Министерство образования и науки РФ

Томский государственный университет систем управления и радиоэлектроники (ТУСУР)

Б.В. Илюхин

ВЫЧИСЛИТЕЛЬНАЯ ТЕХНИКА И ИНФОРМАЦИОННЫЕ ТЕХНОЛОГИИ. ИНФОРМАЦИОННЫЕ ТЕХНОЛОГИИ

Методические указания по самостоятельной работе студентов специальностей 210403 Защищенные системы связи, 090106 Информационная безопасность телекоммуникационных систем

•••

··	2012г.
	Г.С. Шарыгин
Заведую	ощий кафедрой РТС
JIDLIA	кдаю

VTREDWILLIO

ВЫЧИСЛИТЕЛЬНАЯ ТЕХНИКА И ИНФОРМАЦИОННЫЕ ТЕХНОЛОГИИ. ИНФОРМАЦИОННЫЕ ТЕХНОЛОГИИ

Методические указания по самостоятельной работе студентов специальностей 210403 Защищенные системы связи, 090106 Информационная безопасность телекоммуникационных систем

Раз	работч	ик
Доі	цент ка	ıф.PTC,
		Б. В. Илюхин
٠٠	,,	2012Γ.

2012

Рекомендовано к изданию кафедрой радиотехнических систем Томского государственного университета систем управления и радиоэлектроники

УДК 621.397.13(076.5)

ББК 394я73

Б.В. Илюхин. Вычислительная техника и информационные технологии. Информационные технологии. Методические указания по самостоятельной работе студентов специальностей 210403 Защищенные системы связи, 090106 Информационная безопасность телекоммуникационных систем. – Томск: Том. Гос. Ун-т систем управления и радиоэлектроники, 2012.-31 с.

Издание содержит методические указания по самостоятельной работе студентов по дисциплинам «Вычислительная техника и информационные технологии», «Информационные технологии» для студентов специальностей 210403 Защищенные системы связи, 090106 Информационная безопасность телекоммуникационных систем.

© Илюхин Б.В.

© Томский государственный университет систем управления и радиоэлектроники, 2012.

Содержание

ОБЩИЕ УКАЗАНИЯ ПО САМОСТОЯТЕЛЬНОЙ РАБОТЕ СТУДЕНТОВ6
Объем и содержание дисциплины
«Вычислительная техника и информационные технологии»
Указания по изучению тем, вынесенных на самостоятельную проработку по дисциплине
«Вычислительная техника и информационные технологии»
Указания по подготовке к выполнению лабораторных работ и практических занятий по
дисциплине «Вычислительная техника и информационные технологии»19
Объем и содержание дисциплины «Информационные технологии»
Указания по подготовке к выполнению лабораторных работ и практических занятий по
дисциплине «Информационные технологии». 29
ПРИЛОЖЕНИЕ 130

ОБЩИЕ УКАЗАНИЯ ПО САМОСТОЯТЕЛЬНОЙ РАБОТЕ СТУДЕНТОВ

Самостоятельная работа студентов является одной из важнейших составляющих образовательного процесса. Основным принципом организации самостоятельной работы студентов является комплексный подход, направленный на формирование навыков репродуктивной и творческой деятельности студента в аудитории, при внеаудиторных контактах с преподавателем, при домашней подготовке.

Цель самостоятельной работы студента при изучении дисциплин – закрепить у студентов теоретические знания, полученные в процессе лекционных занятий, расширить общий кругозор студентов, за счет возможности изучения дополнительных источников (литературы, сайтов и пр.) и сформировать у студента более полное, комплексное представление о изучаемой дисциплине.

Самостоятельная работа включает в себя:

- проработку лекционного материала;
- подготовку к лабораторным занятиям, защите отчетов по лабораторным занятиям;
- подготовку к практическим занятиям;
- выполнение творческого индивидуального задания (при его наличии).

Одной из форм контроля за самостоятельной работой студентов являются контрольные вопросы.

Объем и содержание дисциплины «Вычислительная техника и информационные технологии».

1 Объем дисциплины:

Курс четвертый

Семестр 8

Учебный план набора 2008 года и последующих лет

Распределение учебного времени

Лекции 48 часов

Лабораторные занятия 16 часов

Всего аудиторных занятий 64 часа

Самостоятельная работа 38 часов

Общая трудоемкость 102 часа

Экзамен 8 семестр

3ET 3

- 1.1 Цели преподавания дисциплины ознакомление с основными концепциями, направлениями, моделями и принципами построения информационных сетей, современными тенденциями их развития, а также с требованиями, накладываемыми телекоммуникационными сетями на радиоэлектронные системы и устройства, входящие в их состав. Получение теоретических знаний и практических навыков в области построения и эксплуатации современных систем связи и телекоммуникаций, средств передачи информации в глобальных и локальных сетях ЭВМ, их основных принципов работы, овладение навыками поиска и получения информации.
- **1.2** Задачи изучения дисциплины. В результате изучения дисциплины студент должен:

Знать факторы окружающей среды, влияющие на работу ЭВМ;

Знать состав, основы построения, т.е. архитектуру ЭВМ и принципы работы основных компонентов ЭВМ;

Знать характеристики, параметры конфигурации персонального компьютера, виды программного обеспечения;

Знать требования, предъявляемые к организации локальной вычислительной сети ЭВМ, и уметь правильно организовать сеть;

Знать принципы передачи информации в вычислительных сетях;

Знать основные стандарты вычислительных сетей.

Закрепить и углубить знания основ архитектуры построения информационных сетей (модель ISO/OSI, логическая структура информационных сетей с маршрутизацией, селекцией информации) и их компонентов;

Знать место и роль радиоэлектронных устройств и систем, входящих в информационные сети, и основные требования, предъявляемые к ним; знать правила и обладать навыками работы в сети;

знать виды основных служб (сервисов) и особенности их организации и использования;

1.3. Перечень дисциплин и разделов (тем), необходимых студентам для изучения данной дисциплины.

Дисциплина «Вычислительная техника и информационные технологии» (ОПД.Ф.8) является общепрофессиональной и ее изучение опирается на знания, полученные при освоении естественнонаучных: «Информатика» (ЕН.Ф.02), «Математика» (ЕН.Ф.01), «Электромагнитные поля и волны» (ЕН.Ф.08), и общепрофессиональных «Электротехника и электроника» (ОПД.Ф.02), «Теория электрической связи» (ОПД.Ф.05) дисциплин.

2. СОДЕРЖАНИЕ ДИСЦИПЛИНЫ

2.1 Тематика лекций.

N ТЕМА Число час лекций

1	Вычислительная техника и информационные технологии.	2
2	Надежность функционирования вычислительной техники	2
3	Логические основы цифровой техники	2
4	Узлы цифровых устройств	2
5	Общие принципы построения и функционирования компьютеров	10
6	Аппаратная база компьютерной телефонии. Распределенная обработка информации.	2
7	Общие принципы компьютерного моделирования	2
8	Сигнальные процессоры и их применение в системах цифровой обработки сигналов.	2
9	Микроконтроллеры и их применение в системах управления объектами и процессами.	2
10	Локальные вычислительные сети.	14
11	Электронная почта	2
12	Компьютерные системы видеоконференцсвязи	2
13	Проектирование информационных технологий на базе локальных и глобальных вычислительных сетей	2
14	Защита информации в вычислительных сетях	2

2.1.1 Вычислительная техника и информационные технологии - 2 часа.

Вычислительные устройства и системы. Элементная база ЭВМ. Общие принципы построения и функционирования компьютеров. Основные понятия и определения. Обобщенная структурная схема вычислительной системы. Классификация сетей ЭВМ и вычислительных систем. Рекомендуемая литература.

2.1.2 Надежность функционирования вычислительной техники- 2 часа.

Факторы, влияющие на надежность функционирования вычислительной техники. Их классификация. Электромагнитная совместимость. Системы питания ЭВМ. Группы рисков потери информации. Методы защиты информации, хранимой в вычислительной технике, от исчезновения.

2.1.3 Логические основы цифровой техники.

2 часа.

Элементная база ЭВМ, логические функции, логические элементы. Методы синтеза комбинационных и последовательных схем.

2.1.4. Узлы цифровых устройств.

2 часа.

Триггеры, шифраторы, дешифраторы, преобразователи кодов, мультиплексоры, демультиплексоры.

2.1.5. Общие принципы построения и функционирования компьютеров.- 10 часов

Из них:

Системные шины.

1 час.

XT, ISA, EISA, VLB, PCI, AGP, IDE, USB. История развития, классификация, разрядность. Назначение, характеристики, параметры, особенности построения.

Архитектура, структурная схема ЭВМ.

1 час.

Понятие архитектуры процессора. Архитектура процессора и система команд. Типы процессоров ПЭВМ. Разрядность. Тенденции развития микропроцессорной техники. Сигнальные процессоры и их применение в системах цифровой обработки сигналов, микроконтроллеры и их применение в системах управления объектами и процессами. Устройства, обеспечивающие работу процессора.

1 час.

Порт, регистр, счетчик, прямой доступ к памяти, понятие системной шины. Chipset. Аналого-цифровые и цифро-аналоговые преобразователи информации.

Запоминающие устройства.

1 час.

Устройства хранения информации. Оперативная память. Виды, классификация. RAM, DRAM, SDRAM, DDR, RDRAM и т. д. Характеристики. Особенности построения. Виды исполнения.

Устройства записи и хранения информации.

1 час.

Жесткие диски. Интерфейсы подключения ST 506/412, SCSI, ATA и их разновидности. Критерии выбора жестких дисков и их интерфейсов.

Другие виды устройств и носителей.

1 час.

CD ROM, DVD, MD и т.д.

Видеоадаптеры. История развития, структурная схема. Форматы изображений. Архитектура. Перспективы развития.

1 час.

Устройства связи. Сетевые адаптеры, модемы и т. д. Функциональные схемы. Принципы работы. 2 часа.

Базовая система ввода-вывода. Необходимость применения. Структура. Особенности оборудования различных производителей. Настройка и конфигурация элементов персонального компьютера.

1 час.

2.1.6 Аппаратная база компьютерной телефонии. Распределенная обработка информации.
 2
 часа.

Необходимость объединения компьютеров в сети, понятие о вычислительной сети. Назначение и концепция построения сети. Выбор ЭВМ для реализации информационных технологий. Параллельная и распределенная обработка информации в вычислительных системах. Виды распределенной обработки информации и их характеристика. Основные понятия сетевой обработки информации.

2.1.7 Общие принципы компьютерного моделирования. 2 часа.

Компоненты и топологии сети. Одноранговые сети. Сети с выделенным Базовые комбинированные топологии Основные сервером. И сети. компоненты сети. Основные группы кабелей, ИХ сравнительная характеристика. Структурированные кабельные системы.

- 2.1.8 Сигнальные процессоры и их применение в системах цифровой обработки сигналов. 2 часа.
- 2.1.9 Микроконтроллеры и их применение в системах управления объектами и процессами.2часа.
 - 2.1.10 Локальные вычислительные сети.

14 часов.

Из них:

Однородные и неоднородные сети.

Необходимость стандартизации. Международные организации в области стандартизации. Общая характеристика, необходимость и область применения эталонной модели взаимосвязи открытых систем. Сетевая модель ISO/OSI. Многоуровневая архитектура. Взаимодействие уровней модели OSI. Передача данных по сети. Функции и структура пакета. Назначение протоколов.

Сетевые архитектуры.

2 часа.

2 часа.

Виды сетевых архитектур. Методы доступа. Стандарт IEEE 802.X. Метод CSMA/CD, маркерные сети, кольцевые маркерные сети, сети с тактируемым доступом, сети большого радиуса, сети с радиодоступом. Протоколы канального уровня. EtherNet, Token Ring, ArcNet. Виды кадров. Происхождение и основные характеристики стандартов в архитектуре EtherNet, ArcNet, Token Ring. Сравнительная характеристика различных архитектур.

Устройства коммутации

2 часа.

Понятие повторителя, концентратора, моста. Их структура и уровни работы в соответствии с системой ISO/OSI. Необходимость разделения сетевого трафика.

Стеки протоколов.

2 часа.

Маршрутизируемые и немаршрутизируемые протоколы. Основные стеки протоколов. Понятие дейтаграммы и сеанса. Наиболее часто используемые протоколы, основные методы доступа. Основные виды и способы адресации.

Протоколы сетевого и транспортного уровней. 2 часа.

Протоколы сетевого и транспортного уровней различных стеков протоколов (TCP/IP, IPX/SPX, NETBIOS, AppleTalk). Дейтаграммные протоколы: IPX, IP, ARP, RARP, DDP и т.д. Сеансовые протоколы: SPX, TCP, и т.д. Взаимодействие различных стеков протоколов. ODI, NDIS. Исследование настроек стеков сетевых протоколов IPX/SPX, TCP/IP, NETBIOS. Общие принципы компьютерного моделирования.

Сетевые операционные системы.

2 часа.

Сетевые операционные системы: классификации, функции. Основные виды сетевых операционных систем, их сравнительная характеристика.

Программные компоненты. Сетевые службы, сетевая печать, разделение ресурсов, их совместное использование и права доступа. Администрирование.

Протоколы маршрутизации. 2 часа.

Понятие маршрутизации. Виды маршрутизации (простая, адаптивная). Способы разделения сетей. Протоколы маршрутизации RIP, IGRP, OSPF.

2.1.11 Электронная почта.

2 часа.

Сетевое программное обеспечение. Сетевые приложения. Функции и стандарты. Передача файлов, планирование, WWW технология. Модель «клиент-сервер» и ее преимущества.

2.1.12 Компьютерные системы видеоконференцсвязи 2 часа.

Услуги Интернета.WWW, FTP, E-MAIL, NEWS, Gopher, Telnet. Поиск ресурсов. Основные поисковые серверы. Подключение к интернет.

2.1.13 Принципы защиты информации.

2 часа.

Защита информации в вычислительных сетях. Планирование защиты сети. Виды рисков. Уровни защиты. Разработка политики защиты. Физическая защита оборудования. Аутентификация. Модели защиты. Дополнительные средства защиты Краткий обзор и классификация методов кодирования. Создание псевдослучайной последовательности. Системы с открытым ключом.

2.1.14 Интернет; новые информационные технологии. 2 часа.

Системы глобальной связи GSM и др., спутниковой навигации (Glonass, Navstar), передачи данных GPRS. Интеграция систем и сетей передачи данных и этих систем. Место и роль радиоэлектронных систем передачи цифровой информации в этих системах и требования,

предъявляемые к ним. Проектирование информационных технологий на базе локальных и глобальных вычислительных сетей.

- 2.2 Практические и семинарские занятия, их содержание и объем в часах: Не предусмотрено
- 2.3 Лабораторные занятия, их наименование и объем в часах.

N	Наименование лабораторных работ	Число
		часов
2.3.1	Изучение основных командных утилит сетевой	4
	операционной системы	
2.3.2	Изучение основ работы в глобальных сетях	4
2.3.3	Изучение команд сетевых служб	4
	операционной системы	
2.3.4	Исследование протокола ТСР/ІР	4

2.4 Курсовой проект (работа), его характеристика. Не предусмотрено

2.5 Самостоятельная работа

Виды самостоятельной работы (с указанием объема часов и форм контроля)

№ π/π	Наименование работы	Кол-во часов	Форма контроля (примеры)
1.	Проработка лекционного материала (~0,5 час на 2 часа лекции)	12	Опрос (текущий контроль)
2.	Подготовка к лабораторным занятиям, (~0,5-1 час на 2 час. занятие).	6	Опрос (ответы на контрольные вопросы, проверка на лабораторных занятиях)
3.	Изучение тем (вопросов) теоретической части курса,	20	Проверка конспектов самостоятельного

изучения тем (Опрос,
ответы на контрольные
вопросы)
38

3. Учебно-методические материалы по дисциплине

3.1 Основная литература:

Аппаратные средства и сети ЭВМ. Учебное пособие/ Илюхин Б.В. Смыслова Е.В.Томск: Томский государственный университет систем управления и радиоэлектроники, 2011. - 166 с., ил. (http://edu.tusur.ru/training/publications/1714)

Вычислительные устройства и системы. Учебное пособие/ Илюхин Б.В. Томск: Томский государственный университет систем управления и радиоэлектроники, 2010. - 181 с., ил. (http://edu.tusur.ru/training/publications/1713)

3.2 Дополнительная литература:

Сети ЭВМ и телекоммуникации: учебное пособие / И. В. Бойченко; Федеральное агентство по образованию, Томский государственный университет систем управления и радиоэлектроники, Кафедра автоматизированных систем управления. - Томск: ТУСУР, 2007. - 240 с.: ил. (47 экз).

Компьютерные сети. Принципы, технологии, протоколы : Учебное пособие для вузов / В. Г. Олифер, Н. А. Олифер. - 3-е изд. - СПб. : Питер, 2007. - 957[3] с. : ил. (40 экз.).

Вычислительные **систем**ы, **сети** и телекоммуникации : учебник для вузов / А. П. Пятибратов, Л. П. Гудыно, А. А. Кириченко ; ред. А. П. Пятибратов. - 4-е изд., перераб. и доп. - М. : Финансы и статистика, 2006. - 558[2] с. : ил. – (90 экз.)

Указания по изучению тем, вынесенных на самостоятельную проработку по дисциплине «Вычислительная техника и информационные технологии».

На самостоятельную проработку (за рамки лекционного курса), вынесены следующие темы:

Внешние устройства ЭВМ и ПЭВМ.

Протоколы управления сетями передачи данных. Протокол управления SNMP.

Протоколы обмена сообщениями. Протокол электронной почты SMTP, протокол обмена UUCP, почтовый протокол POP3.

протокол Интернет для работы с сообщениями ІМАР.

Протокол TLS версия 1.0, идентификатор доступа к сети, программирование для сетей (новые идеи, принципы и возможности), сетевые драйверы.

Материалы и информация по изучению данных тем содержится в http://book.itep.ru/1/intro1.htm, а также в литературе, рекомендованной для изучения в качестве основной и дополнительной.

Указания по подготовке к выполнению лабораторных работ и практических занятий по дисциплине «Вычислительная техника и информационные технологии».

Заблаговременно ДО лабораторных занятий студенту необходимо подготовиться выполнению в часы самостоятельной К их Необходимо изучить общие сведения, теоретический материал, относящийся к теме лабораторной работы и порядок ее выполнения. При подготовке к работы необходимо лабораторной выполнению воспользоваться рекомендуемой литературой.

В процессе выполнения задания лабораторной работы следует фиксировать выполняемые действия и промежуточные результаты.

После выполнения лабораторной работы студент должен оформить отчет. Образец оформления отчета содержится в Приложении 1. Отчет по лабораторной работе должен содержать следующие сведения:

- 1. Тема и цель работы
- 2. Условия индивидуального задания
- 3. Теоретические сведения
- 4. Порядок выполнения работы
- 5. Результаты работы
- 6. Анализ полученных результатов, выводы.

Отчет по лабораторной работе должен быть выполнен в соответствии с образовательным стандартом вуза. Электронная версия отчета должна быть подготовлена в формате MS Word.

Защита отчета по лабораторной работе производится в форме собеседования.

Студент должен уметь:

пояснить полученные результаты, пояснить ход выполнения работы,

отвечать на контрольные вопросы.

Объем и содержание дисциплины «Информационные технологии».

1 Объем дисциплины:

Курс четвертый

Семестр 8

Учебный план набора 2008 года и последующих лет

Распределение учебного времени

Лекции 48 часов

Лабораторные занятия 16 часов

Всего аудиторных занятий 64 часа

Самостоятельная работа 16 часов

Общая трудоемкость 80 часов

Экзамен 8 семестр

3ET 3

- 1.1 Цели преподавания дисциплины ознакомление с основными концепциями, направлениями, моделями и принципами построения информационных сетей, современными тенденциями их развития, а также с требованиями, накладываемыми телекоммуникационными сетями на радиоэлектронные системы и устройства, входящие в их состав. Получение теоретических знаний и практических навыков в области построения и эксплуатации современных систем связи и телекоммуникаций, средств передачи информации в глобальных и локальных сетях ЭВМ, их основных принципов работы, овладение навыками поиска и получения информации.
- **1.2** Задачи изучения дисциплины. В результате изучения дисциплины студент должен:

Знать факторы окружающей среды, влияющие на работу ЭВМ;

Знать состав, основы построения, т.е. архитектуру ЭВМ и принципы работы основных компонентов ЭВМ;

Знать характеристики, параметры конфигурации персонального компьютера, виды программного обеспечения;

Знать требования, предъявляемые к организации локальной вычислительной сети ЭВМ, и уметь правильно организовать сеть;

Знать принципы передачи информации в вычислительных сетях;

Знать основные стандарты вычислительных сетей.

Закрепить и углубить знания основ архитектуры построения информационных сетей (модель ISO/OSI, логическая структура информационных сетей с маршрутизацией, селекцией информации) и их компонентов;

Знать место и роль радиоэлектронных устройств и систем, входящих в информационные сети, и основные требования, предъявляемые к ним; знать правила и обладать навыками работы в сети;

знать виды основных служб (сервисов) и особенности их организации и использования;

1.3. Перечень дисциплин и разделов (тем), необходимых студентам для изучения данной дисциплины.

Дисциплина «Информационные технологии» (ОПД.Ф.1) является общепрофессиональной и ее изучение опирается на знания, полученные при освоении естественнонаучных: «Теория информации» (ЕН.Ф.05), «Информатика» (ЕН.Ф.07) «Математика» (ЕН.Ф.01). Изучение данной дисциплины необходимо для овладения другими общепрофессиональными дисциплинами, в частности «Моделирование систем» (ОПД.Ф.10), «Теория электрической связи» (ОПД.Ф.14).

- 2. СОДЕРЖАНИЕ ДИСЦИПЛИНЫ
- 2.1 Тематика лекций.

N	T E M A	Число
11	LMA	ТИСЛО
		часов
		лекций
1	Классификация видов информационных	2
	технологий	
2	Реализация информационных технологий в	2
	различных сферах деятельности	
3	Модели информационных процессов	4
4	Системный подход к организации	2
	информационных процессов	
5	Базы данных.	16
6	Удаленный доступ к базам данных	4
	Параллельная и распределенная обработка	
	информации в вычислительных системах.	
7	Банки данных. Выбор ЭВМ для их реализации	2
8	Базы знаний.	2
9	Защищенные информационные технологии	10
	Локальные и глобальные сети для реализации	
	информационных технологий	
10	Проектирование информационных технологий	2
	на базе локальных и глобальных	
	вычислительных сетей	
11	Современные виды информационного	2
	обслуживания	

2.1.1 Общие сведения о информационных технологиях
 2 часа.
 Информационные технологии. Общие принципы построения. Классификация видов информационных технологий. Рекомендуемая литература.

2.1.2 Реализация информационных технологий в различных сферах деятельности - 2 часа.

Определение и задачи информационных технологий. Информационные технологии как система. Этапы развития информационных технологий. Классификация информационных технологий. Современное состояние и тенденции развития информационных технологий. Необходимость объединения компьютеров в сети, понятие информационной сети. Назначение и концепция построения сети.

2.1.3 Модели информационных процессов -

4 часа.

Теория информации как научная дисциплина. Получение, передача, хранение и обработка информации. Кодирование информации, двоичное кодирование. Количество информации и единицы измерения. Способы кодирования числовой, текстовой, графической информации. Роль информации в промышленности и научных исследованиях.

2.1.4 Системный подход к организации информационных процессов. 2 часа. Процессы передачи информации как система. Общие принципы системного подхода. Виды систем. Правила построения систем.

2.1.5 Базы данных.

16 часов.

Из них:

Понятие о базах и банках данных.

4 часа

Основные модели данных. Понятие о СУБД. Приложение БД. Словарь данных (каталог). Администратор БД. Основные функции СУБД. Уровни архитектуры БД: внешний, концептуальный, внутренний. Независимость от данных.

Понятие о ER-моделировании.

2 часа

Основные элементы: тип сущности, сущность, атрибуты, тип связи, связь. Изображение элементов ER-модели на диаграмме. Кортежи (записи). Атрибуты, домены атрибутов. Виды атрибутов. Ключевые атрибуты, виды ключей. Связи меду сущностями. Арность связи. Рекурсивные (унарные)

связи. Показатель кардинальности связи (1:1, 1:N, M:N). Степень участия в связи (полная, частичная). Атрибуты связи.

Понятие о EER-моделировании.

2 часа

Суперклассы и подклассы. Наследование атрибутов. Специализация, генерализация. Степень участия (полная, частичная), фактор пересечения, разделённости подклассов (overlap, disjoint). Категоризация. Изображение на EER-диаграмме. Формирование таблиц для подклассов/суперклассов.

Реляционная алгебра, язык SQL.

4 часа

Понятие отношения (таблицы) как объекта реляционной алгебры. Формирование отношений-таблиц на основе концептуальной (ER) схемы. Элементы реляционной алгебры. Реляционные операции, агрегатные функции. Элементы языка SQL. Группы операций DML и DDL. Реализация реляционных операций и агрегатных функций в языке SQL. Операции обновления (вставка, модификация, удаление записи). Операции группы DDL: создание таблицы, изменение структуры таблицы, удаление таблицы.

Нормализация отношений-таблиц.

4 часа

Возможные аномалии обновления. Функциональные зависимости между атрибутами. Полные, частичные зависимости. Транзитивные зависимости. Первая, вторая, третья нормальные формы. Нормальная форма Бойса-Кодда. Этапы проектирования БД.

2.1.6 Удаленный доступ к базам данных Параллельная и распределенная обработка информации в вычислительных системах. 4 часа.

Параллельная и распределенная обработка информации в вычислительных системах. Виды распределенной обработки информации и их характеристика. Архитектура вычислительных сетей. Локальные и глобальные вычислительные сети. Электронная почта и обмен файлами, удаленный доступ к процедурам решения задач, коллективное решение научных и производственных задач. Основные понятия сетевой обработки информации.

2.1.7 Банки данных. Выбор ЭВМ для их реализации

2 часа

Факторы, влияющие на надежность функционирования вычислительной техники. Их классификация. Электромагнитная совместимость. Системы питания ЭВМ. Группы рисков потери информации. Методы защиты информации, хранимой в вычислительной технике, от исчезновения.

2.1.8 Базы знаний

2 часа

Программное обеспечение для реализации баз знаний. Понятие об оптимизации запросов. Факторы, влияющие на стоимость исполнения запроса. Этапы обработки запроса и их краткая характеристика. План исполнения запроса. Статистические показатели БД. Влияние порядка исполнения реляционных операций на стоимость. Правила эквивалентности для реляционных операций.

2.1.9 Защищенные информационные технологии Локальные и глобальные сети для реализации информационных технологий
 Из них:

Краткий обзор сетевых операционных систем 2 часа

Основные виды сетевых операционных систем, их сравнительная характеристика. Программные компоненты. Сетевые службы, сетевая печать, разделение ресурсов, их совместное использование и права доступа. Администрирование.

Локальные и глобальные сети для реализации информационных технологий 4 часа.

Необходимость Однородные И неоднородные сети. стандартизации. Международные организации области стандартизации. Общая В характеристика, необходимость и область применения эталонной модели взаимосвязи открытых систем. Сетевая модель ISO/OSI. Многоуровневая архитектура. Взаимодействие уровней модели OSI. Передача данных по сети. Функции и структура пакета. Назначение протоколов

Сетевое программное обеспечение.

2 часа.

Сетевые приложения. Электронная почта. Функции и стандарты. Передача файлов, планирование, WWW технология. Компьютерные системы видеоконференцсвязи. Модель «клиент-сервер» и ее преимущества.

Защита информации в сетях

2 часа.

Планирование защиты сети. Виды рисков. Уровни защиты. Разработка политики защиты. Физическая защита оборудования. Аутентификация. Модели защиты. Дополнительные средства защиты Краткий обзор и классификация методов кодирования. Создание псевдослучайной последовательности. Системы с открытым ключом.

- 2.1.10 Проектирование информационных технологий на базе локальных и глобальных вычислительных сетей 2 часа Системы глобальной связи GSM и др., спутниковой навигации (Glonass, Navstar), передачи данных GPRS. Интеграция систем и сетей передачи данных и этих систем. Место и роль радиоэлектронных систем передачи цифровой информации в этих системах и требования, предъявляемые к ним. Проектирование информационных технологий на базе локальных и глобальных вычислительных сетей.
- 2.1.11 Современные виды информационного обслуживания 2 часа Системы массового обслуживания. Элементы теории графов. Время Использование ожидания. Понятие очереди. Виды очередей. математического моделирования реализации ДЛЯ систем массового обслуживания. Понятие качество облуживания, метрика.
- 2.2 Практические и семинарские занятия, их содержание и объем в часах:
 Не предусмотрено
- 2.3 Лабораторные занятия, их наименование и объем в часах.

N	Наименование лабораторных работ	Число
		часов
2.3.1	Изучение основных командных утилит сетевой	4
	операционной системы	
2.3.2	Изучение основ работы в глобальных сетях	4
2.3.3	Изучение команд сетевых служб	4
	операционной системы	
2.3.4	Исследование протокола ТСР/ІР	4

2.4 Курсовой проект (работа), его характеристика. Не предусмотрено

2.5 Самостоятельная работа

Виды самостоятельной работы (с указанием объема часов и форм контроля)

№ п/п	Наименование работы	Кол-во часов	Форма контроля <i>(примеры)</i>
1.	Проработка лекционного материала (~0,5 час на 2 часа лекции)	12	Опрос (текущий контроль)
2.	Подготовка к лабораторным занятиям, (~0,5-1 час на 2 час. занятие).	6	Опрос (ответы на контрольные вопросы, проверка на лабораторных занятиях)
	Всего часов самостоятельной работы	16	

3. Учебно-методические материалы по дисциплине

3.1 Основная литература:

1. Информационные технологии. Учебное пособие/ Илюхин Б.В. Томск: Томский государственный университет систем управления и

- радиоэлектроники, 2011. 197 с., ил. (http://edu.tusur.ru/training/publications/1793).
- 2. Вычислительные устройства и системы. Учебное пособие/ Илюхин Б.В. Томск: Томский государственный университет систем управления и радиоэлектроники, 2010. 181 с., ил. (http://edu.tusur.ru/training/publications/1713).

3.2 Дополнительная литература:

- 1. Сети ЭВМ и телекоммуникации: учебное пособие / И. В. Бойченко; Федеральное агентство по образованию, Томский государственный университет систем управления и радиоэлектроники, Кафедра автоматизированных систем управления. Томск: ТУСУР, 2007. 240 с.: ил., (47 экз).
- 2. Вычислительные системы, сети и телекоммуникации: Учебное пособие для вузов / В. Л. Бройдо. 2-е изд. СПб. : Питер, 2008. 702[2] с. : ил. (Учебник для вузов). (30 экз).
- 3. Вычислительные системы, сети и телекоммуникации : учебник для вузов / А. П. Пятибратов, Л. П. Гудыно, А. А. Кириченко ; ред. А. П. Пятибратов. 4-е изд., перераб. и доп. М. : Финансы и статистика, 2006. 558[2] с. : ил. (90 экз).

Указания по подготовке к выполнению лабораторных работ и практических занятий по дисциплине «Информационные технологии».

Заблаговременно ДО лабораторных занятий студенту необходимо подготовиться выполнению в часы самостоятельной К их Необходимо изучить общие сведения, теоретический материал, относящийся к теме лабораторной работы и порядок ее выполнения. При подготовке к работы необходимо лабораторной выполнению воспользоваться рекомендуемой литературой.

В процессе выполнения задания лабораторной работы следует фиксировать выполняемые действия и промежуточные результаты.

После выполнения лабораторной работы студент должен оформить отчет. Образец оформления отчета содержится в Приложении 1. Отчет по лабораторной работе должен содержать следующие сведения:

- 7. Тема и цель работы
- 8. Условия индивидуального задания
- 9. Теоретические сведения
- 10.Порядок выполнения работы
- 11. Результаты работы
- 12. Анализ полученных результатов, выводы.

Отчет по лабораторной работе должен быть выполнен в соответствии с образовательным стандартом вуза. Электронная версия отчета должна быть подготовлена в формате MS Word.

Защита отчета по лабораторной работе производится в форме собеседования.

Студент должен уметь:

пояснить полученные результаты,

пояснить ход выполнения работы,

отвечать на контрольные вопросы.

ПРИЛОЖЕНИЕ 1

Шаблон отчета:

МИНИСТЕРСТВО НАУКИ И ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

ТОМСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ СИСТЕМ УПРАВЛЕНИЯ И РАДИОЭЛЕКТРОНИКИ КАФЕДРА РАДИОТЕХНИЧЕСКИХ СИСТЕМ

отчет по выполнению ЛАБОРАТОРНОГО занятия №	
ПО ДИСЦИПЛИНЕ «	»

Выполнил:	Ф.И.О.
Студент	
№	
Принял	
Ф.И.О.	
преподавателя,	
уч.степень, уч.звание	

Томск 2012

В	соответствии	c	проделанной		работой			
			, мною	были	подго	говлены		
следующие действия и получены результаты:								
Выводы:								
Студент гр	уппы №	О.И.Ф)	.)					