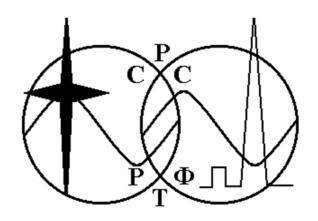
Министерство образования и науки Российской Федерации **Федеральное бюджетное государственное образовательное учреждение высшего профессионального образования**


ТОМСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ СИСТЕМ УПРАВЛЕНИЯ И РАДИОЭЛЕКТРОНИКИ (ТУСУР)

Кафедра средств радиосвязи

МЕЛИХОВ С.В., ВЕРБИЛО И.М.

ТРЕХКАНАЛЬНАЯ СИСТЕМА СВЯЗИ НА ОСНОВЕ ШУМОПОДОБНЫХ СИГНАЛОВ

Учебно-методическое пособие по лабораторной работе в пакете SIMULINK компьютерной среды MATLAB по дисциплинам «Радиосвязь и радиовещание», «Системы радиовещания» для студентов радиотехнических специальностей

Томск – 2012

Мелихов С.В., Вербило И.М. Трехканальная система связи на основе шумоподобных сигналов. Учебно-методическое пособие по лабораторной работе в пакете SIMULINK компьютерной среды МАТLAВ по дисциплинам «Радиосвязь и радиовещание», «Системы радиовещания» для студентов радиотехнических специальностей. - Томск: Томский государственный университет систем управления и радиоэлектроники. 2012. – 17 с.

Приводятся краткие теоретические сведения и аналитические выражения, необходимые для исследования трехканальной системы связи на основе шумоподобных сигналов. Представлена методика проведения экспериментального исследования на основе использования компьютерной среды Design Center (PSpice).

[©] Мелихов С.В., Вербило И.М. 2012

[©] Томский государственный университет систем управления и радиоэлектроники, 2012

Цель работы:

изучение принципа формирования *шумоподобных сигналов* (ШП-сигналов) и особенностей работы системы связи на их основе;

приобретение навыков работы с инструментом визуального моделирования SIMULINK пакета MATLAB.

1 КРАТКИЕ ТЕОРЕТИЧЕСКИЕ СВЕДЕНИЯ

1.1 Понятие "шумоподобные сигналы". ШП-сигналы или сигналы с расширенным (распределенным) спектром относятся к технологии CDMA {Code Division Multiple Access - множественный (многостанционный) доступ с кодовым разделением каналов}.

Важным параметром ШП-сигналов является база сигнала.

Базой импульсного сигнала называют произведение ширины его спектра Δf на длительность единичного элемента T_b :

$$B = \Delta f \cdot T_h. \tag{1}$$

Для информационного сигнала с импульсно-кодовой модуляцией (ИКМ) без возвращения к нулю (БВН) $\Delta f_{H\!K\!M}$ =1 / T_b , следовательно B =1 .

Признаком импульсного ШП-сигнала является большая величина базы (B>>1). Для получения B>>1 спектр передаваемого информационного сигнала искусственно расширяется. Широкое применение на практике нашли два метода расширения спектра: метод *прямой последовательности* (DS - Direct Sequence) и метод *скачков по частоте* (FH - Frequency Hopping). Здесь рассмотрен принцип формирования, передачи и приема ШП-радиосигнала на основе метода прямой последовательности.

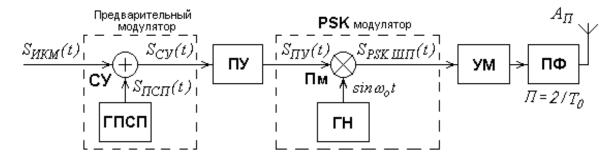


Рисунок 1 - Структурная схема передатчика ШП-радиосигнала с двухпозиционной фазовой манипуляцией. Включение блока ПУ между ГПСП и СУ не изменит свойств схемы

1.2 Формирование ШП-радиосигнала по методу прямой последовательности. Структурная схема передатчика ШП-радиосигнала, формируемого по методу прямой последовательности, изображена на рисунке 1. В суммирующем устройстве (СУ) происходит сложение по $mod\ 2$ битов информационной последовательности $S_{IJKM}(t)$ и символов псевдослучайной последовательности (ПСП) $S_{IICII}(t)$ от генератора псевдослучайной последовательности (ГПСП). Блок преобразования уровней (ПУ) производит преобразование уровней сигнала $S_{CV}(t)$ и образует сигнал $S_{IIV}(t)$. В PSK-модуляторе осуществляется двухпозиционная фазовая манипуляция (Phase Shift Keying - PSK) несущей частоты $\omega_0 = 2\pi f_0$ для получения фазоманипулированного шумоподобного радиосигнала $S_{PSKIIIII}$. Случай двухпозиционной

PSK ($BPSK-Binary\ Phase\ Shift\ Keying$) здесь выбран для простоты рассмотрения; в принципе, возможно использование многопозиционной PSK, а также других видов модуляции.

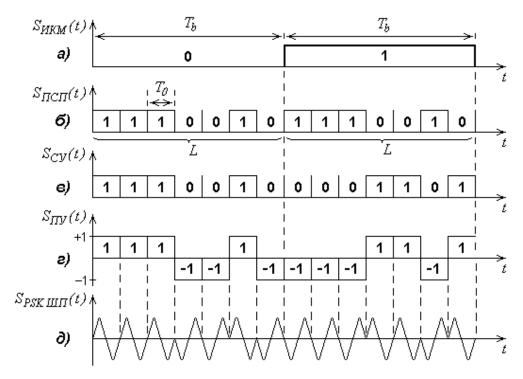


Рисунок 2 - К принципу формирования шумоподобного радиосигнала по методу прямой последовательности

При использовании метода *прямой последовательности* используется *предварительная модуляция*: каждый бит информационного сигнала $S_{H\!K\!M}(t)$ (рисунок 2,a) накладывается путем сложения по $mod\ 2$ на поток из L "расширяющих" символов *периодической псевдослучайной последовательности* $S_{\Pi\!C\!\Pi}(t)$ (рисунок 2, δ). При этом длительность единичного элемента импульсного сигнала уменьшается в L раз ($T_0 = T_b / L$), что приводит к расширению спектра импульсного сигнала также в L раз: $\Delta f_{CV} = \Delta f_{I\!M\!K\!M} \cdot L$. Очевидно, что после предварительной модуляции база информационного импульсного сигнала $S_{CV}(t)$ (рисунок 2, ϵ)

$$B = L = \Delta f_{CV} \cdot T_b = \Delta f_{CV} / \Delta f_{IJKM} = T_b / T_0.$$
 (2)

Двухполярный сигнал $S_{\Pi Y}(t)$ (рисунок 2,e) управляет начальной фазой напряжения несущей частоты $U\sin(\omega_0\,t+\varphi_0\,)$: $\varphi_0=0^o\,$, если $S_{\Pi Y}=1\,$; $\varphi_0=180^o\,$, если $S_{\Pi Y}=-1\,$. Вид ШП-радиосигнала с фазовой манипуляцией на выходе PSK-модулятора $\{S_{PSK\,\Pi\Pi\Pi}(t)\}$ изображен на рисунке 2,d. Для упрощения каждый единичный элемент длительностью T_0 представлен одним периодом несущей частоты (на практике количество периодов в элементе гораздо больше).

Ширина спектра шумоподобного радиосигнала

$$\Delta f_{PSK\ IIIII} = 2 / T_0. \tag{3}$$

При приеме ШП-радиосигнала необходимы две ступени демодуляции: сначала нужно провести демодуляцию расширяющего кода (демодуляцию ПСП), а затем - демодуляцию информационного сигнала.

Демодуляция ПСП проводится в приемнике при помощи коррелятора, выделяющего выброс автокорреляционной функции периодической ПСП.

1.3 Автокорреляционная функция знакопеременных периодических

M-**последовательностей.** Рассмотрим понятие *автокорреляционной функции* (АКФ) сигнала.

Под АКФ сигнала S(t) понимают величину

$$R(\tau) = \int_{-\infty}^{\infty} S(t) S(t - \tau) dt, \qquad (4)$$

где au – некоторый временной сдвиг функции S(t) .

Автокорреляционная функция $R(\tau)$ характеризует степень связи (корреляции) сигнала S(t) со своей копией, сдвинутой по оси времени на величину τ .

На рисунке 3 показано построение АКФ для одиночного импульсного сигнала с амплитудой S. Сдвинутый на величину τ сигнал $S(t-\tau)$ показан на рисунке 3, δ , произведение $S(t)S(t-\tau)$ - на рисунке 3, δ , зависимость $R(\tau)$ - на рисунке 3, δ .

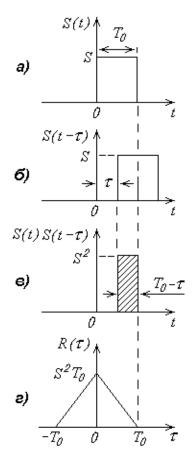


Рисунок 3 - К понятию автокорреляционной функции

АКФ имеет максимум (выброс) при $\tau=0$, т.к. при отсутствии временного сдвига сигнал коррелирован сам с собой. Максимальное значение АКФ равно энергии сигнала E:

$$R(0) = \int_{0}^{T_0} S^2(t) dt = S^2 T_0 = E.$$
 (5)

С увеличением au АКФ R(au) убывает и при сдвиге сигнала S(t- au) на величину, превышающую длительность импульса T_0 , обращается в ноль. АФК является четной функцией.

Вид (или порядок следования символов) *периодической ПСП* формируется в ГПСП таким образом, чтобы ее АКФ имела *максимальные и периодические выбросы при временных сдвигах*

$$\tau = 0 \pm k L T_0, \tag{5}$$

где L-длина ПСП; k=0,1,2,...

АКФ ПСП имеет максимальные выбросы в том случае, если последовательность является знакопеременной, т.е. состоит из символов "-1" и "1". Для получения знакопеременной последовательности необходимо заменить символы "0" бинарной последовательности на символы "-1" (см. рисунок 2, ϵ). Эту операцию в схеме, изображенной на рисунке 1, проделывает блок ПУ (заметим, что включение блока ПУ между ГПСП и СУ не изменит свойств схемы).

Условию (11.63) удовлетворяют периодические ПСП максимальной длины (M- последовательности или последовательности Хаффмена), последовательности Голда (Gold-коды), Касами и Уолша и др. Рассмотрим принцип формирования периодических M- последовательностей.

1.4 Формирование М-последовательностей и их свойства. В качестве генераторов периодических бинарных (имеющих уровни "0" и "1") M—последовательностей используют цифровые автоматы, содержащие в своем составе n—разрядный регистр сдвига на D—триггерах и цепь обратной связи с генератором бита четности (ГБЧ, рисунок 4,а). Регистром сдвига управляют тактовые импульсы с частотой следования $1/T_0$. ГБЧ представляет из себя набор сумматоров по $mod\ 2$ выходных сигналов только от определенных триггеров регистра сдвига (поэтому соединения выходов триггеров с соответствующими сумматорами показаны пунктирными линиями).

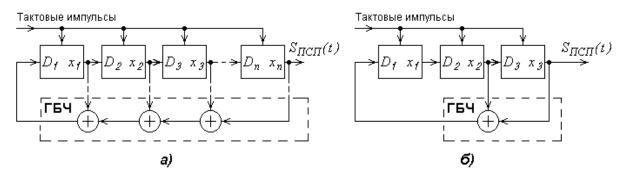


Рисунок 4 - a - обобщенная структурная схема ГПСП - цифрового автомата формирования периодических бинарных M - последовательностей; δ - генератор псевдослучайной 7 — символьной последовательности, изображенной на рис.11.51, δ

На рисунке 4, δ приведена структурная схема ГПСП, генерирующего семисимвольную M- последовательность (вид этой последовательности показан на рисунке 2, δ). Рассмотрим принцип работы такого ГПСП.

Пусть в исходный момент времени в регистр сдвига было введено число 110 (число может быть любым, но только не 000). С поступлением первого тактового импульса (ТИ) в первую ячейку запишется цифра "1", т.к. сумма по $mod\ 2$ второго и третьего разрядов равна единице. Во вторую ячейку перейдет цифра "1", ранее записанная в первой ячейке; в третью ячейку перейдет цифра "1", ранее записанная во второй ячейке. Эти состояния ячеек приведены в первой строке таблицы 1. С поступлением последующих ТИ процесс смены состояний ячеек отражен в последующих строках таблицы. С поступлением восьмого ТИ (пятнадцатого, двадцать второго и т.д.) цикл повторяется. В результате на выходе генератора образуется периодическая ПСП вида 1110010, с длиной L=7 и периодом $T_b=7\ T_0$.

Таблица 1 - Состояние ячеек регистра сдвига ГПСП (рисунок 4,6)

Номер ТИ	Первая	Вторая	Третья
	ячейка	ячейка	ячейка
1	1	1	1
2	0	1	1
3	0	0	1
4	1	0	0
5	0	1	0
6	1	0	1
7	1	1	0
8	1	1	1

В общем случае длина M – последовательностей

$$L = 2^{n} - 1$$
, (6)

а их количество

$$N = \varphi(L) / n, \tag{7}$$

где $\varphi(L)$ – функция Эйлера.

Для бинарных ПСП (состоящих из символов "0" и "1")

$$\varphi(L) = (L-1), \tag{8}$$

если L – простое число, т.е. число, которое нельзя представить в виде произведения других целых чисел (например, $7=2^3-1$, $31=2^5-1$, $127=2^7-1$, $8191=2^{13}-1$ и т.д.), и

$$\varphi(L) = P < (L-1), \tag{9}$$

где P-число чисел в ряду $(1,2,\dots,L-1)$, взаимно простых с числом L (т.е. не имеющих общих делителей, кроме единицы). Например, при n=4 L=2 $^4-1=15$ и взаимно простыми числами с L являются числа: 1,2,4,7,8,11,13,14 (P=8). Остальные числа в ряду $(1,2,\dots,L-1)$ имеют общие делители с числом L=15 (эти числа: 3,5,6,9,10,12). Следовательно, при n=4 N=P/4=8/4=2.

В таблице 2 приведены характеристики M- последовательностей в зависимости от числа разрядов регистра сдвига цифрового автомата (число n может быть и больше 15). Заметим, что с ростом длины число последовательностей резко возрастает.

M – последовательности обладают следующими свойствами.

Балансное свойство. В одном периоде M- последовательности содержится $2^{(n-1)}-1$ нулей и $2^{(n-1)}$ единиц.

Свойство сдвига при сложении по $mod\ 2$. Сумма по $mod\ 2$ M – последовательности и ее произвольного циклического сдвига представляет собой другой циклический сдвиг исходной M – последовательности.

Свойства периодической АКФ M- последовательностей. Если в бинарной M- последовательности, состоящей из символов (0,1), заменить символы 0 на символы 1 и получить последовательность (-1,1), то ее периодическая АКФ удовлетворяет условию (11.63) и определяется выражением:

$$R_{II}(\tau) = \begin{cases} 2^{n} - 1 = L, & \tau = 0 \pm k \ L T_{0}, & k = 0, 1, 2 \dots; \\ -1, & \tau = \pm k \ L T_{0} \pm l T_{0}, & l = 1, 2, \dots, L - 1. \end{cases}$$
 (10)

Из (10) следует, что автокорреляционная функция периодических знакопеременных M – последовательностей является четной функцией и имеет максимальный выброс с периодом LT_0 . Величина выброса пропорциональна длине последовательности L.

Таблица 2 - Длина и число M- последовательностей, а также один из возможных вариантов алгоритма формирования бита четности D_1 в ГБЧ

Число разря-	Длина последова-	Число последовательностей	D_{1} в схеме
дов	тельности (L)	(N)	рис.11.53, <i>а</i>
регистра сдви-			p
га (<i>n</i>)			
3	7	2	$x_2 \oplus x_3$
4	15	2	$x_3 \oplus x_4$
5	31	6	$x_4 \oplus x_5$
6	63	6	$x_5 \oplus x_6$
11	2047	176	$x_9 \oplus x_{10}$
12	4095	144	$x_2 \oplus x_{10} \oplus$
			$\oplus x_{11} \oplus x_{12}$
15	32767	1800	$x_{14} \oplus x_{15}$

В качестве примера определим вид АКФ для 7 – символьной ПСП, изображенной на рисунке 2, δ . Будем считать что в этой последовательности символы "0" заменены на символы "-1" и знакопеременная ПСП имеет вид: S(t)=1 1 1 –1 –1 1 –1 . Расчет значений АКФ такой последовательности при различных временных сдвигах ее копии $S(t-\tau)$ (при $\tau=l\,T_0$) иллюстрируется данными

таблицы 3. Величины периодической АКФ $R_{II}(\tau) = \int\limits_{0}^{7\,T_0} S(t) S(t-\tau) d\,t$ приведены в по-

следнем столбце таблицы, а вид нормированной АКФ $\{R_{\it\Pi_H}(\tau)=R_{\it\Pi}(\tau)/L=R_{\it\Pi}(\tau)/7\}$ - на рисунке 5.

Максимальный выброс $AK\Phi$ периодических ПСП имеет важное значение при их использовании в цифровых системах связи технологии CDMA: два или более сигналов могут переданы одновременно в одной и той же полосе частот, а затем успешно выделены, если их кодовые последовательности представляют собой циклические сдвиги одной M – последовательности на один и более символ.

Заметим, что ШП-радиосигналы могут использоваться и в системах измерения дальности. Точность измерения может быть обеспечена в пределах длительности одного символа ПСП, если в качестве маркера использовать максимальный выброс АКФ.

Таблица 3 - Расчет АКФ 7 - символьной знакопеременной периодической M - последовательности вида S(t) = 1 1 1 -1 -1 1 -1

Величина сдвига ($ au = l \ T_0$)	Последовательность $S(t- au)$	S(t)S(t- au) (посимвольное умножение)	$R_{II}(au)$ {сумма символов $S(t)S(t- au)$ }
0	1 1 1 –1 –1 1 –1	111111	7
T_0	-1 1 1 1-1-1 1	_1 1 1 _1 1 _1 _1	-1
2 T ₀	1 –1 1 1 1 –1 –1	1 –1 1 –1 –1 1	-1
3 T ₀	_1 1_1 1 1 1_1	-1 1-1-1-1 1 1	-1
4 T ₀	-1-1 1-1 1 1 1	_1 _1 1 1 _1 1 _1	-1

5 T ₀	1 –1 –1 1 –1 1 1	1 –1 –1 –1 1 1 –1	-1
6 T ₀	1 1 –1 –1 1 –1 1	1 1 –1 1 –1 –1 –1	-1
7 T ₀	1 1 1 –1 –1 1 –1	1 1 1 1 1 1 1	7
8 T ₀	-1 1 1 1-1-1 1	-1 1 1-1 1-1-1	-1

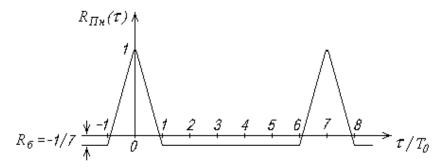


Рисунок 5 - Нормированная АКФ знакопеременной периодической 7 – символьной M – последовательности

На практике используются Gold-коды, число которых при заданной длине L значительно больше, чем число M- последовательностей. Gold-коды получают сложением по $mod\ 2$ двух M- последовательностей (m=2), одна из которых сдвигается по времени относительно другой на 1,2,... L символов. Число Gold-кодов оказывается равным

$$N_{Gold} = C_N^m = \frac{N!}{(N-m)!m!}.$$
 (11)

1.5 Корреляционный приемник ШП-радиосигнала. Структурная схема приемника ШП-радиосигнала, сформированного с использованием метода прямой последовательности, приведена на рисунке 6. С выхода радиотракта приемника (РТПР), имеющего полосу пропускания $\Pi_{\Pi P} = \Delta f_{PSK \, IIIII} = 2 \ / \ T_0$, ШП-радиосигнал поступает на коррелятор. В состав коррелятора входят: перемножитель (Пм); генератор псевдослучайной последовательности (ГПСП); преобразователь уровней (ПУ); узкополосный полосовой фильтр (УПФ) с полосой пропускания $\Pi_{УПФ} = 2 \ / \ T_b$. ГПСП приемника генерирует точно такую же ПСП, что и ГПСП передатчика. Работой ГПСП и PSK-демодулятора управляет система синхронизации (ССНХР). Главное условие нормальной работы коррелятора - строгое согласование временных параметров принимаемого и опорного сигнала. ССНХР, как правило, содержит несколько следящих систем фазовой и частотной автоподстройки и систему слежения за задержкой сигнала.

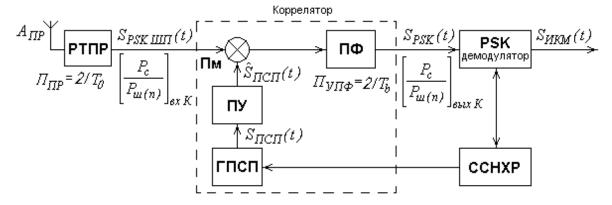


Рисунок 6 - Структурная схема приемника ШП-радиосигнала

Первая ступень демодуляции широкополосного шумоподобного PSK-радиосигнала, имеющего длительность единичного символа T_0 и ширину спектра $\Delta f_{PSK\ IIIII} = 2 \ / \ T_0$, происходит в корреляторе. Если порядок следования нулей и единиц ШП-радиосигнала и генерируемой в приемнике ПСП совпадают (ШП-радиосигнал является согласованным), то на выходе ПМ образуется узкополосный информационный PSK-радиосигнал с длительностью единичного символа T_b и шириной спектра $\Delta f_{PSK} = 2 \ / \ T_b$. Этот процесс "демодуляции расширяющего кода" изображен на рисунке T_a , f_a , f_b .

Ширина спектра узкополосного PSK -радиосигнала на выходе ΠM в L разменьше, чем ширина спектра широкополосного $U\Pi$ - радиосигнала на входе ΠM :

$$\Delta f_{PSK\ IIIII} / \Delta f_{PSK} = T_b / T_0 = L. \tag{12}$$

Узкополосный PSK – радиосигнал проходит через УПФ (полоса пропускания которого $\Pi_{Y\Pi\Phi} = \Delta f_{PSK} = 2 \ / \ T_b$) и попадает на PSK – демодулятор, где осуществляется вторая ступень демодуляции - выделение информационного сигнала (рисунок 7,г).

Если на Пм коррелятора попадают еще какие-либо несогласованные широко-полосные ШП-радиосигналы (широкополосные помехи), модулированные другими кодами (например, такими же M-последовательностями, но сдвинутыми во времени на один и более символов), то на выходе Пм они превращаются в хаотическую последовательность коротких импульсов с широким спектром. В результате через УПФ проходит лишь часть энергии несогласованных сигналов, причем эта часть тем меньше, чем больше длина L кодирующей (декодирующей) ПСП. Заметим, что чем большее число несогласованных ШП-радиосигналов имеется на входе приемника, тем хуже качество приема полезного сигнала.

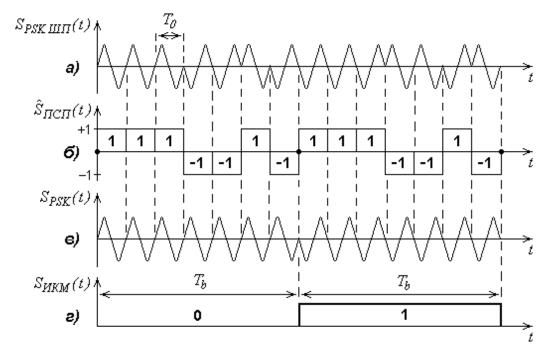


Рисунок 7 - К принципу демодуляции шумоподобного радиосигнала

Если на входе Пм имеется *узкополосная помеха* (например, гармоническая помеха, характеризуемая одной спектральной линией), то после ее перемножения с ПСП на выходе Пм образуется широкополосный сигнал с практически равномерным спектром. Лишь малая часть энергии этого широкополосного сигнала пройдет через УПФ коррелятора. Следовательно, узкополосная помеха ослабляется коррелятором тем больше, чем больше длина L кодирующей (декодирующей) ПСП.

Если на входе Π м имеется помеха в виде широкополосного теплового <math>шума, то после ее перемножения с Π С Π на выходе Π м образуется шумовая помеха с изменяющейся полярностью. Изменение полярности шумовой помехи не оказывает влияния на ее спектральную плотность. Следовательно, шумовая широкополосная помеха ослабляется коррелятором тем больше, чем больше длина L кодирующей (декодирующей) Π С Π .

Таким образом, в корреляторе приемника обеспечивается как кодовое выделение полезного информационного сигнала, так и запас помехоустойчивости к помехам различного типа.

Улучшение отношения сигнал/шум (сигнал/помеха) коррелятором зависит от отношения полосы пропускания радиотракта приемника и полосы пропускания фильтра коррелятора и, следовательно, определяется длиной кодирующей (декодирующей) ПСП:

$$G_{u(n)}[\partial E] = 10 \lg \frac{[P_c / P_{u(n)}]_{6blx K}}{[P_c / P_{u(n)}]_{6x K}} \approx 10 \lg (\Pi_{\Pi P} / \Pi_{V \Pi \Phi}) = 10 \lg L.$$
 (13)

Если, например, используется ПСП с длиной L=32767, то $G_{uu(n)}\approx 45\ \partial E$. Это означает, что при $[P_c\ /\ P_{uu(n)}]_{sыx\,K}=12\ \partial E$ величина $[P_c\ /\ P_{uu(n)}]_{sx\,K}=-33\ \partial E$, т.е. прием полезного ШП-радиосигнала возможен при его уровне на входе приемника много меньшем, чем уровень шумов и помех (отношение C/U на входе приемника связано с отношением C/U на выходе радиотракта приемника формулой

$$[P_c / P_m]_{ex \Pi P} = [P_c / P_m]_{ex K} - N_{\Pi P},$$
 (14)

где $N_{\mathit{\PiP}} \approx (0,2...6) \partial \mathcal{B}$ – коэффициент шума радиотракта современных приемников).

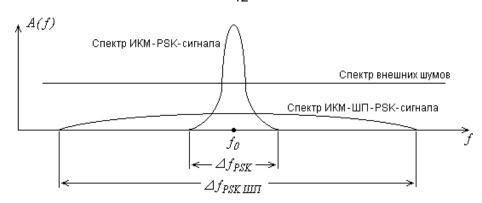


Рисунок 8 - Огибающие спектров узкополосного *PSK*-сигнала, шумоподобного *PSK*-сигнала, внешних шумов

Заметим, однако, что использование ШП-радиосигналов (технологии CDMA) не дает никаких преимуществ с точки зрения повышения реальной чувствительности приемника по сравнению с технологиями FDMA и TDMA. В самом деле, расширение спектра (увеличение базы) сигнала при его постоянной энергии приводит к уменьшению интенсивности спектральных компонентов, распределяющихся в полосе $\Delta f_{PSK\,IIII}$ (рисунок 8). Интенсивность спектральных компонентов ШП-радиосигнала может быть существенно меньше, чем уровень природных и индустриальных шумов (передаваемый ШП-радиосигнал становится энергетически "скрытным"). При его приеме коррелятор сужает расширенный спектр сигнала, интенсивность спектральных компонентов сигнала при этом возрастает до прежнего уровня. К внешним принятым шумам добавляются собственные шумы радиотракта приемника (так же, как и при приеме сигналов FDMA или TDMA). Следовательно, при прочих равных условиях отношение C/U на входе демодулятора приемника широкополосного ШП-сигнала будет такое же, как и на входе демодулятора приемника, например, узкополосного PSK-сигнала.

На основе изложенного сформулируем преимущества и особенности *CDMA*-радиосвязи на основе шумоподобных сигналов.

- 1). Энергетическая скрытность из-за низкого уровня спектральной плотности ШП-радиосигналов.
- 2). Защищенность связи от несанкционированного доступа за счет кодирования информационных сигналов псевдослучайными последовательностями.
- 3). Повышенная помехоустойчивость приемных систем к различному виду помех, в том числе к воздействию преднамеренных помех.
- 4). Постепенное уменьшение отношения *сигнал/помеха* при увеличении числа пользователей, одновременно занимающих один и тот же *радиоканал* (ограниченную полосу частот). Это приводит к постепенному ухудшению качества связи, проявляющемуся в возрастании среднего количества цифровых ошибок (щелчков при приеме звуковых сигналов) за определенный промежуток времени.
- 5). Отсутствие жесткого ограничения количества одновременно работающих в радиоканале пользователей в отличие от технологий *FDMA* и *TDMA*. Однако, платой за это является ухудшение качества связи при одновременной работе многих пользователей в одном радиоканале.

2 ОПИСАНИЕ ИНСТРУМЕНТА ВИЗУАЛЬНОГО МОДЕЛИРОВАНИЯ SIMULINK СРЕДЫ MATLAB

2.1 Общая характеристика пакета SIMULINK. Пакет SIMULINK позволяет осуществлять исследование (моделирование) поведения динамических нелинейных

систем. Ввод характеристик исследуемых систем производиться в диалоговом режиме путем графической сборки схемы соединений элементарных стандартных звеньев. В результате такой сборки образуется модель исследуемой системы, которую называют S-моделью. Модель хранится в файле с расширением *.mdl.

Создание моделей в пакете SIMULINK основано на использовании технологии Drag-and-Drop ("перетащи и оставь"). В качестве "кирпичиков" для построения S-модели применяются блоки, хранящиеся в библиотеке SIMULINK. Любая S-модель может иметь иерархическую структуру, т.е. состоять из моделей более низкого уровня, причем число уровней иерархии практически не ограничено. В ходе моделирования имеется возможность наблюдать за процессами, происходящими в системе. Для этого используются специальные смотровые окна, входящие в библиотеку SIMULINK.

2.2 Запуск пакета SIMULINK. После вызова MATLAB из среды WINDOWS на экране появляется командное окно среды MATLAB.

Запуск пакета SIMULINK можно произвести из командного окна MATLAB, выбрав команду **New Model** (новая модель) из меню **File** (файл) или нажав соответствующую пиктограмму в панели инструментов.

При запуске SIMULINK открываются два окна:

- пустое окно **untitled** (заготовка для создания новой S-модели, MDL-файла или схемного изображения моделируемой системы);
 - окно Library: simulink с перечнем основных разделов библиотеки SIMULINK.

Оба окна имеют сходную структуру и содержат строку меню, панель инструментов и рабочее поле.

Меню **File** включает команды работы с MDL-файлами, меню **Edit** (правка) - команды редактирования блок-схемы и работы библиотекой, а меню **View** (вид) - команды изменения внешнего вида окна. В меню **Simulation** (моделирование) находятся команды управления моделированием, а в меню **Format** (формат) - команды редактирования формата (внешнего вида) блока схемы и блок-схемы в целом.

2.3 Библиотека блоков. Библиотека блоков SIMULINK представляет собой набор визуальных объектов, при помощи которых можно, соединяя модули линиями функциональной связи, составлять блок-схему любого устройства.

Библиотека блоков разбита на семь разделов. Шесть из них являются основными и не могут изменяться пользователем:

- Sources (источники);
- Sinks (приемники);
- Discrete (дискретные элементы);
- Linear (линейные элементы);
- Nonlinear (нелинейные элементы);
- Connections (связи или соединения).

Блоки, входящие в раздел **Sources**, предназначены для формирования сигналов, обеспечивающих управление работой S-модели в целом или отдельных ее частей.

Блоки, собранные в разделе **Sinks**, имеют только входы и не имеют выходов. Они используются как смотровые окна при моделировании. В данной работе используется блок (осциллограф) с одним входом. Блок **Scope** выводит на монитор график зависимости исследуемого сигнала от модельного времени. Для настройки параметров блока **Scope** (после установки его в поле сборки схемы) следует дважды щелкнуть левой кнопкой мыши (ЛКМ) на его изображении. В результате откроется окно **Scope**. Размер и пропорции этого окна можно изменять произвольно, используя мышь.

Для управления параметрами графиков и выполнения над ними различных действий в окне имеется панель инструментов, содержащая 7 пиктограмм. Их на-

значение:

- изменение масштаба осей графика;
- изменение масштаба по горизонтальной оси графика;
- изменение масштаба по вертикальной оси графика;
- автошкалирование;
- сохранение установленного масштаба осей;
- вызов окна настройки параметров блока **Scope**;
- печать содержимого окна **Scope**.

Первые три пиктограммы являются альтернативными, т. е. в каждый момент времени может быть активна лишь одна из них. Первые пять пиктограмм не активны до тех пор, пока в окне **Scope** нет графика. Активными с самого начала являются лишь последние две пиктограммы.

Нажатие шестой пиктограммы приводит к появлению окна настройки параметров **Properties: Scope.** Это окно имеет две вкладки:

- вкладка Axes (оси), которая позволяет установить параметры осей;
- вкладка **Settings** (установки), которая предназначена для ввода значений дополнительных параметров блока **Scope**.

Раздел **Linear** содержит блоки, которые можно условно разделить на две группы:

- блоки общего назначения (сумматоры, интеграторы и т. п.);
- блоки описания линейных стационарных звеньев.

Раздел **Nonlinear** самый большой по составу. Он включает 30 блоков, которые условно можно разбить на следующие группы:

- блоки, реализующие элементарные математические функции;
- блоки, обеспечивающие логическую обработку входного сигнала;
- блоки, аппроксимирующие входной дискретный сигнал тем или иным способом;
- блоки, реализующие функцию задержки входного сигнала;
- блоки-переключатели;
- блоки, используемые при моделировании систем автоматического регулирования и управления.

Чтобы перейти в окно соответствующего раздела библиотеки, которое содержит графические изображения блоков, следует выполнить двойной щелчок ЛКМ на пиктограмме раздела.

Работа по сборке S-модели заключается в том, что изображения выбранных блоков перетаскиваются мышью из окна раздела библиотеки в окно сборки модели, а затем выходы одних блоков соединяются со входами других блоков.

Технология перетаскивания блока такова: установить курсор на изображении блока в окне раздела библиотеки; нажать ЛКМ и, не отпуская кнопку, переместить курсор в поле сборки схемы. Аналогично производятся соединения линиями (проводниками) выходов одних блоков со входами других: необходимо подвести курсор к нужному выходу некоторого блока; нажать ЛКМ и, не отпуская кнопку, переместить курсор ко входу другого блока.

3 ОПИСАНИЕ ЛАБОРАТОРНОГО МАКЕТА

3.1 Передающий тракт. Ниже приведено описание одного канала передающего тракта, другие два канала аналогичны первому.

Блок **Meander** предназначен для формирования импульсов прямоугольной формы. Далее следует **Generator 6x Gold PN 1** (генератор Gold-кода), в котором происходит формирование псевдослучайных шумоподобных последовательностей **PN A**, **PN B** и формируемого с помощью этих последовательностей Gold-кода. Он образуется сложением по $mod\ 2$ последовательности **PN A** и сдвинутой последова-

тельности **PN В**. Разные сдвиги последовательности **PN В** будут давать разные Gold-коды. В исследуемую модель системы связи заложено три канала, но их может быть гораздо больше. Сдвиг последовательности задается двоичным числом в поле **Offset**. Так сдвиг на три символа задается двоичным числом [000011]. В блоке **Generator 6x Gold PN 1** формируются также **Data Epoch** (период следования битов данных). Период **Data Epoch** определяет двоичное число **Divider**. Если двоичное число **Divider** равно длине последовательности, то период **Data Epoch** совпадает с периодом Gold-кода.

Блок **Band Limited White Noise 1** (генератор белого шума с ограниченной полосой) является по сути генератором случайных чисел. Последовательность случайных чисел используется для образования информационных данных, подлежащих дальнейшей передаче. Образование этих данных происходит в блоке **Data** (данные) с приходом на его триггерный вход импульсов **Data Epoch**. Эти импульсы задают частоту следования битов данных.

Образованные данные в блоке **Data** складываются по *mod* 2 с **Gold-**кодом и образуют цифровой поток **Data Code** (кодированные данные).

Цифровой поток **Data Code** управляет блоком **BPSK Modulator 1** (фазовый манипулятор) на выходе которого образуются **RF Data** (радиочастотные данные).

Радиочастотные данные **RF Data**, после выхода из блока **Transmitter**, суммируются в блоке **Sum** с шумовой помехой. Блок **Sum** имитирует линию передачи. С выхода сумматора **Sum** сумма трех ШП-радиосигналов и шума поступает в блок **Receiver** (приемник).

3.2 Приемный тракт. На вход блока Receiver поступают три ШП-радиосигнала и шум. Первая ступень демодуляции осуществляется блоками Product 1.1 (перемножитель) и Filter 1.1 (ФНЧ). В блоке Product 1.1 происходит перемножение ШП-радиосигналов и шума с колебанием несущей частоты Sin, в блоке Filter 1.1 - предварительной фильтрация полученного сигнала. Вторая ступень демодуляции происходит в корреляторе, состоящем их двух блоков: Product 1.2 (перемножитель) и Filter 1.2 (ФНЧ). В блоке Product 1.2 происходит перемножение суммы сигналов с соответствующим Gold-кодом, в блоке Filter 1.2 - окончательная фильтрация полезного сигнала. Далее в блоке Dump Integrator 1 происходит интегрирование сигнала за время между двумя тактовыми импульсами информационной цифровой последовательности. Единичный символ информационной цифровой последовательности запускает блок **Level 1.1** (пороговое устройство).

Необходимо заметить, что сигнал на выходе коррелятора появляется с некоторой временной задержкой, равной длине Gold-кода.

4 РАСЧЕТНОЕ ЗАДАНИЕ

- 4.1 Рассчитать число бинарных М-последовательностей при n = 6.
- 4.2 Рассчитать возможное количество последовательностей (каналов), которые можно сформировать с использованием Gold-кода при n=6.

5 ПОРЯДОК ВЫПОЛНЕНИЯ РАБОТЫ

- 5.1 Ознакомиться с описанием лабораторной работы. Выполнить расчетное задание.
 - 5.2 Продумать ответы на контрольные вопросы.
- 5.3 Запустить пакет SIMULINK, открыть файл с лабораторным макетом Laba.mdl в рабочем каталоге пакета.
 - 5.4 Изучить состав пакета SIMULINK среды MATLAB, уяснить функциональное

назначение и принцип работы блоков трехканальной системы связи.

- 5.5 Произвести запуск макета. Получить, зарисовать и объяснить осциллограммы сигналов во всех контрольных точках передатчика и приёмника (для трех каналов системы).
 - 5.6 Сделать выводы по проделанной работе.

6 ПОЯСНЕНИЯ К ВЫПОЛНЕНИЮ РАБОТЫ

- 6.1 Произвести запуск пакета (см. подраздел 2.2).
- 6.2 Открыть файл Laba.mdl. При его открытии в рабочем поле макета располагаются три блока: трехканальный передатчик (Transmitter); трехканальный приемник (Receiver) и блок формирования белого шума (White Noise). В приемнике имеются три осциллографа (Scope 1 Scope 3). С их помощью можно наблюдать осциллограммы напряжений в характерных точках схемы.

После двойного щелчка ЛКМ по иконке **Transmitter** появится меню, состоящее из следующих компонентов:

- несущая частота (Гц) **25**;
- частота следования символов ППС (Гц) **25**;
- M-последовательность **A [110011]**;
- M-последовательность **В [110010]**;
- задержка М-последовательности В [111110] (для 1-го канала);
- задержка М-последовательности В [101010] (для 2-го канала);
- задержка М-последовательности В [001000] (для 3-го канала);
- период следования битов данных (c) **2,52** (при этом двоичное число **Divider - [111111]**).

Работа макета начинается с момента нажатия мышью на иконку **Start** панели инструментов.

Для наблюдения сигналов на экране какого-либо осциллографа необходим двойной щелчок ЛКМ по иконке осциллографа.

Для просмотра содержимого блоков **Transmitter** или **Receiver** необходимо кратковременное нажатие правой кнопки мыши на их иконках. При появлении меню нужно выбрать опцию **Look under mask**, открывающую содержимое выбранного блока.

Для просмотра осциллограмм в контрольных точках макета используется блок(и) **Scope**. Контрольные точки **Point 1 – Point N** обозначены на линиях связи.

Производиться это следующим образом. В открытой **Library: simulink** двойном щелчком ЛКМ открыть **Sinks**, в котором имеется блок **Scope**. **Scope** перетащить ЛКМ в то окно макета, где необходимо просмотреть осциллограммы. Мышью вход блока **Scope** соединить с необходимой точкой схемы (в месте соединения должна быть видна точка). Запустить модель, дожидаться окончания вычислений, и, щелкнув два раза ЛКМ на **Scope**, провести наблюдение результата.

7 КОНТРОЛЬНЫЕ ВОПРОСЫ

- 1. Что называется базой импульсного сигнала?
- 2. Что является признаком шумоподобного импульсного сигнала?
- 3. Как выражается отношение ширины спектра цифрового ШП-радиосигнала $(\Delta f_{BPSK\ IIIII})$ к ширине спектра цифрового ИКМ радиосигнала $(\Delta f_{BPSK\ IIKM})$ при двухпозиционной фазовой манипуляции ?
- 4. Что характеризует автокорреляционная функция $R(\tau)$ импульсного сигнала ?
- 5. Почему в системах связи для получения ШП-радиосигналов используют периодические знакопеременные псевдослучайные последовательности?

- 6. Какой формулой определяется длина псевдослучайных последовательностей Хаффмена (М - последовательностей), если они формируются цифровым автоматом с *n* – разрядным регистром сдвига ?
- 7. Какое число единиц (+1) имеет один период М последовательностей ? Какое число нулей (или -1) имеет один период М последовательностей ?
- 8. Как формируются Gold-коды?
- 9. В каком случае выходное напряжение коррелятора приемника ШП-радиосигналов максимально и соответствует переданному информационному сигналу?
- 10. Какой ШП-радиосигнал называют согласованным для приемника пользователя данного радиоканала?
- 11. Чему должно быть равно отношение ширины спектра ШП-радиосигнала ($\Delta f_{BPSK\ IIIII}$) на входе коррелятора приемника к ширине спектра узкополосного PSK радиосигнала (Δf_{BPSK}) на его выходе ?
- 12. Чему должно быть равно отношение полосы пропускания радиотракта корреляционного приемника ШП-радиосигнала (Π_{IIP}) к полосе пропускания полосового фильтра коррелятора приемника ($\Pi_{VII\Phi}$)?
- 13. Почему с увеличением количества ШП-радиосигналов в одном радиоканале качество приема полезного сигнала ухудшается постепенно ?
- 14. От чего зависит количество пользователей, которые могут работать в одном радиоканале (с полосой частот $\Delta f_{U\!I\!I\!I}$) при использовании ШП-радиосигналов, кодированных М последовательностями с длиной L ?
- 15. Каковы значения несущих частот N разных передатчиков ШП-радиосигналов, работающих в одном радиоканале с полосой частот $\Delta f_{I\!I\!I\!I\!I}$ и использующих ПСП длиной L ?
- 16. Каковы преимущества CDMA-радиосвязи {Code Division Multiple Access множественный (многостанционный) доступ с кодовым разделением каналов} по сравнению с FDMA-радиосвязью {Frequency Division Multiple Access множественный (многостанционный) доступ с частотным разделением каналов} и TDMA-радиосвязью {Time Division Multiple Access множественный (многостанционный) доступ с временным разделением каналов}.
- 17. Почему в данной лабораторной работе использован пакет SIMULINK?
- 18. Каково назначение блоков стандартной библиотеки пакета SIMULINK?

РЕКОМЕНДУЕМАЯ ЛИТЕРАТУРА

- 1. Варакин Л.Е. Системы связи с шумоподобными сигналами.— М.: Радио и связь, 1985. 384 с.
- 2. Клюев Л. Л. Теория электрической связи. Минск: Дизайн ПРО, 1998. 336с.
- 3. Гультяев А. К. MATLAB 5.2 Имитационное моделирование в среде Windows: Практическое пособие.— СПб.: КОРОНА принт, 1999.—288с.
- 4. Мелихов С.В. Радиосвязь и радиовещание: Учебное пособие. Томск: Томск. гос. ун-т систем управления и радиоэлектроники, 2002. 266 с.