Министерство образования и науки Российской Федерации Федеральное государственное бюджетное образовательное учреждение

высшего профессионального образования «Томский государственный университет систем управления и радиоэлектроники»

Кафедра Экономики

ОРГАНИЗАЦИЯ И ПЛАНИРОВАНИЕ ПРОИЗВОДСТВА

Методические указания к лабораторным работам для студентов направления 220100.62 — Системный анализ и управление

Богомолова Алёна Владимировна

Организация и планирование производства: методические указания к лабораторным работам / А.В. Богомолова; Министерство образования и науки Российской Федерации, Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования «Томский государственный университет систем управления и радиоэлектроники», Кафедра Экономики. – Томск: ТУСУР, 2012. – 18 с.

Цель лабораторных работ: усвоение и закрепление теоретических знаний в конкретных практических ситуациях; выполнение организационный расчет многоассортиментного конвейерного потока; определение длительности производственного цикла при различных способах обработки партий деталей; расчет основных показателей ремонта.

Пособие предназначено для студентов очной и заочной форм направления 220100.62 — Системный анализ и управление, изучающих дисциплину «Организация и планирование производства»

© Богомолова Алёна Владимировна, 2012

Министерство образования и науки Российской Федерации Федеральное государственное бюджетное образовательное учреждение

высшего профессионального образования «Томский государственный университет систем управления и радиоэлектроники»

Кафедра Экономики

Утверждаю
Зав.каф. Экономики
А .Г. Буймов
2012 г

ОРГАНИЗАЦИЯ И ПЛАНИРОВАНИЕ ПРОИЗВОДСТВА

Методические указания к лабораторным работам для студентов направления 220100.62 — Системный анализ и управление

2012 г
A.B. Богомолова
доц. каф. экономики
канд. экон наук,
Разработчик

Содержание

Лабораторная работа №1. Расчет параметров специализированного	
конвейерного потока	5
2.1 Цель работы	5
2.2 Порядок выполнения работы	5
Лабораторная работа №2. Расчет основных параметров	
многоассортиментного конвейерного потока (МКП) с последовательно-	-
ассортиментным запуском (ПАЗ)	10
2.1 Цель работы	10
2.2 Порядок выполнения работы	
Лабораторная работа №3. Расчет длительности производственного	
цикла	14
3.1 Задание	
3.2 Порядок выполнения	14
Лабораторная работа № 4. Расчет основных показателей ремонта	15
4.1 Задание	15
4.2 Порядок выполнения	15
5 Содержание отчета	16
Список литературы	17

Лабораторная работа №1. Расчет параметров специализированного конвейерного потока

2.1 Цель работы

Целью работы является усвоение и закрепление теоретических знаний в конкретных практических ситуациях.

2.2 Порядок выполнения работы

Перед выполнением лабораторной работы студент заранее должен изучить настоящие методические указания и рекомендуемую литературу.

Выполнить организационный расчет специализированного конвейерного потока при следующих исходных данных для всех вариантов, приведенных в Табл.1 и Табл.2.

Такт потока определяется по следующей формуле:

$$\tau = \frac{T_{cM} - T_{ope}}{P} \cdot \boldsymbol{\varepsilon},$$

где T_{cm} – продолжительность работы потока в смену, мин.;

 T_{ope} —продолжительность внутрисменных организационных перерывов;

Р – задание потоку в смену;

в – величина транспортной партии

Скорость конвейера определяется по зависимости:

$$V = \frac{l}{\tau}$$

где 1- шаг конвейера - расстояние между осями соседних ячеек (гнезд, люлек, крючков и т.д.), м.

Определяется порядок работы исполнителей на операциях потока (со смещением или без смещения). Типовыми в примере будут операции с числом исполнителей 1, 2, 3 и 4. Определение порядка работы осуществляется сопоставлением расчетной скорости конвейера с максимально допустимыми по отдельным типовым операциям.

Максимально возможная скорость конвейера при порядке пользования его без смещения (б/с V_{MAX}) определяется по следующей формуле:

$$\sigma/cV_{MAX} = \frac{Z}{K_T \cdot \tau + \Delta t}$$

где $V_{M\!A\!X}$ - максимально допустимая скорость конвейера, при котором возможна работа исполнителей рассматриваемой операции в порядке без смещения;

Z - величина рабочей зоны исполнителя;

 K_T - количество исполнителей (рабочих мест) на операции;

 Δt - отклонения от расчетной продолжительности операции.

Величина Δt обычно принимается в следующих размерах: для ручных операций — 20% и для машинных — 10% от расчетной продолжительности операций.

Размеры рабочей зоны (Z):

- сидя боком к конвейеру $0.8 \div 0.9$ м;
- сидя лицом к конвейеру $0.9 \div 1.0$ м;
- стоя боком к конвейеру $1,0 \div 1,1$ м;
- стоя лицом к конвейеру $1,1 \div 1,2$ м.

Если $V_{MAX} \leq \sigma / Vc$, то порядок пользования конвейером без смещения возможен, если $MAX \ V \geq \sigma / cV$, то не возможен.

Определяется величина серии ячеек и строится график адресования ячеек. Число ячеек в серии ($c\ n$) определяется как наименьшее общее кратное числа рабочих на всех операциях потока.

Длина цепи конвейера определяется по формуле:

$$L_u = 2L_k + \pi d_{3e}$$

где d_{36} - диаметр крайних направляющих звездочек; π - 3,14.

Число ячеек в конвейере определяется:

$$N = \frac{L_{u}}{l}$$

Число серий ячеек в конвейере определяется:

$$S = \frac{N}{n_c}$$

График алресования ячеек

т рафик адресования и теск														
Номер	Число	Порядок				Но	мер	яч	ейкі	ивс	ерии	1		
операции	рабочих	работы	1	2	3	4	5	6	7	8	9	10	11	12
1-2	1	Без	11	21	31	41	51	61	71	81	91	101	111	121
		смещения												
3	3	Co	41	52	63	7 ₁	82	93	101	112	12 ₃	11	22	3 ₃
		смещением												
4-6	2	Без	42	51	62	7 ₁	82	91	102	11 ₁	122	1 ₁	2_2	31
		смещения												
7-8	1	То же	41	51	61	7 ₁	81	91	101	11 ₁	12 ₁	11	21	31
9	4	Co	84	91	102	113	124	11	22	3 ₃	4 ₄	51	62	7 ₃
		смещением												
10-13	1		81	91	101	11 ₁	12 ₁	11	2 ₁	31	4 ₁	51	61	71

Дробное значение S округляют до ближайшего целого числа S^* .

Округление величины S требует корректировки числа ячеек в конвейере до N_* , длины цепи конвейера — до $L_{_{\! K}}^{^*}$ и длины конвейера — до $L_{_{\! K}}^{^*}$.

Корректировка проводится по следующим формулам:

$$N^* = n_c \cdot S^*$$

$$L_u^* = N^* \cdot l = n_c \cdot S^* \cdot l$$

$$L_k^* = \frac{\left(L_u^* - \pi \cdot d_{_{36}}\right)}{2}$$
 - для вертикально-замкнутого конвейера, м;

Если увеличение составляет более 0,5м (L_{κ}^* - $L_{\kappa} > 0,5$), то необходимо скорректировать шаг ячеек при неизменной длине конвейера L_{κ} .

Корректирование осуществляется по формуле:

$$l^* = \frac{L_u}{N^*}$$

Продолжительность производственного цикла определяется по формуле:

$$T_u = T_{_{B}} + T_{_{C}} + T_{_{B,-T}} + T_{_{3}}$$

 $z\partial e\ T_{\scriptscriptstyle R}$ - время перемещения ячейки от пункта запуска полуфабриката на поток до пункта выпуска готового изделия;

 T_c — время пребывания изделий на операциях, выполняемых со смещением;

 $T_{B,-T}$ — продолжительность влажно-тепловых операций, включенных в поток (влажно-тепловое формование, увлажнение, сушка и т.д.);

T3 - среднее время пребывания изделия в заделах, т.е. время нахождения изделий в запасах перед запуском, между различными участками и на финише потока.

Значения T_{c} , $T_{B,-T}$, T_{3} , T_{n} определяются

$$T_{n} = \frac{L_{\kappa}^{*}}{V} = \frac{L_{\kappa}^{*}}{l} \cdot \tau$$
$$T_{c} = \tau \sum_{i}^{m} K_{i}^{c}$$

 $z de \alpha$ - индекс операции, выполняемой со смещение;

m — число таких операций в потоке;

 K_{i}^{c} – принятое число рабочих мест на i-от операции.

$$T_{B,-T} = \sum_{i=1}^{q} T_i$$

i — продолжительность влажно-тепловой обработки на операции, мин.; i — индекс операции влажно-тепловой обработки;

q – число операций влажно-тепловой обработки.

$$T_{_{3}}=\tau\sum_{\mu}^{p}\frac{B_{\mu}}{6}$$

где μ – индекс задела;

p — число заделов в потоке;

 E_{μ} – среднее количество полуфабрикатов в μ -м заделе.

Следовательно, продолжительность производственного цикла по активному времени, т.е. по времени функционирования потока определяется:

$$T_{u}^{a\kappa} = \tau \left(\frac{L_{\kappa}^{*}}{l} + \sum_{\alpha=1}^{m} K_{i}^{c} + \sum_{i=1}^{q} \frac{T_{i}}{\tau} + \sum_{\mu}^{p} \frac{B_{\mu}}{\epsilon} \right)$$

Продолжительность производственного цикла по календарному времени $(T_{ii}^{\ \ k})$.

$$T_{u}^{\kappa} = T_{u}^{a\kappa} \cdot \frac{\mathcal{I} \cdot 24}{\mathcal{I}_{n} \cdot T_{cM} \cdot n}$$

где \mathcal{I} – число календарных дней в году;

 \mathcal{L}_p – число рабочих дней в году;

24 – число часов в сутках;

n – число рабочих смен в сутки;

 $T_{c_{M}}$ – продолжительность смены, час.

Объем незавершенного производства на конвейерном потоке определяется по формуле:

$$H\Pi = H\Pi_{\pi} + H\Pi_{c} + H\Pi_{B,-T} + H\Pi_{3}$$

$$H\Pi_{\pi} = \frac{L_{pab}^{*}}{l} \cdot \theta \qquad \qquad H\Pi_{c} = \theta \sum_{i=1}^{\infty} K_{i}^{c}$$

$$H\Pi_{B,-T} = \frac{\sum_{i=1}^{q} T_{i}}{\tau} \cdot \theta \qquad \qquad H\Pi_{3} = \sum_{u=1}^{3} B_{\mu}$$

Сделать выводы.

Таблица 1.1

Исходные данные	Условные				
	обозначения	I	II	III	IV
Количество календарных дней в году	Д	365	365	365	365
Количество рабочих дней в годе	Др	250	253	251	252
Режим работы (количество смен)	n	1	2	2	3
Внутрисменные организационные перерывы, мин.	T_{opr}	15	10	10	15
Диаметр крайних направляющих звездочек, м	$d_{_{3B}}$	0,4	0,35	0,45	0,5
Рабочая зона на всех рабочих местах по всем зонам, м	$Z_{ m pa}$	1,0	0,9	1,1	1,2
Отклонения продолжительности выполнения операций от расчетной величины, мин.	Δt	0,4	0,5	0,3	0,45

Таблица 1.2

Исходные данные	Условные		Варианты								
	обозначения	1	2	3	4	5	6	7	8	9	10
Задание потоку	P	600	650	670	800	850	700	750	880	925	1300
Шаг конвейера, м	i	0,30	0,32	0,28	0,40	0,42	0,28	0,42	0,31	0,38	0,52
Величина однократного запуска	в	2	2	1	1	1	1	1	2	1	2
(транспортная партия)											
Погонная длина конвейера по	L_k	55	45	48	40	42	58	39	50	52	46
предварительной компановке, м											
Число операций		12	16	18	20	21	25	26	28	30	16
с 1-м исполнителем		6	7	10	8	9	12	14	9	11	10
с 2-мя исполнителями		8	12	5	7	4	5	6	7	5	4
с 3-мя исполнителями		1	4	3	4	5	3	2	7	4	6
с 4-мя исполнителями											
Продолжительность влажно-	T	0,5	0,6	0,8	1,0	1,2	1,3	1,8	2,0	1,5	1,3
тепловой операции, мин.											

Лабораторная работа №2. Расчет основных параметров многоассортиментного конвейерного потока (МКП) с последовательно-ассортиментным запуском (ПАЗ

2.1 Цель работы

Выполнить организационный расчет многоассортиментного конвейерного потока. Исходные данные по вариантам представлены в табл. 2.1.

2.2 Порядок выполнения работы

1. Определить норму выработки по каждой операции технологического процесса при обработке каждого вида изделия по формуле:

$$_{A}H_{B}=rac{T_{_{CM}}}{t_{_{A}}}$$
 $_{B}H_{B}=rac{T_{_{CM}}}{t_{_{B}}}$ $_{B}H_{B}=rac{T_{_{CM}}}{t_{_{B}}}$

- 2. Определить суммарную трудоемкость каждого вида изделия A,Б и B в потоке $\sum t_A, \sum t_B$ и $\sum t_B$.
- 3. Принимая наименее трудоемкое изделие за единицу трудоемкости определяют переводные коэффициенты по трудоемкости для всех других их видов. (f_A , f_B , f_B -переводные коэффициенты)
- 4. Все задание пересчитывают по трудоемкости на вид, принятый за единицу трудоемкости по формуле:

$$P_{t}' = \frac{P(R_{A} \cdot f_{A} + R_{B} \cdot f_{B} + R_{B} \cdot f_{B})}{R_{A} + R_{B} + R_{B}}$$

где Pt' – общее задание по выпуску изделий, приведенных к виду i-му, принятому за единицу трудоемкости;

P – общее суммарное задание по выпуску изделий всех видов;

 R_A , R_B , R_B – ассортиментные числа;

 f_A , f_B , f_B — коэффициенты перевода по трудоемкости в вид изделий, принятых за единицу трудоемкости.

5. Определить количество рабочих на каждой операции, необходимое для выработки общего количества изделий, приведенного к единице трудоемкости, делением этого количества на норму выработки

изделий вида і-го (
$$H_{\text{выр}} = \frac{T_{\text{см}}}{t_{\cdot}^{A}}$$
)

6. Определить использование рабочего времени

$$\frac{\sum K_{\mathit{pacu}}}{\sum K_{\mathit{\phiakm}}}$$

7. Определить, какое количество других изделий может выработать в смену то количество рабочих, которое получено при расчете по i-му изделию. В начале расчет ведется по приведенному количеству изделия каждого вида (в целом). Например: Если за единицу трудоемкости принят вид изделия A, то

$$P_{B}^{'} = \frac{P_{A}^{'}}{f_{B}}$$
 $P_{B}^{'} = \frac{P_{A}^{'}}{f_{B}}$

Для определения истинного количества изделий, приведенного к виду Б и В, которое может быть выработано полученным количеством рабочих по укрупненным приведенным заданиям $P_{\rm B}$ ' и $P_{\rm B}$ ', берут 3-4 варианта заданий, отличающихся друг от друга на 5-7%.

Затем пооперационным расчетом определяют расчетно-фактическое количество рабочих по каждому варианту задания и выбирают наибольший из них, для выполнения которого требуется то же количество рабочих, что и для задания, приведенного к виду А.

Результаты расчетов сводятся в таблицу 2.1.

Таблица 2.1.

Номер	Норма		Количество рабочих при заданиях								
операции	выработки	$P_{\mathcal{S}}$ '		P_{B} '-	+5%	P_{B} '+8%					
		Расч.	Факт.	Расч.	Факт.	Расч.	Факт.				
Итого											

Таким образом, получают уточненное количество изделий вида А,Б и В, которое может выработать в смену одно и то же количество рабочих.

8. Определить, в течение какой части смены будет выпускаться каждый вид изделия (T_A , T_B , T_B) по формулам:

$$T_{A} = \frac{T_{cM} \cdot P_{A}}{P_{A}^{'}} \quad T_{B} = \frac{T_{cM} \cdot P_{B}}{P_{B}^{'}} \quad T_{B} = \frac{T_{cM} \cdot P_{B}}{P_{B}^{'}}$$

где P_A , P_B , P_B - задания по выпуску изделий каждого вида в смену; $T_{\scriptscriptstyle CM}$ - продолжительность смены.

Сумма
$$T_A + T_B + T_B = T$$

Если окажется, что $T_A + T_B + T_B > T$, то необходимо задание по выпуску изделий, приведенное по трудоемкости к виду A, увеличить, а если окажется, что $T_A + T_B + T_B < T$, то необходимо это приведенное задание уменьшить.

Корректировка приведенного задания осуществляется по формуле:

$$P_A^{\Pi} = \frac{P'_A \cdot \left(T_A + T_B + T_B\right)}{T}$$

Повторно рассчитывается время выпуска изделия каждого вида:

$$T_A = \frac{T \cdot P_A}{P^{\Pi}_A} \quad T_B = \frac{T \cdot P_B}{P^{\Pi}_B} \quad T_B = \frac{T \cdot P_B}{P^{\Pi}_B}$$

Достигнув значения $T_A + T_B + T_B = T$

9. Определить такт и скорость конвейера при обработке каждого вида изделия:

$$\tau_{A} = \frac{T \cdot \theta}{P^{\Pi}_{A}} \quad \tau_{B} = \frac{T \cdot \theta}{P^{\Pi}_{B}} \quad \tau_{B} = \frac{T \cdot \theta}{P^{\Pi}_{B}}$$

$$v_{A} = \frac{l}{\tau_{A}} \quad v_{B} = \frac{l}{\tau_{B}} \quad v_{B} = \frac{l}{\tau_{B}}$$

10. Определить общее потребное количество рабочих мест по каждой операции потока по наибольшему количеству рабочих мест при обработке каждого вида изделия. Данные занести в таблицу 2.2.

Таблица 2.2.

Номера	Количест	во рабочих	мест при	Количество рабочих
операций	об	работке ви	да	мест в потоке
	A	Б	В	
Итого				

11. Установить порядок перехода исполнителей с рабочих мест операций на рабочие места других операций при переключении конвейерного потока с обработки предметов труда одной разновидности на другую и со второй на третью.

Таблица 2.3

Номер	Номер	Размещение исполнителей по рабочим							
операции	рабочих мест	местам							
		A	Б	В					
Итого				,					

12. Выводы.

Таблица 2.4

Таблица 2.4											
Исходные	Условные				Нс	мера в	ариант	ОВ			
данные	обозн.	1	2	3	4	5	6	7	8	9	10
Продолжитель-	T_{cM}	480	480	480	480	480	480	480	480	480	480
ность смены,											
мин.											
Частные задания	P_A	300	400	600	500	450	500	600	700	500	750
потока в смену,	$P_{\mathcal{B}}$	600	400	200	250	450	250	300	350	250	750
ШТ.	P_B	600	800	400	500	450	250	300	350	500	750
Общее задание	P	1500	1600	1200	1250	1350	1000	1200	1400	1250	2250
потока в смену,											
ШТ.											
Шаг конвейера,	l	0,32	0,42	0,38	0,28	0,25	0,34	0,41	0,32	0,40	0,34
M		0.2	0.0	0.6	0.7	0.2	0.4	0.7	0.2	1 1	0.0
Время	t'_A	0,3	0,2	0,6	0,7	0,3	0,4	0,7	0,3	1,1	0,9
обработки 1 шт. по операциям	t' _Б	0,4	0,3	0,3	0,2	0,4	1,1	0,3	0,4	0,2	1,2
потока	t'_B	0,1	0,5	0,4	0,5	0,6	0,3	0,4	0,5	0,6	1,4
а) 1-я операция											
b) 2-я операция	t' _A	1,2	1,1	0,7	0,7	0,4	0,5	0,8	0,4	0,8	1,1
	<i>t'</i> _B	1,4	1,3	1,3	0,5	1,1	1,3	1,4	1,1	0,9	1,4
	t'_B	0,9	1,5	1,3	1,4	2,1	2,5	1,7	1,5	1,8	2,1
с) 3-я операция	t_A	1,7	1,5	1,3	1,8	0,7	$\frac{2,3}{2,1}$	2,2	2,4	2,6	0,9
с) 5 и операции											+ -
	<i>t'</i> _B	1,4	0,8	0,9	1,1	1,3	0,7	1,1	0,7	1,9	2,4
1) 4	<i>t'</i> _B	0,7	2,1	1,7	0,9	2,1	2,2	3,4	2,3	1,8	1,7
d) 4-я операция	t'_A	1,4	0,6	1,2	2,1	1,8	1,7	0,9	0,7	0,4	1,8
	<i>t'</i> _{<i>B</i>}	2,6	1,1	1,6	2,3	2,2	3,1	1,6	3,1	2,1	2,2
	t'_B	2,4	1,7	2,2	0,9	1,6	1,7	1,5	1,1	3,1	2,3
е) 5-я операция	t'_A	0,6	0,9	1,5	1,5	1,8	1,3	1,4	0,5	0,5	1,9
	t' _δ	0,8	0,6	0,7	1,3	2,1	0,9	0,7	1,3	2,5	2,7
	t'_A	1,1	1,2	1,1	1,7	0,5	0,4	0,7	1,2	0,6	1,3
f) 6-я операция	t'_A	2,0	2,2	1,6	1,7	1,3	1,2	1,4	0,9	0,7	1,1
	<i>t'</i> _E	1,4	1,1	3,1	3,4	4,4	2,3	3,1	4,6	3,5	2,7
	t'_A	3,3	4,1	2,8	3,5	4,1	2,6	3,6	2,7	2,8	3,3
g) 7-я операция	t'_A	4,1	3,3	3,2	2,7	1,9	2,5	1,9	3,7	5,1	6,6
g) / n onepagns	t_{B}	3,7	2,8	3,6	4,4	5,5	4,7	3,3	4,1	3,3	5,5
h) 0 = =================================	t'_A	4,1	3,8	4,4	3,1	4,4	5,1	1,7	6,1	3,7	0,8
h) 8-я операция	<i>t'</i> _A	3,8	6,1	5,1	4,6	3,8	3,5	4,2	3,7	4,4	4,7
	<i>t'</i> _B	4,4	4,6	4,8	4,1	4,4	5,2	5,2	4,7	4,8	4,5
	t'_A	4,8	4,6	4,4	3,8	5,2	4,7	4,8	3,8	5,2	3,7
і) 9-я операция	t'_A	6,1	5,1	4,2	5,4	4,4	4,5	3,8	4,4	3,8	4,5
	t' _δ	7,1	4,7	6,6	7	5,5	5,3	5,4	4,4	5,2	5,4
	t'_A	3,5	3,7	3,8	4,4	4,7	5,2	3,2	3,5	5,4	3,8
ј) 10-я операция	t'_A	2,5	2,3	1,7	1,8	1,5	1,7	2,2	2,8	3,2	3,1
	<i>t'</i> _E	3,3	3,5	2,7	3,8	3,9	1,3	2,5	4,1	1,9	4.0
	t'_A	2,7	1,9	3,6	4,2	3,3	3,5	1,7	2,5	5,4	1,3
	ι A	- ,/	1,7	5,0	r,∠	5,5	5,5	1,/	2,5	<i>⊃</i> ,¬ r	1,5

Лабораторная работа №3. Расчет длительности производственного цикла

3.1 Задание

Определить длительность производственного цикла при различных способах обработки партий деталей при следующих исходных данных по вариантам:

Наименование					Вари	анты				
показателей	1	2	3	4	5	6	7	8	9	10
Количество	6	5	5	5	6	6	5	5	4	6
операций										
Размер партии	5	4	4	3	5	5	4	4	5	5
Длительность	5	6	7	8	10	12	15	5	7	7
операции, мин	12	15	10	17	5	6	8	15	18	12
	15	20	8	5	15	10	12	20	15	8
	8	12	15	4	17	8	10	15	9	15
	5	7	8	2	12	9	20	8	-	5
	6	_	_	_	7	11	_	_	_	9

3.2 Порядок выполнения

При последовательном движении предметов труда Длительность производственного цикла рассчитывается:

$$T_{u}^{\Pi o c n} = n \sum_{i=1}^{m} t_{i}$$

где m— число операций в производственном процессе;

n – число деталей в партии

 t_i - штучно-калькуляционное время на i-ой операции.

При параллельно-последовательном движении:

$$T_{ij}^{\Pi\Pi} = n \sum_{i=1}^{m} t_i - \sum_{i=1}^{m-1} (n-p) \cdot t_{\kappa oppi}$$

где p – партия (транспортная);

 $t_{\kappa oppi}$ время короткой операции в i-ом парном сочетании.

$$T_{u}^{\Pi ap} = t_{zn} \cdot (n-p) + \sum_{i=1}^{m} p \cdot t_{i}$$

где t_{2n} —время главной операции;

 $p \cdot t_i$ - время обработки передаточных партий на операциях, расположенных до главной операции.

Сделать соответствующие выводы.

Лабораторная работа № 4. Расчет основных показателей ремонта

4.1 Задание

Определить по исходным данным следующее:

- 1. Количество оборудования, подлежащего каждому виду ремонта в течение года.
 - 2. Количество ремонтов.
 - 3. Трудоемкость по капитальному и среднему ремонту.
 - 4. Себестоимость ремонтных работ.
 - 5. Построить график ППР (планово-предупредительных ремонтов).

4.2 Порядок выполнения

1. Количество оборудования, подлежащего каждому виду ремонта в течение года (n_i) определяется:

$$n_i = \frac{N}{\Pi_i}$$

где N — установленное количество оборудования, ед.

 Π_i - периодичность капитального и среднего ремонта, годы.

2. Количество ремонтов (a_i). Для капитального ремонта:

$$a_1 = n_1$$

Для среднего ремонта

$$a_2 = \frac{12}{\Pi_2} n_2$$

3. Общая трудоемкость ремонтов ($T_{oбщ}$)

$$T_{\mathit{oби}_{\!\!\!\!/}} = T_{\mathit{kan}} + T_{\mathit{cped}}$$

$$T_{\kappa an} = T_{cped} = t_i \cdot a_i$$

где t_i - норма времени на ремонт, чел.-час.

4. Определение состава бригады, чел.:

$$K_{pacu} = \frac{T_i}{1900}$$

5. Рассчитать себестоимость ремонтных работ по каждому виду

ремонтов в отдельности.

6. Построение графика ППР (планово-предупредительного ремонта) на календарный год с учетом оптимального использования оборудования по времени и по мощности, рациональной занятости ремонтных рабочих (таблица 4.1).

Таблица 4.1 - График планово – предупредительного ремонта

Номера	Продолжите		-	Месяц	цы год	a		
оборудования	межремонтно	ого цикла						
	капитальный средний		1	2	3	4		12
	ремонт	ремонт						
Итого								

Исходные данные для расчетов

Показатели	Варианты									
TTORUSATOSITI	1	2	3	4	5	6	7	8	9	10
Периодичность	1				J	U	,	U	,	10
		(1	2	(5	4	_	3	
- средний ремонт,	5	6	4	3	6	3	4	5	3	6
ГОДЫ										
- текущий ремонт,	3	5	4	6	3	4	4	3	6	4
годы										
Норма времени на:										
- капитальный	265	254	235	195	265	254	240	260	300	200
ремонт, челчас										
- средний ремонт,	150	145	125	110	155	135	120	145	180	115
челчас										
Годовой фонд	1910									
рабочего времени,										
час.										
Количество	5	10	8	5	10	8	7	9	15	6
установленного										
оборудования, ед.										

5 Содержание отчета

- 1. При составлении отчета необходимо руководствоваться общими требованиями и правилами оформления отчета о лабораторной работе.
 - 2. В соответствующих разделах отчета необходимо представить:
 - 1) задание;
 - 2) таблицы данных;
 - 3) результаты расчетов, предусмотренных заданием;
 - 4) выводы.

Список литературы

- 6 Бухалков М. И. Планирование на предприятии: Учебник для вузов / М. И. Бухалков. 3-е изд., испр. М. : Инфра-М, 2008. 415 с. ISBN 978-5-16-003136-1
- 7 Иванов И.Н. Организация производства на промышленных предприятиях: Учебник / И. Н. Иванов. М. : Инфра-М, 2008. 350 с. ISBN 978-5-16-003118-7
- 8 Хан Д. ПиК Планирование и контроль. -М.: Финансы и статистика, 2005. 928 с. ISBN:678-5-279-03096-5 http://e.lanbook.com/books/element.php?pl1_cid=25&pl1_id=1044
- 9 Романенко И.В. Экономика предприятия.— М.: Финансы и статистика, 2007. 272 с. ISBN:978-5-279-03210-5 http://e.lanbook.com/books/element.php? pl1 cid=25&pl1 id=1010
- 10 Афонасова М. А. Планирование на предприятии : методические рекомендации по проведению практических занятий и организации самостоятельной работы студентов / М. А. Афонасова ; Томский государственный университет систем управления и радиоэлектроники, Кафедра экономики. Томск : ТУСУР, 2009. 40 с.
- 11 Афонасова М. А. Организация производства на предприятиях отрасли: учебное пособие для вузов / М. А. Афонасова; Федеральное агентство по образованию, Томский государственный университет систем управления и радиоэлектроники. Томск: ТУСУР, 2005. 318 с. ISBN 5-86889-216-X.
- 12 Дерябина Е.В. Организация и планирование производства: Учебное пособие / Под ред. Е.В. Дерябина, Федеральное агентство по образованию, ТУСУР, кафедра экономики Томск: ТМЦДО, 2005 259 с.
- 13 Организация производства на предприятиях электросвязи : Учебное пособие для вузов / С. Г. Ситников, Т. А. Солодова. М. : Горячая линия-Телеком, 2006. 238[2] с. : ил. (Специальность для высших учебных заведений). ISBN 5-93517-254-2

Учебное пособие

Богомолова А.В.

Организация и планирование производства Методические указания к лабораторным работам

Усл. печ. л. Препринт Томский государственный университет систем управления и радиоэлектроники 634050, г.Томск, пр.Ленина, 40