ЦРРЛ протяженностью L км, используемой на национальном участке ГЭТ для транзитной страны норма (%) на коэффициент SESR рассчитывается согласно выражению:

$$SESR_{\text{норм}} = 100 \cdot \begin{cases} 10^{-4} \cdot (1+Br) \cdot 50/2500 & \text{при } L < 50, \\ 10^{-4} \cdot (1+Br) \cdot L/2500 & \text{при } 50 \le L \le 1000, \\ 10^{-4} \cdot L/2500 + 4 \cdot 10^{-5} \cdot Br & \text{при } 1000 < L. \end{cases}$$
(14.1)

и для оконечной страны:

$$SESR_{\text{HOPM}} = 100 \cdot \begin{cases} 10^{-4} \cdot (1+Br) \cdot 50/2500 & \text{при } L < 50, \\ 10^{-4} \cdot (1+Br) \cdot L/2500 & \text{при } 50 \le L \le 1000, \\ 10^{-4} \cdot L/2500 + 2 \cdot 10^{-5} \cdot Br & \text{при } 1000 < L. \end{cases}$$
(14.2)

где Br — константа, значение которой ограничено неравенством $0 < Br \le 1$. Обычно берут Br = 1.

14.2 Нормирование коэффициента неготовности для реальных ЦРРЛ.

Нормирование показателей готовности для реальных ЦРРЛ, образующих часть национального участка ГЭТ, протяженностью *L* проводится в соответствии с рекомендацией МСЭ-Р F.1493 [8].

 $K_{\text{Her HOPM}} = 100 \cdot \begin{cases} 1.9 \cdot 10^{-3} \cdot 50/2500 + 1.1 \cdot 10^{-4} & \text{при } L < 50, \\ 1.9 \cdot 10^{-3} \cdot L/2500 + 1.1 \cdot 10^{-4} & \text{при } 50 < L \le 250, \\ 3 \cdot 10^{-3} \cdot L/2500 & \text{при } 250 < L \le 2500. \end{cases}$

15. Расчет результирующих значений показателей качества

Основные показатели качества ЦРРЛ, связанные с надежностью аппаратуры и условиями распространения радиоволн:

коэффициент неготовности и коэффициент сильнопораженных секунд рассчитывают в следующем порядке согласно [1].

1) Величина SESR_и, %, интервала ЦРРЛ определяется вкладами интерференции, дождей и субрефракции:

 $SESR_{\mu} = SESR_{M,\pi} + SESR_{\mu} + SESR_{cy6pe\phi}, \qquad (15.1)$

где $SESR_{Mn}$, $SESR_{d}$ и $SESR_{cyópe\phi}$ рассчитывают по формулам (11.9), (12.12), (13.3), соответственно.

2) Коэффициент неготовности интервала ЦРРЛ *К*_{нег.и} %, определяется вкладами аппаратуры и среды распространения:

 $K_{\text{нег.и}} = K_{\text{нег.апп}} + K_{\text{нег.д.}} + K_{\text{нег.мл}} + K_{\text{нег.субреф}},$ (15.2) где $K_{\text{нег.апп}}$ рассчитывают согласно пункту 1, $K_{\text{нег.д.}}$ – по формуле (12.11), $K_{\text{нег.мл}}$ – по (11.10), $K_{\text{нег.субреф}}$ – по (13.12).

3) Необходимые условия удовлетворительной работы интервала ЦРРЛ определяют неравенства:

 $SESR_{\mu} \leq SESR_{HODM}$, (14.3)

$$K_{\rm Her,u} \le K_{\rm Her\,HODM}.\tag{14.4}$$

где SESR_{норм}, K_{нег норм} – значения, найденные в соответствии с формулами (14.1)-(14.2) и (14.3) соответственно.

В случае невыполнения неравенств (14.3) и (14.4), следует провести поиск технического решения, обеспечивающего положительный результат расчета показателей качества.

Список использованных источников:

1. ГОСТ Р.53363-2009. Цифровые радиорелейные линии. Показатели качества. Методы расчета. – М. Стандартинформ, 2010.

2. Новый аэроклиматический справочник пограничного слоя атмосферы над СССР. – М.: Гидрометеоиздат, 1985.

3. Василенко Г.О., Милютин Е.Р. Расчет показателей качества и готовности цифровых радиорелейных линий связи. – СПб.: Издательство «Линк», 2007.

4. Рек. МСЭ-Р F.699-6. Эталонные диаграммы излучения антенн фиксированных беспроводных систем для использования при изучении вопросов координации и оценке помех в диапазоне частот от 100 МГц до примерно 70 ГГц.

5. Рек. МСЭ-Р Р.530-10. Данные о распространении радиоволн и методы прогнозирования, необходимые для проектирования наземных систем прямой видимости.

6. Рек. МСЭ-Р Р.838. Модель удельного затухания радиоволн в дожде, используемая в методах прогнозирования.

7. Рек. МСЭ-Р F.1668. Показатели качества по ошибкам для реальных цифровых фиксированных беспроводных линий, используемых в гипотетических эталонных трактах и соединениях протяженностью 27500 км.

8. Рек. МСЭ-Р F.1493. Показатели готовности для реальных цифровых радиорелейных линий, образующих часть национального участка цифрового тракта протяженностью 27500 км с постоянной скоростью передачи, равной или превышающей первичную.

Приложение А

Рис. А.1 – Распределение градиента преломляющей способности нижнего слоя атмосферы.

Приложение Б Таблица Б.1 – Параметр неровности местности (s_a) для регионов РФ.

No	Регион	<i>s</i> _a , м	Ne	Регион	<i>s</i> _a , м
1	Республика Адыгея	443	48	Липецкая область	33
2	Республика Башкортостан	189	49	Магаданская область	333
3	Республика Бурятия	442	50	Московская область	38
4	Республика Горный Алтай	689	51	Мурманская область	105
5	Республика Дагестан	1067	52	Нижегородская область	35
6	Ингушская Республика	581	53	Новгородская область	65
7	Кабардино-Балкарская Республика	1067	54	Новосибирская область	43
8	Республика Калмыкия	50	55	Омская область	21
9	Карачаево-Черкесская Республика	720	56	Оренбургская область .	88
10	Республика Карелия	69	57	Орловская область	29
11	Республика Коми	126	58	Пензенская область	45
12	Республика Мари Эл	38	59	Пермская область	112
13	Мордовская Республика	43	60	Псковская область	50
14	Республика Саха (Якутия)	374	61	Ростовская область	50
15	Северо-Осетинская Республика	973	62	Рязанская область	28
16	Республика Татарстан	57	63	Самарская область	56
17	Республика Тува	511	64	Саратовская область	72
18	Удмуртская Республика	45	65	Сахалинская область	205
19	Республика Хакасия	435	66	Свердловская область	139
20	Чеченская Республика	665	67	Смоленская область	26
21	Чувашская Республика	41	68	Тамбовская область	23
22	Алтайский край	225	69	Тверская область	45
23	Краснодарский Край	389	70	Томская область	34
24	Красноярский Край	286	71	Тульская область	29
25	Приморский Край	310	72	Тюменская область	29
26	Ставропольский Край	179	73	Ульяновская область	77
27	Хабаровский Край	402	74	Челябинская область	135
28	Амурская область	311	75	Читинская область	318
29	Архангельская область	59	76	Ярославская область	30
30	Астраханская область	15	77	Еврейская Авт. область	182

Окончание таблицы Б.1

31	Белгородская область	37	78	Агинский Бурятский Авт. Округ	173
32	Брянская область	28	79	Коми-Пермяцкий Авт. Округ	36
33	Владимирская область	33	80	Корякский Авт. Округ	292
34	Волгоградская область	59	81	Ненецкий Авт. Округ	60
35	Вологодская область	37	82	Таймырский Авт. Округ	226
36	Воронежская область	38	83	Усть-Ордынский Бурятский Авт. Округ	145
37	Ивановская область	21	84	Ханты-Мансийский Авт. Округ	78
38	Иркутская область	337	85	Чукотский Авт. Округ	271
39	Калининградская область	43	86	Эвенкийский Авт. Округ	220
40	Калужская область	29	87	Ямало-Ненецкий Авт. Округ	74
41	Камчатская область	415	88	Брестская область	21
42	Кемеровская область	186	89	Витебская область	26
43	Кировская область	40	90	Гомельская область	14
44	Костромская область	31	91	Гродненская область	34
45	Курганская область	29	92	Минская область	38
46	Курская область	31	93	Могилевская область	23
47	Ленинградская область	60			

Приложение В

Таблица В.1 – Коэффициент интенсивности дождя.

Территория	ξ		
Юго-восточная зона Республики Калмыкии, Астраханская область	0,5		
Республика Калмыкия (кроме юго-восточная зоны), Волгоградская Ростовская, Саратовская области	0,65		
Камчатская область, Корякский Автономный округ	0,7		
Сахалинская область	0,8		
Республика Дагестан	0,85		
Республики Башкортостан, Марий Эл, Татарстан, Удмуртская, Чувашская; Кировская, Магаданская, Оренбургская, Пермская, Самарская, Свердловская, Ульяновская, Челябинская области; Коми-Пермяцкий Автономный округ	0,9		
Республика Адыгея, Крачаево-Черкесская Республика; Краснодарский край, Ставропольский край, Белгородская, Воронежская, Курская, Орловская области			
Республики Бурятия, Саха(Якутия); Иркутская, Новосибирская, Омская, Томская, Читинская области; Агинский Бурятский Автономный округ, Усть- Ордынский Бурятский Автономный округ, Эвенкийский Автономный округ; Брестская и Гомельская области	1,05		
Черноморское побережье Кавказа (г. Анапа, Новороссийск, Геленджик, Туапсе, Сочи); Ямало-Ненецкий Автопомный округ	1,2		
Приморский край, Хабаровский край, Амурская область, Еврейская Автономная область	1,5		
На остальных территориях	1,0		