Министерство образования и науки Российской Федерации Федеральное государственное бюджетное образовательное учреждение

высшего профессионального образования «Томский государственный университет систем управления и радиоэлектроники»

Кафедра электронных приборов

ПРОСТРАНСТВЕННАЯ ФИЛЬТРАЦИЯ ОПТИЧЕСКИХ ИЗОБРАЖЕНИЙ

Методические указания к лабораторной работе для студентов направлений «Электроника и наноэлектроника», «Фотоника и оптоинформатика»

Шандаров Станислав Михайлович Шмаков Сергей Сергеевич

Пространственная фильтрация оптических изображений: методические указания к лабораторной работе для студентов направлений «Электроника и наноэлектроника», «Электроника и микроэлектроника», «Фотоника и оптоинформатика» / А.И. Башкиров; Министерство образования и науки Российской Федерации, Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования Томский государственный университет систем управления радиоэлектроники, Кафедра электронных приборов. - Томск: ТУСУР, 2012. -15 c.

Целью настоящей работы является экспериментальное изучение методов прямого и обратного преобразования Фурье в применении к двумерным оптическим изображениям и их пространственной фильтрации в когерентных оптических системах.

Предназначено для студентов очной и заочной форм, обучающихся по направлениям «Электроника и наноэлектроника», «Электроника и микроэлектроника», «Фотоника и оптоинформатика», по дисциплинам «Оптические и акустооптические системы обработки информации», «Оптические и акустооптические методы обработки информации»

[©] Шандаров Станислав Михайлович, 2012

[©] Шмаков Сергей Сергеевич, 2012

Министерство образования и науки Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования «Томский государственный университет систем управления и радиоэлектроники»

Кафедра электронных приборов

	ГВЕРЖД в.кафедр	1
	в.кафедр	С.М. Шандаров
~	>>	2012 г.

ПРОСТРАНСТВЕННАЯ ФИЛЬТРАЦИЯ ОПТИЧЕСКИХ ИЗОБРАЖЕНИЙ

Методические указания к лабораторной работе для студентов направлений «Электроника и наноэлектроника», «Электроника и микроэлектроника», «Фотоника и оптоинформатика»

Разработчик	
д-р. физмат. наук. на	ук,
проф. каф.ЭП	
С.М. Шанда	ров
<u>«</u> »	_2012 г
ассистент каф. ЭП	
С.С. Шмаков	2012
«»	_2012 г

Содержание

1 Введение	5
2 Теоретическая часть	5
	Ошибка! Закладка не определена.
2.2 Скорость газовыделения	Ошибка! Закладка не определена.
2.3 Время обезгаживания	Ошибка! Закладка не определена.
2.4 Определение рода выделивше	гося газаОшибка! Закладка не
определена.	
2.5 Определение механизма газовыд	еленияОшибка! Закладка не
определена.	
2.6 Контрольные вопросы	Ошибка! Закладка не определена.
3 Экспериментальная часть	
3.1 Оборудование	Ошибка! Закладка не определена.
3.2 Задание на работу	
3.3 Методические указания по вып	олнению работы Ошибка! Закладка не
определена.	
3.4 Содержание отчета	
4 Рекомендуемая литература	

1 Введение

Оптические и акустооптические методы обработки информации предполагают ее запись на оптический транспарант в виде функции пропускания или изменения показателя преломления, а затем его зондирование пучком света. Далее полученное одномерное или двумерное распределение светового поля может быть подвергнуто различным интегральным и спектральным преобразованиям, в частности, прямому и обратному преобразованиям Фурье и пространственной фильтрации двумерного спектра исходного оптического сигнала.

К достоинствам оптических методов обработки информации относятся такие как большая информационная емкость, многоканальность, высокое быстродействие и многофункциональность. В оптических системах достаточно просто выполняются операции умножения, интегрирования, преобразования Фурье, Френеля, Гильберта; они могут использоваться для вычисления функций корреляции и свертки, и т.д.

Оптические устройства обработки информации делятся на когерентные и некогерентные. В некогерентных системах, работа которых основана на принципах геометрической оптики, используются некогерентные источники света (например, полупроводниковые светодиоды). В когерентных системах используются волновые свойства света и когерентные источники – лазеры.

Целью настоящей работы является экспериментальное изучение методов прямого и обратного преобразования Фурье в применении к двумерным оптическим изображениям и их пространственной фильтрации в когерентных оптических системах.

2 Теоретическая часть

2.1 Преобразование Фурье в когерентной оптической системе

Преобразование Фурье выполняется В оптической изображенной на рис. 2.1 [1-3]. Предполагается, что система не имеет аберраций и в ней не происходит поглощения и отражения электромагнитной энергии. В передней фокальной плоскости $P_1(z=0)$ положительной линзы Jфокусным расстоянием F расположен носитель информации – транспарант. Простейшим примером транспаранта является фотопленка, пропускание которой зависит от координат. Такой транспарант амплитудным. Другим примером транспаранта акустооптический модулятор света, в котором показатель преломления света меняется во времени и в пространстве под действием распространяющейся акустической волны. Такой транспарант является фазовым.

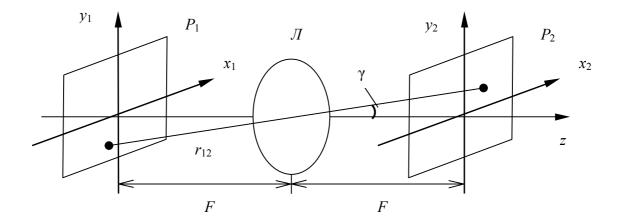


Рисунок 2.1 - Схема оптической системы

В общем случае коэффициент пропускания транспаранта может быть комплексным:

$$\dot{T}(x_1, y_1) = S(x_1, y_1) \exp[i\theta(x_1, y_1)]. \tag{2.1}$$

Выходной плоскостью системы, в которой происходит наблюдение светового поля, является плоскость P_2 (z=2F), расположенная в задней фокальной плоскости линзы.

Если плоская световая волна,

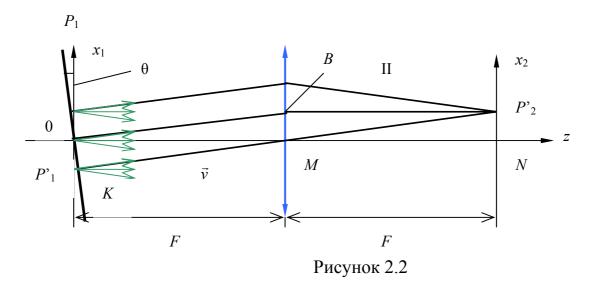
$$\vec{E}(z,t) = \vec{E}_0 \exp[i(\omega t - kz)],$$

с частотой ω и волновым числом k распространяется в оптической системе вдоль оси z, то на выходе транспаранта световое поле можно записать в виде

$$\vec{E}_1(x_1, y_1, t) = \vec{E}(0, t)\dot{T}(x_1, y_1) = \vec{E}_0 S(x_1, y_1) \exp\{i[\omega t + \theta(x_1, y_1)]\}. \tag{2.2}$$

Как видно, выражение (2.2) описывает операцию умножения постоянной величины $\vec{E}_1(x_1,y_1)=const$ (по пространству $x_1,\ y_1$) на функцию $\dot{T}(x_1,y_1)$.

Найдем распределение комплексной амплитуды поля на выходе рассматриваемой оптической системы. Для этого воспользуемся принципом Гюйгенса-Френеля, согласно которому каждая точка волнового фронта светового поля излучает сферическую волну. Суммируя излучение этих вторичных волн, испускаемых всеми точками плоскости P_1 в точке с координатами x_2 , y_2 плоскости P_2 , получим напряженность светового поля в этой точке. В параксиальном приближении, то есть для небольших углов $\gamma << 1$ оптической осью z системы и направлением лучей, можно использовать


скалярную модель поля и получить:

$$E_2(x_2, y_2) = A \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} E_1(x_1, y_1) \frac{\exp(-ikr_{12})}{r_{12}} dx_1 dy_1, \qquad (2.3)$$

где A — некоторый коэффициент, имеющий размерность обратной длины (м $^{-1}$), а $r_{12} = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2 + z^2}$ — расстояние между точками, расположенными на плоскостях P_1 и P_2 . Если $r_{12} >> (x_2 - x_1)$, $(y_2 - y_1)$, то r_{12} в знаменателе можно вынести из под знака интеграла:

$$E_2(x_2, y_2) = \frac{A}{r_{12}} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} E_1(x_1, y_1) \exp(-ikr_{12}) dx_1 dy_1.$$
 (2.4)

Выразим r_{12} через x_1 , x_2 и y_1 , y_2 , рассматривая для простоты одномерный случай (рис. 2.2).

Поскольку плоскость P_2 находится в фокальной плоскости линзы \mathcal{J} , то в некоторую точку P_2 будут собираться только параллельные лучи, распространяющиеся в области I в некотором направлении \vec{v} . Проведем через начало координат системы x_1z плоскость T, перпендикулярную направлению \vec{v} . Из оптики известно, что оптическая длина пути между точкой P_2 с координатой x_2 и любой точкой на плоскости T является постоянной величиной ρ . Найдем эту величину как сумму двух отрезков KM и MP_2 :

$$\rho = KM + MP_2' = \sqrt{F^2 - x_1^2 \cos^2 \theta} + \sqrt{F^2 + x_2^2}.$$

Если $x_1, x_2 << F$, то

$$\rho \approx F \left(1 - \frac{1}{2} \frac{x_1^2 \cos^2 \theta}{F^2} + \dots \right) + F \left(1 + \frac{1}{2} \frac{x_2^2}{F^2} + \dots \right).$$

Поскольку треугольники $0x_1M$ и MP_2N равны, то $x_1 = x_2$. Если еще $\theta <<1$, то $\rho \approx 2F$ и не зависит ни от x_1 , ни от x_2 . Расстояние r_{12} отличается от ρ на

величину отрезка P'_1K , которая зависит от положения точки на плоскости P_1 : $P'_1K = -x_1\sin\theta$,

где знак минус учитывает направление оси x. Подставляя $\sin\theta = x_2/F$, получаем

$$r_{12} = \rho + P_1'K = 2F - \frac{x_1 x_2}{F},$$
 (2.5)

$$E_2(x_2) = \frac{A}{r_{12}} \exp\left(-i\frac{4\pi F}{\lambda}\right) \int_{-\infty}^{\infty} \exp\left(i\frac{2\pi x_2 x_1}{\lambda F}\right) E_1(x_1) dx_1.$$
 (2.6)

Введем обозначения

$$B = \frac{A}{r_{12}} \exp\left(-i\frac{4\pi F}{\lambda}\right), \qquad \omega_{x2} = \frac{2\pi}{\lambda F} x_2. \tag{2.7}$$

Тогда

$$E_2(x_2) = B \int_{-\infty}^{\infty} E_1(x_1) \exp(i\omega_{x_2} x_1) dx_1.$$
 (2.8)

Прежде чем анализировать выражение (8), вспомним соотношения для пары прямого и обратного преобразования Фурье для сигнала f(t) и его спектра $F(\omega)$:

$$F(\omega) = \int_{-\infty}^{\infty} f(t) \exp(-i\omega t) dt, \qquad (2.9)$$

$$f(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} F(\omega) \exp(i\omega t) d\omega.$$
 (2.10)

Сравнивая (8) и (9), нетрудно заметить их полную аналогию. Таким образом, $E_2(x_2)$ является прямым преобразованием Фурье от функции $E_1(x_1)$, причем роль времени играет координата x_1 , а роль временной частоты ω – величина ω_{x2} , которую называют **пространственной частотой**, так как она является функцией координаты x_2 плоскости наблюдения P_2 .

Аналогичное выражение можно записать и для двумерного случая, когда $E_1 = E_1(x_1, y_1)$, полагая здесь и везде в дальнейшем B = 1:

$$E_2(x_2, y_2) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \exp[i(\omega_{x_2}x_1 + \omega_{y_2}y_1)] E_1(x_1, y_1) dx_1 dy_1.$$
 (2.11)

Рассмотрим физический смысл преобразования (11). При падении плоской однородной волны на транспарант с пропусканием $E_1(x_1,y_1)$ происходит дифракция света на этом транспаранте. Дифрагированное поле представляет собой суперпозицию плоских волн, распространяющихся во всех возможных направлениях, причем интенсивность плоской волны в каждом направлении определяется видим функции $E_1(x_1,y_1)$. Таким образом, в этом явлении уже заложены элементы прямого преобразования Фурье, причем роль временных частот играют направления распространения плоских волн.

Поскольку линза собирает все лучи, идущие в одном направлении $(x_2/F, y_2/F)$ в одну точку (x_2, y_2) , то она ставит в соответствие каждой плоской волне

точку на плоскости P_2 . Теперь роль частоты спектра Фурье будет играть не направление распространения плоской волны, а координаты в фокальной плоскости линзы P_2 , и комплексная амплитуда поля в этой точке соответствует величине спектральной составляющей Фурье.

Таким образом, в когерентной оптической системе распределения напряженности светового поля в фокальных плоскостях линзы связаны двумерным преобразованием Фурье.

Функция $E_2(x_2, y_2) = S(\omega_{x2}, \omega_{y2})$ называется пространственным спектром сигнала $E_1(x_1,y_1)$, а плоскость P_2 спектральной плоскостью, в то время как плоскость P_1 называется сигнальной плоскостью.

2.2 Прямое и обратное преобразование Фурье в когерентной оптической системе

Рассмотрим оптическую систему (рис. 2.3), состоящую из двух последовательно расположенных линз \mathcal{I}_1 и \mathcal{I}_2 , причем сигнальная плоскость второй линзы является спектральной плоскостью первой.

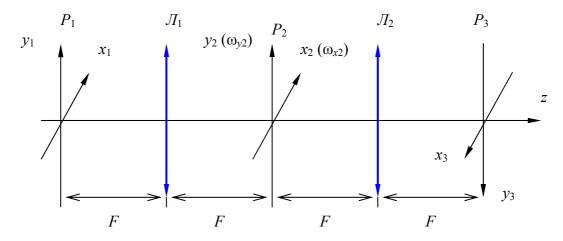


Рисунок 2.3 – Оптическая система, состоящая из двух последовательно расположенных линз

Найдем распределение напряженности светового поля $E_3(x_3,y_3)$ в спектральной плоскости P_3 линзы \mathcal{J}_2 , рассматривая для простоты одномерный случай:

$$E_{3}(x_{3}) = \int_{-\infty}^{\infty} E_{2}(x_{2}) \exp\left(i\frac{2\pi}{\lambda F}x_{3}x_{2}\right) dx_{2} = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} E_{1}(x_{1}) \exp\left[i\frac{2\pi}{\lambda F}(x_{1} + x_{3})x_{2}\right] dx_{1} dx_{2} =$$

$$= \int_{-\infty}^{\infty} E_{1}(x_{1}) dx_{1} \lim_{D \to \infty} \int_{-\frac{D}{2}}^{\frac{D}{2}} \exp\left[i\frac{2\pi}{\lambda F}(x_{1} + x_{3})x_{2}\right] dx_{2} = \int_{-\infty}^{\infty} E_{1}(x_{1}) \delta\left(x_{1} + x_{3}\right) dx_{1} = E_{1}(-x_{3}),$$

где $\delta(x_1+x_3)$ – дельта-функция и D – апертура второй линзы. Таким образом, мы получили

$$E_3(x_3) = E_1(-x_3), (2.12)$$

то есть в плоскости P_3 наблюдается перевернутое изображение сигнала $E_1(x_1,y_1)$. Это световое распределение можно считать обратным преобразованием Фурье от функции $E_2(\omega_{x2}, \omega_{y2})$, если в плоскости P_3 оси координат расположить так, как показано на рис. 3.

2.3 Пространственная оптическая фильтрация

Достаточно просто выполняется в оптике операция фильтрации спектральных составляющих. Для этого в спектральную плоскость устанавливают другой транспарант — пространственный фильтр с пропусканием $H(\omega_{x2}, \omega_{y2})$, на который проектируется спектр сигнала $S(\omega_{x2}, \omega_{y2})$. На выходе имеем напряженность электрического поля

$$E'_{2}(x_{2}, y_{2}) = S(\omega_{x2}, \omega_{y2})H(\omega_{x2}, \omega_{y2}),$$

распределение которого по пространственным частотам изменено в соответствии с характеристикой фильтра.

Проще всего реализуются фильтры с прямоугольной амплитудной и постоянной фазовой характеристиками. Роль таких фильтров будут выполнять прямоугольные отверстия или непрозрачные экраны, помещенные в плоскость P_2 .

Фильтр с постоянной амплитудной и прямоугольной фазовой характеристиками выполняется в виде прозрачных диэлектрических пленок, нанесенных на прозрачные подложки.

Для цели подавления постоянной составляющей применяется непрозрачный экран, помещаемый в точке с координатами $\omega_{x2} = 0$, $\omega_{y2} = 0$ и схема реализации прямого и обратного преобразования Фурье, изображенная на рис. 2.3.

2.4 Преобразование фазовой модуляции в амплитудную в оптических системах

Прямая визуализация информации, записанной на фазовом транспаранте, в схеме, изображенной на рис. 3, невозможна. Действительно, пусть пропускание транспаранта по амплитуде описывается функцией

$$\dot{T}(x,y) = \exp[i\varphi(x,y)]. \tag{2.13}$$

Предположим, что φ \Box 1, тогда

$$\dot{T}(x,y) \approx 1 + i\varphi(x,y), \qquad (2.14)$$

где первый член характеризует недифрагированный свет (нулевую пространственную гармонику), а второй - дифрагированный.

Квадратичный фотодетектор (человеческий глаз, фотодиод, ПЗС-матрица, и др.) будет регистрировать интенсивность света, прошедшего через такой фазовый транспарант, то есть его отклик определяется как

$$J \Box |\dot{T}(x,y)|^2 = |1+i\varphi(x,y)+...|^2 = 1,$$

и не содержит информации, записанной в виде фазовой картины.

Для преобразования фазовой картины в амплитудное распределение

существует несколько методов. Рассмотрим два из них.

1. Метод фазового контраста (метод Цернике).

Как видно из выражения (14), фазовую модуляцию нельзя наблюдать с помощью простого квадратичного фотодетектирования из-за 90^{0} -ного сдвига фаз между дифрагированным и недифрагированным светом. Если каким-то образом скомпенсировать эту разность фаз, то «невидимое» изображение станет видимым.

Для этого можно использовать воздействие на пространственночастотный спектр оптического сигнала, формирующийся в спектральной плоскости (см. схему на рис. 3), поскольку в фокальной плоскости линзы дифрагированное недифрагированное И световое пространственно разделенным. Здесь недифрагированный свет фокусируется в небольшую площадку с центром на оптической оси системы, в то время как дифрагированное поле преобразуется в распределение, локализованное на расстоянии оптической оси, некотором OT пропорциональном соответствующей пространственной частоте в исходной фазовой картине.

В методе фазового контраста в спектральной плоскости помещается стеклянная пластина, в центре которой (на оптической оси системы) диэлектрическая нанесена прозрачная пленка малого диаметра («пятнышко»),толщиной $\lambda/(4n_0)$ или $3\lambda/(4n_0)$, \mathbf{c} показательпреломления пленки. Этот участок, в пределах которого фазовый набег $\Delta \varphi$ отличен от остальных участков пластины на $\pi/2$ или $3\pi/2$, приводит к необходимому для визуализации сдвигу фаз. После применения операции обратного преобразования Фурье с помощью линзы \mathcal{I}_2 (см. рис. 3) в плоскости P_3 получаем следующее распределение интенсивности

$$I(x,y) \Box \left| \exp \left(i \frac{\pi}{2} \right) + i \varphi(x,y) \right|^{2} = \left| i \left(1 + \varphi(x,y) \right) \right|^{2} \approx 1 + 2 \varphi(x,y), \text{ при } \Delta \varphi = \frac{\pi}{2},$$

$$I(x,y) \Box \left| \exp \left(i \frac{3\pi}{2} \right) + i \varphi(x,y) \right|^{2} = \left| -i \left(1 - \varphi(x,y) \right) \right|^{2} \approx 1 - 2 \varphi(x,y), \text{ при } \Delta \varphi = \frac{3\pi}{2}, (2.15)$$

содержащее линейное отображение картины фазовой модуляции.

Таким образом, в данном случае фазовая модуляция светового поля во входной плоскости P_1 преобразуется в амплитудное распределение интенсивности в выходной плоскости P_3 . При $\Delta \varphi = \pi/2$ имеем случай положительного фазового контраста, при $\Delta \varphi = 3\pi/2$ - отрицательного.

2. Метод непрозрачного экрана.

Подавляя постоянную составляющую в спектральной плоскости и выполняя обратное преобразование Фурье, в плоскости P_3 получаем следующее распределение интенсивности:

$$I(x,y) \square \left| \varphi(x,y) \right|^2. \tag{2.16}$$

В данном случае интенсивность пропорциональна квадрату фазового сдвига, что является определенным недостатком метода непрозрачного экрана.

Другие существующие методы преобразования фазовой модуляции в

амплитудную (метод, основанный на дифракции Френеля, метод непрозрачного экрана для отрицательных пространственных частот) описаны в [3].

2.5 Контрольные вопросы

- 1. Как определить фокусное расстояние положительной линзы?
- 2. Как можно настроить оптическую схему, в которой необходимо реализовать прямое и обратное преобразование Фурье и пространственную оптическую фильтрацию?
- 3. Как в схеме, где реализуется прямое и обратное преобразование Фурье, изменится изображение в выходной плоскости, по сравнению со входным изображением?
- 4. Каким образом можно преобразовать фазовую модуляцию светового поля в амплитудную модуляцию интенсивности?
- 5. Каким образом можно подавить постоянную составляющую в оптическом изображении?
- 6. Как можно отсечь спектральные составляющие с $\omega_{y2} \neq 0$ в оптическом изображении?
- 7. Как можно отсечь спектральные составляющие с $\omega_{x2} \neq 0$ в оптическом изображении?

3 Экспериментальная часть

3.1 Методика эксперимента

Для реализации прямого и обратного преобразования Фурье и пространственной оптической фильтрации удобно исследования использовать оптическую скамью, например, типа ОСК-2 (см. описание [4]). лазер, поместить полупроводниковый ОНЖОМ параллельный световой пучок; оптический транспарант, совмещенный с входной плоскостью P_1 ; линзы, выполняющие прямое обратное преобразование Фурье. В спектральной плоскости первой линзы можно пространственные различные спектральные фильтры. Изображение в выходной плоскости P_3 удобно наблюдать с помощью оптического микроскопа, входящего в комплект скамьи ОСК-2.

3.1 Задание на работу

- 1. Ознакомьтесь с теоретическим описанием прямого и обратного преобразования Фурье в когерентных оптических системах и методики пространственной оптической фильтрации.
- 2. Используя излучение полупроводникового лазера, установленного на оптической скамье, и экран для наблюдения фокусируемого излучения, определите фокусные расстояния используемых линз \mathcal{I}_1 (более

короткофокусной, которую следует использовать далее для осуществления прямого преобразования Фурье) и \mathcal{I}_2 (для реализации обратного преобразования Фурье).

- 3. Соберите на оптической скамье схему, осуществляющую прямое и обратное преобразование Фурье, и настройте ее.
- 4. Используя прозрачную линейку с делениями, помещенную во входной плоскости, продемонстрируйте формирование перевернутого изображения освещенной части линейки в выходной плоскости. Настройте микроскоп на это выходное изображение.
- 5. Установите транспарант во входной плоскости и зарисуйте соответствующий ему пространственный спектр. Определите пространственные частоты ω_{x2} , ω_{y2} , соответствующие спектральным составляющим с максимальными интенсивностями.
- 6. Пронаблюдайте распределение интенсивности в выходной плоскости. Реализуйте подавление постоянной составляющей в спектральной плоскости и зафиксируйте изменения в изображении, наблюдаемом в выходной плоскости.
- 7. Реализуйте пространственный фильтр, пропускающий только спектральные составляющие с $\omega_{x2} \neq 0$ и отсекающий спектральные составляющие с $\omega_{y2} \neq 0$. Зафиксируйте соответствующее изображение, подвергнутое данной фильтрации.
- 8. Реализуйте пространственный фильтр, пропускающий только спектральные составляющие с $\omega_{y2} \neq 0$ и отсекающий спектральные составляющие с $\omega_{x2} \neq 0$. Зафиксируйте соответствующее изображение, подвергнутое данной фильтрации; сопоставьте его с изображением, наблюдаемым в предыдущем эксперименте.
- 9. Разработайте и реализуйте пространственный фильтр, позволяющий получить в выходном изображении вертикальные линии с пространственным периодом, уменьшенным в 2 раза по сравнению с периодом, наблюдаемым при выполнении пп. 7 и 8 задания.

3.3 Содержание отчета

Отчет по лабораторной работе должен содержать:

- 1) титульный лист;
- 2) введение;
- 3) описание используемых в экспериментах оптических схем; результаты расчетов и экспериментов;
 - 4) выводы по каждому эксперименту;
 - 5) список используемой литературы

4 Рекомендуемая литература

- 1. Дубнищев Ю.Н. Теория и преобразование сигналов в оптических системах: Учебник. Новосибирск: Изд-во НГТУ, 2004.
- 2. Пуговкин А.В., Серебренников Л.Я., Шандаров С.М. Введение в оптическую обработку информации. Томск: Изд-во ТГУ, 1981.
 - 3. Гудмен Дж. Введение в фурье-оптику. Пер. с англ. М.: Мир, 1971.
 - 4. Паспорт "Скамья оптическая ОСК-2ЦЛ".

Учебное пособие

Шандаров С.М., Шмаков С.С.

Пространственная фильтрация оптических изображений:

Методические указания к лабораторной работе для студентов направлений «Электроника и наноэлектроника», «Электроника и микроэлектроника», «Фотоника и оптоинформатика»

Усл. печ. л. Препринт Томский государственный университет систем управления и радиоэлектроники 634050, г.Томск, пр.Ленина, 40