МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования

«ТОМСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ СИСТЕМ УПРАВЛЕНИЯ И РАДИОЭЛЕКТРОНИКИ» (ТУСУР)

УТВЕРЖДАЮ	
Зав. кафедрой КИПР, проф.	
В.Н.Татарино	В
""	2012 г.

АНТЕННЫ И УСТРОЙСТВА СВЧ

Методическое пособие по самостоятельной работе студентов (СРС)

для специальности: 160905. 65 – Техническая эксплуатация транспортного радиооборудования

Факультет: радиоконструкторский (РКФ)

Профилирующая кафедра: Конструирования и производства радиоэлектронной аппаратуры (КИПР)

Курсы -3, 4Семестр -6, 7

Учебный план набора 2008 г. и последующих лет

Распределение учебного времени

Лекции	32 часов (ауд.)
Практические занятия	16 часа (ауд.)
Лабораторные занятия	16 часа (ауд.)
Курсовой проект	18 часов(ауд.)
Всего аудиторных занятий	82 часа
Самостоятельная работа	41часов
Экзамен	36 часов
Общая трудоемкость	159 часов
Экзамен	6 семестр
Диф. зачет (курсовой проект)	7 семестр
	2012

Разработал:		
Профессор каф. КИПР		А.С. Шостак
	" "	2012 г.

ФЕД																								CKC	
ЭКС																								СК <i>А</i> 1	RA
ПРО																								5HC	
	2	С	ΟД	ļΕΡ	Ж	ΑH	ИЕ	ΞД	ис	ЦИ	IПJ	Пν	1H	Ы.											. 3
		2.1																							
		2.2	. Ла	або	par	гор	ны	e	•••••	••••	••••	••••	••••	• • • • •	••••	••••	••••	••••	••••	••••	••••	••••	•••••		4
		2.3	. Г	Ipaı	ζТИ	чес	СКИ	ie 38	аня	гия	-]	16	ч.;	ca	MO	СТ	ткс	ель	ная	я	••••		•••••		4
		2.4							г - о ая р															•••••	5
дис																									
	3.	1 C	CF	Ю	ЗН	А۶	ıл	ΙИΤ	ΈP	ΑT	УΕ	PA	:		••••	••••		••••							. 6
	3.	2	Д	ОΠ	OJ	1НІ	ИΤ	ΈЛ	ЬН	ΑЯ	ΙЛ	IN.	TE	P	ΔT	УΡ	Ά.								. 6
		3.3		Пе	pe	нен	ЬМ	иетс	ЭДИ	чес	ки	ху	ука	за	ниі	й		••••	••••	••••	••••		• • • • •		6
	4	В	ИД	Ы	CA	M	OC	СТС	TRO	ΈΓ	1Ь	HC	ЭЙ	P	ΑE	50	ТЬ	l							. 6
	5	С	ΑN	100	CT	RO	ITE	ΞЛΕ	οH <i>A</i>	Я	P#	٩Б	0	ГΑ	C	ТУ	ΊДΕ	НТ	0	В					. 7
		5.1	Ca	IMO	сто	ятє	ЭЛЬ	ная	pa	бот	ап	ιрι	1 B	ЫΠ	ОЛ	неі	нии	пр	акт	гич	еск	их	зан	ятий	í 7
		5.2	Ca	lMO	сто	ятє	ЭЛЬ	ная	pa	бот	ап	ιрι	1 B	ЫΠ	ОЛ	неі	нин	ла	бор	эат	орн	ЫХ	pac	бот	8
		5.3	Ca	IMO	сто	ятє	ЭЛЬ	ная	pa	бот	ап	ιрι	1 К	ypo	СОЕ	BOM	пр	оен	ζТИ	po	ван	ии	•••••	• • • • • •	9
СТУЈ	6 1E			-																				5OT	

1 ЦЕЛИ И ЗАДАЧИ ДИСЦИПЛИНЫ, ЕЕ МЕСТО В УЧЕБНОМ ПРОЦЕССЕ

Данный курс относится к числу специальных дисциплин, обеспечивающий профессиональную подготовку радиоинженера по специальности «Техническая эксплуатация транспортного радиооборудования» - 160905. 65; СД.Ф.12.

Целью изучения дисциплины «Антенны и устройства СВЧ» является подготовка специалистов по эксплуатации современных антенных систем на транспорте.

В результате изучения дисциплины студент должен знать основные принципы построения простейших антенн, назначение, условия эксплуатации, регламенты обслуживания, принципы и простейшие навыки обеспечения согласования в антенно-фидерных устройствах.

Дисциплина **Антенны и устройства СВЧ** базируется на ранее изученных дисциплинах:

ОПД. Теоретические основы электротехники (ОПД.Ф.4).

ОПД. Общая электротехника и электроника (ОПД.Ф.5).

СД. Основы электродинамики и распространение радиоволн (СД.Ф. 11)

2 СОДЕРЖАНИЕ ДИСЦИПЛИНЫ

2.1. Лекции - 32 ч.; самостоятельная работа - 4 ч.

2.1.1 . Теория волноводов и резонаторов - 6ч.

Введение. Теория направляемых волн. Прямоугольный волновод. Круглый металлический волновод. Волноводы с квази -Т - волнами. Коаксиальный волновод. Микрополосковый волновод. Диэлектрические волноводы. Резонатор на прямоугольном волноводе. Резонатор на круглом волноводе. Коаксиальный резонатор. Полосковый резонатор.

2.1.2. Линии передачи СВЧ - 2ч.

Линии передачи СВЧ в радиосистемах и устройствах. Основные параметры линии передачи. Математическая модель регулярной линии передачи. Режимы работы линии передачи. КПД; КБВ, КСВ. Трансформация сопротивлений в линиях передачи.

2.1.3. Элементы устройств СВЧ-2ч.

Согласованные нагрузки. Изоляторы. Реактивные нагрузки. Разъемы и сочленения в трактах СВЧ. Повороты линий передачи. Диафрагмы и отражающие препятствия.

2.1.4. Интегральные схемы СВЧ -2 ч.

Генераторы. Усилители. Фильтры. Линии задержки. Устройства на

коммутационных диодах. Управляющие устройства СВЧ. Устройства на ферритах.

2.1.5. Основные характеристики передающих и приемных антенн - 4ч. Векторная Структурная схема антенны. комплексная диаграмма направленности. параметры. Вторичные Передающая антенна как Эквивалентная схема четырехполюсник. приемной Поляризационные соотношения при радиоприеме. Мощность в нагрузке приемной антенны. Эффективная поверхность. Шумовая температура.

2.1.6. Согласование антенн с фидерной линией - 16 ч.

Узкополосное согласование. Плавные переходы. Ступенчатые переходы для широкополосного согласования. Вибраторные и щелевые антенны. Слабонаправленные и частотно-независимые антенны. Линейные антенные решетки. Излучающие раскрывы и решетки. Особенности антенн радиорелейных линий и космической радиосвязи. Антенные решетки с обработкой сигналов. Электромагнитная совместимость антенн.

2.2 Лабораторные работы - 16 ч.; самостоятельная работа 8 ч.

Лабораторные работы выполняются по методическому пособию "Лабораторный практикум" [3.2.2].

2.2.1. Работа 1- 4ч.

Измерение параметров взаимных и невзаимных коаксиальных четырехполюсников, [3.3.2], стр. 89 – 96.

2.2.2. Работа 2 - 4 ч.

Измерение коэффициентов отражения от плоских объектов в свободном пространстве, [3.3.3], стр. 85 - 89.

2.2.3. Работа 3 - 4ч.

Измерение диаграммы направленности ДН и коэффициента усиления КУ пирамидального рупора, [3.3.2], стр. 120 – 124.

2.2.4. Работа 4 - 4ч.

Исследование поляризационной характеристики антенны, [3.3.2], стр. 124 – 129.

2.3. Практические занятия - 16 ч.; самостоятельная работа 8 ч.

Практические занятия проводятся по методическим пособиям: [3.3.3]; [3.3.4].

- 2.3.1. Линии передач в виде проволочных и коаксиальных фидеров 4 ч., [3.3.3], стр. 5-14.
- 2.3.2. Расчет параметров прямоугольных волноводов 2 ч., [3.3.3], стр. 14-18, 25-34, 54-55.
- 2.3.3. Расчет параметров круглых волноводов 2ч., [3.3.3], стр. 18-20, 34-42, 52-54.

- 2.3.4. Расчет параметров П- и Н- волноводов 2ч., [3.3.3], стр. 20-21, 42, 55-56.
 - 2.5 D
- 2.3.5. Расчет параметров полосковых волноводов 2ч., [3.3.3], стр. 21-25, 42-52, 56-60..
- 2.3.6. Энергетические соотношения в линиях передач 2 ч, [3.3.3], стр.60-70
- 2.3.7. Объемные резонаторы 2 ч., [3.3.4], стр. 142-149.

2.4. Курсовой проект - обязательные консультации - 18 ч.; самостоятельная работа -21 ч.

Курсовой проект выполняется по методическому пособию [3.3.1].

2.4.1. Тема курсового проекта должна соответствовать учебной программе по курсу «Антенны и устройства СВЧ». В исключительных случаях, по инициативе студента, тема курсового проекта может быть заявлена шире с согласия преподавателя. Выбор темы курсового проекта из предлагаемого преподавателем перечня тем, осуществляется, как правило, студентом. Исходные данные курсового проекта составляются студентом и преподавателем, исходя из практической ценности.

2.4.2. Содержание курсового проекта:

- название;
- цель;
- исходные данные:
- этапы и сроки выполнения;
- расчетные соотношения;
- расчет,
- рабочие чертежи;
- заключение (предложения по совершенствованию конструкции, требуемая технологическая база);
- перечень цитируемой литературы.

2.4.3. Рекомендуемые темы курсового проекта:

- рупорная антенна;
- зеркальная параболическая антенна;
- антенна волновой канал;
- кольцевая щелевая антенна;
- диэлектрическая стержневая антенна;
- спиральная антенна с осевым излучением;
- резонансная волноводно-щелевая антенна с круговой поляризацией;
- антенная решетка;
- микрополосковая круглая антенна с линейной поляризацией;
- микрополосковая прямоугольная антенна с круговой поляризацией;
- спиральная антенна с осевым излучением.

3 УЧЕБНО - МЕТОДИЧЕСКИЕ МАТЕРИАЛЫ ПО ДИСЦИПЛИНЕ

3.1 Основная литература:

- 1. Антенны и устройства СВЧ. Часть 1. Устройства СВЧ: Учебное пособие/ Шостак A.C. 2012. 124 с. Электронный ресурс http:// edu.tusur.ru/training/publications/1219
- 2. Антенны и устройства СВЧ. Часть 2. Антенны: Учебное пособие/ Шостак А.С. 2012. 169 с. Электронный ресурс http:// edu.tusur.ru/training/publications/1285.

3.2 Дополнительная литература

- 1. Устройства СВЧ и антенны / Под ред. Д.И. Воскресенского. Изд 2-е доп. и перераб. М.: Радиотехника, 2006, 376 с.. Всего 20: анл (1), счз 1(2). счз 5 (2), аул (13)
- 2. Сазонов Д.М. Антенны и устройства СВЧ. М. : Высшая школа, 1988, 432 с. Всего 25: анл (6), счз 1(2). счз 5 (2), аул (15)

3.3 Перечень методических указаний

- 1. Антенны и устройства СВЧ: Методическое пособие по курсовому проектированию/ Шостак А.С. 2012. 61 с. Электронный ресурс http://edu.tusur.ru/training/publications/1204.
- 2. Техническая электродинамика, Основы электродинамики и распространение радиоволн, Антенны и устройства СВЧ: Лабораторный практикум / Шостак А.С., Корогодов В.С., Козлов В.Г.. 2012. 137 с. Электронный ресурс http:/edu.tusur.ru/training/publications/1319.
- 3. Антенны и устройства СВЧ: Учебный практикум/ Козлов В.Г. -2012. 68 с. Электронный ресурс http:// edu.tusur.ru/training/publications/1433.
- 4. Техническая электродинамика: Учебный практикум / Шостак А.С., Корогодов В.С., Козлов В.Г.. 2012. 137 с. Электронный ресурс http:/edu.tusur.ru/training/publications/1320.

4 ВИДЫ САМОСТОЯТЕЛЬНОЙ РАБОТЫ

Самостоятельная работа студентов (41 час, подготовка к экзамену – 36 часов) регламентируется регламентируется рабочей программой по дисциплине.

Рейтинговая раскладка по самостоятельной работе (сводные данные) в шестом семестре показана в Таблице 1

Таблица 1 (экзамен, лекции 32 часа, практические занятия 16 часов, лабораторные работы 16 часов)

Наименование работы	Кол. часов	Форма отчетности и контроля	Рейтинговые баллы (максимум)
1 Проработка лекционного материала	4	Тестовый контроль на лекции (3 по 3 баллов - ТКЛ	9
		Контроль посещаемости лекций (16 по 0,5 баллов,) - КПЛ	8

		Компонент своевременности (3 + 3+3 баллов)	9
2. Подготовка к практическим занятиям, работа на занятиях	8	Оценивание работы на практических занятиях (8 по 3 балла) - ПЗ	24
3. Подготовка к лабораторным работам, оформление отчетов, защита отчетов.	8	Оформлении отчетов, защита отчетов (4 по 5 баллов)	20
Всего часов:	20	Всего баллов	70

Раскладка по самостоятельной работе (сводные данные) в седьмом семестре показана в Таблице 2

Таблица 2 (дифференцированный зачет, аудиторные занятия по курсовому проекту 18 часов)

Наименование работы	Кол. часов	Форма отчетности и контроля
Получение задания на	2	Устный отчет на
курсовой проект		консультациях по КП
Подбор и обзор	2	Устный отчет на
литературы		консультациях по КП
Выполнение	7	Устный отчет на
необходимых расчетов		консультациях по КП
по проекту		
Выполнение	4	Устный отчет на
необходимых		консультациях по КП
графических работ		
Полное оформление	4	Устный отчет на
проекта		консультациях по КП
Защита проекта	2	Защита проекта
Всего часов	21	

5 САМОСТОЯТЕЛЬНАЯ РАБОТА СТУДЕНТОВ

5.1 Самостоятельная работа при выполнении практических занятий
Практические занятия по дисциплине выполняются с использованием

учебных пособий [3.3.3, 3.3.4] из перечня учебно-методических материалов по дисциплине

5.1.1 Цель практических занятий и особенности их проведения

Практические (семинарские) занятия направлены на закрепление и расширение знаний, полученных на лекциях и при изучении рекомендованной литературы согласно рабочей программе дисциплины.

Предусмотрены практические занятия с решением задач.

В ходе практических занятий проводится оценивание теоретических знаний и умений студентов по итогам решения задач.

Практические (семинарские) занятия проводятся в увязке с рассмотрением соответствующих вопросов на лекциях.

Содержание практических занятий (7 тем, 16 часов, самостоятельная работа 8 часов)

Форма проведения: практические занятия с решением задач.

5.1.2 Методика проведения.

Пособия [3.3.3, 3.3.4] по каждой теме содержат необходимый теоретический материал для решения типовых задач по темам практических занятий.

План занятия:

- повторение теории по теме занятия;
- практические занятия с решением типовых задач;
- -задание на самостоятельную работу;
- пояснения к следующему занятию.

В разделе 2.3 приведены данные по самостоятельной работы студентов, содержащие наименование работы, названия практических работ с указаниями на соответствующие разделы учебных пособий.

По каждой практической работе указано требуемое количество часов самостоятельной работы

5.2 Самостоятельная работа при выполнении лабораторных работ

Лабораторные работы выполняются с использованием учебного пособия [3.3.2] из перечня учебно-методических материалов по дисциплине.

. Перед выполнением самих лабораторных работ студенты по заданию преподавателя изучают соответствующие теоретические вопросы по теме лабораторной работы, [3.3.2], часть 1, стр.7 – 66.

После успешного освоения теоретического материала студенты сдают своеобразный зачет преподавателю по теории.

После получения зачета по теории студенты приступают к выполнению самой лабораторной работы.

После получения разрешения преподавателя студенты выполняют лабораторную работу. В ходе выполнения показывают промежуточные результаты преподавателю. Работа считается выполненной, если преподаватель сделал соответствующую запись в журнале и в черновом отчете студента.

Студенты самостоятельно производят вычисления по полученным результатам измерений данным, рассчитывают погрешности и оформляют отчеты по лабораторным работам.

Отчеты по лабораторным работам должны содержать:

- название и цель работы;
- краткие теоретические материалы по работе;
- структурные схемы измерений необходимых параметров измеряемых устройств;
 - численные значения измеряемых величин;
 - численные характеристики измеряемых устройств;
 - выводы по основным результатам лабораторной работы.

После оформления отчетов о лабораторных работах студенты к назначенному сроку производят подготовку к защите работы.

При защите работы студенты должны показать знания теории, навыки проведения измерений, обработки результатов измерений и расчета погрешностей, а также умение делать обобщающие выводы о проделанной работе.

При общей оценки работы каждого студента учитывается также его активность при подготовке к работе, во время работы и при защите работы.

Общее количество самостоятельной работы составляет 8 часов, 2 часа на каждую работу.

В разделе 2.2 даны наименования лабораторных работ с указаниями страниц в методическом пособии [3.3.2].

Рейтинговая раскладка по самостоятельной работе (сводные данные) в шестом семестре (экзамен, лекции 32 часа, практические занятия 16 часов, лабораторные работы 16 часов) показана в Таблице 1

5.3 Самостоятельная работа при курсовом проектировании

Основная цель курсового проектирования - закрепить и расширить знания, полученные студентами при изучении данного курса, научить на практике использовать полученные знания при проектировании современных антенных устройств и его отдельных частей. Курсовой проект выполняется на основе методического указания [3.3.1].

Курсовой проект представляет собой самостоятельную работу студента, которая завершает изучение дисциплины "Антенны и устройства СВЧ". Каждому студенту выдается индивидуальное задание, в котором указана тема проекта и исходные данные.

Студенты должны произвести технически обоснованный выбор антенны и фидера, выполнить электрический расчет антенно-фидерного устройства, разработать конструкцию одного из его узлов, выработать рекомендации по настройке, проверке и особенностям эксплуатации разрабатываемого устройства.

Материалы проекта должны быть оформлены в виде пояснительной записки объемом в 10 - 20 листов текста и одного - двух листов чертежей.

Пояснительная записка должна содержать обоснование выбора типа антенны и фидера, краткие сведения об антенно-фидерном устройстве и его схему, расчет основных электрических параметров и размеров антенно-фидерного устройства, рекомендации по настройке и измерению основных электрических параметров, а также особенностям эксплуатации разрабатываемого устройства.

Графическая часть проекта должна содержать эскиз или блок - схему антеннофидерного устройства и конструктивный чертеж одного из его узлов (по указанию преподавателя), также диаграмму направленности антенны (по указанию преподавателя).

Перечень рекомендуемых тем курсового проекта и его содержание указаны в разделе 2.4.

Раскладка по самостоятельной работе (сводные данные) при выполнении

курсового проекта показана в Таблице 2.

В Таблице 3 дано распределение баллов в течение седьмого семестра для дисциплины "Антенны и устройства СВЧ" при выполнении курсового проекта

Таблица 3

Элементы учебной деятельности	Максимальный балл на 1-ую КТ с начала семестра	Максимальный балл за период между 1КТ и 2КТ	Максимальный балл за период между 2КТ и на конец семестра	Всего за семестр
Получение задания на курсовой проект	4			4
Подбор и обзор литературы	12			12
Выполнение необходимых расчетов по проекту		18		18
Выполнение необходимых графических работ		4	8	12
Полное оформление проекта			12	12
Компонент своевременности	4	4	4	12
Итого максимум за период:	20	26	24	70
Защита проекта (максимум)				30
Нарастающим итогом	20	46	70	100

6 Виды контроля самостоятельной работы студентов

В соответствии с рабочей программой по дисциплине предусмотрена бальная оценка качества работы студентов в различных видах работ.

Рейтинговая раскладка по самостоятельной работе (сводные данные) в шестом и седьмом семестрах семестре показана в таблицах 2 и 3 соответственно.

Планируются следующие виды контроля самостоятельной работы студентов.

Посещение занятий. Контроль осуществляет староста группы и преподаватель в течение всего семестра, максимальный балл за шестой семестр 8 баллов

Тестовый контроль.

Тестовый контроль знаний студентов по содержанию дисциплины на момент контроля осуществляет три раза в шестом семестре.

В пятый семестре максимальный балл 9 (3 ТКЛ по 3 балла).

Контроль проводится в зависимости от состава группы или на лекциях, или на практических занятиях,

Выборочный контроль знаний студентов проводится также во время лекционных и практических занятий.

Выполнение и защита лабораторных работ осуществляется и оценивается

преподавателем, исходя из качества работы студентов на лабораторных работах, степени полноты отчетов по темам. Учитывается также качество защиты лабораторной работы. Максимальный балл за семестр – 20 (4 лаб. работы по 5 баллов).

Контроль качества выполнения заданий по темам практических занятий осуществляется преподавателем, исходя из качества работы студентов на практических занятиях, по отчетам о выполнении заданий студентами и по результатам контрольных работ. Максимальный балл за семестр – 24 (8 занятий по 3 баллов).

Осуществляется контроль за своевременностью выполнения различных видов работ, максимальный балл за шестой семестр (премия) -9 (3+3+3) баллов).

При выполнении курсового проекта компонент своевременности 12 баллов (4+ 4+ 4 балла).

Перечень вопросов для тестового контроля знаний студентов перед контрольными точками 1, 2 и на конец шестого семестра.

- 1. Линии передачи энергии в радиосистемах и устройствах.
- 2. Основные параметры линии передачи.
- 3. Основные типы линий передачи.
- 4. Влияние режима линии передачи на коэффициент полезного действия и пропускающую мощность.
 - 5. Полные нормированные напряжения и токи в линии передачи.
 - 6. Нормированные сопротивления и проводимости.
 - 7. Коэффициент отражения, определение КСВ и КБВ.
 - 8. Трансформация сопротивлений в линиях передачи.
 - 9. Узкополосное согласование в линиях передачи.
 - 10. Согласованные нагрузки.
 - 11. Изоляторы для коаксиального тракта.
 - 12. Реактивные нагрузки.
 - 13. Разъемы и сочленения в трактах СВЧ.
 - 14. Повороты линий передачи.
 - 15. Отражающие препятствия в волноводных трактах
 - 16. Диафрагмы.
 - 17. О рассогласовании тракта СВЧ с многими нерегулярностями.
 - 18. Матрица рассеяния многополюсника СВЧ.
 - 19. Матрицы сопротивлений и проводимостей.
 - 20. Соотношения между матрицами многополюсника.
 - 21. Идеальные и реальные матрицы многополюсника.
 - 22. Симметричные многополюсники.
 - 23. Принцип декомпозиции в анализе многополюсных устройств СВЧ.
- 24. Анализ четырехполюсников и двухполюсников каскадной структуры с помощью матриц передачи.
 - 25. Метод декомпозиции симметричных восьмиполюсников.
 - 26. Типы направленных ответвителей.
 - 27. Кольцевые направленные ответвители.
 - 28. Согласованные шестиполюсные делители мощности.
 - 29. Матрица рассеяния каскадно соединенных многополюсников.
 - 30. Прототипы фильтров с оптимальными частотными характеристиками.
 - 31. Замены частотной переменной при расчетах фильтров.
 - 32. Типы фильтров СВЧ.
 - 33. Применение отрезков линий передачи в фильтрах СВЧ.

- 34. Резонаторы на отражающих препятствиях в линии передачи.
- 35. Фильтры СВЧ с четвертьволновыми и непосредственными связями соседних резонаторов.
 - 36. Ступенчатые переходы для широкополосного согласования активных нагрузок.
 - 37. Плавные переходы.
 - 38. О широкополосном согласовании комплексных нагрузок.
 - 39. Классификация управляющих устройств СВЧ.
 - 40. Механические коммутаторы, фазовращатели и аттенюаторы.
 - 41. Антенные переключатели на газовых разрядниках.
 - 42. Коммутационные диоды СВЧ.
 - 43. Выключатели СВЧ на коммутационных диодах.
 - 44. Дискретные фазовращатели на коммутационных диодах.
 - 45. Классификация ферритовых устройств СВЧ.
 - 46. Невзаимные и управляющие устройства с ферритами.
 - 47. Устройства на основе эффекта Фарадея.
 - 48. Устройства с поперечно намагниченными ферритами.
 - 49. Фазовые циркуляторы.
 - 50. Ферритовые фазовращатели.
 - 51. Перестраиваемые ферритовые фильтры.
 - 52. Устройства на поверхностных акустических волнах.
 - 53. Принцип работы линии задержки.
 - 54. Полосовые фильтры.
 - 55. Усилители СВЧ сигналов на акустических волнах.
 - 56. Генераторы на поверхностных акустических волнах.
 - 57. Приборы операции свертки и фильтрации в реальном масштабе времени.
 - 58. Спиновые волны.
 - 59. Спиновые волны в ограниченной среде магнитостатические волны.
 - 60. Линии задержки на магнитостатических волнах.
 - 61. Стабилизированные по частоте генераторы.
 - 62. Генераторы сдвига частоты.
 - 63. СВЧ фильтры на магнитостатических волнах.
 - 64. Электрический вибратор.
 - 65. Распределение тока и заряда вдоль вибратора.
 - 66. Диаграмма направленности антенны.
- 67. Сопротивление излучения и коэффициент направленного действия (КНД) вибратора.
 - 68. Магнитный вибратор.
 - 69. Щелевые антенны.
 - 70. Метод наводимых ЭДС. Теорема перемножения.
 - 71. Конструкции вибраторных антенн.
 - 72. Турникетные антенны.
 - 73. Полосковые и микрополосковые антенны.
 - 74. Принципы построения частотно независимых антенн.
 - 75. Спиральные антенны.
 - 76. Логопериодические антенны.
 - 77. Линейные излучающие системы.
 - 78. Множитель направленности.
 - 79. КНД идеального линейного излучателя.
- 80. Способы подавления побочных главных максимумов в диаграмме направленности (ДН).
 - 81. КНД линейной антенной решетки. Коэффициент усиления.
 - 82. Антенны бегущей волны.

- 83. Понятие плоского синфазного раскрыва.
- 84. Сканирование луча в плоскости раскрыва.
- 85. Плоские фазированные антенные решетки.
- 86. Диаграмма направленности антенной решетки.
- 87. Апертурные антенны.
- 88. Рупорные антенны.
- 89. Линзовые антенны.
- 90. Зеркальные антенны и их разновидности.
- 91. Типы облучателей.