МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ

ТОМСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ СИСТЕМ УПРАВЛЕНИЯ И РАДИОЭЛЕКТРОНИКИ

Л.И. Магазинников, А.Л. Магазинников

Дифференциальное исчисление

Учебное пособие

УДК ББК

Рецензенты:

кафедра высшей математики Сибирского гос. мед. ун-та, зав. каф. д-р физ.-мат. наук, проф. В.В. Свищенко.

Канд. физ.-мат. наук, проф. каф. высшей математики Томского политехнического ун-та Е.Т. Ивлев.

Магазинников Л.И., Магазинников А.Л.

Дифференциальное исчисление. Учебное пособие. — Томск
: Томский государственный университет систем управления и радиоэлектроники,
 $2007.\,-191$ с.

ISBN

Пособие содержит теоретический материал по введению в математический анализ и дифференциальному исчислению функций одной и многих переменных, а также методические указания, в которых рассмотрены примеры решения типовых задач. Теоретические положения дополнены двумя контрольными работами. Предусмотрен автоматизированный самоконтроль при наличии устройства "Символ".

Для студентов заочной и дистанционной форм обучения.

Учебное издание

Магазинников Леонид Иосифович, Магазинников Антон Леонидович Дифференциальное исчисление

Редактор Технический редактор Корректор

ISBN

©Л.И. Магазинников, А.Л. Магазинников, 2007

©Томск. гос. ун-т систем управления и радиоэлектроники, 2007

Оглавление

Введение

1.		дение в математический анализ	7
		Множества. Операции над множествами	7
	1.2.	Числовые множества. Границы числовых	
		множеств	8
	1.3.		10
		1.3.1. Понятие функции	10
		1.3.2. Частные классы отображений	10
		1.3.3. Основные элементарные функции	12
		1.3.4. Суперпозиция (композиция)	
		отображений. Сложная и обратная функции	13
	1.4.	Системы окрестностей в R и $R_n \dots \dots \dots$	14
	1.5.	Предел функции	16
		1.5.1. Понятие предела функции	16
		1.5.2. Последовательность и её предел	20
		1.5.3. Определение предела функции на языке	
		последовательностей	22
		1.5.4. Односторонние пределы	23
		1.5.5. Теоремы о пределах	23
	1.6.	Непрерывность функции в точке	25
		1.6.1. Основные понятия и теоремы	25
		1.6.2. Классификация точек разрыва	28
	1.7.	Замечательные пределы	29
		1.7.1. Первый замечательный предел	29
		1.7.2. Второй замечательный предел и его следствия.	30
	1.8.	Бесконечно малые и бесконечно большие	
		функции	33
		1.8.1. Теоремы о свойствах бесконечно малых функций	33
		1.8.2. Сравнение бесконечно малых и бесконечно	
		больших функций	34
		1.8.3. Свойства эквивалентных бесконечно малых	
		функций	35
2.	Дис	рференциальное исчисление	38
		Дифференцируемые отображения	38
		Строение производной матрицы	39
	2.3.		42
	2.4.		46
	2.5.	Производные высших порядков	48

	2.6.	Функции, заданные параметрически,
		и их дифференцирование
	2.7.	Функции, заданные неявно,
		и их дифференцирование
	2.8.	Геометрический и механический смысл
		производной
	2.9.	Уравнение касательной
		к кривой. Уравнения касательной
		плоскости и нормали к поверхности 54
		Дифференциал функции
		Дифференциалы высших порядков 58
		Формула Тейлора
	2.13.	Основные теоремы дифференциального
		исчисления
		Правило Лопиталя
	2.15.	Условия постоянства функции. Условия
		монотонности функции
	2.16.	Экстремумы
		2.16.1.Необходимые условия экстремума 67
		2.16.2.Достаточные условия экстремума
		2.16.3.Отыскание наибольшего и наименьшего
		значений функции
	2.17.	Выпуклость вверх и вниз графика
		функции
		Асимптоты графика функции
	2.19.	Общая схема исследования функции
		и построения графиков
3.	Mer	одические указания
٠.		трольная работа № 3)
		Понятие функции. Область определения
		функции (задачи 1 и 2)
	3.2.	
	3.3.	Предел функции (задачи 4, а, б)
	3.4.	
	3.5.	
	3.6.	
		(задачи 4, д, е)
	3.7.	Сравнение бесконечно малых и бесконечно
		больших функций (задача 5)
	3.8.	Непрерывность функции. Классификация
		разрывов функции (залачи 6. а. б)

Оглавление 5

4.	Методические указания		
		нтрольная работа № 4)	118
	4.1.	Техника дифференцирования функций	
		одного аргумента (задачи 1, а, б, в)	118
	4.2.	Производная высших порядков функций	
		одного аргумента (задачи 2 и 3)	125
	4.3.	Частные производные (задачи 4 и 5)	
		Производная по направлению (задача 6)	
		Производные параметрически заданных	
		функций (задача 7)	136
	4.6.	Дифференцирование функций, заданных	
	-	неявно (задача 8)	137
	4.7.	Геометрический и механический смысл	
		производной (задача 9)	141
	4.8.	Дифференциал (задачи 10 и 11)	
		Экстремумы. Наибольшие и наименьшие	
	1.0.	значения функции (задачи 12 и 13)	156
	4 10	Исследование функций и построение	100
	4.10.	графиков (задача 14)	165
		трафиков (задата тт)	100
5.	Контрольные работы		
	5.1.	О самоконтроле при выполнении работ	166
		Контрольная работа № 3	
		Контрольная работа M 4	
	Лит	ература	189
	Пре	едметный указатель	190

Введение

Отличительной особенностью предлагаемого пособия является тесное объединение идей линейной алгебры и дифференциального исчисления, что позволяет добиться большой общности изложения, приняв за исходное отображение $R_n \to R_m$, рассматривая отображения $R \to R$, $R_n \to R$ и $R \to R_n$ как частные случаи. Пособие состоит из пяти глав. В первой главе рассматриваются основные понятия математического анализа — предел и непрерывность — после предварительного определения системы окрестностей точек на прямой, плоскости и в пространстве.

Во второй главе излагается дифференциальное исчисление для функций одной и многих переменных. В качестве первоначальных приняты понятия дифференцируемого отображения, дифференциала и производной матрицы. Изучается строение производной матрицы в наиболее важных для приложения случаях. В эту же главу включён традиционный материал исследования функций.

Третья и четвёртая главы содержат методические указания, в которых подробно разобраны способы решения типовых задач по математическому анализу с целью оказать помощь студентам в выполнении контрольных работ, приведённых в пятой главе. Предусмотрена возможность автоматизированного самоконтроля при наличии устройства "Символ" или его компьютерного аналога, разработанных в Томском государственном университете систем управления и радиоэлектроники.

Пособие предназначено для студентов технических и экономических специальностей заочной и дистанционной форм обучения.

1. Введение в математический анализ

1.1. Множества. Операции над множествами

Для сокращения записей мы будем часто использовать следующие символы (кванторы).

Квантор общности \forall . Запись $\forall x$ означает: всякий (любой) x.

Квантор существования \exists . Запись $\exists x$ означает: существует x.

Понятие множества является первичным и определению не подлежит, его лишь можно пояснить примерами. Множество считается заданным, если имеется правило, позволяющее установить относительно любого объекта, является ли он элементом этого множества или нет. Множество можно задать либо перечислением всех его элементов, либо указанием свойства, которым обладают элементы этого множества и не обладают объекты, не являющиеся его элементами. Множества будем обозначать большими буквами латинского алфавита: A, B, C, D, X, Y и т.д. Множество, не содержащее ни одного элемента, называется пустым и обозначается \oslash . Запись $a \in A$ означает, что элемент a принадлежит множеству A. Если a не принадлежит A, то пишут $a \notin A$ или $x \in A$.

Говорят, что множество A входит в B (пишут $A\subset B$), если для $\forall a\in A\to a\in B.$ В этом случае A называют подмножеством B.

Множества A и B называются равными (A=B), если $A\subset B$ и $B\subset A.$

Над множествами определим следующие операции.

Объединением или суммой множеств A и B (обозначают $A \cup B$, A+B) называют множество C, состоящее из всех элементов множеств A и B, не содержащее никаких других элементов.

Очевидно, $A \cup A = A$. Операция объединения коммутативна: $A \cup B = B \cup A$ и ассоциативна $(A \cup B) \cup C = A \cup (B \cup C)$.

Пересечением множеств A и B называется множество C (обозначают $C=A\cap B$), состоящее лишь из всех тех элементов, которые принадлежат одновременно и A и B. Операция пересечения множеств обладает свойствами: $A\cap B=B\cap A, \ (A\cap B)\cap C=A\cap (B\cap C), \ A\cap A=A.$ Операции пересечения и объединения множеств связаны распределительным законом $A\cap (B\cup C)=(A\cap B)\cup (A\cap C).$

Pазностью множеств A и B называется множество $A \setminus B$, содержащее все те и только те элементы множества A, которые не являются элементами множества B.

Прямым (декартовым) произведением множеств A и B называется множество $A \times B$, элементами которого являются всевозможные пары (a,b), где $a \in A, b \in B$. Аналогично можно определить прямое произведение любого числа множеств.

Пример. Пусть
$$A=\{1,3,4,8\},\ B=\{1,2,4,5,7,8,9\}.$$
 Тогда $C=A+B=\{1,2,3,4,5,7,8,9\},\ A\cap B=\{1,4,8\},\ A\setminus B=\{3\}.$

1.2. Числовые множества. Границы числовых множеств

Вещественным (действительным) числом называется любая десятичная дробь. Множество всех вещественных чисел будем обозначать R. Подмножествами R являются:

N — множество натуральных чисел 1, 2, ...;

Z — множество всех целых чисел (это десятичные дроби, все десятичные знаки которых равны нулю);

Q — множество рациональных чисел — множество всех периодических десятичных дробей. Любое рациональное число r можно представить как отношение двух целых чисел $r=\frac{m}{n},\,n\neq 0.$

На множестве вещественных чисел введены операции сложения, умножения и деления. Свойства этих операций изучены в средней школе.

Геометрически вещественные числа можно изображать точками числовой оси. Доказано, что между множеством всех вещественных чисел и всеми точками числовой оси можно установить взаимно однозначное соответствие при выбранной единице масштаба.

Напомним понятие модуля вещественного числа. Модуль вещественного числа a обозначается |a| и определяется равенством

$$|a| = \begin{cases} a, & \text{если } a > 0, \\ 0, & \text{если } a = 0, \\ -a, & \text{если } a < 0. \end{cases}$$

Модуль числа обладает следующими свойствами: $|a| \ge a$, $|a+b| \le |a| + |b|$, |ab| = |a||b|, $\left|\frac{a}{b}\right| = \frac{|a|}{|b|}$, $b \ne 0$, $|x-y| \ge ||x| - |y||$.

Наиболее часто мы будем использовать следующие типы числовых множеств.

Множество X чисел, удовлетворяющих неравенству $a \le x \le b$, называется отрезком (сегментом), обозначается [a,b], a < x < b — интервалом $(a,b), a \le x < b$ — полуинтервалом [a,b).

Число $c \in R$ называется верхней границей множества $A \subset R$, если для всякого $a \in A$ выполнено неравенство $a \le c$. Множество, имеющее верхнюю границу, называется ограниченным сверху.

Аналогично определяется нижняя граница и ограниченность снизу.

Наименьшая из всех верхних границ множества A называется точной верхней границей и обозначается $\sup A$ (супремум A). Наи-

большая из нижних границ множества A называется точной нижней границей и обозначается $\inf A$ (инфимум A).

Отметим без доказательства следующее свойство множества вещественных чисел, называемое свойством непрерывности.

Каждое ограниченное сверху (снизу) множество действительных чисел имеет точную верхнюю (нижнюю) границу.

Кроме того, множество вещественных чисел обладает свойством плотности, которое выражается в том, что между любыми двумя неравными вещественными числами расположены другие вещественные числа, как рациональные, так и нерациональные.

Для обозначения неограниченных числовых множеств множество вещественных чисел дополним символами $+\infty, -\infty, \infty$.

Если множество A не ограничено сверху, то полагают $\sup A = +\infty$, если оно не ограничено снизу, то полагают $\inf A = -\infty$. Символ ∞ используют для обозначения неограничености множества A и сверху и снизу. С символами $+\infty$, $-\infty$, ∞ нельзя обращаться, как с числами. Операции над ними определены соотношениями: $\alpha + (\pm \infty) = \pm \infty$, $\forall \alpha \in R$; $\alpha - (\pm \infty) = \mp \infty$, $\forall \alpha \in R$; $(+\infty) + (+\infty) = +\infty$, $(-\infty) + (-\infty) = -\infty$, $\alpha \cdot (\pm \infty) = \pm \infty$, если $\alpha > 0$; $\alpha \cdot (\pm \infty) = \mp \infty$, если $\alpha < 0$; $(-\infty) \cdot (+\infty) = (+\infty) \cdot (-\infty) = -\infty$; $(-\infty) \cdot (-\infty) = (+\infty) \cdot (+\infty) = +\infty$; $\infty \cdot \infty = \infty$. $\frac{\alpha}{\infty} = \frac{\alpha}{\pm \infty} = 0$, $\forall \alpha \in R$. Операции $(+\infty) - (+\infty)$, $(+\infty) + (-\infty)$, $(+\infty) + (-\infty)$, $(+\infty)$ не определены.

 \hat{C} помощью символов $\pm\infty$ обозначают неограниченные промежутки:

$$\begin{aligned} [a, +\infty) &= \{x \in R, x \geq a\}; \\ (a, +\infty) &= \{x \in R, x > a\}; \\ (-\infty, a] &= \{x \in R, x \leq a\}; \\ (-\infty, a) &= \{x \in R, x < a\}; \\ (-\infty, +\infty) &= R. \end{aligned}$$

Заметим, что неравенство |x|>b определяет множество X, являющееся объединением двух множеств $(-\infty,-b)\cup(b,+\infty)$.

Кроме числовых множеств, мы будем в нашем курсе также использовать множества векторов (точек) из евклидова пространства R_n , в котором выбрана некоторая декартова система координат. Элементы из R_n можно задать в виде упорядоченной совокупности n вещественных чисел $(\alpha^1,\alpha^2,\ldots,\alpha^n)$ и трактовать их либо как точки x с координатами $(\alpha^1,\alpha^2,\ldots,\alpha^n)$, либо как векторы $\mathbf{x}=(\alpha^1,\alpha^2,\ldots,\alpha^n)$, причём $|\mathbf{x}|=\sqrt{(\alpha^1)^2+(\alpha^2)^2+\ldots+(\alpha^n)^2}$. Например, множество $\{(x,y)\subset R_2,x^2+y^2< r^2\}$ определяет все точки, лежащие внутри окружности $x^2+y^2=r^2$, а множество $\{(x,y,z)\subset R_3,x^2+y^2+z^2< r^2\}$ есть множество точек шара с центром в начале координат радиусом r, множество $\{(x,y,z)\subset R_3,x^2+y^2+z^2< r^2\}$

 $a < x < b, \ c < y < d, \ e < z < f\}$ определяет параллелени
пед с гранями, параллельными координатным плоскостям.

1.3. Функции или отображения

1.3.1. Понятие функции

Пусть даны два множества X и Y. Говорят, что задано отображение множества X во множество Y, или, что то же самое, задана функция на X со значениями в Y, если всякому $x \in X$ по некоторому правилу f поставлен в соответствие элемент $y \in Y$. Пишут $f: X \to Y, x \xrightarrow{f} y$. Элемент y = f(x) называют образом элемента x при отображении f. Элемент x также называют аргументом функции f(x). Множество X называется областью определения функции f, множество $\tilde{Y} \subseteq Y$ всех тех y, которым соответствует хотя бы одно значение x, называется областью значений функции f.

Замечание. Если в определении функции $f: X \to Y$ каждому $x \in X$ ставится в соответствие единственный элемент $y \in Y$, то такая функция называется однозначной или однолистной. В математике изучают и многозначные отображения, когда каждому элементу x может соответствовать несколько значений y (и даже бесконечно много). Мы в нашем курсе будем изучать лишь однозначные функции.

1.3.2. Частные классы отображений

В зависимости от строения множеств X и Y можно рассмотреть четыре класса отображений.

Класс 1. $X\subseteq R, Y\subseteq R: y=f(x)$ — числовая функция одного числового аргумента, например, $y=x^2, y=\sqrt{x}, y=\sin x$ и др. Такие функции изучались в средней школе.

Класс 2. $X \subseteq R_n, Y \subseteq R$: если $\mathbf{x} = (x_1, x_2, \dots, x_n)$, то $y = f(x_1, x_2, \dots, x_n)$ — числовая функция векторного аргумента, или числовая функция многих скалярных переменных, например, $y = x_1^2 + \sin(x_1 + x_2)$.

Класс 3. $X \subseteq R, Y \subseteq R_n - f: X \subseteq R \to Y \subseteq R_n$ — векторфункция одной переменной, ставящая в соответствие каждому вещественному числу x из X вектор y = f(x) из R_n , т.е. каждая координата вектора f(x) есть скалярная функция скалярного аргумента x:

$$f(x) = [f_1(x), f_2(x), \dots, f_n(x)]^T.$$

Функции класса 3 широко используются в физике для описания движения материальной точки M, координаты которой являют-

ся функциями времени (x(t),y(t),z(t)), что можно записать в виде $\mathbf{r}(t)=x(t)\mathbf{i}+y(t)\mathbf{j}+z(t)\mathbf{k}.$

Класс 4. X $\subset R_n, Y \subset R_m$ — вектор-функция векторного аргумента. Полагая $x=(\xi_1,\xi_2,\ldots,\xi_n),\ y=(\eta_1,\eta_2,\ldots,\eta_m),$ получим

$$f(x) = f(\xi_1, \xi_2, \dots, \xi_n) = \begin{bmatrix} \eta_1 \\ \eta_2 \\ \vdots \\ \eta_n \end{bmatrix} = \begin{bmatrix} f_1(\xi_1, \xi_2, \dots, \xi_n) \\ f_2(\xi_1, \xi_2, \dots, \xi_n) \\ \vdots \\ f_m(\xi_1, \xi_2, \dots, \xi_n) \end{bmatrix}.$$

Функции f_1, f_2, \ldots, f_n в классах 3 и 4 называются координатными функциями. Как видим, изучение функций класса 3 и 4 сводится к изучению скалярных функций одного или многих переменных.

Для полного описания функции y=f(x) надо указать область определения X, область значений Y и правило f, по которому каждому значению $x\in X$ ставится в соответствие значение $y\in Y$. В случае, если правило f задано формулой, то множества X и Y явно не указывают, понимая под ними множества, определяемые соответствующей формулой. При этом иногда множество X называют естественной областью определения, а Y — естественной областью значений.

Пример 1. Укажите естественные области определения и значений функций: $f_1(x) = \sqrt{1-x^2}, f_2(x) = \sqrt{1-x^2-y^2}.$

Решение. Для функции $f_1(x)$ областью определения X является отрезок [-1,1], а для функции $f_2(x)$ — круг $x^2+y^2\leq 1$. Областью значений Y и для $f_1(x)$ и для $f_2(x)$ является отрезок [0,1].

Множество точек (x,f(x)) называется графиком функции f(x). В случае скалярной функции одного скалярного аргумента графиком функции f(x) является некоторая кривая, а в случае скалярной функции двух скалярных аргументов графиком f(x) является некоторая поверхность. Например, графиком функции $z=\sqrt{1-x^2-y^2}$ является верхняя часть сферы с центром в начале координат радиусом r=1.

Наглядную характеристику функций двух переменных f(x,y) можно дать с помощью линий уровня, которые описываются уравнениями $f(x,y)={
m const.}$

Охарактеризуем некоторые подклассы функций класса 1, т.е. скалярных функций скалярного аргумента: $f: X \subseteq R \to Y \subseteq R$.

Определение 1. Функция f называется монотонно возрастающей или неубывающей на множестве X, если для любых двух точек x_1 и x_2 из X, удовлетворяющих неравенству $x_1 < x_2$, выполняется неравенство $f(x_1) \leq f(x_2)$, и называется строго монотонно возрастающей, если из условия $x_1 < x_2$ следует $f(x_1) < f(x_2)$.

Аналогично определяются монотонно убывающие и строго монотонно убывающие функции.

Например, функция $y=x^2$ на участке $(-\infty,0)$ строго монотонно убывает, а на участке $(0,+\infty)$ строго монотонно возрастает.

Определение 2. Функция f называется ограниченной, если множество её значений $\tilde{Y} = \{f(x), x \in X\}$ ограничено. Если при этом $\sup\{f(x)\} \in \{f(x)\}$, то его называют наибольшим значением функции f(x) на множестве X. Если $\inf\{f(x)\} \subset \{f(x)\}$, то его называют наименьшим значением функции f на множестве X.

Определение 3. Функция f называется чётной, если область её определения X симметрична относительно точки x=0 и для всех $x \in X$ выполняется соотношение f(-x)=f(x), и называется нечётной, если f(-x)=-f(x).

График чётной функции симметричен относительно оси OY, а нечётной — относительно начала координат. Например, функция $f(x) = \sin x$ нечётна, а функция $f(x) = \cos x$ чётна.

Определение 4. Функция $f: X \subseteq R \to Y \subseteq R$ называется периодической, если существует число T>0 такое, что $\forall x \in X$ выполняется $x+T \in X$ и f(x+T)=f(x). Наименьшее положительное T, удовлетворяющее этому условию, называется наименьшим периодом функции (или просто периодом).

1.3.3. Основные элементарные функции

Среди отображений $f:x\subseteq R\to Y\subseteq R$ выделяют класс основных элементарных функций, к которым относятся следующие:

- 1) степенная функция x^{λ} , где $\lambda \in R$. В общем случае её область определения $X=(0,+\infty)$. При некоторых значениях λ область определения может быть шире, например, при $\lambda=n\in N$ функция x^n определена на всей числовой оси;
- 2) показательная функция a^x , a>0, $a\neq 1$. Её область определения вся числовая ось . При a>1 показательная функция строго монотонно возрастает, а при 0< a<1 строго монотонно убывает;
- 3) логарифмическая функция $\log_a x, \ a>0, \ a\neq 1$. Область определения $(0,+\infty)$, область значений вся числовая ось;
- 4) тригонометрические функции $\sin x$, $\cos x$, $\operatorname{tg} x$, $\operatorname{ctg} x$. Функции $\sin x$ и $\cos x$ определены на всей числовой оси, область их значений есть отрезок [-1,1]. Функция $\operatorname{tg} x$ определена при $x \neq \frac{\pi}{2} + k\pi$, а $\operatorname{ctg} x$ при $x \neq k\pi$, где k любое целое;
- 5) обратные тригонометрические функции $\arcsin x$, $\arccos x$, $\arctan x$, $\arctan x$. Областью определения функций $\arcsin x$ и $\arccos x$ является отрезок [-1,1], областью значений первой является отрезок

 $\left[-\frac{\pi}{2},\frac{\pi}{2}\right],$ а второй — $[0,\pi]$. Функции $\arctan x$ и $\arctan x$ определены на всей числовой оси. Областью значений первой является промежуток $\left(-\frac{\pi}{2},\frac{\pi}{2}\right)$, а второй — $(0,\pi)$;

6) часто используются функции $\sh x = \frac{e^x - e^{-x}}{2}$ — гиперболический синус, $\ch x = \frac{e^x + e^{-x}}{2}$ — гиперболический косинус, где e — некоторое число, с которым мы познакомимся позже. Применяются также гиперболический тангенс $\th x = \frac{\sh x}{\ch x}$ и гиперболический котангенс $\coth x = \frac{\ch x}{\sh x}$.

Предлагается самостоятельно построить графики основных элементарных функций, используя учебники для средней школы.

1.3.4. Суперпозиция (композиция) отображений. Сложная и обратная функции

Определение. Пусть

 $\Phi: X\subseteq R_n \to Y\subseteq R_m, \ \Psi: Y_1\subseteq R_m \to Z\subseteq R_k$ и $Y\subseteq Y_1.$ Отображение $f: X\subseteq R_n \to Z\subseteq R_k$ называется суперпозицией (композицией) отображений Ψ и Φ и обозначается $f=\Psi\circ\Phi,$ если для всякого x из X имеет место соотношение $f(x)=(\Psi\circ\Phi)x=\Psi(\Phi(x)).$

$$x \in R_n$$
 Φ $y \in R_m$ Ψ $z \in R_k$ $f = \Psi \circ \Phi$

Переменную $y = \Phi(x)$ часто называют промежуточной переменной или промежуточным аргументом.

Рассматривают суперпозиции трёх, четырёх и более отображений. Например, функция $y=\cos^3(\lg x)$ является суперпозицией функций $y=u^3,\ u=\cos v,\ v=\lg x.$

Пусть задана функция $y=f(x), (x,y\in R)$ с областью определения X и областью изменения $\{f(x)\}=Y$, т.е. задано отображение X на Y. Возьмём каждое $y\in Y$ и сопоставим ему то (те) значение x, для которого y=f(x). Таким образом, мы построили отображение x=g(y) множества Y на X, называемое обратным по отношению к исходному. Обозначают $g(y)=f^{-1}(y)$. Функция $x=f^{-1}(y)$ называется обратной по отношению к функции y=f(x). Области определения и изменения прямой и обратной функций меняются ролями. Обратная функция может оказаться и многозначной.

Если у обратной функции независимую переменную обозначать, как обычно, через x, то получим, что графики взаимно обратных функций y=f(x) и $y=f^{-1}(x)$ в случае $f:X\subset R\to Y\subset R$ симметричны относительно биссектрисы 1-го и 3-го координатных углов.

Для функции $y=x^3$ на [2,4] обратной будет $y=\sqrt[3]{x}$ на [8,64]. Отображения

$$10^x: (-\infty, +\infty) \to (0, +\infty)$$
 и $\lg x: (0, +\infty) \to (-\infty, +\infty)$ являются обратными.

1.4. Системы окрестностей в R и R_n

Предельный переход — одна из важнейших операций математического анализа. Для изучения предела необходимо ввести понятие окрестности точки. К его изучению мы и приступаем.

Onpedenenue. Окрестностью точки x_0 из R назовём любой интервал (a,b), содержащий эту точку.

Окрестность точки x_0 будем обозначать $U(x_0)$, т.е.

$$U(x_0) = (a, b) = \{x \in R, a < x < b\};$$

$$U_{\delta_1,\delta_2}(x_0) = (x_0 - \delta_1, x_0 + \delta_2) = \{x \in R, x_0 - \delta_1 < x < x_0 + \delta_2\}.$$

Рассмотрим частные виды окрестностей: $U_{\delta}(x_0)$ — симметричная окрестность точки x_0 радиусом $\delta > 0$,

$$U_{\delta}(x_0) = (x_0 - \delta, x_0 + \delta) = \{x \in R, x_0 - \delta < x < x_0 + \delta\} = \{x \in R, |x - x_0| < \delta\};$$

 $\dot{U}(x_0)$ — проколотая окрестность — окрестность $U(x_0)$, из которой удалена точка $x_0, \dot{U}(x_0) = \{x \in R, a < x < b, x \neq x_0\};$

 $\dot{U}_{\delta}(x_0)$ — симметричная проколотая окрестность:

$$\dot{U}_{\delta}(x_0) = \{ x \in R, 0 < |x - x_0| < \delta \}.$$

Подчеркнём, что в любой окрестности содержится симметричная окрестность.

Oпределение. Окрестностью бесконечно удалённой точки ∞ в R (обозначается $U(\infty)$) называется внешность некоторого отрезка, т.е. множество точек, не принадлежащих этому отрезку. Симметричной окрестностью точки ∞ называется внешность симметричного относительно нуля отрезка.

Множество

$$U_{M_1,M_2}(\infty) = \{ (x \in R; x < M_1) \cup (x \in R; x > M_2) \}$$

является окрестностью точки $\infty,$ а множество

$$U_M(\infty) = \{(x \in R; |x| > M)\}$$

симметричной окрестностью этой точки.

В пространстве R_n можно рассмотреть окрестности точки $x^0(\xi_1^0,\xi_2^0,\dots,\xi_n^0)$ двух видов: шары и параллелепипеды. В случае симметричных окрестностей они задаются соотношениями:

$$U_{\delta}(x^0) = \{x \in R_n : |x - x_0| < \delta\}$$
 или
$$U_{\delta}(x^0) = \left\{x = (\xi_1, \xi_2, \dots, \xi_n) \in R_n : \sum_{i=1}^n (\xi_i - \xi_i^0)^2 < \delta^2\right\},$$

$$\Pi_{\delta}(x^0) = \{x = (\xi_1, \xi_2, \dots, \xi_n) \in R_n : |\xi_i - \xi_i^0| < \delta, \ i = \overline{1, n}\}.$$

При n=2 шаровая окрестность совпадает с открытым кругом, а параллелепипедальная — с открытым прямоугольником.

Окрестностью бесконечно удалённой точки в R_n (обозначается $U(\infty)$) называется внешность шара с центром в начале координат либо внешность n-мерного куба, симметричного относительно начала координат.

Записью $U_M(\infty)$ обозначают множество $\{\forall x,x\in R_n: |x|>M\}$ и называют M-окрестностью точки $\infty.$

Определение. Точка M_0 называется предельной точкой (точкой сгущения) множества X, если в любой её окрестности есть хотя бы одна отличная от M_0 точка множества X.

Onpedenehue. Точка $M_0 \in X$ называется внутренней точкой множества X, если она входит в множество X вместе с некоторой окрестностью.

Определение. Точка M_0 называется граничной точкой множества X, если в любой её окрестности есть точки, как принадлежащие X, так и не принадлежащие ему. Совокупность всех граничных точек множества X называется его границей. Множество X называется замкнутым, если оно содержит все свои граничные точки, и открытым, если граничные точки ему не принадлежат.

Например, множество [1,2] замкнуто, а (1,2) открыто.

Для введения понятия односторонних пределов используются односторонние окрестности. Они определяются следующим образом:

1) правосторонняя окрестность точки x_0 есть множество

$$U_{\delta}^{+}(x_0) = \{ x \in R : x_0 < x < x_0 + \delta \};$$

2) левосторонняя окрестность точки x_0 есть множество $U_{\delta}^{-}(x_0) = \{x \in R : x_0 - \delta < x < x_0\};$

3) в качестве окрестностей точек
$$+\infty$$
 и $-\infty$ принимаются множества $U_M(+\infty) = \{x \in R : x > M\}; U_M(-\infty) = \{x \in R : x < M\}.$

Мы построили системы окрестностей в R и R_n . На множестве X из R (R_n) систему окрестностей введём как сужение систем окрестностей в R или R_n на множество X, т.е. под окрестностью предельной точки x_0 множества $X \subset R$ (или $X \subset R_n$) будем понимать $U(x_0) \cap X$, где $U(x_0)$ — окрестность точки x_0 в R или R_n .

1.5. Предел функции

1.5.1. Понятие предела функции

Приступаем к изучению предела — одного из основных понятий математического анализа.

Будем считать, что $X\subseteq R_n,\ Y\subseteq R_m$ и $f:X\to Y$, а точку $x_0=(\xi_0^1,\xi_0^2,\dots,\xi_0^n)$ полагать предельной для множества X. Предполагается, что в R_n и R_m , а потому и на множествах X и Y, построены какие-либо системы окрестностей.

Определение 1. Точка $A \in R_m$ называется пределом функции f при x, стремящемся к x_0 $(x \to x_0)$, если для всякой окрестности U(A) точки A существует проколотая окрестность $\dot{V}(x_0)$ точки x_0 такая, что для всякой точки x, принадлежащей $\dot{V}(x_0)$, имеет место включение $f(x) \in U(A)$. Пишут $A = \lim_{x \to x_0} f(x)$.

Используя логические символы, определение предела можно записать следующим образом:

$$A = \lim_{x \to x_0} f(x) : \forall U(A) \ \exists \dot{V}(x_0) : \left(\left(\forall x, x \in \dot{V}(x_0) \right) \to f(x) \in U(A) \right).$$

Часто вместо произвольных окрестностей в определении 1 используют симметричные окрестности $U_{\epsilon}(A)$ при любых $\epsilon>0$ и $\dot{V}_{\delta}(x_0)$ точек $A\in R_m$ и $x_0\in R_n$.

Определение 2. Точка $A \in R_m$ называется пределом функции f при $x \to x_0$, если для всякой симметричной окрестности $U_{\epsilon}(A)$ точки $A \in R_m$, существует проколотая симметричная окрестность $\dot{V}_{\delta}(x_0)$ точки x_0 такая, что $\forall x \in \dot{V}_{\delta}(x_0)$ имеет место $f(x) \in U_{\epsilon}(A)$ или $\{f(\dot{V}_{\delta}(x_0))\} \subseteq U_{\epsilon}(A)\}$.

Совершенно аналогично определяется понятие предела при $x \to \infty$. Для этого в определениях 1 и 2 вместо $\dot{V}(x_0)$ и $\dot{V}_{\delta}(x_0)$ нужно взять окрестности $V(\infty)$ и $V_{\delta}(\infty)$.

Иногда удобнее задавать окрестности точек в виде неравенств.

Определение 3. Точка A называется пределом функции f(x) при $x \to x_0$ ($A = \lim_{x \to x_0} f(x)$), если для всякого $\epsilon > 0$ существует $\delta > 0$ такое, что из выполнения неравенства $0 < |x - x_0| < \delta$ следует справедливость неравенства $|f(x) - A| < \epsilon$. ($\lim_{x \to x_0} f(x) = A : \forall \epsilon > 0 \; \exists \delta > 0 : (\forall x : 0 < |x - x_0| < \delta) \to |f(x) - A| < \epsilon$).

Определение 4. Говорят, что предел функции f при $x \to x_0$ равен бесконечности $(\lim_{x\to x_0} f(x) = \infty)$, если для всякого M>0 существует $\delta>0$ такое, что для всех x, удовлетворяющих неравенству $0<|x-x_0|<\delta$, выполняется неравенство |f(x)|>M

 $(\lim_{x \to x_0} f(x) = \infty : \forall M > 0 \ \exists \ \delta > 0 : \forall x \in \dot{V}_{\delta}(x_0) \to |f(x)| > M).$

Теорема 1. Если функция имеет предел, то этот предел единственный.

Доказательство. Предположим, что при $x \to x_0$ существуют два предела $\lim_{x \to x_0} f(x) = A_1. \tag{1.1}$

$$\lim_{x \to x_0} f(x) = A_1, \tag{1.1}$$

$$\lim_{x \to x_0} f(x) = A_2, \tag{1.2}$$

причём $A_1 \neq A_2$. По определению (1.1) означает

$$\forall U(A_1) \ \exists \dot{V}_1(x_0) : \left(\left(\forall x : x \in \dot{V}_1(x_0) \right) \to f(x) \in U(A_1) \right). \tag{1.3}$$

Аналогично (1.2) означает

$$\forall U(A_2) \ \exists \dot{V}_2(x_0) : \left(\left(\forall x : x \in \dot{V}_2(x_0) \right) \to f(x) \in U(A_2) \right). \tag{1.4}$$

Так как $A_1 \neq A_2$, то можно взять окрестности $U(A_1)$ и $U(A_2)$ непересекающимися. Тогда $\forall x: x \in \dot{V}_1(x_0) \cap \dot{V}_2(x_0)$ должно иметь место (1.3) и (1.4) одновременно, т.е. $f(x) \in U(A_1)$ и $f(x) \in U(A_2)$, что невозможно.

Пример 1. Докажем, что $\lim_{x\to 0}\sin x=0$. Пусть $\epsilon>0$ произвольно. Позже будет доказано, что $|\sin x|<|x|$. Поэтому, чтобы выполнялось неравенство $|\sin x-0|<\epsilon$, достаточно взять $|x|<\epsilon$, т.е. выбрать $\delta\leq\epsilon$. Для любой окрестности $U_{\epsilon}(0)$ мы нашли окрестность $V_{\delta}(0)$ такую, что, если $x\in V_{\delta}(0)$, то $f(x)\in U_{\epsilon}(0)$. По определению $2\lim_{t\to 0}\sin x=0$.

 Π ример 2. Покажем, что $\lim_{x\to 0}\cos x=1$. Имеем:

$$|1 - \cos x| = 2\sin^2 \frac{x}{2} \le \frac{x^2}{2}.$$

Неравенство $|1 - \cos x| < \epsilon$ будет заведомо выполнено для всех x, удовлетворяющих неравенству $\left|\frac{x^2}{2}\right| < \epsilon$, т.е. для $|x| < \sqrt{2\epsilon}$. Сле-

довательно, $\forall \epsilon>0 \ \exists \delta\leq \sqrt{2\epsilon}$ так, что при $|x-0|<\delta$ выполнено $|1-\cos x|<\epsilon$. Это и означает, что $\lim_{x\to 0}\cos x=1$.

 $\Pi p u m e p$ 3. Покажем, что $\lim_{x \to 0} \log_a(1+x) = 0$. Для определённости будем считать, что a>1. Из неравенства $|\log_a(1+x)-0|<\epsilon$ тогда следует $a^{-\epsilon}<1+x< a^\epsilon$ или $a^{-\epsilon}-1< x< a^\epsilon-1$. Последнее неравенство определяет окрестность V(0), так как $a^{-\epsilon}-1<0$, а $a^\epsilon-1>0$. Таким образом, для всякого x из $(a^{-\epsilon}-1,a^\epsilon-1)$ справедливо неравенство $|\log_a(1+x)|<\epsilon$, означающее, что $\lim_{x\to 0}\log_a(1+x)=0$.

Пример 4. Доказать самостоятельно, что $\lim_{x\to 0} a^x = 1$.

Пример 5. Исходя из определения предела, доказать, что:

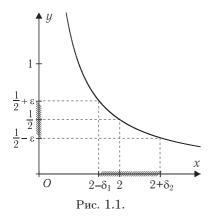
a)
$$\lim_{x \to 2} \frac{1}{x} = \frac{1}{2};$$

6)
$$\lim_{x \to +\infty} \frac{1}{x} = \lim_{x \to -\infty} \frac{1}{x} = \lim_{x \to -\infty} \frac{1}{x} = 0$$
; B) $\lim_{x \to 0+0} \frac{1}{x} = +\infty$;

$$\Gamma$$
) $\lim_{x\to 0-0} \frac{1}{x} = -\infty$; д) $\lim_{x\to 1} \frac{1}{x} \neq 2$.

Peшение: а) докажем, что $\lim_{x\to 2}\frac{1}{x}=\frac{1}{2}$. По определению предела мы должны доказать, что для любой заданной окрестности $U_{\varepsilon}\left(\frac{1}{2}\right)$, $\varepsilon>0$ (рис. 1.1) существует окрестность $\dot{V}(2)$ такая, что если $x\in\dot{V}(2)$, то $\left|\frac{1}{x}-\frac{1}{2}\right|<\varepsilon$, т.е. $\frac{1}{x}\in U_{\varepsilon}\left(\frac{1}{2}\right)$, что равносильно сле-

дующим двум неравенствам:



$$-arepsilon<rac{1}{x}-rac{1}{2}<+arepsilon$$
 или $rac{1}{2}-arepsilon<rac{1}{x}<rac{1}{2}+arepsilon.$

Так как при достаточно малом ε все части этого неравенства положительны, то 2

$$\dfrac{2}{1+2arepsilon} < x < \dfrac{2}{1-2arepsilon}.$$
 Очевидно, $\dfrac{2}{1+2arepsilon} < 2, \, \dfrac{2}{1-2arepsilon} > 2,$

следовательно, множество

$$\left(\frac{2}{1+2\varepsilon}, \frac{2}{1-2\varepsilon}\right)$$

является окрестностью точки $x_0=2$ (несимметричной). Суще-

ствование требуемой окрестности $\dot{V}(2)$ доказано. Можно для наглядности эту окрестность записать в виде $\left(2-\frac{4\varepsilon}{1+2\varepsilon},2+\frac{4\varepsilon}{1-2\varepsilon}\right)$ и считать $\dot{V}(2)=\dot{V}_{\delta_1,\delta_2}(2),$ где $\delta_1=\frac{4\varepsilon}{1+2\varepsilon},$ $\delta_2=\frac{4\varepsilon}{1-2\varepsilon};$

б) докажем, что $\lim_{x\to +\infty}\frac{1}{x}=0$. По определению мы должны доказать, что для любой $U_{\varepsilon}(0)$ окрестности точки y=0 существует окрестность $V(+\infty)$ элемента $+\infty$ такая, что если $x\in V(+\infty)$, то

 $\left|\frac{1}{x}-0\right|<\varepsilon$ или $\left|\frac{1}{x}\right|<\varepsilon$. Так как $x\to+\infty$, то можно считать, что x>0, поэтому знак модуля можно опустить и записать $\frac{1}{x}<\varepsilon$ или $x>\frac{1}{\varepsilon}=M$. Множество x>M есть $V_M(+\infty)$, согласно определению окрестности элемента $+\infty$. Существование окрестности $V(+\infty)$, удовлетворяющей соответствующим условиям, доказано. Тем самым доказано, что $\lim_{x\to+\infty}\frac{1}{x}=0$.

Доказательство равенств $\lim_{x\to-\infty}\frac{1}{x}=0$ и $\lim_{x\to\infty}\frac{1}{x}=0$ предоставляем читателю. Подчеркнём, что равенство $\lim_{x\to\infty}\frac{1}{x}=0$ равносильно двум равенствам: $\lim_{x\to-\infty}\frac{1}{x}=0$ и $\lim_{x\to+\infty}\frac{1}{x}=0$;

в) докажем равенство $\lim_{x\to 0+0}\frac{1}{x}=+\infty. \quad \text{Нужно} \quad \text{дока-}$ зать, что для любой окрестности $U_M(+\infty)$ (рис. 1.2) существует правая полуокрестность $V_\delta^+(0)$ ($0< x<\delta$) такая, что если $x\in V_\delta^+(0)$, то $\frac{1}{x}\in U_M(+\infty)$. Последнее означает, что $\frac{1}{x}>M$. Так как $x>0,\ M>0$, то $0< x<\frac{1}{M}$. Если положить $\delta=\frac{1}{M}$, то требуемая окрестность $V_\delta^+(0)$ найдена

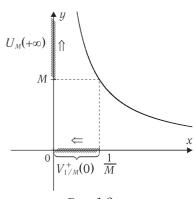


Рис. 1.2.

и равенство $\lim_{x\to 0+0}\frac{1}{x}=0$ доказано. Аналогично можно доказать, что $\lim_{x\to 0-0}\frac{1}{x}=-\infty$ (предлагаем проделать это самостоятельно);

г) докажем, что $\lim_{x\to 1}\frac{1}{x}\neq 2$. Предположим противное, т.е. что $\lim_{x\to 1}\frac{1}{x}$ равен двум. Это означало бы: для любой окрестности $U_{\varepsilon}(2)$ существует окрестность $\dot{V}(1)$ такая, что если $x\in \dot{V}(1)$, то $\frac{1}{x}\in U_{\varepsilon}(2)$,

т.е. $\left|\frac{1}{x}-2\right|<arepsilon$, или $2-arepsilon<\frac{1}{x}<arepsilon+2$. Так как все части неравенства можно считать положительными, то $\frac{1}{2+\varepsilon} < x < \frac{1}{2-\varepsilon}$. Только для этих значений x выполняется $\left|\frac{1}{x}-2\right| < \varepsilon$. Но точка x=1 в найденную окрестность $\left(\frac{1}{2+\varepsilon},\frac{1}{2-\varepsilon}\right)$ при малом ε не входит, т.е. данное множество не является окрестностью точки 1. Таким образом, требуемая окрестность $\dot{V}(1)$ не существует, а потому $\lim_{x\to 1}\frac{1}{x}$ не может равняться двум.

1.5.2. Последовательность и её предел

Последовательностью называется функция натурального аргумента $y(n) = y_n$. Если y_n — числа, то последовательность называется числовой. Числа y_1, y_2, \ldots называют членами последовательности. Если $y_n \in R_k$, то имеем векторную последовательность. Задание векторной последовательности $y_n \in R_k$ равносильно заданию k числовых последовательностей, так как $y_n = \{y_n^1, y_n^2, \dots, y_n^k\}$. Числовые последовательности $\{y_n^i\},\ i=1,2,\ldots,k$ называют координатными последовательностями.

Примеры последовательностей.

 $1, \frac{1}{2}, \frac{1}{3}, \dots, \frac{1}{n}, \dots$ Здесь $y_n = \frac{1}{n}$ — общий член последовательности.

Последовательность $0, 1, 0, 1, \dots$ можно задать формулами

$$y_n = \begin{cases} 1 & \text{при чётном } n, \\ 0 & \text{при нечётном } n \end{cases}$$
 $y_n = \frac{1 + (-1)^n}{2}.$

Кратко последовательность $y_1, y_2, \dots, y_n, \dots$ будем записывать $\{y_n\}$.

Сформулируем определение предела последовательности. Поскольку множество N натуральных чисел имеет единственную предельную точку $+\infty$, то для функции y(n) имеет смысл рассматривать только случай $n \to +\infty$. Обычно при этом знак "+" опускают.

Определение 1. Вектор (точка) $A \in R_k$ называется пределом векторной последовательности $\{y_n\}$, если для любой окрестности $U_{\epsilon}(A)$ существует окрестность $V_N(+\infty)$, зависящая от выбора окрестности $U_{\epsilon}(A)$, такая, что для всех $n \in V_N(+\infty)$ выполняется включение $y_n \in U_{\epsilon}(A)$.

Заметим, что условие $n \in V_N(+\infty)$ означает, что n > N.

Для числовых последовательностей определение 1 легко переформулировать на языке неравенств.

Определение 2. Число A называют пределом числовой последовательности $\{y_n\}$, если для всякого $\epsilon>0$ существует номер $N=N(\epsilon)$, такой, что для всех n>N выполнено неравенство $|y_n-A|<\epsilon$.

Обозначают $\lim_{n\to\infty} y_n = A$ и говорят, что последовательность $\{y_n\}$ сходится к A.

 $\mathit{Пример}\ 1.\ \lim_{n o\infty} rac{n}{n+1} = 1,\ \mathrm{так}\ \mathrm{как}\ \left|1-rac{n}{n+1}
ight| = rac{1}{n+1} < \epsilon$ при всех $n>rac{1}{\epsilon}-1$ для $orall \epsilon>0.$

Пример 2. Последовательность $0,1,0,1,\dots$ предела не имеет, так как при $\epsilon<\frac{1}{4}$ нет точки, в ϵ -окрестности которой находились бы точки 0 и 1 одновременно.

 $\mathit{Пример}\ 3.\ \Pi$ усть $y_n=\left(rac{n+4}{n+1},rac{2n+6}{n+1}
ight)\in R_2.\ \Pi$ окажем, что $\lim_{n o\infty}y_n=(1,2)\in R_2.$ Действительно,

$$|y_n-A|=\sqrt{\left(\frac{n+4}{n+1}-1\right)^2+\left(\frac{2n+6}{n+1}-2\right)^2}=\frac{5}{n+1}<\epsilon$$
 при $n>\frac{5}{-}-1.$

Теорема 1. Для того чтобы последовательность

$$\{y_n\} = \{y_n^1, y_n^2, \dots, y_n^k\}$$

точек (векторов) пространства R_k сходилась к точке (вектору) $A=(A^1,A^2,\ldots,A^k)$, необходимо и достаточно, чтобы каждая координатная последовательность $\{y_n^i\}$ сходилась и при этом $\lim_{n\to\infty}y_n^i=A^i,\ i=1,2,\ldots,k.$

 \mathcal{A} оказательство. Пусть $\lim_{n\to\infty}y_n=A$. Это значит, что

$$\forall \epsilon > 0 \ \exists N : \left((\forall n : n > N) \to |y_n - A| = \sqrt{\sum_{i=1}^k (A^i - y_n^i)^2} < \epsilon \right).$$

Но последнее неравенство возможно лишь тогда, когда $|A^i-y_n^i|<\epsilon$ при $\forall n>N,$ т.е. $\lim_{n\to\infty}y_n^i=A^i.$

Обратно, пусть $\lim_{n\to\infty} y_n^i = A^i$, т.е.

$$\forall \epsilon > 0 \ \exists N_i : (\forall n : n > N_i) \to |y_n^i - A^i| = \frac{\epsilon}{\sqrt{k}}, \ (i = 1, 2, \dots, k).$$

Из чисел N_1, N_2, \ldots, N_k выберем наибольшее и обозначим его

через N. Тогда при n>N неравенства $|y_n^i-A^i|<\frac{\epsilon}{\sqrt{k}}$ будут выполняться при всех значениях i одновременно. Поэтому при n>N получим $|y_n-A|=\sqrt{\sum_{i=1}^k (A^i-y_n^i)^2}<\epsilon$, следовательно, $\lim_{n\to\infty}y_n=A$. Теорема доказана.

Теорема 2. Всякая монотонно возрастающая (убывающая) и ограниченная сверху (снизу) числовая последовательность имеет предел.

Доказательство. Пусть последовательность $\{y_n\}$ монотонно возрастает и ограничена сверху. Тогда по свойству непрерывности множества вещественных чисел множество $\{y_n\}$ имеет конечную точную верхнюю границу A. Если $\epsilon>0$ произвольно, то найдётся член последовательности y_N такой, что $y_N>A-\epsilon$. Если это было бы не так, то число A не было бы точной верхней границей множества $\{y_n\}$. Так как последовательность $\{y_n\}$ монотонно возрастает, то при всех n>N будем иметь $A-\epsilon< y_n< A< A+\epsilon$. Следовательно, $\lim_{n\to\infty}y_n$ существует и равен A.

Teopeма 3. Если даны три числовых последовательности $u_n, v_n, w_n,$ удовлетворяющие условию $u_n \leq w_n \leq v_n$ и $\lim_{n \to \infty} u_n = \lim_{n \to \infty} v_n = A,$ то и $\lim_{n \to \infty} w_n = A$.

1.5.3. Определение предела функции на языке последовательностей

Основываясь на понятии предела последовательностей, можно сформулировать определение предела функции на языке последовательностей (определение Гейне), в отличие от определения на языке окрестностей (определение Коши), данного ранее.

Определение 7. Говорят, что $A = \lim_{x \to x_0} f(x)$, если для всякой последовательности точек $\{x_n\}$ $(x_n \neq x_0)$ из области определения функции, сходящейся к x_0 $(\lim_{n \to \infty} x_n = x_0)$, последовательность $\{f(x_n)\}$ значений функции имеет пределом точку A.

Можно доказать, что определения предела по Коши и Гейне эквивалентны.

 $\Pi p u m e p \ 1$. Докажем, что $\lim_{x \to +\infty} \sin x$ не существует. Выберем две последовательности $x_n = n\pi$ и $y_n = \frac{\pi}{2} + 2n\pi$, $\lim_{n \to \infty} x_n = \lim_{n \to \infty} y_n = +\infty$, но $\lim_{n \to \infty} \sin n\pi = 0 \neq \lim_{n \to \infty} \sin \left(\frac{\pi}{2} + 2n\pi\right) = 1$. Таким образом, по определению Гейне предел $\lim_{x \to +\infty} \sin x$ не существует.

1.5.4. Односторонние пределы

Пусть $f:X\subseteq R\to Y\subseteq R$ — функция одного переменного. В этом случае можно рассматривать односторонние пределы, используя односторонние окрестности.

Определение 1. Точка A называется пределом функции f при x, стремящемся к x_0 слева (обозначают $A = \lim_{x \to x_0 - 0} f(x)$), если для всякой окрестности U(A) точки A существует левосторонняя окрестность $V^-(x_0)$ точки x_0 такая, что для всех $x \in V^-(x_0)$ справедливо включение $f(x) \in U(A)$.

Аналогично определяется предел справа и обозначается

$$A = \lim_{x \to x_0 + 0} f(x).$$

Определение 2. Точка A называется пределом функции f при $x \to +\infty$ $(A = \lim_{x \to +\infty} f(x))$, если для всякого $\epsilon > 0$ существует N такое, что при всех x > N выполняется неравенство $|f(x) - A| < \epsilon$.

Определение предела при $x \to -\infty$ предлагается сформулировать самостоятельно.

Между пределами и односторонними пределами существует связь, выражаемая теоремой.

Teopema 1. Если существует $\lim_{x \to x_0} f(x) = A$, то существуют $\lim_{x \to x_0 - 0} f(x)$, $\lim_{x \to x_0 + 0} f(x)$, также равные A, и наоборот, если существуют $\lim_{x \to x_0 - 0} f(x)$ и $\lim_{x \to x_0 + 0} f(x)$, оба равные A, то существует и $\lim_{x \to x_0} f(x) = A$.

 $\mathit{Пример}\ 1.$ Непосредственно из определения функции f(x)= = $\arctan x$ следует, что $\lim_{x\to 0+0} \arctan \frac{1}{x}=\frac{\pi}{2}, \lim_{x\to 0-0} \arctan \frac{1}{x}=-\frac{\pi}{2}.$

Пример 2. Пусть
$$f(x) = \begin{cases} x-1, & \text{если } x \leq 2, \\ x+1, & \text{если } x > 2. \end{cases}$$
 Тогда

$$\lim_{x \to 2-0} f(x) = \lim_{x \to 2-0} (x-1) = 1, \quad \lim_{x \to 2+0} f(x) = \lim_{x \to 2+0} (x+1) = 3.$$

1.5.5. Теоремы о пределах

Будем рассматривать лишь скалярнозначные функции.

 $\it Teopema~1.$ Всякая функция, имеющая при $x \to x_0$ конечный предел, ограничена в некоторой окрестности точки $x_0.$

Доказательство. Пусть $A=\lim_{x\to x_0}f(x)$ и A — конечно. Тогда для всякого $\epsilon>0$ существует проколотая окрестность $\dot{V}(x_0)$ такая, что

при $\forall x \in \dot{V}(x_0)$, выполняется неравенство $|f(x) - A| < \epsilon$, или, что то же самое, $A - \epsilon < f(x) < A + \epsilon$. Это и означает, что f(x) ограничена в $V(x_0)$.

Теорема 2. Пусть $f, \Phi: X \subseteq R_n \to Y \subseteq R$ и $\lim_{x \to x_0} f(x) = A$, $\lim \Phi(x) = B \ (A$ и B — конечны). Тогда существуют

$$\lim_{x \to x_0} (f(x) + \Phi(x)), \ \lim_{x \to x_0} f(x) \cdot \Phi(x), \ \lim_{x \to x_0} \frac{f(x)}{\Phi(x)}, \ \Phi(x) \neq 0$$
 и при этом а)
$$\lim_{x \to x_0} (f(x) + \Phi(x)) = A + B, \ 6) \lim_{x \to x_0} f(x) \cdot \Phi(x) = A \cdot B,$$

B)
$$\lim_{x \to x_0} \frac{f(x)}{\Phi(x)} = \frac{A}{B}, B \neq 0.$$

Докажем лишь а). Так как $\lim_{x \to x_0} f(x) = A$, то для

$$\forall \epsilon > 0 \ \exists \dot{V}_1(x_0) : \ \left(\forall x : x \in \dot{V}_1(x_0)\right) \to |f(x) - A| < \frac{\epsilon}{2}. \tag{1.5}$$

Так как $\lim_{x\to x_0} \Phi(x) = B$, то

$$\forall \epsilon > 0 \ \exists \dot{V}_2(x_0) : \ \left(\forall x : x \in \dot{V}_2(x_0)\right) \to |\Phi(x) - B| < \frac{\epsilon}{2}. \tag{1.6}$$

Положим $\dot{V}(x_0) = \dot{V}_1(x_0) \cap \dot{V}_2(x_0)$. Тогда для всякого $x \in \dot{V}(x_0)$ одновременно выполнены неравенства (1.5) и (1.6) и, следовательно, неравенство $|f(x) + \Phi(x) - (A+B)| = |f(x) - A + \Phi(x) - B| \le$ $\leq |f(x)-A|+|\Phi(x)-B|<rac{\epsilon}{2}+rac{\epsilon}{2}=\epsilon,$ что и доказывает утверждение а) теоремы.

Теорему 2 можно использовать при практическом вычислении пределов.

 $\Pi puмер 1.$ Найдём $\lim_{n\to\infty} \frac{n^2+3n+2}{1-2n-2n^2}$. Поделив числитель и зна-

менатель на
$$n^2$$
, получим $\lim_{n \to \infty} \frac{1 + 3/n + 2/n^2}{1/n^2 - 2/n - 2} = -\frac{1}{2}$, так как

$$\lim_{n \to \infty} \left(1 + \frac{3}{n} + \frac{2}{n^2} \right) = \lim_{n \to \infty} 1 + \lim_{n \to \infty} \frac{3}{n} + \lim_{n \to \infty} \frac{2}{n^2} = 1$$
 по теореме о

пределе суммы. По этой же теореме
$$\lim_{n\to\infty} \left(\frac{1}{n^2} - \frac{2}{n} - 2\right) = -2 \neq 0.$$

По теореме о пределе частного данный предел равен
$$-\frac{1}{2}$$
.
 $\Pi pumep 2. \lim_{x\to 1} \frac{x^3-1}{x^2-1} = \lim_{x\to 1} \frac{(x-1)(x^2+x+1)}{(x-1)(x+1)} = (\text{при } x\neq 1) = x^2+x+1 = 3$

 $= \lim_{x \to 1} \frac{x^2 + x + 1}{x + 1} = \frac{3}{2}.$

Теорема 3. Пусть $\lim_{x\to x_0} f(x) = A, \lim_{x\to x_0} \Phi(x) = A,$ и в некоторой окрестности точки x_0 выполнено неравенство

$$f(x) \le \Psi(x) \le \Phi(x),\tag{1.7}$$

тогда $\lim_{x \to x_0} \Psi(x)$ существует и равен A.

Доказательство. Из определения предела и неравенства (1.7) следует, что $\forall \epsilon > 0$ существует окрестность $\dot{V}(x_0)$ такая, что для всех точек этой окрестности выполняется неравенство

 $A-\epsilon < f(x) \leq \Psi(x) \leq \Phi(x) < A+\epsilon$ или $A-\epsilon < \Psi(x) < A+\epsilon$, что и означает существование $\lim_{x\to x_0} \Psi(x)$ и равенство его A.

Теорема 4. Если в некоторой окрестности точки x_0 выполнено неравенство $f(x) \leq b$ и существует конечный предел $\lim_{x \to x_0} f(x) = A$, то $A \leq b$. Если существует конечный предел $\lim_{x \to x_0} f(x) = A$ и A > b (A < c), то $\exists U_\delta(x_0)$, в которой f(x) > b (f(x) < c).

Доказательство. Из определения предела следует, что

 $\forall \epsilon > 0 \ \exists \dot{V}(x_0)$ такая, что при $\forall x : x \in \dot{V}(x_0)$ выполняется $A - \epsilon < f(x) < A + \epsilon$.

Предположим, что A>b, и положим $\epsilon=A-b>0$. Тогда получим f(x)>b, что противоречит условию первой части теоремы.

Вторую часть теоремы предлагаем доказать самостоятельно.

Teopema~5.~ Если в некоторой окрестности точки $x_0~$ выполнено неравенство

$$f(x) \le \Phi(x) \tag{1.8}$$

и существуют конечные пределы $\lim_{x\to x_0} f(x) = A, \lim_{x\to x_0} \Phi(x) = B,$ то A < B.

Справедливость теоремы 5 следует из теорем 2 и 4.

1.6. Непрерывность функции в точке

1.6.1. Основные понятия и теоремы

Определение 1. Функция f называется непрерывной в точке x_0 , если f определена в этой точке и $\lim_{x \to x_0} f(x) = f(x_0)$. Функция, непрерывная в каждой точке некоторой области, называется непрерывной в этой области.

Вспоминая определение предела функции на языке окрестностей, определение непрерывности можно дать в следующем виде.

Определение 2. Функция f называется непрерывной в точке x_0 , если f определена в этой точке и для всякой окрестности $U(f(x_0))$

точки $f(x_0)$ существует окрестность $V(x_0)$ точки x_0 такая, что для всех $x \in V(x_0)$ имеет место включение $f(x) \in U(f(x_0))$.

Определение 2 можно записать на языке неравенств.

Определение 3. Функция f называется непрерывной в точке x_0 , если она определена в этой точке, и для всякого $\epsilon>0$ существует $\delta>0$ такое, что для всех x, удовлетворяющих неравенству $|x-x_0|<\delta$, выполнено неравенство $|f(x)-f(x_0)|<\epsilon$.

Величину $\Delta x = x - x_0$ называют приращением аргумента, а $\Delta f = f(x) - f(x_0)$ — приращением функции при переходе из точки x_0 в точку x.

Определение 3 можно записать на языке приращений.

Определение 4. Функция f называется непрерывной в точке x_0 , если она определена в этой точке и из условия $\Delta x \to 0$ следует, что $\Delta f \to 0$.

Используя понятие односторонних пределов для $f:X\subset R\to X\subset R$, можно ввести понятия односторонней непрерывности — непрерывности справа и непрерывности слева в точке x_0 . Предлагаем читателю сформулировать эти определения самостоятельно.

 $Teopema\ 1.\ Для$ того чтобы функция f(x) была непрерывна в точке x_0 , необходимо и достаточно, чтобы она была непрерывна слева и справа в этой точке.

Теорема 2. Если функции f и $\Phi: X \subseteq R_n \to Y \subseteq R$ непрерывны в точке x_0 , то функции $f+\Phi, f\cdot\Phi$ и $\frac{f}{\Phi}$ ($\Phi(x_0)\neq 0$) также непрерывны в точке x_0 .

Справедливость теоремы следует из определения непрерывности и теорем о пределе суммы, произведения, частного.

Теорема 3. Для того чтобы функция $f: X \subseteq R_n \to Y \subseteq R_k$ была непрерывна в точке $x_0(\xi_1^0, \xi_2^0, \dots, \xi_n^0)$, необходимо и достаточно, чтобы все её координатные функции были непрерывны в x_0 .

Справедливость теоремы следует из определения непрерывности, определения предела на языке Гейне и теоремы о пределе векторной последовательности.

 Π ример 1. Функция $f(x)=a^x$ непрерывна на всей числовой оси. Пусть x_0 — произвольная точка. Тогда $f(x_0)=a^{x_0}$. Пусть $\epsilon>0$ произвольно и $|a^x-a^{x_0}|<\epsilon$. Тогда $a^{x_0}-\epsilon< a^x< a^{x_0}+\epsilon$, или, что то же самое, $\log_{\sigma}(a^{x_0}-\epsilon)< x<\log_{\sigma}(a^{x_0}+\epsilon)\quad a>1$

$$\log_a(u^{-\epsilon}) < x < \log_a(u^{-\epsilon}) + \epsilon$$

$$\log_a(a^{x_0} + \epsilon) < x < \log_a(a^{x_0} - \epsilon) + 0 < a < 1.$$

Найденные интервалы являются окрестностями точки x_0 . Последнее и означает непрерывность функции a^x в точке x_0 при a>1 и при 0< a<1.

Пример 2. Исследовать на непрерывность функцию

$$f(x,y) = \begin{cases} \frac{xy}{x^2 + y^2}, & \text{если } (x,y) \neq (0,0); \\ 0, & \text{если } (x,y) = (0,0). \end{cases}$$

Проверим непрерывность в начале координат. Пусть y=kx. Тогда при $x\to 0$ и $y\to 0$ $\lim_{x\to 0} f(x,kx)=\lim_{x\to 0} \frac{x^2k}{x^2(1+k^2)}=\frac{k}{1+k^2}$. Видим, что предел зависит от способа приближения к началу координат. По определению Гейне, предел $\lim_{x\to 0,y\to 0} \frac{xy}{x^2+y^2}$ не существует, а потому функция f(x,y) не является непрерывной в точке (0;0).

Teopeма 4. Пусть $f: X \to Y, \ \Phi: Y \to Z$ и пусть функция f непрерывна в точке $x_0, \ \Phi$ непрерывна в точке $y_0 = f(x_0).$ Тогда их суперпозиция (сложная функция) $(\Phi \circ f) = \Phi(f(x))$ непрерывна в точке $x_0.$

Доказательство. Пусть $W(\Phi(y))$ — произвольная окрестность точки $\Phi(y_1) = \Phi(f(x_0))$. По определению непрерывности для неё существует окрестность $U(y_0)$ точки $y_0 = f(x_0)$ такая, что для всех $y \in U(y_0) = U(f(x_0))$ выполнено включение $\Phi(y) \in W(\Phi(y_0))$. Далее, для окрестности $U(y_0) = U(f(x_0))$ существует, в силу непрерывности функции f, окрестность $V(x_0)$ точки x_0 такая, что для всех $x \in V(x_0)$ выполнено включение $f(x) \in U(y_0)$, а следовательно, и включение $\Phi(f(x)) \in W(\Phi(f(x_0)))$, что и означает непрерывность сложной функции.

Из теоремы 4 следует, что $\lim_{x \to x_0} \Phi[f(x)] = \Phi[\lim_{x \to x_0} f(x)].$

Отметим без доказательства некоторые свойства непрерывных функций.

Теорема 5. Все элементарные функции (см. п. 1.3.3) вещественного переменного непрерывны в области определения.

Теорема 6. Пусть скалярная функция f скалярного переменного задана на отрезке [a,b] и $f(a)=A,\ f(b)=B,\ A\neq B.$ Если функция f непрерывна на [a,b], то для всякого числа C, лежащего между A и B, существует точка $c\in [a,b]$ такая, что f(c)=C.

Теорема 6 легко обобщается и для функций $f: X \subseteq R_n \to Y \subset R$.

Teopema 7. Если функция $f:X\subseteq R_n\to Y\subseteq R$ непрерывна в замкнутой области X и в точках $x_1,x_2\in X$ принимает значения $f(x_1)=A,\,f(x_2)=B,\,A\ne B,$ то для всякого C, заключённого между A и B, существует точка $x_3\in X$ такая, что $f(x_3)=C.$

Теорема 8. (Первая теорема Вейерштрасса.) Всякая непрерывная на замкнутом ограниченном в R_n множестве X функция $f:X\subset R_n\to Y\subset R$ ограничена на этом множестве.

Teopema 9. (Вторая теоpema Вейерштрасса.) Всякая непрерывная на замкнутом ограниченном множестве в R_n функция $f:X\subset R_n\to Y\subset R$ принимает на нём наибольшее и наименьшее значения.

Замечание. Для непрерывных функций имеет место соотношение $\lim_{x\to x_0}f(x)=f(\lim_{x\to x_0}x),$ означающее, что в этом случае операции f и предельного перехода перестановочны. Это свойство часто используется при отыскании пределов.

 $\Pi p u m e p \ 3$. Найти $\lim_{x \to 1} \log_a \left(2 - \frac{1}{x^2}\right)$. Так как функция $\log_a x$ непрерывна, то $\lim_{x \to 1} \log_a \left(2 - \frac{1}{x^2}\right) = \log_a \lim_{x \to 1} \left(1 - \frac{1}{x^2}\right) = \log_a 1 = 0$.

1.6.2. Классификация точек разрыва

Определение 1. Точка x_0 называется точкой разрыва функции f(x), если в этой точке функция f(x) не является непрерывной.

Определение 2. Точка x_0 называется изолированной точкой разрыва функции $f: X \to Y$, если существует окрестность точки x_0 , в которой нет других точек разрыва функции f.

В общем случае точки разрыва могут заполнять некоторую поверхность или кривую. Например, у функции $f(x,y)=\frac{1}{x-y}$ точками разрыва являются точки прямой x=y. Мы будем изучать лишь изолированные точки разрыва для $f:X\subset R\to Y\subset R$. Их классификация основывается на нарушении равенства

$$\lim_{x \to x_0 - 0} f(x) = \lim_{x \to x_0 + 0} f(x) = f(x_0), \tag{1.9}$$

а также на изучении случаев, когда один или несколько элементов этого равенства не существуют. Возможны следующие случаи.

- 1. Оба односторонних предела $\lim_{x\to x_0-0} f(x)$ и $\lim_{x\to x_0+0} f(x)$ существуют, конечны и равны между собой, но либо функция не определена в точке x_0 , либо $f(x_0)$ не равна общему значению односторонних пределов, т.е. $\lim_{x\to x_0-0} f(x) = \lim_{x\to x_0+0} f(x) \neq f(x_0)$. Такой разрыв называется устранимым, так как его можно "устранить", доопределив или переопределив функцию f в точке x_0 , положив $\lim_{x\to x_0-0} f(x) = \lim_{x\to x_0+0} f(x) = f(x_0)$.
- 2. Оба односторонних предела существуют, конечны, но не равны между собой. $\lim_{x\to x_0-0} f(x) \neq \lim_{x\to x_0+0} f(x)$. Такой разрыв называют разрывом первого рода или разрывом типа "скачок".

3. Все остальные нарушения соотношения (1.9), т.е. когда один или оба односторонних предела не существуют, один или оба односторонних предела равны бесконечности, относят к разрывам второго рода.

Пример 1. Функция $f(x) = \arctan \frac{1}{x}$ имеет в точке $x_0 = 0$ разрыв первого рода, так как $\lim_{x \to x_0 = 0} \arctan \frac{1}{x} = -\frac{\pi}{2}$, $\lim_{x \to x_0 + 0} \arctan \frac{1}{x} = \frac{\pi}{2}$.

 $\Pi pumep\ 2.$ Функция $f(x)=\sin\frac{1}{x}$ имеет в точке $x_0=0$ разрыв второго рода, так как $\lim_{x\to x_0-0}\sin\frac{1}{x}$ и $\lim_{x\to x_0+0}\sin\frac{1}{x}$ не существуют.

 $\Pi p u m e p \ 3.$ Функция $f(x) = x \sin \frac{1}{x}$ имеет в точке $x_0 = 0$ устранимый разрыв, так как $\lim_{x \to x_0 = 0} x \sin \frac{1}{x} = \lim_{x \to x_0 + 0} x \sin \frac{1}{x} = 0$, что следует из неравенства $-|x| \le x \sin \frac{1}{x} \le |x|$.

1.7. Замечательные пределы

1.7.1. Первый замечательный предел

Докажем, что $\lim_{x\to 0} \frac{\sin x}{x} = 1$. Это соотношение называют первым замечательным пределом. Предварительно докажем неравенство при $0 < x < \frac{\pi}{2}$. $\sin x < x < \lg x$, (1.10)

С этой целью в круге радиусом R рассмотрим треугольники OAB, OAC и сектор OBA (рис. 1.3). Пусть S_1 — площадь треугольника OAB, S_3 — сектора OAB и S_3 — треугольника OAC. Очевидно, $S_1 < S_2 < S_3$. Если x — радианная мера угла AOB, то

$$\frac{1}{2}R^2\sin x < \frac{1}{2}R^2x < \frac{1}{2}R^2 \operatorname{tg} x. \tag{1.11}$$

Отсюда и следует неравенство (3.10). Разделив все части неравенства (1.11) на $\sin x>0$ и сократив на $\frac{1}{2}R^2$, получим $1<\frac{x}{\sin x}<\frac{1}{\cos x}$, или

 $\cos x < \frac{\sin x}{r} < 1 \tag{1.12}$

 $\forall x\in\left(0;\frac{\pi}{2}\right)$. По теореме 3 из подраздела 1.5.5 и из (1.12) следует, что $\lim_{x\to0+0}\frac{\sin x}{x}=1$. Так как $\frac{\sin x}{x}=\frac{\sin(-x)}{-x}$, то и $\lim_{x\to0-0}\frac{\sin x}{x}=1$. Мы доказали, что $\lim_{x\to0}\frac{\sin x}{x}=1$.

Пример 1.
$$\lim_{x \to 0} \frac{\operatorname{tg} x}{x} = \lim_{x \to 0} \frac{\sin x}{x \cos x} = \lim_{x \to 0} \frac{\sin x}{x} \cdot \lim_{x \to 0} \frac{1}{\cos x} = 1.$$
Пример 2. $\lim_{x \to 0} \frac{\sin^2 4x}{x^2} = \lim_{x \to 0} \frac{(4x)^2}{(4x)^2} \cdot 4^2 = 16.$

Пример 3.
$$\lim_{x\to 0} \frac{1-\cos x}{x^2} = \lim_{x\to 0} \frac{2\sin^2 x/2}{x^2} = \lim_{x\to 0} \frac{2\sin^2 x/2}{4(x/2)^2} = \frac{1}{2}.$$

1.7.2. Второй замечательный предел и его следствия

Докажем, что последовательность $\{x_n\}$, где $x_n = \left(1 + \frac{1}{n}\right)^n$, имеет конечный предел. При этом воспользуемся формулой бинома Ньютона:

$$(a+b)^{n} = a^{n} + na^{n-1}b + \frac{n(n-1)}{2!}a^{n-2}b^{2} + \frac{n(n-1)(n-2)}{3!}a^{n-3}b^{3} + \dots + \frac{n(n-1)\dots[n-(n-1)]}{n!}b^{n}.$$
(1.13)

По формуле (1.13), полагая $a=1, b=\frac{1}{n}$, находим

$$x_n = \left(1 + \frac{1}{n}\right)^n = 1 + n\frac{1}{n} + \frac{n(n-1)}{2!} \frac{1}{n^2} + \frac{n(n-1)(n-2)}{3!} \frac{1}{n^3} + \cdots + \frac{n(n-1)\dots[n-(n-1)]}{n!} \frac{1}{n^n}.$$

Запишем это выражение в виде:

$$x_{n} = 2 + \frac{1}{2!} \left(1 - \frac{1}{n} \right) + \frac{1}{3!} \left(1 - \frac{1}{n} \right) \left(1 - \frac{2}{n} \right) + \cdots + \frac{1}{n!} \left(1 - \frac{1}{n} \right) \left(1 - \frac{2}{n} \right) \cdots \left(1 - \frac{n-1}{n} \right).$$

$$(1.14)$$

Аналогично можно получить

$$x_{n+1} = 2 + \frac{1}{2!} \left(1 - \frac{1}{n+1} \right) + \frac{1}{3!} \left(1 - \frac{1}{n+1} \right) \left(1 - \frac{2}{n+1} \right) + \cdots + \frac{1}{(n+1)!} \left(1 - \frac{1}{n+1} \right) \left(1 - \frac{2}{n+1} \right) \cdots \left(1 - \frac{n}{n+1} \right).$$

$$(1.15)$$

Сравнивая (1.14) и (1.15), видим, что $x_n < x_{n+1}$, т.е. последовательность $\{x_n\}$ монотонно возрастает.

Так как
$$\frac{1}{k!} < \frac{1}{2^{k-1}}$$
 при $k > 2$, то
$$x_n < 2 + \frac{1}{2} + \frac{1}{2^2} + \dots + \frac{1}{2^{n-1}} = 2 + \frac{\frac{1}{2} - \frac{1}{2^{n-1}} \cdot \frac{1}{2}}{1 - \frac{1}{2}} = 3 - \frac{1}{2^{n-1}},$$

т.е. $x_n < 3$. Таким образом, последовательность $\{x_n\}$ монотонно возрастает и ограничена сверху. По теореме 2 из подраздела 1.5.2, она имеет предел. Этот предел обозначим e. Число e трансцендентно, причём 2 < e < 3 ($e \approx 2,7182818285$).

Используя определение предела на языке последовательностей, нетрудно доказать, что $\lim_{x\to +\infty}\left(1+\frac{1}{x}\right)^x=e$. Если в пределе $\lim_{x\to -\infty}\left(1+\frac{1}{x}\right)^x$ сделать замену y=-x, то легко получить, что $\lim_{x\to -\infty}\left(1+\frac{1}{x}\right)^x=e$. Следовательно, $\lim_{x\to \infty}\left(1+\frac{1}{x}\right)^x=\lim_{x\to 0}(1+x)^{\frac{1}{x}}=e. \tag{1.16}$

Предел (1.16) называют вторым замечательным пределом.

$$\lim_{x \to \infty} \left(\frac{x+1}{x-2} \right)^{2x-1} = \lim_{x \to \infty} \left[\left(1 + \frac{3}{x-2} \right)^{\frac{x-2}{3}} \right]^{\frac{3(2x-1)}{x-2}} = e^6.$$

Подчеркнём, что во втором замечательном пределе раскрывается неопределённость вида 1^{∞} .

Число e часто принимается в качестве основания логарифмов. Логарифм числа x по основанию e называют натуральным логарифмом и обозначают $\ln x$, т.е. $\ln x = \log_e x$.

Опираясь на непрерывность элементарных функций и второй замечательный предел, докажем, что

1.
$$\lim_{x \to 0} \frac{\log_a(1+x)}{x} = \log_a e$$
, 1, a. $\lim_{x \to 0} \frac{\ln(1+x)}{x} = 1$;
2. $\lim_{x \to 0} \frac{a^x - 1}{x} = \ln a$, 2, a. $\lim_{x \to 0} \frac{e^x - 1}{x} = 1$;

3.
$$\lim_{x \to 0} \frac{(1+x)^{\mu} - 1}{x} = \mu$$
.

Доказательство.

- 1. $\lim_{x\to 0} \frac{\log_a(1+x)}{x} = \lim_{x\to 0} \log_a(1+x)^{\frac{1}{x}} = \log_a \lim_{x\to 0} (1+x)^{\frac{1}{x}} = \log_a e$. Перестановка предела и логарифма справедлива в силу непрерывности логарифмической функции.
- $2. \ \Pi\text{оложим} \ a^x 1 = y, \ x = \log_a(1+y). \ \text{Так как при } x \to 0 \text{ и } y \to 0,$ то $\lim_{x \to 0} \frac{a^x 1}{x} = \lim_{y \to 0} \frac{y}{\log_a(1+y)} = \lim_{y \to 0} \frac{1}{\frac{\log_a(1+y)}{y}} = \frac{1}{\log_a e} = \ln a.$
- 3. Положим $y=(1+x)^{\mu}-1$. Заметим, что если $x\to 0$, то $y\to 0$. Очевидно соотношение $\mu\ln(1+x)=\ln(1+y)$. Поэтому

$$\frac{(1+x)^{\mu}-1}{x} = \frac{y}{x} = \frac{y}{\ln(1+y)} \cdot \frac{\mu \ln(1+x)}{x}.$$

Переходя к пределу в этом равенстве при $x \to 0$, получаем, что $\lim_{x \to 0} \frac{(1+x)^{\mu}-1}{x} = \mu$.

 Π ример 2. Найти $\lim_{x\to 2} \frac{\ln x - \ln 2}{x-2}$.

Решение.

$$\lim_{x\to 2} \frac{\ln x - \ln 2}{x - 2} = \lim_{x\to 2} \frac{\ln \frac{x}{2}}{x - 2} = \lim_{x\to 2} \frac{\ln \left[1 + \left(\frac{x}{2} - 1\right)\right]}{x - 2} =$$

$$= \lim_{x\to 2} \frac{\ln \left(1 + \frac{x - 2}{2}\right)}{x - 2}. \text{ Обозначим } y = x - 2. \text{ Тогда}$$

$$\lim_{x\to 2} \frac{\ln x - \ln 2}{x - 2} = \lim_{y\to 0} \frac{\ln \left(1 + \frac{y}{2}\right)}{y} = \lim_{y\to 0} \frac{\ln \left(1 + \frac{y}{2}\right)}{\frac{y}{2} \cdot 2} = \frac{1}{2}.$$

$$II \text{Ример 3. } \lim_{x\to 0} \frac{e^{4x} - e^x}{e^{tg \, x} - 1} = \lim_{x\to 0} \frac{e^x (e^{3x} - 1)}{\frac{tg \, x}{tg \, x} \cdot 1} \cdot 3x =$$

$$= \lim_{x\to 0} \frac{e^{3x} - 1}{3x} \cdot \frac{e^x}{\frac{e^{tg \, x} - 1}{tg \, x}} \cdot \frac{3}{\frac{tg \, x}{x}} = 3, \text{ так как } \lim_{x\to 0} \frac{e^{tg \, x} - 1}{tg \, x} = 1,$$

$$\lim_{x \to 0} \frac{\operatorname{tg} x}{x} = 1, \quad \lim_{x \to 0} \frac{e^{3x} - 1}{3x} = 1, \quad \lim_{x \to 0} e^x = 1.$$

1.8. Бесконечно малые и бесконечно большие функции

1.8.1. Теоремы о свойствах бесконечно малых функций

В пределах этого подраздела, если не оговорено противное, будем все рассматриваемые функции считать скалярнозначными.

 $Onpedeлeниe\ 1.$ Функция $\alpha(x)$ называется бесконечно малой в точке x_0 (при $x\to x_0$), если $\lim_{x\to x_0}\alpha(x)=0.$

Определение 2. Функция y называется бесконечно большой в точке x_0 (при $x\to x_0$), если $\lim_{x\to x_0}y(x)=\infty, -\infty, +\infty$.

 $\mathit{Пример}\ 1.$ Функция $\alpha(x)=\sin x$ бесконечно малая при $x_0=k\pi,$ а функция $\alpha(x)=\cos x$ бесконечно малая при $x_1=\frac{\pi}{2}+k\pi.$

Пример 2. Функция $y(x)=e^x$ бесконечно большая в $+\infty$ и бесконечно малая в $-\infty$; функция $y(x)=\frac{x-3}{x-4}$ бесконечно малая при $x_0=3$ и бесконечно большая при $x_0=4$.

Отметим некоторые свойства бесконечно малых и бесконечно больших функций.

 $Teopema\ 1.$ Сумма конечного числа бесконечно малых функций в точке x_0 есть функция бесконечно малая в $x_0.$

Справедливость теоремы следует из теоремы о пределе суммы функций.

 $Teopema\ 2.\$ Произведение бесконечно малой функции $\alpha(x)$ в x_0 на функцию f(x), ограниченную в окрестности x_0 , есть бесконечно малая функция в x_0 .

Доказательство. Так как $\lim_{x\to x_0}\alpha(x)=0$ и существует окрестность $U(x_0)$ такая, что для всех $x\in U(x_0)$ выполнено неравенство |f(x)|< M ($M\neq\infty$), то для всех $x\in U(x_0)$ справедливо неравенство $-|\alpha(x)|M\leq\alpha(x)f(x)\leq|\alpha(x)|M$. Так как $\lim_{x\to x_0}|\alpha(x)|M=0$, $\lim_{x\to x_0}(-|\alpha(x)|M)=0$, то и $\lim_{x\to x_0}\alpha(x)\cdot f(x)=0$ по теореме 3 из подраздела 1.5.5, т.е. функция $\alpha\cdot f$ бесконечно малая в точке x_0 .

Пример 3. Функция $\beta(x)=x\sin\frac{1}{x}$ является бесконечно малой при x=0, так как функция $\alpha(x)=x$ бесконечно малая, а $f(x)=\sin\frac{1}{x}$ ограничена в окрестности точки $x_0=0$.

малая в точке x_0 .

 $Teopema\ 3.$ Если $\alpha(x)$ бесконечно малая функция в точке x_0 , то функция $\beta(x)=\frac{1}{\alpha(x)}$ бесконечно большая в x_0 , и наоборот, если $\beta(x)$ — бесконечно большая в точке x_0 , то $\alpha(x)=\frac{1}{\beta(x)}$ — бесконечно

Теорему предлагается доказать самостоятельно.

1.8.2. Сравнение бесконечно малых и бесконечно больших функций

Определение 1. Бесконечно малые функции $\alpha(x)$ и $\beta(x)$ при $x=x_0$ называются сравнимыми, если существует хотя бы один из пределов $\lim_{x\to x_0} \frac{\alpha(x)}{\beta(x)}, \lim_{x\to x_0} \frac{\beta(x)}{\alpha(x)}.$

Определение 2. Пусть $\alpha(x)$ и $\beta(x)$ — сравнимые бесконечно малые при $x=x_0$ и $\lim_{x\to x_0}\frac{\alpha(x)}{\beta(x)}=C$. Если $C\neq 0,\,C\neq \infty$, то бесконечно малые функции $\alpha(x)$ и $\beta(x)$ при $x=x_0$ называются бесконечно малыми одного порядка малости.

Если C=0, то говорят, что бесконечно малая $\alpha(x)$ при $x=x_0$ имеет более высокий порядок малости, чем $\beta(x)$, и пишут $\alpha(x)=o(\beta(x))$.

Если $C=\infty$, то бесконечно малая $\beta(x)$ имеет более высокий порядок малости, чем $\alpha(x)$.

Если C=1, то бесконечно малые $\alpha(x)$ и $\beta(x)$ называются эквивалентными бесконечно малыми при $x=x_0$. Пишут в этом случае $\alpha(x)\sim\beta(x)$.

Определение 3. Говорят, что бесконечно малая функция $\alpha(x)$ имеет порядок малости k относительно бесконечно малой $\beta(x)$ при $x=x_0$, если $\lim_{x\to x_0} \frac{\alpha(x)}{[\beta(x)]^k} = C, \ C\neq 0, \ c\neq \infty.$

При этом бесконечно малую $C[\beta(x)]^k$, эквивалентную $\alpha(x)$, называют главной частью бесконечно малой $\alpha(x)$.

Обычно в роли эталонной бесконечно малой в точке x_0 принимают функцию $\beta(x) = x - x_0$.

Пример 1. Найти порядок малости бесконечно малой функции $\alpha(x)=1-\cos x$ относительно бесконечно малой $\beta(x)=x$ при x=0.

$$f(x) = 1 - \cos x$$
 относительно бесконечно малой $f(x) = x$ при f

Таким образом, порядок малости k=2, а главной частью является величина $\gamma(x)=\frac{1}{2}x^2.$

Пример~2.~ Докажите самостоятельно, что бесконечно малая $\alpha(x)=e^{\sin x}-1$ относительно бесконечно малой $\beta(x)=x$ имеет первый порядок малости.

Совершенно аналогично производят сравнение бесконечно больших функций u(x) и v(x) при $x=x_0$, исходя из предела

$$\lim_{x \to x_0} \frac{u(x)}{v(x)} = C.$$

Предлагается соответствующие определения сформулировать самостоятельно.

1.8.3. Свойства эквивалентных бесконечно малых функций

Свойство 1. Если $\alpha(x) \sim \beta(x)$ при $x = x_0$, то и $\beta(x) \sim \alpha(x)$.

Действительно, если
$$\lim_{x\to x_0} \frac{\alpha(x)}{\beta(x)} = 1$$
, то и $\lim_{x\to x_0} \frac{\beta(x)}{\alpha(x)} = 1$.

Свойство 2. Если $\alpha(x) \sim \beta(x)$, а $\beta(x) \sim \gamma(x)$, то $\alpha(x) \sim \gamma(x)$.

Доказательство. Можем записать
$$\lim_{x\to x_0} \frac{\alpha(x)}{\gamma(x)} =$$

$$=\lim_{x\to x_0}\frac{\alpha(x)}{\beta(x)}\cdot\frac{\beta(x)}{\gamma(x)}=\lim_{x\to x_0}\frac{\alpha(x)}{\beta(x)}\cdot\lim_{x\to x_0}\frac{\beta(x)}{\gamma(x)}=1, \text{ t.e. } \alpha(x)\sim\gamma(x).$$

Свойство 3. Бесконечно малые $\alpha(x)$ и $\beta(x)$ эквивалентны тогда и только тогда, когда их разность $\alpha(x) - \beta(x)$ имеет более высокий порядок малости, чем каждая из них.

Доказательство. Пусть $\alpha(x) \sim \beta(x)$ при $x = x_0$. Тогда

$$\lim_{x\to x_0}\frac{\alpha(x)-\beta(x)}{\alpha(x)}=\lim_{x\to x_0}\left(1-\frac{\beta(x)}{\alpha(x)}\right)=1-\lim_{x\to x_0}\frac{\beta(x)}{\alpha(x)}=1-1=0,$$
 T.e. $\alpha(x)-\beta(x)=o(\alpha(x)).$

Если
$$\alpha(x) - \beta(x) = o(\alpha(x))$$
, то $\lim_{x \to x_0} \frac{\alpha(x) - \beta(x)}{\alpha(x)} = 0$. Можем запи-

сать
$$0 = \lim_{x \to x_0} \frac{\alpha(x) - \beta(x)}{\alpha(x)} = \lim_{x \to x_0} \left(1 - \frac{\beta(x)}{\alpha(x)}\right)$$
. Отсюда следует, что

$$\lim_{x \to x_0} \frac{\beta(x)}{\alpha(x)} = 1, \text{ r.e. } \alpha(x) \sim \beta(x).$$

Ceoйство 4. Сумма конечного числа бесконечно малых при $x=x_0$ эквивалентна слагаемому, имеющему наименьший порядок малости относительно всех других слагаемых.

Действительно, если в сумме $\alpha_1(x) + \alpha_2(x) + \ldots + \alpha_n(x)$ бесконечно малых в точке x_0 бесконечно малая $\alpha_1(x)$ имеет наименьший порядок малости по сравнению со всеми другими слагаемыми, то

$$\lim_{x \to x_0} \frac{\alpha_1(x) + \alpha_2(x) + \ldots + \alpha_n(x)}{\alpha_1(x)} = \lim_{x \to x_0} \left(1 + \frac{\alpha_2(x)}{\alpha_1(x)} + \ldots + \frac{\alpha_n(x)}{\alpha_1(x)} \right) = 1,$$

$$\text{r.e. } \alpha_1(x) + \alpha_2(x) + \ldots + \alpha_n(x) \sim \alpha_1(x).$$

При изучении замечательных пределов мы показали, что $\sin x \sim x, \, \ln(1+x) \sim x, \, e^x - 1 \sim x, \, \frac{(1-x)^\mu - 1}{\mu x} \sim x$ при $x \to 0$.

Cвойство 5. Если $\alpha(x) \sim \alpha_1(x), \ \beta(x) \sim \beta_1(x)$ при $x=x_0$ и существует $\lim_{x \to 0} \frac{\alpha_1(x)}{\beta_1(x)}$, равный A, то и $\lim_{x \to x_0} \frac{\alpha(x)}{\beta(x)} = A$.

Доказательство.

$$\lim_{x \to x_0} \frac{\alpha(x)}{\beta(x)} = \lim_{x \to x_0} \frac{\alpha(x)}{\alpha_1(x)} \cdot \frac{\alpha_1(x)}{\beta_1(x)} \cdot \frac{\beta_1(x)}{\beta(x)} = \lim_{x \to x_0} \frac{\alpha(x)}{\alpha_1(x)} \cdot \lim_{x \to x_0} \frac{\alpha_1(x)}{\beta_1(x)} \times \lim_{x \to x_0} \frac{\beta_1(x)}{\beta(x)} = \lim_{x \to x_0} \frac{\alpha_1(x)}{\beta(x)} = \lim_{x \to x_0} \frac{\alpha_1(x)}{\beta(x)} = 1,$$

поскольку $\alpha(x) \sim \alpha_1(x)$, $\beta(x) \sim \beta_1(x)$.

Последнее свойство часто используется при отыскании пределов отношений. Например, $\lim_{x\to 0}\frac{e^{x^2}-1}{1-\cos x}=\lim_{x\to 0}\frac{x^2}{\frac{1}{2}x^2}=2$, так как $e^{x^2}-1\sim x^2,\, 1-\cos x\sim \frac{1}{2}x^2$ при $x\to 0$.

На основании первого замечательного предела и следствий из второго можем составить следующую таблицу эквивалентных бесконечно малых. Через $\alpha(x)$ обозначена бесконечно малая при $x \to x_0$ или $x \to \infty, \pm \infty$:

1) $\sin \alpha(x) \sim \alpha(x)$;

2) $\operatorname{tg} \alpha(x) \sim \alpha(x)$;

3) $\arcsin \alpha(x) \sim \alpha(x)$;

- 4) $\arctan \alpha(x) \sim \alpha(x)$;
- 5) $\log_a(1 + \alpha(x)) \sim (\log_a e)\alpha(x)$;
- 6) $\ln[1 + \alpha(x)] \sim \alpha(x)$;
- 7) $a^{\alpha(x)} 1 \sim \alpha(x) \ln a, \ a > 0, \ a \neq 1;$
- 8) $e^{\alpha(x)} 1 \sim \alpha(x);$ 9) $[1 + \alpha(x)]^{\mu} 1 \sim \mu \alpha(x);$

10)
$$\sqrt[n]{1 + \alpha(x)} - 1 \sim \frac{\alpha(x)}{n}$$
; 11) $1 - \cos \alpha(x) \sim \frac{1}{2}\alpha^2(x)$.

Понятие бесконечно малой и бесконечно большой функции легко обобщается на случай векторных функций векторного или скалярного аргумента, а именно, функция $\alpha(x): X \subseteq R_n \to Y \subseteq R_k$ называется бесконечно малой при $x=x_0$, если все её координатные функ-

ции $\alpha_1(x_1,x_2,\ldots,x_n),\ \alpha_2(x_1,x_2,\ldots,x_n),\ \ldots\ \alpha_k(x_1,x_2,\ldots,x_n)$ являются бесконечно малыми или, другими словами, если функция

$$|\alpha(x)| = \sqrt{\alpha_1^2 + \alpha_2^2 + \ldots + \alpha_k^2}$$

является бесконечно малой при $x = x_0(x_1^0, x_2^0, \dots, x_n^0)$.

Сравнение бесконечно малых векторных функций $\alpha(x)$ и $\beta(x)$ производят, сравнивая их модули $|\alpha(x)|$ и $|\beta(x)|$, являющиеся скалярнозначными функциями.

Функция $\alpha(x)$: $X\subseteq R_n\to Y\subseteq R_k$ называется бесконечно большой в точке $x=x_0(x_1^0,x_2^0,\ldots,x_n^0)$, если хотя бы одна из её координатных функций $\alpha_1,\alpha_2,\ldots,\alpha_k$ является бесконечно большой в этой точке. В этом случае функция $|\alpha(x)|=\sqrt{\alpha_1^2+\alpha_2^2+\ldots+\alpha_k^2}$ также бесконечно большая.

Заметим, что если $\lim_{x\to x_0} f(x) = A$, то из определения предела следует, что функция $\alpha(x) = f(x) - A$ является бесконечно малой при $x\to x_0$. Верно и обратное утверждение. Таким образом, в этом случае $f(x) = A + \alpha(x)$, где $\alpha(x)$ — бесконечно малая функция при $x\to x_0$.

2. Дифференциальное исчисление

Самыми простыми и наиболее полно изученными в математике отображениями являются линейные. Возникает идея приближённой замены произвольного отображения линейным, хотя бы вблизи некоторой точки (линеаризация отображения). Выяснением для какого класса отображений возможна линеаризация и изучением строения полученных при этом линейных операторов занимаются в части математического анализа, называемой дифференциальным исчислением.

2.1. Дифференцируемые отображения

Определение 1. Пусть $X \subset R_n$ — открытое множество и $f: X \subset R_n \to Y \subset R_k$. Функция f называется дифференцируемой в точке $x = x_0 \in X$, если существует линейный оператор $A: R_n \to R_k$ такой, что приращение $f(x) - f(x_0)$ функции f можно представить в виде

$$f(x) - f(x_0) = A(x - x_0) + \alpha(x - x_0)$$
(2.1)

для всех x из X, где вектор-функция $\alpha(x-x_0)$ является бесконечно малой более высокого порядка малости, чем $|(x-x_0)|$, т.е.

$$\lim_{x \to x_0} \frac{|\alpha(x-x_0)|}{|x-x_0|} = 0$$
. Если приращение аргумента $x-x_0$ обозначим

 Δx , а приращение функции $\Delta f = f(x) - f(x_0)$, то выражение (2.1) можно переписать в виде

$$\Delta f(x_0) = A(\Delta x) + \alpha(\Delta x). \tag{2.2}$$

Так как $A:R_n\to R_k$ — линейный оператор, то существует матрица A размера $(k\times n)$ такая, что $A(\Delta x)=A\cdot \Delta x.$ Теперь (2.2) можно записать в виде

$$\Delta f(x_0) = A(x_0)\Delta x + \alpha(x_0, \Delta x). \tag{2.3}$$

В соотношении (2.3) подчёркнуто, что матрица A зависит от выбора точки x_0 .

Определение 2. Матрица А в соотношении

$$\Delta f(x_0) = A(x_0)\Delta x + \alpha(x_0, \Delta x)$$

называется производной или матрицей Якоби и обозначается $f'(x_0)$, $\nabla f(x_0)$, $\frac{df(x_0)}{dx}$. Слагаемое $A(x_0)\Delta x$ обозначается df и называется дифференциалом функции f в точке x_0 .

Теперь равенство (2.3) можно переписать в виде

или
$$\Delta f(x_0) = f'(x_0)\Delta x + \alpha(x_0, \Delta x)$$

 $\Delta f(x_0) = df(x_0) + \alpha(x_0, \Delta x).$ (2.4)

Как следует из (2.4), производная матрица определяет линейный оператор, а дифференциал является значением этого линейного оператора в точке $\Delta x = (\Delta x_1, \Delta x_2, \dots, \Delta x_n)$.

Рассмотрим пример. Дана функция $f(x)=x^2:R\to R$. Покажем, что эта функция дифференцируема в любой точке $x=x_0$. Действительно, $\Delta f=(x_0+\Delta x)^2-x_0^2=x_0^2+2x_0\Delta x+(\Delta x)^2-x_0^2=2x_0\cdot\Delta x+(\Delta x)^2$. Сравнивая соотношение $\Delta f=2x_0\cdot\Delta x+(\Delta x)^2$ с равенством (2.4), видим, что в нашем случае $A\Delta f=2x_0\cdot\Delta x$, $\alpha(\Delta x)=(\Delta x)^2$, причём порядок малости $\alpha(\Delta x)$ выше, чем Δx . Отсюда следует, что функция $f(x)=x^2$ дифференцируема в точке x_0 и $A=f'(x_0)=2x_0$, $df=2x_0\cdot\Delta x$.

 $Teopema\ 1.$ Всякая дифференцируемая в точке x_0 функция непрерывна в этой точке.

Действительно, из равенства (4.3) следует, что если $\Delta x \to 0$, то и $\Delta f \to 0$, а это и означает непрерывность функции f. Обратное утверждение неверно, т.е. из непрерывности функции не следует её дифференцируемость. Например, функция y = |x| непрерывна в точке $x_0 = 0$, но не дифференцируема в этой точке.

2.2. Строение производной матрицы

Приступаем к нахождению элементов функциональной матрицы $f'(x_0)$ для произвольной дифференцируемой функции f. Процесс отыскания производной матрицы называют дифференцированием функции.

Рассмотрим четыре возможных случая.

Случай 1. Пусть $n=1,\ k=1,$ т.е. имеем отображение $f:X\subseteq R\to Y\subseteq R.$ Матрица $f'(x_0)$ имеет размер (1×1) и состоит из одного элемента b. Поэтому

$$f(x) - f(x_0) = b \cdot (x - x_0) + \alpha(x - x_0).$$

Разделим последнее равенство на $x-x_0$ и перейдём к пределу при $x \to x_0$. Получим $\lim_{x\to x_0} \frac{f(x)-f(x_0)}{x-x_0} = b + \lim_{x\to x_0} \frac{\alpha(x-x_0)}{(x-x_0)}$. Так как функция f предполагается дифференцируемой, то

Так как функция f предполагается дифференцируемой, то $\lim_{x\to x_0} \frac{\alpha(x-x_0)}{(x-x_0)} = 0$, и мы получаем

$$b = f'(x_0) = \lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0} = \lim_{x \to x_0} \frac{\Delta f(x_0)}{\Delta x}.$$
 (2.5)

Число, определяемое пределом в выражении (2.5), называется производной функции одной переменной в точке x_0 . Эта производная была изучена в средней школе.

Таким образом, для скалярной функции одной переменной производная матрица состоит из одного элемента и равна пределу отношения приращения функции к приращению аргумента.

Таблица производных:

1)
$$(c)' = 0$$
, $c = \text{const}$; 2) $(x^{\alpha})' = \alpha x^{\alpha - 1}$;

3)
$$(\log_a x)' = \frac{1}{x \ln a} = \frac{\log_a e}{x}; \quad (\ln x)' = \frac{1}{x};$$

4)
$$(a^x)' = a^x \ln a; \quad (e^x)' = e^x;$$

5)
$$(\sin x)' = \cos x$$
; 6) $(\cos x)' = -\sin x$;

7)
$$(\operatorname{tg} x)' = \frac{1}{\cos^2 x};$$
 8) $(\operatorname{ctg} x)' = -\frac{1}{\sin^2 x};$

9)
$$(\operatorname{sh} x)' = \operatorname{ch} x;$$
 10) $(\operatorname{ch} x)' = \operatorname{sh} x;$

11)
$$(\operatorname{th} x)' = \frac{1}{\operatorname{ch}^2 x};$$
 12) $(\operatorname{cth} x)' = -\frac{1}{\operatorname{sh}^2 x};$

13)
$$(\operatorname{arctg} x)' = \frac{1}{1+x^2};$$
 14) $(\operatorname{arcctg} x)' = -\frac{1}{1+x^2};$

15)
$$(\arcsin x)' = \frac{1}{\sqrt{1-x^2}};$$
 16) $(\arccos x)' = -\frac{1}{\sqrt{1-x^2}}.$

Проверим справедливость первых пяти формул.

$$(x^{lpha})' = \lim_{\Delta x \to 0} \frac{(x + \Delta x)^{lpha} - x^{lpha}}{\Delta x} = \lim_{\Delta x \to 0} \frac{x^{lpha} \left[\left(1 + \frac{\Delta x}{x} \right)^{lpha} - 1 \right]}{\Delta x} = \lim_{\Delta x \to 0} \frac{x^{lpha - 1} \left[\left(1 + \frac{\Delta x}{x} \right)^{lpha} - 1 \right]}{\Delta x} = \alpha x^{lpha - 1}$$
 (использовано третье след-

$$(\log_a x)' = \lim_{\Delta x \to 0} \frac{\log_a (x + \Delta x) - \log_a x}{\Delta x} = \lim_{\Delta x \to 0} \frac{\log_a \left(1 + \frac{\Delta x}{x}\right)}{\frac{\Delta x}{x}x} =$$

$$=\frac{\log_a e}{x}=\frac{1}{x\ln a}$$
 (использовано следствие из второго замечательно-

го предела
$$\lim_{x\to 0} \frac{\log_a(1+x)}{x} = \log_a e$$
).

$$(a^x)' = \lim_{\Delta x \to 0} \frac{a^{x+\Delta x} - a^x}{\Delta x} = \lim_{\Delta x \to 0} \frac{a^x (a^{\Delta x} - 1)}{\Delta x} = a^x \ln a$$
 (использован предел $\lim_{x \to 0} \frac{a^x - 1}{x} = \ln a$).

$$(\sin x)' = \lim_{\Delta x \to 0} \frac{\sin(x + \Delta x) - \sin x}{\Delta x} = \lim_{\Delta x \to 0} \frac{2\cos\left(x + \frac{\Delta x}{2}\right)\sin\frac{\Delta x}{2}}{\Delta x} = \lim_{\Delta x \to 0} \frac{\cos\left(x + \frac{\Delta x}{2}\right)\sin\frac{\Delta x}{2}}{\frac{\Delta x}{2}} = \cos x.$$

Аналогично можно показать, что $(\cos x)' = -\sin x$.

Cлучай 2. Пусть n произвольно, а k=1, т.е. имеем $f:X\subseteq R_n\to Y\subseteq R$ — скалярную функцию n переменных, $f(x)=f(x_1,x_2,\ldots,x_n)$. Матрица оператора $A:R_n\to R$ состоит из одной строки. Поэтому $f'(x)=(a_1,a_2,\ldots,a_n)$. Найдём координату a_1 вектора f'(x). Положим $\Delta x_1\neq 0$, $\Delta x_2=\Delta x_3=\ldots=\Delta x_n=0$.

Тогда соотношение (2.4) в п. 2.1 можно записать в виде:

$$f(x_1 + \Delta x_1, x_2, \dots, x_n) - f(x_1, x_2, \dots, x_n) =$$

= $a_1 \Delta x_1 + a_2 \cdot 0 + \dots + a_n \cdot 0 + \alpha(\Delta x_1).$

Разделив на Δx_1 обе части этого равенства, перейдём к пределу при $\Delta x_1 \to 0$ (учтём при этом, что $\lim_{\Delta x_1 \to 0} \frac{\alpha(\Delta x_1)}{\Delta x_1} = 0$), получим

$$a_1 = \lim_{\Delta x_1 \to 0} \frac{f(x_1 + \Delta x_1, x_2, \dots, x_n) - f(x_1, x_2, \dots, x_n)}{\Delta x_1}.$$
 (2.6)

Предел (2.6) называется частной производной функции $f(x_1, x_2, \ldots, x_n)$ по переменной x_1 и обозначается $\frac{\partial f}{\partial x_1}(x_1, x_2, \ldots, x_n)$. Как видим, чтобы найти частную производную $\frac{\partial f}{\partial x_1}$, нужно зафиксировать все переменные, кроме первой, и взять производную по первой переменной. Аналогично рассуждая, можно найти $a_2 = \frac{\partial f}{\partial x_2}, \ldots, a_n = \frac{\partial f}{\partial x_n}$. Матрица f'(x) принимает вид $f'(x) = \left[\frac{\partial f}{\partial x_1}, \frac{\partial f}{\partial x_2}, \ldots, \frac{\partial f}{\partial x_n}\right]$.

Например, найдём производную матрицу для функции $f(x,y)=xy^2-y^3$. Находим $\frac{\partial f}{\partial x}=y^2, \ \frac{\partial f}{\partial y}=2xy-3y^2$. Поэтому $f'(x,y)=[y^2,\ 2xy-3y^2].$

Случай 3. Пусть n=1, а k произвольно, т.е. $f:X\subseteq R\to Y\subseteq R_k.$ Имеем вектор-функцию скалярного аргумента

$$f(x) = \begin{bmatrix} f_1(x) \\ f_2(x) \\ \vdots \\ f_k(x) \end{bmatrix}.$$

Матрица линейного оператора $A:R\to R_k$ состоит из одного столбца. Можно доказать, что в этом случае

$$f'(x) = \begin{bmatrix} f_1(x) \\ f_2(x) \\ \vdots \\ f_k(x) \end{bmatrix}' = \begin{bmatrix} f'_1(x) \\ f'_2(x) \\ \vdots \\ f'_k(x) \end{bmatrix}.$$

Строгое обоснование опустим.

Вектор-функцию одного скалярного аргумента со значениями в R_3 можно задать в виде $\mathbf{r}(t) = x(t)\mathbf{i} + y(t)\mathbf{j} + z(t)\mathbf{k}$. Тогда $\mathbf{r}'(t) = x(t)\mathbf{i} + y'(t)\mathbf{j} + z'(t)\mathbf{k}$.

 $\mathit{Cлучай}$ 4. Пусть n и k произвольны, т.е. $f:X\subseteq R_n\to Y\subseteq R_k.$ Из рассмотренных случаев 2 и 3 следует, что

$$f'(x) = \begin{bmatrix} f_1(x_1, x_2, \dots, x_n) \\ f_2(x_1, x_2, \dots, x_n) \\ \dots & \dots & \dots \\ f_k(x_1, x_2, \dots, x_n) \end{bmatrix}' = \begin{bmatrix} \frac{\partial f_1}{\partial x_1} & \frac{\partial f_1}{\partial x_2} & \dots & \dots & \frac{\partial f_1}{\partial x_n} \\ \frac{\partial f_2}{\partial x_1} & \frac{\partial f_2}{\partial x_2} & \dots & \dots & \frac{\partial f_2}{\partial x_n} \\ \dots & \dots & \dots & \dots & \dots \\ \frac{\partial f_k}{\partial x_1} & \frac{\partial f_k}{\partial x_2} & \dots & \dots & \frac{\partial f_k}{\partial x_n} \end{bmatrix}.$$

2.3. Некоторые свойства производных

В этом разделе будем рассматривать скалярные функции скалярного аргумента и предполагать их дифференцируемыми, а потому непрерывными.

1)
$$(u+v)' = u' + v'$$
, 2) $(u \cdot v)' = u'v + v'u$,

3)
$$\left(\frac{u}{v}\right)' = \frac{u'v - v'u}{v^2}, v \neq 0.$$

Докажем, например, второе соотношение.

$$(u \cdot v)' = \lim_{\Delta x \to 0} \frac{(u + \Delta u)(v + \Delta v) - uv}{\Delta x} = \lim_{\Delta x \to 0} \frac{v\Delta u + u\Delta v + \Delta u\Delta v}{\Delta x} = \lim_{\Delta x \to 0} \left(v\frac{\Delta u}{\Delta x} + u\frac{\Delta v}{\Delta x} + \Delta u\frac{\Delta v}{\Delta x}\right) = u'v + v'u.$$

Первое и третье соотношения предлагается доказать самостоятельно.

Применяя третье соотношение, находим

$$(\operatorname{tg} x)' = \left(\frac{\sin x}{\cos x}\right)' = \frac{\cos^2 x + \sin^2 x}{\cos^2 x} = \frac{1}{\cos^2 x}, \quad (\operatorname{ctg} x)' = -\frac{1}{\sin^2 x}.$$

Очевидно, что (c)' = 0, где c = const.

Из второго соотношения теоремы 1 следует, что (cu)' = cu'.

 $Tеорема\ 2.\ (Производная\ от\ обратной\ функции.)\ Пусть <math>X\subseteq R_n,\ Y\subseteq R_n,\ f:X\to Y$ и $f^{-1}:Y\to X$ обратное к f отображение. Если функция f дифференцируема в точке x_0 и существует $(f'(x_0))^{-1},$ то функция f^{-1} дифференцируема в точке $y_0=f(x_0)$ и имеет место формула

$$[f^{-1}(y_0)]' = [f'(x_0)]^{-1}. (2.7)$$

Теорему примем без доказательства.

В случае n=1, т.е. для скалярной функции одного скалярного аргумента формула (2.7) принимает вид

$$[f^{-1}(y_0)]' = \frac{1}{f'(x_0)}. (2.8)$$

Применяя формулу (2.8), найдём

$$(\operatorname{arctg} x)' = \frac{1}{(\operatorname{tg} y)'_y} = \cos^2 y = \frac{1}{1 + \operatorname{tg}^2 y} = \frac{1}{1 + x^2},$$

так как, если $y = \operatorname{arctg} x$, то $x = \operatorname{tg} y$;

$$(\operatorname{arcctg} x)' = \frac{1}{(\operatorname{ctg} y)'_y} = -\sin^2 y = -\frac{1}{1 + \operatorname{ctg}^2 y} = -\frac{1}{1 + x^2};$$

$$(\operatorname{arcsin} x)' = \frac{1}{(\sin y)'_y} = \frac{1}{\cos y} = \frac{1}{\sqrt{1 - \sin^2 y}} = \frac{1}{\sqrt{1 - x^2}};$$

$$(\operatorname{arccos} x)' = \frac{1}{(\cos y)'_y} = -\frac{1}{\sin y} = -\frac{1}{\sqrt{1 - \cos^2 y}} = -\frac{1}{\sqrt{1 - x^2}}.$$

Перед корнем $\sqrt{1-x^2}$ в последних двух соотношениях поставлен знак "+", так как $\cos y>0$ при $-\frac{\pi}{2} < y < \frac{\pi}{2}, \sin y>0$ при $0 < y < \pi.$

Теорема 3. (Производная от композиции отображений.) Если $\Phi: X \subseteq R_n \to Y \subseteq R_k, \ f: Y \subseteq R_k \to Z \subseteq R_m$ и функция Φ дифференцируема в точке x, а функция f дифференцируема в точке $\Phi(x)$,

то композиция отображений $f \circ \Phi : X \subseteq R_n \to Z \subseteq R_m$ дифференцируема в точке x и $(f \circ \Phi)' = (f' \circ \Phi)\Phi'$ или, что то же самое,

$$[f[\Phi(x)]]' = f'[\Phi(x)] \cdot \Phi'(x), \tag{2.9}$$

т.е. производная матрица суперпозиции отображений равна произведению производных матриц исходных функций, вычисленных в соответствующих точках.

 $\mbox{\it Замечание}.$ Если обозначить матрицы $f'=A, \ \Phi'=B, \ (f\circ\Phi)'==C,$ то $C=A\cdot B.$

Теорему 3 примем также без доказательства.

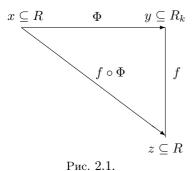
Рассмотрим частные случаи формулы (2.9), наиболее часто встречающиеся на практике.

Случай 1. Если n=k=m=1, то соотношение (2.9) является правилом дифференцирования сложной функции одного аргумента, известного из курса средней школы.

Например,
$$(\cos^3 x)' = 3\cos^2 x(-\sin x)$$
, $(e^{\sin^2 5x})' = e^{\sin^2 5x} 2\sin 5x\cos 5x \cdot 5$, $(\operatorname{tg} \ln x)' = \frac{1}{\cos^2 \ln x} \cdot \frac{1}{x}$.

Часто встречаются степенно-показательные функции, т.е. функции вида $f(x) = u(x)^{v(x)}$. Для отыскания производных от них рекомендуется воспользоваться либо основным логарифмическим тождеством $f(x) = e^{v(x) \ln u(x)}$, либо предварительно функцию прологарифмировать. Например, $[(\sin x)^{\cos x}]' = [e^{\cos x \ln \sin x}]' =$

$$= e^{\cos x \ln \sin x} \left(-\sin x \ln \sin x + \cos x \frac{1}{\sin x} \cos x \right).$$



Случай 2. Пусть $n=1,\ k$ произвольно, m=1. Для суперпозиции отображений, приведённой на схеме (рис. 2.1), имеем, что $f(y_1,y_2,\ldots,y_k)$ есть скалярная функция k переменных. $\Phi=(y_1(x),y_2(x),\ldots,y_k(x))^T,\ \Phi$ вектор-функция одного скалярного аргумента. $(f\circ\Phi)(x)=$ $=f(y_1(x),y_2(x),\ldots,y_k(x))$ скалярная функция скалярного аргумента. В нашем случае

$$A = f'(y_1, y_2, \dots, y_k) = \left[\frac{\partial f}{\partial y_1}, \frac{\partial f}{\partial y_2}, \dots, \frac{\partial f}{\partial y_k}\right],$$

$$B = \Phi'(x) = \left[\frac{dy_1}{dx}, \frac{dy_2}{dx}, \dots, \frac{dy_k}{dx}\right]^T$$

(см. случаи 2 и 3, рассмотренные в разделе 2.3).

$$C = (f \circ \Phi)'(x) = \frac{df}{dx} = A \cdot B = \begin{bmatrix} \frac{\partial f}{\partial y_1}, \frac{\partial f}{\partial y_2}, \dots, \frac{\partial f}{\partial y_k} \end{bmatrix} \cdot \begin{bmatrix} \frac{dy_1}{dx} \\ \frac{dy_2}{dx} \\ \vdots \\ \frac{dy_k}{dx} \end{bmatrix} = \frac{\partial f}{\partial y_1} \frac{dy_1}{dx} + \frac{\partial f}{\partial y_2} \frac{dy_2}{dx} + \dots + \frac{\partial f}{\partial y_k} \frac{dy_k}{dx}.$$

Мы получили формулу

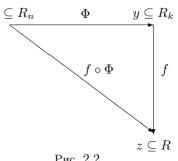
$$\frac{df}{dx} = \frac{\partial f}{\partial y_1} \frac{dy_1}{dx} + \frac{\partial f}{\partial y_2} \frac{dy_2}{dx} + \dots + \frac{\partial f}{\partial y_k} \frac{dy_k}{dx}, \tag{2.10}$$

где $f = f[y_1(x), y_2(x), \dots, y_k(x)]$

 $f=f[y_1(x),y_2(x),\ldots,y_k(x)].$ Пример. Для функции $f(y_1,y_2)$ $x\subseteq R_n$ $\lim_{t} t \ u_2=\cos t.$ найти $\frac{df}{dt}$, если $y_1 = \sin t$, $y_2 = \cos t$.

По формуле (2.10) находим $\frac{df}{dt} = \frac{\partial f}{\partial u_1} \cos t - \frac{\partial \dot{f}}{\partial u_2} \sin t.$

 $C_{\Lambda Y}$ чай 3. Пусть n и k произвольны, m=1. Для суперпозиции отображений, приведённой на рис. 2.2, имеем $f(y_1, y_2, \dots, y_k)$ скалярная функция k переменных.



$$\Phi(x) = [y_1(x_1, x_2, \dots, x_n), y_2(x_1, x_2, \dots, x_n), \dots, y_k(x_1, x_2, \dots, x_n)]^T$$
 — вектор-функция векторного аргумента.

$$(f \circ \Phi)(x) = = f[y_1(x_1, x_2, \dots, x_n), y_2(x_1, x_2, \dots, x_n), \dots, y_k(x_1, x_2, \dots, x_n)] -$$

скалярная функция векторного аргумента. В рассматриваемом слу-

чае
$$A = f'(y_1, y_2, \dots, y_k) = \left[\frac{\partial f}{\partial y_1}, \frac{\partial f}{\partial y_2}, \dots, \frac{\partial f}{\partial y_k}\right],$$

$$B = \Phi'(x) = \begin{bmatrix} \frac{\partial y_1}{\partial x_1} & \frac{\partial y_1}{\partial x_2} & \dots & \frac{\partial y_1}{\partial x_n} \\ \frac{\partial y_2}{\partial x_1} & \frac{\partial y_2}{\partial x_2} & \dots & \frac{\partial y_2}{\partial x_n} \\ \dots & \dots & \dots & \dots \\ \frac{\partial y_k}{\partial x_1} & \frac{\partial y_k}{\partial x_2} & \dots & \frac{\partial y_k}{\partial x_n} \end{bmatrix}.$$

(См. случаи 2 и 4 в разделе 2.3.)

$$C = (f \circ \Phi)'(x) = \left[\frac{\partial f}{\partial x_1}, \frac{\partial f}{\partial x_2}, \dots, \frac{\partial f}{\partial x_n}\right] =$$

$$= A \cdot B = \left[\frac{\partial f}{\partial y_1}, \frac{\partial f}{\partial y_2}, \dots, \frac{\partial f}{\partial y_k}\right] \cdot \begin{bmatrix} \frac{\partial y_1}{\partial x_1} & \frac{\partial y_1}{\partial x_2} & \dots & \dots & \frac{\partial y_1}{\partial x_n} \\ \frac{\partial y_2}{\partial x_1} & \frac{\partial y_2}{\partial x_2} & \dots & \dots & \frac{\partial y_2}{\partial x_n} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ \frac{\partial y_k}{\partial x_1} & \frac{\partial y_k}{\partial x_2} & \dots & \dots & \frac{\partial y_k}{\partial x_n} \end{bmatrix}.$$

Перемножая матрицы, получаем

 $\Pi pumep.$ Дана функция $z=f(u,v),\,u=x^2y,\,v=y^2x.$ Найти $\frac{\partial z}{\partial x}$ и $\frac{\partial z}{\partial y}.$

По формуле (2.11) получаем:

$$\frac{\partial z}{\partial x} = \frac{\partial f}{\partial u} 2xy + \frac{\partial f}{\partial v} y^2, \quad \frac{\partial z}{\partial y} = \frac{\partial f}{\partial u} x^2 + \frac{\partial f}{\partial v} 2yx.$$

2.4. Производная по направлению

Пусть даны $f(M) = f(x_1, x_2, \dots, x_n)$ — скалярная функция векторного аргумента и некоторый ненулевой вектор **a**. Зафиксируем некоторую точку M_0 . Предел

$$\lim_{M \to M_0} \frac{f(M) - f(M_0)}{\pm |\mathbf{M}_0 \mathbf{M}|}, \quad (\mathbf{M}_0 \mathbf{M} || \mathbf{a}),$$

если он существует и конечен, называется производной от функции f(M) в направлении вектора \mathbf{a} в точке M_0 и обозначается $\frac{\partial f}{\partial a}$, при этом выбираем знак "+", если $\mathbf{M}_0\mathbf{M}\uparrow\uparrow\mathbf{a}$, знак "–", если $\mathbf{M}_0\mathbf{M}\uparrow\downarrow\mathbf{a}$.

Найдём выражение для $\frac{\partial f}{\partial a}$, ограничиваясь случаем n=3, f(M)=f(x,y,z). Вектор \mathbf{a} запишем в виде: $\mathbf{a}=|\mathbf{a}|\mathbf{a}_0$, где $\mathbf{a}_0=(\cos\alpha,\cos\beta,\cos\gamma)$ — орт вектора \mathbf{a} , $\cos\alpha,\cos\beta,\cos\gamma$ — его направляющие косинусы. Пусть точка M_0 имеет координаты

$$(x_0,y_0,z_0),\ {\bf a}\ M-(x,y,z).$$
 Так как ${\bf M}_0{\bf M}\|{\bf a}_0,\ {\bf ro}\ {\bf M}_0{\bf M}=t{\bf a}_0,\ {\bf по-$ этому $x=x_0+t\cos\alpha,\ y=y_0+t\cos\beta,\ z=z_0+t\cos\gamma,\ |{\bf M}_0{\bf M}|=|t|.$ Тогда $\frac{\partial f}{\partial a}=\lim_{t\to 0}\frac{f(x,y,z)-f(x_0,y_0,z_0)}{\pm|t|}=$

$$= \lim_{t \to 0} \frac{f(x_0 + t \cos \alpha, y_0 + t \cos \beta, z_0 + t \cos \gamma) - f(x_0, y_0, z_0)}{t} = \frac{df}{dt}.$$

По формуле (2.10) находим

$$\frac{\partial f}{\partial a}(M_0) = \frac{\partial f}{\partial x}(M_0)\frac{dx}{dt} + \frac{\partial f}{\partial y}(M_0)\frac{dy}{dt} + \frac{\partial f}{\partial z}(M_0)\frac{dz}{dt}.$$

Так как $\frac{dx}{dt} = \cos \alpha$, $\frac{dy}{dt} = \cos \beta$, $\frac{dz}{dt} = \cos \gamma$, то

$$\frac{\partial f}{\partial a}(M_0) = \frac{\partial f}{\partial x}(M_0)\cos\alpha + \frac{\partial f}{\partial y}(M_0)\cos\beta + \frac{\partial f}{\partial z}(M_0)\cos\gamma. \quad (2.12)$$

Введём вектор grad $f = \left(\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z}\right)$, называемый градиентом функции f в точке M_0 . Тогда формулу (2.12) можно записать в виде

$$\frac{\partial f}{\partial a} = (\mathbf{a}_0, \operatorname{grad} f). \tag{2.13}$$

Заметим, что $\left| \frac{\partial f}{\partial a} \right|$ определяет скорость изменения функции f(x,y,z) в направлении вектора **a**. Из формулы (2.13) следует, что величина $\frac{\partial f}{\partial a}$ наибольшая, если **a** \parallel grad f.

$$\Pi p$$
имер. Найдите $\dfrac{\partial f}{\partial a}$ в точке $M_0(1,-1,2),$ если
$$f(x,y,z)=x^2-3x+y^2-2y+z^2+z$$
 и ${\bf a}(2,2,1).$

Находим орт вектора \mathbf{a} : $\mathbf{a}_0 = \frac{\mathbf{a}}{|\mathbf{a}|} = \frac{\mathbf{a}}{\sqrt{4+4+1}} = \frac{\mathbf{a}}{3} = \left(\frac{2}{3}; \frac{2}{3}; \frac{1}{3}\right)$, следовательно,

$$\cos \alpha = \frac{2}{3}, \cos \beta = \frac{2}{3}, \cos \gamma = \frac{1}{3},$$

$$\frac{\partial f}{\partial x} = 2x - 3, \frac{\partial f}{\partial y} = 2y - 2, \frac{\partial f}{\partial z} = 2z + 1,$$

$$\frac{\partial f}{\partial x}(M_0) = -1, \frac{\partial f}{\partial y}(M_0) = -4, \frac{\partial f}{\partial z}(M_0) = 5.$$

По формуле (2.12) получаем
$$\frac{\partial f}{\partial a}(M_0) = -1 \cdot \frac{2}{3} - 4 \cdot \frac{2}{3} + 5 \cdot \frac{1}{3} = -\frac{5}{3}.$$

2.5. Производные высших порядков

Вначале рассмотрим скалярную функцию одной переменной $f: X \subseteq R \to Y \subseteq R$. Пусть для всякого x из X существует производная f'(x) функции f(x). Производная f'(x) является новой функцией от x. Поэтому можно говорить о производной от f'(x). Определим вторую производную f''(x) как производную от первой производной, т.е. f''(x) = [f'(x)]'. Аналогично

$$f'''(x) = [f''(x)]', \dots, f^{(n)}(x) = [f^{(n-1)}(x)]'.$$

Пример 1. Найти
$$f^{(n)}(x)$$
, если $f(x)=e^{ax+b}$. $f'(x)=ae^{ax+b},$ $f''(x)=a^2e^{ax+b},$ $\dots,$ $f^{(n)}(x)=a^ne^{ax+b}$.

Пример 2.
$$f(x) = \sin x$$
. Найти $f^{(n)}(x)$.

$$f'(x) = \cos x = \sin\left(x + \frac{\pi}{2}\right),$$

$$f''(x) = \cos\left(x + \frac{\pi}{2}\right) = \sin\left(x + 2\frac{\pi}{2}\right), \dots, f^{(n)}(x) = \sin\left(x + n\frac{\pi}{2}\right),$$

Пример 3. Докажите, что
$$\left(\frac{1}{x-1}\right)^{(n)} = \frac{(-1)^n n!}{(x-1)^{(n+1)}}$$
.

Для отыскания производных высших порядков от произведения двух функций иногда полезна формула Лейбница. Пусть функции U(x) и V(x) имеют производные до порядка n включительно. Тогда

$$[U(x)\cdot V(x)]^{(n)} = \sum_{k=0}^{n} C_n^k V^{(k)}(x) U^{(n-k)}(x), \text{ где } C_n^0 = 1,$$

$$C_n^k = rac{n(n-1)(n-2)\cdot\ldots\cdot[n-(k-1)]}{k!}$$
 — число сочетаний из n по k .

Для вектор-функции одного аргумента полагаем:

$$\begin{bmatrix} f_1(x) \\ f_2(x) \\ \vdots \\ f_k(x) \end{bmatrix}^{(n)} = \begin{bmatrix} f_1^{(n)}(x) \\ f_2^{(n)}(x) \\ \vdots \\ f_k^{(n)}(x) \end{bmatrix}.$$

Рассмотрим скалярную функцию векторного аргумента $f = f(x_1, x_2, \dots, x_n).$

Мы ввели уже частные производные $\frac{\partial f}{\partial x_1}, \frac{\partial f}{\partial x_2}, \dots \frac{\partial f}{\partial x_n}$. Эти частные производные сами являются функциями от (x_1, x_2, \dots, x_n) .

Поэтому можно говорить о частных производных от них. Их называют частными производными второго порядка и обозначают

$$\frac{\partial^2 f}{\partial x_i \partial x_j} \quad (i, j = 1, 2, \dots n).$$

Можем получить следующие частные производные

$$\frac{\partial^2 f}{\partial x_1^2} = \frac{\partial}{\partial x_1} \left(\frac{\partial f}{\partial x_1} \right), \ \frac{\partial^2 f}{\partial x_2^2} = \frac{\partial}{\partial x_2} \left(\frac{\partial f}{\partial x_2} \right), \dots, \ \frac{\partial^2 f}{\partial x_n^2} = \frac{\partial}{\partial x_n} \left(\frac{\partial f}{\partial x_n} \right), \dots, \ \frac{\partial^2 f}{\partial x_{n-1} \partial x_n} = \frac{\partial}{\partial x_{n-1}} \left(\frac{\partial f}{\partial x_n} \right).$$

Аналогично вводятся частные производные третьего порядка

$$\frac{\partial^3 f}{\partial x_1^3} = \frac{\partial}{\partial x_1} \left(\frac{\partial^2 f}{\partial x_1^2} \right), \ \frac{\partial^3 f}{\partial x_1^2 \partial x_2} = \frac{\partial}{\partial x_1} \left(\frac{\partial^2 f}{\partial x_1 \partial x_2} \right) \text{ и т.д.},$$

и более высоких порядков.

Частные производные, в которые входит дифференцирование по различным переменным, называются смешанными, например,

$$\frac{\partial^2 f}{\partial x_1 \partial x_2}$$
, $\frac{\partial^2 f}{\partial x_2 \partial x_1}$, $\frac{\partial^3 f}{\partial^2 x_1 \partial x_2}$, $\frac{\partial^3 f}{\partial x_2, \partial x_1, \partial x_3}$, ...

Теорема. Смешанные частные производные любого порядка, отличающиеся лишь порядком дифференцирования, непрерывные в окрестности некоторой точки, равны в этой точке между собой.

$$\Pi$$
ример 4. Найти $\frac{\partial^2 f}{\partial x^2}$, $\frac{\partial^2 f}{\partial x \partial y}$, $\frac{\partial^2 f}{\partial y^2}$, если $f(x,y,z)=x^{yz}$.

$$\begin{array}{lll} Peшение. \,\, \frac{\partial f}{\partial x} \,=\, yzx^{yz-1}, \,\, \frac{\partial^2 f}{\partial x^2} \,=\, yz(yz-1)x^{yz-2}, \,\, \frac{\partial f}{\partial y} \,=\, zx^{yz}\ln x, \\ \frac{\partial^2 f}{\partial y^2} \,=\, z^2x^{yz}\ln^2 x, \,\, \frac{\partial^2 f}{\partial x\partial y} \,=\, x^{yz-1}z(1+yz\ln x). \,\, \frac{\partial^2 f}{\partial z^2}, \,\, \frac{\partial^2 f}{\partial x\partial z}, \,\, \frac{\partial^2 f}{\partial y\partial z} \end{array}$$
 найдите самостоятельно.

Рассмотрим более подробно частные производные высших порядков от сложной функции для функций двух переменных.

Пусть f(x,y), x = x(t), y = y(t) — дифференцируемые функции. Тогда по формуле (2.10) имеем $\frac{df}{dt} = \frac{\partial f}{\partial x} \frac{dx}{dt} + \frac{\partial f}{\partial y} \frac{dy}{dt}$.

Считая, что функции $\frac{\partial f}{\partial x}$, $\frac{dx}{dt}$, $\frac{\partial f}{\partial y}$, $\frac{dy}{dt}$ также дифференцируемы, находим

$$\begin{split} &\frac{d^2f}{dt^2} = \frac{\partial}{\partial t} \left(\frac{\partial f}{\partial x} \right) \frac{dx}{dt} + \frac{\partial f}{\partial x} \frac{d^2x}{dt^2} + \frac{\partial}{\partial t} \left(\frac{\partial f}{\partial y} \right) \frac{dy}{dt} + \frac{\partial f}{\partial y} \frac{d^2y}{dt^2} = \left(\frac{\partial^2 f}{\partial x^2} \frac{dx}{dt} + \frac{\partial^2 f}{\partial y^2} \frac{dy}{dt} \right) \frac{dy}{dt} + \frac{\partial^2 f}{\partial y} \frac{dy}{dt^2} = \\ &= \frac{\partial^2 f}{\partial x^2} \left(\frac{dx}{dt} \right)^2 + 2 \frac{\partial^2 f}{\partial x \partial y} \frac{dx}{dy} \frac{dy}{dt} + \frac{\partial^2 f}{\partial y^2} \left(\frac{dy}{dt} \right)^2 + \frac{\partial f}{\partial x} \frac{d^2x}{dt^2} + \frac{\partial f}{\partial y} \frac{d^2y}{dt^2}. \end{split}$$

Мы здесь предположили, что $\frac{\partial^2 f}{\partial x \partial y} = \frac{\partial^2 f}{\partial y \partial x}$.

Пусть теперь имеем сложную функцию

$$f(x,y) = f[x(u,v), y(u,v)].$$

Считая функции $f(x,y),\,x(u,v),\,y(u,v)$ дифференцируемыми, по формуле (2.11) можно найти

$$\frac{\partial f}{\partial u} = \frac{\partial f}{\partial x} \frac{\partial x}{\partial u} + \frac{\partial f}{\partial y} \frac{\partial y}{\partial u}, \ \frac{\partial f}{\partial v} = \frac{\partial f}{\partial x} \frac{\partial x}{\partial v} + \frac{\partial f}{\partial y} \frac{\partial y}{\partial v}.$$

Легко получить, что

$$\frac{\partial^2 f}{\partial u^2} = \frac{\partial^2 f}{\partial x^2} \left(\frac{\partial x}{\partial u} \right)^2 + 2 \frac{\partial^2 f}{\partial x \partial y} \frac{\partial x}{\partial u} \frac{\partial y}{\partial u} + \frac{\partial^2 f}{\partial y^2} \left(\frac{\partial y}{\partial u} \right)^2 + \frac{\partial f}{\partial x} \frac{\partial^2 x}{\partial u^2} + \frac{\partial f}{\partial y} \frac{\partial^2 y}{\partial u^2}.$$

Частные производные $\frac{\partial^2 f}{\partial v^2}$, $\frac{\partial^2 f}{\partial u \partial v}$ предлагаем записать самостоятельно в качестве упражнения.

2.6. Функции, заданные параметрически, и их дифференцирование

Определить функцию y = f(x) можно с помощью соотношений

$$\begin{cases} x = \varphi(t), \\ y = \psi(t), \end{cases} \quad t \in T. \tag{2.14}$$

При этом сопоставляются друг с другом те значения x и y, которые получаются из соотношения (2.14) при одном и том же значении аргумента t. Говорят, что возникающая при этом функция y=y(x) задана параметрически с помощью соотношений (2.14).

Пусть функции $\varphi(t)$ и $\psi(t)$ достаточное число раз дифференцируемы и $\varphi'(t) \neq 0$. Предположим, что удалось найти обратную к $\varphi(t)$ функцию $x^{-1} = t(x)$. Тогда $y(x) = \psi[t(x)]$ — сложная функция

и $y_x' = \psi_t' \cdot t_x' = \frac{y_t'}{x_t'}$. Таким образом, производная функции, заданной параметрически, находится по формуле

$$\begin{cases} y_x' = \frac{dy}{dx} = \frac{y_t'}{x_t'}, \\ x = x(t). \end{cases}$$
 (2.15)

Для отыскания второй производной y''_{xx} воспользуемся соотношениями (2.15) ещё раз $\left\{ \begin{array}{l} y''_{xx} = \left(\frac{y'_t}{x'_t}\right)'_t \frac{1}{x'_t}, \\ x = x(t). \end{array} \right.$ Вычислив производную

дроби
$$\left(\frac{y_t'}{x_t'}\right)_t'$$
, получим $\left\{\begin{array}{l} x=x(t).\\ y_{xx}''=\frac{y_{tt}''x_t'-x_{tt}''y_t'}{(x_t')^3},\\ x=x(t). \end{array}\right.$

Аналогично могут быть получены выражения для третьей, четвёртой и последующих производных функции, заданной параметрически.

$$\Pi$$
ример. Найти $y''_{xx},$ если
$$\left\{ \begin{array}{l} x=rac{1}{9}\cos^3t,\\ y=rac{1}{3}\sin^3t. \end{array} \right.$$

Решение.

$$\begin{cases} y'_x = \frac{3\sin^2 t \cos t}{-\cos^2 t \sin t} = -3 \operatorname{tg} t, \\ x = \frac{1}{9}\cos^3 t. \end{cases} \begin{cases} y''_{xx} = \frac{-3\frac{1}{\cos^2 t} \cdot 3}{-\cos^2 t \sin t} = \frac{9}{\cos^4 t \sin t}, \\ x = \frac{1}{9}\cos^3 t. \end{cases}$$

2.7. Функции, заданные неявно, и их дифференцирование

Соответствие между x и y может быть задано с помощью уравнения

$$F(x,y) = 0 (2.16)$$

следующим образом: с каждым значением $x=x_0$ сопоставляется то значение y_0 , которое получается решением уравнения $F(x_0,y)=0$, т.е. то, которое обращает уравнение $F(x_0,y)=0$ в тождество. Таким образом, с помощью соотношения (2.16) можно задать функцию y(x) такую, что $F(x,y(x))\equiv 0$. Говорят, что функция y(x) задана неявно с помощью уравнения (2.16). В тех случаях, когда уравнение F(x,y)=0 удаётся разрешить относительно y, мы найдём явное задание функции.

Пусть уравнение F(x,y)=0 задаёт неявно y как функцию от x. F(x,y(x)) — сложная функция переменной x, а $F(x,y(x))\equiv 0$ — тождество. Дифференцируя обе части этого тождества по x, применяя формулу (2.10), получаем: $\frac{dF}{dx}=\frac{\partial F}{\partial x}\cdot\frac{dx}{dx}+\frac{\partial F}{\partial y}\cdot\frac{dy}{dx}=0.$ Отсюда, полагая, что $F_y'\neq 0$, находим

$$\frac{dy}{dx} = y'_x = -\frac{\frac{\partial F}{\partial x}}{\frac{\partial F}{\partial y}} = -\frac{F'_x}{F'_y}.$$
 (2.17)

Используя соотношение (2.17), легко найти y''_{xx} (предполагая её существование):

$$y_{xx}'' = -\left[\frac{F_x'}{F_y'}\right]_x' = -\frac{(F_{xx}'' + F_{xy}''y_x')F_y' - (F_{yx}'' + F_{yy}''y_x')F_x'}{(F_y')^2}.$$

Полагая $y_x' = -\frac{F_x'}{F_y'}$ и считая, что $F_{xy}'' = F_{yx}''$, после упрощения получим

$$y_{xx}^{\prime\prime} = \frac{2F_{xy}^{\prime\prime}F_x^{\prime}F_y^{\prime} - F_{xx}^{\prime\prime}(F_y^{\prime})^2 - F_{yy}^{\prime\prime}(F_x^{\prime})^2}{(F_y^{\prime})^3}.$$

Аналогично можно получить выражения для третьей производной, четвёртой и т.д.

Пусть уравнение $\Phi(x,y,z)=0$ определяет неявно функцию z=z(x,y) в некоторой области. Тогда имеем сложную функцию $\Phi[x,y,z(x,y)]$ двух переменных x и y и тождество $\Phi[x,y,z(x,y)]\equiv 0$. Дифференцируя это тождество по x, применяя формулы (2.11), получаем $\Phi'_x(x,y,z)+\Phi'_zz'_x=0$. Предположим, что $\Phi'_z\neq 0$. Тогда

$$\frac{\partial z}{\partial x} = -\frac{\frac{\partial \Phi}{\partial x}}{\frac{\partial \Phi}{\partial z}}.$$
 (2.18)

Аналогично

$$\frac{\partial z}{\partial y} = -\frac{\frac{\partial \Phi}{\partial y}}{\frac{\partial \Phi}{\partial z}}.$$
 (2.19)

Для отыскания частных производных z''_{xx} , z''_{yy} , z''_{xy} нужно продифференцировать дроби (2.18) и (2.19), используя формулы (2.11) и выражения z'_x и z'_y в (2.18) и (2.19). Подробные выкладки предлагаем выполнить читателю в виде упражнения.

2.8. Геометрический и механический смысл производной

Пусть функция $f: X \subseteq R \to Y \subseteq R$ дифференцируема. Построим её график (рис. 2.3) и проведём секущую, соединяющую точки $M_0(x, f(x))$ и $M(x + \Delta x, f(x + \Delta x))$. Предельное положение секущей

 M_0M , когда точка Mстремится к точке M_0 по кривой, называется касательной к кривой в точке M_0 . Тангенс угла φ наклона секущей к оси OX(рис. 2.3) равен

$$\operatorname{tg}\varphi = \frac{f(x + \Delta x) - f(x)}{\Delta x}.$$

Если устремим $\Delta x \to 0$, то секущая займёт положение касательной к графику функции f в точке x. Но

$$\operatorname{tg} \varphi_0 = \lim_{\Delta x \to 0} \operatorname{tg} \varphi = \lim_{\Delta x \to 0} \frac{f(x + \Delta x) - f(x)}{\Delta x} = f'(x).$$

Таким образом, геометрический смысл производной функции fв точке x заключается в том, что f'(x) равна тангенсу угла наклона к оси OX касательной к графику функции в точке x.

Если в каждой точке графика функции провести касательную, то эта касательная при перемещении точки касания по кривой будет вращаться. Введём понятие средней кривизны кривой на участке M_0M , как отношение угла ω между касательными в точках M_0 и Mк длине дуги σ участка кривой M_0M .

Кривизной графика функции в точке M_0 называют число k, определяемое равенством $k=\lim_{\sigma\to 0}\frac{\omega}{\sigma}.$ Если график функции f(x) задан параметрически в виде $\left\{ \begin{array}{l} x=x(t),\\ y=y(t), \end{array} \right.$ то можно доказать, что

$$k = \frac{x_t' y_{tt}'' - y_t' x_{tt}''}{[(x_t')^2 + (y_t')^2]^{3/2}}.$$
 (2.20)

При явном задании функции в виде y=f(x) формула (2.20) принимает вид

 $k = \frac{f_{xx}''}{[1 + (f_x')^2]^{3/2}}.$

 Π ример 1. Найти кривизну гиперболы $y=rac{4}{x}$ в точке x=2.

Решение.
$$f' = -\frac{4}{x^2}$$
; $f'(2) = -1$; $f'' = \frac{8}{x^3}$; $f''(2) = 1$; $k = \frac{1}{(1+1)^{3/2}} = \frac{1}{2\sqrt{2}} = \frac{\sqrt{2}}{4}$.

 $\Pi pumep\ 2$. Найти кривизну линии, заданной параметрически $\left\{ egin{array}{ll} x=3t^2, \\ y=3t-t^3, \end{array}
ight.$ в точке $t_0=1.$

Решение. Находим $x_t'=6t,\ y_t'=3-3t^2,\ x_t'(1)=6,\ y_t'(1)=0,\ x_t''=6,\ y_t''=-6t,\ x_t'(1)=6,\ y_t''(1)=-6.$ По формуле (2.20) получаем $k=\frac{-6\cdot 6}{(6^2)^{3/2}}=-\frac{1}{6}.$

Заметим, что кривизна прямой линии y=kx+b равна нулю, а кривизна окружности радиусом R в каждой точке постоянна и равна $\frac{1}{\mathcal{D}}.$

Пусть s=f(t) — величина пути, пройденного точкой к моменту времени t. Тогда отношение $\dfrac{f(t+\Delta t)-f(t)}{\Delta t}$ есть средняя скорость движения точки на участке Δt , $\lim_{\Delta t \to 0} \dfrac{f(t+\Delta t)-f(t)}{\Delta t} = f'(t)$ определяет мгновенную скорость движения точки в момент времени t. Величина f''(t) есть ускорение движения точки.

2.9. Уравнение касательной к кривой. Уравнения касательной плоскости и нормали к поверхности

В разделе 2.8 мы показали, что $f'(x_0) = k$ есть тангенс угла наклона касательной к графику функции в точке x_0 . Поэтому для функции, заданной в явной форме, уравнение касательной имеет вид

$$y - y_0 = f'(x_0)(x - x_0). (2.21)$$

В случае неявного задания функции y(x) уравнением F(x,y)=0 уравнение (2.21) принимает вид $y-y_0=-\frac{F_x'(x_0,y_0)}{F_y'(x_0,y_0)}(x-x_0)$, или

$$F'_x(x_0, y_0)(x - x_0) + F'_y(x_0, y_0)(y - y_0) = 0.$$

Для параметрически заданной функции $\left\{ \begin{array}{l} x=x(t),\\ y=y(t), \end{array}, t\in (t_1,t_2)$ при

$$t=t_0,\ x_0=x(t_0),\ y_0=y(t_0),\ y_x'(t_0)=\dfrac{y_t'(t_0)}{x_t'(t_0)}.$$
 Поэтому уравнение касательной можно записать в виде $y-y_0=\dfrac{y_t'(t_0)}{x_t'(t_0)}(x-x_0),$ или

$$\frac{y - y_0}{y_t'(t_0)} = \frac{x - x_0}{x_t'(t_0)}.$$

В случае пространственной кривой, заданной параметрически

$$\begin{cases} x = x(t), \\ y = y(t), & t \in (t_1, t_2), \\ z = z(t), \end{cases}$$
 (2.22)

уравнение касательной при $t = t_0$ можно записать в виде

$$\frac{x - x_0}{x_t'(t_0)} = \frac{y - y_0}{y_t'(t_0)} = \frac{z - z_0}{z_t'(t_0)}.$$

Прямая, перпендикулярная касательной и проходящая через точку касания, называется нормалью к кривой.

При задании кривой неявно уравнением F(x,y)=0 уравнение нормали в точке (x_0,y_0) можно записать в виде

$$\frac{x - x_0}{F_x'(x_0, y_0)} = \frac{y - y_0}{F_y'(x_0, y_0)}.$$

Пусть теперь уравнение F(x,y,z)=0 определяет неявно функцию z=z(x,y), графиком которой является некоторая поверхность S, и $M_0(x_0,y_0,z_0)$ — фиксированная точка поверхности S, т.е. $F(x_0,y_0,z_0)=0.$

Плоскость П, проходящая через точку M_0 и содержащая касательные ко всем кривым, проходящим через M_0 и лежащим на поверхности S, если она существует, называется касательной плоскостью к поверхности S в точке M_0 .

Если кривая $\mathcal L$ задана параметрически уравнениями (2.22) и лежит на поверхности F(x,y,z)=0, то имеем относительно t тождество $F(x(t),y(t),z(t))\equiv 0$. Дифференцируя это тождество по t (в предположении, что $x(t),\,y(t),\,z(t),\,F(x,y,z)$ — дифференцируемые функции), по формуле (2.10) получаем

$$\frac{\partial F}{\partial x}\frac{dx}{dt} + \frac{\partial F}{\partial y}\frac{dy}{dt} + \frac{\partial F}{\partial z}\frac{dz}{dt} = 0. \tag{2.23}$$

Обозначим
$$\mathbf{N} = \left(\frac{\partial F}{\partial x}, \frac{\partial F}{\partial y}, \frac{\partial F}{\partial z}\right)$$
, $\mathbf{r} = \left(\frac{dx}{dt}, \frac{dy}{dt}, \frac{dz}{dt}\right)$. Тогда (2.23) можно переписать в виде равенства $(\mathbf{N}, \mathbf{r}) = 0$, которое означает,

что вектор ${\bf N}$ ортогонален направляющему вектору ${\bf r}$ касательной к любой дифференцируемой кривой ${\cal L}$, лежащей на поверхности S и

проходящей через точку M_0 , т.е. он является вектором нормали к искомой касательной плоскости Π .

Таким образом, уравнение касательной плоскости к поверхности F(x,y,z)=0 в точке $M_0(x_0,y_0,z_0)$ можно записать в виде

$$F'_x(x_0, y_0, z_0)(x - x_0) + F'_y(x_0, y_0, z_0)(y - y_0) + F'_z(x_0, y_0, z_0)(z - z_0) = 0.$$

Если поверхность S задана явно уравнением z=f(x,y), то уравнение касательной плоскости имеет вид

$$z - z_0 = f'_x(x_0, y_0)(x - x_0) + f'_y(x_0, y_0)(y - y_0).$$

Прямая, перпендикулярная касательной плоскости к поверхности в точке $M_0(x_0,y_0,z_0)$, называется нормалью к поверхности в точке M_0 .

Уравнение нормали к поверхности F(x,y,z) в точке $M_0(x_0,y_0,z_0)$ можно записать в виде

$$\frac{x-x_0}{F_x'(x_0,y_0,z_0)} = \frac{y-y_0}{F_y'(x_0,y_0,z_0)} = \frac{z-z_0}{F_z'(x_0,y_0,z_0)}.$$

 $\mathit{Пример}\ 1.$ Записать уравнение касательной и нормали к кривой $y=2x^2+4$ в точке M(2,12).

Решение. Находим y'=4x, y'(2)=8. Поэтому уравнение касательной будет иметь вид y-12=8(x-2), или 8x-y-4=0, а уравнение нормали x+8y-98=0.

Пример 2. Записать уравнение касательной плоскости и нормали к поверхности, заданной уравнением $\frac{x^2}{2} + \frac{y^2}{4} + \frac{z^2}{16} = 1$ в точке M(1,1,2).

Решение. Так как
$$\frac{\partial F}{\partial x}=x, \ \frac{\partial F}{\partial y}=\frac{y}{2}, \ \frac{\partial F}{\partial z}=\frac{z}{8}, \ \frac{\partial F}{\partial x}(1,1,2)=1,$$
 $\frac{\partial F}{\partial y}(1,1,2)=\frac{1}{2}, \frac{\partial F}{\partial z}(1,1,2)=\frac{1}{4},$ то уравнение касательной плоскости может быть записано в виде $(x-1)+\frac{1}{2}(y-1)+\frac{1}{4}(z-2)=0,$ или $4x+2y+z-8=0,$ а $\frac{x-1}{4}=\frac{y-1}{2}=\frac{z-2}{1}$ — уравнение нормали.

2.10. Дифференциал функции

Рассмотрим дифференциал $f'(x)\Delta x$ более подробно. Обычно дифференциал в точке x обозначают df(x). Чтобы подчеркнуть зависимость дифференциала от Δx , будем писать $df(x,\Delta x)$. По определению $df(x,\Delta x)=f'(x)\Delta x, \Delta x\in R_n$, т. е. дифференциал является

результатом действия линейного оператора с матрицей f'(x) на вектор Δx . Если $f'(x) \neq 0$, то дифференциал можно определить как линейную составляющую приращения функции, вызванного приращением аргумента Δx .

При этом будем считать, что приращение Δx не зависит от x, т. е. в рассматриваемом процессе Δx полагать константой относительно x. Положим $dx = \Delta x$. Тогда

$$df(x) = df(x, dx) = f'(x)dx. (2.24)$$

Рассмотрим (2.24) для функций разного числа переменных.

Случай 1. $f: X \subseteq R \to Y \subseteq R$ — скалярная функция одного скалярного аргумента. В этом случае f'(x) состоит из одного элемента и совпадает с производной f'(x) и df(x) = f'(x)dx.

Cлучай 2. $f: X \subseteq R_n \to Y \subseteq R$ — скалярная функция векторного аргумента $f(x_1, x_2, \dots, x_n)$. Теперь $f'(x) = \left[\frac{\partial f}{\partial x_1}, \frac{\partial f}{\partial x_2}, \dots, \frac{\partial f}{\partial x_n}\right]$, $dx = \Delta x = (dx_1, dx_2, \dots, dx_n)^T$ и, следовательно, $df = \frac{\partial f}{\partial x_1} dx_1 + \frac{\partial f}{\partial x_2} dx_2 + \dots + \frac{\partial f}{\partial x_n} dx_n.$

 $\mathit{Cлучай}\ 3.\ f: X\subseteq R_n \to Y\subseteq R_m$ — векторная функция вектор-

ного аргумента.
$$f = \left[\begin{array}{c} f_1(x_1, x_2, \ldots, x_n) \\ f_2(x_1, x_2, \ldots, x_n) \\ \vdots \\ f_m(x_1, x_2, \ldots, x_n) \end{array} \right].$$

В этом случае

$$df = \begin{bmatrix} df_1 \\ df_2 \\ \vdots \\ df_m \end{bmatrix} = \begin{bmatrix} \frac{\partial f_1}{\partial x_1} dx_1 + \frac{\partial f_1}{\partial x_2} dx_2 + \dots + \frac{\partial f_1}{\partial x_n} dx_n \\ \frac{\partial f_2}{\partial x_1} dx_1 + \frac{\partial f_2}{\partial x_2} dx_2 + \dots + \frac{\partial f_2}{\partial x_n} dx_n \\ \vdots \\ \frac{\partial f_m}{\partial x_1} dx_1 + \frac{\partial f_m}{\partial x_2} dx_2 + \dots + \frac{\partial f_m}{\partial x_n} dx_n \end{bmatrix}.$$

 $\mathit{Cлучай}\ 4.\ f: X\subseteq R \to Y\subseteq R_m$ — векторная функция скалярного аргумента.

$$f = \begin{bmatrix} f_1(x) \\ f_2(x) \\ \vdots \\ f_m(x) \end{bmatrix}, \quad df = \begin{bmatrix} f'_1(x)dx \\ f'_2(x)dx \\ \vdots \\ f'_m(x)dx \end{bmatrix}.$$

Пример 1. Если
$$f(x) = x^2 \cos^3 5x$$
, то $df = f'(x)dx = (2x\cos^3 5x - 15x^2\cos^2 5x\sin 5x)dx$.

Пример 2. Если
$$f(x,y,z) = x^3 \cos y + z^2$$
, то
$$df = 3x^2 \cos y dx - x^3 \sin y dy + 2z dz.$$

Рассмотрим сложную функцию $(f \circ \Phi)x = f[\Phi(x)]$. По правилу дифференцирования сложной функции $(f \circ \Phi)'(x) = (f' \circ \Phi)\Phi'(x)$. Умножив обе части этого равенства на dx, получим $(f \circ \Phi)'(x)dx = (f' \circ \Phi)(x)\Phi'(x)dx = f'(\Phi(x))\Phi'(x)dx = f'(\Phi(x))d\Phi(x)$, т.е. $(f \circ \Phi)'(x)dx = f'[\Phi(x)]d\Phi(x)$.

Свойство, заключённое в последнем соотношении, состоящее в том, что для зависимой и независимой переменных дифференциал функции записывается одинаково, называется свойством инвариантности первого дифференциала. Это свойство широко используется при замене переменных в интегральном исчислении: если df = f'(x)dx, то и df = f'(u)du, какая бы ни была дифференциру-

емая функция u(x), например, $du^{\alpha}=\alpha u^{\alpha-1}du$, $d\ln u=\frac{du}{u}$ и т.д.

По определению дифференцируемости

$$\Delta f(x_0) = f(x_0 + \Delta x) - f(x_0) = f'(x_0) dx + \alpha(x_0, dx),$$
 где $\alpha(x_0, dx)$ — бесконечно малая более высокого порядка малости,

где $\alpha(x_0, dx)$ — бесконечно малая более высокого порядка малости, чем dx. Тогда в близкой к x_0 точке $x_0 + dx$ имеем

$$f(x_0 + dx) = f(x_0) + f'(x_0)dx + \alpha(x_0, dx).$$

Отбрасывая слагаемое $\alpha(x_0,dx)$, как имеющее порядок малости относительно dx выше первого, получаем $f(x_0+dx)\approx f(x_0)+f'(x_0)dx$ с ошибкой, равной $\alpha(x_0,dx)$.

Пример 3. Заменяя приращение функции дифференциалом, вычислить $\arctan 0.97$.

Решение. Возьмём $f(x)=\arctan x$, $x_0=1$, dx=-0.03. Так как $f'(x)=(\arctan g)'(x)=\frac{1}{1+x^2}$, то f'(1)=0.5. Учитывая, что $f(1)=\frac{\pi}{4}$, то $\arctan g 0.97=\arctan g 1+0.5(-0.03)=\frac{\pi}{4}-0.015\approx\frac{3.142}{4}-0.015\approx 0.786-0.015=0.771$.

2.11. Дифференциалы высших порядков

Как мы видели, df является функцией от x. Поэтому можно говорить о d(df).

Дифференциалом второго порядка (обозначается d^2f) называется дифференциал от дифференциала первого порядка, т.е. $d^2f = d(df)$.

По индукции положим $d^n f = d(d^{n-1} f)$.

Получим формулы для вычисления дифференциалов высших порядков.

Cлучай 1. $f:X\subseteq R\to Y\subseteq R$ — функция одной переменной, тогда $d^2f=d(df)=d(f')dx+f'd(dx)=(f''_{xx}dx)dx+f'_xd^2x=f''_{xx}(dx)^2+f'_xd^2x.$

Возможны два варианта:

а) x — независимая переменная, тогда dx не зависит от x, поэтому $d^2x=d(dx)=0$ и, следовательно,

$$d^{2}f = f''(dx)^{2},
\dots \dots \dots \dots
d^{n}f = f^{(n)}(dx)^{n};$$
(2.25)

б) x — есть функция независимой переменной t: x = x(t), тогда $d^2x = x_{tt}''(dt)^2$ и, следовательно,

$$d^{2}f = f''(dx)^{2} + f'x_{tt}''(dt)^{2} = f_{xx}''(x_{t}'dt)^{2} + f_{x}'x_{tt}''(dt)^{2}.$$
 (2.26)

Сравнивая выражения (2.25) и (2.26) для d^2f , заключаем, что второй дифференциал не обладает свойством инвариантности формы записи.

 $\mathit{Cлучай}\ 2.\ f: X\subseteq R_n\to Y\subseteq R$ — скалярная функция многих переменных $f(x_1,x_2,\ldots,x_n).$ Тогда

$$\begin{split} d^2f &= d(df) = d\left(\frac{\partial f}{\partial x_1}dx_1 + \frac{\partial f}{\partial x_2}dx_2 + \cdot + \frac{\partial f}{\partial x_n}dx_n\right) = \\ &= d\left(\sum_{i=1}^n \frac{\partial f}{\partial x_i}dx_i\right) = \sum_{i=1}^n d\left(\frac{\partial f}{\partial x_i}\right)dx_i + \sum_{i=1}^n \frac{\partial f}{\partial x_i}d(dx_i) = \\ &= \sum_{i=1}^n \left(\sum_{j=1}^n \frac{\partial}{\partial x_j}\frac{\partial f}{\partial x_i}dx_j\right)dx_i + \sum_{i=1}^n \frac{\partial f}{\partial x_i}d^2x_i, \quad \text{T.e.} \\ d^2f &= \sum_{i=1}^n \sum_{j=1}^n \frac{\partial^2 f}{\partial x_j\partial x_i}dx_jdx_i + \sum_{i=1}^n \frac{\partial f}{\partial x_i}d^2x_i. \end{split}$$

Если x_i — независимые переменные, то $d^2x_i = 0$ и

$$d^2f = \sum_{i=1}^n \sum_{j=1}^n \frac{\partial^2 f}{\partial x_j \partial x_i} dx_j dx_i. \tag{2.27}$$

Видим, что d^2f является квадратичной формой относительно dx_1, dx_2, \ldots, dx_n . В частности, для функции двух независимых переменных f(x,y): $d^2f = \frac{\partial^2 f}{(\partial x)^2}(dx)^2 + 2\frac{\partial^2 f}{\partial x \partial y}dxdy + \frac{\partial^2 f}{(\partial y)^2}(dy)^2$.

Символически соотношение (2.27) можно записать в виде

$$d^{2}f = \left(\frac{\partial}{\partial x_{1}}dx_{1} + \frac{\partial}{\partial x_{2}}dx_{2} + \dots + \frac{\partial}{\partial x_{n}}dx_{n}\right)^{2}f.$$

В случае дифференциала $d^m f$, если x_i — независимые переменные, то $d^m f = \left(\frac{\partial}{\partial x_1} dx_1 + \frac{\partial}{\partial x_2} dx_2 + \dots + \frac{\partial}{\partial x_n} dx_n\right)^m f$.

 $\Pi pumep 1$. Найти d^2f , если $f(x,y)=2x^2y^3+\sin xy$, где x и y — независимые переменные.

Решение.

$$\begin{split} \frac{\partial f}{\partial x} &= 4xy^3 + y\cos xy, \ \frac{\partial f}{\partial y} = 6x^2y^2 + x\cos xy, \ \frac{\partial^2 f}{(\partial x)^2} = 4y^3 - y^2\sin xy, \\ \frac{\partial^2 f}{(\partial y)^2} &= 12x^2y - x^2\sin xy, \ \frac{\partial^2 f}{\partial x\partial y} = 12xy^2 + \cos xy - xy\sin xy. \ \text{Поэтому} \\ d^2f &= (4y^3 - y^2\sin xy)(dx)^2 + 2(12xy^2 + \cos xy - xy\sin xy)dxdy + \\ + (12x^2y - x^2\sin xy)(dy)^2. \end{split}$$

2.12. Формула Тейлора

Если f — скалярная функция одной или многих переменных, имеющая непрерывные производные до порядка (n+1) включительно, то её приращение в точке x_0 , вызванное приращением аргумента Δx , можно представить в виде

$$\Delta f(x,x_0) = df(x_0) + \frac{1}{2!}d^2f(x_0) + \dots + \frac{1}{n!}d^nf(x_0) + R_{n+1}(x,x_0) =$$

$$= \sum_{l=1}^n \frac{d^k f(x_0)}{k!} + R_{n+1}(x,x_0). \tag{2.28}$$

Соотношение (2.28) называется формулой Тейлора для функции f в точке x_0 . Величина $R_{n+1}(x,x_0)$ называется остаточным членом. Можно доказать, что R_{n+1} имеет порядок малости относительно Δx выше n.

Справедливость формулы (2.28) будет доказана при изучении рядов Тейлора.

Если f(x) — скалярная функция одного скалярного аргумента, то $d^n f(x_0) = f^{(n)}(x_0)(dx)^n$, где $dx = \Delta x = x - x_0$, $\Delta f = f(x) - f(x_0)$, и формулу (2.28) можно записать в виде

$$f(x) = f(x_0) + \frac{f'(x_0)}{1!}(x - x_0) + \frac{f''(x_0)}{2!}(x - x_0)^2 + \dots + \frac{f^{(n)}}{n!}(x - x_0)^n + R_{n+1}(x, x_0).$$

В этом случае остаточный член $R_{n+1}(x,x_0)$ может быть найден по формуле $R_{n+1}=\frac{f^{(n+1)}(c)}{(n+1)!}(x-x_0)^{n+1}$, где c — некоторая точка, лежащая между x и x_0 . Такую форму записи остаточного члена называют формой Лагранжа. При $x_0=0$ формула Тейлора носит название формулы Маклорена.

Для скалярной функции двух переменных формула (2.28) имеет вид

$$f(x,y) = f(x_0, y_0) + \frac{\partial f}{\partial x}(x_0, y_0)(x - x_0) + \frac{\partial f}{\partial y}(x_0, y_0)(y - y_0) +$$

$$+ \frac{1}{2!} \left[\frac{\partial^2 f}{\partial x^2}(x_0, y_0)(x - x_0)^2 + 2 \cdot \frac{\partial^2 f}{\partial x \partial y}(x_0, y_0)(x - x_0)(y - y_0) +$$

$$+ \frac{\partial^2 f}{\partial y^2}(x_0, y_0)(y - y_0)^2 \right] + \dots + \frac{1}{n!} \left[\frac{\partial}{\partial x}(x - x_0) + \frac{\partial}{\partial y}(y - y_0) \right]^n \times$$

$$\times f(x_0, y_0) + R_{n+1}(x, y, x_0, y_0).$$

Важнейшими разложениями по формуле Маклорена являются:

$$e^{x} = 1 + x + \frac{x^{2}}{2!} + \frac{x^{3}}{3!} + \dots + \frac{x^{n}}{n!} + R_{n+1};$$

$$\sin x = x - \frac{x^{3}}{3!} + \frac{x^{5}}{5!} + \dots + \frac{(-1)^{n-1}}{(2n-1)!} x^{2n-1} + R_{2n}(x);$$

$$\cos x = 1 - \frac{x^{2}}{2!} + \frac{x^{4}}{4!} + \dots + \frac{(-1)^{n}}{(2n)!} x^{2n} + R_{2n+1}(x);$$

$$\ln (1+x) = x - \frac{x^{2}}{2} + \frac{x^{3}}{3} + \dots + \frac{(-1)^{n-1}}{n} x^{n} + R_{n+1}(x);$$

$$(1+x)^{\alpha} = 1 + \sum_{k=1}^{n} \frac{\alpha(\alpha-1) \cdot \dots \cdot (\alpha-k+1)}{k!} x^{k} + R_{n+1}(x).$$

Эти разложения легко получить, используя соответствующие производные n-го порядка. $(e^x)^{(n)} = e^x$, $(\sin x)^{(n)} = \sin \left(x + n \frac{\pi}{2} \right)$, $(\cos x)^{(n)} = \cos (x + n \frac{\pi}{2})$, $[\ln (1+x)]^{(n)} = (-1)^n \frac{(n-1)!}{(1+x)^n}$, $(x^\alpha)^{(n)} = \alpha(\alpha-1) \cdot \ldots \cdot (\alpha-n+1) x^{\alpha-n}$.

Формула Тейлора широко применяется в приближенных вычислениях.

2.13. Основные теоремы дифференциального исчисления

В этом разделе, за исключением теоремы 7, изучаются скалярные функции одного аргумента.

Теорема 1. Пусть функция f имеет в точке x_0 конечную производную $f'(x_0)$. Если $f'(x_0) > 0$, то существует окрестность $U(x_0)$ точки x_0 такая, что $f(x) > f(x_0)$ для $\forall x \in U^+(x_0)$, и $f(x) < f(x_0)$ для всех $x \in U^-(x_0)$. Если $f'(x_0) < 0$, то в соответствующих полуокрестностях выполнены противоположные неравенства.

Доказательство. По определению производной

$$f'(x_0) = \lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0},$$

и если $f'(x_0) > 0$, то по теореме 4 из п. 1.5.5 существует окрестность $U(x_0)$ такая, что

$$\forall x : x \in U(x_0) \to \frac{f(x) - f(x_0)}{x - x_0} > 0,$$

откуда и следует справедливость теоремы.

Определение. Точка $x_0 \in X$ называется точкой наибольшего (наименьшего) значения функции f(x) в области X, если для всех $x \in X$ выполнено неравенство $f(x) \leq f(x_0)$ ($f(x) \geq f(x_0)$).

Теорема 2 (Ферма). Пусть функция f(x) определена на промежутке (a,b) и в точке c этого промежутка принимает наибольшее или наименьшее значения. Тогда, если существует f'(c), то f'(c) = 0.

Действительно, если предположить, что $f'(c) \neq 0$, например, f'(c) > 0, то по теореме 1 $\forall x \in U^-(x_0)$ f(x) < f(c), и $\forall x \in U^+(x_0)$ f(x) > f(c)— противоречит тому, что f(c)— наибольшее значение.

Теорема 3 (Ролля). Если 1) f(x) определена и непрерывна на отрезке [a,b]; 2) существует конечная производная f'(x) на (a,b); 3) f(a)=f(b), то существует такая точка c, a < c < b, что f'(c)=0.

Доказательство. Так как f(x) непрерывна на [a,b], то по второй теореме Вейерштрасса она принимает на [a,b] свои наибольшее M и наименьшее m значения.

- 1. M=m. Тогда f(x)=M для всех $x\in [a,b]$ и f'(x)=0 на (a,b). В качестве c можно взять любую точку из (a,b).
- $2.\ M>m.$ Так как f(a)=f(b), то одно из этих значений достигается во внутренней точке $\ c.$ По теореме 2 в этой точке f'(c)=0.

Teopeма 4 (Лагранжа). Если 1) f(x) определена и непрерывна на отрезке [a,b]; 2) существует конечная производная f'(x) на (a,b), то найдется такая точка $c,\ a < c < b,$ что

$$\frac{f(b) - f(a)}{b - a} = f'(c). \tag{2.29}$$

Доказательство. Функция $F(x) = f(x) - \frac{f(b) - f(a)}{b - a}(x - a)$ удовлетворяет всем условиям теоремы Ролля. Поэтому существует такая точка $c, \ a < c < b,$ что $F'(c) = f'(c) - \frac{f(b) - f(a)}{b - a} = 0.$ Отсюда и следует (2.29).

Если положить $x=a,\ b=x+\Delta x,$ то формулу (2.29) можно записать в виде

$$f(x + \Delta x) - f(x) = f'(c)\Delta x -$$

формула Лагранжа о конечных приращениях. Так как точка c лежит между x и $x+\Delta x$, то можно положить $c=x+\Theta\Delta x$, где $0\leq\Theta\leq1$.

Teopeма 5 (Коши). Если 1) функции f(x) и g(x) определены и непрерывны на [a,b]; 2) существуют конечные производные f'(x) и g'(x) на (a,b); 3) $g'(x) \neq 0$ для всех $x \in (a,b)$, то существует точка $c \in (a,b)$ такая, что

$$\frac{f(b) - f(a)}{g(b) - g(a)} = \frac{f'(c)}{g'(c)}. (2.30)$$

Доказательство. Из теоремы Ролля и условия 3 данной теоремы следует, что $g(b) \neq g(a)$. Формулу (2.30) можно получить применением теоремы Ролля к функции $F(x) = f(x) - \frac{f(b) - f(a)}{g(b) - g(a)} (g(x) - g(a))$.

Необходимым условием дифференцируемости функции является существование производной матрицы. Остановимся теперь на достаточных условиях дифференцируемости.

Теорема 6. Если функция $f: X \subseteq R \to Y \subseteq R$ имеет в точке x_0 конечную производную $f'(x_0)$, то функция f дифференцируема в этой точке.

По определению производной $f'(x_0) = \lim_{\Delta x \to 0} \frac{f(x_0 + \Delta x) - f(x_0)}{\Delta x}$, поэтому величина $\beta(x_0, \Delta x) = \frac{f(x_0 + \Delta x) - f(x_0)}{\Delta x} - f'(x_0)$ является бесконечно малой, следовательно, величина $\beta(x_0, \Delta x)\Delta x$ имеет порядок малости выше, чем Δx . Находим

 $f(x_0+\Delta x)-f(x_0)=\Delta f=f'(x_0)\Delta x+\beta(x_0,\Delta x)\Delta x,$ т.е. функция f(x) дифференцируема в точке $x_0.$

Для функций двух и более аргументов существования производной матрицы в точке недостаточно для дифференцируемости функции. Для них справедлива следующая теорема.

Теорема 7. Если функция $f: X \subseteq R_n \to Y \subseteq R$ имеет в точке ξ_0 конечную производную и эта производная непрерывна в точке ξ_0 , то функция f дифференцируема в этой точке.

Доказательство проведём для функций двух переменных. Пусть $\xi_0=(x_0,y_0).$ По условию теоремы функция $f'(\xi)=f'(x,y)=$ $=\left[\frac{\partial f}{\partial x},\frac{\partial f}{\partial y}\right]$ непрерывна, следовательно, непрерывны частные производные $\frac{\partial f}{\partial x},\,\frac{\partial f}{\partial y}$ в точке $(x_0,y_0).$ Рассмотрим приращение функции $\Delta f=f(x_0+\Delta x,y_0+\Delta y)-f(x_0,y_0)=[f(x_0+\Delta x,y_0+\Delta y)-f(x_0,y_0+\Delta y)]+[f(x_0,y_0+\Delta y)-f(x_0,y_0)].$ Применяя к каждой из разностей теорему Лагранжа, получаем

$$\Delta f = \frac{\partial f}{\partial x}(x_0 + \Theta_1 \Delta x, y_0 + \Delta y) \Delta x + \frac{\partial f}{\partial y}(x_0, y_0 + \Theta_2 \Delta y) \Delta y,$$

где $0 \le \Theta_1 \le 1; \ 0 \le \Theta_2 \le 1.$ В силу непрерывности частных производных

$$\begin{split} \frac{\partial f}{\partial x}(x_0+\Theta_1\Delta x,y_0+\Delta y)&=\frac{\partial f}{\partial x}(x_0,y_0)+\alpha_1(\Delta x,\Delta y),\\ \frac{\partial f}{\partial y}(x_0,y_0+\Theta_2\Delta y)&=\frac{\partial f}{\partial x}(x_0,y_0)+\alpha_2(\Delta y),\\ \text{где }\alpha_1\text{ и }\alpha_2\text{ — бесконечно малые величины при }\Delta x\to 0,\ \Delta y\to 0. \end{split}$$

Теперь можем записать

$$\Delta f = \frac{\partial f}{\partial x}(x_0, y_0)\Delta x + \frac{\partial f}{\partial y}(x_0, y_0)\Delta y + \alpha_1 \Delta x + \alpha_2 \Delta y =$$

$$= \begin{bmatrix} \frac{\partial f}{\partial x} & \frac{\partial f}{\partial y} \end{bmatrix} \begin{bmatrix} \Delta x \\ \Delta y \end{bmatrix} + \alpha_1 \Delta x + \alpha_2 \Delta y.$$

Так как величина $\alpha_1 \Delta x + \alpha_2 \Delta y$ имеет порядок малости относительно $\sqrt{(\Delta x)^2 + (\Delta y)^2}$ выше первого, что нетрудно показать, то это и означает дифференцируемость функции f в точке ξ_0 .

2.14. Правило Лопиталя

При отыскании пределов часто не удаётся применить теоремы о пределе суммы, произведения, частного, степени, так как возникают неопределённости типа $\frac{0}{0},\,\frac{\infty}{\infty},\,0\cdot\infty,\,0^0,\,1^\infty,\,\infty^0,\,\infty-\infty.$ Все виды неопределённостей путём алгебраических преобразований или логарифмирования удаётся свести к неопределённости $\frac{0}{0}$ или $\frac{\infty}{\infty}$.

Теорема 1 (Лопиталя). Если

- 1) функции f(x) и g(x) определены на (a,b);
- 2) $\lim_{x \to a} f(x) = 0$, $\lim_{x \to a} g(x) = 0$;
- 3) всюду на (a,b) существуют производные f'(x) и g'(x), причём $g'(x) \neq 0$;

4) существует предел
$$\lim_{x \to a} \frac{f'(x)}{g'(x)} = k$$
,

то существует и предел $\lim_{x\to a} \frac{f(x)}{g(x)}$, также равный k.

$$\lim_{x \to a} \frac{f(x)}{g(x)} = \lim_{x \to a} \frac{f'(x)}{g'(x)} = k.$$

Доказательство. Положим f(a) = g(a) = 0, тогда функции fи g непрерывны на [a, x], a < x < b и удовлетворяют на [a, x] условиям теоремы 5 (Коши). Поэтому $\frac{f(x)}{g(x)} = \frac{f(x) - f(a)}{g(x) - g(a)} = \frac{f'(c)}{g'(c)}$, где a < c < x. Так как при $x \to a$ и $c \to a$, то теорема доказана.

Теорема 1 верна и при $x \to \infty$. Чтобы убедиться в этом, достаточно сделать замену $y = \frac{1}{x}, x = \frac{1}{y}$.

Теорема 2 (Лопиталя). Если

- 1) функции f(x) и g(x) определены на (a,b);
- 2) $\lim_{x \to b} f(x) = \infty, \lim_{x \to b} g(x) = \infty;$
- 3) всюду на (a,b) существуют производные f'(x) и g'(x), причём $q'(x) \neq 0$;

4) существует предел $\lim_{x\to b} \frac{f'(x)}{g'(x)} = k$, то существует и предел $\lim_{x\to b} \frac{f(x)}{g(x)}$, тоже равный k.

Доказательство теоремы опустим.

При раскрытии неопределённостей иногда теоремы 1 и 2 приходится применять несколько раз, так как предел $\lim_{x \to b} \frac{f'(x)}{g'(x)}$ опять может привести к неопределённости.

Рассмотрим кратко другие неопределённости. Пусть требуется найти $\lim_{x \to x_0} f(x) \cdot g(x)$, если $\lim_{x \to x_0} f(x) = 0$, $\lim_{x \to x_0} g(x) = \infty$. Возни-

кает неопределённость $0\cdot\infty$. Можем записать $f(x)g(x)=\frac{f(x)}{1},$ и мы придём к неопределённости вида $\frac{0}{0}$.

Если нужно найти предел $\lim_{x \to x_0} (f(x) - g(x))$ и $\lim_{x \to x_0} f(x) = \infty$,

$$\lim_{x \to x_0} g(x) = \infty$$
, то, записав $f(x) - g(x) = \frac{\frac{1}{g(x)} - \frac{1}{f(x)}}{\frac{1}{f(x)g(x)}}$, получим неопределённость $\frac{0}{0}$.

Неопределённости 0^0 , 1^∞ , ∞^0 сводятся к $0\cdot\infty$ путём логарифмирования выражения $\phi(x)=f(x)^{g(x)}$.

Пример 1.
$$\lim_{x\to 0} \frac{x-\arctan x}{x^3} = \lim_{x\to 0} \frac{1-\frac{1}{1+x^2}}{3x^2} = \lim_{x\to 0} \frac{1}{3(1+x^2)} = \frac{1}{3}$$
. Все условия теоремы 1 здесь выполнены.

Пример 2. Найти $\lim_{x\to 0+0} x^{\operatorname{tg} x}$.

Peшение. Имеем неопределённость $0^0.$ Логарифмируя выражение $y=x^{\operatorname{tg} x},$ получаем $\ln y=\operatorname{tg} x \ln x=rac{\ln x}{1}.$

$$\lim_{x \to 0+0} \ln y = \lim_{x \to 0+0} \frac{\ln x}{\frac{1}{\lg x}} \left(\frac{\infty}{\infty}\right) = \lim_{x \to 0+0} \frac{1}{x \left(-(\lg x)^{-2} \frac{1}{\cos^2 x}\right)} =$$

$$= \lim_{x \to 0+0} \frac{-(\operatorname{tg} x)^2 \cos^2 x}{x} = -\lim_{x \to 0+0} \frac{\sin^2 x}{x} = -\lim_{x \to 0+0} \frac{\sin x}{x} \sin x = 0.$$

Так как $\lim_{x\to 0} \ln y = 0$, то $\lim_{x\to 0} y = 1$. Следовательно, $\lim_{x\to 0+0} x^{\operatorname{tg} x} = 1$.

2.15. Условия постоянства функции. Условия монотонности функции

 $Teopema\ 1.$ Пусть функция f(x) определена и непрерывна в промежутке X (конечном или бесконечном, замкнутом или нет) и имеет внутри него конечную производную. Для того чтобы f(x) была в X постоянной, необходимо и достаточно, чтобы f'(x)=0 внутри X.

Heoбxoдимость условия очевидна: из f(x) = const следует f'(x) = 0.

Достаточность. Пусть f'(x)=0 внутри X. Фиксируем любую точку $x_0\in X$ и возьмём любую другую точку $x\in X$. К f(x) и промежутку $[x_0,x]$ или $[x,x_0]$ применим теорему Лагранжа (все её условия выполнены) $f(x)-f(x_0)=f'(c)(x-x_0)$. Так как f'(c)=0, то $f(x)=f(x_0)=\mathrm{const.}$

Пример 1. Доказать, что
$$\arctan x = \arcsin \frac{x}{\sqrt{1+x^2}}$$
.

Peшenue. Рассмотрим функцию $f(x) = \arctan x - \arcsin \frac{x}{\sqrt{1+x^2}}$.

Находим

$$f'(x) = \frac{1}{1+x^2} - \frac{1}{\sqrt{1-\frac{x^2}{1+x^2}}} \frac{\sqrt{1+x^2} - \frac{x^2}{\sqrt{1+x^2}}}{1+x^2} = \frac{1}{1+x^2} - \frac{1}{1+x^2} = 0.$$

 $V=1+x^2$ По теореме 1 $f(x)=\arctan x-\arcsin \frac{x}{\sqrt{1+x^2}}=c$. Так как f(0)=0, то c=0. Равенство доказано.

 $Teopema\ 2$. Пусть функция f определена и непрерывна на отрезке [a,b] и имеет конечную производную на (a,b). Для того чтобы функция f(x) была монотонно возрастающей (убывающей) на [a,b], необходимо и достаточно, чтобы выполнялось неравенство $f'(x) \geq 0$ $(f'(x) \leq 0)$.

Heoбxoдимость. Пусть f(x) монотонно возрастает и $\Delta x > 0$. Так как $f(x + \Delta x) \ge f(x)$, то

$$\frac{f(x + \Delta x) - f(x)}{\Delta x} \ge 0. \tag{2.31}$$

Неравенство (2.31) верно и при $\Delta x < 0$. В этом случае числитель и знаменатель отрицательны. Переходя к пределу в неравенстве (2.31), получаем $f'(x) \geq 0$.

Достаточность. Пусть $f'(x) \ge 0$ на (a,b). Возьмём две произвольные точки x_1 и x_2 из $(a,b),\ x_2>x_1$. По теореме Лагранжа $f(x_2)-f(x_1)=f'(c)(x_2-x_1)$. Так как $f'(c)\ge 0,\ x_2>x_1$, то $f(x_2)-f(x_1)\ge 0$, т.е. $f(x_2)\ge f(x_1)$. Теорема доказана.

Пример 2. Найти участки монотонности функции $f(x) = 2x^3 - 3x^2 - 12x + 5.$

Решение. Функция f(x) дифференцируема на всей числовой оси. Находим $f'(x) = 6x^2 - 6x - 12 = 6(x-2)(x+1)$. Видим, что f'(x) > 0 при $x \in (-\infty, -1) \cup (2, +\infty)$ и f'(x) < 0 при $x \in (-1, 2)$. Следовательно, по теореме 2 функция f(x) возрастает на $(-\infty, -1) \cup (2, +\infty)$ и убывает на (-1, 2).

2.16. Экстремумы

2.16.1. Необходимые условия экстремума

В этом разделе рассматриваются скалярнозначные функции одной и многих переменных.

Определение 1. Говорят, что точка x_0 есть точка минимума (максимума) функции f, если существует окрестность $U(x_0)$ точки x_0 такая, что для всех $x \in U(x_0)$ выполняется неравенство $f(x_0) \leq f(x)$

 $(f(x_0) \ge f(x))$. Если для всех $x \in U(x_0)$ выполнено строгое неравенство $f(x_0) < f(x)$ $(f(x_0) > f(x))$, то точка x_0 называется точкой строгого минимума (максимума).

 $Onpedenenue\ 2.$ Точка x_0 называется точкой экстремума функции f, если она является точкой максимума или минимума.

 $Teopema\ 1.$ Если точка x_0 — точка экстремума функции f и существует $f'(x_0)$, то $f'(x_0)=0.$

Доказательство. Пусть вначале f — скалярная функция одного аргумента. Так как точка x_0 — точка наибольшего или наименьшего значения в некоторой окрестности $U(x_0)$, то по теореме Ферма $f'(x_0) = 0$.

Пусть теперь f скалярная функция многих переменных, т.е. $f = f(x_1, x_2, \ldots, x_n)$ и $x_0 = (x_{01}, x_{02}, \ldots, x_{0n})$. Фиксируя все переменные, кроме x_i , из только что доказанного, получаем

$$\frac{\partial f}{\partial x_i}(x_{01}, x_{02}, \dots, x_{0n}) = 0, i = 1, 2, \dots, n,$$

т.е.
$$f'(x_0)=\dfrac{df(x_0)}{dx}=\left[\dfrac{\partial f}{\partial x_1}(x_0),\dfrac{\partial f}{\partial x_2}(x_0),\ldots,\dfrac{\partial f}{\partial x_n}(x_0)\right]=0.$$
 Для дифференцируемой функции обращение в нуль производной приводит к обращению в нуль дифференциала

$$df(x_0) = f'(x_0)dx = \sum_{i=1}^n \frac{\partial f}{\partial x_i}(x_0)dx_i = 0.$$

 $Onpedenehue\ 3.$ Точка x_0 , в которой производная обращается в нуль, называется стационарной точкой функции f.

Из теоремы 2 следует, что точки, в которых может достигаться экстремум, являются либо её стационарными точками, либо в них производная не существует. Такие точки будем называть подозрительными на экстремум.

2.16.2. Достаточные условия экстремума

Для скалярной функции одной переменной достаточные условия экстремума формулируются с помощью первой производной или на основе высших производных.

Достаточные условия на основе первой производной. Пусть функция f(x) определена и непрерывна в точке x_0 и некоторой её окрестности и точка x_0 является подозрительной на экстремум для этой функции. Если при переходе через точку x_0 производная f'(x):

- 1) меняет знак с "+" на "-", то в точке x_0 максимум;
- 2) меняет знак с "-" на "+", то в точке x_0 минимум;
- 3) не меняет знака, то в точке x_0 экстремума нет.

Достаточные условия экстремума на основе второй и высших производных.

Пусть x_0 — стационарная точка и существует вторая производная $f''(x_0)$. Тогда, используя формулу Тейлора, можем записать $\Delta f = f(x) - f(x_0) = \frac{f''(x_0)}{2!} (x-x_0)^2 + R_3(x_0,\Delta x)$, где величина $R_3(x_0,\Delta x)$ имеет порядок малости относительно Δx выше второго. Поэтому знак Δf определяется первым слагаемым. Видим, что при $f''(x_0) > 0$, $f(x) > f(x_0)$ и в точке x_0 — минимум, при $f''(x_0) < 0$, $f(x) < f(x_0)$ и в точке x_0 — максимум.

Пусть $f'(x_0)=f''(x_0)=\ldots=f^{(n-1)}(x_0)=0,\ f^{(n)}(x_0)\neq 0.$ Тогда $\Delta f=f(x)-f(x_0)=\frac{f^{(n)}(x_0)}{n!}(x-x_0)^n+R_{n+1}(x_0,\Delta x),$ где величина $R_{n+1}(x_0,\Delta x)$ относительно Δx имеет порядок малости выше n, т.е. знак Δf определяется первым слагаемым. При n чётном и $f^{(n)}(x_0)>0$ в точке x_0 — минимум, при n чётном и $f^{(n)}(x_0)<0$ в точке x_0 — максимум. Если же n нечётно, то в точке x_0 экстремума нет.

Достаточные условия экстремума для скалярной функции многих переменных $f=f(x_1,x_2,\ldots,x_n)$. Пусть $x_0=(x_1^0,x_2^0,\ldots,x_n^0)$ стационарная точка, т.е. df=0. По формуле Тейлора можем записать

$$\Delta f = f(x_1, x_2, \dots, x_n) - f(x_1^0, x_2^0, \dots, x_n^0) = \frac{1}{2!} d^2 f + R_3(x_0, \Delta x).$$

Знак Δf определяется знаком d^2f , являющимся квадратичной формой. Для анализа величины d^2f нам понадобятся некоторые дополнительные сведения из линейной алгебры.

Определение 1. Квадратичная форма

$$Q(x) = Q(x_1, x_2, \dots, x_n) = \sum_{i,k=1}^{n} a_{ik} x_i x_k, \ a_{ik} = a_{ki}$$

называется невырожденной, если её матрица невырождена.

Определение 2. Невырожденная квадратичная форма называется положительно определённой, если $Q(x_1,x_2,\ldots,x_n)>0$ для любого вектора $x=(x_1,x_2,\ldots,x_n)$, и называется отрицательно определённой, если для $\forall x=(x_1,x_2,\ldots,x_n)$ имеет место

$$Q(x_1, x_2, \dots, x_n) < 0.$$

Квадратичная форма называется неопределённой, если для одних x величина Q(x) > 0, а для других — Q(x) < 0.

Определение 3. Миноры матрицы <math>A:

$$\Delta_1=a_{11},\;\;\Delta_2=\left|egin{array}{cccc} a_{11}&a_{12}&a_{13}\\a_{21}&a_{22}&\end{array}
ight|,\;\;\Delta_3=\left|egin{array}{cccc} a_{11}&a_{12}&a_{13}\\a_{21}&a_{22}&a_{23}\\a_{31}&a_{32}&a_{33} \end{array}
ight|,\;\ldots,$$
 $\Delta_n=\left|egin{array}{ccccc} a_{11}&a_{12}&\ldots&a_{1n}\\a_{21}&a_{22}&\ldots&a_{2n}\\ \ldots&\ldots&\ldots&\ldots\\a_{n1}&a_{n2}&\ldots&a_{nn} \end{array}
ight|$ называются главными.

Теорема (критерий Сильвестра). Невырожденная квадратичная форма является положительно определённой тогда и только тогда, когда все главные миноры её матрицы больше нуля, и является отрицательно определённой, если знаки главных миноров чередуются, начиная с отрицательного.

Пусть дана скалярная функция двух переменных z=f(x,y) и (x_0,y_0) её стационарная точка. Тогда

$$\Delta f = f(x,y) - f(x_0, y_0) = \frac{1}{2} d^2 f + R_3(x_0, y_0, \Delta x, \Delta y) =$$

$$= \frac{1}{2} \left[\frac{\partial^2 f}{\partial x^2} (x_0, y_0) (dx)^2 + 2 \frac{\partial^2 f}{\partial x \partial y} (x_0, y_0) dx dy + \frac{\partial^2 f}{\partial y^2} (x_0, y_0) (dy)^2 \right] + R_3.$$

Знак Δf полностью определяется величиной квадратичной формы $d^2f = f''_{xx}(x_0, y_0)(dx)^2 + 2f''_{xy}(x_0, y_0)dxdy + f''_{yy}(x_0, y_0)(dy)^2$. Если d^2f положительно определена, т.е. если, согласно критерию Сильвестра,

$$f_{xx}''(x_0, y_0) > 0, \begin{vmatrix} f_{xx}''(x_0, y_0) & f_{xy}''(x_0, y_0) \\ f_{xy}''(x_0, y_0) & f_{yy}''(x_0, y_0) \end{vmatrix} > 0,$$

то в точке (x_0,y_0) — минимум. Если же d^2f отрицательно определённая квадратичная форма, т.е. если

$$f_{xx}''(x_0, y_0) < 0, \begin{vmatrix} f_{xx}''(x_0, y_0) & f_{xy}''(x_0, y_0) \\ f_{xy}''(x_0, y_0) & f_{yy}''(x_0, y_0) \end{vmatrix} > 0,$$

то в точке (x_0,y_0) — максимум. Если же для одних значений dx,dy величина $d^2f>0$, а для других $d^2f<0$, то экстремума нет.

Если окажется $d^2f=0$, то для исследования нужно привлекать дифференциалы более высокого порядка.

Пример 1. Найти точки экстремума функции
$$f(x) = x^3 - 6x^2 + 9x - 3.$$

Peшение. Так как функция f(x) дифференцируема на всей числовой оси, то подозрительными на экстремум являются лишь стационарные точки. Найдём их. Для этого решим уравнение $f'(x)=3x^2-12x+9=3(x^2-4x+3)=0$. $x_{1,2}=2\pm\sqrt{4-3}=2\pm1$; $x_1=1,\,x_2=3$. Так как f'(x)=3(x-1)(x-3), то при переходе через точку $x_1=1$ производная f'(x) меняет знак по схеме "+" на "-", в

точке $x_1=1$ функция имеет максимум, а при переходе через точку $x_2=3$ производная f'(x) меняет знак с "—" на "+", следовательно, в точке $x_2=3$ минимум. Можно было воспользоваться второй производной: f''(x)=6x-12. Так как f''(1)=-6<0, то в точке $x_1=1$ максимум, f''(3)=18-12=6>0, то в точке $x_2=3$ минимум.

Пример 2. Найти точки экстремума функции

$$f(x,y) = 1 + 6x - x^2 - xy - y^2.$$

Решение.

Стационарные точки находим из условия

$$\begin{cases} \frac{\partial f}{\partial x} = 6 - 2x - y = 0, \\ \frac{\partial f}{\partial y} = -x - 2y = 0, \end{cases}$$

решая эту систему, находим координаты единственной стационарной точки $M_0(4,-2)$. Так как $f_{xx}^{\prime\prime}(4,-2)=-2<0,\ f_{yy}^{\prime\prime}(4,-2)=-2,$

$$f''_{xy}(4,-2)=-1$$
, то $\begin{vmatrix} f''_{xx} & f''_{xy} \\ f''_{xy} & f''_{yy} \end{vmatrix}=\begin{vmatrix} -2 & -1 \\ -1 & -2 \end{vmatrix}=3>0$, и в точке $(4,-2)$ имеем максимум.

2.16.3. Отыскание наибольшего и наименьшего значений функции

Пусть требуется найти наибольшее и наименьшее значения скалярной функции f(x) одной или многих переменных, заданной в замкнутой области X. Точки, в которых достигаются эти значения, могут быть как внутренними множества X, так и граничными. Алгоритм для их отыскания следующий:

- 1) находим все подозрительные на экстремум точки, лежащие внутри X, и вычисляем значения функции в этих точках;
- 2) задав границы области X в виде системы равенств, находим подозрительные на экстремум точки, лежащие на границе. Вычисляем значения функции в этих точках;
- 3) из всех значений функции, найденных в пп. 1 и 2, находим наименьшее и наибольшее, которые и будут наименьшим и наибольшим значениями функции в области X.

 $\mathit{Пример}\ 1.$ Найти наибольшее и наименьшее значения функции $f(x) = x^4 - 2x^2 + 3$ на отрезке [-2,1].

Peшение. Так как функция fдифференцируема на всей числовой оси, то подозрительные на экстремум точки совпадают со стационарными точками, которые находим из условия

$$f'(x) = 4x^3 - 4x = 4x(x^2 - 1)$$
: $x_1 = 0$, $x_2 = -1$, $x_3 = 1$.

Точки $x_1=0$ и $x_2=-1$ являются внутренними для отрезка [-2,1]. Находим f(0)=3, f(-1)=1-2+3=2. Находим значения функции в граничных точках отрезка $x_4=-2$ и $x_5=1,$ f(-2)=16-8+3=11, f(1)=2.

Сравнивая найденные значения, видим, что наибольшее значение достигается в точке x=-2 и равно 11, а наименьшее — в точках $x=\pm 1$ и равно 2.

Пример 2. Найти наибольшее и наименьшее значения функции $f(x,y)=x^2y(2-x-y)$ в треугольнике, ограниченном прямыми x=0, $y=0, \ x+y=6.$

Решение. Находим стационарные точки из системы уравнений

$$\begin{cases} \frac{\partial f}{\partial x} = 2xy(2 - x - y) - x^2y = xy(4 - 3x - 2y) = 0, \\ \frac{\partial f}{\partial y} = x^2(2 - x - y) - x^2y = x^2(2 - x - 2y) = 0. \end{cases}$$

Решением её являются точки $M_1(0,y),\ y$ — любое, $M_2(2,0),\ M_3\left(1,\frac{1}{2}\right)$. Из этих точек только M_3 является внутренней, $f(M_3)=$ = $f\left(1,\frac{1}{2}\right)=1\cdot\frac{1}{2}\left(2-1-\frac{1}{2}\right)=\frac{1}{4}$. На участках границы x=0 и y=0 f(0,y)=f(x,0)=0. Исследуем поведение функции на участке границы $y=6-x,\ 0\leq x\leq 6$. На границе функция f(x,y) превра-

щается в функцию одной переменной
$$\Phi(x)=f(x,6-x)=x^2(6-x)(2-x-6+x)=4x^2(x-6)=4x^3-24x^2.$$
 Найдём наибольшее и наименьшее значения этой функции на отрезке $[0;6].$ Имеем $\Phi'(x)=12x^2-48x=12x(x-4)=0,$ отсюда $x_1=0,$ $x_2=4.$ Находим $\Phi(0)=0,$ $\Phi(4)=-128,$ $\Phi(6)=0.$ Сравнивая все найденные значения функции, видим, что наименьшее значение, равное $-128,$ достигается в точке $\left(4,2\right),$ а наибольшее, равное $\frac{1}{4},$ достигается в точке $\left(1,\frac{1}{2}\right).$

2.17. Выпуклость вверх и вниз графика функции

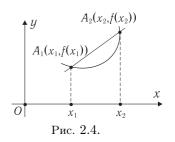
В этом разделе изучаются функции $f:X\subseteq R\to Y\subseteq R$ – скалярные функции одного скалярного аргумента.

Определение 1. График функции f(x), определённой и непрерывной на промежутке X, называется выпуклым вниз (вверх), если все точки любой дуги графика лежат ниже (выше) хорды, соединяющей её концы.

Уравнение прямой A_1A_2 (рис. 2.4) запишем в виде

$$y = \frac{x_2 - x}{x_2 - x_1} f(x_1) + \frac{x - x_1}{x_2 - x_1} f(x_2).$$

Таким образом, график функции f(x) является выпуклым вниз, если



$$f(x) \le \frac{x_2 - x}{x_2 - x_1} f(x_1) + \frac{x - x_1}{x_2 - x_1} f(x_2), \tag{2.32}$$

и выпуклым вверх, если

$$f(x) \ge \frac{x_2 - x}{x_2 - x_1} f(x_1) + \frac{x - x_1}{x_2 - x_1} f(x_2).$$

 $Teopema\ 1.$ Если функция f(x) определена, непрерывна на [a,b] и имеет конечную производную на (a,b), то для того, чтобы график функции f(x) был выпуклым вниз (вверх), необходимо и достаточно, чтобы производная f'(x) на (a,b) возрастала (убывала).

Доказательство. Необходимость. Пусть функция f(x) выпукла вниз. Неравенство (2.32) можно переписать в виде

$$\frac{f(x) - f(x_1)}{x - x_1} \le \frac{f(x_2) - f(x)}{x_2 - x}, \quad (x_1 < x < x_2),$$

из которого после предельных переходов $x \to x_1$ и $x \to x_2$ получим $f'(x_1) \le f'(x_2)$, т.е. f'(x) возрастает.

Достаточность. Предположим, что производная f'(x) возрастает. Докажем, что тогда справедливо неравенство (2.32) или, что то же самое, неравенство $\frac{f(x)-f(x_1)}{x-x_1} \leq \frac{f(x_2)-f(x)}{x_2-x}$, где $x_1 < x < x_2$. Из теоремы Лагранжа следует, что

$$\frac{f(x) - f(x_1)}{x - x_1} = f'(\xi_1), \quad \frac{f(x_2) - f(x)}{x_2 - x} = f'(\xi_2),$$

где $x_1 < \xi_1 < x < \xi_2 < x_2$. Так как производная возрастает, то $f'(\xi_1) \leq f'(\xi_2)$, т.е. $\frac{f(x) - f(x_1)}{x - x_1} \leq \frac{f(x_2) - f(x)}{x_2 - x}$. Неравенство (2.32) доказано.

Teopeма 2. Пусть f(x) определена на [a,b] и существует вторая производная f''(x) на (a,b). Тогда для выпуклости вниз (вверх) графика функции необходимо и достаточно, чтобы было $f''(x) \geq 0$ $(f''(x) \leq 0)$ на (a,b).

Справедливость теоремы следует из условия монотонности функции f'(x).

Определение 2. Точка x_0 перехода от выпуклости вниз к выпуклости вверх или наоборот называется точкой перегиба графика функции, непрерывной в x_0 .

Из определения и теоремы 2 следует, что если x_0 — точка перегиба и существует вторая производная, то $f''(x_0) = 0$, причём вторая производная при переходе через x_0 меняет знак.

Пример. Найти промежутки выпуклости вверх и выпуклости вниз, а также точки перегиба для графика функции $f(x) = 3x^2 - x^3$.

Решение. Данная функция имеет вторую производную на всей числовой оси. Находим $f'(x)=6x-3x^2, \ f''(x)=6-6x=6(1-x).$ При $x\in (-\infty,1)$ имеем f''(x)>0, следовательно, на $(-\infty,1)$ график функции является выпуклым вниз. На промежутке $(1,+\infty)$ график функции выпуклый вверх, так как f''(x)<0. Точка x=1 является точкой перегиба, поскольку при переходе через неё вторая производная меняет знак.

2.18. Асимптоты графика функции

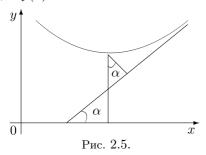
При построении графиков функции полезно иметь представление о его поведении, когда точка графика неограниченно удаляется от начала координат.

Onpedeление. Прямая $\mathcal L$ называется асимптотой графика функции f(x), если при стремлении точки графика к бесконечности расстояние между точкой графика функции f(x) и прямой $\mathcal L$ стремится к нулю.

Все асимптоты делят на два класса: вертикальные — задаются уравнением $x=x_0$, и наклонные — задаются уравнением y=kx+b.

Если хотя бы один из пределов $\lim_{x\to x_0+0} f(x)$ или $\lim_{x\to x_0-0} f(x)$ равен бесконечности, то прямая $x=x_0$ является вертикальной асимптотой. В этом случае точка x_0 является точкой разрыва второго рода для f(x).

Пусть прямая y=kx+b—



 $\frac{\rho(x)}{\cos\alpha}=f(x)-(kx+b),$ а так как $\lim_{x\to\infty}\rho(x)=0,$ то от-

наклонная асимптота и $\rho(x)$ —

ствующими точками прямой y = kx + b и графика функции

между соответ-

а так как $\lim_{x\to\infty} \rho(x) = 0$, то отсюда следует, что

$$\lim_{x \to \infty} [f(x) - (kx + b)] = 0. \tag{2.33}$$

расстояние

f(x) (рис. 2.5). Тогда

Из (2.33) получаем:

$$k = \lim_{x \to \infty} \frac{f(x) - b}{x} = \lim_{x \to \infty} \frac{f(x)}{x},$$
(2.34)

$$b = \lim_{x \to \infty} [f(x) - kx]. \tag{2.35}$$

Соотношения (2.34) и (2.35) нужно рассматривать отдельно при $x \to +\infty$ и при $x \to -\infty$, так как функция может иметь две разные асимптоты при $x \to -\infty$ и $x \to +\infty$, не иметь одной из них или обеих.

 $\Pi pumep$. Пусть $f(x)=x-2 \arctan x$. Эта функция непрерывна на всей числовой оси, поэтому вертикальных асимптот нет. Проверим существование наклонных асимптот. Имеем

$$k_1 = \lim_{x \to +\infty} \frac{f(x)}{x} = \lim_{x \to +\infty} \frac{x - 2 \operatorname{arctg} x}{x} = 1,$$

$$k_2 = \lim_{x \to -\infty} \frac{f(x)}{x} = \lim_{x \to -\infty} \frac{x - 2 \operatorname{arctg} x}{x} = 1.$$

$$b_1 = \lim_{x \to +\infty} [x - 2 \operatorname{arctg} x - x] = \lim_{x \to +\infty} (-2 \operatorname{arctg} x) = -\pi,$$

$$b_2 = \lim_{x \to -\infty} [x - 2 \operatorname{arctg} x - x] = \lim_{x \to -\infty} (-2 \operatorname{arctg} x) = \pi.$$

Таким образом, функция $f(x)=x-2\arctan x$ имеет асимптоту $y=x-\pi$ при $x\to +\infty$ и асимптоту $y=x+\pi$ при $x\to -\infty$.

2.19. Общая схема исследования функции и построения графиков

Можно предложить следующий план действий.

- 1. Найти область определения и область значений функции.
- 2. Определить, является ли функция четной или нечетной или является функцией общего вида.
- 3. Выяснить, является ли функция периодической или непериодической.
- 4. Исследовать функцию на непрерывность, найти точки разрыва и охарактеризовать их, указать вертикальные асимптоты.
 - 5. Найти наклонные асимптоты.
- 6. Найти производную функции и определить участки монотонности функции, найти точки экстремума.
- 7. Найти вторую производную, охарактеризовать точки экстремума, если это не сделано с помощью первой производной, указать участки выпуклости вверх и вниз графика функции и точки перегиба.
 - 8. Вычислить значения функции в характерных точках.
 - 9. По полученным данным построить график функции.

- **2.19.1.** Исследуйте функцию $f(x) = \frac{x^3}{4 x^2}$ и постройте график. *Решение.*
- 1. Область определения функции $(-\infty, -2) \cup (-2, 2) \cup (2, +\infty)$. Область значений функции $(-\infty, +\infty)$.
 - 2. Так как f(-x) = -f(-x), то функция f(x) нечётна.
 - 3. Функция непериодическая.
 - 4. Функция непрерывна на всей числовой оси, кроме точек x =
- $=\pm 2$, где она терпит разрыв второго рода, так как $\lim_{x o\pm 2}\frac{x^3}{4-x^2}=\infty$. Прямые x=2 и x=-2 двусторонние вертикальные асимптоты.

5. Находим наклонные асимптоты y = kx + b. Нами показано, что

$$k = \lim_{x \to \infty} \frac{f(x)}{x} = \lim_{x \to \infty} \frac{x^3}{(4 - x^2)x} = \lim_{x \to \infty} \frac{x^3}{4x - x^3} = -1,$$

$$b = \lim_{x \to \infty} [f(x) - kx] = \lim_{x \to \infty} \left[\frac{x^3}{4 - x^2} + x \right] = \frac{4x}{4 - x^2} = 0.$$

Итак, прямая y = -x — наклонная асимптота.

6. Находим

$$f'(x) = \frac{3x^2(4-x^2) + 2x \cdot x^3}{(4-x^2)^2} = \frac{12x^2 - x^4}{(4-x^2)^2} = \frac{x^2(12-x^2)}{(4-x^2)^2}.$$

Видим, что точки x=0 и $\pm\sqrt{12}=\pm3,46$ — критические. Из неравенства $x^2(12-x^2)<0,\ x\neq\pm2$ следует, что при $x\in(-\infty,-\sqrt{12})$ и $x\in(\sqrt{12},+\infty)$ функция f(x) убывает, а из неравенства $x^2(12-x^2)>0,\ x\neq\pm2$ получаем, что на промежутках $(-\sqrt{12},-2),\ (-2,2)$ и $(2,\sqrt{12})$ функция возрастает. Отсюда следует, что в точке $x=-\sqrt{12}$ функция имеет минимум, равный

$$f(-\sqrt{12}) = \frac{-3.46^3}{4 - 12} \cong \frac{41.42}{8} \cong 5.18,$$

а в точке $x = +\sqrt{12}$ — максимум, равный -5,18.

7. Находим

$$f''(x) = \left[\frac{12x^2 - x^4}{(4 - x^2)^2} \right]' = \frac{8x(x^2 + 12)}{(4 - x^2)^3}$$

(промежуточные вычисления предлагаем проделать самостоятельно). Видим, что f''(x)>0 на промежутках $(-\infty,-2)$ и (0,2). На этих промежутках функция выпукла вниз. На промежутках (-2,0) и $(2,+\infty)$ имеем f''(x)<0, следовательно, функция выпукла вверх. В точке x=0 функция непрерывна, и при переходе через неё функция меняет направление выпуклости. Поэтому x=0 является точкой перегиба.

Для удобства построения графика полученные данные, а также значения функции в некоторых точках, занесём в таблицы.

:	x	-4	-3,46	-2,5	-1	0	1	2,5	3,46	4
	y	5,33	5,18	6,94	-0,33	0	0,33	-6,94	-5,18	-5,33
			min			п*			max	

^{* —} перегиб.

x	$(-\infty; -3,46)$	(-3,46;-2)	(-2,2)	(2;3,46)	$(-3,46;+\infty)$
y	убывает	возрастает		убывает	

\boldsymbol{x}	$(-\infty, -2)$	(-2,0)	(0, 2)	$(2,+\infty)$
y	выпукла вниз	выпукла вверх	выпукла вниз	выпукла вверх

Асимптоты x = 2, x = -2 и y = -x.

На основании этих данных строим график функции, показанный на рис. 2.6. Рекомендуется построить сначала асимптоты.

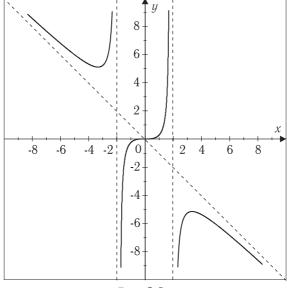


Рис. 2.6.

- **2.19.2.** Исследуйте функцию $y = \frac{x^4}{x^3 8}$ и постройте график. *Решение.*
- 1. Функция определена на всей числовой оси, кроме точки x=2, т.е. её область определения $(-\infty,2)\cup(2,+\infty)$. Область значений вся числовая ось $(-\infty,+\infty)$. На луче $(-\infty,2)$ она отрицательна, а на луче $(2,+\infty)$ положительна.
- 2. Функция $y = \frac{x^4}{x^3 8}$ общего вида, не является ни четной, ни нечетной.
 - 3. Данная функция непериодическая.
- 4. Функция $y=\frac{x^4}{x^3-8}$ непрерывна всюду, как отношение многочленов, кроме точки x=2, в которой знаменатель обращается в нуль. Так как $\lim_{x\to -\infty}\frac{x^4}{x^3-8}=-\infty$, а $\lim_{x\to +\infty}\frac{x^4}{x^3-8}=+\infty$, то точка x=2— точка разрыва второго рода. Прямая x=2— двусторонняя вертикальная асимптота.
 - 5. Находим наклонные асимптоты y = kx + b:

$$k=\lim_{x\to +\infty}\frac{x^4}{x(x^3-8)}=1,\ b=\lim_{x\to +\infty}\left(\frac{x^4}{x^3-8}-x\right)=\lim_{x\to +\infty}\frac{8x}{x^3-8}==0,$$
 следовательно, прямая $y=x$ — наклонная двусторонняя асимптота.

6. Находим производную y':

$$y' = \frac{4x^3(x^3 - 8) - 3x^2x^4}{(x^3 - 8)^2} = \frac{x^6 - 32x^3}{(x^3 - 8)^2} = \frac{x^3(x^3 - 32)}{(x^3 - 8)^2} = \frac{x^3(x - 2\sqrt[3]{4})(x^2 + 2\sqrt[3]{4}x + 4\sqrt[3]{16})}{(x^3 - 8)^2}.$$

Так как знаменатель положителен всюду в $(-\infty, 2) \cup (2, +\infty)$, то знак производной совпадает со знаком числителя.

Сомножитель $x^2+2\sqrt[3]{4}x+4\sqrt[3]{16}>0$ при любых x, поэтому производная обращается в нуль только в точках $x_1=0$ и $x_2=2\sqrt[3]{4}\approx 2\cdot 1,59=3,18$. На участке $(-\infty,0)$ производная положительна, следовательно, функция возрастает, а на участке (0,2) производная отрицательна, следовательно, функция убывает. В точке x=0 имеем максимум, равный нулю. Если $x\in (2,2\sqrt[3]{4})$, то y'<0, следовательно, функция убывает, а если $x\in (2\sqrt[3]{4},+\infty)$, то y'>0 и функция возрастает, следовательно, в точке $x=2\sqrt[3]{4}\approx 3,18$ имеем минимум, приближенно равный $y_{\min}\cong \frac{(3,18)^4}{(3,18)^3-8}\approx 4,23$.

7. Находим
$$y''(x)$$
:
$$y''(x) = \frac{6x^5 - 96x^2}{(x^3 - 8)^2} - \frac{(x^6 - 32x^3)2 \cdot 3x^2}{(x^3 - 8)^3} = \frac{(6x^5 - 96x^2)(x^3 - 8) - 6x^2(x^6 - 32x^3)}{(x^3 - 8)^3} = \frac{48x^2(x^3 + 16)}{(x^3 - 8)^3}.$$
 Вторая производная меняет знак при переходе через точки $x_2 = 2$

Вторая производная меняет знак при переходе через точки $x_2=2$ и $x_1=-\sqrt[3]{16}=-2,52$. На луче $(-\infty,-2\sqrt[3]{2})$ справедливо y''>0, следовательно, график функции выпуклый вниз, на участке $(-2\sqrt[3]{2},2)$ имеем y''<0, следовательно, график функции выпуклый вверх. Отсюда следует, что точка $x_1=-\sqrt[3]{16}\approx -2,52$ является точкой перегиба. На луче $(2,+\infty)$ имеем y''>0, и график функции выпуклый вниз.

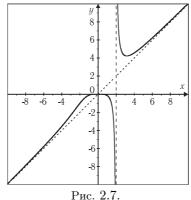
Для удобства построения графика полученные данные, а также значения функции в некоторых точках можно занести в таблицы.

x	-3	$-2\sqrt[3]{2}$	0	1,5	$2\sqrt[3]{4}$	2,5	4
y	-2,31	-1,66	0	-1,09	4,23	5,12	4,57
		перегиб	max		min		

x	$(-\infty,0)$	(0, 2)	$(2,2\sqrt[3]{4})$	$(2\sqrt[3]{4},+\infty)$
y	возрастает	убывает	убывает	возрастает

x	$(-\infty, -2\sqrt[3]{2})$	$(-2\sqrt[3]{2},2)$	$(2,+\infty)$
y	выпукла вниз	выпукла вверх	выпукла вниз

Асимптоты x=2 и y=x. На основании этих данных строим график функции, изображённый на рис. 2.7. Рекомендуется построить сначала асимптоты.



3. Методические указания (контрольная работа № 3)

3.1. Понятие функции. Область определения функции (задачи 1 и 2)

Предлагается изучить пп. 1.1, 1.2, 1.3 и ознакомиться с решением следующих задач.

3.1.1. Пусть $f(x+3) = x^2 + 4x + 5$. Найдите f(x).

Решение. Преобразуем выражение $A = x^2 + 4x + 5$. Можем записать:

$$A = (x+3)^2 - 6x - 9 + 4x + 5 = (x+3)^2 - 2x - 4 =$$

$$= (x+3)^2 - 2(x+3) + 6 - 4 = (x+3)^2 - 2(x+3) + 2$$

Отсюда следует, что $f(x) = x^2 - 2x + 2$.

3.1.2. Дано, что
$$f\left(\frac{1}{x}\right) = x^2 + 4$$
. Найдите $f(x)$.

$$Peшение$$
. Обозначим $\frac{1}{x}=u$. Тогда $x=\frac{1}{u}, \ f(u)=\frac{1}{u^2}+4=\frac{4u^2+1}{u^2}$. Обозначая аргумент через x , получим $f(x)=\frac{4x^2+1}{x^2}$.

3.1.3. Даны функции
$$f(x) = \frac{x^2 - 1}{x^2 + 3}$$
, $\varphi(x) = \frac{1}{x + 1}$. Найдите $f[f(x)] \varphi[\varphi(x)] = f[\varphi(x)]$

 $f[f(x)], \varphi[\varphi(x)], f[\varphi(x)], \varphi[f(x)].$ Решение.

$$f[f(x)] = \frac{\left(\frac{x^2 - 1}{x^2 + 3}\right)^2 - 1}{\left(\frac{x^2 - 1}{x^2 + 3}\right)^2 + 3} = \frac{(x^2 - 1)^2 - (x^2 + 3)^2}{(x^2 - 1)^2 + 3(x^2 + 3)^2} =$$

$$= -\frac{2(x^2 + 1)}{x^4 + 4x^2 + 7}; \qquad \varphi[\varphi(x)] = \frac{1}{\frac{1}{x + 1} + 1} = \frac{x + 1}{2 + x};$$

$$f[\varphi(x)] = \frac{\left(\frac{1}{x+1}\right)^2 - 1}{\frac{1}{(x+1)^2} + 3} = \frac{1 - (x+1)^2}{1 + 3(x+1)^2};$$

$$\varphi[f(x)] = \frac{1}{\frac{x^2 - 1}{2x^2 + 2}} = \frac{x^2 + 3}{2x^2 + 2}.$$

3.1.4. Даны функции $f(x)=\sqrt{x},\ \varphi(x)=\sin x.$ Найдите $f[f(x)],\ \varphi[\varphi(x)],\ f[\varphi(x)],\ \varphi[f(x)].$

Решение.
$$f[f(x)] = \sqrt{\sqrt{x}} = \sqrt[4]{x}$$
; $\varphi[\varphi(x)] = \sin(\sin x)$; $f[\varphi(x)] = \sqrt{\sin x}$; $\varphi[f(x)] = \sin(\sqrt{x})$.

3.1.5. Найдите область определения следующих функций:

a)
$$f(x) = \sqrt{x^2 - x - 2} + \frac{1}{\sqrt{3 + 2x - x^2}}$$
; 6) $f(x) = \sqrt{\lg \frac{5x - x^2}{4}}$.

Peшениe: а) область определения данной функции состоит из тех значений x, для которых оба слагаемых принимают действительные значения. Должны выполняться два условия:

$$\begin{cases} (x^2 - x - 2) \ge 0, \\ (3 + 2x - x^2) > 0. \end{cases}$$

Корнями квадратного уравнения $x^2-x-2=0$ являются числа -1 и 2, а уравнения $3+2x-x^2=0$ — числа -1 и 3. Поэтому данная система эквивалентна системе

$$\begin{cases} (x+1)(x-2) \ge 0, \\ (x+1)(x-3) < 0. \end{cases}$$

Используя метод интервалов, находим, что первое неравенство выполняется на лучах $(-\infty,-1]$ и $[2,+\infty)$, а второе — в интервале (-1,3). Общей частью этих трёх множеств является множество [2,3), которое и является областью определения данной функции;

- б) функция $f(x)=\sqrt{\lg\frac{5x-x^2}{4}}$ принимает действительные значения, если $\lg\frac{5x-x^2}{4}\geq 0$, т.е. если $\frac{5x-x^2}{4}\geq 1$, или $x^2-5x+4=(x-1)(x-4)\leq 0$. Решая последнее неравенство, находим, что областью определения является отрезок [1,4].
- **3.1.6.** Найдите область определения следующих векторных функций скалярного аргумента:

a)
$$f(x) = \begin{bmatrix} x^2 \\ \lg \frac{1}{x+1} \end{bmatrix}$$
, 6) $\varphi(x) = \begin{bmatrix} \sqrt{x-2} + \sqrt{4-x} \\ \arccos \frac{x+1}{4} \end{bmatrix}$.

Решение. Чтобы найти область определения векторной функции, нужно найти области определения каждой координатной функции и взять их общую часть. В случае а) имеем: $f_1(x) = x^2$, $f_2(x) = \lg \frac{1}{x+1}$. Функция $f_1(x)$ определена на всей числовой оси

 $(-\infty, +\infty)$, а функция $f_2(x)$ определена при $\frac{1}{x+1} > 0$, т.е. при

x>-1 или в $(-1,+\infty)$. Этот луч и является областью определения функции f(x).

В случае б) $f_1(x)=\sqrt{x-2}+\sqrt{4-x}$. Эта функция определена на отрезке [2,4], функция $f_2(x)=\arccos\frac{x+1}{4}$ определена при $\left|\frac{x+1}{4}\right|\leq 1$, т.е. $|x+1|\leq 4$ или $-4\leq x+1\leq 4$. Получаем отрезок [-5,3]. Этот отрезок с отрезком [2,4] имеет общую часть [2,3]. Отрезок [2,3] является областью определения функции $\varphi(x)$.

3.1.7. Найдите область определения векторной функции векторного аргумента $f:X\subset R_2\to Y\subset R_2\colon$ $f(x,y)=\left[egin{array}{c} x+\arcsin y \\ y+\arcsin x \end{array}\right].$

Peшение. Область определения этой функции является пересечением областей определения координатных функций $f_1(x,y)=x+\arcsin y$ и $f_2(x,y)=y+\arcsin x.$ Первая из них определена в полосе $-1\leq y\leq 1,$ а вторая — в полосе $-1\leq x\leq 1.$ Эти полосы пересекаются по замкнутому квадрату со сторонами $x=\pm 1$ и $y=\pm 1,$ который и является областью определения данной функции.

3.1.8. Функция f(x) определена на отрезке [2, 4]. Какова область определения функций: а) $f(8x^2)$, б) f(x-3)?

Решение: а) функция $f(8x^2)$ является композицией функций $u=8x^2$ и f(u). Область значений функции $u=8x^2$ должна входить в область определения функции f(u), поэтому $2 \le 8x^2 \le 4$, т.е. $1/4 \le x^2 \le 1/2$. Отсюда следует, что множество $[-1/\sqrt{2}, -1/2] \cup [1/2, 1/\sqrt{2}]$ является областью определения функции $f(8x^2)$;

- б) функция f(x-3) определена при всех x, удовлетворяющих неравенству $2 \le x-3 \le 4$, т.е. на отрезке [5,7].
- **3.1.9.** Докажите, что функция $f_1(x)=\lg\frac{1-x}{1+x}$ является нечётной, $f_2(x)=x\frac{3^x+1}{3^x-1}$ чётна, а функция $f_3(x)=2x^3-x+1$ общего вида (не является ни чётной, ни нечётной).

Решение.

$$\begin{split} f_1(-x) &= \lg \frac{1+x}{1-x} = \lg \left(\frac{1-x}{1+x}\right)^{-1} = -\lg \frac{1-x}{1+x} = -f_1(x); \\ f_2(-x) &= -x \frac{3^{-x}+1}{3^{-x}-1} = -x \frac{1/3^x+1}{1/3^x-1} = -x \frac{3^x+1}{1-3^x} = \\ &= x \frac{3^x+1}{3^x-1} = f_2(x), \text{ т.е. функция } f_1(x) \text{ нечётна, a } f_2(x) \text{ чётна;} \end{split}$$

$$f_3(-x) = -2x^3 + x + 1$$
. Видим, что $f_3(x) \neq -f_3(-x)$ и $f_3(-x) \neq f_3(x)$, т.е. функция $f_3(x)$ общего вида.

3.1.10. Докажите, что если f(x) — периодическая функция с периодом T, то функция f(ax) также периодическая с периодом T/a.

Действительно, f[a(x+T/a)]=f(ax+T)=f(ax), т.е. T/a — один из периодов функции f(ax).

3.1.11. Найдите период функции $f(x) = \cos^2 x$.

Peшение. Можем записать: $\cos^2 x = \frac{1+\cos 2x}{2}$. Видим, что период функции $\cos^2 x$ совпадает с периодом функции $\cos 2x$. Так как период функции $\cos x$ равен 2π , то согласно задаче 3.1.10 период функции $\cos 2x$ равен π .

Задачи для самостоятельного решения

- **3.1.12.** Пусть $f(x) = x^2$ и $\varphi(x) = 2^x$. Найдите:
- a) $f[\varphi(x)]$, 6) $\varphi[f(x)]$.

Ответы: а) 2^{2x} ; б) 2^{x^2} .

- **3.1.13.** Найдите f(x+1), если $f(x-1) = x^2$. Ответ: x^2 .
- **3.1.14.** Дана функция $f(x) = \frac{1}{1-x}$. Найдите $\varphi(x) = f\{f[f(x)]\}$. Ответ: x.
- 3.1.15. Найдите области определения следующих функций:
- a) $f(x) = \sqrt{x+1}$; 6) $f(x) = \lg \frac{2+x}{2-x}$;
- B) $f(x) = \sqrt{2 + x x^2}$; $f(x) = \sqrt{\arcsin(\log_2 x)}$.

Ответы: а) $[-1, +\infty)$; б) [-2, 2]; в) [-1, 2]; г) [1, 2].

- 3.1.16. Постройте область определения следующих функций:
- a) $f(x,y) = \log_2(x+y)$; 6) $f(x,y) = \sqrt{x^2 4} + \sqrt{4 y^2}$;
- в) $f(x,y) = \arcsin \frac{x^2 + y^2}{4}$; г) $f(x,y) = \sqrt{xy}$.
- 3.1.17. Найдите область определения следующих функций:
- a) $f(x) = \begin{bmatrix} 1 \lg x \\ \frac{1}{\sqrt{x^2 4x}} \end{bmatrix}$; 6) $f(x) = \begin{bmatrix} \arcsin \frac{3 2x}{5} \\ \sqrt{3 x} \end{bmatrix}$.

Ответы: a) $[4, +\infty)$; б) [-1, 3]

3.1.18. Найдите и постройте область определения следующих

a) $f(x,y) = \begin{bmatrix} \sqrt{4x - y^2} \\ \lg(1 - x^2 - y^2) \end{bmatrix}$; 6) $f(x,y) = \begin{bmatrix} \sqrt{x^2 + 2x + y^2} \\ \sqrt{x^2 - 2x + y^2} \end{bmatrix}$.

3.1.19. Докажите, что функции

а)
$$f_1(x) = 2^{-x^2}$$
 и $f_2(x) = \frac{2^x + 2^{-x}}{2}$ — чётные;

а)
$$f_1(x)=2^{-x^2}$$
 и $f_2(x)=\frac{2^x+2^{-x}}{2}$ — чётные;
б) $\varphi_1(x)=\frac{2^x-2^{-x}}{2}$ и $\varphi_2(x)=\frac{3^x+1}{3^x-1}$ — нечётные;

- в) $\psi_1(x) = \sin x \cos x$ и $\psi_2(x) = 2^{x-x^2}$ общего вила.
- **3.1.20.** Даны функции: а) $y = \sin^2 x$; б) $y = \sin x^2$;
- в) $y = 1 + \operatorname{tg} x$; г) $y = \sin \frac{1}{x}$. Какие из них являются периодическими? Ответ: а) и в).
- **3.1.21.** Докажите, что функция $y = \frac{2^x}{1 + 2^x}$ имеет обратную, и найдите её.

Omeem: $y = \log_2 \frac{x}{1-x}$.

- **3.1.22.** Докажите, что функция $y = x^2 2x$ имеет две обратных: $y_1 = 1 + \sqrt{x+1}$ и $y_2 = 1 - \sqrt[3]{x+1}$.
 - 3.1.23. Постройте графики следующих функций:

а)
$$f(x) = \begin{cases} x, & \text{если } -\infty < x < 1; \\ \frac{1}{2}x + \frac{1}{2}, & \text{если } 1 \le x \le 3; \\ 4, & \text{если } 3 < x < +\infty; \end{cases}$$

- 6) f(x) = |x 1| + |x + 3|; B) $f(x) = |x^2 2x + 1|$;
- Γ) $f(x) = \sin x + |\sin x|$, если $0 \le x \le 3\pi$; д) $f(x) = \arccos(\cos x)$;

e)
$$f(t) = \begin{bmatrix} t+5 \\ t-7 \end{bmatrix}$$
; ж) $f(t) = \begin{bmatrix} t+1 \\ t^2+2t+2 \end{bmatrix}$.

3.1.24. Охарактеризуйте вид графика следующих функций:

- a) $z = \sqrt{1 x^2 y^2}$; 6) $z = x^2 + y^2$;
- B) $z = \sqrt{x^2 + y^2}$; r) $z = x^2 y^2$.
- **3.1.25.** Начертите линии уровня данных функций, придавая zзначения от -3 до +3 через 1: a) z = xy; б) $z = y(x^2 + 1)$.
 - 3.1.26. Постройте графики функций:
- а) $y = 2\sqrt{-3(x+1)} 0.5$ с помощью преобразования графика функции $y = \sqrt{x}$;
- б) $y = 3\sin(2x 4)$ с помощью преобразования графика функции $y = \sin x$.

3.2. Предел последовательности (задачи 3, а, б)

Предлагается изучить п. 1.5.2.

3.2.1. Исходя из определения предела последовательности, докажите, что $\lim_{n\to\infty}\frac{1}{n}=0.$

Решение. Пусть $U_{\varepsilon}(0)$ любая ε -окрестность точки 0. Требуется, согласно определению предела последовательности, найти окрестность символа $+\infty$ такую, что если $n \in V_M(+\infty)$, т.е. n > M, то должно выполняться $\left|\frac{1}{n} - 0\right| < \varepsilon$, т.е. $\frac{1}{n} < \varepsilon$ или $n > \frac{1}{\varepsilon}$. Видим, что можно принять $M = \frac{1}{\varepsilon}$. Если выполнено $n > \frac{1}{\varepsilon}$, то $\frac{1}{n} < \varepsilon$. Это и означает, что $\lim_{n \to \infty} \frac{1}{n} = 0$.

Теоремы о пределе суммы, произведения и частного, сформулированные для функций непрерывного аргумента, переносятся и на последовательности. Применяя результаты решения задачи 3.2.1 и теорему о пределе произведения последовательностей, легко находим, что $\lim_{n\to\infty}\frac{1}{n^2}=\lim_{n\to\infty}\frac{1}{n}\cdot\lim_{n\to\infty}\frac{1}{n}=0.$ Учитывая непрерывность функции $f(x)=x^\lambda,\ \lambda>0$ и применяя теорему о пределе частного, получаем $\lim_{n\to\infty}\frac{1}{n^\lambda}=\frac{1}{\lim_{n\to\infty}n^\lambda}=0$ при $\lambda>0$.

3.2.2. Найдите пределы следующих последовательностей:

a)
$$\lim_{n\to\infty} \frac{2n^2 + 5n + 4}{n^2 + 7}$$
; 6) $\lim_{n\to\infty} \frac{n^2 - 2n + 3}{n^3 + 5n^2 + 4}$;

$$\mathrm{B)} \ \lim_{n \to \infty} \frac{n^3 + 4n + 1}{n^2 + n + 5}; \ \mathrm{r)} \ \lim_{n \to \infty} \left(\frac{n^4 + 2n^3 + 3}{2n^4 + 3n^2 + 2} \right)^2.$$

Решение. В примерах a, δ , ϵ делим числитель и знаменатель на старшую степень величины n. Получаем:

a)
$$\lim_{n \to \infty} \frac{2n^2 + 5n + 4}{n^2 + 7} = \left(\frac{\infty}{\infty}\right) = \lim_{n \to \infty} \frac{2 + 5/n + 4/n^2}{1 + 7/n^2} = 2$$

(применили теорему о пределе частного, суммы и то, что

$$\lim_{n \to \infty} \frac{5}{n} = \lim_{n \to \infty} \frac{4}{n^2} = \lim_{n \to \infty} \frac{7}{n^2} = 0);$$

6)
$$\lim_{n \to \infty} \frac{n^2 - 2n + 3}{n^3 + 5n^2 + 4} = \left(\frac{\infty}{\infty}\right) = \lim_{n \to \infty} \frac{1/n - 2/n^2 + 3/n^3}{1 + 5/n + 4/n^3} = 0;$$

B)
$$\lim_{n \to \infty} \frac{n^3 + 4n + 1}{n^2 + n + 5} = \lim_{n \to \infty} \frac{1 + 4/n^2 + 1/n^3}{1/n + 1/n^2 + 5/n^3} =$$
$$= \lim_{n \to \infty} \left(1 + \frac{4}{n^2} + \frac{1}{n^3} \right) \cdot \frac{1}{1/n + 1/n^2 + 5/n^3} = 1 \cdot \infty = \infty;$$

г) учитывая непрерывность функции $y = x^2$, получаем

$$\lim_{n \to \infty} \left(\frac{n^4 + 2n^3 + 3}{2n^4 + 3n^2 + 2} \right)^2 = \left(\frac{\infty}{\infty} \right) = \left(\lim_{n \to \infty} \frac{n^4 + 2n^3 + 3}{2n^4 + 3n^2 + 2} \right)^2 = \left(\lim_{n \to \infty} \frac{1 + 2/n + 3/n^4}{2 + 3/n^2 + 2/n^4} \right)^2 = \left(\frac{1}{2} \right)^2 = \frac{1}{4}.$$

3.2.3. Найдите следующие пределы:

a)
$$\lim_{n \to \infty} \frac{\sqrt[3]{8n^3 + 2n^2 - 1}}{n+3}$$
; 6) $\lim_{n \to \infty} \frac{\sqrt[4]{n^3 + 2n^2}}{(n+3)}$.
Pewerue. a) $\lim_{n \to \infty} \frac{\sqrt[3]{8n^3 + 2n^2 - 1}}{n+3} = \left(\frac{\infty}{n}\right) = \frac{1}{n+3}$

Решение. a)
$$\lim_{n \to \infty} \frac{\sqrt[3]{8n^3 + 2n^2 - 1}}{n+3} = \left(\frac{\infty}{\infty}\right) = \frac{\sqrt[3]{(8n^3 + 2n^2 - 1)/n^3}}{(n+3)/n} = \lim_{n \to \infty} \frac{\sqrt[3]{8 + 2/n - 1/n^3}}{1 + 3/n} = 2$$

(поделили числитель и знаменатель на n, величину n подвели под знак корня, применили теорему о пределе частного, использовали непрерывность функции $\sqrt[3]{u}$, применили теорему о пределе суммы);

6)
$$\lim_{n \to \infty} \frac{\sqrt[4]{n^3 + 2n^2}}{(n+3)} = \left(\frac{\infty}{\infty}\right) = \lim_{n \to \infty} \frac{(\sqrt[4]{n^3 + 2n})/n}{(n+1)/n} = \lim_{n \to \infty} \frac{\sqrt[4]{n^3/n^4 + 2n/n^4}}{1 + 1/n} = \lim_{n \to \infty} \frac{\sqrt[4]{1/n + 2/n^3}}{1 + 1/n} = 0$$

(обоснование всех операций сделать самостоятельно).

3.2.4. Найдите следующие пределы:

a)
$$\lim_{n \to \infty} (\sqrt{n^2 + 6n + 8} - n)$$
; 6) $\lim_{n \to \infty} (\sqrt[3]{n^3 + 1} - \sqrt[3]{n^3 + 4})$.

Решение этих примеров основано на применении формул $(a-b)(a+b)=a^2-b^2$ и $(a^3-b^3)=(a-b)(a^2+ab+b^2)$:

a)
$$\lim_{n \to \infty} (\sqrt{n^2 + 6n + 8} - n) = (\infty - \infty) =$$

$$= \lim_{n \to \infty} \frac{(\sqrt{n^2 + 6n + 8} - n)(\sqrt{n^2 + 6n + 8} + n)}{\sqrt{n^2 + 6n + 8} + n} =$$

$$= \lim_{n \to \infty} \frac{n^2 + 6n + 8 - n^2}{\sqrt{n^2 + 6n + 8} + n} = \lim_{n \to \infty} \frac{(6n + 8)/n}{(\sqrt{n^2 + 6n + 8} + n)/n} =$$

$$= \lim_{n \to \infty} \frac{(6 + 8/n)}{(\sqrt{1 + 6/n + 8/n^2} + 1)} = \frac{6}{1 + 1} = 3;$$

6)
$$\lim_{n \to \infty} (\sqrt[3]{n^3 + 1} - \sqrt[3]{n^3 + 4}) =$$

$$= \lim_{n \to \infty} \frac{(\sqrt[3]{n^3 + 1})^3 - (\sqrt[3]{n^3 + 4})^3}{\sqrt[3]{(n^3 + 1)^2} + \sqrt[3]{(n^3 + 1)(n^3 + 4)} + \sqrt[3]{(n^3 + 4)^2}} =$$

$$= \lim_{n \to \infty} \frac{n^3 + 1 - n^3 - 4}{\sqrt[3]{(n^3 + 1)^2} + \sqrt[3]{(n^3 + 1)(n^3 + 4)} + \sqrt[3]{(n^3 + 4)^2}} = 0.$$

В приведённых примерах мы имели неопределённость вида $\infty - \infty$. При этом может получиться предел конечный, отличный от нуля, равный нулю или бесконечный.

3.2.5. Найдите:

a)
$$\lim_{n \to \infty} \begin{bmatrix} \frac{n^2}{n^2 + 4} \\ \frac{\sqrt{n}}{3\sqrt{n} + 2} \end{bmatrix} = \lim_{n \to \infty} \left(\frac{n^2}{n^2 + 4} \mathbf{i} + \frac{\sqrt{n}}{3\sqrt{n} + 2} \mathbf{j} \right);$$

6)
$$\lim_{n \to \infty} \left| \frac{2n}{n+1} \mathbf{i} + \frac{1-4n}{2n+1} \mathbf{j} + \frac{n+5}{n-6} \mathbf{k} \right|$$
.

Решение: а) имеем векторную последовательность. Её пределом, согласно теории, является вектор, координаты которого равны пределам координатных последовательностей. Поэтому

$$\lim_{n \to \infty} \left[\begin{array}{c} \frac{n^2}{n^2 + 4} \\ \frac{\sqrt{n}}{3\sqrt{n} + 2} \end{array} \right] = \left[\begin{array}{c} \lim_{n \to \infty} \frac{n^2}{n^2 + 4} \\ \lim_{n \to \infty} \frac{\sqrt{n}}{3\sqrt{n} + 2} \end{array} \right] = \left[\begin{array}{c} \lim_{n \to \infty} \frac{1}{1 + 4/n^2} \\ \lim_{n \to \infty} \frac{1}{3\sqrt{n} + 2} \end{array} \right] = \left[\begin{array}{c} \lim_{n \to \infty} \frac{1}{1 + 4/n^2} \\ \lim_{n \to \infty} \frac{1}{3 + 2/\sqrt{n}} \end{array} \right] = \left[\begin{array}{c} 1 \\ 1/3 \end{array} \right] = \mathbf{i} + \frac{1}{3}\mathbf{j};$$

б) пусть дан вектор $\mathbf{a}_n = \{x_n, y_n, z_n\}$, тогда $|\mathbf{a}_n| = \sqrt{x_n^2 + y_n^2 + z_n^2}$. Учитывая, что функции $f(x, y, z) = \sqrt{x^2 + y^2 + z^2}$ и $\varphi(x) = x^2$ непрерывны, получаем, что $\lim_{n \to \infty} |a_n| = \sqrt{\lim_{n \to \infty} x_n^2 + \lim_{n \to \infty} y_n^2 + \lim_{n \to \infty} z_n^2}$.

Поэтому
$$\lim_{n \to \infty} \left| \frac{2n}{n+1} \mathbf{i} + \frac{1-4n}{2n+1} \mathbf{j} + \frac{n+5}{n-6} \mathbf{k} \right| =$$

$$= \sqrt{\left(\lim_{n \to \infty} \frac{2n}{n+1}\right)^2 + \left(\lim_{n \to \infty} \frac{1-4n}{2n+1}\right)^2 + \left(\lim_{n \to \infty} \frac{n+5}{n-6}\right)^2} =$$

$$= \sqrt{\left(\lim_{n \to \infty} \frac{2}{1+1/n}\right)^2 + \left(\lim_{n \to \infty} \frac{1/n-4}{2+1/n}\right)^2 + \left(\lim_{n \to \infty} \frac{1+5/n}{1-6/n}\right)^2} =$$

$$= \sqrt{2^2 + (-2)^2 + 1^2} = \sqrt{4+4+1} = 3.$$

Задачи для самостоятельного решения

- 3.2.6. Исходя из определения предела последовательности, докажите, что: a) $\lim_{n\to\infty} \frac{n+2}{n+3} = 1$; б) $\lim_{n\to\infty} \frac{1}{n+4} = 0$.
- 3.2.7-3.2.9. Найдите следующие пределы, обосновывая каждую операцию:

3.2.7. a)
$$\lim_{n \to \infty} \frac{3n^3 + 5n^2 + n + 1}{n^3 - 2n + 2}$$
; 6) $\lim_{n \to \infty} \frac{(n+4)(n+5)}{(n+1)(n+2)(n+3)}$;
B) $\lim_{n \to \infty} \frac{n^4 + 2n^2 + 4}{n^3 + 5n + 3}$; r) $\lim_{n \to \infty} \left(\frac{n^3 - 2n^2 + 1}{2n^3 + 6}\right)^3$.

Ответы: а) 3; б) 0; в) ∞ ; г) 1/8.

3.2.8. a)
$$\lim_{n\to\infty} \frac{\sqrt[4]{16n^4+2n^3+3}}{n+5}$$
; 6) $\lim_{n\to\infty} \frac{\sqrt{2n+5}-2}{\sqrt{18n+1}-3}$; b) $\lim_{n\to\infty} \frac{\sqrt[4]{n^5+2}-\sqrt[3]{n^2+1}}{\sqrt[3]{n^4+2}-\sqrt{n^3+1}}$; $\lim_{n\to\infty} \frac{\sqrt{n^5-2n^2+1}+\sqrt[3]{n^4+1}}{\sqrt[4]{n^{10}+6n^5+2}-\sqrt[5]{n^7+3n^3+1}}$. One embiging a) 2; 6) 1/3; b) 0; r) 1.

3.2.9. a)
$$\lim_{n\to\infty} (\sqrt{3n+5}) - \sqrt{n}$$
; 6) $\lim_{n\to\infty} (\sqrt{n^2+3n+1} - \sqrt{n^2+1})$; b) $\lim_{n\to\infty} (\sqrt[3]{n^3+4n^2+1} - \sqrt[3]{n^3+6n^2+2})$;

r) $\lim_{n\to\infty} (\sqrt[3]{(n+1)^2} - \sqrt[3]{(n-1)^2}).$

Ответы: а) ∞; б) 3/2; в) -2/3; г) 0.

3.3. Предел функции (задачи 4, а, б)

Рекомендуется изучить подразделы 1.4, 1.5.1, 1.5.2, 1.5.5 и 1.6.1. Особенно хорошо надо освоить подраздел 1.4 и знать все типы окрестностей, их обозначения и формы записи в виде неравенств.

3.3.1. Используя теоремы о пределе произведения суммы и част $a) \lim_{x \to x_0} x^n = x_0^n;$ ного, докажите, что:

б)
$$\lim_{x \to x_0} P_n(x) = \lim_{x \to x_0} (a_0 x^n + a_1 x^{n-1} + \ldots + a_{n-1} x + a_n) =$$

$$= a_0 x_0^n + a_1 x_0^{n-1} + \ldots + a_{n-1} x_0 + a_n;$$

$$\text{B)} \lim_{x \to x_0} \frac{P_n(x)}{Q_m(x)} = \lim_{x \to x_0} \frac{a_0 x^n + a_1 x^{n-1} + \ldots + a_{n-1} x + a_n}{b_0 x^m + b_1 x^{m-1} + \ldots + b_{m-1} x + b_m} =$$

$$= \frac{a_0 x_0^n + a_1 x_0^{n-1} + \ldots + a_{n-1} x_0 + a_n}{b_0 x_0^m + b_1 x_0^{m-1} + \ldots + b_{m-1} x_0 + b_m},$$

$$\text{где } n \text{ и } m - \text{натуральные числа, } a_i \text{ и } b_i - \text{константы,}$$

 $b_0 x_0^m + b_1 x_0^{m-1} + \ldots + b_{m-1} x_0 + b_m \neq 0, x_0$ — конечно.

Решение: а) можем записать: $\lim_{x\to x_0} x^n = \lim_{x\to x_0} (x\cdot x\cdot \dots \cdot x)$. Так как $\lim x = x_0$, то по теореме о пределе произведения

$$\lim_{x \to x_0} x^n = \lim_{x \to x_0} x \cdot \lim_{x \to x_0} x \cdot \dots \cdot \lim_{x \to x_0} x = x_0^n;$$

- б) функция $P_n(x)$ представляет собой сумму (1+n) слагаемых, каждое из которых имеет конечный предел, например, $\lim_{n\to\infty}a_0x^n=\lim_{x\to x_0}a_0\lim_{x\to x_0}x_n=a_0x_0^n.$ Поэтому б) следует из теоремы о пределе суммы;
 - в) следует из теоремы о пределе частного, суммы и произведения.

Функцию $P_n(x)$ в задаче 3.3.1 называют многочленом или полиномом порядка n (если $a_0 \neq 0$).

3.3.2. Вычислите следующие пределы:

a)
$$\lim_{x\to 2} (x^2 + 3x + 4)$$
; 6) $\lim_{x\to 3} \frac{x^2 + 2x - 3}{2x^2 + 4x - 5}$.

а) $\lim_{x\to 2}(x^2+3x+4);$ б) $\lim_{x\to 3}\frac{x^2+2x-3}{2x^2+4x-5}.$ Решение. На основе доказанного в задаче 3.3.1, б можем записать: $\lim (x^2 + 3x + 4) = 2^2 + 3 \cdot 2 + 4 = 14;$

$$\lim_{x \to 3} \frac{x^2 + 2x - 3}{2x^2 + 4x - 5} = \frac{3^2 + 2 \cdot 3 - 3}{2 \cdot 3^2 + 4 \cdot 3 - 5} = \frac{12}{25}.$$

3.3.3. Найдите
$$A = \lim_{x \to 1} \frac{5x^2 - 20x + 15}{3x^2 - 15x + 12}$$
.

Решение. В данном случае применить теорему о пределе частного невозможно, так как знаменатель обращается при $x_0 = 1$ в нуль. Заметим, что и числитель при $x_0 = 1$ также обращается в нуль. Получаем неопределённое выражение типа 0/0. Мы уже подчёркивали, что в определении предела при $x \to x_0$ величина x значение x_0 никогда не принимает. В нашем примере $x \neq 1$, а потому $x - 1 \neq 0$. Разлагая на множители числитель и знаменатель, получаем

$$A = \lim_{x \to 1} \frac{5x^2 - 20x + 15}{3x^2 - 15x + 12} = \lim_{x \to 1} \frac{5(x-1)(x-3)}{3(x-1)(x-4)}.$$

Поделим числитель и знаменатель на величину x-1, отличную от нуля. Получим $A = \lim_{x \to 1} \frac{5(x-3)}{3(x-4)} = \frac{5(1-3)}{3(1-4)} = \frac{10}{9}$.

3.3.4. Найдите
$$A = \lim_{x \to -3} \frac{x^3 + 5x^2 + 3x - 9}{x^3 - 3x^2 - 45x - 81}$$
.

Решение. Убеждаемся, что числитель и знаменатель в точке $x_0 = -3$ обращаются в нуль. По теореме Безу многочлены в числителе и знаменателе делятся на (x+3). Выполняя это деление, по-

лучаем
$$A = \lim_{x \to -3} \frac{(x+3)(x^2+2x-3)}{(x+3)(x^2-6x-27)} = \lim_{x \to -3} \frac{(x^2+2x-3)}{(x^2-6x-27)}$$

(числитель и знаменатель разделили на $x+3\neq 0$). Замечаем, что числитель и знаменатель опять обращаются в нуль при $x_0=-3$. На-

ходим
$$A = \lim_{x \to -3} \frac{(x+3)(x-1)}{(x+3)(x-9)} = \lim_{x \to -3} \frac{(x-1)}{(x-9)} = \frac{-3-1}{-3-9} = \frac{4}{12} = \frac{1}{3}.$$

3.3.5. Найдите
$$A = \lim_{x \to \infty} \frac{2x+4}{3x+5}$$
.

Решение. Поделим числитель и знаменатель на x. Получим $A = \frac{1}{2} + \frac{4}{x}$

$$=\lim_{x \to \infty} \frac{2+4/x}{3+5/x}$$
. По теореме о пределе частного и суммы и учитывая,

что
$$\lim_{x\to\infty}\frac{4}{x}=0,\ \lim_{x\to\infty}\frac{5}{x}=0,$$
 находим $A=\lim_{x\to\infty}\frac{2+4/x}{3+5/x}=\frac{2}{3}.$

3.3.6. Найдите
$$A = \lim_{x \to \infty} \frac{7x^4 + 2x^3 - 14}{5x^4 + x^3 + x^2 - 1}.$$

Peшение. Поделив числитель и знаменатель на $x^4,$ получим $A=\lim_{x\to\infty}\frac{7+2/x-14/x^4}{5+1/x+1/x^2-1/x^4}.$ Затем применяем теоремы о пре-

деле суммы, произведения и частного. Учитывая, что
$$\lim_{x\to\infty}\frac{2}{x}=0$$
; $\lim_{x\to\infty}\frac{14}{x^4}=0$; $\lim_{x\to\infty}\frac{1}{x}=\lim_{x\to\infty}\frac{1}{x^2}=\lim_{x\to\infty}\frac{1}{x^4}=0$, получаем, что $A=\frac{7}{5}$.

3.3.7. Найдите
$$A = \lim_{x \to \infty} \frac{x^4 + 2x^2 + 1}{x^3 + 4x + 2}$$
.

Peшение. Поделим числитель и знаменатель на $x^4.$ Получим $A=\lim_{x\to\infty}\frac{1+2/x^2+1/x^4}{1/x+4/x^3+2/2x^4}=\infty,$ поскольку числитель стремится к единице, а знаменатель — к нулю.

В частных случаях, встречающихся довольно часто, функция f(x) может быть определена во всей окрестности $V(x_0)$, включая и x_0 . Если при этом окажется, что $\lim_{x\to x_0} f(x)$ существует и равен $f(x_0)$, т.е. $\lim_{x\to x_0} f(x) = f(x_0)$, то функция называется непрерывной в точке x_0 .

В задаче 3.3.1 мы доказали непрерывность многочлена. Доказано, что все элементарные функции непрерывны в каждой внутренней точке их области определения.

В граничных точках возможна односторонняя непрерывность. Эти точки подлежат дополнительному исследованию.

Для непрерывных функций в точке x_0 справедливы равенства: $\lim_{x\to x_0}f(x)=f(\lim_{x\to x_0}x)=f(x_0),$

$$\lim_{x\to x_0} f[\varphi(x)] = f[\lim_{x\to x_0} \varphi(x)] = f[\varphi(\lim_{x\to x_0} x)] = f[\varphi(x_0)],$$

т.е. символы f и $\lim_{x \to x_0}$ для непрерывных функций перестановочны. Этим свойством мы будем широко пользоваться при отыскании пределов, например, $\lim_{x\to 3} \sqrt{x^4 + 3x + 10} = \sqrt{\lim_{x\to 3} (x^4 + 3x + 10)} =$ $y = \sqrt{81 + 9 + 10} = 10$. Использованы непрерывность функции $y = \sqrt{u}$ и теорема о пределе суммы.

$$\begin{aligned} \textbf{3.3.8.} \ & \text{ Найдите } \lim_{x \to -\infty} \frac{x + \sqrt{9x^2 + 1}}{x}. \\ & \textit{Pewenue.} \ \lim_{x \to -\infty} \frac{x + \sqrt{9x^2 + 1}}{x} = \lim_{x \to -\infty} \left(1 + \frac{\sqrt{9x^2 + 1}}{x}\right) = \\ & = \lim_{x \to -\infty} \left(1 - \sqrt{\frac{9x^2 + 1}{x^2}}\right) = \lim_{x \to -\infty} \left(1 - \sqrt{9 + \frac{1}{x^2}}\right) = \\ & = 1 - \sqrt{\lim_{x \to -\infty} \left(9 + \frac{1}{x^2}\right)} = 1 - 3 = -2. \end{aligned}$$

. Напомним, что $a\sqrt{b} = \left\{ \begin{array}{l} \sqrt{a^2b}, \ \text{если} \ a>0; \\ -\sqrt{a^2b}, \ \text{если} \ a<0. \end{array} \right.$ По этой причине $\frac{\sqrt{9x^2+1}}{x}=-\sqrt{\frac{9x^2+1}{x^2}},$ поскольку $x\to-\infty,$ а потому x<0.

3.3.9. Докажите самостоятельно:
$$\lim_{x \to +\infty} \frac{x + \sqrt{9x^2 + 1}}{x} = 4$$

 $\textbf{3.3.9.} \ \, \text{Докажите самостоятельно:} \ \, \lim_{x \to +\infty} \frac{x + \sqrt{9x^2 + 1}}{x} = 4.$ Из задач 3.3.8 и 3.3.9 следует, что $\lim_{x \to \infty} \frac{x + \sqrt{9x^2 + 1}}{x}$ не существует.

3.3.10. Найдите
$$A = \lim_{x \to 1} \frac{\sqrt{x+8} - \sqrt{8x+1}}{\sqrt{5-x} - \sqrt{7x-3}}$$
.

Pewehue. Замечаем, что числитель и знаменатель при $x \to 1$ стремятся к нулю, т.е. имеем неопределённость типа 0/0. Умножим числитель и знаменатель на множители, сопряжённые соответствующим выражениям:

$$A = \lim_{x \to 1} \frac{(\sqrt{x+8} - \sqrt{8x+1})(\sqrt{x+8} + \sqrt{8x+1})(\sqrt{5-x} + \sqrt{7x-3})}{(\sqrt{5-x} - \sqrt{7x-3})(\sqrt{5-x} + \sqrt{7x-3})(\sqrt{x+8} + \sqrt{8x+1})} = \\ = \lim_{x \to 1} \frac{(x+8-8x-1)(\sqrt{5-x} + \sqrt{7x-3})}{(5-x-7x+3)(\sqrt{x+8} + \sqrt{8x+1})} = \\ = \lim_{x \to 1} \frac{7(1-x)}{8(1-x)} \cdot \frac{\sqrt{5-x} + \sqrt{7x-3}}{\sqrt{x+8} + \sqrt{8x+1}} = \frac{7}{8} \cdot \frac{2+2}{3+3} = \frac{7}{12}.$$

Мы воспользовались непрерывностью функции \sqrt{x} и теоремой о пределе частного и суммы.

3.3.11. Найдите
$$\lim_{x\to 1} \frac{\sqrt[3]{2x-1} - \sqrt[3]{3x-2}}{x-1}$$
.

Решение. Применим формулу $(a^3-b^3)=(a-b)(a^2+ab+b^2)$. Полагая $a=\sqrt[3]{2x-1},\ b=\sqrt[3]{3x-2},$ умножим числитель и знаменатель на неполный квадрат суммы чисел a и b. Получим

$$\lim_{x \to 1} \frac{2x - 1 - 3x + 2}{(x - 1)\left(\sqrt[3]{(2x - 1)^2} + \sqrt[3]{(2x - 1)(3x - 2)} + \sqrt[3]{(3x - 2)^2}\right)} = \\ = \lim_{x \to 1} \frac{-(x - 1)}{(x - 1)\left(\sqrt[3]{(2x - 1)^2} + \sqrt[3]{(2x - 1)(3x - 2)} + \sqrt[3]{(3x - 2)^2}\right)} = \\ = \lim_{x \to 1} \frac{-1}{\sqrt[3]{(2x - 1)^2} + \sqrt[3]{(2x - 1)(3x - 2)} + \sqrt[3]{(3x - 2)^2}} = -\frac{1}{3}.$$

(Применили теоремы о пределе частного, суммы и произведения, а также непрерывность функций u^2 и $\sqrt[3]{u}$.)

3.3.12. Найдите
$$\lim_{x\to 0+0} 3^{1/x}$$
, $\lim_{x\to 0-0} 3^{1/x}$.

Решение. Сделаем замену t=1/x. Если $x\to 0+0$, то $t\to +\infty$, если $x\to 0-0$, то $t\to -\infty$ (см. пример 5, в, г, п. 1.5). По свойству показательной функции $y=a^x$ при a>1 получаем

$$\lim_{x \to 0+0} 3^{1/x} = \lim_{t \to +\infty} 3^t = +\infty,$$

$$\lim_{x \to 0-0} 3^{1/x} = \lim_{t \to -\infty} 3^t = \lim_{t \to +\infty} \frac{1}{3^t} = 0.$$

Как видим, предел $\lim_{x\to 0} 3^{1/x}$ не существует.

3.3.13. Найдите
$$\lim_{x\to 0} \frac{5^{1/x}-1}{7^{1/x}-1}$$
.

Pewenue. Найдём правый и левый пределы: $\lim_{x\to 0+0} \frac{5^{1/x}-1}{7^{1/x}-1},$

$$\lim_{x\to 0-0} \frac{5^{1/x}-1}{7^{1/x}-1}$$
. Сделаем замену $t=\frac{1}{x}$. Тогда

$$\lim_{x \to 0+0} \frac{5^{1/x} - 1}{7^{1/x} - 1} = \lim_{t \to +\infty} \frac{5^t - 1}{7^t - 1} = \lim_{t \to +\infty} \frac{(5/7)^t - 1/7^t}{1 - 1/7^t} = 0.$$

Мы воспользовались свойством показательной функции $y=a^x$: при a<1 справедливо $\lim_{x\to+\infty}a^x=0$, при $a>1-\lim_{x\to+\infty}a^x=+\infty$, а также теоремой о пределе частного.

Аналогично получаем
$$\lim_{x\to 0-0}\frac{5^{1/x}-1}{7^{1/x}-1}=\lim_{t\to -\infty}\frac{5^t-1}{7^t-1}=1.$$

По свойству показательной функции при a>1 следует, что $\lim_{x\to -\infty}a^t=0$. Мы показали, что существуют конечные правый и левый пределы, но они неравны. Следовательно, предел не существует.

Итак, мы познакомились с понятием предела функции f(x). Если функция в точке x_0 непрерывна, то отыскание предела $\lim_{x\to x_0} f(x)$

не представляет труда. Он равен $f(x_0)$. Если же свойство непрерывности нарушено, то могут возникнуть неопределённости вида 0/0, ∞/∞ , $0\cdot\infty$, $\infty-\infty$, 0, 0, 0, 0. С первыми двумя типами неопределённостей мы уже встретились. Другие рассмотрим позднее.

Задачи для самостоятельного решения

3.3.14. Исходя из определения предела, докажите, что:

a)
$$\lim_{x \to 1} \frac{1}{x+2} = \frac{1}{3}$$
; 6) $\lim_{x \to 2-0} \frac{1}{x-2} = -\infty$; B) $\lim_{x \to 2+0} \frac{1}{x-2} = +\infty$;

r)
$$\lim_{x \to -\infty} \frac{1}{x+1} = \lim_{x \to +\infty} \frac{1}{x+1} = \lim_{x \to \infty} \frac{1}{x+1} = 0;$$

д)
$$\lim_{x \to 1-0} \arcsin x = \frac{\pi}{2}$$
; e) $\lim_{x \to 1} \frac{1}{x+1} \neq 2$; ж) $\lim_{x \to 2} x^3 = 8$.

3.3.15. Найдите: а) $\lim_{x\to 2}(x^3+4x-5)$; б) $\lim_{x\to 3}\frac{4x^4-8x^2+28}{x^3+1}$, обосновывая ссылками на соответствующие теоремы каждую операцию. *Ответы*: а) 11; б) 10.

3.3.16. Найдите следующие пределы:

a)
$$\lim_{x\to 1} \frac{x^2 - 6x + 5}{x^2 - 3x + 2}$$
; 6) $\lim_{x\to 3} \frac{x^3 - 27}{x - 3}$; B) $\lim_{x\to 2} \frac{x^3 - 3x^2 + 4}{x^3 - 2x^2 - 4x + 8}$. Omeemu: a) 4; 6) 27; B) $3/4$.

3.3.17. Найдите следующие пределы:

a)
$$\lim_{x \to 1} \frac{1 - \sqrt[4]{x}}{1 - \sqrt[6]{x}}$$
; 6) $\lim_{x \to 1} \frac{1 - \sqrt[3]{x}}{1 - \sqrt[5]{x}}$.

Указание. В примере а) сделать замену $x=t^{12}$, в примере 6) — $x=t^{15}$. Использовать формулу $a^m-b^m=(a-b)(a^{m-1}+a^{m-2}b+\ldots+ab^{m-2}+b^{m-1})$.

Ответы: a) 3/2; б) 5/3.

3.3.18. Найдите следующие пределы:

a)
$$\lim_{x \to \infty} \frac{3x^4 - 7x^2 + 4x + 1}{6x^4 + 5x^3 - 2}$$
; 6) $\lim_{x \to \infty} \left(\frac{2x^2 - 3x + 1}{x^2 + 2}\right)^3$;

B)
$$\lim_{x \to \infty} \frac{x^2 + 4x + 1}{x^3 + x^2 + 5}$$
; Γ) $\lim_{x \to \infty} \frac{2x^3 + 4x^2 + 1}{2x^2 + 1}$.

Ответы: a) 1/2; б) 8; в) 0; г) ∞ .

3.3.19. Найдите пределы:

a)
$$\lim_{x \to -\infty} \frac{x^3 + \sqrt{16x^6 + 5}}{x^3}$$
; 6) $\lim_{x \to +\infty} \frac{x^3 + \sqrt{16x^6 + 5}}{x^3}$.

Ответы: a) -3; б) 5.

3.3.20. Найдите пределы:

a)
$$\lim_{x \to 2} \frac{\sqrt{2+x}-2}{x-2}$$
; 6) $\lim_{x \to +0} \frac{\sqrt{9+5x+4x^2}-3}{x}$;
B) $\lim_{x \to 2} \frac{\sqrt[3]{10-x}-2}{x-2}$; r) $\lim_{x \to 1} \frac{\sqrt[3]{2x-1}-\sqrt[3]{3x-2}}{\sqrt{4x-3}-1}$.

B)
$$\lim_{x \to 2} \frac{\sqrt[3]{10 - x - 2}}{x - 2}$$
; Γ) $\lim_{x \to 1} \frac{\sqrt[3]{2x - 1} - \sqrt[3]{3x - 2}}{\sqrt{4x - 3} - 1}$.

Ответы: a) 1/4; б) 5/6; в) -1/12; г) -

3.3.21. Найдите пределы:

a)
$$\lim_{x \to +\infty} x(\sqrt{x^2 + 1} - x);$$
 6) $\lim_{x \to \pm \infty} (\sqrt{x^2 + x + 1} - \sqrt{x^2 - x + 1});$

B)
$$\lim_{x \to +\infty} (\sqrt[3]{x^3 + 3x^2} - \sqrt{x^2 - 2x}).$$

Указание. Прибавить и вычесть x.

Ответы: a) 1/2; б) ± 1 ; в) 2.

3.3.22. Найдите пределы:

a)
$$\lim_{x\to 3+0} 2^{\frac{1}{x-3}}$$
; 6) $\lim_{x\to 3-0} 2^{\frac{1}{x-3}}$; B) $\lim_{x\to 2+0} \frac{3^{\frac{1}{x-2}}+1}{4^{\frac{1}{x-2}}+2}$. Omeemu: a) $+\infty$; 6) 0; B) 0.

3.4. Первый замечательный предел (задача 4, в)

Предлагается изучить п. 1.7.1.

Обратите внимание на то, что в первом замечательном пределе $\lim_{x\to 0} \frac{\sin x}{x} = 1$ раскрывается неопределенность 0/0, причем аргумент синуса стремится к нулю, и в знаменателе находится точно этот аргумент. Непосредственным следствием первого замечательного предела являются следующие пределы: $\lim_{x\to 0} \frac{\operatorname{tg} x}{x} = 1$, $\lim_{x\to 0} \frac{\arcsin x}{x} = 1$, arcto x

$$\lim_{x\to 0}\frac{\arctan x}{x}=1.$$
 Действительно,

$$\lim_{x \to 0} \frac{\operatorname{tg} x}{x} = \lim_{x \to 0} \cos x \cdot \frac{\sin x}{x} = \lim_{x \to 0} \cos x \cdot \lim_{x \to 0} \frac{\sin x}{x} = 1$$

(мы использовали теорему о пределе произведения и непрерывность функции $\cos x$, из которой следует, что $\lim_{x \to \infty} \cos x = \cos \lim_{x \to \infty} x = 1$).

Для отыскания второго предела сделаем замену $\arcsin x = y$, $x = \sin y$. Если $x \to 0$, то $y \to 0$, что следует из непрерывности функции $\arcsin x$.

Находим
$$\lim_{x\to 0}\frac{\arcsin x}{x}=\lim_{y\to 0}\frac{y}{\sin y}=\lim_{y\to 0}\frac{1}{(\sin y)/y}=1.$$
 Аналогично доказывается, что $\lim_{x\to 0}\frac{\arctan x}{x}=1$ (замена $\arctan x=y$).

3.4.1. Найдите следующие пределы:

a)
$$\lim_{x\to 0} \frac{\sin 5x}{x}$$
; 6) $\lim_{x\to 0} \frac{\sin 3x}{\operatorname{tg} 5x}$; B) $\lim_{x\to 0} \frac{\arcsin 3x}{\operatorname{arctg} 4x}$;

$$\Gamma$$
) $\lim_{x \to 0} \frac{1 - \cos 2x}{x^2}$; д) $\lim_{x \to 2} \frac{\sin x}{x}$.

Решение. a)
$$\lim_{x \to 0} \frac{\sin 5x}{x} = \lim_{x \to 0} \frac{5\sin 5x}{5x} = \lim_{u \to 0} \frac{5\sin u}{u} = 5$$
, $(u = 5x)$;

6)
$$\lim_{x \to 0} \frac{\sin 3x}{\lg 5x} = \lim_{x \to 0} \frac{\frac{\sin 3x}{3x} \cdot 3}{\frac{\lg 5x}{5x} \cdot 5} = \frac{3}{5};$$

$$\operatorname{B}) \lim_{x \to 0} \frac{\arcsin 3x}{\arctan 4x} = \lim_{x \to 0} \frac{\frac{\arcsin 3x}{3x} \cdot 3}{\frac{\arctan 4x}{4x} \cdot 4} = \frac{3}{4};$$

r)
$$\lim_{x \to 0} \frac{1 - \cos 2x}{x^2} = \lim_{x \to 0} \frac{2\sin^2 x}{x^2} = 2\lim_{x \to 0} \frac{\sin x}{x} \cdot \frac{\sin x}{x} = 2;$$

$$д) \lim_{x \to 2} \frac{\sin x}{x} = \frac{\sin 2}{2}.$$

3.4.2. Найдите следующие пределы, сделав подходящую замену:

a)
$$\lim_{x \to \pi} \frac{\sin 3x}{\sin 2x}$$
; 6) $\lim_{x \to \pi/4} \frac{\cos x - \sin x}{\cos 2x}$; b) $\lim_{x \to \pi/6} \frac{\sin (x - \pi/6)}{\sqrt{3}/2 - \cos x}$.

Решение: а) поскольку непосредственное применение первого замечательного предела невозможно, так как аргумент синуса не стремится к нулю, то сделаем замену $x=y+\pi.$ Когда $x\to\pi,$ то $y\to0.$ Теперь

$$\lim_{x \to \pi} \frac{\sin 3x}{\sin 2x} = \lim_{y \to 0} \frac{\sin(3y + 3\pi)}{\sin(2y + 2\pi)} = \lim_{y \to 0} \frac{-\sin 3y}{\sin 2y} = -\frac{3}{2};$$

б) используем формулу тригонометрии $\cos x - \sin x =$

$$=\sqrt{2}\sin\left(\frac{\pi}{4}-x\right)$$
, затем делаем замену $y=\frac{\pi}{4}-x,\ x=\frac{\pi}{4}-y$.

$$\text{Имеем } \lim_{x \to \pi/4} \frac{\cos x - \sin x}{\cos 2x} = \lim_{x \to \pi/4} \frac{\sqrt{2} \sin \left(\frac{\pi}{4} - x\right)}{\cos 2x} = \lim_{y \to 0} \frac{\sqrt{2} \sin y}{\cos \left(\frac{\pi}{2} - 2y\right)} = \lim_{y \to 0} \frac{\sqrt{2} \sin y}{\sin 2y} = \frac{\sqrt{2}}{2};$$

в)
$$\lim_{x \to \pi/6} \frac{\sin\left(x - \frac{\pi}{6}\right)}{\frac{\sqrt{3}}{2} - \cos x} = \lim_{x \to \pi/6} \frac{\sin\left(x - \frac{\pi}{6}\right)}{\cos\frac{\pi}{6} - \cos x} = \lim_{x \to \pi/6} \frac{\sin\left(x - \frac{\pi}{6}\right)}{2\sin\left(x - \frac{\pi}{6}\right)} = \lim_{x \to \pi/6} \frac{\sin\left(x - \frac{\pi}{6}\right)}{2\sin\left(\frac{x + \pi/6}{2}\right)\sin\left(\frac{x - \pi/6}{2}\right)} = \lim_{y \to 0} \frac{\sin y}{2\sin\left(\frac{y + \pi/3}{2}\right)\sin\frac{y}{2}} = \lim_{y \to 0} \frac{y}{2\sin\left(\frac{y + \pi/3}{2}\right)\sin\frac{y}{2}} = 2$$
 (замена: $y = x - \frac{\pi}{6}$, $\cos \alpha - \cos \beta = 2\sin\frac{\alpha + \beta}{2}\sin\frac{\beta - \alpha}{2}$).

Задачи для самостоятельного решения

3.4.3 - 3.4.6. Найдите следующие пределы.

3.4.3. a)
$$\lim_{x\to 0} \frac{\sin 4x}{x}$$
; 6) $\lim_{x\to 0} \frac{\sin 5x}{\operatorname{tg} 3x}$; b) $\lim_{x\to 0} \frac{\operatorname{arctg} 2x}{x}$;

$$\Gamma$$
) $\lim_{x\to 0} \frac{\arcsin 5x}{x}$; д) $\lim_{x\to 0} \frac{\arcsin 4x}{\arctan 3x}$; e) $\lim_{x\to 0} \frac{\sin 5x - \sin 3x}{\sin x}$.

Ответы: а) 4; б) 5/3; в) 2; г) 5; д) 4/3; е) 2.

3.4.4. a)
$$\lim_{x\to 0} \frac{1-\cos^3 x}{x\sin 2x}$$
; 6) $\lim_{x\to 0} \frac{1+2\sin x-\cos x}{1+3\sin x-\cos x}$;

B)
$$\lim_{x\to 0} \frac{\operatorname{tg} x - \sin x}{x^3}$$
; r) $\lim_{x\to 0} \frac{\cos 4x - \cos 3x}{x^2}$;

д)
$$\lim_{x\to 0} \frac{\sqrt{1-\cos x^2}}{1-\cos x}$$
; e) $\lim_{x\to 0} \frac{\sqrt{\cos x}-\sqrt[3]{\cos x}}{\sin^2 x}$.

Ответы: а) 3/4; б) 2/3; в) 1/2; г) -7/2; д) $\sqrt{2}$; е) -1/12.

3.4.5. a)
$$\lim_{x \to a} \frac{\sin x - \sin a}{x - a}$$
; 6) $\lim_{x \to \pi/3} \frac{\sin(x - \pi/3)}{1 - 2\cos x}$;

в)
$$\lim_{x \to \pi/3} \frac{\operatorname{tg}^3 x - 3 \operatorname{tg} x}{\cos(x + \pi/6)}$$
; г) $\lim_{x \to \pi/2} (\pi/2 - x) \operatorname{tg} x$.

Ответы: a) $\cos a$; б) $1/\sqrt{3}$; в) -24; г) 1.

3.4.6. a)
$$\lim_{x \to 0} \frac{\sqrt{2} - \sqrt{1 + \cos x}}{\sin^2 x}$$
; 6) $\lim_{x \to 0} \frac{\sqrt{1 + \sin x} - \sqrt{1 - \sin x}}{\tan x}$;

B)
$$\lim_{x \to 0} \frac{1 - (\cos x) \cdot \sqrt{\cos 2x}}{x^2}$$
; r) $\lim_{x \to 0} \frac{\sin(a + 2x) - 2\sin(a + x) + \sin a}{x^2}$.

Ответы: a) $\sqrt{2}/8$; б) 1; в) 3/2; г) $-\sin a$.

3.5. Второй замечательный предел (задача 4, г)

Предлагается изучить п. 1.7.2.

Каждый из пределов
$$\lim_{n\to\infty}\left(1+\frac{1}{n}\right)^n=e$$
 $(n$ — натурально),

 $\lim_{x\to 0} (1+x)^{\frac{1}{x}} = e, \lim_{x\to \infty} \left(1+\frac{1}{x}\right)^x = e$ называют вторым замечательным пределом. Здесь e – число Эйлера, $e=2,718281828\dots$

3.5.1. Докажите справедливость следующих утверждений:

а) если $\lim_{x\to x_0} \alpha(x) = 0$, то

$$\lim_{x \to x_0} [1 + \alpha(x)]^{\frac{1}{\alpha(x)}} = e; \tag{1}$$

б) если $\lim_{x\to x_0} \alpha(x) = 0$ и $\lim_{x\to x_0} \alpha(x)\varphi(x)$ существует, то

$$\lim_{x \to x_0} \left[1 + \alpha(x) \right]^{\varphi(x)} = e^{\lim_{x \to x_0} \alpha(x)\varphi(x)}; \tag{2}$$

в) если $\lim_{x \to x_0} f(x) = 1$ и $\lim_{x \to x_0} [f(x) - 1] \varphi(x)$ существует, то $\lim_{x \to x_0} f(x)^{\varphi(x)} = e^{\lim_{x \to x_0} [f(x) - 1] \varphi(x)}.$ (3)

Действительно, положив в (1) $\alpha(x)=t$, получим:

$$\lim_{x \to x_0} [1 + \alpha(x)]^{\frac{1}{\alpha(x)}} = \lim_{t \to 0} (1 + t)^{\frac{1}{t}} = e.$$

Соотношение (2) следует из (1), так как

$$\lim_{x \to x_0} [1 + \alpha(x)]^{\varphi(x)} = \lim_{x \to x_0} \left[(1 + \alpha(x))^{\frac{1}{\alpha(x)}} \right]^{\alpha(x)\varphi(x)} = e^{\lim_{x \to x_0} \alpha(x)\varphi(x)}.$$

Последняя операция является следствием непрерывности экспоненты, строгое обоснование мы опускаем.

Если $\lim_{x\to x_0} f(x) = 1$, то $\lim_{x\to x_0} \alpha(x) = \lim_{x\to x_0} [f(x)-1] = 0$ и утверждение (3) следует из (2) при $\alpha(x) = f(x)-1$.

Заметим, что во втором замечательном пределе раскрывается неопределенность типа 1^{∞} . Обратим внимание на то, что $\lim_{x\to x_0} 1^{\varphi(x)} = 1$. Этот предел не содержит никакой неопределенности

и в случае, если $\lim_{x\to x_0} \varphi(x) = \infty$, что следует из определения предела на языке последовательностей.

В следующей задаче рассмотрены случаи, когда $\lim_{x\to x_0} f(x)^{\varphi(x)}$ неопределенности не содержит.

3.5.2. Докажите справедливость следующих утверждений:

а) если функции f(x) и $\varphi(x)$ непрерывны в точке x_0 и f(x) > 0, $\lim_{x \to x_0} f(x)^{\varphi(x)} = f(x_0)^{\varphi(x_0)}; \tag{4}$

б) если либо
$$\lim_{x \to x_0} f(x) = q < 1$$
, $\lim_{x \to x_0} \varphi(x) = +\infty$, либо $\lim_{x \to x_0} f(x) = q > 1$, но $\lim_{x \to x_0} \varphi(x) = -\infty$, то
$$\lim_{x \to x_0} f(x)^{\varphi(x)} = 0; \tag{5}$$
 в) если либо $\lim_{x \to x_0} f(x) = q < 1$, $\lim_{x \to x_0} \varphi(x) = -\infty$, либо $\lim_{x \to x_0} f(x) = q > 1$, но $\lim_{x \to x_0} \varphi(x) = +\infty$, то
$$\lim_{x \to x_0} f(x)^{\varphi(x)} = \infty. \tag{6}$$

Справедливость соотношения (4) следует из непрерывности степенно-показательной функции. Доказательство формул (5) и (6) опустим. (Интуитивно они очевидны.) Формулы (1) — (3) и (4) — (6) справедливы и при $x \to \infty, -\infty, +\infty$. Предел $\lim_{x \to x_0} f(x)^{\varphi(x)}$ может привести также к неопределенностям $0^0, \infty^0$, которые мы рассмотрим позднее.

3.5.3. Найдите следующие пределы:

а)
$$\lim_{x\to 0} \left(1+\frac{x^2+3x}{x+1}\right)^{\frac{2}{x}};$$
 б) $\lim_{x\to \infty} \left(1+\frac{1}{2x+1}\right)^x;$ в) $\lim_{x\to \infty} \left(1+\frac{1}{x^2+1}\right)^{x+1};$ г) $\lim_{x\to -\infty} \left(1+\frac{1}{x+1}\right)^{x^2+1}.$ Решение: а) так как $\lim_{x\to 0} \left(\frac{x^2+3x}{x+1}\right)=0$, то можем положить в соответствии с (2) $\alpha(x)=\frac{x^2+3x}{x+1},$ $\varphi(x)=\frac{2}{x}.$ Получаем $\lim_{x\to 0} \left(1+\frac{x^2+3x}{x+1}\right)^{\frac{2}{x}}=e^{\lim_{x\to 0}\frac{x^2+3x}{x+1}\cdot\frac{2}{x}}=e^{\lim_{x\to 0}\frac{2(x+3)}{x+1}}=e^6;$ б) полагаем в (2) $\alpha(x)=\frac{1}{2x+1},$ что возможно, так как $\lim_{x\to \infty} \alpha(x)=0.$ Получаем $\lim_{x\to \infty} \left(1+\frac{1}{2x+1}\right)^x=e^{\lim_{x\to \infty}\frac{1}{2x+1}\cdot x}=e^{\frac{1}{2}};$ в) $\lim_{x\to \infty} \left(1+\frac{1}{x^2+1}\right)^{x+1}=e^{\lim_{x\to \infty}\frac{x+1}{x^2+1}}=e^0=1;$ г) $\lim_{x\to -\infty} \left(1+\frac{1}{x+1}\right)^{x^2+1}=e^{\lim_{x\to -\infty}\frac{x^2+1}{x+1}}=0$, так как

 $\lim_{x \to -\infty} \frac{x^2+1}{x+1} = \lim_{x \to -\infty} \frac{x+1/x}{1+1/x} = -\infty.$ Все четыре рассмотренных предела содержат неопределённость 1^∞ . Раскрывая эту неопределённость, можно получить самые разнообразные ответы, включая 0,1 и ∞ .

3.5.4. Найдите следующие пределы:

a)
$$\lim_{x \to \infty} \left(\frac{x+2}{x+3} \right)^{x+4}$$
; 6) $\lim_{x \to 5} \left(\frac{x-3}{4x-18} \right)^{\frac{2}{5-x}}$.

Peшeнue: а) так как $\lim_{x\to\infty}\frac{x+2}{x+3}=1$, то имеем право применить

формулу (3), положив в ней
$$f(x) = \frac{x+2}{x+3}$$
, $\varphi(x) = x+4$. Получаем

$$\lim_{x \to \infty} \left(\frac{x+2}{x+3} \right)^{x+4} = (1^{\infty}) = e^{\lim_{x \to \infty} \left(\frac{x+2}{x+3} - 1 \right) \cdot (x+4)} = e^{\lim_{x \to \infty} \frac{-(x+4)}{x+3}} = e^{-1} = 1/e;$$

б) поскольку $\lim_{x\to 5} \frac{x-3}{4x-\frac{1}{2}8} = 1$, то также применима формула (3).

Находим
$$\lim_{x \to 5} \left(\frac{x-3}{4x-18}\right)^{\frac{2}{5-x}} = (1^{\infty}) = e^{\lim_{x \to 5} \left(\frac{x-3}{4x-18}-1\right) \cdot \frac{2}{5-x}} = e^{\lim_{x \to 5} \frac{(15-3x) \cdot 2}{(5-x)(4x-18)}} = e^{3}.$$

3.5.5. Найдите следующие пределы:

a)
$$\lim_{x \to 1} (x^2 + 2)^{x^3 + 1}$$
; 6) $\lim_{x \to -\infty} \left(\frac{2x + 3}{x + 1} \right)^{x - 2}$;

B)
$$\lim_{x \to -\infty} \left(\frac{4x+1}{8x+5} \right)^{x^3}$$
; r) $\lim_{x \to +\infty} \left(\frac{4x^2+1}{5x^2+2} \right)^{\frac{x^2+1}{x}}$.

Peшение:а) так как $\lim_{x\to 1}(x^2+2)=3,\ \lim_{x\to 1}(x^3+1)=2$ и функции $f(x)=x^2+2$ и $\varphi(x)=x^3+1$ непрерывны в точке x=1, то

$$f(x)=x^2+2$$
 и $\varphi(x)=x^3+1$ непрерывны в точке $x=1,$ то $\lim_{x\to 1}(x^2+2)^{x^3+1}=3^2=9$ (см. (4));

б) находим
$$\lim_{x \to -\infty} \left(\frac{2x+3}{x+1} \right) = 2$$
, $\lim_{x \to -\infty} (x-2) = -\infty$, следова-

тельно,
$$\lim_{x \to -\infty} \left(\frac{2x+3}{x+1} \right)^{x-2} = 0;$$

в)
$$\lim_{x \to -\infty} \frac{4x+1}{8x+5} = \frac{1}{2}$$
, $\lim_{x \to -\infty} x^3 = -\infty$, поэтому

$$\lim_{x \to -\infty} \left(\frac{4x+1}{8x+5} \right)^{x^3} = +\infty \text{ (cm. (6))};$$

r)
$$\lim_{x \to +\infty} \frac{4x^2 + 1}{5x^2 + 2} = \frac{4}{5}$$
, $\lim_{x \to +\infty} \frac{x^2 + 1}{x} = +\infty$, поэтому

$$\lim_{x \to +\infty} \left(\frac{4x^2 + 1}{5x^2 + 2} \right)^{\frac{x^2 + 1}{x}} = 0 \text{ (cm. (5))}.$$

Задачи для самостоятельного решения

3.5.6 - 3.5.8. Найдите следующие пределы.

3.5.6. a)
$$\lim_{x \to \infty} \left(1 + \frac{x^2}{x^4 + 1} \right)^{2x^2 + 3};$$
 6) $\lim_{x \to 2} \left(1 + \frac{x^2 - 4}{x + 3} \right)^{\frac{1}{\sin(x - 2)}};$
B) $\lim_{x \to 0} \left(1 + \sin^2 4x \right)^{\frac{1}{x}};$ r) $\lim_{x \to 0} \left(1 + \operatorname{tg} x \right)^{\frac{x - 1}{x^3}};$
 $\lim_{x \to 3 + 0} \left(1 + \frac{x - 3}{x^2 + 1} \right)^{\frac{1}{\sin^2(x - 3)}}.$

Ответы: а) e^2 ; б) $e^{4/5}$; в) 1; г) 0; д) $+\infty$.

3.5.7. а)
$$\lim_{x\to\infty} \left(\frac{5x^2+3}{5x^2-2x+1}\right)^{4x+3}$$
; б) $\lim_{x\to\pi} \left(\operatorname{tg}\frac{x}{4}\right)^{\frac{2}{x-\pi}}$ $\left(y$ казание: использовать формулу $\operatorname{tg}\alpha - \operatorname{tg}\beta = \frac{\sin(\alpha-\beta)}{\cos\alpha\cdot\cos\beta}\right)$;

$$\mathrm{B)} \ \lim_{x \to 1} \left(\frac{3x+1}{x+3} \right)^{\frac{4}{x-1}}; \ \mathrm{r)} \ \lim_{x \to 2} \left(\frac{8x-14}{3x-4} \right)^{\frac{24}{x^3-8}};$$

д)
$$\lim_{x \to \infty} \left(\frac{x^2 + 4}{x^2 + 1}\right)^{2x}$$
; e) $\lim_{x \to \infty} \left(\frac{x^2 + 6}{x^2 + 4}\right)^{x^4}$;

ж)
$$\lim_{x \to -\infty} \left(\frac{x^2 + 1}{x^2 - 6} \right)^{x^3}$$
.

Ответы: а) $e^{8/5}$; б) e; в) e^2 ; г) e^5 ; д) 1; е) ∞ ; ж) 0.

3.5.8. a)
$$\lim_{x \to +\infty} \left(\frac{x+5}{5x+4} \right)^x$$
; 6) $\lim_{x \to -\infty} \left(\frac{4x+1}{3x+2} \right)^x$;
B) $\lim_{x \to +\infty} \left(\frac{4x+3}{2x+1} \right)^x$; r) $\lim_{x \to -\infty} \left(\frac{8x^2+3x+1}{16x^2+7} \right)^x$.

Ответы: a) 0; б) 0; в) $+\infty$; г) $+\infty$.

Используя число e, вводят ряд новых функций: e^x , называемую экспонентой, $\operatorname{ch} x = \frac{e^x + e^{-x}}{2}$ — гиперболический косинус, $\operatorname{sh} x = \frac{e^x - e^{-x}}{2}$ — гиперболический синус, $\operatorname{th} x = \frac{\operatorname{sh} x}{\operatorname{ch} x} = \frac{e^x - e^{-x}}{e^x + e^{-x}}$ — гиперболический тангенс, $\operatorname{cth} x = \frac{\operatorname{ch} x}{\operatorname{sh} x} = \frac{e^x + e^{-x}}{e^x - e^{-x}}$ — гиперболический котангенс. Функции $\operatorname{sh} x$, $\operatorname{ch} x$, $\operatorname{th} x$, $\operatorname{cth} x$ называют гиперболическими. Находят применение и функции, обратные гиперболическим: $\operatorname{arsh} x$, $\operatorname{arch} x$.

3.5.9. Докажите, что:

a)
$$ch^2 x - sh^2 x = 1$$
; 6) $ch(-x) = ch x$;

$$\mathbf{B}) \operatorname{sh}(-x) = -\operatorname{sh} x; \quad \mathbf{F}) \operatorname{sh}(x \pm y) = \operatorname{sh} x \operatorname{ch} y \pm \operatorname{ch} x \operatorname{sh} y;$$

д)
$$\operatorname{ch}(x \pm y) = \operatorname{ch} x \operatorname{ch} y \pm \operatorname{sh} x \operatorname{sh} y;$$

e)
$$\sinh x + \sinh y = 2 \sinh \frac{x+y}{2} \cosh \frac{x-y}{2};$$

ж)
$$\operatorname{sh} x - \operatorname{sh} y = 2 \operatorname{sh} \frac{x - y}{2} \operatorname{ch} \frac{x + y}{2};$$

3)
$$\operatorname{ch} x + \operatorname{ch} y = 2 \operatorname{ch} \frac{x+y}{2} \operatorname{ch} \frac{x-y}{2};$$

и)
$$\operatorname{ch} x - \operatorname{ch} y = 2 \operatorname{sh} \frac{x+y}{2} \operatorname{sh} \frac{x-y}{2}.$$

Как видим, гиперболические функции по свойствам очень напоминают тригонометрические функции. Гиперболические функции применяются во многих задачах, в частности при построении неевклидовых геометрий.

3.6. Следствия второго замечательного предела (задачи 4, д, е)

Рекомендуется изучить п. 1.7.2, в котором доказано, что:

1)
$$\lim_{x\to 0} \frac{\log_a(1+x)}{x} = \log_a e$$
, $\lim_{x\to 0} \frac{\ln(1+x)}{x} = 1$;
2) $\lim_{x\to 0} \frac{a^x - 1}{x} = \ln a$, $\lim_{x\to 0} \frac{e^x - 1}{x} = 1$;

2)
$$\lim_{x \to 0} \frac{a^x - 1}{x} = \ln a$$
, $\lim_{x \to 0} \frac{e^x - 1}{x} = 1$;

3)
$$\lim_{x \to 0} \frac{(1+x)^{\mu} - 1}{x} = \mu$$
.

Во всех этих пределах имеется неопределённость типа 0/0.

3.6.1. Докажите, что если $\lim \alpha(x) = 0$, то:

a)
$$\lim_{x \to x_0} \frac{\log_a [1 + \alpha(x)]}{\alpha(x)} = \log_a e; \tag{1}$$

6)
$$\lim_{x \to x_0} \frac{\ln[1 + \alpha(x)]}{\alpha(x)} = 1;$$
 (2)

B)
$$\lim_{x \to x_0} \frac{a^{\alpha(x)} - 1}{\alpha(x)} = \ln a;$$
 (3)

r)
$$\lim_{x \to x_0} \frac{e^{\alpha(x)} - 1}{\alpha(x)} = 1;$$
 (4)

д)
$$\lim_{x \to x_0} \frac{[1 + \alpha(x)]^{\mu} - 1}{\alpha(x)} = \mu.$$
 (5)

Доказательство. Сделаем замену в (1) $\alpha(x) = t$. Если $x \to x_0$, то $t \to 0$. Получаем $\lim_{x \to x_0} \frac{\log_a (1 + \alpha(x))}{\alpha(x)} = \lim_{t \to 0} \frac{\log_a (1 + t)}{t} =$ $=\log_a e$ по первому следствию из второго замечательного предела. Аналогично доказываются соотношения (2)—(5).

Формулы (1)—(5) сохраняются и при $x \to \pm \infty, \infty$.

3.6.2. Докажите, что если $\lim_{x \to x_0} f(x) = 1$ и существует

$$\lim_{x \to x_0} \frac{f(x) - 1}{\varphi(x)}, \text{ To:}$$

a)
$$\lim_{x \to x_0} \frac{\log_a f(x)}{\varphi(x)} = \log_a e \cdot \lim_{x \to x_0} \frac{f(x) - 1}{\varphi(x)};$$
 (6)

a)
$$\lim_{x \to x_0} \frac{\log_a f(x)}{\varphi(x)} = \log_a e \cdot \lim_{x \to x_0} \frac{f(x) - 1}{\varphi(x)};$$
 (6)
6) $\lim_{x \to x_0} \frac{[f(x)]^{\mu} - 1}{\varphi(x)} = \mu \cdot \lim_{x \to x_0} \frac{f(x) - 1}{\varphi(x)}.$ (7)

Доказательство. Так как $\lim_{x\to x_0} f(x)=1$, то $\lim_{x\to x_0} \alpha(x)=1$

 $=\lim_{x \to \infty} [f(x) - 1] = 0$. Можем записать $f(x) = 1 + \alpha(x)$. Теперь

$$\lim_{x \to x_0} \frac{\log_a f(x)}{\varphi(x)} = \lim_{x \to x_0} \frac{\log_a [1 + \alpha(x)]}{\alpha(x)} \cdot \frac{\alpha(x)}{\varphi(x)} =$$

$$= \lim_{x \to x_0} \frac{\log_a [1 + \alpha(x)]}{\alpha(x)} \cdot \lim_{x \to x_0} \frac{\alpha(x)}{\varphi(x)} = \log_a e \cdot \lim_{x \to x_0} \frac{f(x) - 1}{\varphi(x)}.$$

Использовали формулу (1) и теорему о пределе произведения. Утверждение (7) доказывается аналогично.

Если окажется, что предел $\lim_{x\to x_0} \frac{f(x)-1}{\varphi(x)}$ не существует, то пределы (6) и (7) также не существуют.

3.6.3. Докажите, что если $\lim_{x \to 0} \alpha(x) = 0$ и существует

$$\lim_{x \to x_0} \frac{\alpha(x)}{\varphi(x)}, \text{ TO} \qquad \lim_{x \to x_0} \frac{a^{\alpha(x)} - 1}{\varphi(x)} = \ln a \cdot \lim_{x \to x_0} \frac{\alpha(x)}{\varphi(x)}; \qquad (8)$$

$$\lim_{x \to x_0} \frac{e^{\alpha(x)} - 1}{\varphi(x)} = \lim_{x \to x_0} \frac{\alpha(x)}{\varphi(x)}. \qquad (9)$$

Доказательство.
$$\lim_{x\to x_0}\frac{a^{\alpha(x)}-1}{\varphi(x)}=\lim_{x\to x_0}\frac{a^{\alpha(x)}-1}{\alpha(x)}\cdot\frac{\alpha(x)}{\varphi(x)}=$$

$$=\lim_{x\to x_0}\frac{a^{\alpha(x)}-1}{\alpha(x)}\cdot\lim_{x\to x_0}\frac{\alpha(x)}{\varphi(x)}=\ln a\cdot\lim_{x\to x_0}\frac{\alpha(x)}{\varphi(x)}.$$

При этом мы использовали формулу (3) и теорему о пределе произведения. Соотношение (8) доказано. Равенство (9) следует из (8) при a=e.

В задачах 3.6.2 и 3.6.3 случаи $x\to\infty,-\infty,+\infty$ не исключаются. Заметим, что если $\lim_{x\to x_0}\varphi(x)=A,\, A\neq 0,$ то в пределах задач 3.6.2 и 3.6.3 неопределённости нет и соответствующие пределы будут равняться нулю. Если $\lim_{x\to x_0}\varphi(x)$ не существует, но функция $\psi(x)=\frac{1}{\varphi(x)}$ ограничена в окрестности x_0 , то соответствующие пределы также будут равны нулю по теореме о произведении бесконечно малой на ограниченную функцию.

Как видим, пределы (6), (7), (8) и (9) содержат неопределённость типа 0/0, только если $\lim_{x\to x_0} \varphi(x)=0$.

При решении примеров с использованием следствий из второго замечательного предела можно либо использовать задачи 3.6.1—3.6.3, либо проделывать преобразования в каждом отдельном случае, подобно тому, как это сделано в задачах 3.6.1—3.6.3 в общем случае.

3.6.4. Найдите следующие пределы:

a)
$$\lim_{x \to 0} \frac{\log_a (1 + \lg^3 x)}{\lg^3 x}$$
; 6) $\lim_{x \to 0} \frac{3^{\sin^2 x} - 1}{\sin^2 x}$;

B)
$$\lim_{x\to 0} \frac{\sqrt[3]{1+\sin^3 x}-1}{\sin^3 x}$$
.

Решение: а) все предложенные пределы являются частным случаем пределов, рассмотренных в задаче 3.6.1. Можно положить $\alpha(x)=\operatorname{tg}^3 x$, так как $\lim_{x\to 0}\operatorname{tg}^3 x=0$, поэтому

$$\lim_{x \to 0} \frac{\log_a(1 + \operatorname{tg}^3 x)}{\operatorname{tg}^3 x} = \log_a e;$$

б) в этом случае $\alpha(x)=\sin^2 x$, так как $\sin^2 x\to 0$ при $x\to 0$. Поэтому $\lim_{x\to 0}\frac{3^{\sin^2 x}-1}{\sin^2 x}=\ln 3$ (см. 3);

в) на основании предела (5) получаем

$$\lim_{x\to 0} \frac{\sqrt[3]{1+\sin^3 x}-1}{\sin^3 x} = \frac{1}{3} \ (\mathrm{здесь} \ \alpha(x) = \sin^3 x, \mathrm{u} \sin^3 x \to 0 \mathrm{прu} \ x \to 0).$$

3.6.5. Найдите следующие пределы:

a)
$$\lim_{x \to 0} \frac{1}{x} \ln \frac{1+5x}{1+4x}$$
; 6) $\lim_{x \to 1} \frac{\ln(x^2+4x-4)}{x-1}$;

B)
$$\lim_{x \to \infty} x \cdot \ln\left(1 + \operatorname{tg}\frac{5}{x}\right)$$
.

Решение: а) положим $f(x) = \frac{1+5x}{1+4x}$, $\lim_{x\to 0} f(x) = 1$, $\varphi(x) = x$. На основании формулы (6) получаем

$$\lim_{x \to 0} \frac{1}{x} \ln \frac{1+5x}{1+4x} = \log_e e \cdot \lim_{x \to 0} \frac{\frac{1+3x}{1+4x} - 1}{x} = \lim_{x \to 0} \frac{x}{x(1+4x)} = 1;$$
6)
$$\lim_{x \to 1} \frac{\ln(x^2 + 4x - 4)}{x - 1} = \lim_{x \to 1} \frac{x^2 + 4x - 4 - 1}{x - 1} = \lim_{x \to 1} \frac{x^2 + 4x - 5}{x - 1} = \lim_{x \to 1} \frac{(x - 1)(x + 5)}{x - 1} = 6,$$

в этом примере можно положить $f(x) = x^2 + 4x - 4$, так как $\lim (x^2 + 4x - 4) = 1$, и применить формулу (6);

B)
$$\lim_{x \to \infty} x \cdot \ln\left(1 + \operatorname{tg}\frac{5}{x}\right) = \lim_{x \to \infty} \frac{\ln\left(1 + \operatorname{tg}\frac{5}{x}\right)}{1/x} = \lim_{x \to \infty} \frac{\operatorname{tg}\frac{5}{x}}{1/x} = \lim_{t \to 0} \frac{\operatorname{tg}5t}{t} = 5,$$

где $t=1/x, \ \alpha(x)=\lg\frac{5}{x}, \ \alpha(x)\to 0$ при $x\to\infty, \ \varphi(x)=1/x.$

3.6.6. Найдите следующие пределы:

a)
$$\lim_{x \to 3} \frac{3^x - 27}{x^2 - 9}$$
; 6) $\lim_{x \to 1} \frac{e^{x^2 - 1} - 1}{\sqrt{x} - 1}$; B) $\lim_{x \to 0} \frac{e^{\sin^2 x} - 1}{\sqrt{4 + x^2} - 2}$.
Pewerue. a) $\lim_{x \to 3} \frac{3^x - 27}{x^2 - 9} = \lim_{x \to 3} \frac{3^x - 3^3}{x^2 - 9} = \lim_{x \to 3} \frac{3^3(3^{x - 3} - 1)}{(x - 3)(x + 3)} = 3^3 \ln 3 \cdot \lim_{x \to 3} \frac{1}{(x + 3)} = \frac{27}{6} \ln 3 = \frac{9}{2} \ln 3$;
6) $\lim_{x \to 1} \frac{e^{x^2 - 1} - 1}{\sqrt{x} - 1} = \lim_{x \to 1} \frac{x^2 - 1}{\sqrt{x} - 1} = \lim_{x \to 1} \frac{(x^2 - 1)(\sqrt{x} + 1)}{(\sqrt{x} - 1)(\sqrt{x} + 1)} = \lim_{x \to 1} \frac{(x - 1)(x + 1)(\sqrt{x} + 1)}{x - 1} = 4$.

Secondly $\lim_{x \to 1} \frac{(x - 1)(x + 1)(\sqrt{x} + 1)}{x - 1} = 4$.

Здесь
$$\alpha(x) = x^2 - 1$$
, $\varphi(x) = \sqrt{x} - 1$;

$$ecs \ \alpha(x) = x - 1, \ \varphi(x) = \sqrt{x - 1};$$

$$ecs \ \alpha(x) = x - 1, \ \varphi(x) = \sqrt{x - 1};$$

$$ecs \ \alpha(x) = x - 1, \ \varphi(x) = \sqrt{x - 1};$$

$$ecs \ \alpha(x) = x - 1, \ \varphi(x) = \sqrt{x - 1};$$

$$ecs \ \alpha(x) = x - 1, \ \varphi(x) = \sqrt{x - 1};$$

$$ecs \ \alpha(x) = x - 1, \ \varphi(x) = \sqrt{x - 1};$$

$$ecs \ \alpha(x) = x - 1, \ \varphi(x) = \sqrt{x - 1};$$

$$ecs \ \alpha(x) = x - 1, \ \varphi(x) = \sqrt{x - 1};$$

$$ecs \ \alpha(x) = x - 1, \ \varphi(x) = \sqrt{x - 1};$$

$$ecs \ \alpha(x) = x - 1, \ \varphi(x) = \sqrt{x - 1};$$

$$ecs \ \alpha(x) = x - 1, \ \varphi(x) = \sqrt{x - 1};$$

$$ecs \ \alpha(x) = x - 1, \ \varphi(x) = \sqrt{x - 1};$$

$$ecs \ \alpha(x) = x - 1, \ \varphi(x) = \sqrt{x - 1};$$

$$ecs \ \alpha(x) = x - 1, \ \varphi(x) = \sqrt{x - 1};$$

$$ecs \ \alpha(x) = x - 1, \ \varphi(x) = x - 1;$$

$$ecs \ \alpha(x) = x - 1, \ \varphi(x) = x - 1;$$

$$ecs \ \alpha(x) = x - 1, \ \varphi(x) = x - 1;$$

$$ecs \ \alpha(x) = x - 1, \ \varphi(x) = x - 1;$$

$$ecs \ \alpha(x) = x - 1, \ \varphi(x) = x - 1;$$

$$ecs \ \alpha(x) = x - 1, \ \varphi(x) = x - 1;$$

$$ecs \ \alpha(x) = x - 1, \ \varphi(x) = x - 1;$$

$$ecs \ \alpha(x) = x - 1, \ \varphi(x) = x - 1;$$

$$ecs \ \alpha(x) = x - 1, \ \varphi(x) = x - 1;$$

$$ecs \ \alpha(x) = x - 1, \ \varphi(x) = x - 1;$$

$$ecs \ \alpha(x) = x - 1, \ \varphi(x) = x - 1;$$

$$ecs \ \alpha(x) = x - 1, \ \varphi(x) = x - 1;$$

$$ecs \ \alpha(x) = x - 1, \ \varphi(x) = x - 1;$$

$$ecs \ \alpha(x) = x - 1, \ \varphi(x) = x - 1;$$

$$ecs \ \alpha(x) = x - 1, \ \varphi(x) = x - 1;$$

$$ecs \ \alpha(x) = x - 1, \ \varphi(x) = x - 1;$$

$$ecs \ \alpha(x) = x - 1, \ \varphi(x) = x - 1;$$

$$ecs \ \alpha(x) = x - 1, \ \varphi(x) = x - 1;$$

$$ecs \ \alpha(x) = x - 1, \ \varphi(x) = x - 1;$$

$$ecs \ \alpha(x) = x - 1, \ \varphi(x) = x - 1;$$

$$ecs \ \alpha(x) = x - 1, \ \varphi(x) = x - 1;$$

$$ecs \ \alpha(x) = x - 1, \ \varphi(x) = x - 1;$$

$$ecs \ \alpha(x) = x - 1, \ \varphi(x) = x - 1;$$

$$ecs \ \alpha(x) = x - 1, \ \varphi(x) = x - 1;$$

$$ecs \ \alpha(x) = x - 1, \ \varphi(x) = x - 1;$$

$$ecs \ \alpha(x) = x - 1, \ \varphi(x) = x - 1;$$

$$ecs \ \alpha(x) = x - 1, \ \varphi(x) = x - 1;$$

$$ecs \ \alpha(x) = x - 1, \ \varphi(x) = x - 1;$$

$$ecs \ \alpha(x) = x - 1, \ \varphi(x) = x - 1;$$

$$ecs \ \alpha(x) = x - 1, \ \varphi(x) = x - 1;$$

$$ecs \ \alpha(x) = x - 1, \ \varphi(x) = x - 1;$$

$$ecs \ \alpha(x) = x - 1, \ \varphi(x) = x - 1;$$

$$ecs \ \alpha(x) = x - 1, \ \varphi(x) = x - 1;$$

$$ecs \ \alpha(x) = x - 1, \ \varphi(x) = x - 1;$$

$$ecs \ \alpha(x) = x - 1, \ \varphi(x) = x - 1;$$

$$ecs \ \alpha(x) = x - 1, \ \varphi(x) = x - 1;$$

$$ecs \ \alpha(x) = x - 1, \ \varphi(x) = x - 1;$$

$$ecs \ \alpha(x) = x - 1, \ \varphi(x) = x - 1;$$

$$ecs \ \alpha(x) = x - 1, \ \varphi(x)$$

3.6.7. Найдите следующие пределы:

a)
$$\lim_{x \to 0} \frac{\cos^{\mu} x - 1}{x^2}$$
; 6) $\lim_{x \to 0} \frac{\sqrt{1 + x} - \sqrt[3]{1 + x}}{x}$.

Peшeнue: a) обозначим $f(x) = \cos x$. Так как $\lim_{x \to 0} f(x) =$ $= \lim \cos x = 1$, то можем применить формулу (7). Получаем

$$\lim_{x \to 0} \frac{\cos^{\mu} x - 1}{x^{2}} = \mu \lim_{x \to 0} \frac{\cos x - 1}{x^{2}} = \mu \lim_{x \to 0} \frac{-2\sin^{2} \frac{x}{2}}{x^{2}} = -\frac{\mu}{2};$$

$$6) \lim_{x \to 0} \frac{\sqrt{1 + x} - \sqrt[3]{1 + x}}{x} =$$

$$= \lim_{x \to 0} \frac{\sqrt{1 + x} - 1}{x} - \lim_{x \to 0} \frac{\sqrt[3]{1 + x} - 1}{x} = \frac{1}{2} - \frac{1}{3} = \frac{1}{6}$$

$$(\text{так как } \lim_{x \to 0} \frac{(1 + x)^{\mu} - 1}{x} = \mu).$$

6)
$$\lim_{x \to 0} \frac{\sqrt{1+x} - \sqrt[3]{1+x}}{x} =$$

$$= \lim_{x \to 0} \frac{\sqrt{1+x}-1}{x} - \lim_{x \to 0} \frac{\sqrt[3]{1+x}-1}{x} = \frac{1}{2} - \frac{1}{3} = \frac{1}{6}$$

3.6.8. Найдите следующие пределы:

a)
$$\lim_{x \to 2} \frac{e^x - e^2}{\ln(x^2 - 5x + 7)}$$
; 6) $\lim_{x \to 0} \frac{\ln \cos ax}{\ln \cos bx}$.

Решение. a)
$$\lim_{x\to 2} \frac{e^x - e^2}{\ln(x^2 - 5x + 7)} =$$

Решение. a)
$$\lim_{x \to 2} \frac{e^x - e^2}{\ln(x^2 - 5x + 7)} =$$

$$= \lim_{x \to 2} \frac{e^2(e^{x-2} - 1)}{\ln[1 + (x^2 - 5x + 6)]} = e^2 \lim_{x \to 2} \frac{(x-2)}{(x-2)(x-3)} = -e^2;$$

6)
$$\lim_{x \to 0} \frac{\ln \cos ax}{\ln \cos bx} = \lim_{x \to 0} \frac{\cos ax - 1}{\cos bx - 1} = \lim_{x \to 0} \frac{-2\sin^2 \frac{dx}{2}}{-2\sin^2 \frac{bx}{2}} = \frac{a^2}{b^2}.$$

Задачи для самостоятельного решения

3.6.9 - 3.6.13. Найдите следующие пределы.

3.6.9. a)
$$\lim_{x \to 0} \frac{\log_3(1+4x)}{x}$$
; 6) $\lim_{x \to 0} \frac{2^{5x}-1}{x}$; b) $\lim_{x \to 0} \frac{\sqrt[5]{1+3x}-1}{x}$.

Ответы: a) $4\log_3 e$; б) $5\ln 2$; в) 3/5.

3.6.10. a)
$$\lim_{x \to 0} \frac{\ln(1 + 2\sin^2 x)}{\sin^2 x}$$
; 6) $\lim_{x \to 0} \frac{5^{2 \operatorname{tg}^3 x} - 1}{\operatorname{tg}^3 x}$;
B) $\lim_{x \to 0} \frac{\sqrt[3]{1 + 2x^4} - 1}{x^4}$.

Ответы: a) 2; б) $2 \ln 5$; в) 2/3.

3.6.11. a)
$$\lim_{x \to 3} \frac{x+5}{x-3} \ln \frac{4x-1}{2x+5}$$
; 6) $\lim_{x \to \infty} (4x^3+1) \ln \frac{x^4-2x+2}{x^4+x}$;

B)
$$\lim_{x\to 0} \frac{1}{x} \ln \frac{5x+1}{x+1}$$
.

Ответы: a) 16/11; б) -12; в) 4.

3.6.12. a)
$$\lim_{x \to 0} \frac{3^{\sin 4x} - 1}{\operatorname{tg} 5x}$$
; б) $\lim_{x \to 2} \frac{2^x - 4}{\sqrt{2x} - 2}$; в) $\lim_{x \to 1} \frac{e^{5x - 5} - 1}{\sqrt{5x - 1} - 2}$.

Ответы: a) $(4/5) \ln 3$; б) $8 \ln 2$; в) 4.

3.6.13. a)
$$\lim_{x \to 0} \frac{e^{5x} - e^x}{e^{\sin 2x} - 1}$$
; 6) $\lim_{x \to 2} \frac{\ln(x^2 - 3x + 3)}{e^x - e^2}$.

Ответы: a) 2; б) e^{-2} .

3.7. Сравнение бесконечно малых и бесконечно больших функций (задача 5)

Рекомендуется изучить п. 1.8.

3.7.1. Найдите порядок малости и главную часть бесконечно малой $\alpha(x) = \sin 2x - 2 \sin x$ относительно $\beta(x) = x$.

Peшение. Согласно определению порядка малости нужно найти такое значение r, чтобы предел $\lim_{x\to 0} \frac{\sin 2x - 2\sin x}{x^r}$ был конечным и отличным от нуля. Преобразуем числитель: $\sin 2x - 2\sin x = 2\sin x\cos x - 2\sin x = 2\sin x(\cos x - 1) = -4\sin x\sin^2\frac{x}{2}$. Поэтому

$$\lim_{x \to 0} \frac{\sin 2x - 2\sin x}{x^r} = \lim_{x \to 0} \frac{-4\sin x \cdot \sin^2 \frac{x}{2}}{x^r} = \lim_{x \to 0} \frac{-4\sin x}{x} \cdot \frac{\sin^2 \frac{x}{2}}{x^2} = \lim_{x \to 0} \frac{-1}{x^{r-3}}.$$

Видим, что предел будет конечным только при r=3, так как

$$\lim_{x\to 0} \frac{\sin x}{x} = 1$$
, $\lim_{x\to 0} \frac{\sin^2 \frac{x}{2}}{x^2/4} = 1$. При $r=3$ имеем $\lim_{x\to 0} \frac{\sin 2x - 2\sin x}{x^3} = -1$.

Вывод: порядок малости величины $\alpha(x)=\sin 2x-2\sin x$ относительно $\beta(x)=x$ равен трем, а её главная часть равна $\gamma(x)=-x^3$ при $x\to 0$.

3.7.2. Докажите, что бесконечно малая $\alpha(x)=3\sin^4x-x^5$ имеет порядок малости относительно $\beta(x)=x$, равный 4, а ее главная часть равна $\gamma(x)=3x^4$.

$$Peшение.$$
 Имеем $\lim_{x\to 0} \frac{3\sin^4 x - x^5}{3x^4} = \lim_{x\to 0} \left(\frac{\sin^4 x}{x^4} - \frac{x}{3}\right) = 1.$ Отсюда и следует справедливость утверждения задачи.

При $x\to\infty,\,-\infty,\,+\infty$ в качестве эталонной бесконечно малой обычно берут $\beta(x)=\frac{1}{x}.$

3.7.3. Докажите, что функция $\alpha(x)=\sqrt{x^4+1}-x^2$ является бесконечно малой при $x\to\infty$, найдите ее порядок малости относительно $\beta(x)=1/x$ и главную часть.

 $\lim_{x\to\infty} \left(\sqrt{x^4+1}-x^2\right) = \lim_{x\to\infty} \frac{\left(\sqrt{x^4+1}-x^2\right)\left(\sqrt{x^4+1}+x^2\right)}{\sqrt{x^4+1}+x^2} = \\ = \lim_{x\to\infty} \frac{1}{\sqrt{x^4+1}+x^2} = 0, \text{ то есть } \alpha(x) - \text{ бесконечно малая при } \\ x\to\infty. \ \, \text{Для определения ее порядка малости относительно } \beta(x) \\ \text{нужно найти значение } r, \text{ при котором } \lim_{x\to\infty} \frac{\sqrt{x^4+1}-x^2}{1/x^r} \text{ конечен и } \\ \text{отличен от нуля. После несложных преобразований, только что про-$

$$\lim_{x \to \infty} \frac{\sqrt{x^4 + 1} - x^2}{1/x^r} = \lim_{x \to \infty} \frac{x^r}{\sqrt{x^4 + 1} + x^2} = \lim_{x \to \infty} \frac{x^r}{x^2 \left(\sqrt{1 + 1/x^4} + 1\right)} = \lim_{x \to \infty} \frac{x^{r-2}}{\sqrt{1 + 1/x^4} + 1}.$$

Видим, что предел конечен и не равен нулю только при r=2, т.е. порядок малости равен 2. При r=2 этот предел равен C=1/2.

Поэтому главная часть $\gamma(x) = \frac{1}{2x^2}$.

деланных, находим

Понятие эквивалентности бесконечно малых находит широкое применение как в приближенных вычислениях, так и в теоретических вопросах. Использование этого понятия значительно упрощает отыскание некоторых пределов.

Рекомендуем особенно хорошо изучить п. 1.8.3.

При отыскании пределов, содержащих неопределённость 0/0, используется свойство эквивалентных бесконечно малых

$$\lim_{x \to x_0} \frac{\alpha(x)}{\beta(x)} = \lim_{x \to x_0} \frac{\alpha_1(x)}{\beta_1(x)},$$

где $\alpha(x)\sim\alpha_1(x),~~\beta(x)\sim\beta_1(x),$ т.е. предел отношения бесконечно малых равен пределу отношения эквивалентных им бесконечно малых.

3.7.4. Пользуясь методом замены бесконечно малых эквивалентными, найдите следующие пределы:

a)
$$\lim_{x \to 0} \frac{\sin 8x}{\ln(1+2x)}$$
; 6) $\lim_{x \to 1} \frac{e^{4(x-1)} - 1}{\ln[1 + \lg 2(x-1)]}$;

B)
$$\lim_{x\to 2} \frac{\arcsin 3(x-2)}{\arctan 4(x^2-4)}$$
; r) $\lim_{x\to 0} \frac{\operatorname{tg} 3x + \arcsin^2 x + x^3}{2x}$;

$$\text{д}) \lim_{x \to 0} \frac{1 - \cos 2x}{1 - \cos \frac{x}{4}}; \text{ e) } \lim_{x \to 0} \frac{3\sin x - x^2 + x^3}{\operatorname{tg} 2x + 2\sin^2 x + 5x^4};$$

ж)
$$\lim_{x \to 0} \frac{\ln \cos x}{\sqrt[4]{1+x^2}-1}$$
; з) $\lim_{x \to 0} \frac{\sqrt{1+x+x^2}-1}{\sin 4x}$.

Решение: а) по таблице эквивалентных бесконечно малых (с. 36)

$$\sin 8x \sim 8x$$
, $\ln(1+2x) \sim 2x$, поэтому $\lim_{x\to 0} \frac{\sin 8x}{\ln(1+2x)} = 4$;

б) так как
$$e^{4(x-1)} - 1 \sim 4(x-1)$$
 при $x \to 1$,

$$\ln\left(1+\lg 2(x-1)\right) \sim \lg 2(x-1) \sim 2(x-1)$$
, to

$$\lim_{x \to 1} \frac{e^{4(x-1)-1}}{\ln(1 + \lg 2(x-1))} = \lim_{x \to 1} \frac{4(x-1)}{2(x-1)} = 2;$$

в) поскольку $\arcsin 3(x-2) \sim 3(x-2), \ \arctan 4(x^2-4) \sim 4(x^2-4)$ при $x\to 2$, то

$$\lim_{x \to 2} \frac{\arcsin 3(x-2)}{\arctan 4(x^2-4)} = \lim_{x \to 2} \frac{3(x-2)}{4(x^2-4)} = \lim_{x \to 2} \frac{3(x-2)}{4(x-2)(x+2)} = \lim_{x \to 2} \frac{3}{4(x+2)} = \frac{3}{16};$$

г) так как сумма бесконечно малых функций эквивалентна слагаемому, имеющему наименьший порядок малости, то можем записать: $\lg 3x + \arcsin^2 x + x^3 \sim \lg 3x \sim 3x$.

Поэтому

$$\lim_{x\to 0}\frac{\operatorname{tg} 3x + \arcsin^2 x + x^3}{2x} = \lim_{x\to 0}\frac{3x}{2x} = \frac{3}{2};$$
 д) так как $(1-\cos 2x) \sim 2x^2, \quad \left(1-\cos\frac{x}{4}\right) \sim \frac{1}{32}x^2,$ то
$$\lim_{x\to 0}\frac{1-\cos 2x}{1-\cos\frac{x}{4}} = \lim_{x\to 0}\frac{2x^2}{(1/32)x^2} = 64;$$

е) имеем $(3\sin x - x^2 + x^3) \sim 3\sin x \sim 3x$, $(\operatorname{tg} 2x + 2\sin^2 x + 5x^4) \sim \operatorname{tg} 2x \sim 2x$, поэтому

$$\lim_{x \to 0} \frac{3\sin x - x^2 + x^3}{\operatorname{tg} 2x + 2\sin^2 x + 5x^4} = \lim_{x \to 0} \frac{3x}{2x} = \frac{3}{2};$$

ж) можем записать $\ln \cos x = \ln [1 + (\cos x - 1)] \sim (\cos x - 1) \sim$

$$\sim -\frac{1}{2}x^2$$
, $\sqrt[4]{1+x^2}-1 \sim \frac{1}{4}x^2$ при $x \to 0$, поэтому

$$\lim_{x \to 0} \frac{\ln \cos x}{\sqrt[4]{1+x^2}-1} = \lim_{x \to 0} \frac{(-1/2)x^2}{(1/4)x^2} = -2;$$

з) так как
$$\sqrt{1+x+x^2}-1\sim \frac{1}{2}(x+x^2)\sim \frac{1}{2}x$$
, $\sin 4x\sim 4x$ при $x\to 0$, то $\lim_{x\to 0}\frac{\sqrt{1+x+x^2}-1}{\sin 4x}=\lim_{x\to 0}\frac{(1/2)x}{4x}=\frac{1}{8}.$

Применяя метод замены бесконечно малых им эквивалентными, можно в некоторых случаях упростить процесс выделения главной части бесконечно малых.

3.7.5. Выделите главную часть вида $\gamma(x) = C(x-x_0)^r$ следующих бесконечно малых при $x \to x_0$:

a)
$$\alpha_1(x) = \frac{\operatorname{tg}^2(x+2)}{\arcsin(\sqrt{2-x}-2)}, \ x_0 = -2;$$

6)
$$\alpha_1(x) = \frac{9(x+1)}{x^2-9} + \frac{x}{x+3}, \quad x_0 = -3.$$

Peшение: а) подберём такие значения C и r, чтобы был равным единице $\lim_{x\to -2} \frac{\alpha_1(x)}{C(x+2)^r}$. Так как $\operatorname{tg}^2(x+2)\sim (x+2)^2$,

$$\arcsin(\sqrt{2-x}-2) \sim 2\left(\sqrt{1-\frac{x+2}{4}}-1\right) \sim -\frac{x+2}{4}$$
, то

$$\lim_{x \to -2} \frac{\operatorname{tg}^2(x+2)}{\left[\arcsin(\sqrt{2-x}-2)\right] C(x+2)^r} = \lim_{x \to -2} \frac{-4(x+2)^2}{(x+2) \cdot C(x+2)^r}.$$

Видим, что r = 1, C = -4, т.е. $\gamma(x) = -4(x+2)$;

б) убедимся, что функция $\alpha_2(x)=\frac{9(x+1)}{x^2-9}+\frac{x}{x+3}$ является бесконечно малой при $x\to -3$. Можем записать

$$\alpha_2(x) = \frac{9(x+1) + x(x-3)}{x^2 - 9} = \frac{x^2 + 6x + 9}{x^2 - 9} = \frac{(x+3)^2}{(x+3)(x-3)} = \frac{x+3}{x-3}$$
 при $x \neq -3$. Отсюда следует, что $\lim_{x \to -3} \alpha_2(x) = 0$. Находим,

что $\lim_{x\to -3} \frac{x+3}{(x-3)C(x+3)^r} = 1$ только при $r=1,\ C=-\frac{1}{6},$ т.е.

 $\gamma(x) = -\frac{1}{6}(x+3).$

3.7.6. Выделите главную часть вида $\gamma(x) = \frac{C}{x^k}$ следующих бесконечно малых функций при $x \to \infty$ (или $\pm \infty$):

a)
$$\alpha_1(x) = \frac{12x - 1}{\sqrt{9x^6 + 1} - x}$$
; 6) $\alpha_2(x) = \frac{e^{2/x} - 1}{x^5 + 1}$.

Pewenue: а) требуется найти такие C и r, чтобы $\lim_{x \to \infty} \frac{x^r \alpha_1(x)}{C}$ был равен 1. Имеем

$$\begin{split} &\lim_{x \to \infty} \frac{(12x-1)x^r}{C(\sqrt{9x^6+1}-x)} = \lim_{x \to \infty} \frac{(12x-1)x^r}{C[|x^3|\sqrt{9+(1/x^6)}-x]} = \\ &= \lim_{x \to \infty} \frac{x\left[12-(1/x)\right]x^r}{C\left[|x^3|\sqrt{9+(1/x^6)}-x\right]} = \lim_{x \to \infty} \frac{(12-(1/x))x^{r-2}}{\pm C\left[\sqrt{9+(1/x^6)}-(1/x^2)\right]}. \end{split}$$

При $x\to +\infty$ нужно взять знак "+", а при $x\to -\infty$ — знак "–". Видим, что предел конечен только при r=2, при этом он равен $\pm \frac{12}{3C}$. Так как должно быть $\pm \frac{12}{3C}=1$, то $C=\pm 4$. Итак, главная часть равна $\gamma(x)=\pm \frac{4}{x^2}$ при $x\to \pm \infty$;

б) находим
$$r$$
 и C из условия, что $\lim_{x\to\infty}\frac{x^r\cdot\alpha_2(x)}{C}=1,$

или
$$\lim_{x\to\infty}\frac{x^r(e^{2/x}-1)}{C\cdot(x^5+1)}=\lim_{x\to\infty}\frac{x^r\cdot 2/x}{C\cdot(1+1/x^5)x^5}=$$
 $=\lim_{x\to\infty}\frac{2x^{r-6}}{C\cdot(1+1/x^5)}=\frac{2}{C}$ при $r=6$.

Так как по условию $\frac{2}{C} = 1$, то C = 2. Функция $\gamma(x) = \frac{2}{x^6}$ является главной частью бесконечно малой $\alpha_2(x)$.

Мы в основном занимались бесконечно малыми величинами. По теореме о связи между бесконечно большими и бесконечно малыми величинами изучение бесконечно большой величины y(x) при $x \to x_0$ можно свести к изучению бесконечно малой $\alpha(x) = \frac{1}{y(x)}$ при $x \to x_0$.

3.7.7. Выделите главную часть вида
$$\gamma(x)=\frac{C}{(x-2)^r}$$
 бесконечно большой величины $y=\frac{4}{(\sqrt{5-2x}-1)\ln(3-x)}$ при $x\to 2.$

Peшение. Согласно сделанному замечанию мы можем свести задачу к бесконечно малым либо исходить из определения главной части бесконечно больших. По этому определению мы должны найти такие константы C и r, чтобы предел $\lim_{x\to 2} \frac{y}{\gamma(x)}$ был равен единице. По

таблице эквивалентных бесконечных малых находим $\sqrt{5-2x}-1=\sqrt{1-2(x-2)}-1\sim -(x-2), \ln(3-x)=\ln[1-(x-2)]\sim -(x-2).$

Поэтому

$$\lim_{x \to 2} \frac{y}{\gamma(x)} = \lim_{x \to 2} \frac{4}{\left[(\sqrt{5 - 2x} - 1) \ln(3 - x) \right] / (C/(x - 2)^r)} = \lim_{x \to 2} \frac{4(x - 2)^r}{(x - 2)^2 C}.$$

Отсюда следует, что этот предел равен единице только при r=2, C=4. Следовательно, функция $\gamma(x)=\frac{4}{(x-2)^2}$ является главной частью бесконечно большой y(x) при $x\to 2$.

При $x \to \infty, -\infty, +\infty$ в качестве эталонной, как мы уже отмечали, берут величину $\beta(x) = 1/x$, а для бесконечно больших — величину y(x) = x. Все остальные действия ничем не отличаются от действий в рассмотренных примерах.

Задачи для самостоятельного решения

3.7.8. Докажите, что функции:

а)
$$f(x) = \frac{2x-6}{x^2+1}$$
 при $x \to 3$;

б)
$$f(x) = \frac{\arctan x}{x}$$
 при $x \to +\infty$;

в)
$$f(x) = (x-2)\cos^2\frac{1}{x-2}$$
 при $x \to 2$

являются бесконечно малыми.

3.7.9. Докажите, что функции:

а)
$$f(x) = \frac{x^2 - 4x + 4}{\sin^4(x - 2)} + \frac{1}{x^2 - 4}$$
 при $x \to 2 + 0$;

б)
$$f(x) = \frac{x-1}{\ln(x^2-2x+2)}$$
 при $x \to 1$

являются бесконечно большими.

- **3.7.10.** Докажите, что функция $\alpha(x) = \ln(x^2 8x + 17)$ при $x \to 4$ имеет более высокий порядок малости по сравнению с функцией $\beta_1(x) = \operatorname{tg}(x-4)$, более низкий порядок малости по сравнению с функцией $\beta_2(x) = \sin^3(x-4)$ и что ее порядок малости совпадает с порядком малости функции $\beta_3(x) = \sqrt[4]{8x-x^2-15}-1$.
- **3.7.11.** Докажите, что бесконечно большая функция $\varphi(x) = x^3 + 4x^2 1$ при $x \to \infty$ имеет более высокий порядок роста по сравнению с функцией $f_1(x) = x^2 + 2$, более низкий порядок роста по сравнению с функцией $f_2(x) = 2x^5 + 3x^2 + 1$ и тот же порядок роста, что и функция $f_3(x) = 5x^3 + 3$.

3.7.12. Определите порядок малости r при $x \to x_0$ относительно бесконечно малой $\beta(x) = x - x_0$ следующих бесконечно малых функций:

a)
$$\alpha_1(x) = (x^3 - 1)\sin^2(x^2 - 1), \quad x_0 = 1;$$

6)
$$\alpha_2(x) = \frac{1 - \cos 3(x - 2)}{\sqrt{3 - x} - 1}, \quad x_0 = 2;$$

B)
$$\alpha_3(x) = \sqrt[4]{x-3} \operatorname{tg}(x^2-9), \quad x_0 = 3.$$

Ответы: а) 3; б) 1; в) 5/4.

3.7.13. Определите порядок малости относительно бесконечно малой $\beta(x)=rac{1}{x}$ при $x o\infty$ следующих бесконечно малых функций:

a)
$$\alpha_1(x) = \sin \frac{x+1}{x^3+1} \cdot \ln \frac{x^2+4}{x^2+1}$$
;

6)
$$\alpha_2(x) = \frac{\sqrt[5]{x}}{x^2 + \sqrt{x^2 + 1}};$$

B)
$$\alpha_3(x) = (\sqrt{x^4 + 4} - x^2) \ln \frac{x^2 + 3}{x^2 + 2}$$
.

Ответы: а) 4; б) 9/5; в) 4.

3.7.14. Пользуясь методом замены бесконечно малых функций эквивалентными, вычислить следующие пределы:

Ответы: a) 8/9; б) 1/5; в) -4; г) -3.

3.7.15. Выделите главную часть вида $C(x-x_0)^r$ следующих бесконечно малых при $x \to x_0$:

a)
$$\alpha_1(x) = \sqrt[4]{x-3} \cdot \ln\left(1+\sqrt{\frac{x-3}{x+6}}\right), \quad x_0 = 3;$$

6)
$$\alpha_2(x) = \frac{(\sqrt{x+2}-2)^2}{\ln(x-1)}, \quad x_0 = 2;$$

B)
$$\alpha_3(x) = \frac{e^{x^5} - 1}{\sqrt{1 + x^2} - 1}, \quad x_0 = 0.$$

Ответы: a) $(1/3)(x-3)^{3/4}$; б) (1/16)(x-2); в) $2x^3$.

3.7.16. Выделите главную часть вида $\gamma(x) = \frac{C}{x^r}$ следующих бесконечно малых при $x \to \infty$:

a)
$$\alpha_1(x) = \operatorname{tg} \frac{1}{x^4 + 1} \cdot \ln \frac{x + 5}{x + 1};$$

6)
$$\alpha_2(x) = (\sqrt{x^4 + 4} - x^2) \sin \frac{3x + 1}{x^6 + 1};$$

B)
$$\alpha_3(x) = \frac{1}{x + \sqrt{x^5 + 1}} \sin \frac{5}{x}$$
.

Ответы: a) $4/x^5$; б) $6/x^7$; в) $5/x^{7/2}$.

3.7.17. Выделите главную часть вида $\gamma(x) = \frac{C}{(x-x_0)^r}$ следующих бесконечно больших при $x \to x_0$:

a)
$$\varphi_1(x) = \frac{1}{(\sqrt{8+x}-3)(x^3-1)}, \quad x_0 = 1;$$

6)
$$\varphi_2(x) = \frac{3^x}{[\ln(x-1)]^4}, \quad x_0 = 2;$$

B)
$$\varphi_3(x) = \frac{\operatorname{tg}(x^2 - 16)}{(x - 4)^2 + \sqrt[4]{(x - 4)^5}}, \quad x_0 = 4.$$

Ответы: a)
$$\frac{2}{(x-1)^2}$$
; б) $\frac{9}{(x-2)^4}$; в) $\frac{8}{(x-4)^{1/4}}$.

3.7.18. Выделите главную часть вида $\gamma(x) = Cx^r$ следующих бесконечно больших при $x \to \infty$:

a)
$$\varphi_1(x) = 1 + x^2 + 3x\sqrt[4]{x^5 + 1}$$
; 6) $\varphi_2(x) = \frac{x^4 + 2x + 1}{5x^2 + 2}$.

Ответы: a) $3x^{9/4}$; б) $(1/5)x^2$.

3.7.19. Докажите, что функция: а) $f(x,y)=\frac{x^{0}+y^{0}}{x^{2}+y^{2}}$ является бесконечно малой при $(x,y)\to (0,0);$

б)
$$f(t)=\left[\begin{array}{c} \frac{t}{t^2+1}\\ \frac{t^3}{t-2} \end{array}\right]$$
 является бесконечно малой при $t\to 0$

и бесконечно большой при $t \to 2$.

3.8. Непрерывность функции. Классификация разрывов функции (задачи 6, а, б)

Рекомендуется изучить п. 1.6.

Задача характеристики точек разрыва сводится к отысканию односторонних пределов или доказательству, что хотя бы один из них не существует.

3.8.1. Охарактеризуйте точку x=2 для функции $f(x)=\frac{x^2-4}{|x-2|}$.

Peшение. Данная функция имеет область определения $(-\infty,2)\cup$ $\cup (2, +\infty)$. Точка $x_0 = 2$ является предельной для области определения, в самой точке $x_0 = 2$ функция не определена.

Вычисляем односторонние пределы:

$$f(2+0) = \lim_{x \to 2+0} \frac{x^2 - 4}{|x - 2|} = \lim_{x \to 2+0} \frac{(x - 2)(x + 2)}{x - 2} = 4,$$

поскольку при x > 2 величина |x - 2| = x - 2;

$$f(2-0)=\lim_{x\to 2-0}\frac{x^2-4}{|x-2|}=\lim_{x\to 2-0}\frac{(x-2)(x+2)}{-(x-2)}=-4,$$
 так как если $x<2$, то $|x-2|=-(x-2)$.

Как видим, существуют конечные правый и левый пределы, не равные между собой. Поэтому точка $x_0 = 2$ является точкой разрыва первого рода.

3.8.2. Охарактеризуйте точку $x_0 = 0$ функции

$$f(x) = \frac{\sqrt{1 - \cos 2x}}{x}.$$

 $f(x)=rac{\sqrt{1-\cos 2x}}{x}.$ Решение. Точка x=0 является предельной для области определе-

ния
$$f(x)$$
. Находим $f(0+0)=\lim_{x\to 0+0}\frac{\sqrt{1-\cos 2x}}{x}=\lim_{x\to 0+0}\frac{\sqrt{2\sin^2 x}}{x}=$ $=\lim_{x\to 0+0}\frac{\sqrt{2\sin^2 x}}{x}=\lim_{x\to 0+0}\frac{\sqrt{2\sin x}}{x}=\lim_{x\to 0+0}\frac{\sqrt{2\sin x}}{x}=\sqrt{2}.$ Заметим, что $|\sin x|=\sin x$, если $0< x<(\pi/2)$;

 $=\sin x, \text{ если } 0 < x < (\pi/2);$ $f(0-0) = \lim_{x\to 0-0} \frac{\sqrt{1-\cos 2x}}{x} = \lim_{x\to 0-0} \frac{-\sqrt{2}\sin x}{x} = -\sqrt{2},$ так как $|\sin x| = -\sin x$, если $-\pi/2 < x < 0$. Поскольку f(0+0) и f(0-0) существуют и конечны, но $f(0+0) \neq f(0-0)$, то точка $x_0 = 0$ является точкой разрыва первого рода.

3.8.3. Охарактеризуйте точку $x_0=1$ для функции $f(x)=2^{\frac{1}{x-1}}$. $Pewenue. \quad f(1-0)=\lim_{x\to 1-0}2^{\frac{1}{x-1}}=\lim_{t\to -\infty}2^t=0$ (сделали замену $\frac{1}{x-1}=t$, когда $x\to 1-0,\ t\to -\infty$); $f(1+0)=\lim_{x\to 1+0}2^{\frac{1}{x-1}}=\lim_{t\to +\infty}2^t=+\infty$ (та же замена, но при $x\to 1+0,\ t\to +\infty$). Так как один из односторонних пределов обращается в ∞ , то точка $x_0 = 0$ — точка разрыва второго рода.

Если в точке x_0 функция определена, то вводят понятие односторонней непрерывности. Если окажется $f(x_0-0)=f(x_0)$, то функцию называют непрерывной в точке x_0 слева, если же $f(x_0+0)=f(x_0)$, то функцию называют непрерывной в точке x_0 справа. Например, функция $\varphi(x)=\left\{ \begin{array}{ll} 2^{\frac{1}{x-1}}, \text{ если } x\neq 1, \\ 0, \text{ если } x=1 \end{array} \right.$ непрерывна в точке $x_0=1$ слева, но разрывна справа.

3.8.4. Охарактеризуйте точку $x_0 = 1$ для функции

$$f(x) = \begin{cases} \frac{x+2}{x^2-4}, & \text{если} \quad x \le 1, \\ \frac{x+4}{x^2-16}, & \text{если} \quad x > 1. \end{cases}$$

Peшение. Находим односторонние пределы при $x \to 1 \pm 0$:

$$f(1-0) = \lim_{x \to 1-0} f(x) = \lim_{x \to 1} \frac{x+2}{x^2 - 4} = \frac{3}{-3} = -1;$$

$$f(1+0) = \lim_{x \to 1+0} f(x) = \lim_{x \to 1} \frac{x+4}{x^2 - 16} = \frac{5}{-15} = -\frac{1}{3}.$$

Так как левый и правый пределы существуют, конечны, но неравны, то точка $x_0=1$ является точкой разрыва первого рода.

3.8.5. Найдите все точки разрыва и охарактеризуйте их для следующих функций:

$$f_1(x) = \frac{x^2 - 4}{x\sqrt{(x - 2)^2}} + \frac{e^x - e^4}{x - 4};$$

$$f_2(x) = \begin{cases} \frac{\operatorname{tg} x}{x^2 - 16}, & \text{при} \quad x \le 0, \\ \frac{\sin(x - 3)}{x^2 - 4x + 3}, & \text{при} \quad x > 0. \end{cases}$$

Peшение. Заметим, что частное от деления двух непрерывных функций может иметь разрыв только в тех точках, в которых знаменатель обращается в нуль. Такими точками для функции $f_1(x)$ являются $x_1=0, \ x_2=2$ и $x_3=4$. Исследуем эти точки.

$$f_1(0 \pm 0) = \lim_{x \to 0 \pm 0} \left(\frac{x^2 - 4}{x|x - 2|} + \frac{e^x - e^4}{x - 4} \right) = \mp \infty,$$

следовательно, в точке $x_1 = 0$ разрыв второго рода;

$$f_1(2+0) = \lim_{x \to 2+0} \left(\frac{(x-2)(x+2)}{x(x-2)} + \frac{e^x - e^4}{x-4} \right) = 2 + \frac{e^2 - e^4}{-2},$$

так как |x-2| = (x-2) при x > 2;

$$f_1(2-0) = \lim_{x \to 2-0} \left(-\frac{(x-2)(x+2)}{x(x-2)} + \frac{e^x - e^4}{x-4} \right) = -2 + \frac{e^2 - e^4}{-2},$$

так как |x-2|=-(x-2) при x<2. Поскольку $f_1(2+0)\neq f_1(2-0)$,

так как
$$|x-2|=-(x-2)$$
 при $x<2$. Поскольку $f_1(2+0)\neq f_1$ то в точке $x_2=2$ разрыв первого рода;
$$f_1(4\pm 0)=\lim_{x\to 4\pm 0}\left(\frac{(x^2-4)}{x|x-2|}+\frac{e^4(e^{x-4}-1)}{x-4}\right)=\frac{3}{2}+e^4,$$
 следовательно, в точке $x_2=4$ устранимый разрыв.

следовательно, в точке $x_3 = 4$ устранимый разрыв.

Для функции $f_2(x)$ только в точках $x_1 = -4$, $x_2 = 0$, $x_3 = 1$, $x_4 = 3$ возможен разрыв. Исследуем эти точки.

$$f_2(-4 \pm 0) = \lim_{x \to -4 \pm 0} \left(\frac{\operatorname{tg} x}{x^2 - 16} \right) = \infty,$$

следовательно, в точке $x_1 = -4$ разрыв второго рода;

$$f_2(0-0) = \lim_{x \to 0-0} \left(\frac{\operatorname{tg} x}{x^2 - 16} \right) = 0,$$

$$f_2(0+0) = \lim_{x \to 0+0} \frac{\sin(x-3)}{x^2 - 4x + 3} = -\frac{\sin 3}{3},$$

т. е. в точке $x_2 = 0$ разрыв первого ро

$$f_2(1 \pm 0) = \lim_{x \to 1 \pm 0} \frac{\sin(x-3)}{(x-1)(x-3)} = \infty,$$

в точке $x_3 = 1$ также разрыв второго рода:

$$f_2(3\pm 0) = \lim_{x\to 3\pm 0} \frac{\sin(x-3)}{(x-1)(x-3)} = \frac{1}{2},$$

следовательно, в точке $x_4 = 3$ имеем устранимый разрыв.

Задачи для самостоятельного решения

- 3.8.6. Исходя из определения, докажите непрерывность следующих функций:
 - а) $f(x) = x^2 + 3x + 1$ при любом x; б) $f(x) = x^3$ при любом x.
- 3.8.7. Используя теоремы о непрерывности суммы, произведения и частного, докажите непрерывность при любом x следующих функций:

a)
$$f_1(x) = \frac{\sin x + \operatorname{arctg} 2x}{x^2 + 1}$$
; 6) $f_2(x) = \frac{\cos x + x^2}{2^x + 4}$.

3.8.8. Охарактеризуйте указанную точку x_0 для функций:

a)
$$f(x) = \frac{\arcsin(x-1)}{|x^2-1|}$$
, $x_0 = 1$; 6) $f(x) = \frac{\arcsin(x-1)}{x^2-1}$, $x_0 = 1$;

B)
$$f(x) = \frac{\arcsin\left(\frac{x-1}{3}\right)}{x^2 - 1}$$
, $x_0 = -1$.

Ответы: а) 1-го рода; б) устранимый; в) 2-го рода.

3.8.9. Охарактеризуйте точку $x_0 = 0$ для следующих функций:

$$f_1(x) = \frac{\ln(1+3x)}{x}; \quad f_2(x) = \begin{cases} \frac{\ln(1+3x)}{x}, & \text{если} \quad x \neq 0, \\ 3, & \text{если} \quad x = 0; \end{cases}$$

$$f_3(x) = \begin{cases} \frac{\ln(1+3x)}{x}, & \text{если} \quad x \neq 0, \\ 1, & \text{если} \quad x = 0. \end{cases}$$

Ответы: а) и в) точка устранимого разрыва; б) точка непрерывности.

3.8.10. Найдите точки разрыва данных функций и охарактеризуйте их:

$$f_1(x) = \arctan \frac{1}{x^2 - 4} + \frac{\sin(4 - x^2)}{x^2 - 2x};$$

$$f_2(x) = \frac{\sin(x + 2)}{|x^2 - 4|} + \frac{\operatorname{tg} x}{5x}.$$

Omsemы:а) $x_1=-2$ и $x_2=2$ — точки разрыва первого рода, $x_3=0$ — точка разрыва второго рода; б) $x_1=-2$ — точка разрыва первого рода; $x_2=0$ — точка устранимого разрыва; $x_3=2$ — точка разрыва второго рода.

3.8.11. Найдите точки разрыва данных функций и охарактеризуйте их:

a)
$$f_1(x) = \begin{cases} \frac{x}{x^2 - 4}, & \text{при} \quad x \le 0, \\ \frac{e^x - e}{x^2 - 1}, & \text{при} \quad x > 0; \end{cases}$$
6) $f_2(x) = \begin{cases} \frac{x \cdot \ln(x + 5)}{x^2 - 16}, & \text{при} \quad x \le 0, \\ \frac{x}{x^2 - 9}, & \text{при} \quad x > 0. \end{cases}$

Omeemы:а) $x_1=-2$ — разрыв второго рода, $x_2=0$ — разрыв первого рода, $x_3=1$ — устранимый разрыв; б) $x_1=-4$ — устранимый разрыв, $x_2=0$ — точка непрерывности, $x_3=3$ — разрыв второго рода.

3.8.12. Можно ли подобрать число A таким, чтобы функция

$$f(x) = \left\{ \begin{array}{ll} \frac{\sqrt[4]{1+x^2}-1}{x^2}, & \text{если} & x \neq 0, \\ A, & \text{если} & x = 0, \end{array} \right.$$

была непрерывной в точке x = 0?

4. Методические указания (контрольная работа № 4)

4.1. Техника дифференцирования функций одного аргумента (задачи 1, а, б, в)

Необходимо изучить пп. 2.1, 2.2, 2.3.

Процесс отыскания производной матрицы называют дифференцированием. Как следует из теории, элементами производной матрицы являются либо производные $f_x' = \frac{df}{dx}$ скалярной функции одного скалярного аргумента, либо частные производные $\frac{\partial f}{\partial x_1}, \frac{\partial f}{\partial x_2}, \ldots, \frac{\partial f}{\partial x_n}$ скалярной функции векторного аргумента. Надо научиться находить эти производные.

Укажем правила отыскания производных. Особенно часто применяется правило дифференцирования композиции отображений (сложной функции): если функция u(x) дифференцируема в точке x_0 , а функция f(u) дифференцируема в соответствующей точке $y_0 = u(x_0)$, то сложная функция f[u(x)] дифференцируема в точке x_0 и при этом

 $\{f[u(x)]\}' = f'_u(u) \cdot u'_x(x).$ (a)

Функция u(x) сама может быть сложной функцией от x: $u=u\left[t(x)\right]$, и тогда $\left\{f\left[u\left(t(x)\right)\right]\right\}'=f'_u(u)\cdot u'_t(t)\cdot t'_x(x)$. Функция t(x) также может быть сложной функцией от x: t[v(x)], и тогда $f'_x(x)=f'_u(u)\cdot u'_t(t)\cdot t'_v(v)\cdot v'_x(x)$ и т.д.

Напомним также правила дифференцирования суммы, произведения и частного. Если функции u(x) и v(x) дифференцируемы, то дифференцируемы и функции u(x) + v(x), $u(x) \cdot v(x)$, $\frac{u(x)}{v(x)}$ (в послед-

нем случае $v(x) \neq 0$) и справедливы формулы:

$$[u(x) + v(x)]' = u'(x) + v'(x); (6)$$

$$[u(x) \cdot v(x)]' = u'(x) \cdot v(x) + u(x) \cdot v'(x)];$$
 (B)

$$\left[\frac{u(x)}{v(x)}\right]' = \frac{u'(x) \cdot v(x) - u(x) \cdot v'(x)}{[v(x)]^2}.\tag{r}$$

Произведение и частное определены только для скалярных функций. Поэтому формулы (в) и (г) имеют смысл только для такого вида функций. Так как C'=0, где C — константа, то из формулы (в) следует правило

 $[C \cdot v(x)]' = C \cdot v'(x), \tag{A}$

т.е. константу можно выносить за знак производной.

Пусть u = u(x) — произвольная дифференцируемая функция. Запишем таблицу производных, которую следует запомнить:

1)
$$[u^{\alpha}(x)]' = \alpha u(x)^{\alpha - 1} \cdot u'(x);$$

2)
$$[a^{u(x)}]' = a^{u(x)} \ln a \cdot u'(x), [e^{u(x)}]' = e^{u(x)} \cdot u'(x);$$

3)
$$[\log_a |u(x)|]' = \frac{u'(x)}{u(x)\ln a} = \frac{\log_a e}{u(x)} \cdot u'(x), [\ln |u(x)|]' = \frac{u'(x)}{u(x)};$$

4)
$$[\sin u(x)]' = u'(x) \cdot \cos u(x)$$
; 5) $[\cos u(x)]' = -u'(x) \cdot \sin u(x)$;

6)
$$[\operatorname{tg} u(x)]' = \frac{u'(x)}{\cos^2 u(x)};$$
 7) $[\operatorname{ctg} u(x)]' = -\frac{u'(x)}{\sin^2 u(x)};$

8)
$$[\operatorname{sh} u(x)]' = u'(x) \cdot \operatorname{ch} u(x);$$
 9) $[\operatorname{ch} u(x)]' = u'(x) \cdot \operatorname{sh} u(x);$

10)
$$[\operatorname{th} u(x)]' = \frac{u'(x)}{\operatorname{ch}^2 u(x)};$$
 11) $[\operatorname{cth} u(x)]' = -\frac{u'(x)}{\operatorname{sh}^2 u(x)};$

12)
$$[\arcsin u(x)]' = \frac{u'(x)}{\sqrt{1 - u^2(x)}};$$

13)
$$[\arccos u(x)]' = -\frac{u'(x)}{\sqrt{1 - u^2(x)}};$$

14)
$$\left[\operatorname{arctg} u(x)\right]' = \frac{u'(x)}{1 + u^2(x)};$$
 15) $\left[\operatorname{arcctg} u(x)\right]' = -\frac{u'(x)}{1 + u^2(x)}.$

4.1.1. Найдите y'(x), если:

a)
$$y(x) = 2x^{3/4} - 4x^{7/5} + 3x^{-2}$$
;

б)
$$y(x) = \frac{a}{\sqrt[4]{x^5}} - \frac{b}{x\sqrt[3]{x}}$$
 (а и b — постоянные).

Решение: а) применяя правило дифференцирования суммы, степенной функции, а также формулу (д), получаем

$$y' = 2 \cdot \frac{3}{4}x^{(3/4)-1} - 4 \cdot \frac{7}{5}x^{(7/5)-1} + 3(-2) \cdot x^{-2-1} = \frac{3}{2} \cdot x^{-1/4} - \frac{28}{5}x^{2/5} - 6x^{-3} = \frac{3}{2\sqrt[4]{x}} - \frac{28}{5}\sqrt[5]{x^2} - \frac{6}{x^3};$$

б) в подобных случаях удобнее освободиться от радикалов и за-

писать
$$y=ax^{-5/4}-bx^{-4/3}$$
, а затем находить производную
$$y'=-\frac{5}{4}ax^{(-5/4)-1}+\frac{4}{3}bx^{(-4/3)-1}=-\frac{5}{4}ax^{-9/4}+\frac{4}{3}bx^{-7/3}=\\=-\frac{5a}{4x^2\sqrt[4]{x}}+\frac{4b}{3x^2\sqrt[3]{x}}.$$

4.1.2. Найдите y'(x), если:

a)
$$y(x) = x^3 \arcsin x$$
; 6) $y = (x^2 + 1) \arctan x$;

B)
$$y = \frac{\sin x - \cos x}{\sin x + \cos x}$$
; $y = \frac{x + \sqrt{x}}{x - 2\sqrt[3]{x}}$.

Решение: а) применяем правило дифференцирования произведения (формулу (в)). Получаем $y'=(x^3)'\arcsin x+x^3(\arcsin x)'=$ $=3x^2\arcsin x+\frac{x^3}{\sqrt{1-x^2}}.$ Такие подробные записи делать впредь не рекомендуем, следует сразу применять соответствующие формулы;

6)
$$y' = 2x \arctan x + \frac{x^2 + 1}{x^2 + 1} = 2x \arctan x + 1;$$

в) применяем формулу (г) — правило дифференцирования частного:

$$y' = \frac{(\sin x - \cos x)'(\sin x + \cos x) - (\sin x + \cos x)'(\sin x - \cos x)}{(\sin x + \cos x)^2} =$$

$$= \frac{(\cos x + \sin x)(\sin x + \cos x) - (\cos x - \sin x)(\sin x - \cos x)}{(\sin x + \cos x)^2} =$$

$$= \frac{\sin^2 x + \cos^2 x + 2\sin x \cos x + \sin^2 x - 2\sin x \cos x + \cos^2 x}{(\sin x + \cos x)^2} =$$

$$= \frac{2}{(\sin x + \cos x)^2};$$

$$r) \ y = \frac{x + x^{1/2}}{x - 2x^{1/3}},$$

$$y' = \frac{\left(1 + \frac{1}{2}x^{-1/2}\right)(x - 2x^{1/3}) - (x + x^{1/2})\left(1 - \frac{2}{3}x^{-2/3}\right)}{(x - 2x^{1/3})^2}.$$

Последнее выражение можно несколько упростить, но мы этого делать не будем.

4.1.3. Найдите производные и вычислите их значение в указанной точке:

a)
$$y = 3 - \sqrt[3]{x^5} + \frac{64}{x}$$
, $x_0 = -2\sqrt{2}$; 6) $y = \frac{\sin t}{1 - \cos t}$, $t = \frac{\pi}{3}$.
Pewenue. a) $y' = (3 - x^{5/3} + 64x^{-1})' = -\frac{5}{3}x^{2/3} - 64x^{-2} =$

$$= -\frac{5}{3}\sqrt[3]{x^2} - \frac{64}{x^2}$$
, $y'(-2\sqrt{2}) = -\frac{5}{3}\sqrt[3]{8} - \frac{64}{8} = -\frac{10}{3} - 8 = -\frac{34}{3}$;
6) $y' = \frac{\cos t(1 - \cos t) - \sin t \sin t}{(1 - \cos t)^2} = \frac{\cos t - \cos^2 t - \sin^2 t}{(1 - \cos t)^2} =$

$$= \frac{\cos t - 1}{(1 - \cos t)^2} = \frac{-1}{1 - \cos t}$$
, $y'(\frac{\pi}{3}) = \frac{-1}{1 - 1/2} = -2$.

4.1.4. Пользуясь правилами дифференцирования сложной функции, найдите производную следующих функций:

а)
$$y = \cos^5 x;$$
 б) $y = \ln \sin x;$ в) $y = 5^{\lg x};$ г) $y = \ln \cos(x^4 + 2);$ д) $y = \arccos \sqrt{1 - x^2};$

$$y = \ln \cos(x^2 + 2);$$
 д) $y = \arccos \sqrt{1 - x^2};$

e)
$$y = (\arctan 2x)^3;$$
 $x = \sin^3 \frac{1}{\sqrt{x}}.$

Pewehue: a) обозначим $u(x) = \cos x$. Тогда $y = u^5$. По первой формуле в таблице производных находим

$$y' = 5u^4 \cdot u'_x = 5\cos^4 x(\cos x)' = 5\cos^4 x(-\sin x);$$

б) обозначим $u(x) = \sin x$, тогда $y = \ln u$. По третьей формуле в таблице производных находим

$$y' = \frac{1}{u} \cdot u' = \frac{1}{\sin x} \cdot (\sin x)' = \frac{\cos x}{\sin x} = \operatorname{tg} x.$$

Приобретя некоторый опыт, эти замены нужно делать мысленно, не записывая их;

в)
$$(5^{\lg x})' = 5^{\lg x} \cdot \frac{\ln 5}{\cos^2 x}$$
. (Здесь $u(x) = \lg x$, $u'(x) = \frac{1}{\cos^2 x}$);

r)
$$\left[\ln\cos(x^4+2)\right]' = \frac{-\sin(x^4+2)}{\cos(x^4+2)} \cdot 4x^3;$$

д)
$$(\arccos\sqrt{1-x^2})' = -\frac{1}{\sqrt{1-(\sqrt{1-x^2})^2}} \cdot \frac{-2x}{2\sqrt{1-x^2}} = \frac{1}{\sqrt{x^2}} \cdot \frac{x}{\sqrt{1-x^2}} = \frac{x}{|x|\sqrt{1-x^2}} = \pm \frac{1}{\sqrt{1-x^2}};$$

e)
$$\left[(\operatorname{arctg} 2x)^3 \right]' = 3 (\operatorname{arctg} 2x)^2 \cdot \frac{1}{1 + (2x)^2} \cdot 2;$$

ж)
$$\left[\sin^3 \frac{1}{\sqrt{x}}\right]' = 3\sin^2 \frac{1}{\sqrt{x}} \cdot \cos \frac{1}{\sqrt{x}} \cdot \left(-\frac{1}{2\sqrt{x^3}}\right).$$

Вы заметили, что функция u(x) сама может быть сложной функцией. От неё находить производную нужно по тем же табличным формулам.

4.1.5. Найдите производные следующих функций:

a)
$$y = (2 + 5x^2 + 4x^3)^{10};$$
 b) $y = \sqrt[4]{\sin^3 2x} + \frac{1}{\cos^4 3x};$

B)
$$y = \sqrt{e^{3x} + 2^{4x} + 3} + \ln^3 2x$$
; $r)y = \arctan x + \ln \arctan x$.

Pewenue. a)
$$[(2+5x^2+4x^3)^{10}]' = 10(2+5x^2+4x^3)^9(10x+12x^2);$$

6)
$$y' = (\sin^{3/4} 2x + \cos^{-4} 3x)' = \frac{3}{4} \sin^{-1/4} 2x \cdot \cos 2x \cdot 2 - 4\cos^{-5} 3x(-\sin 3x) \cdot 3 = \frac{3\cos 2x}{2\sqrt[4]{\sin 2x}} + \frac{12\sin 3x}{\cos^5 3x};$$

B)
$$y' = \frac{1}{2} (e^{3x} + 2^{4x} + 3)^{-1/2} (e^{3x} \cdot 3 + 2^{4x} \cdot \ln 2 \cdot 4) + 3\ln^2 2x \cdot \frac{1}{2x} \cdot 2;$$

r) $y' = \frac{1}{1 + (\ln x)^2} \cdot \frac{1}{x} + \frac{1}{\arctan x} \cdot \frac{1}{1 + x^2}.$

Если требуется продифференцировать произведение и частное с большим числом сомножителей, то иногда выгодно функцию предварительно прологарифмировать.

4.1.6. Найдите производную функции

$$y = \frac{\sqrt[3]{1 + \sin x} \cdot (1 + x^2)}{\sqrt[3]{1 + \lg^2 x} \cdot \sqrt[5]{4 - x}}.$$

Решение.
$$\ln|y| = \frac{1}{3}\ln|1 + \sin x| + \ln(1 + x^2) - \frac{1}{3}\ln(1 + \text{tg}^2 x) - \frac{1}{3}\ln|x| + \frac{1}{3}\ln$$

 $-\frac{1}{5} \ln |4-x|$. Выполним дифференцирование:

$$\begin{split} \frac{y'}{y} &= \frac{\cos x}{3(1+\sin x)} + \frac{2x}{1+x^2} - \frac{2\operatorname{tg} x}{3(1+\operatorname{tg}^2 x)} \cdot \frac{1}{\cos^2 x} - \frac{1}{5} \cdot \frac{-1}{4-x}. \\ \text{Следовательно, } y' &= \frac{\sqrt[3]{1+\sin x} \cdot (1+x^2)}{\sqrt[3]{1+\operatorname{tg}^2 x} \sqrt[5]{4-x}} \left[\frac{\cos x}{3(1+\sin x)} + \right. \\ &+ \frac{2x}{1+x^2} - \frac{2\operatorname{tg} x}{3(1+\operatorname{tg}^2 x)\cos^2 x} + \frac{1}{5(4-x)} \right]. \end{split}$$

Продифференцировать степенно-показательную функцию $y=u(x)^{v(x)},\ u(x)>0,$ можно либо прологарифмировав её, либо используя логарифмическое тождество $y=e^{v(x)\ln u(x)}.$ В результате получим

$$y' = u(x)^{v(x)} [v(x) \ln u(x)]' = u(x)^{v(x)} \left[v'(x) \ln u(x) + \frac{v(x) \cdot u'(x)}{u(x)} \right].$$

4.1.7. Найдите производную от функции $y = (\sin^2 x)^{\cos 3x}$.

Решение. Используя логарифмическое тождество, можем записать $y = e^{\cos 3x \cdot \ln \sin^2 x}$. Находим $y' = e^{\cos 3x \cdot \ln \sin^2 x} \times$

$$\times \left(-3\sin 3x \cdot \ln \sin^2 x + \cos 3x \cdot \frac{2\sin x \cos x}{\sin^2 x} \right) =$$

$$= (\sin^2 x)^{\cos 3x} \cdot (-3\sin 3x \ln \sin^2 x + 2\cos 3x \cdot \cot x).$$

4.1.8. Найдите производные следующих векторных функций одного скалярного аргумента:

$$\mathbf{a})f(x) = \begin{bmatrix} \sin^3 x^2 \\ x^3 \\ \frac{1+x}{1-x} \end{bmatrix}; \quad 6)f(x) = \begin{bmatrix} x^2 \\ 2^x \\ \lg^4 x^3 \end{bmatrix}.$$

Решение: а) чтобы найти производную от f(x), нужно найти производные от координатных функций. Поэтому

$$f'(x) = \begin{bmatrix} (\sin^3 x^2)' \\ (x^3)' \\ \left(\frac{1+x}{1-x}\right)' \end{bmatrix} = \begin{bmatrix} 3\sin^2 x^2 \cos x^2 \cdot 2x \\ 3x^2 \\ \frac{(1-x)-(1+x)(-1)}{(1-x)^2} \end{bmatrix} = \begin{bmatrix} 3\sin^2 x^2 \cos x^2 \cdot 2x \\ \frac{3x^2}{(1-x)^2} \end{bmatrix}$$

$$= \begin{bmatrix} 3\sin^2 x^2 \cos x^2 \cdot 2x \\ \frac{3x^2}{2} \\ \frac{2}{(1-x)^2} \end{bmatrix}$$

$$f'(x) = \begin{bmatrix} (x^2)' \\ (2^x)' \\ (tg^4 x^3)' \end{bmatrix} = \begin{bmatrix} 2x \\ 2^x \ln 2 \\ 4 tg^3 x^3 \cdot \frac{3x^2}{\cos^2 x^3} \end{bmatrix} .$$

Часто подобные функции записывают в виде $\mathbf{a}(t) = f_1(t)\mathbf{i} + f_2(t)\mathbf{j} + f_3(t)\mathbf{k}$. Тогда $\mathbf{a}'(t) = f_1'(t)\mathbf{i} + f_2'(t)\mathbf{j} + f_3'(t)\mathbf{k}$. Например, если $\mathbf{a}(t) = f_1(t)\mathbf{i} + f_2(t)\mathbf{j} + f_3(t)\mathbf{k}$. $=\sin t\mathbf{i} + \cos t\mathbf{j} + t\mathbf{k}$, to $\mathbf{a}'(t) = \cos t\mathbf{i} - \sin t\mathbf{j} + \mathbf{k}$.

Задачи для самостоятельного решения

4.1.9. Найдите производную данной функции и вычислите значение производной в точке $x_0 = 1$:

a)
$$y(x) = 4x^{7/3} + 5x^{5/2} + \sqrt{x} + 1$$
;

6)
$$y(x) = \frac{3}{x\sqrt[3]{x^2}} + \frac{8}{x^2\sqrt[4]{x^3}} + 2;$$

B)
$$y(x) = 2x^3\sqrt{x^3} + 3x^2\sqrt[3]{x^5} + 3$$
.

Ответы: a) 67/3; б) -27; в) 20.

4.1.10. Найдите производную y'(x) данной функции и вычислите значение производной в точке x_0 :

a)
$$y = (x^2 + 2x + 2) \arcsin(0.5 + x), x_0 = 0;$$

a)
$$y = (x^2 + 2x + 2) \arcsin(0.5 + x), x_0 = 0;$$

6) $y = x^4 \arctan 2x; x_0 = \frac{1}{2};$ B) $y = \frac{1 + \sin 2x}{3 + 4x}, x_0 = 0;$

$$y = \frac{\cos x + \sin x}{3 - \cos x}, x_0 = \frac{\pi}{2};$$
д) $y = e^{2x}(\cos x + 2\sin x), x_0 = 0.$

Ответы: а) $(\pi/3) + 4/\sqrt{3}$; б) $(2\pi + 1)/16$; в) 2/9; г) -4/9; д) 4.

4.1.11. Пользуясь правилом дифференцирования сложной функции, найдите производные от следующих функций и вычислите их значение в указанной точке:

a)
$$y(x) = (x^4 + 3x^2 + 2x + 3)^{20}, x_0 = 0;$$

6)
$$y(x) = \sqrt{2}\sin^5 2x$$
; $x_0 = \frac{\pi}{8}$; B) $y(x) = \ln\cos 4x$, $x_0 = \frac{\pi}{12}$;

г)
$$y(x) = 3^{\lg 2x}$$
, $x_0 = \frac{\pi}{8}$; д) $y(x) = (\operatorname{arcctg} \sqrt{x})^2$, $x_0 = 1$;

e)
$$y(x) = \left(\arcsin\frac{1+x}{1-x}\right)^2$$
, $x_0 = -1/3$;

ж)
$$y(x) = \cos^3\left(\frac{1}{\sqrt{x}}\right)$$
, $x_0 = 1$; з) $y(x) = \ln\ln\ln x$, $x_0 = e^2$;

и)
$$y(x) = \left(\arccos \frac{x}{x+2}\right)^4, x_0 = 0.$$

Ответы: а) $40\cdot 3^{19}$; б) 5/2; в) $-4\sqrt{3}$; г) $12\ln 3$; д) $-\pi/8$; е) $\sqrt{3}\pi/4$; ж) $(3/2)\cos^2 1\sin 1$; з) $1/(2e^2\ln 2)$; и) $-\pi^3/4$.

4.1.12. Найдите производные следующих функций, предварительно их прологарифмировав:

a)
$$y(x) = \frac{\sqrt{x-1}}{\sqrt[3]{(x+2)^4}\sqrt{(x+3)^5}};$$

6) $y(x) = e^x \cdot \sin 2x \cdot \cos 3x \cdot \operatorname{tg} 5x$.

Ответы:

a)
$$y' = \frac{\sqrt{x-1}}{\sqrt[3]{(x+2)^4}} \left[\frac{1}{2(x-1)} - \frac{4}{3(x+2)} - \frac{5}{2(x+3)} \right];$$

6)
$$y' = e^x \cdot \sin 2x \cdot \cos 3x \cdot \tan 5x \left(1 + 2 \cot 2x - 3 \tan 3x + \frac{5}{\tan 5x} \cdot \frac{1}{\cos^2 5x} \right)$$
.

4.1.13. Найдите производные следующих степенно-показательных функций:

a)
$$y = (\ln x)^{\sqrt[3]{x}}$$
; 6) $y = (\sqrt{x})^x$; B) $y = \sqrt[x]{x^2 + 1}$.

Ответы: a)
$$(\ln x)^{\sqrt[3]{x}} \left(\frac{\ln \ln x}{3\sqrt[3]{x^2}} + \sqrt[3]{x} \frac{1}{x \ln x} \right);$$

6)
$$(\sqrt{x})^x \left(\frac{1}{2}\ln x + \frac{1}{2}\right)$$
; B) $\sqrt[x]{x^2 + 1} \left[\frac{2}{x^2 + 1} - \frac{\ln(x^2 + 1)}{x^2}\right]$.

4.1.14. Докажите, что функция $y(x)=\frac{x-e^{-x^2}}{2x^2}$ удовлетворяет дифференциальному уравнению $xy'+2y=e^{-x^2}+\frac{1}{2x}.$

4.1.15. Найдите производные следующих функций, содержащих гиперболические функции:

a)
$$f(x) = \sinh \frac{x}{2} + \cosh \frac{x}{2}$$
; 6) $f(x) = \ln \cosh x$;

B)
$$f(x) = \arcsin(\operatorname{th} x)$$
; r) $f(x) = \sqrt{1 + \operatorname{sh}^2 4x}$.

Ответы: a)
$$\frac{1}{2} \left(\operatorname{sh} \frac{x}{2} + \operatorname{ch} \frac{x}{2} \right) = \frac{1}{2} e^{x/2}$$
; б) $\operatorname{th} x$; в) $\frac{1}{\operatorname{ch} x}$; г) $4 \operatorname{sh} 4x$.

4.1.16. Найдите производные следующих функций:

a)
$$y(x) = \sqrt{x+1} - \ln(1+\sqrt{x+1});$$

b) $y(x) = \arctan \frac{x}{1+\sqrt{1-x^2}};$
b) $y(x) = \frac{\arcsin x}{\sqrt{1-x^2}} + \frac{1}{2}\ln \frac{1-x}{1+x};$ f) $y(x) = \arctan(x+\sqrt{1+x^2}).$
Combined: a) $\frac{1}{2(1+\sqrt{x+1})};$ b) $\frac{x\arcsin x}{(1-x^2)^{3/2}};$

4.2. Производная высших порядков функций одного аргумента (задачи 2 и 3)

Предлагается изучить п. 2.5.

 Γ) $\frac{1}{2(1+x^2)}$.

Производную y'(x) функции y(x) иногда называют производной первого порядка. Производная y'(x) сама является функцией от x, от неё также можно взять производную [y'(x)]', обозначаемую y''(x) и называемую второй производной, или производной второго порядка. Аналогично можно получить производную любого порядка n. Её обозначают $y^{(n)}(x)$.

Используя таблицу производных и метод математической индукции, легко доказать справедливость следующих формул:

$$(a^x)^{(n)} = a^x (\ln a)^n; \tag{a}$$

$$\left(\frac{1}{ax+b}\right)^{(n)} = \frac{(-1)^n n! a^n}{(ax+b)^{n+1}};\tag{6}$$

$$(\sin x)^{(n)} = \sin\left(x + n \cdot \frac{\pi}{2}\right); \tag{B}$$

$$(\cos x)^{(n)} = \cos\left(x + n \cdot \frac{\pi}{2}\right). \tag{\Gamma}$$

- **4.2.1.** Найдите производные второго порядка от следующих функций:
 - a) $y = (1 + x^2) \operatorname{arctg} x$; 6) $y = \sqrt{1 x^2} \arcsin x$;
 - в) $y = \ln(x + \sqrt{9 + x^2}); \ \Gamma) \ y = e^{\sqrt{x}}.$

Pemenue: a) $y'(x) = 2x \arctan x + \frac{1+x^2}{1+x^2} = 2x \arctan x + 1$,

$$y''(x) = 2 \arctan x + \frac{2x}{1+x^2};$$

$$\begin{aligned} &6) \ y'(x) = \frac{-2x}{2\sqrt{1-x^2}} \arcsin x + \sqrt{1-x^2} \cdot \frac{1}{\sqrt{1-x^2}} = \frac{-x \arcsin x}{\sqrt{1-x^2}} + 1, \\ &y''(x) = (-\frac{1}{\sqrt{1-x^2}} - \frac{x^2}{\sqrt{(1-x^2)^3}}) \arcsin x - \frac{x}{1-x^2} = \\ &= -\frac{\arcsin x}{\sqrt{(1-x^2)^3}} - \frac{x}{1-x^2}; \end{aligned}$$

B)
$$y' = [\ln(x + \sqrt{9 + x^2})]' = \frac{1 + \frac{x}{\sqrt{9 + x^2}}}{x + \sqrt{9 + x^2}} = \frac{1}{\sqrt{9 + x^2}},$$

$$y''(x) = [(9 + x^2)^{-1/2}]' = -\frac{1}{2}(9 + x^2)^{-3/2} \cdot 2x = -\frac{x}{(\sqrt{9 + x^2})^3};$$

$$r) \ y' = (e^{\sqrt{x}})' = \frac{1}{2\sqrt{x}}e^{\sqrt{x}},$$

$$y'' = -\frac{1}{4\sqrt{x^3}}e^{\sqrt{x}} + \frac{1}{4x}e^{\sqrt{x}} = \frac{e^{\sqrt{x}}}{4x}\left(1 - \frac{1}{\sqrt{x}}\right) = \frac{e^{\sqrt{x}}}{4x\sqrt{x}}(\sqrt{x} - 1).$$

4.2.2. Найдите производные n-го порядка от следующих функций: a) $y=2^{3x}$; б) $y=\sin 3x\cdot\sin 5x$; в) $y=\frac{3x+2}{4x+5}$.

Решение: a) $y' = 2^{3x} \ln 2 \cdot 3$, $y'' = 2^{3x} (\ln 2)^2 \cdot 3^2$, ..., $y^{(n)} = 2^{3x} (\ln 2)^n \cdot 3^n$ (применили формулу (a));

б)
$$y = \sin 3x \cdot \sin 5x = \frac{1}{2}(\cos 2x - \cos 8x)$$
, поэтому $y^{(n)} =$

 $=\frac{1}{2}\left[2^{n}\cos\left(2x+n\frac{\pi}{2}\right)-8^{n}\cos\left(8x+n\frac{\pi}{2}\right)\right] \text{ (см. формулу(r))};$

в) чтобы применить формулу (б), преобразуем выражение для функции $y(x)=\frac{3x+2}{4x+5}=\frac{3}{4}-\frac{7}{4(4x+5)}$ (выполнили деление по правилу деления многочленов). Применяя формулу (б), получаем $y^{(n)}=-\frac{7(-1)^nn!4^n}{4(4x+5)^{n+1}}=\frac{7(-1)^{n+1}4^{n-1}}{(4x+5)^{n+1}}.$

Задачи для самостоятельного решения

4.2.3. Найдите производные второго порядка от следующих функций: a) $f(x)=\frac{1}{12}\ln\left|\frac{2+3x}{2-3x}\right|;$ б) $f(x)=\frac{1}{3}\arcsin\frac{3}{4}x;$ в) $f(x)=\frac{1}{6}\arctan\frac{3}{2}x.$ Ответы: a) $\frac{18x}{(4-9x^2)^2};$ б) $\frac{9x}{\sqrt{(16-9x^2)^3}};$ в) $\frac{-18x}{(4+9x^2)^2}.$

4.2.4. Найдите производные порядка n от следующих функций:

a)
$$y = x \ln x$$
; 6) $y = \frac{x^2}{x - 1}$; B) $y = \sin 2x \cos 4x$; $y = \frac{5x + 22}{(x + 4)(x + 5)}$.

Ответы: a)
$$y' = \ln x + 1$$
, $y'' = \frac{1}{x}$, $y^{(n)} = \frac{(-1)^n (n-2)!}{x^{n-1}}$; 6) $y' = 1 - \frac{1}{(x-1)^2}$, $y^{(n)} = \frac{(-1)^n n!}{(x-1)^{n+1}}$; $n = 2, 3, 4, \ldots$;

6)
$$y' = 1 - \frac{1}{(x-1)^2}$$
, $y^{(n)} = \frac{(-1)^n n!}{(x-1)^{n+1}}$; $n = 2, 3, 4, ...$;

B)
$$\frac{1}{2} \left\{ 6^n \sin \left(6x + n \cdot \frac{\pi}{2} \right) - 2^n \sin \left(2x + n \cdot \frac{\pi}{2} \right) \right\};$$

r)
$$\frac{2(-1)^n \cdot n!}{(x+4)^{n+1}} + \frac{3(-1)^n \cdot n!}{(x+5)^{n+1}}$$
.

4.2.5. Применяя формулу Лейбница, найдите производные указанного порядка от следующих функций:

- а) $y = x^2 \sin x$, найдите $y^{(10)}$; б) $y = x \operatorname{ch} x$, найдите $y^{(100)}$;
- в) $y = 3^x \cdot x^2$, найдите $y^{(20)}$;

Ответы: а) $-x^2 \sin x + 20x \cos x + 90 \sin x$; б) $x \operatorname{ch} x + 100 \operatorname{sh} x$; в) $3^x x^2 (\ln 3)^{20} + 40 \cdot 3^x \cdot x (\ln 3)^{19} + 380 (\ln 3)^{18} 3^x$.

4.2.6. Найдите y''', если:

a)
$$y = \begin{bmatrix} x^3/6 \\ x^4/24 \\ x^5/60 \end{bmatrix}$$
; 6) $y = \begin{bmatrix} \sin 2x \\ \cos 2x \\ x^3 \end{bmatrix}$;

Ответы: а)
$$y'''=\left|\begin{array}{c}1\\x\\x^2\end{array}\right|$$
 ; б) $y'''=\left|\begin{array}{c}-8\cos2x\\8\sin2x\\6\end{array}\right|$;

B) $y''' = 6\mathbf{i} - \cos t\mathbf{k}$.

4.3. Частные производные (задачи 4 и 5)

Предлагается изучить п. 2.5.

Мы уже отмечали, что элементами производной матрицы в случае функций векторного аргумента (функций многих скалярных аргументов) являются частные производные — производные по одному из аргументов при фиксированных всех остальных. Чтобы найти частную производную $\frac{\partial z}{\partial r}$ от функции z(x,y), нужно взять производную по x, считая аргумент y константой. Напомним, что производная константы равна нулю и что константу-сомножитель можно выносить за знак производной. Аналогично находят $\frac{\partial z}{\partial u}$, считая аргумент x константой.

4.3.1. Найдите частные производные
$$\frac{\partial z}{\partial x}$$
 и $\frac{\partial z}{\partial y}$ от следующих функций: а) $z = \sqrt{x^2 + y^2} + 2xy$; б) $z = \arctan \frac{x}{y} + x^2$;

 $z = e^{2x} \cos y - e^{3y} \sin x.$

Решение:

а) считая y константой, находим ∂x

$$\frac{\partial z}{\partial x} = \frac{1}{2\sqrt{x^2 + y^2}} \cdot 2x + 2y = \frac{x}{\sqrt{x^2 + y^2}} + 2y.$$

Полагая x = const, получаем $\frac{\partial z}{\partial y} = \frac{y}{\sqrt{x^2 + y^2}} + 2x$;

6)
$$\frac{\partial z}{\partial x} = \frac{1}{1 + (x/y)^2} \cdot \frac{1}{y} + 2x = \frac{y}{x^2 + y^2} + 2x,$$

 $\frac{\partial z}{\partial y} = \frac{1}{1 + (x/y)^2} \cdot \left(-\frac{x}{y^2}\right) = \frac{-x}{x^2 + y^2};$

B)
$$\frac{\partial z}{\partial x} = 2e^{2x}\cos y - e^{3y}\cos x$$
, $\frac{\partial z}{\partial y} = -e^{2x}\sin y - 3e^{3y}\sin x$.

4.3.2. Докажите, что функция $z=\ln(x^2+y^2)$ удовлетворяет уравнению $y\frac{\partial z}{\partial x}-x\frac{\partial z}{\partial y}=0.$

$$\begin{array}{ll} \textit{Решение.} & \frac{\partial \ddot{z}}{\partial x} = \frac{2x}{x^2 + y^2}, \ \, \frac{\partial z}{\partial y} = \frac{2y}{x^2 + y^2}, \, \, \text{следовательно,} \\ y \frac{\partial z}{\partial x} - x \frac{\partial z}{\partial y} = \frac{2xy}{x^2 + y^2} - \frac{2yx}{x^2 + y^2} = 0, \, \text{что и требовалось доказать.} \end{array}$$

4.3.3. Найдите производную матрицу следующих функций:

a)
$$u = \frac{x}{y} + \frac{y}{z}$$
; 6) $u = \begin{bmatrix} x \sin y \\ y \sin x \end{bmatrix}$.

Решение: а) функция u(x,y) отображает некоторое множество из R_3 в R. Для таких функций производная матрица u' имеет вид $u' = \left[\frac{\partial u}{\partial x}, \frac{\partial u}{\partial y}, \frac{\partial u}{\partial z}\right]$, т. е. $u' = \left[\frac{1}{y}, -\frac{x}{y^2} + \frac{1}{z}, -\frac{y}{z^2}\right]$;

б) в этом случае функция u(x,y) отображает некоторое множество из R_2 в R_2 . Как нам известно из теории [8, с. 112], производ-

ная матрица для этих функций имеет вид $u'=\begin{bmatrix} \frac{\partial f_1}{\partial x} & \frac{\partial f_1}{\partial y} \\ \frac{\partial f_2}{\partial x} & \frac{\partial f_2}{\partial y} \end{bmatrix}$, где

 $f_1(x,y)$ и $f_2(x,y)$ — координатные функции. Поэтому $u' = \begin{bmatrix} \sin y & x \cos y \\ y \cos x & \sin x \end{bmatrix}$.

константами, получаем

4.3.4. Найдите частные производные от функции $z = (\sin^2 x)^{\cos^2 y}$.

 $\begin{array}{ll} \textit{Решение}. & \textit{Используя} & \textit{правило} & \textit{дифференцирования} & \textit{степенной} \\ \textit{функции}, & \textit{если} & y - \textit{константа}, & \textit{и} & \textit{показательной}, & \textit{если} & x - \textit{константа}, \\ \textit{получаем} & \frac{\partial z}{\partial x} = \cos^2 y (\sin^2 x)^{\cos^2 y - 1} \cdot 2 \sin x \cos x, \end{array}$

$$\frac{\partial z}{\partial y} = (\sin^2 x)^{\cos^2 y} \cdot \ln \sin^2 x \cdot 2 \cos y (-\sin y).$$

4.3.5. Найдите частные производные $\frac{\partial u}{\partial x}$, $\frac{\partial u}{\partial y}$, $\frac{\partial u}{\partial z}$ от функции $u=\frac{y}{\sqrt{x^2+y^2+z^2}}$ и вычислите их значения в точке $M_0(1,2,2)$.

 $\begin{array}{l} \textit{Решение.} \ \textit{Считая аргументы} \ \textit{y} \ \textit{и} \ \textit{z} \ \textit{константами, находим} \\ \frac{\partial u}{\partial x} = \frac{\partial}{\partial x} \left[y(x^2 + y^2 + z^2)^{-1/2} \right] = -\frac{1}{2} y(x^2 + y^2 + z^2)^{-3/2} \cdot 2x = \\ = \frac{-xy}{\sqrt{(x^2 + y^2 + z^2)^3}}, \ \frac{\partial u}{\partial x} (1,2,2) = \frac{-2}{\sqrt{9^3}} = -\frac{2}{27}. \ \textit{Далее, полагая} \ \textit{x} \ \textit{и} \ \textit{z} \end{array}$

 $\frac{\partial u}{\partial y} = (x^2 + y^2 + z^2)^{-1/2} - \frac{y^2}{\sqrt{(x^2 + y^2 + z^2)^3}} = \frac{x^2 + z^2}{\sqrt{(x^2 + y^2 + z^2)^3}},$ $\frac{\partial u}{\partial y}(1, 2, 2) = \frac{1 + 2^2}{\sqrt{9^3}} = \frac{5}{27}.$

Аналогично находим
$$\frac{\partial u}{\partial z}=-\frac{yz}{\sqrt{(x^2+y^2+z^2)^3}}; \quad \frac{\partial u}{\partial z}(1,2,2)=-\frac{4}{27}.$$

Вы заметили, что частные производные $\frac{\partial z}{\partial x}$ и $\frac{\partial z}{\partial y}$ (их называют частными производными первого порядка) от функции z(x,y) сами являются функциями аргументов x и y. От этих производных также можно взять частные производные и получить производные второго порядка:

$$\begin{split} \frac{\partial}{\partial x} \left(\frac{\partial z}{\partial x} \right) &= \frac{\partial^2 z}{\partial x^2} = z_{xx}^{\prime\prime}, & \frac{\partial}{\partial y} \left(\frac{\partial z}{\partial x} \right) = \frac{\partial^2 z}{\partial y \partial x} = z_{yx}^{\prime\prime}, \\ \frac{\partial}{\partial x} \left(\frac{\partial z}{\partial y} \right) &= \frac{\partial^2 z}{\partial x \partial y} = z_{xy}^{\prime\prime}, & \frac{\partial}{\partial y} \left(\frac{\partial z}{\partial y} \right) = \frac{\partial^2 z}{\partial y^2} = z_{yy}^{\prime\prime}. \end{split}$$

Итак, в случае функции двух аргументов получили четыре частных производных второго порядка $z_{xx}^{\prime\prime}, z_{xy}^{\prime\prime}, z_{yx}^{\prime\prime}, z_{yy}^{\prime\prime}$. От этих производных можно также взять частные производные и получить восемь производных третьего порядка $z_{xxx}^{\prime\prime\prime}, z_{xxy}^{\prime\prime\prime}, z_{yxx}^{\prime\prime\prime}, z_{yxy}^{\prime\prime\prime}, z_{xyy}^{\prime\prime\prime}, z_{xyy}^{\prime\prime\prime}, z_{yyx}^{\prime\prime\prime}, z_{yyx}^{\prime\prime\prime}, z_{yyx}^{\prime\prime\prime}$. Частные производные высших порядков, в которые входит дифференцирование по различным аргументам, называют смешанными.

Справедлива теорема: если смешанные частные производные существуют в точке и некоторой её окрестности и непрерывны в ней, то эти смешанные производные не зависят от порядка дифференцирования, а зависят только от общего числа дифференцирований по каждому аргументу. Поэтому, если условия теоремы выполнены, то $z_{xy}^{"}=z_{yx}^{"},\ z_{xxy}^{"'}=z_{yxx}^{"'},\ z_{xyx}^{"'}=z_{yxx}^{"'},\ z_{xyy}^{"}=z_{xyy}^{"'}$. В этом случае для смешанных производных третьего порядка вводят обозначения $\frac{\partial^3 z}{\partial x^2 \partial y}$ или $\frac{\partial^3 z}{\partial y \partial x^2},\ \frac{\partial^3 z}{\partial y^2 \partial x},\ или\ \frac{\partial^3 z}{\partial x \partial y^2}$. Аналогично можно рассмотреть частные производные четвертого порядка, например, $\frac{\partial^4 z}{\partial^2 x \partial^2 y},\ \frac{\partial^4 z}{\partial x^4},\ \frac{\partial^4 z}{\partial^3 x \partial y}$ и т. д. Таким же образом можно получить частные производные высших порядков функций любого числа аргументов.

4.3.6. Найдите частные производные второго порядка от следующих функций: а) $z=e^{xy}$; б) $z=x\sin y$.

Решение. a)
$$\frac{\partial z}{\partial x} = ye^{xy}$$
, $\frac{\partial z}{\partial y} = xe^{xy}$, $\frac{\partial^2 z}{\partial x^2} = y^2e^{xy}$, $\frac{\partial^2 z}{\partial x^2} = \frac{\partial^2 z}{\partial y^2} = e^{xy} + yxe^{xy} = e^{xy}(1+xy)$, $\frac{\partial^2 z}{\partial y^2} = x^2e^{xy}$; 6) $\frac{\partial z}{\partial x} = \sin y$, $\frac{\partial z}{\partial y} = x \cdot \cos y$, $\frac{\partial^2 z}{\partial x^2} = 0$, $\frac{\partial^2 z}{\partial x \partial y} = \frac{\partial^2 z}{\partial y \partial x} = \cos y$, $\frac{\partial^2 z}{\partial y^2} = -x \sin y$.

4.3.7. Найдите частные производные третьего порядка от функции $z=x^5+4x^4y-2x^3y^2+3x^2y^3+y^4$.

Решение.
$$\frac{\partial z}{\partial x} = 5x^4 + 16x^3y - 6x^2y^2 + 6xy^3, \quad \frac{\partial z}{\partial y} = 4x^4 - 4x^3y + 9x^2y^2 + 4y^3, \quad \frac{\partial^2 z}{\partial x^2} = 20x^3 + 48x^2y - 12xy^2 + 6y^3,$$

$$\frac{\partial^2 z}{\partial y \partial x} = \frac{\partial^2 z}{\partial x \partial y} = 16x^3 - 12x^2y + 18xy^2,$$

$$\frac{\partial^2 z}{\partial y^2} = -4x^3 + 18x^2y + 12y^2, \quad \frac{\partial^3 z}{\partial x^3} = 60x^2 + 96xy - 12y^2,$$

$$\frac{\partial^3 z}{\partial y \partial x^2} = \frac{\partial^3 z}{\partial x \partial y \partial x} = \frac{\partial^3 z}{\partial x^2 \partial y} = 48x^2 - 24xy + 18y^2,$$

$$\frac{\partial^3 z}{\partial x \partial y^2} = \frac{\partial^3 z}{\partial y \partial x \partial y} = \frac{\partial^3 z}{\partial y^2 \partial x} = -12x^2 + 36xy,$$

$$\frac{\partial^3 z}{\partial y^3} = 18x^2 + 24y.$$

Докажите, что функция $z = \operatorname{arctg}(y/x)$ удовлетворяет уравнению Лапласа $\frac{\partial^2 z}{\partial x^2} + \frac{\partial^2 z}{\partial y^2} = 0.$

уравнению Лапласа
$$\frac{\partial z}{\partial x^2} + \frac{1}{\partial y^2} = 0.$$

$$Peшение. \quad \frac{\partial z}{\partial x} = \frac{1}{1 + (y^2/x^2)} \cdot \left(-\frac{y}{x^2}\right) = -\frac{y}{x^2 + y^2},$$

$$\frac{\partial^2 z}{\partial x^2} = \frac{2xy}{(x^2 + y^2)^2}, \quad \frac{\partial z}{\partial y} = \frac{1}{1 + (y/x)^2} \cdot \frac{1}{x} = \frac{x}{x^2 + y^2},$$

$$\frac{\partial^2 z}{\partial y^2} = -\frac{2xy}{(x^2 + y^2)^2}. \text{ Видим, что } \frac{\partial^2 z}{\partial x^2} + \frac{\partial^2 z}{\partial y^2} = 0, \text{ что и требовалось}$$
локазать.

Задачи для самостоятельного решения

- 4.3.9. Найдите частные производные первого порядка от следующих функций:
 - a) $z(x,y) = x^4y^3 + 2y \ln x$;
 - 6) $z(x, y) = (\sin x)^{\cos y} + (\cos y)^{\sin x}$;
 - B) $u(x, y, z) = \arctan \frac{xy}{x}$; r) $u(x, y, z) = z^{x/y}$.

 - **4.3.10.** Найдите производную матрицу следующих функций: а) $u(x,y) = \begin{vmatrix} \sin(x^2 + y^2) \\ \cos(x^2 + y^2) \end{vmatrix}$; б) $u(x,y) = \begin{vmatrix} e^x \operatorname{tg} y \\ e^y \operatorname{tg} x \end{vmatrix}$.
- 4.3.11. Найдите частные производные первого порядка от функции $u(x,y,z) = z\sqrt{x^2 + y^2 + z^2}$ и вычислите их значение в точке $M_0(2,-1,-2)$.

Ответы:
$$\frac{\partial u}{\partial x}(M_0) = -\frac{4}{3}$$
, $\frac{\partial u}{\partial y}(M_0) = \frac{2}{3}$, $\frac{\partial u}{\partial z}(M_0) = \frac{13}{3}$.

- 4.3.12. Найдите частные производные второго порядка от следующих функций:
 - a) $z(x,y) = x^2y^3 + x^3y^2$; 6) $z(x,y) = e^{2x-4y}$;
 - B) $z(x,y) = \sin(x^2 + y^2)$; Γ) $z(x,y) = \arcsin(xy)$.
- 4.3.13. Найдите частные производные второго порядка и вычислите их значения в указанной точке M_0 от следующих функций:
 - a) $u(x, y, z) = e^{x^2 + 2y + 3z}$, $M_0(0, 0, 0)$;
 - 6) $u(x,y,z) = \frac{z}{\sqrt{x^2 + y^2}}, M_0(3, -4, 25).$

Ответы: а) $u''_{xx}(M_0) = 2$, $u''_{yx}(M_0) = 0$, $u''_{zx}(M_0) = 0$, $u''_{yy}(M_0) = 4$,

$$u''_{yz}(M_0) = 6$$
, $u''_{zz}(M_0) = 9$; 6) $u''_{xx}(M_0) = \frac{2}{125}$, $u''_{xy}(M_0) = -\frac{30}{125}$, $u''_{xy}(M_0) = -\frac{3}{125}$, $u''_{yy}(M_0) = \frac{23}{125}$, $u''_{yz}(M_0) = \frac{4}{125}$, $u''_{zz}(M_0) = 0$.

- **4.3.14.** Найдите частные производные третьего порядка и вычислите их значения в указанной точке M_0 от следующих функций:
 - a) $u(x, y, z) = \sin(2x + 3y + 4z), M_0(0, 0, 0);$
 - 6) $u(x,y) = x^4 + 2x^3y 3x^2y^2 + 2xy^3 + y^4$, $M_0(1,2)$.

Ответы: a) $u'''_{xxx}(M_0) = -8$, $u'''_{yyy}(M_0) = -27$, $u'''_{zzz}(M_0) = -64$, $u'''_{xxy}(M_0) = -12$, $u'''_{yyx}(M_0) = -18$, $u'''_{xxz}(M_0) = -16$, $u'''_{yyz}(M_0) = -36$, $u'''_{zzx}(M_0) = -32$, $u'''_{zzy}(M_0) = -48$, $u'''_{xyz}(M_0) = -24$; б) $u'''_{xxx}(M_0) = 48$, $u'''_{yyy}(M_0) = 60$, $u'''_{yxx}(M_0) = -12$, $u'''_{xyy}(M_0) = 12$.

4.3.15. Докажите, что функция $f(x,y,z)=\frac{1}{\sqrt{x^2+y^2+z^2}}$ удовлетворяет уравнению $\frac{\partial^2 f}{\partial x^2}+\frac{\partial^2 f}{\partial y^2}+\frac{\partial^2 f}{\partial z^2}=0.$

4.3.16. Найдите $\frac{dz}{dx}$ и $\frac{d^2z}{dx^2}$, если:

a)
$$z = f(u, v), u = \frac{1}{x^2}, v = \ln x;$$

- 6) $z = f(u, v), u = e^{2x}, v = \sin x;$
- B) $z = f(x, u, v), u = x^2, v = x^3;$
- $z = \sin^2 x f(u, v), u = 2x, v = 5x.$

Ombemu: a)
$$\frac{dz}{dx} = \frac{\partial f}{\partial u} \cdot \left(-\frac{2}{x^3}\right) + \frac{\partial f}{\partial v} \cdot \frac{1}{x},$$

$$\frac{d^2z}{dx^2} = \frac{\partial f}{\partial u} \cdot \frac{6}{x^4} - \frac{\partial f}{\partial v} \cdot \frac{1}{x^2} + \frac{\partial^2 f}{\partial u^2} \cdot \frac{4}{x^6} + \frac{\partial^2 f}{\partial v^2} \cdot \frac{1}{x^2} - \frac{\partial^2 f}{\partial u \partial v} \cdot \frac{4}{x^4};$$

$$6) \frac{dz}{dx} = 2\frac{\partial f}{\partial u} \cdot e^{2x} + \cos x \frac{\partial f}{\partial v},$$

$$\frac{d^2z}{dx^2} = 4e^{2x}\frac{\partial f}{\partial u} - \sin x \frac{\partial f}{\partial v} + 4e^{4x}\frac{\partial^2 f}{\partial u^2} + (\cos^2 x)\frac{\partial^2 f}{\partial v^2} + 4e^{2x}\cos x \frac{\partial^2 f}{\partial u \partial v};$$

$$\mathbf{B}) \frac{dz}{dx} = \frac{\partial f}{\partial x} + \frac{\partial f}{\partial u} \cdot 2x + \frac{\partial f}{\partial v} \cdot 3x^2, \frac{d^2z}{dx^2} = \frac{\partial f^2}{\partial x^2} + 2\frac{\partial f}{\partial u} + 6x\frac{\partial f}{\partial v} + 4x^2\frac{\partial^2 f}{\partial u^2} + 9x^4\frac{\partial^2 f}{\partial v^2} + 12x^3\frac{\partial^2 f}{\partial u \partial v} + 2x\frac{\partial^2 f}{\partial u \partial x} + 3x^2\frac{\partial^2 f}{\partial v \partial x};$$

$$\mathbf{F}) \frac{dz}{dx} = \sin 2x f(u, v) + 2\sin^2 x\frac{\partial f}{\partial u} + 5\sin^2 x\frac{\partial f}{\partial v},$$

$$\frac{d^2z}{dx^2} = 2\cos 2x f(u, v) + 4\sin 2x\frac{\partial f}{\partial u} + 10\sin 2x\frac{\partial f}{\partial v} + 4\sin^2 x\frac{\partial^2 f}{\partial u^2} + 2\sin^2 x\frac{\partial^2 f}{\partial u^2} + 2\sin^2 x\frac{\partial^2 f}{\partial v}.$$

4.3.17. Найдите $\frac{\partial z}{\partial x}$, $\frac{\partial z}{\partial y}$, $\frac{\partial^2 z}{\partial x^2}$, $\frac{\partial^2 z}{\partial x \partial y}$, $\frac{\partial^2 z}{\partial y^2}$, если: a) z = f(u,v), u = xy; v = x/y; б) z = f(u,v), u = 2x + 3y, v = 4x - 2y.

4.4. Производная по направлению (задача 6)

Рекомендуется изучить п. 2.4.

Пусть дана функция f(M)=f(x,y,z), имеющая в точке $M_0(x_0,y_0,z_0)$ конечные частные производные $\frac{\partial f}{\partial x},\frac{\partial f}{\partial y},\frac{\partial f}{\partial z}$.

Производную по направлению вектора **a**, как показано в п. 2.4, можно найти по формуле

$$\frac{\partial f}{\partial a}(M_0) = \frac{\partial f}{\partial x}(M_0)\cos\alpha + \frac{\partial f}{\partial y}(M_0)\cos\beta + \frac{\partial f}{\partial z}(M_0)\cos\gamma,$$

где $\cos \alpha, \cos \beta, \cos \gamma$ — направляющие косинусы вектора **a**. Вектор $\left\{ \frac{\partial f}{\partial x}(M_0), \frac{\partial f}{\partial y}(M_0), \frac{\partial f}{\partial z}(M_0) \right\}$, совпадающий с производной матрицей функции f(M) в точке M_0 , называют градиентом функции f(M) в точке M_0 и обозначают grad $f(M_0)$. Производную в направлении вектора **a** можно найти по формуле

$$\frac{\partial f}{\partial a} = (\operatorname{grad} f(M_0), \mathbf{a}_0),$$

где ${\bf a}_0$ — орт вектора ${\bf a}$, т.е. вектор, направленный так же, как вектор ${\bf a}$, но по длине равный единице. Напомним, что если ${\bf a}=\{x,y,z\}$, то

$$\mathbf{a}_0 = \left\{ \frac{x}{\sqrt{x^2 + y^2 + z^2}}, \frac{y}{\sqrt{x^2 + y^2 + z^2}}, \frac{z}{\sqrt{x^2 + y^2 + z^2}} \right\}.$$

4.4.1. Найдите градиент и производную по направлению $\mathbf{a}=\{3,0,-4\}$ в точке $M_0(1,2,-3)$ функции $f(x,y,z)=\arctan\frac{yz+1}{x}.$

Peшeнue. Найдем сначала grad $f(M_0)$:

$$\frac{\partial f}{\partial x} = \frac{1}{1 + \frac{(yz+1)^2}{x^2}} \cdot \frac{-(yz+1)}{x^2} = -\frac{yz+1}{x^2 + (yz+1)^2},$$

$$\frac{\partial f}{\partial x}(M_0) = \frac{5}{26},$$

$$\frac{\partial f}{\partial y} = \frac{1}{1 + \frac{(yz+1)^2}{x^2}} \cdot \frac{z}{x} = \frac{xz}{x^2 + (yz+1)^2}, \quad \frac{\partial f}{\partial y}(M_0) = -\frac{3}{26},$$

$$\frac{\partial f}{\partial z} = \frac{1}{1 + \frac{(yz+1)^2}{x^2}} \cdot \frac{y}{x} = \frac{yx}{x^2 + (yz+1)^2}, \quad \frac{\partial f}{\partial z}(M_0) = \frac{2}{26}.$$

Таким образом, grad $f(M_0) = \left\{ \frac{5}{26}, -\frac{3}{26}, \frac{2}{26} \right\}$.

Находим орт вектора а:

$$\mathbf{a}_0 = \left\{ \frac{3}{\sqrt{3^2 + 0 + 4^2}}, 0, \frac{-4}{\sqrt{3^2 + 0 + 4^2}} \right\} = \left\{ \frac{3}{5}, 0, -\frac{4}{5} \right\}.$$

Тогда

$$\frac{\partial f}{\partial \alpha}(M_0) = \frac{3}{5} \cdot \left(\frac{5}{26}\right) + 0 \cdot \left(-\frac{3}{26}\right) + \left(-\frac{4}{5}\right) \cdot \frac{2}{26} = \frac{7}{130}.$$

4.4.2. Найдите производную от функции $f(x,y,z)=x^3y-xy^3-3z^2$ в точке $M_0(1,1,-1)$ по направлению, идущему от точки M_0 в точку A(3,-1,-2).

Peшeнue. Находим grad f(x, y, z) в точке M_0 :

$$\frac{\partial f}{\partial x} = 3x^2y - y^3, \frac{\partial f}{\partial x}(M_0) = 2, \frac{\partial f}{\partial y} = x^3 - 3xy^2, \frac{\partial f}{\partial y}(M_0) = -2,$$

$$\frac{\partial f}{\partial z} = -6z, \frac{\partial f}{\partial z}(M_0) = 6.$$

Итак, grad $f(M_0) = \{2, -2, 6\}.$

Находим координаты вектора $\mathbf{a} = \mathbf{M_0} \mathbf{A} = \{2, -2, -1\}$. Так как $|\mathbf{a}| = \sqrt{4+4+1} = 3$, то орт вектора \mathbf{a} имеет координаты $\left\{\frac{2}{3}, -\frac{2}{3}, -\frac{1}{3}\right\}$. Поэтому

$$\frac{\partial f}{\partial a} = (\operatorname{grad} f(M_0), \mathbf{a}_0) = 2 \cdot \frac{2}{3} + 2 \cdot \frac{2}{3} - 6 \cdot \frac{1}{3} = \frac{2}{3}.$$

4.4.3. Определите, по какому направлению в точке $M_0(-2,-2,2)$ функция $f(x,y,z)=x^2y^2+x^2z^2+y^2z^2$ изменяется наиболее быстро и какова максимальная скорость этого изменения.

Решение. Наиболее быстро функция изменяется в направлении её градиента, а максимальная скорость изменения равна $|\operatorname{grad} f(x,y,z)|$. Так как $\operatorname{grad} f(x,y,z) = \frac{\partial f}{\partial x}\mathbf{i} + \frac{\partial f}{\partial y}\mathbf{j} + \frac{\partial f}{\partial x}\mathbf{k} = (2xy^2 + 2xz^2)\mathbf{i} + (2x^2y + 2yz^2)\mathbf{j} + (2x^2z + 2y^2z)\mathbf{k}$, то $\operatorname{grad} f(M_0) = -32\mathbf{i} - 32\mathbf{j} + 32\mathbf{k}$. Наиболее быстро функция f(x,y,z) изменяется в направлении вектора $\{1,1,-1\}$, при этом

$$\max \left| \frac{\partial f}{\partial a} \right| = |\operatorname{grad} f(M_0)| = 32\sqrt{1+1+1} = 32\sqrt{3}.$$

Задачи для самостоятельного решения

4.4.4. Найдите градиент в указанной точке M_0 для следующих функций:

a)
$$f(x, y, z) = \sqrt{x^2 + y^2 + z^2}$$
, $M_0(1, -2, -2)$;

6)
$$f(x,y,z) = \frac{yz^2}{x^2}$$
, $M_0\left(\sqrt{2}, \frac{1}{\sqrt{2}}, \frac{1}{\sqrt{3}}\right)$.

Ответы: a)
$$\left\{\frac{1}{3}, -\frac{2}{3}, -\frac{2}{3}\right\}$$
; б) $\left\{-\frac{1}{6}, \frac{1}{6}, \frac{1}{\sqrt{6}}\right\}$.

4.4.5. Для данной функции в указанной точке найдите направление l, в котором она изменяется наиболее быстро, укажите максимальную скорость этого изменения:

a)
$$f(x, y, z) = x^2 + 2y^2 + 3z^2 - xy - 4x + 2y - 4z$$
, $M_0(0, 0, 1)$;

6)
$$f(x,y,z) = x^2y + y^2z + z^2x$$
, $M_0(2,1,2)$.

Ответы: a) $\{-4,2,2\}$, $\sqrt{24}$; б) $\{8,8,9\}$, $\sqrt{209}$.

4.4.6. Найдите производные по указанному направлению в данной точке от следующих функций:

a)
$$f(x,y,z) = xy + yz + zx$$
, $\mathbf{a} = \{3,4,12\}$, $M_0(1,2,-1)$;

6)
$$f(x, y, z) = x^2 - 3yz + 5$$
, $\mathbf{a} = \{1, 1, 1\}$, $M_0(2, 1, 3)$.

Ответы: а) 3; б) $-\frac{8}{\sqrt{3}}$.

4.4.7. Найдите производную функции $z=x^2-xy-2y^2$ в точке P(1,2) в направлении, составляющем с осью OX угол 60° .

Omsem:
$$-\frac{9\sqrt{3}}{2}$$
.

4.4.8. Найдите производную функции $z=\ln\sqrt{x^2+y^2}$ в точке M(1,1) в направлении биссектрисы первого координатного угла.

Omeem:
$$\frac{\sqrt{2}}{2}$$
.

4.4.9. Найдите косинус угла между градиентами функции $z=\ln \frac{y}{x}$ в точках $A\left(\frac{1}{2},\frac{1}{4}\right)$ и B(1,1).

Omeem:
$$\frac{3}{\sqrt{10}}$$
.

4.5. Производные параметрически заданных функций (задача 7)

Рекомендуется изучить п. 1.6.

Если функция y=f(x) задана параметрически в виде $\begin{cases} x=x(t), & t\in T, \text{ и функции } x(t) \text{ и } y(t) \text{ имеют производные} \\ \text{достаточно высокого порядка, то производные} \end{cases}$

 $y_x', y_{xx}'', \dots, y_{(x)}^{(n)}$ можно найти по формулам

$$\begin{cases} y'_x = \frac{y'_t}{x'_t}, & y''_{xx} = \frac{(y'_x)'_t}{x'_t}, \\ x = x(t), & x = x(t), \end{cases} \begin{cases} y''_{xxx} = \frac{(y''_{xx})'_t}{x'_t}, & y'''_{xxx} = \frac{(y''_{xx})'_t}{x'_t}, \\ x = x(t), & x = x(t) \end{cases}$$

4.5.1. Найдите y_x' и y_{xx}'' , если функция y=f(x) задана параметрически $\left\{ \begin{array}{l} x=\ln(1+t^2),\\ y=t-\mathrm{arctg}\,t. \end{array} \right.$ Вычислите значение y_{xx}'' при t=1.

 $Peшение. \ \text{Найдем сначала} \ x_t' \ \text{и} \ y_t': x_t' = \frac{2t}{1+t^2},$ $y_t' = 1 - \frac{1}{1+t^2} = \frac{t^2}{1+t^2}, \text{ следовательно}, \frac{y_t'}{x_t'} = \frac{t^2/(1+t^2)}{2t/(1+t^2)} = \frac{t}{2}, \text{ поэтому}$ $\begin{cases} y_x' = \frac{t}{2}, & \text{Так как } (y_x')_t' = \frac{1}{2}, & \frac{(y_x')_t'}{x'(t)} = \frac{t^2+1}{4t}, \text{ то} \\ x = t - \text{arctg } t. & \text{При } t = 1 \text{ вторая производная} \ y_{xx}'' = \frac{1+1}{4} = \frac{1}{2}. \end{cases}$

Задачи для самостоятельного решения

4.5.2. Найдите y_x' от следующих функций, заданных параметрически: a) $\begin{cases} y(t) = \arccos 2t, \\ x(t) = \arcsin(t^2-1); \end{cases}$ б) $\begin{cases} y(t) = a\sin t + b\cos t, \\ x(t) = 4 \operatorname{tg}^2 \frac{t}{2}. \end{cases}$

4.5.3. Найдите y''_{xx} следующих функций и вычислите значение y''_{xx} в указанной точке $t=t_0$:

a)
$$\begin{cases} y(t) = \frac{t^3}{3} - t, \\ x(t) = t^2 + 2, \end{cases} \quad t_0 = 1; \quad \text{fo}) \begin{cases} y(t) = \sqrt{1 - t^2}, \\ x(t) = \arcsin t, \end{cases} \quad t_0 = 0.$$

Ответы: a) $\frac{1}{2}$; б) -1.

4.6. Дифференцирование функций, заданных неявно (задача 8)

Требуется изучить п. 4.7.

Пусть уравнение $\Phi(x,y)=0$ определяет неявно на [a,b] функцию y=y(x), т.е. на [a,b] справедливо тождество $\Phi[x,y(x)]\equiv 0$ относительно x. Если функция $\Phi(x,y)$ имеет непрерывные частные

производные по x и по y и $\frac{\partial \Phi}{\partial y} \neq 0$, то

$$y'(x) = -\frac{\partial \Phi}{\partial x} = -\frac{\Phi'_x}{\Phi'_y}.$$
 (a)

Если уравнение $\Phi(x,y,z) = 0$ определяет неявно в области Dфункцию z = z(x,y), т.е. в области D выполняется тождество $\Phi(x,y,z(x,y))\equiv 0$ относительно $(x,y)\in D,$ и функция $\Phi(x,y,z)$ имеет частные производные $\Phi_x',\,\Phi_y',\,\Phi_z',\,$ причём $\Phi_z'\neq 0,\,$ то справедливы формулы

$$\frac{\partial z}{\partial x} = -\frac{\Phi_x'}{\Phi_z'}, \quad \frac{\partial z}{\partial y} = -\frac{\Phi_y'}{\Phi_z'}.$$
 (6)

4.6.1. Найдите y'_x от следующих функций y(x), заданных неявно уравнениями:

a)
$$\Phi(x,y) = x^3 + x^2y + y^2 = 0$$
; 6) $y^3 = \frac{x-y}{x+y}$.

Решение: a)
$$y'_x = -\frac{\Phi'_x}{\Phi'_y} = -\frac{3x^2 + 2xy}{x^2 + 2y};$$

$$\Phi(x,y) = y^3(x+y) - x + y = y^3x + y^4 - x + y = 0$$

б) данное соотношение перепишем в виде
$$\Phi(x,y)=y^3(x+y)-x+y=y^3x+y^4-x+y=0.$$
 Тогда $y_x'=-\frac{y^3-1}{3y^2x+4y^3+1}.$

4.6.2. Найдите y_x'' от следующих функций, заданных неявно: а) $y = x + \operatorname{arctg} y$; б) $x^2 + 2xy - y^2 = 0$.

 $y_x'=-rac{1}{\dfrac{1}{1+y^2}-1}=-\dfrac{1+y^2}{-y^2}=\dfrac{1}{y^2}+1$. Для отыскания y_{xx}'' диффе

ренцируем по x последнее соотношение, учитывая, что y является функцией от x. Получаем $y''(x) = -\frac{2}{n^3}y'$, но $y' = \frac{y^2+1}{n^2}$, поэтому

$$y''(x) = -\frac{2(1+y^2)}{y^5};$$

б) в рассматриваемом случае $\Phi(x,y)=x^2+2xy-y^2=0$, поэтому $y'(x)=-\frac{2x+2y}{2x-2y}=\frac{x+y}{y-x}$. Находим вторую производную, дифференцируя частное $\frac{x+y}{y-x}$ с учетом, что y есть функция от x.

Получаем
$$y''(x) = \frac{(1+y')(y-x)-(x+y)(y'-1)}{(y-x)^2} =$$

$$=\frac{2y-2xy'}{(y-x)^2}=\frac{2y-2x\cdot\frac{x+y}{y-x}}{(y-x)^2}=\frac{2(y^2-x^2-2xy)}{(y-x)^3}.$$

Можно было бы найти и третью производную, дифференцируя по x последнее частное.

Подчеркнем, что все производные от неявно заданной функции выражаются явно через x и y.

4.6.3. Найдите значение y''(x) в точке x=0, если $x^4-xy+y^4=1$ и y(0)=1.

Решение. В тех задачах, в которых требуется найти только значения производных в указанной точке, а явное их выражение через x и y находить не требуется, можно поступить по-другому, не используя формулу (a). Дифференцируем дважды тождество $x^4 - xy(x) + y^4(x) = 1$ по x. Получаем

$$4x^3 - y(x) - xy'(x) + 4y^3y'(x) = 0,$$

$$12x^{2} - y'(x) - y'(x) - xy''(x) + 12y^{2} [y'(x)]^{2} + 4y^{3}y''(x) = 0.$$

Из первого соотношения при x=0 и y=1 получаем y'(0)=1/4. Полагая $x=0,\ y=1,\ y'(0)=1/4,$ из второго соотношения находим y''(0)=-1/16.

4.6.4. Функция z(x,y) задана неявно уравнением

$$\begin{split} &\Phi(x,y,z)=2x^2+2y^2+z^2-8xz-z+8=0. \text{ Найдите } \frac{\partial z}{\partial x}, \ \frac{\partial z}{\partial y}, \ \frac{\partial^2 z}{\partial x^2}, \\ &\frac{\partial^2 z}{\partial y^2}, \ \frac{\partial^2 z}{\partial x \partial y} \text{ и вычислите их значения в точке } (2,0). \end{split}$$

Решение. Применяя формулы (б), находим

$$\frac{\partial z}{\partial x}=-\frac{\Phi_x'}{\Phi_z'}=-\frac{4x-8z}{2z-8x-1},\ \, \frac{\partial z}{\partial y}=-\frac{\Phi_y'}{\Phi_z'}=-\frac{4y}{2z-6x-1}.$$

При x = 2, y = 0 для определения z получаем уравнение

$$\Phi(2,0,z) = 8 + z^2 - 16z - z + 8 = z^2 - 17z + 16 = 0.$$

Отсюда находим два значения z: $z_1=1,\,z_2=16,$ т.е. данное уравнение в окрестности точки (2,0) определяет две функции z(x,y). Будем вычислять значения частных производных той из них, для которой z=1.

Теперь

$$\frac{\partial z}{\partial x}(2,0) = -\frac{8-8}{2-16-1} = 0, \quad \frac{\partial z}{\partial y}(2,0) = 0.$$

Находим вторые частные производные:

$$\begin{split} &\frac{\partial^2 z}{\partial x^2} = \frac{\partial}{\partial x} \left(\frac{8z - 4x}{2z - 8x - 1} \right) = \\ &= \frac{(8z_x' - 4)(2z - 8x - 1) - (2z_x' - 8)(8z - 4x)}{(2z - 8x - 1)^2} = \\ &= \frac{(16z - 64x - 8 - 16z + 8x)z_x' - (8z - 32x - 4 - 64z + 32x)}{(2z - 8x - 1)^2} = \\ &= \frac{(56x + 8) \cdot \frac{4x - 8z}{2z - 8x - 1} + (56z + 4)}{(2z - 8x - 1)^2}; \\ &= \frac{\partial^2 z}{\partial x^2} (2, 0) = \frac{56 + 4}{(2 - 16 - 1)^2} = \frac{60}{15^2} = \frac{4}{15}; \\ &\frac{\partial^2 z}{\partial y^2} = -\frac{4(2z - 8x - 1) - 4y \cdot 2z_y'}{(2z - 8x - 1)^2}, \quad \frac{\partial^2 z}{\partial y^2} (2, 0) = \frac{60}{15^2} = \frac{4}{15}; \\ &\frac{\partial^2 z}{\partial x \partial y} = \frac{4y(2z_x' - 8)}{(2z - 8x - 1)^2}, \quad \frac{\partial^2 z}{\partial x \partial y} (2, 0) = 0. \end{split}$$

Чтобы найти явное выражение $\frac{\partial^2 z}{\partial y^2}$ и $\frac{\partial^2 z}{\partial x \partial y}$ через x и y, нужно в соотношения для z''_{yy}, z''_{xy} подставить выражения для z'_y и z'_x .

4.6.5. Функция z(x,y) задана неявно уравнением

$$\Phi(x, y, z) = x^4 y^4 + y^5 + x^2 z^5 + 4z - 5 = 0.$$

Найдите значения частных производных $\frac{\partial z}{\partial x}$, $\frac{\partial z}{\partial y}$, $\frac{\partial^2 z}{\partial x^2}$, $\frac{\partial^2 z}{\partial y^2}$, $\frac{\partial^2 z}{\partial x \partial y}$ в точке $M_0(0,1)$.

Решение. В данной задаче явное выражение частных производных через x и y находить не требуется, а нужно найти только их значения в указанной точке. Это можно сделать, не используя формул (б), следующим образом. Заметим, что при $x=0,\,y=1$ из уравнения $\Phi(0,1,z)=1+4z-5=0$ получаем z=1. Дифференцируем тождество

$$x^{4}y^{4} + y^{5} + x^{2} [z(x,y)]^{5} + 4z(x,y) - 5 = 0$$
 (B)

по
$$x$$
: $4x^3y^4 + 2x[z(x,y)]^5 + x^2 \cdot 5[z(x,y)]^4 z'_x + 4z'_x = 0$. (г)

Полагая в (г) x=0, y=1, z(0,1)=1, получаем $z_x'(0,1)=0.$ Дифференцируем теперь тождество (в) по y:

$$4x^{4}y^{3} + 5y^{4} + 5x^{2} [z(x,y)]^{4} z'_{y}(x,y) + 4z'_{y}(x,y) = 0.$$
 (д)

Отсюда при $x=0,\,y=1,\,z=1$ следует, что $5+4z_y'(0,1)=0,$ поэтому $z_y'(0,1)=-5/4.$

Для отыскания $z''_{xx}(0,1)$ дифференцируем по x тождество (г):

$$\begin{split} &12x^2y^4 + 2z^5(x,y) + 10x\left[z(x,y)\right]^4z_x' + 10x\left[z(x,y)\right]^4z_x'(x,y) + \\ &+ 20x^2\left[z(x,y)\right]^3(z_x')^2 + 5x^2\left[z(x,y)\right]^4z_{xx}'' + 4z_{xx}'' = 0. \end{split}$$

Отсюда при $x=0,\ y=1,\ z(0,1)=1,\ z_x'(0,1)=0$ следует, что $2+4z_{xx}''(0,1)=0,$ т. е. $z_{xx}''(0,1)=-1/2.$

Для отыскания $z_{yx}^{\prime\prime}$ дифференцируем тождество (г) по переменной y:

$$\begin{split} &16x^3y^3 + 10x\left[z(x,y)\right]^4z_y'(x,y) + 20x^2\left[z(x,y)\right]^3z_y' \cdot z_x' + \\ &+ 5x^2\left[z(x,y)\right]^4 \cdot z_{xy}'' + 4z_{xy}'' = 0. \end{split}$$

Отсюда при $x=0,\ y=1,\ z_x'(0,1)=0,\ z_y'(0,1)=-5/4$ следует, что $z_{xy}''=0.$

Для отыскания z''_{yy} дифференцируем по переменной y тождество (д): $12x^4y^2 + 20y^3 + 20x^2 \left[z(x,y)\right]^3 \left[z'_y(x,y)\right]^2 +$

$$+5x^{2} [z(x,y)]^{4} z_{yy}^{"}(x,y) + 4z_{yy}^{"} = 0.$$

Полагаем $x=0, \quad y=1, \quad z(0,1)=1, \quad z_y'(0,1)=-5/4.$ Получаем $20+4z_{yy}''(0,1)=0,$ следовательно, $z_{yy}''(0,1)=-5.$

Задачи для самостоятельного решения

- **4.6.6.** Найдите y_x' функций, заданных неявно следующими уравнениями:
 - a) $x^4 + y^4 3x^2y^2 = 1$; 6) $y = 1 + y^x$.

Ответы: a)
$$-\frac{2x^3 - 3xy^2}{2y^3 - 3x^2y}$$
; б) $\frac{y^x \ln y}{1 - xy^{x-1}}$.

- **4.6.7.** Найдите значения y_x' в указанной точке x_0 функций, заданных неявно следующими уравнениями:
 - a) $x^2 2xy + y^2 + x + y 2 = 0$, $x_0 = 1$;
 - 6) $\ln x + e^{-y/x} = 1$, $x_0 = 1$.

Ответы: а) 3 или -1; б) 1.

- **4.6.8.** Найдите y''(x) функций, заданных неявно следующими уравнениями:
 - a) $e^x e^y = y x$; 6) $\ln \sqrt{x^2 + y^2} = \arctan(y/x)$.

Ответы: a)
$$\frac{e^x(e^y+1)^2-e^y(e^x+1)^2}{(e^y+1)^3}$$
; б) $\frac{2(x^2+y^2)}{(x-y)^3}$.

- **4.6.9.** Найдите значение y''(x) в указанной точке функций, заданных неявно следующими уравнениями:
 - а) $x^2 xy + 2y^2 + x y 1 = 0$, при x = 0, y = 1; б) $x^2 xy + 2y^2 + x y 2 = 0$, $x_0 = 1$.

 - Ответы: a) $-\frac{2}{3}$; б) 4; -4.
- **4.6.10.** Найдите $\frac{\partial z}{\partial x}$ и $\frac{\partial z}{\partial y}$, если функция z(x,y) задана неявно
- следующими уравнениями: а) $x^3y^2 + x^2z^3 + yz^2 = 1$; б) $xyz + \operatorname{tg} xyz = 1$.

Ответы: a)
$$-\frac{3x^2y^2+2xz^3}{3z^2x^2+2zy}$$
, $-\frac{2x^3y+z^2}{3z^2x^2+2zy}$; б) $-\frac{z}{x}$, $-\frac{z}{y}$.

- **4.6.11.** Найдите $\frac{\partial^2 z}{\partial x^2}$, $\frac{\partial^2 z}{\partial x \partial y}$, $\frac{\partial^2 z}{\partial y^2}$, если функция z(x,y) задана неявно следующими уравнениями
 - a) $x^2 + y^2 + z^2 = a^2$; 6) $x + y + z = e^z$.

Omeemu: a)
$$-\frac{x^2+z^2}{z^3}$$
, $-\frac{xy}{z^3}$, $-\frac{y^2+z^2}{z^3}$; 6) $-\frac{x+y+z}{(x+y+z-1)^3}$.

- 4.6.12. Вычислите значения вторых частных производных в указанной точке для функций, заданных неявно следующими уравне-

 - a) $z^3 + 3xyz = 4$, $M_0(1, 1, 1)$; 6) $x^2 + 2y^2 + 3z^2 + xy z 9 = 0$, $M_0(1, -2, 1)$.

Ответы: a) $z_{xx}''(M_0) = \frac{1}{4} = z_{yy}'', z_{xy}''(M_0) = -\frac{1}{4}$; б) $z_{xx}''(M_0) = -\frac{2}{5}$, $z_{yy}^{"}(M_0) = -\frac{394}{125}, z_{xy}^{"}(M_0) = -\frac{1}{5}.$

4.7. Геометрический и механический смысл производной (задача 9)

Рекомендуется изучить пп. 2.8 и 2.9.

- 4.7.1. Закон движения точки по прямой имеет вид
- $x(t) = \frac{1}{5}t^5 + \frac{1}{4}t^4 + t^2$ (x дается в сантиметрах, t- в секундах). Найдите скорость и ускорение точки в момент времени $t_0 = 2$.

Решение. Известно, что скорость точки равна $v(t_0) = x'(t_0)$, а ускорение равно $a(t_0) = x''(t_0)$. Так как $x'(t) = t^4 + t^3 + 2t$, $x''(t) = 4t^3 + 3t^2 + 2$, TO

 $v(t_0) = 2^4 + 2^3 + 4 = 28 \text{ cm/c}, \ a(t_0) = 4 \cdot 2^3 + 3 \cdot 2^2 + 2 = 46 \text{ cm/c}^2.$

4.7.2. Тело массой 4 кг движется прямолинейно по закону $x=t^2+t+1$. Определите его кинетическую энергию в момент времени t=5 с (x дается в метрах).

Peшение. Кинетическую энергию W можно найти по формуле $W=\frac{mv^2}{2}$. Так как $v(5)=(2t+1)_{t=5}=11$ м/с, то $W=\frac{4\cdot 11^2}{2}=242$ Дж.

Уравнение касательной и нормали к графику функции y=f(x) в точке $(x_0,f(x_0))$ можно записать соответственно в виде

$$y - y_0 = f'(x_0)(x - x_0);$$
 (a)

$$y - y_0 = -\frac{1}{f'(x_0)}(x - x_0). \tag{6}$$

4.7.3. Составьте уравнение касательной и нормали к графику функции $f(x) = x^3 - 3x + 5$ в точке $x_0 = 2$.

Решение. В нашем случае $y_0=f(x_0)=f(2)=2^3-3\cdot 2+5=7,$ $f'(x)=3x^2-3,\ f'(x_0)=f'(2)=3\cdot 2^2-3=9.$ Записываем, используя формулы (а) и (б), уравнение касательной y-7=9(x-2), или y=9x-11, и нормали $y-7=-\frac{1}{9}(x-2),$ или x+9y-65=0.

4.7.4. Запишите уравнение касательной и нормали кривой, заданной параметрически $\left\{ \begin{array}{ll} x=t^2+3t-8,\\ y=2t^2-2t-5 \end{array} \right.$ в точке, соответствующей значению параметра $t_0=1.$

Решение. Находим значение $x_0, y_0, f'(x_0)$: $x_0 = x(1) = 1 + 3 - 8 = -4, y_0 = y(1) = 2 - 2 - 5 = -5,$

$$\begin{cases} y'_x = \frac{4t-2}{2t+3}, & y'(1) = \frac{4-2}{2+3} = \frac{2}{5}. \text{ Записываем уравнение каса-} \\ x = t^3 + 3t - 8, & \\ \text{тельной } y + 5 = \frac{2}{5}(x+4), \text{ или } 2x - 5y - 17 = 0, \text{ и нормали } y + 5 = \frac{2}{5}(x+4), \\ x = \frac{2}{5}(x+4), & x = \frac{2}{5}(x+4), \\ x = \frac{2}{5}(x+4), & x = \frac{2}{5}(x+4), \\ x = \frac{2}{5}$$

 $=-rac{5}{2}(x+4)$, или 5x+2y+30=0.

4.7.5. Составьте уравнение касательной и нормали к графику функции y(x), заданной неявно уравнением $x^5+y^5-2xy=0$ в точке $M_0(1,1)$.

Решение. По правилу дифференцирования неявно заданной функции получаем $y_x'=-\frac{5x^4-2y}{5y^4-2x},\ y'(1)=-\frac{5-2}{5-2}=-1.$ Поэтому уравнение касательной y-1=1-x, или x+y=2, а нормали x-y=0.

4.7.6. Запишите уравнение касательной прямой и нормальной плоскости пространственной кривой, заданной вектор-функцией скалярного аргумента $\mathbf{r}(t) = (t^2 - 1)\mathbf{i} + (t^3 - 3)\mathbf{j} + (3t - 1)\mathbf{k}$ при $t_0 = 2$.

Peшение. Находим координаты точки, соответствующей значению $t_0=2:M_0(3,5,5)$. Вектор $\mathbf{r}'(t)=2t\mathbf{i}+3t^2\mathbf{j}+3\mathbf{k}$ касается данной кривой, $\mathbf{r}'(2)=4\mathbf{i}+12\mathbf{j}+3\mathbf{k}$. Касательная проходит через точку $M_0(3,5,5)$ парадлельно вектору $\mathbf{l}=\mathbf{r}'(2)$. Запишем её канонические уравнения: $\frac{x-3}{4}=\frac{y-5}{12}=\frac{z-5}{3}$.

Нормальная плоскость к кривой проходит через точку $M_0(3,5,5)$ перпендикулярно вектору $\mathbf{N}=\mathbf{r}'(2)=\{4,12,3\}$. Поэтому её уравнение можно записать в виде 4(x-3)+12(y-5)+3(z-5)=0, или 4x+12y+3z-87=0.

4.7.7. Найдите углы, под которыми пересекаются кривые $y_1 = x^2$ и $y_2 = \pm \sqrt{x}$.

Решение. Данные кривые пересекаются в двух точках $M_1(0,0)$ и $M_2(1,1)$. Поскольку $y_1'=2x$ и $y_1'(0)=0$, то парабола $y_1=x^2$ касается оси OX. Так как $y_2'=\pm\frac{1}{2\sqrt{x}}\to\infty$ при $x\to 0$, то кривая $y_2=\pm\sqrt{x}$ касается оси OY. Следовательно, в точке $M_1(0,0)$ эти кривые пересекаются под прямым углом. Для точки $M_2(1,1)$ получаем $k_1=y_1'(1)=2,\ k_2=y_2'=\frac{1}{2}$. Поэтому $\operatorname{tg}\varphi=\frac{|k_2-k_1|}{1+k_1k_2}=\frac{|2-0.5|}{1+0.5\cdot 2}=\frac{3}{4},\ \varphi=\operatorname{arctg}\frac{3}{4},$

где φ — угол между касательными к данным кривым в точке M_2 .

Пусть поверхность задана уравнением z = f(x,y), причем функция f(x,y) в каждой точке своей области определения имеет непрерывные частные производные. Тогда уравнение касательной плоскости в точке $M_0(x_0,y_0,z_0)$ поверхности записывается так:

$$\frac{\partial f}{\partial x}(M_0)(x-x_0) + \frac{\partial f}{\partial y}(M_0)(y-y_0) - (z-z_0) = 0.$$
 (B)

Прямая, проходящая через точку $M_0(x_0,y_0,z_0)$ ортогонально касательной плоскости, называется нормалью к поверхности.

Её уравнение:

$$\frac{x - x_0}{\frac{\partial z}{\partial x}(M_0)} = \frac{y - y_0}{\frac{\partial z}{\partial y}(M_0)} = \frac{z - z_0}{-1}.$$
 (r)

Если поверхность задана уравнением F(x,y,z)=0, неразрешённым относительно z, т.е. функция z=f(x,y) задана неявно, то касательная плоскость в точке $M_0(x_0,y_0,z_0)$ определяется уравнением

$$\frac{\partial F}{\partial x}(M_0)(x-x_0) + \frac{\partial F}{\partial y}(M_0)(y-y_0) + \frac{\partial F}{\partial z}(M_0)(z-z_0) = 0, \quad (A)$$

а нормаль — уравнением

$$\frac{x - x_0}{\frac{\partial F}{\partial x}(M_0)} = \frac{y - y_0}{\frac{\partial F}{\partial y}(M_0)} = \frac{z - z_0}{\frac{\partial F}{\partial z}(M_0)}.$$
 (e)

Как видим, вектор $\mathbf{N}=\left\{\frac{\partial F}{\partial x},\frac{\partial F}{\partial y},\frac{\partial F}{\partial z}\right\}$, называемый вектором нормали к поверхности, совпадает с вектором grad F. В этом заключается геометрический смысл производной матрицы функции u=F(x,y,z).

4.7.8. Найдите уравнения касательной плоскости и нормали к поверхности $z = x^4 + 2x^2y - xy + x$ в точке $M_0(1,0,2)$.

поверхности $z = x^4 + 2x^2y - xy + x$ в точке $M_0(1,0,2)$. Решение. Искомые уравнения запишем в форме (в) и (г). Нахо-

дим
$$\frac{\partial z}{\partial x} = 4x^3 + 4xy - y + 1$$
, $\frac{\partial z}{\partial x}(M_0) = 4 + 1 = 5$, $\frac{\partial z}{\partial y} = 2x^2 - x$, $\frac{\partial z}{\partial y}(M_0) = 2 - 1 = 1$.

Поэтому уравнение касательной плоскости имеет вид
$$5(x-1)+y-(z-2)=0$$
, или $5x+y-z-3=0$, а нормали $-\frac{x-1}{5}=\frac{y}{1}=\frac{z-2}{-1}$.

4.7.9. Запишите уравнения касательной плоскости и нормали к поверхности, заданной уравнением

$$F(x,y,z) = x^2 + 2y^2 - 3z^2 + xy + yz - 2xz + 16 = 0,$$
в точке $M_0(1,2,3)$.

Peшение. В данной задаче, так как уравнение поверхности задано неявно, используем форму записи (д) и (е). Находим

$$\frac{\partial F}{\partial x} = 2x + y - 2z, \quad \frac{\partial F}{\partial x}(M_0) = 2 + 2 - 6 = -2,$$

$$\frac{\partial F}{\partial y} = 4y + x + z, \quad \frac{\partial F}{\partial y}(M_0) = 8 + 1 + 3 = 12,$$

$$\frac{\partial F}{\partial z} = -6z + y - 2x, \quad \frac{\partial F}{\partial z}(M_0) = -18 + 2 - 2 = -18.$$

Вектор $(-2,12,-18) \parallel (1,-6,9)$. Поэтому в качестве вектора нормали касательной плоскости можно принять вектор $\mathbf{N}(1,-6,9)$. Записываем уравнение касательной плоскости (x-1)-6(y-2)+9(z-3)=0, или x-6y+9z-16=0, и нормали

$$\frac{x-1}{1} = \frac{y-2}{-6} = \frac{z-3}{9}.$$

Задачи для самостоятельного решения

4.7.10. Дан закон движения материальной точки по оси OX: $x(t) = 2t + t^3$. Найдите её скорость и ускорение в момент времени t = 2 (x дается в сантиметрах, t -в секундах).

Omsem: v = 14 cm/c, $a = 12 \text{ cm/c}^2$.

4.7.11. Радиус шара возрастает равномерно со скоростью 5 см/c. С какой скоростью растут площадь поверхности шара и объём шара в тот момент, когда его радиус равен 50 см?

Omeem: $0.2\pi \text{ m}^2/\text{c}$; $0.05\pi \text{ m}^3/\text{c}$.

4.7.12. Точка движется по гиперболе y = 10/x так, что её абсцисса растёт равномерно со скоростью 3 см/с. С какой скоростью изменяется её ордината, когда точка проходит положение (5,2)?

Ответ: -1,2 см/с.

- **4.7.13.** Составьте уравнения касательной и нормали к графику функций: а) $y = 3x^4 5x^2 + 4$ в точке $x_0 = -1$;
 - б) $y = 3x^2 + 4x + 5$ в точке $x_0 = -2$.

Ответы: a) 2x + y = 0, x - 2y + 5 = 0; б) 8x + y + 7 = 0, x - 8y + 74 = 0.

- **4.7.14.** Составьте уравнения касательной и нормали к графику функции, заданной неявно следующими уравнениями:
 - а) $4x^3 3xy^2 + 6x^2 5xy 8y^2 + 9x + 14 = 0$ в точке (-2,3);
 - б) $x^3 + y^3 3xy = 3$ в точке (2,1).

Ответы: а) 9x + 2y + 12 = 0, 2x - 9y + 31 = 0; б) 3x - y - 5 = 0, x + 3y - 5 = 0.

- 4.7.15. Докажите, что уравнение касательной:
- а) к эллипсу $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ в точке (x_1, y_1) можно записать

в виде $\frac{xx_1}{a^2} + \frac{yy_1}{b^2} = 1;$

б) к гиперболе
$$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$$
 в точке $(x_2, y_2) -$ в виде $\frac{xx_2}{a^2} - \frac{yy_2}{b^2} = 1$.

4.7.16. Составьте уравнение касательных к эллипсу $\frac{x^2}{5} + \frac{y^2}{9} = 1$, параллельных прямой 3x + 2y + 7 = 0.

Omeem: $3x + 2y \pm 9 = 0$.

4.7.17. Составьте уравнение касательных к гиперболе

$$\frac{x^2}{20} - \frac{y^2}{5} = 1$$
, перпендикулярных прямой $4x + 3y - 7 = 0$.
Ответ: $3x - 4y \pm 10 = 0$.

4.7.18. Найдите уравнение касательной и нормали кривой, заданной параметрически: а) $\left\{ \begin{array}{l} x=3t-5,\\ y=t^2+4 \end{array} \right.$ в точке, где t=3;

б)
$$\begin{cases} x = 2\cos t + 3\sin t, \\ y = \cos t + 2\sin t \end{cases}$$
 в точке, где $t = \frac{\pi}{2}$.

Ответы: a) 2x - y - 3 = 0, x + 2y - 14 = 0;

- 6) x 2y + 1 = 0, 2x + y 8 = 0.
- **4.7.19.** Запишите уравнение касательной прямой и нормальной плоскости к пространственной кривой, заданной вектор-функцией скалярного аргумента:
 - а) $\mathbf{r}(t) = (t^2 + 3)\mathbf{i} + (2t^2 1)\mathbf{j} + (3t^2 2)\mathbf{k}$ в точке, где $t_0 = 1$;
 - б) $\mathbf{r}(t) = \sin 2t\mathbf{i} + \cos t\mathbf{j} + t\mathbf{k}$ в точке, где $t_0 = \frac{\pi}{2}$.

Omsemu: a) $\frac{x-4}{1} = \frac{y-1}{2} = \frac{z-1}{3}$, x+2y+3z-9=0;

6)
$$\frac{x}{2} = \frac{y}{1} = \frac{z - \frac{\pi}{2}}{-1}$$
, $2x + y - z + \frac{\pi}{2} = 0$.

- **4.7.20.** Запишите уравнения касательной плоскости и нормали к поверхности, заданной уравнением:
 - а) $z = 3x^2 + 2y^2 12$ в точке (2, -2, 8);
 - б) $z = x^2 2y^2 + 4xy + 6x 1$ в точке (1, -2, -10).

Ответы: a) 12x - 8y - z - 32 = 0, $\frac{x-2}{12} = \frac{y+2}{-8} = \frac{z-8}{-1}$;

6)
$$12y - z + 14 = 0$$
, $\frac{x-1}{0} = \frac{y+2}{12} = \frac{z+10}{-1}$.

- **4.7.21.** Запишите уравнения касательной плоскости и нормали к поверхности, заданной уравнением:
 - a) $x^2 + 2y^2 + 3z^2 = 6$ в точке (1, -1, 1);
 - б) $x^2yz + 2x^2z 3xyz + 8 = 0$ в точке (2, 0, -1).

Ответы: a) x - 2y + 3z - 6 = 0, $\frac{x-1}{1} = \frac{y+1}{-2} = \frac{z-1}{3}$;

6)
$$4x - y - 4z - 12 = 0$$
, $\frac{x-2}{4} = \frac{y}{-1} = \frac{z+1}{-4}$.

4.7.22. К гиперболоиду $6x^2 + 15y^2 - 10z^2 = 300$ проведена касательная плоскость, отсекающая на положительных координатных полуосях равные отрезки. Запишите её уравнение.

Omeem: $x + y + z = 2\sqrt{10}$.

4.7.23. К поверхности $x^2 + 2y^2 + 3z^2 = 21$ проведена касательная плоскость, параллельная плоскости x + 4y + 6z = 0 и пересекающая положительные координатные полуоси. Запишите её уравнение.

Omeem: x + 4y + 6z - 21 = 0.

4.8. Дифференциал (задачи 10 и 11)

Рекомендуется изучить пп. 2.10, 2.11 и 2.12.

Как мы уже отмечали, функция $f:X\subset R_n\to Y\subset R_m$ называется дифференцируемой в точке $M_0(x_1^0,x_2^0,\ldots,x_n^0)$, если ее приращение при переходе из точки M_0 в точку $M(x_1,x_2,\ldots,x_n)$ может быть представлено в виде

$$\Delta f = A \cdot \Delta x + \alpha(\Delta x),\tag{a}$$

где A — матрица размера $m \times n$ (производная матрица) линейного оператора. $A: R_n \to R_m, \ \Delta x = (\Delta x_1, \Delta x_2, \dots, \Delta x_n)^T$ — вектор приращений $(\Delta x_i = x_i - x_i^0); \ \alpha(\Delta x)$ — бесконечно малая вектор-функция порядка выше первого относительно $|\Delta x|$, т.е.

 $\lim_{\Delta x_i \to 0} \frac{|\alpha(\Delta x)|}{|\Delta x|} = 0$. Матрицу A называют производной матрицей отображения f, а произведение $A\Delta x$ называют дифференциалом функции f в точке M_0 и обозначают df, при этом полагают $\Delta x = dx = (dx_1, dx_2, \dots, dx_n)^T$. Таким образом, дифференциал — это значение линейного оператора A для вектора приращений Δx .

Как следует из (а), дифференциал функции есть величина бесконечно малая при $\Delta x \to 0$, эквивалентная приращению Δf , если матрица A не нулевая.

В случае $f:X\subset R\to Y\subset R$, т.е. скалярной функции одного скалярного аргумента, имеем

$$df = f'(x_0)dx. (6)$$

В случае $f:X\subset R_n\to Y\subset R$, т.е. скалярной функции $f(x_1,x_2,\ldots,x_n)$ векторного аргумента, имеем

$$df = \begin{bmatrix} \frac{\partial f}{\partial x_1}, \frac{\partial f}{\partial x_2}, \dots, \frac{\partial f}{\partial x_n} \end{bmatrix} \begin{bmatrix} \frac{dx_1}{dx_2} \\ \vdots \\ dx_n \end{bmatrix} = \\ = \frac{\partial f}{\partial x_1} dx_1 + \frac{\partial f}{\partial x_2} dx_2 + \dots + \frac{\partial f}{\partial x_n} dx_n.$$
 (B)

Для скалярной функции y=f(x) одного аргумента дифференциал равен приращению ординаты касательной к графику функции в точке x_0 при переходе от точки x_0 к x, а для функции z=z(x,y) — приращению аппликаты касательной плоскости при переходе из точки (x_0,y_0) в точку (x,y).

Заметим, что дифференциал суммы, произведения и частного можно находить по формулам, подобным соответствующим формулам для производных, т.е. $d(u+v)=du+dv,\ d(u\cdot v)=vdu+udv,\ d\left(\frac{u}{v}\right)=\frac{vdu-udv}{v^2}.$ Последние две формулы имеют место лишь для скалярнозначных функций.

4.8.1. Найдите дифференциал следующих функций:

$$f_1(x) = e^{x^2 \sin 5x}; \quad f_2(x) = \operatorname{tg} x^4.$$

Решение. Данные функции являются скалярными функциями одного скалярного аргумента. Поэтому по формуле (б) находим $df_1 = f_1'(x) dx = e^{x^2 \sin 5x} (2x \sin 5x + 5x^2 \cos 5x) dx;$

$$df_2 = f_2'(x)dx = \frac{1}{\cos^2 x^4} \cdot 4x^3 dx.$$

4.8.2. Найдите дифференциал следующих функций:

$$f_1(x,y) = x \sin y + y \sin x;$$
 $f_2(x,y,z) = xyz + y^2;$
 $f_3(x,y) = x + y^{x/y}.$

Peweнue. Данные функции являются скалярными функциями векторного аргумента, поэтому применяем формулу (в):

$$df_1 = \frac{\partial f_1}{\partial x} dx + \frac{\partial f_1}{\partial y} dy = (\sin y + y \cos x) dx + (x \cos y + \sin x) dy;$$

$$df_2 = \frac{\partial f_2}{\partial x} dx + \frac{\partial f_2}{\partial y} dy + \frac{\partial f_2}{\partial z} dz = yz dx + (xz + 2y) dy + xy dz;$$

$$df_3 = \frac{\partial f_3}{\partial x} dx + \frac{\partial f_3}{\partial y} dy = \left(1 + y^{(x/y)} \ln y \cdot \frac{1}{y}\right) dx +$$

$$+ y^{(x/y)} \cdot \left(-\frac{x}{y^2} \ln y + \frac{x}{y^2}\right) dy.$$

Заметим, что при фиксированном y функция $y^{(x/y)}$ показательная, а при фиксированном x — степенно-показательная: $y^{(x/y)} = e^{(x/y) \cdot \ln y}$.

Найденные дифференциалы функций f_1, f_2, f_3 иногда называют полными. Они находятся при условии, что изменяются все аргументы. Дифференциал, вычисленный, при условии, что изменяется только один аргумент, а остальные — константы, называют частным и обозначают $d_{x_1}f, d_{x_2}f, \ldots, d_{x_n}f$. Например, $d_{x_1}f = \frac{\partial f}{\partial x_1}dx_1$. Величина $d_{x_1}f$ есть дифференциал функции $f(x_1, x_2, \ldots, x_n)$, найденный

при условии, что изменяется только аргумент x_1 , а остальные постоянны. Из решения задачи 19.2 следует, что $d_x f_1 = (\sin y + y \cos x) dx$, $d_u f_1 = (x \cdot \cos y + \sin x) dy.$

Чтобы найти дифференциал векторной функции скалярного или векторного аргумента, нужно найти дифференциалы их координат-

ных функций, так как если
$$f=\left[\begin{array}{c} f_1\\f_2\\ \vdots\\f_n\end{array}\right]$$
, то $df=\left[\begin{array}{c} df_1\\df_2\\ \vdots\\df_n\end{array}\right]$.

4.8.3. Найдите дифференциал следующих функций:

4.8.3. Наидите дифференциал следующ
$$f_1(t) = \begin{bmatrix} \sin t^2 \\ \cos t^2 \end{bmatrix}; \quad f_2(x,y) = \begin{bmatrix} \frac{x}{y^2} \\ \frac{y}{x^2} \end{bmatrix}.$$

Решение. По правилу отыскания дифференциала векторных

$$Peшeнue.$$
 По правилу отыскания дифференциала вен функций находим $df_1(t) = \begin{bmatrix} d(\sin t^2) \\ d(\cos t^2) \\ d(t^2) \end{bmatrix} = \begin{bmatrix} 2t\cos t^2 dt \\ -2t\sin t^2 dt \\ 2t dt \end{bmatrix};$
$$df_2(x,y) = \begin{bmatrix} d\left(\frac{x}{y^2}\right) \\ d\left(\frac{y}{x^2}\right) \end{bmatrix} = \begin{bmatrix} \frac{1}{y^2}dx - \frac{2x}{y^3}dy \\ -\frac{2y}{x^3}dx + \frac{1}{x^2}dy \end{bmatrix}.$$

4.8.4. Дано: функция $f(x) = x^2 + 2$; $x_0 = 1,0000$; $x_1 = 1,0200$. Вычислите дифференциал и приращение функции при переходе из точки x_0 в x_1 . Оцените абсолютную и относительную погрешность, допускаемую при замене приращения функции дифференциалом.

Решение. $df = f'(x_0)dx = f'(x_0)\Delta x = f'(x_0)(x_1 - x_0)$. В нашем примере f'(x) = 2x, $f'(x_0) = f'(1) = 2,0000$; $x_1 - x_0 = 1,0200 - 1,0200$ -1,0000 = 0,0200, поэтому $df = 2 \cdot 0,0200 = 0,0400$; $\Delta f = f(x_1) - f(x_0) = (1,0200)^2 + 2,0000 - (1,0000^2 + 2,0000) = 0,0404.$

Как видим, $|\Delta f - df| = 0.0004$, т.е. абсолютная погрешность при замене приращения функции дифференциалом в данном случае составила 0,0004, а относительная погрешность равна $\left| \frac{\Delta f - df}{\Delta f} \right| =$

$$=\frac{0,0004}{0.0404}\approx 0,0099,$$
 что составляет примерно 1%.

В приближенных вычислениях иногда используют прием замены приращения функции дифференциалом.

4.8.5. Заменяя приращение функции её дифференциалом, вычислите приближенно $(1,0300)^5$. Оцените абсолютную и относительную погрешность, допускаемую при этом.

Решение. Примем $f(x) = x^5$, $x_0 = 1,0000$, $x_1 = 1,0300$, $\Delta x =$ = 1,0300 - 1,0000 = 0,0300. Можем записать

$$f(x_0 + \Delta x) - f(x_0) = \Delta f(x_0),$$

$$f(x_0 + \Delta x) = f(x_0) + \Delta f(x_0) \approx f(x_0) + df(x_0).$$

В нашей задаче

$$f(x_0) = f(1,0000) = 1,0000,$$

 $f(x_0 + \Delta x) = (1,0300)^5,$
 $\Delta f(x_0) \approx df(x_0) = 5x_0^4 \Delta x = 5 \cdot 1,0000^4 \cdot 0,0300 = 0,1500.$

Поэтому $(1,0300)^5 \approx 1,0000 + 0,1500 = 1,1500$. Точное вычисление дает $(1.0300)^5 = 1.1592740743 \approx 1.1593$, т.е. допущена абсолютная погрешность $\Delta = |1,1500-1,1593| \cong 0,0093$, а относительная $\delta =$ $=\frac{0,0093}{1,1593} \approx 0,008$, т.е. менее одного процента.

4.8.6. Даны функция $z(x,y) = 2x^2 - 3xy - 4y^2$ и $M_0(2,00;-3,00)$ и $M_1(2,01;-2,97)$. Вычислите Δz и dz при переходе из точки M_0 в M_1 . Вычислите приближенно, заменяя Δz величиной dz, значение $f(M_1)$. Укажите абсолютную и относительную погрешность, допускаемую при этом.

Решение. Находим $\Delta z = z(M_1) - z(M_0), \ z(M_1) = 2 \cdot (2.01)^2 -3 \cdot 2.01(-2.97) - 4(-2.97)^2 = 8.08 + 17.91 - 35.28 = -9.29$ $z(M_0) = 8.00 + 18.00 - 36.00 = -10.00, \Delta z = -9.29 - (-10.00) = 0.71.$

По формуле (в) находим

$$\begin{split} dz(x_0,y_0,dx,dy) &= \frac{\partial z}{\partial x}(M_0)dx + \frac{\partial z}{\partial y}(M_0)dy, \\ \frac{\partial z}{\partial x} &= 4x - 3y, \quad \frac{\partial z}{\partial x}(M_0) = 8,00 + 9,00 = 17,00, \\ \frac{\partial z}{\partial y} &= -3x - 8y, \quad \frac{\partial z}{\partial x}(M_0) = -6,00 + 24,00 = 18,00, \end{split}$$

 $\Delta x = 2.01 - 2.00 = 0.01 = dx, \ \Delta y = -2.97 - (-3.00) = 0.03 = dy,$ поэтому

$$dz(M_0) = \frac{\partial z}{\partial x}(M_0)dx + \frac{\partial z}{\partial y}(M_0)dy = 17,00 \cdot 0,01 + 18,00 \cdot 0,03 = 0.17 + 0.54 = 0.71, \quad z(M_1) \approx z(M_2) + df = -10.00 + 0.71 = -9.29$$

 $= 0.17 + 0.54 = 0.71, \ z(M_1) \approx z(M_0) + df = -10.00 + 0.71 = -9.29.$

Как видим, с точностью до сотых величины dz и Δz совпали между собой. Они могут отличаться лишь в тысячных долях.

_ Итак, дифференциал это линейная относительно $\Delta x_1, \Delta x_2, \dots, \Delta x_n$ функция. При малых Δx_i дифференциал мало отличается от приращения функции.

Дифференциал обладает свойством инвариантности формы записи, заключающемся в следующем: дифференциал функции y = f(x)записывается в виде dy = f'(x)dx, как в случае, когда x — независимая переменная, так и в случае, когда х является функцией одного или нескольких аргументов; дифференциал функции f(x,y) записывается в форме $df=rac{\partial f}{\partial x}dx+rac{\partial f}{\partial y}dy$ независимо от того, являются ли x и y независимыми переменными или сами являются функциями одного или многих аргументов.

4.8.7. Найдите дифференциал следующих функций:

a)
$$z = f_1(t), t = x^3;$$
 6) $z = f_2(t), t = xy^2 + x^2y;$
B) $z = f_3(u, v), u = x^2, v = x^3;$

 $z = f_4(u, v), \quad u = x^2 + y^2, \quad v = x^2 - y^2,$

где f_1, f_2, f_3, f_4 — любые дифференцируемые функции.

Peшение. Во всех четырёх функциях аргументы t, u, v не являются независимыми. При отыскании дифференциалов будем использовать свойство инвариантности формы его записи:

a)
$$df_1 = f'_1(t)dt = f'_1(t) \cdot 3x^2 dx$$
;

6)
$$df_2 = f_2'(t)dt = f_2'(t)[(y^2 + 2xy)dx + (2xy + x^2)dy];$$

B)
$$df_3 = \frac{\partial f_3}{\partial u}(u, v)du + \frac{\partial f_3}{\partial v}(u, v)dv = \frac{\partial f_3}{\partial u} \cdot 2xdx + \frac{\partial f_3}{\partial v} \cdot 3x^2dx =$$

$$= \left(\frac{\partial f_3}{\partial u} \cdot 2x + \frac{\partial f_3}{\partial v} \cdot 3x^2\right)dx;$$

r)
$$df_4 = \frac{\partial f_4}{\partial u}(u, v)du + \frac{\partial f_4}{\partial v}(u, v)dv = \frac{\partial f_4}{\partial u} \cdot (2xdx + 2ydy) +$$

$$+ \frac{\partial f_4}{\partial v} \cdot (2xdx - 2ydy) = \left(\frac{\partial f_4}{\partial u} + \frac{\partial f_4}{\partial v}\right) \cdot 2xdx + \left(\frac{\partial f_4}{\partial u} - \frac{\partial f_4}{\partial v}\right) \cdot 2ydy.$$

Дифференциал является функцией точки и приращений аргументов. Приращения аргументов будем полагать в заданном процессе постоянными и не зависящими от выбора точки. При таком соглашении дифференциал является функцией от тех же аргументов, что и исходная функция, т.е. если z = f(x, y), то $dz = \varphi(x, y)$. Можно найти дифференциал от дифференциала $d(dz) = d\varphi(x,y)$. Его обозначают $d(dz) = d^2z$ и называют вторым дифференциалом или дифференциалом второго порядка. В этой схеме дифференциал dz называют первым дифференциалом. Аналогично можно ввести понятие дифференциала любого порядка: $d(d^2z) = d^3z$ — третий дифференциал, ..., $d(d^{(n-1)}z) = d^{(n)}z$ — дифференциал порядка n. Для скалярной функции y = f(x) одного скалярного аргумента xлегко находим (учитывая соглашение о независимости dx от x) $d^2f = d(f'(x)dx) = f''(x)(dx)^2, d^3f = f'''(x)(dx)^3, \dots, d^nf =$ $= f^{(n)}(x)(dx)^n.$

Подчеркнём ещё раз, что в этих соотношениях x — независимая переменная. Если же x = x(t), т.е. x является функцией другого аргумента, то $d(dx) \neq 0$ и записанные выражения для дифференциалов несправедливы. В этом случае $d^2f = f''(x)(dx)^2 + f'(x)d^2x$. Видим, что дифференциалы высших порядков, начиная со второго, свойством инвариантности формы записи не обладают.

Для функции z=f(x,y), если x и y- независимые переменные, легко находим

$$\begin{split} dz &= \frac{\partial f}{\partial x} dx + \frac{\partial f}{\partial y} dy, \\ d^2z &= \frac{\partial^2 f}{\partial x^2} (dx)^2 + 2 \frac{\partial f}{\partial x \partial y} dx dy + \frac{\partial^2 f}{\partial y^2} (dy)^2, \\ d^3z &= \frac{\partial^3 f}{\partial x^3} (dx)^3 + 3 \frac{\partial^3 f}{\partial y \partial x^2} (dx)^2 dy + 3 \frac{\partial^3 f}{\partial y^2 \partial x} dx (dy)^2 + \\ &+ \frac{\partial^3 f}{\partial y^3} (dy)^3 \text{ и т.д.} \end{split}$$

4.8.8. Найдите дифференциал указанного порядка от следующих функций:

a)
$$y = x^5$$
, d^5y ; 6) $y = \frac{1}{\sqrt{x}}$, d^4y ; B) $y = xe^{2x}$, $d^{10}y$.
Pewerue. a) $y^{(5)} = (x^5)^{(5)} = 120$, $d^5y = 120(dx)^5$;
6) $y = x^{-1/2}$, $y' = -\frac{1}{2}x^{-3/2}$, $y'' = \frac{3}{4}x^{-5/2}$, $y''' = -\frac{15}{8}x^{-7/2}$, $y^{(4)} = \frac{105}{16}x^{-9/2}$, $d^4y = \frac{105}{16}\frac{1}{x^4\sqrt{x}}(dx)^4$;

в) применяя формулу Лейбница, находим

$$(x \cdot e^{2x})^{(10)} = x(e^{2x})^{(10)} + 10 \cdot (e^{2x})^{(9)} = 2^{10} \cdot xe^{2x} + 10 \cdot 2^9 e^{2x}$$
, поэтому $d^{10}y = 2^9 e^{2x} (2x+10)(dx)^{10}$.

4.8.9. Найдите дифференциал второго порядка от следующих функций: а) $z=y\ln x;$ б) $z=e^{xy}.$

функции. a) $z=y \ln x$; б) $z=e^{-y}$. Решение: a) находим частные производные второго порядка от функции $z=y \ln x$: $\frac{\partial z}{\partial x}=\frac{y}{x}$, $\frac{\partial^2 z}{\partial x^2}=-\frac{y}{x^2}$, $\frac{\partial z}{\partial y}=\ln x$, $\frac{\partial^2 z}{\partial y^2}=0$, $\frac{\partial^2 z}{\partial y \partial x}=\frac{\partial^2 z}{\partial x \partial y}=\frac{1}{x}$, поэтому $d^2z=-\frac{y}{x^2}(dx)^2+\frac{2}{x}dxdy$; 6) поскольку $\frac{\partial^2 z}{\partial x^2}=y^2e^{xy}$, $\frac{\partial^2 z}{\partial x \partial y}=(xy+1)e^{xy}$,

$$\frac{\partial^2 z}{\partial y^2} = x^2 e^{xy}$$
, to $d^2 z = [y^2 (dx)^2 + 2(xy+1) dx dy + x^2 (dy)^2] e^{xy}$.

Во всех предыдущих примерах мы искали дифференциал явно заданных функций. В случае неявно заданных функций или заданных параметрически меняется лишь правило отыскания производных.

4.8.10. Найдите dy и d^2y , если функция y(x) задана неявно уравнением $e^y - x - y = 0$.

Peшение. По правилу отыскания производных от неявно заданных функций (см. п. 2.7) находим

$$y_x' = -\frac{-1}{e^y-1}, \ y'' = -\frac{e^y\cdot y_x'}{(e^y-1)^2} = -\frac{e^y\cdot \frac{1}{e^y-1}}{(e^y-1)^2} = -\frac{e^y}{(e^y-1)^3}.$$
 Поэтому $dy = \frac{dx}{e^y-1}, \quad d^2y = \frac{-e^y}{(e^y-1)^3}(dx)^2.$ Так как $e^y = x+y$, то
$$dy = \frac{dx}{x+y-1}, \quad d^2y = -\frac{(x+y)}{(x+y-1)^3}(dx)^2.$$
 Можно поступить и подругому. Найдем дифференциал от обеих частей тождества $e^y-x-y=0$: $e^ydy-dx-dy=0$, отсюда $dy=\frac{dx}{e^y-1}$. Дифференцируя еще раз, получаем $e^y(dy)^2+e^yd^2y-d^2y=0$, отсюда $d^2y=\frac{-e^y(dy)^2}{e^y-1}=\frac{-e^y(dx)^2}{(e^y-1)^3}.$

4.8.11. Найдите dz и d^2z , если функция z(x,y) задана неявно уравнением $x^3+2y^3+z^3-3z-2y+x+1=0$.

Peшение. Возьмем дифференциал от обеих частей тождества $x^3+2y^3+[z(x,y)]^3-3z(x,y)-2y+x+1=0$:

$$3x^{2}dx + 6y^{2}dy + 3z^{2}dz - 3dz - 2dy + dx = 0$$
 (*)

или $(3x^2+1)dx+(6y^2-2)dy+(3z^2-3)dz=0$. Отсюда $dz=\frac{(3x^2+1)}{3-3z^2}dx+\frac{(6y^2-2)}{3-3z^2}dy$. Чтобы найти d^2z , возьмём дифференциал от обеих частей тождества (*):

$$6x(dx)^{2} + 12y(dy)^{2} + 6z(dz)^{2} + (3z^{2} - 3)d^{2}z = 0.$$
 (**)

Отсюда $d^2z=\frac{6x(dx)^2+12(dy)^2+6z^2(dz)^2}{3-3z^2}$. Если внести сюда ранее найденное значение dz, то получим окончательный ответ. Подчеркнём, что соотношения (*) и (**) — тождества относительно x и y, но уравнения относительно других переменных.

Задачи для самостоятельного решения

4.8.12. Найдите дифференциал функции y(x), если:

a)
$$y = \frac{1}{x^2}$$
; 6) $y = \ln|x + \sqrt{x^2 + a}|$; B) $y = \arcsin\frac{x}{a}, a \neq 0$.
Ответы: a) $dy = -\frac{2dx}{x^3}$; 6) $dy = \frac{dx}{\sqrt{x^2 + a}}$; B) $dy = \frac{|a|}{a} \cdot \frac{dx}{\sqrt{a^2 - x^2}}$.

4.8.13. Найдите дифференциал функции, если:

a)
$$u = \frac{x}{y}$$
; 6) $u = x^y$; B) $u = xy + yz + zx$.

У Ответы: a) $du = \frac{1}{u}dx - \frac{x}{u^2}dy$; б) $du = yx^{y-1}dx + x^y \ln x dy$; B) du = (y+z)dx + (x+z)dy + (y+x)dz.

4.8.14. Найдите дифференциалы следующих функций:

a)
$$f(x) = \begin{bmatrix} e^{x^2} \\ \sin^2 x \\ \cos^2 x \end{bmatrix}$$
; 6) $f(x) = \begin{bmatrix} \sqrt{x^2 + y^2} \\ \frac{x^2}{y^2} \end{bmatrix}$.

- 4.8.15. Вычислите дифференциал и приращение функции при переходе из точки x_0 в точку x_1 . Оцените абсолютную и относительную погрешность замены приращения дифференциалом в следующих случаях:
 - a) $u = 2x^2 + 4x + 1$, $x_0 = 3,0000$, $x_1 = 3,0400$;
 - 6) $y = 5x^3 x^2 + 3$, $x_0 = 1,0000$, $x_1 = 1,0100$.

Ответы: a) $\Delta y = 0.6432$, dy = 0.6400;

- б) $\Delta y = 0.1314, dy = 0.1300.$
- 4.8.16. Заменяя приращение функции дифференциалом, вычислите, округлив до 0,0001:
 - a) $\sqrt{4,0120}$; 6) $\sqrt[3]{0,9843}$.

Ответы: а) 2,0030; б) 0,9948.

- 4.8.17. Найдите приращение функции и её дифференциал при переходе из точки $M_0(x_0, y_0)$ в точку $M_1(x_1, y_1)$, оцените абсолютную и относительную погрешность замены приращения функции дифференциалом в следующих случаях:

 - a) $z = x^3y^2$, $M_0(2,1)$, $M_1(1,9900;1,0200)$; 6) $z = 3x^2 + xy y^2 + 1$, $M_0(1,2)$, $M_1(1,0100;2,0200)$.

Ответы: a) $\Delta z \cong 0.1990, dz = 0.2000;$

- б) $\Delta z = 0.0201$, dz = 0.0200.
- 4.8.18. Заменяя приращение функции дифференциалом, приближенно вычислите:
 - a) $1,002 \cdot (2,003)^2 + (3,004)^3$; 6) $\sqrt{(1,020)^3 + (1,970)^3}$.

Ответы: а) 31,128; б) 2,950.

- **4.8.19.** Применяя свойство инвариантности формы записи первого дифференциала, найдите дифференциалы следующих функций:
 - a) $z = f_1(t), t = \sin x;$
 - 6) $z = f_2(t), t = x \sin y + y \cos x;$
 - B) $z = f_3(u, v), u = \frac{1}{x}, v = \frac{1}{x^2};$
 - Γ) $z = f_4(u, v), u = x \cdot y, v = x/y.$
- **4.8.20.** Найдите дифференциалы указанного порядка от следующих функций: а) $y = x \ln x$, d^3y ;
 - 6) $y = \frac{x^2}{x-1}$, d^4y ; B) $y = x \cos 2x$, $d^{10}y$.
- **4.8.21.** Найдите дифференциалы второго порядка от следующих функций:
 - a) $z(x,y) = \sqrt{x^2 + y^2}$; 6) $u(x,y,z) = \frac{z}{x^2 + y^2}$;
 - B) $z(x,y) = \frac{x}{y}$; r) $u(x,y) = (x^3 + y^3) 3xy(x-y)$.

Ответы: a)
$$d^2z = \frac{y^2(dx)^2 - xydxdy + x^2(dy)^2}{(x^2 + y^2)^{3/2}};$$

6)
$$d^2z = \frac{z[(6x^2 - 2y^2)(dx)^2 + (6y^2 - 2x^2)(dy)^2 + 16xydxdy]}{(x^2 + y^2)^3} - \frac{z[(6x^2 - 2y^2)(dx)^2 + (6y^2 - 2x^2)(dy)^2 + 16xydxdy]}{(x^2 + y^2)^3}$$

$$-\frac{4xdxdz - 4ydydz}{(x^2 + y^2)^2}; \quad \text{B)} \quad d^2z = \frac{2}{y^3}[x(dy)^2 - ydxdy];$$

- $\Gamma d^2z = 6[(x-y)(dx)^2 + 2(y-x)dxdy + (y+x)(dy)^2].$
- **4.8.22.** Найдите дифференциалы второго порядка от следующих функций:
 - a) $z = f(t), t = \sin^2 x$; 6) $u = f(t), t = \frac{y}{x}$;
 - B) z = f(u, v), u = ax, v = bx;

 $+\left(\frac{\partial^2 f}{\partial u^2}-2\frac{\partial^2 f}{\partial u \partial v}+\frac{\partial^2 f}{\partial v^2}\right)(dy)^2.$

 $\Gamma(x) = f(u, v), u = x + y, v = 2x - y.$

Ответы: a) $d^2z = [f''(t)(\sin 2x)^2 + f'(t)(2\cos 2x)](dx)^2$;

6)
$$d^2z = \left[f''(t)\frac{y^2}{x^4} + \frac{2yf'(t)}{x^3}\right](dx)^2 - 2\left[\frac{y}{x^3}f''(t) + \frac{f'(t)}{x^2}\right]dxdy +$$

$$+ f''(t)\frac{(dy)^2}{x^2}; \text{ B) } d^2z = \left(\frac{\partial^2 f}{\partial u^2}a^2 + 2\frac{\partial^2 f}{\partial u\partial v}ab + \frac{\partial^2 f}{\partial v^2}b^2\right)(dx)^2; \text{ r) } d^2z =$$

$$= \left(\frac{\partial^2 f}{\partial u^2} + 4\frac{\partial^2 f}{\partial u\partial v} + 4\frac{\partial^2 f}{\partial v^2}\right)(dx)^2 + 2\left(\frac{\partial^2 f}{\partial u^2} + \frac{\partial^2 f}{\partial u\partial v} - 2\frac{\partial^2 f}{\partial v^2}\right)dxdy +$$

4.8.23. Найдите dy и d^2y , если функция y(x) задана неявно уравнениями: a) $x^2 + 2xy - y^2 = a^2$; б) $y - 2x \cdot \arctan \frac{y}{x} = 0$.

Ответы: a)
$$dy = \frac{x+y}{y-x}dx$$
, $d^2z = \frac{2a^2}{(x-y)^3}(dx)^2$; б) $dy = \frac{y}{x}dx$, $d^2y = 0$.

4.8.24. Найдите dz и d^2z , если функция z(x,y) задана неявно уравнениями: a) xyz = x + y + z; б) $\frac{x}{z} = \ln \frac{z}{y} + 1$.

$$\begin{array}{l} \textit{Omsemы:} \ \ a) \ dz = \frac{(yz-1)dx + (xz-1)dy}{1-xy}, \\ d^2z = \frac{2y(yz-1)(dx)^2 + 4zdxdy + 2x(xz-1)(dy)^2}{(1-xy)^2}; \\ 6) \ dz = \frac{z(ydx+zdy)}{y(x+z)}, \ d^2z = -\frac{z^2(ydx-xdy)^2}{y^2(x+z)^3}. \end{array}$$

4.9. Экстремумы. Наибольшие и наименьшие значения функции (задачи 12 и 13)

В подразделах 2.16.1 и 2.16.2 приведены необходимые и достаточные условия экстремума, которые рекомендуется изучить.

- 4.9.1. Пользуясь первой производной, найдите экстремумы функций: a) $f(x) = x^3 - 3x^2 + 3x + 2$;
 - 6) $f(x) = x^4 8x^3 + 22x^2 24x + 12$;
 - B) $f(x) = x^{2/3} (x^2 1)^{1/3}$

Peшениe: а) так как функция f(x) дифференцируема всюду, то экстремум возможен только в стационарных точках. Находим их, приравнивая нулю производную:

$$f'(x) = 3x^2 - 6x + 3 = 3(x^2 - 2x + 1) = 3(x - 1)^2 = 0.$$

Стационарная точка единственна: $x_0 = 1$. При переходе через точку $x_0 = 1$ производная знака не меняет. По достаточному признаку, связанному с первой производной, в точке $x_0 = 1$ экстремума нет;

б) $f'(x) = 4x^3 - 24x^2 + 44x - 24 = 4(x-1)(x-2)(x-3)$. Видим, что точки $x_1 = 1$, $x_2 = 2$, $x_3 = 3$ являются стационарными.

Применяя метод интервалов, по- $\frac{-}{1}$ $\frac{+}{2}$ $\frac{-}{3}$ — лучаем, что на $(-\infty,1)$ функция убывает, а на (1,2) — возрастает. При переходе через точку $x_1 = 1$ (рис. 4.1)

производная меняет знак по схеме (-,+), следовательно, в точке

 $x_1=1$ имеется минимум. При переходе через точку $x_2=2$ производная меняет знак по схеме (+,-), т.е. в точке $x_2=2$ — максимум. В точке $x_3=3$ — минимум, так как смена знака происходит по схеме (-,+);

в)
$$f'(x)=\frac{2}{3}x^{-1/3}-\frac{1}{3}(x^2-1)^{-2/3}2x=\frac{2}{3}\frac{\left[(x^2-1)^{2/3}-x^{4/3}\right]}{x^{1/3}(x^2-1)^{2/3}}$$
. Находим стационарные точки из условия $f'(x)=0$, следовательно, $(x^2-1)^{2/3}=x^{4/3}$, или $(x^2-1)^2=x^4$, $x^4-2x^2+1=x^4$, отсюда $x_1=-\frac{1}{\sqrt{2}}$, $x_2=\frac{1}{\sqrt{2}}$. Кроме того, в точках $x_3=0$, $x_4=-1$ и $x_5=1$ производная не существует. Таким образом, имеем пять точек, "подозрительных" на экстремум: -1 , $-\frac{1}{\sqrt{2}}$, 0 , $\frac{1}{\sqrt{2}}$, 1 . Поведение знаков производной при переходе через эти точки изображено на рисунке 4.2 .

В точках $x_{4,5}=\pm 1$ нет экстремума, в точках $x_{1,2}=\pm \frac{1}{\sqrt{2}}-$ максимум, а в точке $x_3=0$ — $\frac{+}{\sqrt{2}}$ — $\frac{1}{\sqrt{2}}$ — $\frac{1}{\sqrt$

4.9.2. Пользуясь производными высших порядков, исследуйте на экстремум следующие функции:

a) $f(x) = x^2 e^{-x}$; 6) $f(x) = e^x + e^{-x} + 2\cos x$.

Решение: а) $f'(x) = 2xe^{-x} - x^2e^{-x} = (2x - x^2)e^{-x}$. Из условия $f'(x) = (2x - x^2)e^{-x} = 0$ находим две стационарные точки: $x_1 = 0$, $x_2 = 2$. Находим вторую производную

$$f''(x) = (2-2x)e^{-x} - (2x-x^2)e^{-x} = (2-2x-2x+x^2)e^{-x} = (x^2-4x+2)e^{-x}.$$

Так как f''(0) = 2 > 0, то в точке $x_1 = 0$ — минимум, а так как $f''(2) = (4 - 8 + 2)e^{-2} = -2e^{-2} < 0$, то в точке $x_2 = 2$ — максимум;

б) находим $f'(x) = e^x - e^{-x} - 2\sin x$. Единственной стационарной точкой, что легко доказать, является точка x=0.

Вычисляем старшие производные:

$$f''(x) = e^x + e^{-x} - 2\cos x, \quad f''(0) = 0,$$

$$f'''(x) = e^x - e^{-x} + 2\sin x, \quad f'''(0) = 0,$$

$$f^{(4)}(x) = e^x + e^{-x} + 2\cos x, \quad f^{(4)}(0) = 4 \neq 0, \quad f^{(4)}(0) > 0.$$

Так как первой не обратилась в нуль производная четного порядка, то в точке x=0 имеется экстремум, а поскольку $f^{(4)}(0)>0$, то в точке x=0 — минимум.

4.9.3. Найдите экстремумы функций:

a)
$$z(x,y) = x^3 + 3xy^2 - 15x - 12y$$
; 6) $z(x,y) = x^2 - 2xy^2 + y^4 - y^5$.

Решение: а) функция z(x,y) имеет непрерывные частные производные любого порядка на всей плоскости, поэтому применимы достаточные условия экстремума (см. п. 1.16.2). Стационарные точки находим из условия $\frac{\partial z}{\partial x}=0,\, \frac{\partial z}{\partial u}=0.$ В результате получаем систему

$$\left\{ \begin{array}{lcl} \frac{\partial f}{\partial x} & = & 3x^2 + 3y^2 - 15 = 0, \\ \frac{\partial f}{\partial y} & = & 6xy - 12 = 0, \end{array} \right. \quad \text{или} \quad \left\{ \begin{array}{ll} x^2 + y^2 - 5 & = & 0, \\ xy - 2 & = & 0. \end{array} \right.$$

Решая эту систему, получаем четыре стационарные точки: $M_1(-2,-1),\ M_2(-1,-2),\ M_3(1,2),\ M_4(2,1).$ Находим вторые частные производные: $\frac{\partial^2 z}{\partial x^2} = 6x,\ \frac{\partial^2 z}{\partial x \partial y} = 6y,\ \frac{\partial^2 z}{\partial y^2} = 6x.$

Для
$$M_1(-2,-1)$$
:

$$A = \frac{\partial^2 z}{\partial x^2}(M_1) = -12, B = \frac{\partial^2 z}{\partial x \partial y}(M_1) = -6,$$

$$\frac{\partial^2 z}{\partial x^2}(M_1) = -6,$$

$$C = \frac{\partial^2 z}{\partial u^2}(M_1) = -12, AC - B^2 = 144 - 36 > 0.$$

Так как A < 0, $AC - B^2 > 0$, то в точке M_1 — максимум.

Для
$$M_2(-1,-2)$$
:

$$A = -6, B = -12, C = -6, AC - B^2 = 36 - 144 < 0.$$

В точке M_2 экстремума нет.

Для $M_3(1,2)$:

$$A = 6, B = 12, C = 6, AC - B^2 = 36 - 144 < 0.$$

В точке M_2 экстремума нет.

Для $M_4(2,1)$:

$$A = 12, B = 6, C = 12, AC - B^2 = 144 - 36 > 0.$$

Так как A > 0, $AC - B^2 > 0$, то в точке M_4 имеем минимум;

б) в данном случае
$$\frac{\partial z}{\partial x} = 2x - 2y^2$$
, $\frac{\partial z}{\partial y} = -4xy + 4y^3 - 5y^4$.

Стационарные точки находим, решая систему

$$\begin{cases} x - y^2 &= 0, \\ -4xy + 4y^3 - 5y^4 &= 0. \end{cases}$$

Имеем единственную стационарную точку O(0,0). Для её исследования находим $\frac{\partial^2 z}{\partial x^2} = 2$, $\frac{\partial^2 z}{\partial x \partial y} = -4y$, $\frac{\partial^2 z}{\partial y^2} = -4x + 12y^2 - 20y^3$,

 $A=2,\ B=C=0;\ AC-B^2=0.$ О существовании экстремума из этих соотношений никакого вывода сделать нельзя. При этих условиях $d^2f(0,0)=2(\Delta x)^2,$ а поэтому $d^2f(0,0)=0$ для любого вектора приращений вида $(0,\Delta y).$

Найдём приращение функции z(x,y) при переходе из точки (0,0) в точку $(0+\Delta x,0+\Delta y)$.

$$\begin{split} & \Delta z = f(0 + \Delta x, 0 + \Delta y) - f(0, 0) = \\ & = (\Delta x)^2 - 2\Delta x (\Delta y)^2 + (\Delta y)^4 - (\Delta y)^5 - 0 = \left[\Delta x - (\Delta y)^2\right]^2 - (\Delta y)^5. \end{split}$$

Положим $\Delta x = (\Delta y)^2$, $\Delta y > 0$, получим $\Delta z = -(\Delta y)^5 < 0$. Положим $\Delta y = 0$, $\Delta x \neq 0$, получим $\Delta z = (\Delta x)^2 > 0$. Таким образом, приращение Δz для различных векторов приращений имеет разные знаки, следовательно, в точке (0,0) экстремума нет;

Часто встречаются задачи отыскания экстремума функции $u = f(x_1, x_2, \ldots, x_n)$, когда независимые переменные связаны некоторыми соотношениями (связями)

$$\begin{cases} \Phi_1(x_1, x_2, \dots, x_n) &= 0, \\ \Phi_2(x_1, x_2, \dots, x_n) &= 0, \\ \dots & \dots & \dots \\ \Phi_m(x_1, x_2, \dots, x_n) &= 0, \quad m < n. \end{cases}$$

Такие экстремумы называют условными. Если данные соотношения удаётся разрешить относительно x_1, x_2, \ldots, x_m , то задача на условный экстремум сводится к задаче на безусловный экстремум некоторой функции $v=\Psi(x_{m+1},x_{m+2},\ldots,x_n)$. Если это сделать затруднительно, то применяют метод Лагранжа, заключающийся в следующем. Вводят вспомогательную функцию $F(x_1,x_2,\ldots,x_n)=f(x_1,x_2,\ldots,x_n)+\lambda_1\Phi_1+\lambda_2\Phi_2+\cdots+\lambda_m\Phi_m$. Точки, в которых возможен условный экстремум, находят из системы

$$\frac{\partial F}{\partial x_1} = 0, \ \frac{\partial F}{\partial x_2} = 0, \dots, \ \frac{\partial F}{\partial x_n} = 0, \ \Phi_1 = 0, \ \Phi_2 = 0, \dots, \Phi_m = 0.$$

Исследуя знак d^2F в этих точках, выясняют, действительно ли имеется экстремум.

4.9.4. Следующие функции исследуйте на условный экстремум:

- а) $z(x,y) = x^2 + y^2 xy + x + y$, если x + y = 3;
- б) z(x,y) = 3 2x 4y, если $x^2 + y^2 = 5$.

Peшениe: а) находим y=3-x. Функция z(x,y) превращается в функцию одного переменного $z=f(x)=z(x,3-x)=x^2+(3-x)^2-x(3-x)+x+3-x=x^2+9-6x+x^2-3x+x^2+3=3x^2-9x+12$. Полученную функцию $f(x)=3x^2-9x+12$ исследуем на экстремум.

Находим стационарные точки: $f'(x)=6x-9, \quad x_0=\frac{9}{6}=\frac{3}{2}; \quad f''(x)=6>0,$ следовательно, в точке $x_0=\frac{3}{2}$ функция f(x) имеет минимум. Так как $y_0=3-\frac{3}{2}=\frac{3}{2},$ то точка $\left(\frac{3}{2},\frac{3}{2}\right)$ является точкой условного минимума;

б) составляем функцию $F(x,y,z)=3-2x-4y+\lambda(x^2+y^2-5),$ находим:

$$\frac{\partial F}{\partial x} = -2 + 2\lambda x, \quad \frac{\partial F}{\partial y} = -4 + 2\lambda y, \quad \frac{\partial F}{\partial \lambda} = x^2 + y^2 - 5.$$

Для отыскания точек, "подозрительных" на условный экстремум, получаем систему $\begin{cases} -1 + \lambda x = 0, \\ -2 + \lambda y = 0, \\ x^2 + y^2 = 5, \end{cases}$ решая которую, находим $\lambda_1 = 1$, $x_1 = 1, y_1 = 2; \ \lambda_2 = -1, x_2 = -1, y_2 = -2$. Так как $\frac{\partial^2 F}{\partial x^2} = 2\lambda, \ \frac{\partial^2 F}{\partial y \partial x} = 0, \ \frac{\partial^2 F}{\partial y^2} = 2\lambda, \ \text{то} \ d^2 F = 2\lambda \left[(dx)^2 + (dy)^2 \right].$

Если $\lambda=\lambda_1=1$, то $d^2F>0$ и в точке $M_1(1,2)$ имеется условный минимум, равный 3-2-8=-7. Если же $\lambda=\lambda_2=-1$, то $d^2F<0$ и в точке $M_2(-1,-2)$ функция z(x,y) имеет условный максимум, равный 3+2+8=13.

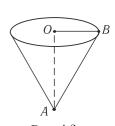
По теореме Вейерштрасса всякая непрерывная на замкнутом множестве D функция достигает своего наибольшего и наименьшего значения. Соответствующие точки могут быть либо внутренними, либо граничными множества D. Для их отыскания можно применять такую схему: найти все точки, "подозрительные" на экстремум внутри множества D и на его границе, вычислить значения во всех найденных точках и из них выбрать наибольшее и наименьшее. Как видим, исследовать функцию на экстремум в этом случае не требуется.

4.9.5. Найдите наибольшее и наименьшее значения функции $y = \sqrt[3]{(x^2-2x)^2}$ на [-1,3].

Решение. Находим критические точки данной функции, приравнивая нулю её производную $y'=\frac{2(2x-2)}{3\sqrt[3]{x^2}-2x}$. В точке $x_1=1$ производная равна нулю, в точках $x_2=2$ и $x_3=0$ производная не существует. Все эти точки внутренние отрезка [-1,3]. Точки $x_4=-1$ и $x_5=3$ являются граничными. Вычисляем значение функции во всех найденных точках: $y(x_1)=y(1)=1, \quad y(x_2)=y(2)=0,$ $y(x_3)=y(0)=0, \quad y(x_4)=y(-1)=\sqrt[3]{9}, \quad y(x_5)=y(3)=\sqrt[3]{9}.$ Видим, что наименьшее значение m=0, оно достигается в точках $x_2=2$ и $x_3=0,$ а наибольшее — $M=\sqrt[3]{9}.$ Оно достигается в граничных точках $x_4=-1$ и $x_5=3.$

4.9.6. Требуется изготовить коническую воронку с образующей, равной 20 см. Какова должна быть высота воронки, чтобы объём её был наибольшим?

Решение. Будем считать нижнее основание воронки пренебрежимо малым по сравнению с верхним. Тогда форма воронки — конус. Обозначим $x=|\mathbf{O}\mathbf{A}|$ — высоту воронки (рис. 4.3). Тогда $R=|\mathbf{O}\mathbf{B}|=\sqrt{(AB)^2-x^2}$. По условию $|\mathbf{A}\mathbf{B}|=20$ см. Поэтому $R=\sqrt{400-x^2}$ и $0\leq x\leq 20$, отрицательные значения x не имеют физического смысла. Находим наибольшее значение функции



$$V=\frac{1}{3}\pi R^2 H=\frac{1}{3}\pi\cdot x(400-x^2) \text{ на } [0,20];$$

$$V'(x)=\frac{1}{3}\pi(400-x^2-2x^2)=\frac{1}{3}\pi(400-3x^2).$$

Из условия
$$V'(x)=0$$
 получаем $x=\pm \frac{20}{\sqrt{3}}=\pm \frac{20\sqrt{3}}{3},$ отрица-

тельное значение не принадлежит [0,20]. Поэтому $x=\frac{20\sqrt{3}}{3}$. При этом значении x объём V будет наибольшим, так как наименьшее значение V=0 достигается при x=0 и x=20. Итак, при высоте $H=\frac{20\sqrt{3}}{3}$ объём воронки будет наибольшим.

4.9.7. Найдите наименьшее и наибольшее значения функции $z(x,y)=x^2-2y^2+4xy-6x-1$ в треугольнике, ограниченном прямыми $x=0,\ y=0,\ x+y=3$ (область D на рис. 4.4).

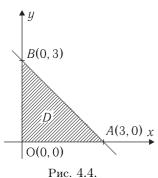
Решение. Находим стационарные точки из системы

$$\left\{ \begin{array}{l} \displaystyle \frac{\partial z}{\partial x} = 2x + 4y - 6 = 0, \\[0.2cm] \displaystyle \frac{\partial z}{\partial y} = -4y + 4x = 0. \end{array} \right.$$

Получаем единственную точку $M_1(1,1)$. Она лежит внутри области D. $z(M_1)=z(1,1)=1-2+4-6-1=-4$. Вычислим также значение функции z(x,y) в точках $A,\ B,\ O:\ z(0,0)=-1,\ z(3,0)=9-18-1=-10,\ z(0,3)=-18-1=-19$. На прямой x+y=3 имеем

$$z(x,y) = z(x,3-x) = x^2 - 2(3-x)^2 + 4x(3-x) - 6x - 1 =$$

$$= x^2 - 18 + 12x - 2x^2 + 12x - 4x^2 - 6x - 1 = -5x^2 + 18x - 19 = 0.$$



Получили функцию от одного аргумента $f_1(x)=-5x^2+18x-19$. Ищем её критические точки на [0,3]: $f_1'(x)==-10x+18$, $x=\frac{9}{5},\frac{9}{5}\in[0,3]$, $f_1\left(\frac{9}{5}\right)==-\frac{81}{5}+\frac{90}{5}-19=-\frac{86}{5}$. При x=0 и x=3 приходим к точкам O(0,0) и A(3,0). На границе OB получаем $z(0,y)==-2y^2-1=0=f_2(y)$. Получили функцию $f_2(y)=-2y^2-1$

. 4.4. —1. Ищем её наибольшее и наименьшее значения на [0,3]: $f_2'(y)=-4y=0$, в получили точку (0,0). При y=0 и y=3 получаем уже

y=0, опять получили точку (0,0). При y=0 и y=3 получаем уже учтенные точки O(0,0) и B(0,3). На границе OA имеем функцию $z(x,0)=f_3(x)=x^2-6x-1$. Ищем её наибольшее и наименьшее значения на [0,3]: $f_3'(x)=2x-6,\ x=3,$ опять получили точку A(3,0). При x=0 получаем точку (0,0).

Итак, мы нашли следующие значения функции: -4, -1, -19, $-\frac{86}{5}$. Сравнивая их, видим, что наибольшее значение функции в данной области равно -1, оно достигается в точке O(0,0), а наименьшее равно -19, оно достигается в точке B(0,3).

Для исследования поведения функции на границе области можно применять приемы отыскания условного экстремума.

4.9.8. Найдите наибольшее и наименьшее значения функции z=2xy в области $x^2+y^2\leq 1.$

Peшение. $\frac{\partial z}{\partial x}=2y, \frac{\partial z}{\partial y}=2x.$ Находим из условия равенства нулю частных производных единственную стационарную точку $M_0(0,0),$ расположенную внутри круга $x^2+y^2\leq 1, z(0,0)=0.$ Для отыскания наибольшего и наименьшего значений на окружности $x^2+y^2=1$ поступим так же, как в задачах на условный экстремум. Составим функцию Лагранжа $F(x,y,\lambda)=2xy+\lambda(x^2+y^2-1)$ и найдем точки, в которых возможны наибольшее и наименьшее значения. Из системы

$$\left\{ \begin{array}{ll} \displaystyle \frac{\partial F}{\partial x} & = & 2y + 2\lambda x = 0, \\[0.2cm] \displaystyle \frac{\partial F}{\partial y} & = & 2x + 2\lambda y = 0, \\[0.2cm] \displaystyle \frac{\partial F}{\partial \lambda} & = & x^2 + y^2 - 1 = 0. \end{array} \right.$$

Получаем 4 точки:
$$M_1\left(\frac{1}{\sqrt{2}},\frac{1}{\sqrt{2}}\right),\ M_2\left(\frac{1}{\sqrt{2}},-\frac{1}{\sqrt{2}}\right),$$
 $M_3\left(-\frac{1}{\sqrt{2}},\frac{1}{\sqrt{2}}\right),\ M_4\left(-\frac{1}{\sqrt{2}},-\frac{1}{\sqrt{2}}\right).$ При этом $z(M_1)=z(M_4)=1,$ $z(M_2)=z(M_3)=-1.$ Сравнивая значения функции в этих критических точках, видим, что наименьшее значение функции достигается в точках M_2 и M_3 и равно -1 , а наибольшее значение достигается в точках M_1 и M_4 и равно 1 .

4.9.9. При каких размерах открытая прямоугольная ванна данной вместимости V имеет наименьшую поверхность?

Решение. Размеры основания ванны обозначим через x и y, а высоту — через z. Тогда полная поверхность S(x,y,z)=xy+2xz++2yz. По условию задачи требуется найти наименьшее значение функции S(x,y,z) при условии, что $x\cdot y\cdot z=V$ (V задано). По смыслу задачи $x>0,\ y>0,\ z>0$. Составляем функцию Лагранжа $F(x,y,z,\lambda)=xy+2xz+2yz+\lambda(xyz-V)$. Получаем систему

$$\begin{cases} F'_x &= y + 2z + \lambda yz = 0, \\ F'_y &= x + 2z + \lambda xz = 0, \\ F'_\lambda &= 2x + 2y + \lambda xy = 0, \\ xyz &= V, \end{cases}$$

решая которую, находим единственную критическую точку $x=y=2\sqrt[3]{\frac{V}{4}},$ $z=\sqrt[3]{\frac{V}{4}}.$ При этих размерах поверхность ванны будет наименьшей. Доказательство предоставляем читателю.

Задачи для самостоятельного решения

4.9.10. Пользуясь первой производной, найдите точки экстремума следующих функций:

a)
$$f(x) = x - \ln(1 + x^2)$$
; 6) $f(x) = x^2 \sqrt[3]{6x - 7}$;
B) $f(x) = x^{2/3} + x^{5/3}$; $f(x) = (x - 5)^2 \sqrt[3]{(x + 1)^2}$.

Ответы:

а) нет точек экстремума;

 $x_1 = 0$ — точка максимума, $x_2 = 1$ — точка минимума;

в)
$$x_1 = 0$$
 — точка минимума, $x_2 = -\frac{2}{5}$ — точка максимума;

г)
$$x_1 = 5$$
 и $x_2 = -1$ — минимумы, $x_3 = \frac{1}{2}$ — максимум.

4.9.11. Пользуясь производными высших порядков, исследуйте на экстремум следующие функции:

a)
$$f(x) = \frac{x}{\ln x}$$
; 6) $f(x) = \frac{1}{4}x^4 - \frac{5}{3}x^3 + 3x^2$; B) $f(x) = e^x - e^{-x} - 2\sin x$; r) $f(x) = x^3 e^{-x}$.

Ответы: a) $x_0 = e$ — минимум; б) $x_1 = 0$ и $x_2 = 3$ — минимум, $x_3 = 2$ — максимум, в) нет точек экстремума; г) $\bar{x} = 3$ — максимум.

4.9.12. Исследуйте на экстремум следующие функции:

a)
$$f(x,y) = x^4 + y^4 - 2x^2 + 4xy - 2y^2$$
;

6)
$$u(x,y,z) = x^{2/3} + y^{2/3} + z^{2/3}$$
;

6)
$$u(x,y,z) = x^{2/3} + y^{2/3} + z^{2/3};$$

B) $u(x,y,z) = x^2 + y^2 + z^2 - 4x - 6y - 2z;$

$$x(x,y) = x^3y^2(12-x-y), x > 0, y > 0.$$

Ответы: a) $M_1(\sqrt{2}, \sqrt{-2})$ и $M_2(-\sqrt{2}, \sqrt{2})$ — минимумы;

б) (0,0,0) — минимум; в) M(2,3,1) — минимум; г) M(6,4) максимум.

4.9.13. Исследуйте на условный экстремум следующие функции:

а)
$$z = x^2 - y^2$$
, если $2x + y = 1$;

б)
$$z = x^3 + 2xy - y^2 - 13x - 1$$
, если $x + y = 1$;

в)
$$z = 6 - 4x - 3y$$
, если $x^2 + y^2 = 1$;

г)
$$z = x^2 + 12xy + 2y^2$$
, если $4x^2 + y^2 = 25$;

д)
$$u = xy + yz$$
, если $x^2 + y^2 = 2$, $y + z = 2$;

e)
$$z(x,y) = x \cdot y \cdot z$$
, если $x^2 + y^2 + z^2 = 1$, $x + y + z = 0$.

Ответы: а) $M_1\left(\frac{2}{3}, -\frac{1}{3}\right)$ — условный максимум; б) $M_1(-1, 2)$ условный максимум; $M_2(3,-2)$ — условный минимум; в) $M_1\left(\frac{4}{5},\frac{3}{5}\right)$ — условный минимум, $M_2\left(-\frac{4}{5},-\frac{3}{5}\right)$ — условный максимум; г) $M_1(-2,3)$ и $M_2(2,-3)$ — условный минимум; $M_3\left(-\frac{3}{2},-4\right)$ и $M_3\left(-\frac{3}{2},-4\right)$ и $M_4\left(rac{3}{2},4
ight)$ — условный максимум; д) $M_1(1,1,1)$ — условный максимум; е) $M_1\left(-\frac{2}{\sqrt{6}},\frac{1}{\sqrt{6}},\frac{1}{\sqrt{6}}\right)$ — условный минимум, имеются ещё пять точек условного экстремума.

4.9.14. Найдите наибольшее и наименьшее значения данных функций в указанном множестве:

a)
$$y = x^5 - 5x^4 + 5x^3 + 1$$
 на $[-1, 2]$; б) $y = \frac{1 - x + x^2}{1 + x - x^2}$ на $[0, 1]$;

в)
$$y = \sqrt{x(10-x)}$$
 на $[0, 10]$.

Ответы: а) 2 и -10; б) 1 и $\frac{3}{5}$; в) 5 и 0.

4.9.15. Найдите соотношение между радиусом R и высотой Hцилиндра, имеющего при данном объёме V наименьшую полную поверхность.

Omeem: H = 2R.

4.9.16. Найдите высоту конуса наибольшего объёма, который можно вписать в шар радиуса R.

Omeem:
$$H = \frac{4}{3}R$$
.

- **4.9.17.** Найдите наибольшие и наименьшие значения следующих функций в указанном множестве:
 - а) $z(x,y) = x^2 xy + 2y^2 + 3x + 2y + 1$ в треугольнике, ограниченном осями координат и прямой x + y = 5;
 - б) $z(x,y) = x^2 + y^2 xy x y$ в области $x \ge 0, y \ge 0, x + y \le 3;$
 - B) $z(x,y) = x^2 + 2y^2 4x 12$ B kpyre $x^2 + y^2 < 100$;
 - г) $z(x,y) = x^3 + y^3 9xy + 27$ в квадрате $0 \le x \le 1, 0 \le y \le 1$.

Ответы: а) 1 и 61; б) -1 и 6; в) -16 и 192; г) 20 и 28.

4.9.18. Найдите размеры прямоугольного параллелепипеда заданного объёма V, имеющего наименьшую поверхность.

Omeem: $x = y = z = \sqrt[3]{V}$.

4.9.19. Найдите стороны прямоугольного треугольника, имеющего при данной площади S наименьший периметр.

 $Omsem: \sqrt{2s}, \sqrt{2s}$ и $2\sqrt{s}$.

4.9.20. Представьте положительное число a в виде произведения четырех положительных чисел так, чтобы их сумма была наименьшей.

Ответ: все множители равны между собой.

4.10. Исследование функций и построение графиков (задача 14)

Предлагаем изучить пп. 2.15-2.19 и разобрать примеры исследования функций и построения графиков, приведённые в п. 2.19.

Задачи для самостоятельного решения

- **4.10.1.** Проведите полное исследование и постройте графики следующих функций:
 - a) $y = x^6 3x^4 + 3x^2 5$; 6) $y = \sqrt[3]{x} \sqrt[3]{x+1}$;
 - в) $y = \frac{2x^2}{x^2 4}$; г) $y = x + \ln(x^2 1)$; д) $y = x^2 e^{1/x}$.

Рекомендуется проделать все исследование самостоятельно, а затем проверить себя, используя пособие И.А. Марона [11].

- 4.10.2. Постройте графики гиперболических функций:
- a) $y = \operatorname{sh} x$, b) $y = \operatorname{ch} x$, b) $y = \operatorname{th} x$, r) $y = \operatorname{cth} x$.

5. Контрольные работы

5.1. О самоконтроле при выполнении работ

Те студенты, которые имеют в своём распоряжении устройство СИМВОЛ либо его компьютерный аналог, могут выполнять контрольные в режиме автоматизированного самоконтроля. Как осуществлять самоконтроль, объяснено в инструкции, прилагаемой к устройству. В данных контрольных работах необходимо соблюдать следующие требования:

- 1) если нет дополнительных указаний, то рациональные дроби вводить в виде обыкновенной дроби, не выделяя целой части;
- 2) число e вводить как символ "e" (латинское). Чтобы ввести степень числа e (положительную или отрицательную), например e^{-2} , нужно набрать последовательность символов $e \uparrow -2$ (не вводить в виде $1/e^2$);
- 3) в контрольной работе № 3 в тех примерах, в которых предел не существует, в ответ вводить слово "нет":
- 4) в задачах 10 и 11 контрольной работы № 4 ответы вводить в виде десятичных дробей, например, 1,24, но не 1.24;
- 5) числа типа $\sqrt{2}$, $\sqrt{3}$ и т.д., когда корень точно не извлекается, приближённо не вычислять, вводить сначала знак $\sqrt{}$, а затем подкоренное число.
- 6) область определения функций вводить в виде $[a,b), (a,b), [a,b) \cup (c,d)$ и т.д.

5.2. Контрольная работа № 3

Вариант 3.1

- 1(АП3.РП). Найдите область определения функции $f(x) = \sqrt{x-4} + \sqrt{8-x}.$
- 2. Дана функция $f(x) = \frac{1+x}{1-x}$. Найдите f[f(x)]. (2A4). Вычислите $2 \cdot f[f(2)]$.
 - 3. Найдите пределы последовательностей:

a)(8801).
$$\lim_{n\to\infty} \frac{6n^4 - n + 5}{2n^4 + 5n - 1}$$
; 6)(ПТ1). $\lim_{n\to\infty} \frac{(\sqrt{n^4 + 2n} - n^2)n^2}{3n + 4}$.

4. Найдите пределы функций:

a)(281)
$$\lim_{x \to -2} \frac{x^2 + 6x + 8}{x^2 + 5x + 6};$$
 6)(4942). $\lim_{x \to 0} \frac{3^{\frac{1}{x}} - 1}{4^{\frac{1}{x}} - 1};$ B)(3653). $\lim_{x \to \infty} (3x + 1) \sin \frac{5}{x + 1};$ r)(AC71). $\lim_{x \to \infty} \left(\frac{x^2 + x + 1}{x^2 + 1}\right)^{3x + 1};$ g)(381). $\lim_{x \to 3} \frac{\ln(4x - 11)}{x^3 - 27};$ e)(T583). $\lim_{x \to 1} \frac{5^x - 5}{(x^2 - 1) \ln 5}.$

5(4691). Выделите главную часть вида $c(x+1)^k$ бесконечно малой $\alpha(x) = \frac{\sin^3{(x^2-1)}}{\sqrt{x^2+3}-2}$ при $x \to -1$. В ответ ввести сначала c, затем k.

6. Запишите все точки разрыва (слева направо), указывая следом за точкой тип разрыва (1,2,y), для функций:

а) (4701.РП)
$$f_1(x) = \frac{\sin(x-2)}{x^2-4} + \operatorname{arctg} \frac{2}{x};$$

б) (ДТ01.РП) $f_2(x) = \begin{cases} \frac{x+3}{x^2-9} & \text{при } x < 0, \\ \frac{x-1}{x^2-4} & \text{при } x > 0. \end{cases}$

Вариант 3.2

 $1({\rm C61.P\Pi})$. Найдите область определения функции

$$f(x) = \sqrt{x^2 - 3x + 2} + \frac{1}{\sqrt{x^2 - 7x + 12}}.$$

2. Даны функции $f(x)=\sin x,\ \varphi(x)=x^2.$ Найдите $f[\varphi(x)]$ и $\varphi[f(x)].$ (3C2). Вычислите $2\varphi\left[f\left(\frac{\pi}{4}\right)\right].$

3. Найдите пределы последовательностей:

a)(9402).
$$\lim_{n \to \infty} \frac{4+n-3n^4}{1+n-n^4}$$
; 6)(TT23). $\lim_{n \to \infty} (\sqrt{9n^4+3n^2+1}-3n^2)$.

4. Найдите пределы функций:

a)(3432).
$$\lim_{x \to -\infty} \frac{6x - \sqrt{4x^2 + 1}}{2x + 1};$$
 6)(Π 42). $\lim_{x \to +\infty} \frac{2^x + 4}{3^x + 5};$ B)(C54). $\lim_{x \to 0} \frac{\sin(7x) - \sin(3x)}{\operatorname{tg}(2x)};$ r)(AA71). $\lim_{x \to \infty} \left(\frac{x^4 + 5}{x^4 + 3}\right)^{x^4};$ π (824). $\lim_{x \to 1} \frac{7^{x^2} - 7}{(x - 1)\ln 7};$ e)(472). $\lim_{x \to 2} \frac{\ln(5x - 9)}{x^2 - 4}.$

 $5(7091.P\Pi)$. Выделите главную часть вида $c(x-3)^k$ бесконечно малой $\alpha(x) = \frac{(e^{x-3}-1)\sin{(x-3)}}{\sqrt{x+1}-2}$ при $x\to 3$. В ответ введите сначала c, затем k.

6. Запишите все точки разрыва (слева направо), указывая следом за точкой тип разрыва (1,2,y), для функций:

a)
$$(\Pi\Pi\Pi1.P\Pi)$$
 $f_1(x) = \frac{\sin(x-3)}{|x^2-9|} + \frac{e^x-1}{5x};$
6) $(5912.P\Pi)$ $f_2(x) = \begin{cases} \frac{x+4}{x^2-16} & \text{при} \quad x \leq 0, \\ \frac{\sin x}{x^2-9} & \text{при} \quad x > 0. \end{cases}$

Вариант 3.3

 $1({\rm T59.P\Pi})$. Найдите область определения функции $f(x) = \frac{x}{\sqrt{x^2-3x+2}}.$

$$f(x) = \frac{x}{\sqrt{x^2 - 3x + 2}}$$

- 2. Даны функции $f(x) = \log_2 x$, $\varphi(x) = \sqrt{x}$. Найдите $\Psi(x) =$ $=f[\varphi(x)], \Phi(x)=\varphi[f(x)], f[f(x)], \varphi[\varphi(x)].$ (350). Вычислите $\Psi(16)$.
 - 3. Найдите пределы последовательностей:

а)(1602).
$$\lim_{n \to \infty} \frac{n+n^3}{3+n+n^5}$$
; б)(3Д23). $\lim_{n \to \infty} \sqrt{n^2+8n}-n$.

4. Найдите пределы функций:

а)(АД34).
$$\lim_{x \to -2} \left(\frac{1}{x+2} + \frac{4}{x^2-4} \right)$$
; б)(1П3). $\lim_{x \to 4} \frac{\sqrt[3]{2x-7}-1}{x^2-16}$;

в)(9452).
$$\lim_{x \to \infty} x \cdot \sin\left(\frac{5}{x+3}\right);$$
 г)(AC71). $\lim_{x \to \infty} \left(\frac{x^2+x}{x^2+4}\right)^{3x-1};$ д)(6784). $\lim_{x \to 4} \frac{e^{2x-8}-1}{x^2-7x+12};$ е)(7Р3). $\lim_{x \to 0} \frac{\ln(x^2+2)-\ln 2}{x^2}.$

5(9519). Выделите главную часть вида $c(x-3)^k$ бесконечно малой $\alpha(x) = \frac{(x-3)^3 \ln (4-x)}{e^{x-3}-1}$ при $x \to 3$. В ответ введите сначала c, затем k.

6. Запишите все точки разрыва (слева направо), указывая следом за точкой тип разрыва (1,2,y), для функций:

а) (Д911.РП)
$$f_1(x) = x \sin \frac{3}{x} + \frac{1}{x-1} \operatorname{arctg} \frac{1}{x-2};$$

б) (8912.РП) $f_2(x) = \begin{cases} \frac{x^2 + x}{x^2 - 1} & \text{при} \quad x \le 0, \\ \frac{\sin^2 x}{x^3 - 2x^2} & \text{при} \quad x > 0. \end{cases}$

Вариант 3.4

1(507.РП). Найдите область определения функции

$$f(x) = \sqrt{\lg \frac{3x - x^2}{2}}.$$

- 2. Дана функция $f(x) = x^2 + \frac{1}{x^2}$. (878). Вычислите значения этой функции в тех точках, в которых $\frac{1}{x} + x = 3$.
 - 3. Найдите пределы последовательностей:

a)(C104).
$$\lim_{n\to\infty} \frac{4+n-n^2}{3+n^2}$$
; 6)(4\Gamma22). $\lim_{n\to\infty} (\sqrt{9n^4-6n^2+4}-3n^2)$.

4. Найдите пределы функций:
$$a)(OД4). \lim_{x \to -2} \frac{x^2 - 4}{2x^3 - 3x + 10}; \qquad 6)(C744). \lim_{x \to -\infty} \frac{3^x + 4}{5^x + 2};$$

$$B)(9652). \lim_{x \to 2} \frac{\sin\left(x^2 - 4\right)}{x^2 - 3x + 2}; \qquad \Gamma)(ДC73). \lim_{x \to 0} (1 + 3\sin x)^{\frac{1}{x}};$$

$$Д(Д981). \lim_{x \to \infty} (2x - 1) \ln \frac{x + 1}{x + 3}; \qquad e)(284). \lim_{x \to 2} \frac{e^{3x - 6} - 1}{x^2 - 4}.$$

 $5(6Д91.P\Pi)$. Выделите главную часть вида $c(x-1)^k$ бесконечно малой $\alpha(x)=\left(x^3-1\right)\sin\left(x^2-1\right)$ при $x\to 1.$ В ответ введите сначала c, затем k.

6. Запишите все точки разрыва (слева направо), указывая следом за точкой тип разрыва (1,2,y), для функций:

a)
$$(3604.P\Pi)$$
 $f_1(x) = \frac{|x+2|}{x^2-4} + \frac{\sin 3x}{x};$
6) $(9604.P\Pi)$ $f_2(x) = \begin{cases} \frac{\sin (x-2)}{x^2-4} & \text{при} \quad x < 2, \\ \frac{\sin (x-3)}{x^2-9} & \text{при} \quad x \ge 2. \end{cases}$

Вариант 3.5

1(0А4.РП). Найдите область определения функции

$$f(x) = \arcsin \frac{x-4}{3} + \lg (5-x).$$

- 2. Дана функция $f(x+2) = x^2 5x + 4$. (445.5П). Найдите f(x). (826). Вычислите f(0).

3. Найдите пределы последовательностей: a)(АП05).
$$\lim_{n\to\infty}\frac{3+5n^3}{n+n^4};~~$$
 б)(4524). $\lim_{n\to\infty}\left(\sqrt{4n^2+8n}-2n\right).$

4. Найдите пределы функций:

а) (СП5).
$$\lim_{x \to \infty} \frac{\sqrt{9x^4 + 5}}{(x + 2)^2};$$
 6) (П83). $\lim_{x \to 0} \frac{3^{\frac{1}{x}}}{5^{\frac{1}{x}} + 4};$ в) (4754). $\lim_{x \to 2} \frac{\arcsin(x^2 - 4)}{x^2 - 3x + 2};$ г) (5С72). $\lim_{x \to 1} \left(\frac{x^2 + 3}{3x^2 + 1}\right)^{\frac{1}{x-1}};$ д) (7783). $\lim_{x \to 1} \frac{5^{x-1} - 1}{(x^2 - 1)\ln 5};$ е) (925). $\lim_{x \to 1} \frac{x + 4}{x^2 - 1} \ln \frac{2x + 1}{x + 2}.$

- 5. (2994.РП). Выделите главную часть вида $\frac{c}{x^k}$ бесконечно малой $\alpha(x)=\frac{\sqrt{x^4+4x}-x^2}{x^2+4}$ при $x\to+\infty.$ В ответ ввести сначала c,затем k.
- 6. Запишите все точки разрыва (слева направо), указывая следом за точкой тип разрыва (1,2,y), для функций:

a) (1111.PII)
$$f_1(x) = \arctan \frac{1}{x-1} + \frac{\sin (x-2)}{x^2-4};$$

6) (8912.PII) $f_2(x) = \begin{cases} \frac{\sin (x+5)}{x^2-25} & \text{при} \quad x \leq 0, \\ \frac{x}{x^2-1} & \text{при} \quad x > 0. \end{cases}$

Вариант 3.6

1(012.РП). Найдите область определения функции $f(x) = \sqrt{\arcsin{(\log_4 x)}}.$

2(P83). Вычислите значение функции $f(x)=x^4+\frac{1}{x^4}$ в тех точках, в которых $\frac{1}{x}+x=4$.

3. Найдите пределы последовательностей:

a)(3T15).
$$\lim_{n \to \infty} \frac{5 + n + 4n^4}{3 - 2n^4}$$
; 6)(4B23). $\lim_{n \to \infty} (\sqrt[3]{n^3 - 6n^2 + 7} - n)$.

4. Найдите пределы функций:

а)(A26).
$$\lim_{x\to 2} \frac{x^2-2x}{x^3-3x-2};$$
 б)(П043). $\lim_{x\to 1} \frac{4^{\frac{1}{x-1}}}{5^{\frac{1}{x-1}}+5};$ в)(6061). $\lim_{x\to 1} \frac{\operatorname{tg}(x-1)}{x^2-3x+2};$ г)(ДА73). $\lim_{x\to \infty} \left(\frac{x^2+x+1}{x^2-x+1}\right)^x;$ д)(6782). $\lim_{x\to 3} \frac{e^{2x-6}-1}{x^2-2x-3};$ е)(Д46). $\lim_{x\to \infty} (3x^2+1) \ln \frac{x^2+5}{x^2+6}.$

 $5(5191.P\Pi)$. Выделите главную часть вида $c(x+1)^k$ бесконечно малой $\alpha(x)=rac{\sqrt[3]{\sin^4{(x+1)}}}{\sqrt[3]{x^2+10x+9}}$ при $x\to -1$. В ответ введите сначала c, затем k.

6. Запишите все точки разрыва (слева направо), указывая следом за точкой тип разрыва (1,2,y), для функций:

a)
$$(5211.P\Pi)$$
 $f_1(x) = \frac{|x^2 - 1|}{x^2 + 3x + 2} + \frac{\sin(x - 3)}{x - 3};$
6) $(9812.P\Pi)$ $f_2(x) = \begin{cases} \frac{\sin(x + 2)}{x^2 - 4} & \text{при} \quad x \le 1, \\ \frac{x}{x^2 - 9} & \text{при} \quad x > 1. \end{cases}$

Вариант 3.7

 $1(079.P\Pi)$. Найдите область определения функции $f(x) = \lg{(9-x^2)}$.

2. Дано, что $f(x+2)=\frac{x-4}{x+5}$. (C10). Найдите $\varphi(x)=(x+3)f(x)$. (0A1). Вычислите f(0).

3. Найдите пределы последовательностей:

а)(Д271).
$$\lim_{n\to\infty} \frac{6n^4+n-1}{3n^4+5}$$
; б)(ДД71). $\lim_{n\to\infty} (\sqrt{n^2+6n-1}-n)$.

4. Найдите пределы функций:

а)(ДТ7).
$$\lim_{x \to 4} \frac{x^2 - 7x + 12}{x^3 - 2x^2 - 9x + 4};$$
 6)(Т743). $\lim_{x \to +\infty} \frac{(0.5)^x + 3}{(0.5)^x + 7};$ 8)(8Д64). $\lim_{x \to 0} (\sqrt{1 + x} - 1) \cdot \operatorname{ctg} 2x;$ г)(239). $\lim_{x \to 2} e^{\left(\frac{x^2 + 2}{x^3 - 2}\right)^{\frac{3}{x^2 - 4}}};$ д)(6782). $\lim_{x \to 1} \frac{\ln(3x - 2) - \ln(2x - 1)}{x^2 - 1};$ е)(ТП7). $\lim_{x \to 0} \frac{e^{6x} - 1}{e^{2x} - 1}.$

 $5(8571.\mathrm{PH})$. Выделите главную часть вида $c(x-2)^k$ бесконечно малой $\alpha(x)=\frac{\sin^2{(4-x^2)}}{\ln{(3-x)}}+(x-2)^5$ при $x\to 2$. В ответ введите сначала c, затем k.

6. Запишите все точки разрыва (слева направо), указывая следом за точкой тип разрыва (1,2,y), для функций:

а) (3Д71.РП)
$$f_1(x) = \frac{\sin(2x)}{\sqrt{x^2}} + \frac{x+1}{x^2-1};$$

б) (9971.РП) $f_2(x) = \begin{cases} \frac{x+2}{x^2-4} & \text{при} \quad x \leq 0, \\ \frac{x^2-x}{x^2-5x+4} & \text{при} \quad x > 0. \end{cases}$

Вариант 3.8

1(А67.РП). Найдите область определения функции

$$f(x) = \frac{1}{\sqrt{x}} + 4^{\arcsin(x-2)} + \frac{1}{\sqrt{x-2}}.$$

2(858). Даны функции $f(x)=x+1,\ \varphi(x)=x-2.$ Решите уравнение $f[\varphi(x)]+\varphi[f(x)]=10.$

3. Найдите пределы последовательностей:

a) (151).
$$\lim_{n \to \infty} \frac{1 + 3n + n^3}{4 + n + 4n^3}$$
; 6)(0081). $\lim_{n \to \infty} (\sqrt[3]{n^3 + 6n^2 - 1} - n)$.

4. Найдите пределы функций:

a)(OA1).
$$\lim_{x \to -\infty} \frac{\sqrt{x^2 + 3} - x}{x + 1}$$
; 6)(0041). $\lim_{x \to 0} \frac{4^{\frac{1}{x}}}{5^{\frac{1}{x}} + 2}$;
B)(068). $\lim_{x \to 0} \frac{\sqrt{4 - 3x^2} - 2}{1 - \cos^3 x}$; r)(239). $\lim_{x \to -\infty} e^4 \left(\frac{x^2 + 3}{x^2 + 4x + 3}\right)^x$;

д)(П781).
$$\lim_{x \to -1} \frac{\ln(x^2 + 1) - \ln(x^2 - x)}{\sin(x + 1)}$$
; e)(ОА8). $\lim_{x \to 0} \frac{e^x - e^{2x}}{x}$.

5(9294.PП). Выделите главную часть вида $\frac{c}{x^k}$ бесконечно малой $\alpha(x)=\frac{e^{\frac{4}{x}}-1}{\sqrt{x^2+1}-x}$ при $x\to-\infty$. В ответ введите сначала c, затем k.

6. Запишите все точки разрыва (слева направо), указывая следом за точкой тип разрыва (1,2,y), для функций:

a) (C081.PII)
$$f_1(x) = \arctan \frac{1}{x+3} + \frac{\sin(x-2)}{x^2-4};$$

6) (II781.PII) $f_2(x) = \begin{cases} \frac{x}{x^2-9} & \text{при } x \le 0, \\ \frac{x\sin(x^3-1)}{x^2-1} & \text{при } x > 0. \end{cases}$

Вариант 3.9

1(Д54.РП). Найдите область определения функции

$$f(x) = \lg\left(\arcsin\frac{6x - x^2}{8}\right).$$

 $2(2Д5.5\Pi)$. Даны функции $f(x)=x^2-1,\ \varphi(x)=x^2+4$. Найдите корни уравнения $f[\varphi(x)]-\varphi[f(x)]=20$.

3. Найдите пределы последовательностей:

a)(TT6).
$$\lim_{n\to\infty} \frac{n+\sqrt{n^8+5}}{n^4+3}$$
; 6)(II191). $\lim_{n\to\infty} (\sqrt[3]{n^6-6n^4+1}-n^2)$.

4. Найдите пределы функций:

a)(Д99)
$$\lim_{x\to 3} \frac{x^2 - 8x + 15}{x^3 - 27};$$
 6)(1P44). $\lim_{x\to -\infty} \frac{5^x - 4^x}{5^x + 4^{x+1}};$
B)(C54). $\lim_{x\to 0} \frac{x \operatorname{tg} 4x}{1 - \cos(2x)};$ г)(1672). $\lim_{x\to \infty} \left(\frac{3x^2 + 1}{3x^2 - x + 1}\right)^{3x+4};$
Д)(2983). $\lim_{x\to 1} \frac{e^{x^2 - 1} - 1}{1 - \sqrt{x}};$ е)(Д46). $\lim_{x\to 2} \frac{1}{e^{x^2 - 4} - 1} \ln \frac{4x - 7}{5x - 9}.$

 $5.(\Pi 91.P\Pi)$. Выделите главную часть вида $c(x-2)^k$ бесконечно малой $\alpha(x)=\frac{\ln^3{(3-x)}}{\sin{(x-2)}}$ при $x\to 2$. В ответ введите сначала c, затем k.

6. Запишите все точки разрыва (слева направо), указывая следом за точкой тип разрыва (1,2,y), для функций:

a) (P591.PII)
$$f_1(x) = \frac{\sin(x+3)}{\sqrt{(x+3)^2}} + \frac{\sin(x-3)}{x^2 - 4x + 3};$$

6) (CA91.PII) $f_2(x) = \begin{cases} \frac{x+2}{x^2 - 4} & \text{при} \quad x \le 0, \\ \frac{|x-1|}{x^2 - 4x + 3} & \text{при} \quad x > 0. \end{cases}$

Вариант 3.10

- 1. Найдите область определения функции $f(x) = \lg(|x| - x).$
- 2. Дано, что $f(x+1)=rac{x^2+3}{x^2+5}$. (8А2.5П). Найдите f(x). (573). Вычислите f(0).

3. Найдите пределы последовательностей: a)(ПБ10).
$$\lim_{n\to\infty}\frac{6n^5+n^2-4}{3n^5+n+1};$$
 б)(1422). $\lim_{n\to\infty}\left(\sqrt[3]{n^3-6n+9}-n\right).$

4. Найдите пределы функций:
$$a)(9510). \lim_{x\to 0-0} \frac{\sqrt{4x^2-x}}{x}; \qquad 6)(6110). \lim_{x\to -3} \frac{x^2+x-6}{x^2-9};$$

$$B)(383). \lim_{x\to -1} \frac{\sin 3(x^2-1)}{x^2-x-2}; \qquad r)(8PO). \lim_{x\to \infty} \left(\frac{2x-1}{2x+3}\right)^{\frac{x^2+1}{x}};$$

$$\mathbf{g}(2982). \lim_{x\to \infty} (3x+1) \ln \frac{x+1}{x+3}; \quad \mathbf{e})(\Pi 50). \lim_{x\to +\infty} \frac{2^x-3^{-x}}{3^x+5^{-x}}.$$

 $5(8710.P\Pi)$. Выделите главную часть вида cx^k бесконечно малой $\alpha(x)=\frac{e^{x^3}-1}{\sqrt{1\perp x}-1}$ при $x\to 0.$ В ответ введите сначала c, затем k.

6. Запишите все точки разрыва (слева направо), указывая следом за точкой тип разрыва (1,2,y), для функций:

a)
$$(6\text{A}10.\text{P}\Pi) \ f_1(x) = \frac{\sin(x+3)}{|x^2-9|} + \frac{e^{3x}-1}{x};$$

6) $(5410.\text{P}\Pi) \ f_2(x) = \begin{cases} \frac{x^2-4}{x^2-x-6} & \text{при} \ x \le 1, \\ \frac{x}{x^2-4} & \text{при} \ x > 1. \end{cases}$

5.3. Контрольная работа № 4

Вариант 4.1

1. Найдите производные от данных функций:

a)
$$y = 3\left(\frac{2-x}{x^2} + 4\sqrt{5x+4}\right)$$
, (CC) $y'(1)$;

6)
$$y = \sqrt{15} \arccos \frac{1}{x^2} + \frac{\operatorname{ctg}^2 5x}{10} + \frac{\operatorname{ctg} 10}{\sin^2 10} x$$
, (C2P) $y'(2)$;

- B) $y = 3 \left[e^{3x} \ln (4x + 6) + \lg 8x (3 \ln 6) \cdot x \right], \quad (1A1) \ y'(0).$
- 2. Дана функция $y=\sqrt{5}\left[\frac{x}{2}\cdot\sqrt{4+x^2}+2\ln{(x+\sqrt{4+x^2})}\right]$. Найдите y''. (221). Вычислите y''(1).
- 3. Дана функция $f(x) = \begin{bmatrix} 1/\sin 2x \\ \sin 2x \\ -\operatorname{ctg} x \end{bmatrix}$. Найдите f'(x) и f''(x). Вычислите (861.РП) $f'(3\pi/4)$ и (6A1.РП) $f''(3\pi/4)$.
- 4. Докажите, что функция $z=\sin{(x+ay)}$ удовлетворяет уравнению $\frac{\partial^2 z}{\partial v^2}-a^2\frac{\partial^2 z}{\partial x^2}=0.$
- 5. Дана функция $f(x,y)=\left[\begin{array}{c}x^2/y\\x/y^2\end{array}\right]$. Найдите f'(x,y). Вычислите (П91) f'(1,1/2). В ответ введите сумму элементов матрицы f'(1,1/2).
 - 6. Дана функция $u = xy^2 z^3$. Найдите:
 - а) (Д01.РП) координаты вектора grad u в точке M(1,2,1);
 - б) (371) $\frac{\partial u}{\partial a}$ в точке M в направлении вектора ${\bf a}\{2,3,6\}.$
- 7. Найдите y''_{xx} , если $\left\{ \begin{array}{l} x=\sin^3t, \\ y=\cos^3t. \end{array} \right.$ (П91) Вычислите y''_{xx} , если $t=\frac{\pi}{3}.$
 - 8. Функция z=z(x,y) задана неявно уравнением $xz^2-x^2y+y^2z+2x-y=0.$ Вычислите: а)(0С1) $\frac{\partial z}{\partial x}(0,1)$; б)(0КФ) $\frac{\partial z}{\partial y}(0,1)$.
- 9. К графику функции $y=\sqrt{x}$ в точке с абсциссой x=7 проведена касательная. (ДС1). Найдите абсциссу точки пересечения касательной с осью OX.

- 10. Найдите dy, если $y=\frac{x+3\sqrt{5+x^2}}{2}$. (501.ДЛ) Вычислите значение dy, если x=2 $\Delta x=0.02$.
- 11. Дана функция $z=x^2+xy+y^2$ и точки $M_0(1,2)$ и $M_1(1,02;1,96)$. Вычислите (682.Д6) Δz и (091.Д6) dz при переходе из точки M_0 в точку M_1 (ответы округлите до сотых).
- 12. Дана функция $y=x^2+\frac{16}{x}-16$. Найдите её (8Д1) наибольшее и (Д41) наименьшее значения на отрезке [1,4].
- 13. Дана функция $z=(x-y^2)\sqrt[3]{(x-1)^2}$. Найдите её (281) наибольшее и (081) наименьшее значения на замкнутом множестве, ограниченном кривыми $y^2=x, \ x=2$.
- 14. Проведите полное исследование функции $y=\frac{12}{x^2-4}$ и начертите её график.

- 1. Найдите производные от данных функций:
- a) $y = \sqrt{x^2 + 1} + \sqrt[3]{x^3 + 1}$, ($\Pi 42$) y'(0);
- 6) $y = \frac{1}{3} \operatorname{tg}^3 x + \operatorname{tg} x + x^2 \frac{\pi}{2} x$, (9A2) $y'\left(\frac{\pi}{4}\right)$;
- B) $y = \left(\arctan \sqrt{\frac{3-x}{x+2}}\right) \sqrt{\frac{3}{2}}, \quad (872) \ y'(0).$
- 2. Дана функция $y=4\left[\frac{x}{2}\sqrt{4-x^2}+2\arcsin\frac{x}{2}\right]$. Найдите y''. (862). Вычислите $y''\left(\frac{6}{5}\right)$.
 - 3. Дана функция $f(x)=\left[\begin{array}{c} (x-4)/x\\ x/(x-1)\\ x^2-9 \end{array}\right]$. Найдите f'(x) и f''(x).

Вычислите (932.РП) f'(2) и (3Т2.РП) f''(2).

- 4. Докажите, что функция $z=\ln(x^2+y^2+2x+1)$ удовлетворяет уравнению $\frac{\partial^2 z}{\partial x^2}+\frac{\partial^2 z}{\partial y^2}=0.$
- 5. Дана функция $f(x,y)=\left[\begin{array}{c} 3\operatorname{tg}(x+3y)\\ \sin(4x+8y) \end{array}\right]$. Найдите f'(x,y). Вычислите (942) $f'(-\pi/12,\pi/12)$. В ответ введите сумму элементов матрицы $f'(-\pi/12,\pi/12)$.

- 6. Дана функция $u = 7 \ln(x^2 + y^2 + z^2)$. Найдите:
- а) (CP2.PП) координаты вектора $\operatorname{grad} u$ в точке A(3, -2, 1);
- б) (6Т2) $\frac{\partial u}{\partial a}$ в точке A в направлении вектора $\mathbf{a}\{1,2,2\}$.
- 7. Найдите y''_{xx} , если $\left\{ \begin{array}{l} x=\cos^2t,\\ y=\ln\sin t. \end{array} \right.$ (ДА2) Вычислите y''_{xx} , если $t=\frac{\pi}{6}.$
- 8. Функция z=z(x,y) задана неявно уравнением $z^3+3x^2z=2xy$. Вычислите: а)(64A) $\frac{\partial z}{\partial x}(-1,0,0)$; б)(Д52) $\frac{\partial z}{\partial y}(-1,0,0)$.
- $9.({\rm CT2})$ Найдите острый угол (в градусах) между осью OX и касательной к графику функции $y=x^2-5x+6$ в точке $x_0=3.$
- 10. Найдите dy, если $y=\arcsin x$. (Т2.ДЛ) Вычислите значение dy, если x=0 $\Delta x=0.08$.
- 11. Дана функция $z=3x^2-xy+x+y$ и точки $M_0(1,3)$ и $M_1(1,06;2,92)$. Вычислите (592.ДД) Δz и (512.ДД) dz при переходе из точки M_0 в точку M_1 (ответы округлите до сотых).
- 12. Дана функция $y=4-x-\frac{4}{x^2}.$ Найдите её (3C2) наибольшее и (8C2) наименьшее значения на отрезке [1,4].
- 13. Дана функция $z=\frac{xy}{2}-\frac{x^2y}{6}-\frac{xy^2}{8}$. Найдите её (AT2) наибольшее и (68Б) наименьшее значения на замкнутом множестве, ограниченном прямыми $y=0,\,x=0,\,\frac{x}{3}+\frac{y}{4}=1$.
- 14. Проведите полное исследование функции $y = \frac{3}{x} \frac{1}{x^3}$ и начертите её график.

- 1. Найдите производные от данных функций:
- a) $y = 1 \sqrt[3]{x^2} + \frac{27}{x}$, (083) y'(-27);
- 6) $y = 3^{-x} \ln(1-x) 2^{-x^2}$, (863) y'(0);
- B) $y = \arcsin\left(20x + \frac{3}{5}\right) + \lg 8x$, (923) y'(0).
- 2. Дана функция $y = \frac{1}{2} \arctan \frac{x}{2}$. Найдите y''. (7Р3). Вычислите y''(-1).

- 3. Дана функция $f(x) = \begin{bmatrix} \ln \lg x \\ \sin^2 2x \\ \ln \lg x \end{bmatrix}$. Найдите f'(x) и f''(x). Вычислите (С53.РП) $f'(\pi/4)$ и (403.РП) $f''(\pi/4)$.
- 4. Докажите, что функция $z=\frac{x}{y}$ удовлетворяет уравнению $x\frac{\partial^2 z}{\partial x \partial y} \frac{\partial z}{\partial y} = 0.$
- 5. Дана функция $f(x,y) = \begin{bmatrix} \ln(x+\ln y) \\ (2x-1)^y \end{bmatrix}$. Найдите f'(x,y). Вычислите (942) f'(1,1). В ответ введите сумму элементов матрицы f'(1,1).
 - 6. Дана функция $u = 2 \arctan(xy + z^2)$. Найдите:
 - а) (733.РП) координаты вектора grad u в точке A(-1,3,2);
 - б) (П83) $\frac{\partial u}{\partial a}$ в точке A в направлении вектора $\mathbf{a}\{2, -6, -3\}$.
- 7. Найдите y_{xx}'' , если $\left\{ \begin{array}{l} x=\sin^2 t, \\ y=\ln\cos t. \end{array} \right.$ (Д43). Вычислите y_{xx}'' , если $t=\frac{\pi}{3}$.
 - 8. Функция z=z(x,y) задана неявно уравнением $x^2+y^2+z^2-xz-yz+2x+2y+2z-2=0.$ Вычислите: а)(303) $\frac{\partial z}{\partial x}(1,-1,-2)$; б)(П83) $\frac{\partial z}{\partial y}(1,-1,0)$.
- 9. На графике функции $y=\ln 2x$ взята точка A. Касательная к графику в точке A наклонена к оси OX под углом, тангенс которого равен $\frac{1}{4}$. (9Д3). Найдите абсциссу точки A.
- 10. Найдите dy, если $y=x^6$. (183.ДЛ). Вычислите значение dy, если $x_0=2,\,\Delta x=0.01.$
- 11. Дана функция $z=x^2+3xy-6y$ и точки $M_0(4,1)$ и $M_1(3,96;1,03)$. Вычислите (143.ДК) Δz и (Р9А.Д6) dz при переходе из точки M_0 в точку M_1 (ответы округлить до сотых).
- 12. Дана функция $y = \sqrt[3]{2(x-2)^2(8-x)} 1$. Найдите её (C6A) наибольшее и (26B) наименьшее значения на отрезке [0, 6].
- 13. Дана функция $z=3x^2-3xy+y^2+4$. Найдите её (9С3) наибольшее и (НДЦ) наименьшее значения на замкнутом множестве, ограниченном прямыми $x=-1,\ y=-1,\ x+y=1$.
- 14. Проведите полное исследование функции $y = x + \frac{4}{x+2}$ и начертите её график.

- 1. Найдите производные от данных функций:
- a) $y = \frac{(1 \sqrt{x})^2}{x}$, (184) y'(0,01); 6) $y = 2^x e^{-x} + x$, (T04) y'(0);
- B) $y = \frac{\arcsin x}{\sqrt{1 m^2}}$, (CT4) y'(0).
- 2. Дана функция $y = e(x \ln^2 x 2x \ln x + 2x)$. Найдите y''_{xx} . (C54). Вычислите $y''_{xx}(e)$.
- 3. Дана функция $f(x)=\left[\begin{array}{c} (x^2+1)/(x-1)\\x \arcsin x\\xe^{-x} \end{array}\right]$. Найдите f'(x) и f''(x). Вычислите (ПС4.РП) f'(0) и (904.РП) f''(0)
- 4. Докажите, что функция $z=\cos(xy)$ удовлетворяет уравнению $y^2 \frac{\partial^2 z}{\partial x^2} - x^2 \frac{\partial^2 z}{\partial x^2} = 0.$
 - 5. Дана функция $f(x,y)=\left[\begin{array}{c} \arctan \frac{x+y}{x-y} \\ \frac{\sin \pi x}{\pi \cos \pi y} \end{array}\right]$. Найдите f'(x,y). Вы-

числите (654) f'(1,0). В ответ введите сумму элементов матрицы f'(1,0).

- 6. Дана функция $u=4\arcsin(xz+y^2-1)$. Найдите:
- а) (994.РП) координаты вектора grad u в точке $M\left(\frac{1}{5}, 1, 3\right)$;
- б) (2A4) $\frac{\partial u}{\partial a}$ в точке M в направлении вектора $\mathbf{a}\{1,-2,2\}.$
- 7. Найдите y''_{xx} , если $\begin{cases} x = \ln \sin t, \\ y = \cos^2 t. \end{cases}$ (2CA). Вычислите y''_{xx} , если $t = \frac{\pi}{6}$.
 - 8. Функция z = z(x, y) задана неявно уравнением $x^2 + 2y^2 - 3z^2 + xy - z - 3 = 0.$ Вычислите: a)(654) $\frac{\partial z}{\partial x}(1,-2,1)$; б)(26Б) $\frac{\partial z}{\partial x}(1,-2,1)$.
- 9. К графику функции $f(x) = \sqrt{x}$ в точке с абсциссой x = 1проведена касательная. (88А). Найдите ординату точки графика касательной, абсцисса которой равна 31.

- 10. Найдите dy, если $y=x^8$. (0С4.ДЛ) Вычислите значение dy, если $x=2, \ \Delta x=0{,}001.$
- 11. Дана функция $z=x^2-y^2+6x+3y$ и точки $M_0(2,3)$ и $M_1(2,02;2,97)$. Вычислите (Т94.ДЛ) Δz и (Р31.ДЛ) dz при переходе из точки M_0 в точку M_1 (ответы округлить до сотых).
- 12. Дана функция $y=\frac{2(x^2+3)}{x^2-2x+5}$. Найдите её (С74) наибольшее и (ССА) наименьшее значения на отрезке [-3,3].
- 13. Дана функция $z=x^2+2xy-y^2-4x$ Найдите её (454) наибольшее и (8С4) наименьшее значения на замкнутом множестве, ограниченном прямыми $y=x+1,\,y=0,\,x=3.$
- 14. Проведите полное исследование функции $y = \frac{2}{x} \frac{1}{x^2}$ и начертите её график.

1. Найдите производные от данных функций:

a)
$$y = 2\sqrt[4]{16 - 2x} + \frac{x}{\sqrt{1 - x^2}}$$
, (905) $y'(0)$;

б)
$$y = \operatorname{arctg} \frac{1}{x^3} + \operatorname{tg}^3(2x+4)$$
, (9Д5) $y'(-2)$;

в)
$$y = \arcsin \sqrt{\frac{3}{4} + x^2} - 3^{-x}$$
, (ТД5) $y'(0)$.

- 2. Дана функция $y=\frac{1}{2}\ln\frac{x}{x+2}$. Найдите y''. (855). Вычислите y''(1).
 - 3. Дана функция $f(x)=\begin{bmatrix} \sin 3x \\ 3/\sin \left(2x+\frac{\pi}{6}\right) \\ \cot \left(x+\frac{\pi}{3}\right) \end{bmatrix}$. Найдите f'(x) и
- f''(x). Вычислите (695.РП) $f'(\pi/6)$ и (П35.РП) $f''(\pi/6)$.
- 4. Докажите, что функция $z=\cos y+(y-x)\sin y$ удовлетворяет уравнению $(x-y)\frac{\partial^2 z}{\partial x\partial y}-\frac{\partial z}{\partial y}=0.$
 - 5. Дана функция $f(x,y)=\left[\begin{array}{c} \ln(2e^x-e^y) \\ \arctan \frac{x+y}{1-xy} \end{array}\right]$. Найдите f'(x,y).

Вычислите (СП5) f'(0,0). В ответ введите сумму элементов матрицы f'(0,0).

- 6. Дана функция $u = 15\sqrt{1 (xy + z^2 1)^2}$. Найдите:
- а) (9С4.РП) координаты вектора grad u в точке $M\left(4,\frac{1}{5},1\right)$;
- б) (8Р5) $\frac{\partial u}{\partial a}$ в точке M в направлении вектора $\mathbf{a}\{4,-2,4\}.$
- 7. Найдите y''_{xx} , если $\left\{ \begin{array}{l} x=\ln\cos t, \\ y=\sin^2 t. \end{array} \right.$ (245). Вычислите y''_{xx} , если $t=\frac{\pi}{2}$.
- 8. Функция z=z(x,y) задана неявно уравнением xyz=x+y+z. Вычислите: а)(8Р5) $\frac{\partial z}{\partial x}(1,-2)$; б)(275) $\frac{\partial z}{\partial y}(1,-2)$.
- 9. На графике функции $y = x^2 + x 5$ взята точка A. Касательная к графику в точке A наклонена к оси OX под углом, тангенс которого равен 5. (24Д). Найдите абсциссу точки A.
- 10. Найдите dy, если $y=3\sqrt{4x-1}$. (Т05.Д7) Вычислите значение dy, если x=2,5 $\Delta x=0,02$.
- 11. Дана функция $z=x^2+2xy+3y^2$ и точки $M_0(2,1)$ и $M_1(1,96;1,04)$. Вычислите (СТ5.ДЛ) Δz и (А7А.Д7) dz при переходе из точки M_0 в точку M_1 (ответы округлить до сотых).
- 12. Дана функция $y=2\sqrt{x}-x$. Найдите её (C35) наибольшее и (695) наименьшее значения на отрезке [0,4].
- 13. Дана функция $z=x^2+2xy-4x+8y$. Найдите её (8Д5) наибольшее и (2А5) наименьшее значения на замкнутом множестве, ограниченном прямыми $x=0,\ y=0,\ x=1,\ y=2$.
- 14. Проведите полное исследование функции $y=2-\frac{1}{x^2}$ и начертите её график.

1. Найдите производные от данных функций

a)
$$y = 3\sqrt[3]{x^5 + 5x^4 - \frac{5}{x}}$$
, (906) $y'(1)$;

б)
$$y = \operatorname{arctg} \operatorname{tg}^2 x$$
), (T56) $y'\left(\frac{\pi}{4}\right)$; в) $y = \ln \sqrt{\frac{1 - \sin x}{1 + \sin x}}$, (ДА6) $y'(0)$.

2. Дана функция $y = 4(x \arcsin x + \sqrt{1 - x^2})$. Найдите y''. (5T6). Вычислите $y''\left(\frac{3}{5}\right)$.

3. Дана функция
$$f(x) = \begin{bmatrix} x^4 \ln x \\ (2+x)/(2-x) \\ (x^2+1)/x \end{bmatrix}$$
. Найдите $f'(x)$ и

f''(x). Вычислите (216.РП) f'(1) и (А36.РП) f''(1).

4. Докажите, что функция $z=e^{xy}$ удовлетворяет уравнению $x^2\frac{\partial^2 z}{\partial x^2}-2xy\frac{\partial^2 z}{\partial x\partial y}+y^2\frac{\partial^2 z}{\partial y^2}+2xyz=0.$

5. Дана функция
$$f(x,y)=\left[\begin{array}{c} \frac{1}{3}(x^2+y^2)^{3/2}\\ \sin\left(\frac{\pi x}{3}+\frac{\pi y}{8}\right) \end{array}\right]$$
. Найдите $f'(x,y)$.

Вычислите (5T6) f'(-3,4). В ответ введите сумму элементов матрицы f'(-3,4).

- 6. Дана функция $u = 4\arccos(x^2 + yz 1)$. Найдите:
- а) (306.РП) координаты вектора grad u в точке $M\left(1,\frac{1}{5},3\right)$;
- б) (26Р) $\frac{\partial u}{\partial a}$ в точке M в направлении вектора $\mathbf{a}\{2,-1,-2\}.$
- 7. Найдите y''_{xx} , если $\left\{ \begin{array}{l} x=t^3+3t+1, \\ y=t^3-3t+1. \end{array} \right.$ (АД6). Вычислите y''_{xx} , если t=1.
 - 8. Функция z=z(x,y) задана неявно уравнением $x^2+y^2+z^2-2x+2y-4z-10=0.$ Вычислите: а)(756) $\frac{\partial z}{\partial x}(1,-1,6)$; б)(74C) $\frac{\partial z}{\partial y}(1,-1,-2)$.
- 9. К графику функции $f(x)=e^{2x}$ в точке с абсциссой x=0 проведена касательная. (7T6). Найдите абсциссу точки графика касательной, ордината которой равна 19.
- 10. Найдите dy, если $y = 3\sqrt[3]{x^3 + 7x}$. (526.Д7) Вычислите значение dy, если x = 1 $\Delta x = 0.024$.
- 11. Дана функция $z=x^2+y^2+2x+y-1$ и точки $M_0(2,4)$ и $M_1(1,98;3,91)$. Вычислите (756.Д6) Δz и (776.Д6) dz при переходе из точки M_0 в точку M_1 (ответы округлить до сотых).
- 12. Дана функция $y=1+\sqrt[3]{2(x-1)^2(x-7)}$. Найдите её (ТТ6) наибольшее и (Д46) наименьшее значения на отрезке [-1,5].
- 13. Дана функция z=xy Найдите её (Т56) наибольшее и (Д66) наименьшее значения в круге $x^2+y^2\leq 4$.
- 14. Проведите полное исследование функции $y = \frac{1-x^3}{x^2}$ и начертите её график.

1. Найдите производные от данных функций:

a)
$$y = \frac{1+x}{\sqrt{1-x}} - \frac{x}{x^2+1}$$
, (7Д7) $y'(0)$;

- 6) $y = \arcsin^2 7x \frac{\sin 8x}{x^2 1}$, (717) y'(0);
- B) $y = (\operatorname{arctg} 4) \ln(\operatorname{arctg} 4x) + 5^x (5 \ln 5)x$, (0C7) y'(1).
- 2. Дана функция $y=\frac{1}{2}\ln\frac{x-1}{x+1}.$ Найдите y''. (Д57). Вычислите y''(2).
 - 3. Дана функция $f(x)=\left[\begin{array}{c} (2x-3)^{3/2}\\ \frac{16}{\pi^2}\sin\frac{\pi}{x}\\ (3x-5)^{4/3} \end{array}\right]$. Найдите f'(x) и f''(x).

Вычислите (С97.РП) f'(2) и (797.РП) f''(2).

- 4. Докажите, что функция $z=xe^{y/x}$ удовлетворяет уравнению $x^2\frac{\partial^2 z}{\partial x^2}+2xy\frac{\partial^2 z}{\partial x\partial y}+y^2\frac{\partial^2 z}{\partial y^2}=0.$
 - 5. Дана функция $f(x,y)=\left[egin{array}{c} e^{2x+1-e^{3y}} \\ 3\sqrt{(x+1)^2+y^2} \end{array}
 ight]$. Найдите f'(x,y).

Вычислите (517) f'(0,0). В ответ введите сумму элементов матрицы f'(0,0).

- 6. Дана функция $u = 6 \ln(xz + y^2 1)$. Найдите:
- а) $(4Д7.P\Pi)$ координаты вектора grad u в точке M(2,1,3);
- б) (077) $\frac{\partial u}{\partial a}$ в точке M в направлении вектора $\mathbf{a}\{-3,-2,6\}$.
- 7. Найдите y''_{xx} , если $\left\{ \begin{array}{l} x=3\cos^2t,\\ y=2\sin^3t. \end{array} \right.$ (727). Вычислите y''_{xx} , если $t=\frac{\pi}{6}.$
 - 8. Функция z=z(x,y) задана неявно уравнением $x^2-2y^2+3z^2-yz+y=0.$ ∂z

Вычислите: а)(Т97) $\frac{\partial z}{\partial x}(1,1,0)$; б)(ДА7) $\frac{\partial z}{\partial y}(1,1,0)$.

9. К графику функции $f(x)=\cos\frac{2}{3}x$ в точке с абсциссой $x=-\frac{\pi}{2}$ проведена касательная. (12П). Найдите острый угол (в градусах) между касательной и осью OX.

- 10. Найдите dy, если $y=3\sqrt[3]{x^2+2x+5}$. (7Д.ДЛ) Вычислите значение dy, если $x_0=1$ $\Delta x=0.01$.
- 11. Дана функция $z=3x^2+2y^2-xy$ и точки $M_0(-1,3)$ и $M_1(-0.98;2.97)$. Вычислите (176.Д6) Δz и (Р77.Д6) dz при переходе из точки M_0 в точку M_1 (ответы округлить до сотых).
- 12. Дана функция $y=x-4\sqrt{x}+5$. Найдите её (Т97) наибольшее и (Т37) наименьшее значения на отрезке [1,9].
- 13. Дана функция $z=\sqrt{3-x^2-2y^2}$. Найдите её (ББ7) наибольшее и (ТСС) наименьшее значения в круге $x^2+y^2\leq 1$.
- 14. Проведите полное исследование функции $y = \frac{x^2 6x + 3}{x 3}$ и начертите её график.

1. Найдите производные от данных функций:

a)
$$y = \sqrt{\left(\frac{1+x^2}{1-x^2}\right)\frac{5}{3}}$$
, (978) $y'\left(\frac{1}{2}\right)$;

6)
$$y = 40 \arctan \frac{x}{1 + \sqrt{1 - x^2}}$$
, (1A8) $y'\left(\frac{3}{5}\right)$;

B)
$$y = \frac{1}{2} \operatorname{tg}^2 x - \ln \cos x$$
, (278) $y'\left(\frac{\pi}{4}\right)$.

2. Дана функция $y = \frac{1}{2} \ln \frac{1+x}{1-x}$. Найдите y''. (НЛМ). Вычислите

$$y''\left(\frac{1}{2}\right)$$
.

\ 2.7 3. Дана функция $f(x)=\left[\begin{array}{c} x/(x^2+1)\\ 4\arctan\left(x-\sqrt{1+x^2}\right)\\ (8e^x)/(1+e^x) \end{array}\right]$. Найдите

f'(x) и f''(x). Вычислите (П18.РП) f'(0) и (108.РП) f''(0).

4. Докажите, что функция $z=x^y$ удовлетворяет уравнению $y\frac{\partial^2 z}{\partial x \partial y}-(1+y\ln x)\frac{\partial z}{\partial x}=0.$

5. Дана функция $f(x,y) = \begin{bmatrix} 2x \sin^2 y \\ \lg x + y \end{bmatrix}$. Найдите f'(x,y). Вычислите (278) $f'(0,\pi/4)$. В ответ введите сумму элементов матрицы $f'(0,\pi/4)$.

- 6. Дана функция $u = 2 \arctan(x^2 + yz 4)$. Найдите:
- а) (2Р8.РП) координаты вектора $\operatorname{grad} u$ в точке M(2,1,1);
- б) (818) $\frac{\partial u}{\partial a}$ в точке M в направлении вектора $\mathbf{a}\{2, -6, 3\}$.

- 7. Найдите y''_{xx} , если $\left\{ \begin{array}{ll} x=3\sin^2 t, \\ y=2\cos^3 t. \end{array} \right.$ (038) Вычислите y''_{xx} , если $t=\frac{\pi}{3}$.
- 8. Функция z=z(x,y) задана неявно уравнением $z=y+\ln\frac{x}{z}$.
- Вычислите: а)(018) $\frac{\partial z}{\partial x}(1,1,1);$ б)(0AA) $\frac{\partial z}{\partial y}(1,1,1).$
- 9. К графику функции $f(x) = \ln(3x)$ в точке с абсциссой $x = \frac{1}{3}$ проведена касательная. (004). Найдите абсциссу той точки касательной, ордината которой равна 29.
- 10. Найдите dy, если $y=2\sqrt{x^2+x+3}$. (708.Д7) Вычислите значение dy, если x=2 $\Delta x=0.006$.
- 11. Дана функция $z=x^2-y^2+5x+4y$ и точки $M_0(3,2)$ и $M_1(3,05;1,98)$. Вычислите (Д68.ДЛ) $\triangle z$ и (047.Д7) dz при переходе из точки M_0 в точку M_1 (ответы округлить до сотых).
- 12. Дана функция $y = \frac{10x}{1+x^2}$. Найдите её (8Т8) наибольшее и (058) наименьшее значения на отрезке [0,3].
- 13. Дана функция $z=4x+2y+4x^2+y^2+6$. Найдите её (Д28) наибольшее и (8Б8) наименьшее значения на замкнутом множестве, ограниченном прямыми $x=0,\,y=0,\,x+y+2=0$.
- 14. Проведите полное исследование функции $y = \ln(x^2 1)^2$ и начертите её график.

1. Найдите производные от данных функций:

a)
$$y = \left[\sqrt[3]{\frac{1}{7+x^2}} + \frac{\sqrt{x}}{\sqrt{x}+1}\right] \cdot 24$$
, (T4C) $y'(1)$;

6)
$$y = \frac{8}{3} \left[\ln(\sin 2x) - 2^{-3x} - (2\operatorname{ctg} 2) \cdot x \right], \quad (729) \ y'(1);$$

B)
$$y = 10 \left(\arctan(x+1)^3 + \frac{\sin(3x)}{x^2+5} \right)$$
, (II49) $y'(0)$.

- 2. Дана функция $y=4e^{\sqrt{x}-1}(\sqrt{x}-1)$. Найдите y''. (239). Вычислите y''(1).
 - 3. Дана функция $f(x)=\left[\begin{array}{c} \lg 2x \\ (2+x)/(2-x) \\ \ln(x^2+1) \end{array}\right]$. Найдите f'(x) и

f''(x). Вычислите (159.РП) f'(0) и (979.РП) f''(0).

- 4. Докажите, что функция $z=\frac{y}{x}$ удовлетворяет уравнению $y\frac{\partial^2 z}{\partial x \partial y}-\frac{\partial z}{\partial x}=0.$
- 5. Дана функция $f(x,y)=\left[\begin{array}{c} 4\sqrt{x^2+y}\\ e^{3x-y} \end{array}\right]$. Найдите f'(x,y). Вычислите (839) f'(1,3). В ответ введите сумму элементов матрицы f'(1,3).
 - 6. Дана функция $u = 5 \arcsin{(yz + x^2 4)}$. Найдите:
 - а) (6П9.РП) координаты вектора grad u в точке $M\left(2, \frac{12}{13}, 1\right)$;
 - б) (9П9) $\frac{\partial u}{\partial a}$ в точке M в направлении вектора $\mathbf{a}\{1,-2,-2\}.$
- 7. Найдите y''_{xx} , если $\left\{ \begin{array}{l} x=t^4-t^2+1, \\ y=t^4+t^2+1. \end{array} \right.$ (Д69) Вычислите y''_{xx} ,
 - 8. Функция z=z(x,y) задана неявно уравнением $2x^2+2y^2+z^2-8xz-z+8=0.$ Вычислите: а)(099) $\frac{\partial z}{\partial x}(2,0,1)$; б)(78T) $\frac{\partial z}{\partial y}(2,0,1)$.
- 9.(189) К графику функции $f(x) = x^2 + 3x + 2$ в точке с абсциссой x = 0 проведена касательная. Найдите ординату той точки касательной, абсцисса которой равна 11.
- 10. Найдите dy, если $y=\dfrac{2}{\sqrt{2x^2+x+1}}$. (0С9.Д6) Вычислите значение dy, если $x_0=1$ $\Delta x=0.016$.
- 11. Дана функция $z=2xy+3y^2-5x$ и точки $M_0(3,4)$ и $M_1(3,04;3,95)$. Вычислите (ТР9.Д6) Δz и (СБ1.Д6) dz при переходе из точки M_0 в точку M_1 (ответы округлить до сотых).
- 12. Дана функция $y = \sqrt[3]{2(x+1)^2(5-x)} 2$. Найдите её (299) наибольшее и (24) наименьшее значения на отрезке [-3,3].
- 13. Дана функция z=x-2y-3. Найдите её (0С9) наибольшее и (Д49) наименьшее значения на замкнутом множестве, ограниченном прямыми $x=0,\,y=0,\,x+y=1$.
- 14. Проведите полное исследование функции $y = \frac{x^3}{2(x+1)^2}$ и начертите её график.

- 1. Найдите производные от данных функций:
- a) $y = \sqrt[3]{x^2 4x + 27} \frac{1}{3 x}$, (P50) y'(0);
- 6) $y = \frac{x}{2}\sqrt{1-x^2} + \frac{1}{2}\arcsin x$, (CII0) $y'\left(\frac{4}{5}\right)$;
- B) $y = \arctan \frac{1+x}{1-x}$, (AII0) y'(2).
- 2. Дана функция $y(x)=x\ln{(x+\sqrt{1+x^2})}-\sqrt{1+x^2}$. Найдите y''. (3T0). Вычислите y''(0).
 - 3. Дана функция $f(x)=\left[\begin{array}{c}x^2e^{-x+2}\\\sqrt{8x-15}\\2\arctan(x-1)\end{array}\right]$. Найдите f'(x) и
- f''(x). Вычислите (8ДО.РП) f'(2) и (А60.РП) f''(2).
- 4. Докажите, что функция $z=\frac{x^2}{y^2}$ удовлетворяет уравнению $y\frac{\partial^2 z}{\partial x \partial u} + 2\frac{\partial z}{\partial x} = 0.$
- 5. Дана функция $f(x,y)=\left[\begin{array}{c}\cos(2x-3y)+\sin 4x\\ \operatorname{tg}(8x+3y)\end{array}\right]$. Найдите f'(x,y). Вычислите (C50) $f'(\pi/12,-\pi/9)$. В ответ введите сумму элементов матрицы $f'(\pi/12,-\pi/9)$.
 - 6. Дана функция $u = 2 \ln (x^2 + yz 4)$. Найдите:
 - а) (С70.РП) координаты вектора grad u в точке M(2,2,1);
 - б) (690) $\frac{\partial u}{\partial a}$ в точке M в направлении вектора $\mathbf{a}\{2,2,-1\}$.
- 7. Найдите y_{xx}'' , если $\left\{ \begin{array}{ll} x=t^3+1, \\ y=t^3+t^2. \end{array} \right.$ (850) Вычислите y_{xx}'' , если t=1.
 - 8. Функция z=z(x,y) задана неявно уравнением $xz^5+y^3z-x^3=0.$ ∂z
 - Вычислите: а)(C30) $\frac{\partial z}{\partial x}(1,0)$; б)(П50) $\frac{\partial z}{\partial y}(1,0)$.
- $9.({\rm C10.P\Pi})$ Найдите уравнение y=kx+b касательной к графику функции $f(x)=2x^2+x-1,$ которая параллельна прямой y=5x+7. В ответ введите сначала значение k, затем b.

- 10. Найдите dy, если $y=\sqrt{x^2+5}$. (580.ДЛ) Вычислите значение dy, если $x_0=2, \ \Delta x=0.06$.
- 11. Дана функция $z=xy+2y^2-2x$ и точки $M_0(1,2)$ и $M_1(0,97;2,03)$. Вычислите (530.Д7) $\triangle z$ и (ТП1.Д7) dz при переходе из точки M_0 в точку M_1 (ответы округлить до сотых).
- 12. Дана функция $y=2x^2+\frac{108}{x}-59$. Найдите её (370) наибольшее и (2A0) наименьшее значения на отрезке [2, 4].
- 13. Дана функция $z=2xy-3x^2-3y^2+4(x+y+1)$. Найдите её (ПР0) наибольшее и (6Т0) наименьшее значения в прямоугольнике $0\leq x\leq 3,\ 0\leq y\leq 2$.
- 14. Проведите полное исследование функции $y = \frac{10x}{\left(1+x\right)^3}$ и начертите её график.

Литература

- 1. Бараненков Г.С., Демидович Б.П. Задачи и упражнения по математическому анализу. М.: Наука, 1970.-472 с.
- 2. Берман Г.Н. Сборник задач по курсу математического анализа. М.: Наука, 1975. 416 с.
- 3. Болгов В.А., Демидович Б.П. и др. Сборник задач по математике. М.: Наука, 1984. 464 с.
- 4. Бугров Я.С., Никольский С.М. Высшая математика. Дифференциальное и интегральное исчисление. М.: Наука, 1984. 432 с.
- 5. Бутузов В.Ф., Крутицкая Н.Ч., Медведев Г.Н., Шишкин А.А. Математический анализ в вопросах и задачах. Функции нескольких переменных. М.: Высшая школа, 1988. 288 с.
- 6. Власов В.Г. Конспект лекций по высшей математике. М.: АЙРИС, 1996. 288 с.
- 7. Ельцов А.А., Ельцова Г.А. Магазинников Л.И. Дифференциальное исчисление. Томск: Томский гос. ун-т систем управления и радиоэлектроники, 2001.-228 с.
- 8. Каплан И.А. Практические занятия по высшей математике. Харьков: Харьковский государственный университет, 1965. 575 с.
- 9. Куваев М.Р. Методика преподавания математики в вузе. Томск: Томский государственный университет, 1990. 390 с.
- 10. Магазинников Л.И. Высшая математика I. Томск: Томская государственная академия систем управления и радиоэлектроники, $1998.\,-\,192$ с.
- 11. Марон И.А. Дифференциальное и интегральное исчисление в примерах и задачах. М.: Наука, 1970. 400 с.
- 12. Фихтенгольц Г.М. Курс дифференциального и интегрального исчисления: в 2 т. М.: Физматгиз, 1958. Т.1. 608 с.

Предметный указатель

Асимптота, 74	Множества, 7
вертикальная, 74	замкнутые, 15
наклонная, 74	неограниченные, 9
T 1 4	ограниченные
Градиент функции, 47	сверху, 8
Граница множества	снизу, 8
верхняя, 8	открытые, 15
нижняя, 8	Модуль числа, 8
точная верхняя, 8	,
точная нижняя, 9	Направляющие косинусы, 46
График функции, 11	Непрерывность, 26
выпуклый вверх, 72	односторонняя, 26
выпуклый вниз, 72	слева, 26
П1-1	справа, 26
Дифференциал функции, 38	Нормаль
второго порядка, 58	к поверхности, 56
высшего порядка, 59	
Интервал, 8	Область
Инфимум, 9	значений, 10
	определения, 10
Касательная к кривой, 53	Окрестность точки, 14
Касательная плоскость, 55	бесконечно удалённой, 14
Квантор, 7	левосторонняя, 15
общности, 7	параллелепипедальная, 15
существования, 7	правосторонняя, 15
Кривизна	проколотая, 14
графика функции, 53	симметричная, 14
средняя, 53	шаровая, 15
Критерий	Орт вектора, 46
Сильвестра, 70	Остаточный член, 60
r · · · · · · · · · · · · · · · · · · ·	Отрезок, 8
Линии уровня, 11	П 0
	Полуинтервал, 8
Матрица	Порядок малости, 34
Якоби, 38	Последовательность, 20
Мгновенная скорость, 54	векторная, 20
Множеств	числовая, 20
объединение, 7	Предел
пересечение, 7	второй замечательный, 30
произведение, 7	первый замечательный, 29
разность, 7	последовательности
	векторной, 20
	числовой, 21

Предел функции, 16 Точка на языке последовательностей, 22 граничная, 15 слева, 23 максимума, 67 справа, 23 минимума, 67 Производная предельная, 15 высшего порядка, 48 разрыва, 28 от композиции изолированная, 28 отображений, 43 стационарная, 68
слева, 23 максимума, 67 справа, 23 минимума, 67 минимума, 67 производная предельная, 15 разрыва, 28 от композиции изолированная, 28
слева, 23 максимума, 67 справа, 23 минимума, 67 предельная, 15 разрыва, 28 от композиции изолированная, 28
справа, 23 минимума, 67 Производная предельная, 15 высшего порядка, 48 разрыва, 28 от композиции изолированная, 28
Производная предельная, 15 высшего порядка, 48 разрыва, 28 от композиции изолированная, 28
высшего порядка, 48 разрыва, 28 от композиции изолированная, 28
от композиции изолированная, 28
отооражении 43 стационарная, об
от обратной функции, 43 экстремума, 68
по направлению 46
у равнение
поромонной 30
нормали, об
второго порядка, 49 Ускорение, 54
смешанная, 49 Форма Лагранжа, 61
третьего порядка, 49 Формула
Лейбница, 48
Разрыв Маклорена, 61
второго рода, 29 Тейлора, 60
первого рода, 28 Функции
типа "скачок", 28 бесконечно большие, 33
устранимый, 28 бесконечно малые, 33
anopuration 34
Chourt is a moment in 34
CBONCIBO PARTODHLIA 10 11
ndapatitinoeth, 60
Cerment, 6
Суперпозиция отооражении, 13
Супремум, 8 возрастающие, 11
Таблица убывающие, 11
производных, 40 наибольшее значение, 12
эквивалентных бесконечно ма- наименьшее значение, 12
лых, 36 непрерывные
Теорема в области, 25
Вейерштрасса в точке, 25
вторая, 27 нечётные, 12
первая, 27 неявные, 51
Коши, 63 обратные, 13
Лагранжа, 62 ограниченные, 12
Ролля, 62 периодические, 12
Ферма, 62 степенно-показательные, 44
единственности предела, 17 числовые, 10
о пределе суммы, 24 чётные, 12
в неравенствах, 25 элементарные, 12
Типы неопределённостей, 64