МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования

«ТОМСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ СИСТЕМ УПРАВЛЕНИЯ И РАДИОЭЛЕКТРОНИКИ» (ТУСУР)

Кафедра ЭМИС

Вагнер Д.П.

Методические указания по проведению лабораторных и самостоятельной работе студентов по курсу

«**Надежность информационных систем**» для направления 230200 — Информационные системы

Целью лабораторных работ и индивидуальных заданий для самостоятельной работы по курсу «Надежность информационных систем» студентам направления 230200 — «Информационные системы» является закрепление теоретических знаний по курсу и овладение навыками практического применения инструментов статистической обработки данных и вычисления различных показателей надежности систем. Также в ходе лабораторных работ студенты подробнее знакомятся с инструментами повышения надежности готовых систем, связанными с резервным копированием, архивацией и восстановлением, а также организацией различных видов тестирования.

СОДЕРЖАНИЕ

Введение	
ЛАБОРАТОРНАЯ РАБОТА №1. Инструменты организации резервного копирования и	
восстановления данных информационных систем (8 часов)	.4
ЛАБОРАТОРНАЯ РАБОТА №2. Определение показателей надежности элементов по	
опытным данным (10 часов)	.7
ЛАБОРАТОРНАЯ РАБОТА №3. Исследование надежности и риска нерезервированной	
системы (8 часов)	32
ЛАБОРАТОРНАЯ РАБОТА №4. Надежность программного средства и технологии его	
тестирования (8 часов)	39
Методические указания по самостоятельной работе4	
Список рекомендованной литературы4	13

Введение

Цель лабораторных работ является закрепление теоретических знаний по курсу и овладение навыками практического применения инструментов статистической обработки данных и вычисления различных показателей надежности систем. Также в ходе лабораторных работ студенты подробнее знакомятся с инструментами повышения надежности готовых систем, связанными с резервным копированием, архивацией и восстановлением, а также организацией различных видов тестирования.

Методические указания к лабораторным работам по курсу «Надежность информационных систем» содержат только те понятия и определения, которые необходимы для их успешного выполнения.

ЛАБОРАТОРНАЯ РАБОТА №1. Инструменты организации резервного копирования и восстановления данных информационных систем

Цель работы: получение навыков организации резервного копирования и восстановления информационных систем в условиях функционирования операционной системы, с использованием стандартных операций, а также при использовании возможностей самих систем;

Темы для предварительного изучения. Функции и возможности ОС Windows, возможности СУБД mysql, язык запросов SQL.

Постановка задачи

Задание 1.1. Средствами ОС (использование пакетных файлов, скриптов, сервисов, Планировщика заданий) организуйте периодическое резервное копирование каталога любой информационной системы 2 способами:

- а) Каждая следующая резервная копия заменяет предыдущую;
- б) Каждая следующая резервная копия создается в отдельном каталоге(например с номерами 1, 2, 3 и т.д. или с датой 21022012, 22022012 и т.д.), таким образом, пользователь имеет возможность обратиться к любой резервной копии в случае необходимости в дальнейшем;

Задание 1.2 . Средствами ОС, а также использую любой из доступных архиваторов, организуйте периодическое **архивирование** каталога информационной системы 2 способами:

- а) Каждая следующая архивная копия заменяет предыдущую;
- б) Каждая следующая архивная копия создается отдельно(например с названиями 1, 2, 3 и т.д. или 21022012, 22022012 и т.д.), таким образом, пользователь имеет возможность обратиться к любой архивной копии в случае необходимости в дальнейшем;

Сведения из теории.

Для того, чтобы считать в бэкап данные из информационной базы предприятия можно выбрать данные с помощью запросов и сохранить их в файлы текстовых форматов. Для этого используется SQL-команда SELECT INTO OUTFILE и парная ей LOAD DATA INFILE. Выгрузка производится построчно (можно отобрать для сохранения только нужные строки, как в обычном SELECT). Структура таблиц нигде не указывается — об этом должен заботиться программист. Он также должен позаботиться о включении команд SELECT INTO OUTFILE в транзакцию, если это необходимо для обеспечения целостности данных. На практике SELECT INTO OUTFILE используется для частичного бэкапа очень больших таблиц, которые нельзя скопировать никаким другим образом.

В большинстве случаев намного более удобна утилита mysqldump. Утилита mysqldump формирует файл, содержащий все SQL-команды, необходимые для полного восстановления БД на другом сервере. Отдельными опциями можно добиться совместимости этого файла с практически любой СУБД (не только MySQL), кроме того, существует возможность выгрузки данных в форматах CSV и XML. Для восстановления данных из таких форматов существует утилита mysqlimport.

Утилита mysqldump консольная. Существуют её надстройки и аналоги, позволяющие управлять бэкапом через веб-интерфейс, например, Sypex Dumper.

Недостатки универсальных утилит бэкапа в текстовые файлы — это относительно невысокая скорость работы и отсутствие возможности делать инкрементные бэкапы.

Задание 1.3. Создайие собственную БД mysql, в которой будут функционировать не менее 4-х таблиц связных таблиц. Таблицы необходимо заполнить информацией, в каждой таблице должно быть не менее 3 полей и 5 строк.

Задание 1.4. Исследовать команды проверки и восстановления таблиц CHECK TABLE и REPAIR TABLE

Задание 1.5. С помощью команд SELECT INTO OUTFILE и LOAD DATA INFILE осуществить резервное копирование данных из любой таблицы БД в файл, затем удалить все данные и восстановить их из бэкапа.

Задание 1.6. С помощью команд mysqldump и mysqlimport осуществить резервное копирование БД в файл, затем удалить все данные и восстановить их из бэкапа.

ЛАБОРАТОРНАЯ РАБОТА №2. Определение показателей

надежности элементов по опытным данным

Цель работы: получение навыков статистического анализа опытных данных и определения на их основании показателей надежности восстанавливаемых и невосстанавливаемых элементов систем;

Темы для предварительного изучения. Показатели надежности восстанавливаемых и не восстанавливаемых элементов систем. Расчет вероятностей при многократных испытаниях.

Постановка задачи

Дано:

- N число элементов, находящихся на испытании;
- t_i время исправной работы i -го элемента, i = 1, 2, ..., n;
- n число отказавших элементов за время испытания t.

Определить показатели надежности элемента:

- $\lambda(t)$ интенсивность отказа как функцию времени;
- $\omega(t)$ плотность распределения времени исправной работы элемента;
 - f(t) параметр потока отказов как функцию времени.

Эти показатели надежности необходимо определить при следующих двух видах испытания:

- а) с выбрасыванием отказавших элементов;
- б) с заменой новыми или отремонтированными.

В случае (a) число элементов в процессе испытания убывает, в случае (δ) — остается постоянным.

Варианты задания приведены далее в разд. 1.5.

Сведения из теории

В теории надежности под элементом понимают элемент, узел, блок, имеющий показатель надежности и входящий в состав системы. Элементы бывают двух видов: невосстанавливаемые (резистор, конденсатор, подшипники и т. п.), и восстанавливаемые или ремонтируемые (генератор тока, колесо автомобиля, телевизор, ЭВМ и т. п.). Отсюда следует, что показателями надежности невосстанавливаемых элементов являются только такие показатели, которые характеризуют надежность техники до ее первого отказа.

Показателями надежности восстанавливаемых элементов являются показатели, которые характеризуют надежность техники не только до первого отказа, но и между отказами.

Показателями надежности невосстанавливаемых элементов являются:

- P(t) вероятность безотказной работы элемента в течение времени t:
- T_1 среднее время безотказной работы (наработка до отказа);
- $\omega(t)$ плотность распределения времени до отказа;
- $\lambda(t)$ интенсивность отказа в момент t.

Между этими показателями существуют следующие зависимости:

$$P(t) = e^{\int_0^t \chi(t)dt}, \qquad (1.1)$$

$$\omega(t) = -P'(t), \ P(t) = \int_{t}^{\infty} \omega(t)dt, \qquad (1.2)$$

$$\lambda(t) = \frac{\omega(t)}{P(t)},\tag{1.3}$$

$$T_1 = \int_0^\infty P(t)dt . \tag{1.4}$$

Интенсивность отказа многих элементов, особенно элементов электроники, является величиной постоянной: $\lambda(t) = \lambda$. В этом случае зависимости между показателями надежности имеют вид:

$$P(t) = e^{-\lambda t},$$

$$T_1 = \frac{1}{\lambda},$$

$$\omega(t) = \lambda e^{-\lambda t}$$

$$\lambda(t) = \lambda = const.$$

Показателями надежности восстанавливаемых элементов являются:

- $\omega(t)$ параметр потока отказов в момент времени t;
- T среднее время работы между отказами (наработка на отказ).

Показателями надежности восстанавливаемых элементов могут быть также показатели надежности невосстанавливаемых элементов. Это имеет место в тех случаях, когда система, в состав которой входит элемент, является неремонтируемой по условиям ее работы (необитаемый космический аппарат, аппаратура, работающая в агрессивных средах, самолет в процессе полета, отсутствие запчастей для ремонта и т. п.). Между показателями надежности невосстанавливаемых и восстанавливаемых элементов имеют место следующие зависимости:

$$f(t) = \omega(t) + \int_{0}^{t} f(\tau)\omega(t-\tau)dt,$$
(1.5)

$$\lim_{t \to \infty} f(t) = \frac{1}{T_1}.\tag{1.6}$$

Плотность распределения наиболее полно характеризует случайное явление — время до отказа. Остальные показатели, в том числе и $\lambda(t)$, лишь в совокупности позволяют достаточно полно оценить надежность сложной системы.

Основным способом определения показателей надежности элементов сложных систем является обработка статистических данных об их отказах в процессе эксплуатации систем или при испытаниях в лабораторных условиях. При этом возможны следующие два случая:

• отказавшие элементы в процессе испытания или эксплуатации

системы новыми не заменяются (испытания без восстановления);

• отказавший элемент заменяется новым того же типа (испытания с восстановлением).

В процессе эксплуатации системы или при испытаниях в лабораторных условиях фиксируется дата возникновения отказа. По этим данным путем статистической обработки и определяются показатели надежности элементов.

Предположим, что в результате проведения испытаний над N элементами в течение времени T получены некоторые статистические данные о распределении количества отказавших элементов. Возможны три способа регистрации отказов элементов.

• Первый способ регистрации

Элементы, поставленные на испытания, являются невосстанавливаемыми. При возникновении отказа некоторого элемента фиксируется момент времени его отказа.

В результате испытаний статистической информацией является последовательность $t_1, t_2, ..., t_b, ..., t_N$ моментов времени отказа элементов.

• Второй способ регистрации

Элементы, поставленные на испытания, являются восстанавливаемыми. После отказа какого-либо элемента он заменяется новым. В результате испытаний исходной статистической информацией является последовательность моментов времени отказов i-го элемента $t_{i,j}$ (j = 1, 2,..., u, j = 1, 2,..., N) в течение периода наблюдений T. Реализациями наработок элемента в этом случае служат разности $\tau_{i,j}$, $t_{i,j} - t_{i,j-1}$ предполагается, что $t_{i,0} = 0$).

Второй способ регистрации отказов, очевидно, сводится к первому, если фиксируются номера отказавших элементов. В качестве статистических

данных берется совокупность разностей $\tau_{i, j}$, представляющих собой времена работы элементов до первого отказа.

• Третий способ регистрации

Элементы, поставленные на испытания, являются восстанавливаемыми. После отказа какого-либо элемента он заменяется новым, однако не известен номер отказавшего элемента. В результате испытаний исходной статистической информацией является последовательность t_1 , t_2 ,..., t_i ,..., t_n моментов отказов элементов, где n – число отказавших элементов. Таким образом, в отличие от второго способа, здесь регистрируются моменты отказов элементов без указания их номеров.

Невосстанавливаемые элементы

Исходными статистическими данными является время работы элементов первого отказа: t_1 , t_2 ,..., t_i ,..., t_N . Тогда среднее время работы элемента до отказа равно среднему арифметическому времени t_i , т. е

$$\widehat{T}_1 = \frac{1}{N} \sum_{i=1}^{N} t_i.$$

Обозначим через v(t) число элементов, для которых отказ произошел позднее момента времени t. Тогда вероятность отказа элемента равна

$$\widehat{Q}(t) = \frac{v(t)}{N},$$

а вероятность безотказной работы —

$$\widehat{P}(t) = 1 - \widehat{Q}(t),$$

Пусть последовательность $t_1, t_2,..., t_i, ..., t_N$ получена упорядочением исходной последовательности. Функция $\hat{Q}(t)$ представляет собой эмпирическую функцию распределения, и если все $t_{(i)}$ различны, то

$$\widehat{Q}(t) = \begin{cases} 0, & \text{при} \quad t < t_{(I)} \\ i / N, \\ 1, & \end{cases}$$

при
$$t_{(l)} \leq t < t_{(i+1)}$$

при $t \geq t_{(N)}$

Величина всех скачков равна I/N, а типичный график функции $\widehat{Q}(t)$ приведен на рис. 2.1.

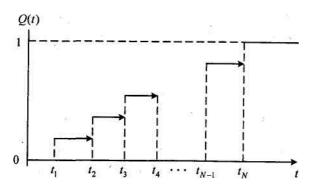


Рис. 2.1. График статистической вероятности отказа элемента

Другим наглядным способом представления статистических данных является *гистограмма*. Область значений $[t_{(I)}; t_{(N)}]$ разбивается на равные интервалы $\Delta_i = 1, 2, ..., k$ длины $h = \frac{R}{k}$, где $R = t_{(N)} - t_{(I)}$, и называется размахом выборки. Гистограмма представляет собой примыкающие друг к другу прямоугольники, основанием которых являются указанные интервалы, а высоты равны плотностям относительных частот $\frac{N_i}{N_h}$, где N_i — число выборочных значений, попавших в данный интервал (рис. 1.4). Гистограмма является статистической плотностью распределения времени работы до отказа. Для оценки плотности иногда используется также *полигон* относительных частот, который представляет собой ломаную линию, построенную по точкам, абсциссами которых являются середины интервалов $\Delta_i = 1, 2, ..., k$, а ординаты соответствуют плотностям $\frac{N_i}{N_i}$ (рис. 2.2).



Рис. 2.2. График статистической плотности распределения в виде гистограммы и полигона частот

Интенсивность отказа элемента рассчитывается как отношение плотности распределения к вероятности безотказной работы.

Восстанавливаемые элементы

Исходными статистическими данными являются моменты времени отказов элементов: t_x , t_2 ,..., t_i ,..., t_n , где n – число отказавших элементов, N – общее число элементов, участвующих в испытаниях. Информация об отказах элементов может быть представлена в виде табл. 1.1. Весь период испытаний разбивается на интервалы времени определенной длины, и подсчитывается количество отказавших элементов на каждом интервале.

Таблица 1.1. Таблица отказов элементов

Δt	Δt_1	Δt_2	•••	Δt_k
Δn	Δn_i	Δn_i		Δn_k

Табличные данные означают, что на интервале времени Δt , было зафиксировано точно Δn , отказов элементов, t = 1, 2, ..., k. Тогда имеет место следующее статистическое определение параметра потока отказов элемента:

$$\widehat{\varpi}(t) = \frac{\Delta n_i}{N \Delta t_i}$$

Для всех t, принадлежащих i - интервалу времени:

$$\Delta t_1 + \ldots + \Delta t_{i-1} < t \le \Delta t_1 + \ldots + \Delta t_{i-1} + \Delta t.$$

Определение плотности распределения f(t) путем решения интегрального уравнения (1.5) связано с некоторыми трудностями, которые вызваны скачкообразным изменением параметра потока отказов. Один из возможных подходов к определению функции f(t) состоит в следующем. Найдем функцию f(t) в виде кусочно-постоянной функции

$$\omega(t) = \begin{cases} \omega_{k,} & \text{если } a_{k-1} < t \le a_k \text{ , } k=1, 2, \dots, n; \\ 0, & \text{если } t=a_n \end{cases}$$

Здесь $a_Q = 0$, $a_n = T$, ω_k – искомые величины, которые можно определить из условия выполнения уравнения (1.5) в среднем по интегральной метрике

$$\int\limits_0^T \!\! \left(\widehat{\varpi}(t) - f(t) - \int\limits_0^t f(\tau)\widehat{\varpi}(t-\tau)dt\right)^2 \!\! dt \to \min \text{ при ограничениях } \int\limits_0^T f(t)dt = 1, \ f(t) \ge 0$$

Пример выполнения лабораторной работы

Постановка задачи

Требуется определить показатели надежности элемента без восстановления и с восстановлением соответственно для двух вариантов исходных данных:

1. Первый набор исходных данных

На испытания поставлено N=100 элементов. Моменты отказов элементов представлены в табл. 1. Все элементы работают до своего отказа и после отказа не ремонтируются. Требуется определить статистические и теоретические показатели надежности элемента: T_1 , P(t), Q(t), $\omega(t)$.

Таблица 1. Моменты отказов элементов, в часах

120	221	151	212	445	575	411	415	152	750
123	130	235	875	147	316	613	745	251	319
120	145	120	309	432	243	649	158	344	789
247	197	623	254	655	723	696	267	997	326
128	130	158	462	346	294	120	30	165	215
232	186	938	146	518	248	177	848	127	198
239	450	216	559	239	560	263	144	139	261
378	289	768	310	413	351	141	292	319	969
56	877	357	265	796	584	243	394	614	146
422	255	360	360	824	114	242	396	166	224

2. Второй набор исходных данных

На испытаниях находится N -10 элементов. В течение периода T=700 час регистрируются моменты времени отказов элементов (табл. 2). Предполагается, что отказавшие элементы заменяют идентичными по надежности элементами. Требуется определить показатели надежности элемента, характеризующие время его работы между соседними отказами: T_2 , $\omega(t)$, F(t), $\lambda(t)$.

Обработка статистических данных предусматривает их группировку в 10 частичных интервалах (классах). Уровень значимости принять равным 0,05.

Таблица 2. Моменты времени отказов элементов

Номер	Моменты отказа на периоде времени 700
элемента	часов
1	204; 221; 345; 376; 537; 697
2	2; 39; 71; 104; 118; 213; 544; 596; 608; 657
3	138; 314; 387; 467;471; 556; 699
4	8; 11; 52; 94 192; 476; 491; 527; 655
5	106; 168; 325; 360; 690
6	192; 207; 217; 362; 426

7	225; 440; 618: 657; 667
8	371; 420; 500
9	85; 371; 568; 579; 611; 625; 663
10	80; 111; 152; 162; 369; 394; 462; 551

Последовательность выполнения работы с использованием программного обеспечения

Для работы выполнения ОНЖОМ использовать специальные статистические программные пакеты, например, Statistica или StatGraphics, либо при их отсутствии воспользоваться ПО MS Excel из имеющегося в распоряжении пакета MS Office. Для определения показателей надежности необходимо ДЛЯ вариантов исходных данных выполнить последовательность действий:

1. Подготовка исходных данных к статистической обработке для двух наборов одновременно. Создадются 2 столбца с именами narabotka1 и narabotka2, сохраним их в файле с именем ОТКАZ.

В столбец narabotka1 поместим первый набор исходных данных непосредственно из табл. 1. Для исходных данных, содержащихся в табл. 2, вычислим разности между последующими и предыдущими значениями моментов времени отказов каждого элемента, в результате чего получим набор чисел, приведенный в табл. 3.

Таблица 3. Время между отказами элементов

Номер	Моменты отказа на периоде времени 700
элемента	часов
1	204; 17;124;31;161;160
2	2;37;32:33;14;95;331;52;12;49
3	138; 176;73;80;4;85;143

4	8; 3;41;42;98;284;15;36;128
5	106; 62;157;35;330
6	192; 15;10;145;64
7	225;215;178;39;10
8	371; 49;80
9	85; 286;197;11;32;14;38
10	80; 31;41;10;207;25;68;89

Полученные разности из табл. 3 поместим в переменную (столбец) narabotka2

Длины переменных narabotkal и narabotka2 соответственно равны 100 и 65, что соответствует количеству чисел в табл. 1 и 3.

2. Определение статистических показателей для каждого набора данных, содержащихся в столбцах narabotkal и narabotka2.

Далее с помощью имеющихся инструментов необходимо осуществить расчет требуемых характеристик и вывод их на экран.

	Narabotka1	Narabotka2
Размер выборки	100	65
Среднее значение	361,61	95,4615
Стандартное	237,271	91,0529
отклонение		
Минимум	30	2
Максимум	997	371
Размах	967	369

Отсюда следует, что для первого набора исходных данных средняя наработка до первого отказа приближенно равна T_I =362 часа, а для второго

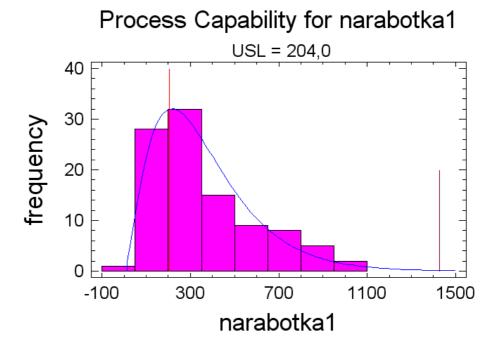
набора средняя наработка на отказ равна $T_2 = 95$ часов. В первом случае распределение времени работы элемента между отказами явно отличается от экспоненциального, т. к. стандартное отклонение $s_I = 237$ существенно отличается от средней наработки на отказ. Во втором случае стандартное отклонение $s_2 = 91$ достаточно близко к средней наработке до отказа, что свидетельствует о возможной близости распределения к экспоненциальному.

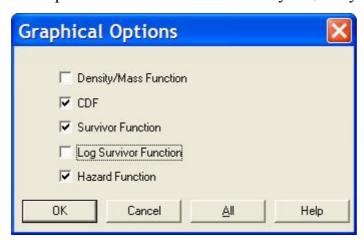
Видим также, что для первого набора данных все реализации случайной наработки до отказа находятся в интервале [30; 997], и размах выборки равен 967 часов. Для второго набора данных все выборочные значения содержатся в интервале [2; 371] длиной 369 часов.

Определение показателей надежности неремонтируемого элемента

Нажатием кнопки Capability Analysis в пакете StatGraphics

Заполним поля Data и USL названием 1 и 2 столбцов. В Analysis Options выберем пункт Gamma получим гистограмму частот и выравнивающую ее функции плотности Гамма-распределения (рис. 2.3).




Рис. 2.3. Подбор плотности распределения к гистограмме частот

Уровень значимости для Гамма-распределения равен 0,728906. Так как это значение больше требуемого 0,05, то Гамма-распределение согласуется с экспериментальными данными.

В пункте меню Describe\Distributions\Probability Distributions построим графики требуемых показателей надежности в соответствии с рассчитанными ранее параметрами.

В качестве примера для переменной narabotka1 подберем Гаммараспределение.

В окне Probability Distributions раскроем вспомогательное меню Graphical Options и отметим соответствующие пункты:

Пункты вспомогательного меню означают следующее:

Density function — плотность распределения w(t);

Cumulative d.f. — функция распределения Q(t);

Survivor function — вероятность безотказной работы P(t);

Log survivor function — логарифм вероятности безотказной работы;

Hazard function — интенсивность отказов $\lambda(t)$.

В результате выбора того или иного пункта меню получим графики соответствующих функций.

Определение показателей надежности ремонтируемого элемента

В окне Probability Distributions раскроем вспомогательное меню Graphical Options, произведем перебор 5 различных распределений и

выберем наиболее подходящее по уровню значимости. В качестве примера рассмотрим экспоненциальное распределение.

Гистограмма по наработкам2 и соответствующая кривая экспоненциального распределения приведены на рис. 2.5.

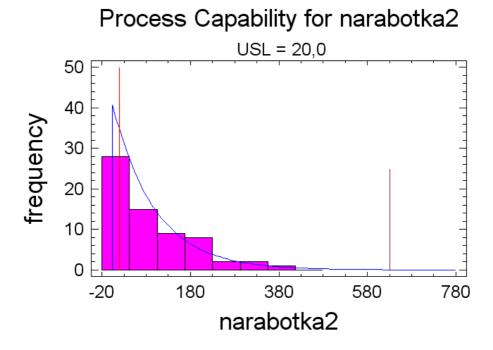


Рис. 2.5. Подбор плотности распределения w(t) к гистограмме частот

В пункт Analysis Options контекстного меню введем следующие параметры экспоненциального распределения: среднее отклонение = 95.4615

В соответствии с указанными параметрами в пункте меню Describe\Distributions\Probability Distributions строятся графики требуемых показателей надежности.

На рис. 2.6. и 2.7 изображены графики функций распределения и интенсивности отказов соответственно.

Средняя наработка на отказ равна T = 95,4615 час.

Exponential Distribution cumulative probability Mean 95,4615 0,8 0,6 0,4 0,2 0 100 200 300 500 0 400 600 Χ

Рис. 2.6. Функция распределения времени работы элемента между отказами F(t)

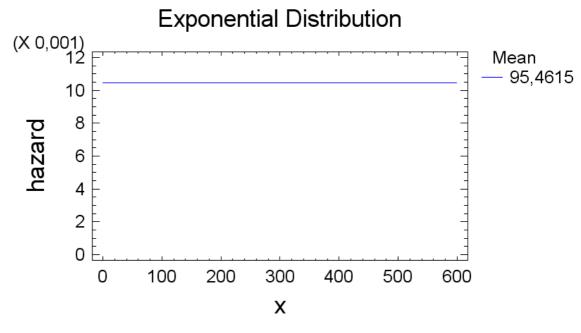


Рис. 2.7. Интенсивность отказов элемента $\lambda(t)$

Порядок выполнения и примеры с графиками приведены из пакета StatGraphics, аналогичные графики можно получить в пакете MS Excel использую надстройку «Анализ данных». Кроме того, с помощью MS Excel необходимо произвести и следующую обработку данных:

Обработка статистических данных

Размах варьирования:

$$h = t_{\text{max}} - t_{\text{min}} = 997 - 30 = 967$$

Разобьем размах варьирования на k интервалов:

$$k < 1 + 3.3 \lg N,$$
 $5 < k < 20$, где N -число элементов выборки. $N = 100$ $k = 1 + 3.3 \lg 100 = 7$

Длина интервала:

$$\Delta h = \frac{h}{k} = \frac{967}{7} = 138,14$$

Количество отказов выборки, попавших в і-ый интервал:

$$[30;168)$$
: $n_1 = 24$;
 $[168;306)$: $n_2 = 29$;
 $[306;444)$: $n_3 = 20$;
 $[444;582)$: $n_4 = 7$;
 $[582;720)$: $n_5 = 7$;
 $[720;858]$: $n_6 = 8$;
 $(858;997]$: $n_7 = 5$;

Все интервалы удовлетворяют условию n>=5, следовательно, объединение интервалов не требуется.

$$\begin{aligned} W_i &= \frac{n_i}{N} \\ W_1 &= 0.24; W_2 = 0.29; W_3 = 0.2; W_4 = 0.07; W_5 = 0.07; W_6 = 0.08; W_7 = 0.05. \end{aligned}$$

Плотность распределения наработки до отказа:

$$\omega_{i}(t) = \frac{W_{i}}{\Delta h} = \frac{W_{i}}{138,14}$$

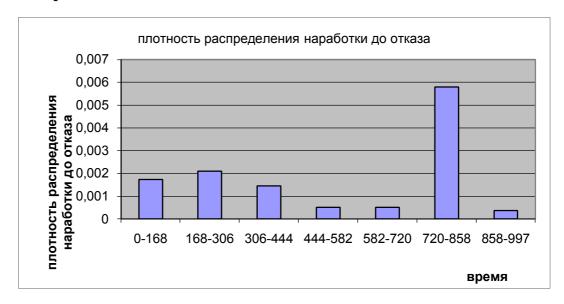
$$\omega_{1}(t) = 0.001737;$$

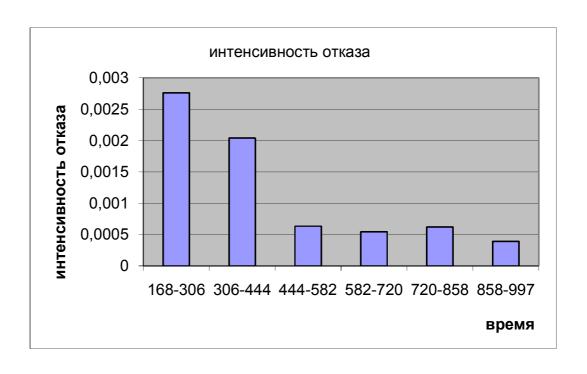
$$\omega_{2}(t) = 0.002099;$$

$$\omega_{3}(t) = 0.001448;$$

$$\omega_{4}(t) = 0.000507;$$

$$\omega_{5}(t) = 0.000507;$$


$$\omega_{6}(t) = 0.005791;$$


$$\omega_{7}(t) = 0.000362.$$

Интенсивность отказа в момент t:

$$\begin{split} &\lambda_i * (t) = \frac{n_i}{(N - n_{i-1}) \bullet \Delta h} \\ &\lambda_2 * (t) = \frac{29}{(100 - 24) \bullet 138,14} = 0,0027622; \\ &\lambda_3 * (t) = \frac{20}{(100 - 29) \bullet 138,14} = 0,0020391; \\ &\lambda_4 * (t) = \frac{7}{(100 - 20) \bullet 138,14} = 0,0006334; \\ &\lambda_5 * (t) = \frac{7}{(100 - 7) \bullet 138,14} = 0,0005449; \\ &\lambda_6 * (t) = \frac{8}{(100 - 7) \bullet 138,14} = 0,0006227; \\ &\lambda_7 * (t) = \frac{5}{(100 - 8) \bullet 138,14} = 0,0003934. \end{split}$$

Гистограммы:

Форма отчета

По результатам выполненной работы представляется отчет, в котором должны содержаться следующие пункты:

- 1. Постановка задачи с конкретным содержанием, сформулированным для своего варианта. Исходные данные должны быть представлены в виде таблиц. 1.2 и 1.3.
- 2. Данные второго набора представляются в виде таблицы 1.4.
- 3. Статистические данные разбить вручную на группы и построить гистограммы с помощью пакета MS Excel.
- 4. Привести формулы для расчета требуемых статистических показателей, числовые значения и смысл этих показателей, предоставить результаты группировки данных в виде таблицы распределения частот, привести гистограммы частот.
- 5. Выводы по результатам исследований.

Варианты заданий

Дано:

- Два набора исходных данных об отказах элементов.
- N число элементов в каждом наборе.
- Закон распределения времени до отказа в первом варианте.
- Закон распределения времени между отказами во втором варианте.
- Моменты отказа элементов.

Определить:

- Показатели надежности элемента, характеризующие время его между отказами (второй набор исходных данных): T_I , P(t), Q(t), w(t), $\chi(t)$.
- Показатели надежности элемента, характеризующие время его работы между отказами (второй набор исходных данных): T_I , F(t), w(t), $\chi(t)$.

Решение получить в виде таблиц и графиков.

При обработке данных вручную и на компьютере их следует разобрать 10 групп (классов). Подбор подходящего распределения необходимо установить для уровня значимости, равного 0,05.

ВАРИАНТ 1 Первый набор исходных данных (Нормальное распределение):

1155	1147	1126	1139	1137	1132	1120	1165	1163	1156
1142	1143	1138	1144	1149	1145	1157	1152	1145	1140
1140	1145	1169	1148	1121	1135	1152	1138	1128	1161
1140	1149	1149	1123	1141	1164	1145	1131	1157	1123
1136	1146	1140	1130	1147	1108	1122	1133	1115	1165
1166	1137	1147	1137	1126	1143	1114	1109	1147	1135
1147	1148	1153	1146	1128	1145	1135	1147	1151	1151
1119	1145	1137	1149	1163	1141	1137	1137	1146	1133
1128	1123	1139	1134	1154	1149	1144	1166	1152	1159
1163	1112	1126	1146	1147	1149	1146	1127	1143	1154

Второй набор исходных данных (Экспоненциальное распределение):

Номер элемента	Моменты отказа на периоде времени 700
	часов
1	37; 90; 279; 355; 360; 420; 466; 488; 627; 671
2	26; 77; 141; 532; 642; 661
3	53; 59; 164; 183; 316; 568; 607
4	22; 26; 134; 287; 356; 470; 472; 481
5	24; 40; 152; 412; 431; 486; 567; 630; 649
6	193; 216; 474; 488; 538; 616
7	86; 355; 415; 451
8	117; 157; 358; 462; 527; 673
9	74; 89; 356; 356; 420; 492; 497; 512; 548; 601
10	204; 276; 327; 515; 516; 544

ВАРИАНТ 2

Первый набор исходных данных (Гамма-распределение):

2127	1162	1131	1111	4414	1291	1266	2122	2268	1168
9168	2126	2134	4116	7119	2113	2110	3123	1103	3192
3288	3289	2229	1261	9224	1282	4221	7229	1248	5228
3232	2263	1216	8253	5262	4243	2268	2272	3270	5202
7235	1220	2292	3263	1251	5220	4200	8219	3208	2116
2146	3121	5109	5147	4214	4156	1202	4104	3123	1122
2288	4225	6234	6210	1240	8238	171	1263	1208	8214
9236	1100	7137	3196	2158	5110	3127	2146	1166	2158
1103	3218	6218	5217	2238	3212	2232	3233	1130	1151
4154	2186	1197	2136	3113	1115	1111	1138	2116	2168

Второй набор исходных данных (Равномерное распределение):

Моменты отказа на периоде
времени 600 часов
107; 201; 295; 397; 515
95; 213; 320; 403; 483; 568
97; 196; 282; 399; 504; 584
109; 216; 328; 422; 528
112; 226; 310; 417; 524
103; 195; 300; 392; 480 570
93; 178; 268; 375; 494
93; 203; 312; 393; 488 581
119; 210; 293; 408; 518
102; 220; 334; 439; 537

ВАРИАНТ 3 Первый набор исходных данных (Гамма-распределение):

221	370	84	97	196	475	426	151	72	133
282	97	321	315	107	108	156	597	241	210
107	37	176	197	182	467	146	97	244	54
91	255	169	149	256	53	283	103	468	38
369	305	209	227	276	351	244	216	382	430
204	306	163	159	221	235	126	106	670	72
80	466	93	60	123	706	112	236	298	49
277	155	83	67	298	168	30	210	178	275
86	161	397	508	334	252	582	24	427	139
559	138	405	187	229	107	167	519	226	247

Второй набор исходных данных (Нормальное распределение):

Номер элемента	Моменты отказа на периоде времени 600 часов
1	110; 211; 296; 408; 512; 584
2	80; 167; 239; 336; 435; 523
3	113; 206; 292; 370; 466; 588
4	123; 211; 301; 397; 502
5	79; 197; 296; 377; 457; 538
6	132; 224; 302; 383; 486; 570
7	86; 185; 312; 390; 471; 576
8	106; 195; 265; 350; 431; 537
9	83; 176; 253; 328; 407; 511; 595
10	130; 232; 371; 442; 539

ВАРИАНТ 4 Первый набор исходных данных (Нормальное распределение):

	Тервын	nuoop n	олодин.	и данны	M (HOPM	Idilbiioc	распред	,031011110)	•
156	161	145	122	180	190	153	174	163	133
135	156	176	160	163	150	157	156	136	168
176	155	165	140	165	160	138	181	183	182
165	175	153	131	180	168	149	156	173	156
148	133	154	149	152	150	188	163	145	142
169	163	174	135	154	183	172	136	166	157
157	182	174	162	173	191	165	146	151	163
175	167	141	163	142	143	167	149	142	173
149	148	150	154	149	178	145	168	176	170
158	140	152	162	163	148	184	159	143	163

Второй набор исходных данных (Равномерное распределение):

Номер элемента	Моменты отказа на периоде времени 500 часов
1	105; 208; 323; 414
2	113; 216; 331; 433
3	111; 192; 272; 363; 453
4	110; 209; 314; 426
5	85; 192; 301; 393; 480
6	87; 174; 292; 381; 479
7	102; 195; 314; 404
8	94; 190; 275; 363; 449
9	218; 230; 331; 433
10	105; 219; 310; 408

ВАРИАНТ 5

Первый набор исходных данных (Гамма-распределение):

	P =====			r 1	(·· r ·· r		- · · · · · · · · · · · · · · · · · · ·	
65	266	138	87	219	466	71	286	107	349
106	231	169	219	387	82	63	92	104	96
54	243	702	245	128	153	260	448	220	326
550	210	124	293	209	473	114	228	194	334
220	29	270	481	499	854	533	606	133	174
426	212	395	199	412	182	153	109	156	65
174	142	374	170	97	52	434	392	197	356
23	200	35	286	352	53	544	198	111	.93
361	409	393	20	296	409	42	73	138	515
223	345	79	98	51	25	188	194	88	106

Второй набор исходных данных (Равномерное распределение):

Номер элемента	Моменты отказа на периоде времени 700 часов
1	86; 194; 299; 406; 505; 619
2	119; 221; 333; 438; 528; 643
3	86; 200; 295; 389; 496; 600
4	107; 188; 286; 385; 501; 612
5	82; 185; 294; 392; 510; 591; 675
6	117; 234; 340; 425; 516; 613; 695
7	210; 202; 318; 414; 503; 597
8	104; 197; 310; 429; 534; 622
9	109; 196; 289; 395; 510; 619
10	83; 193; 309; 419; 507; 592; 683

ВАРИАНТ 6 Первый набор исходных данных (Гамма-распределение):

188	297	644	136	728	194	312	389	387	153
191	332	988	177	132	127	100	137	224	174
975	164	798	182	115	687	165	113	244	847
199	227	118	124	112	986	196	150	319	349
423	П21	224	163	945	789	960	158	377	747
139	154	728	129	197	241	282	152	161	228
171	458	189	381	580	177	986	156	347	277
163	355	347	180	241	256	239	128	862	189
292	221	254	953	253	515	474	588	434	167
240	757	149	178	380	344	546	761	127	271

Второй набор исходных данных (Нормальное распределение):

Номер элемента	Моменты отказа на периоде времени 500 часов
1	94; 181; 278; 365; 478
2	87; 168; 261; 353; 468
3	123; 211; 336; 412
4	93; 194; 280; 357; 459
5	80; 175; 266; 365; 493
6	113; 230; 346; 430
7	88; 191; 295; 400
8	74; 187; 286; 405; 478
9	79; 187; 308; 400; 476
10	123; 206; 333; 464

ВАРИАНТ 7

Первый набор исходных данных (Гамма-распределение):

	TTOPDDITE	macep i	толгодигы	л данно	(1 60	a patip	одолотт.	· · · · · · · · · · · · · · · · · · ·	
226	649	453	364	340	321	545	497	149	293
295	323	613	257	584	226	277	923	222	764
583	725	690	476	281	1395	230	273	122	292
191	460	444	755	618	235	219	125	367	124
416	293	290	112	138	445	П44	176	934	547
538	143	363	594	116	369	127	688	219	175
233	745	223	466	380	532	230	141	256	996
134	478	180	658	149	643	155	296	280	346
205	495	508	134	314	244	287	579	343	272
199	243	774	790	419	1102	733	637	1412	354

Второй набор исходных данных (Равномерное распределение):

Номер	Моменты отказа на периоде времени 900 часов
элемента	
1	98; 209; 295; 392; 502; 592; 691; 806
2	111; 197; 292; 405; 509; 590; 704; 788; 877
3	105; 218; 313; 397; 485; 570; 656; 766; 870
4	105; 218; 335; 419; 532; 618; 698; 792
5	95; 196; 292; 372; 452; 534; 653; 745; 829
6	99; 208; 293; 390; 478; 561; 669; 773; 860
7	103; 211; 326; 406; 515; 624; 722; 822
8	108; 205; 299; 412; 501; 612; 731; 812; 892
9	88; 191; 278; 360; 443; 539; 644; 750; 854
10	80; 177; 277; 365; 476; 564; 661; 775; 887

ВАРИАНТ 8

Первый набор исходных данных (Гамма-распределение):

								-	
936	285	116	367	247	237	456	155	141	157
142	233	135	996	298	180	229	440	150	124
173	123	111	161	111	269	874	245	390	129
149	574	131	745	334	254	417	634	423	178
845	116	267	369	698	190	764	295	108	234
723	119	877	132	119	259	987	484	155	139
253	234	135	156	220	223	198	412	449	186
151	853	155	943	545	429	165	344	277	124
326	245	381	279	491	535	945	558	158	487
386	140	195	151	166	276	679	120	575	225
I			1	1		I			1

Второй набор исходных данных (Нормальное распределение):

Номер элемента	Моменты отказа на периоде времени 900 часов
1	73; 169; 282; 341; 425; 540; 663; 777
2	73; 147; 213; 305; 372; 461; 569; 666; 768; 873
3	109; 200; 286; 402; 480; 575; 718; 797; 871
4	112; 197; 286; 380; 486; 564; 665; 782; 889
5	92; 187; 260; 355; 476; 567; 668; 760; 865
6	88; 191; 313; 419; 533; 609; 700; 797
7	110; 221; 369; 448; 529; 643; 772; 887
8	94; 182; 280; 340; 436; 534; 638; 750; 875
9	99; 202; 274; 365; 441; 526; 643; 742; 825; 899
10	101; 193; 288; 419; 542; 635; 716; 799; 881

ВАРИАНТ 9

Первый набор исходных данных (Гамма-распределение):

350	244	69	234	145	196	389	23	251	127
226	118	219	204	120	180	406	182	74	240
206	257	181	104	130	341	245	59	226	161
147	71	219	361	162	112	67	182	34	76
143	67	119	190	281	437	226	37	41	148
228	37	296	51	^ 254	44	190	143	795	117
191	14	392	157	16	23	89	346	33	47
377	319	258	37	68	235	385	128	111	640
136	224	174	61	35	71	345	132	197	35
331	83	97	178	328	194	П78	120	106	109

Второй набор исходных данных (Равномерное распределение):

Номер элемента	Моменты отказа на периоде времени 600 часов
1	104; 200; 287; 373; 477; 586
2	96; 198; 314; 399; 513
3	81; 165; 277; 375; 475; 562
4	111; 226; 312; 413; 530
5	111; 209; 322; 406; 516; 596
6	83; 198; 288; 384; 468 565
7	99; 215; 317; 415; 506
8	84; 200; 316; 431; 516
9	109; 218; 330; 435; 536
10	85; 172; 271; 386; 496

ВАРИАНТ 10

Первый набор исходных данных (Экспоненциальное распределение):

	тервыи.	наоор ис	лодных	данныл		пспциал	івнос ра	спредел	снис).
55	87	105	18	386	187	118	227	65	89
106	42	186	113	147	306	202	168	44	563
173	119	41	57	86	59	38	151	348	41
165	395	185	382	67	351	16	540	41	31
96	468	37	19	263	58	267	443	260	130
116	211	243	225	77	175	276	762	634	436
341	670	23	41	89	486	137	18	55	139
412	362	120	346	29	34	21	123	140	89
162	567	117	34	73	44	123	32	82	113
176	137	49	190	133	598	115	656	178	167

Второй набор исходных данных (Нормальное распределение):

	(-I I
Номер	Моменты отказа на периоде времени 1000 часов
элемента	
1	115; 222; 328; 406; 486; 594; 696; 801; 896; 977
2	91; 215; 316; 411; 484; 603; 687; 797; 878
3	89; 175; 266; 360; 468; 604; 695; 813; 895
4	85; 170; 258; 382; 470; 579; 658; 739; 819; 920
5	115; 222; 327; 436; 550; 634: 732; 811; 933
6	86; 164; 247; 366; 495; 588; 713; 816; 939
7	105; 205; 290; 409; 473; 580; 680; 773; 869; 969
8	99; 199; 315; 430; 527; 650; 762; 844; 945
9	105; 220; 311; 389; 478; 563; 661; 734: 855; 968
10	106; 184; 284; 395; 490; 593; 697;779; 922

ЛАБОРАТОРНАЯ РАБОТА №3. Исследование надежности и риска нерезервированной системы

Цель работы: получение навыков анализа опытных данных и определения на их основании показателей надежности и риска нерезервированной системы;

Темы для предварительного изучения. Показатели надежности и риска восстанавливаемых и не восстанавливаемых элементов систем.

Постановка задачи

Дано:

- структурная схема системы в виде основного (последовательного в смысле надежности) соединения элементов;
- n число элементов системы;
- λ_i интенсивность отказа i-го элемента системы, i = 1, 2,...,

n;

- r_i риск из-за отказа і-го элемента системы, і = 1, 2,..., n;
- R допустимый риск;
- T суммарное время работы системы.

Определить:

Показатели надежности системы:

- $P_c(t)$ вероятность безотказной работы системы в течение времени t, а также ее значения при t=T и $t=T_1$
 - T_1 среднее время безотказной работы системы;
- $R_c(t)$ риск системы как функцию времени; значение риска при t=T и $t=T_I$
 - возможность расчета риска по приближенной формуле.

Последовательность выполнения работы

Лабораторную работу следует выполнять в такой последовательности:

- 1. Вычислить показатели надежности системы $P_c(t)$ и T_I . Значение вероятности безотказной работы $P_c(t)$ следует получить при t=T и $t=T_I$.
- 2. Исследовать функцию риска системы по точной формуле (2.1), для чего:
 - получить формулу риска для заданных n, λ_i , r_i .
- исследовать зависимость $R_c(t)$, представив функцию в виде графика и таблицы;
- вычислить значение риска для исходных данных своего варианта $\text{при } t = T \text{ и } t = T_I.$
- 3. Исследовать зависимость $G_R(t,n)$ при допущении, что элементы системы равнонадежны и интенсивность отказа каждого элемента равна их средней интенсивности отказов, т. е.

$$\lambda = \frac{1}{n} \sum_{i=1}^{n} \lambda_i$$

4. Сделать выводы.

По результатам лабораторной работы представляется отчет, в котором обязательными являются следующие пункты:

- 1. Постановка задачи.
- 2. Расчетные формулы.
- 3. Численные значения показателей надежности и риска исследуемой системы.
- 4. Значение времени непрерывной работы системы, при котором обеспечивается требуемое значение риска.
- 5. Графики и таблицы функций риска.
- 6. Выводы по результатам исследований.

Пример выполнения лабораторной работы

Пусть дана система со следующими исходными данными:

- число элементов системы n = 10;
- время непрерывной работы Т = 1000 час;
- допустимый риск R = 5000 усл. ед.

Значения риска и интенсивностей отказов элементов приведены в табл.

2.1. Далее приводится последовательность выполнения работы. Исследования будем проводить с помощью программы Microsoft Excel.

Таблица 2.1. Исходные данные примера.

				Исхо,	дные	данные				
Номера	1	2	3	4	5	6	7	8	9	10
λ - 10 ⁻⁵ , час ⁻¹	1,2	0,8	0,5	1	1,5	0,6	0,09	0,05	1	1,5
<i>r</i> , усл. ед.	2000	300	8000	1000	1200	60	5000	6000	100	120

Определение показателей надежности системы

Интенсивность отказов $\lambda_c = \sum_{i=1}^n \lambda_i$ системы равна . Подставляя в это выражение значения интенсивностей отказов элементов из табл. 2.1, получим: $\lambda = 8,24 \cdot 10^{-5} \, vac^{-1}$ (технология вычисления λ_c приведена в разделе 2.4.2). Тогда вероятность и среднее время безотказной работы будут равны:

$$P_c(t) = e^{-\lambda_c t} = e^{-8,24\cdot 10^{-5} t},$$
 час.
$$T_1 = \frac{1}{\lambda_c} = 12316$$
 час.
$$T_2 = \frac{1}{\lambda_c} = 12316$$
 час.
$$P_c(1000) = \mathring{a}^{-8,24\cdot 10^{-5}\cdot 10^3} = 0,92$$
 При $t = T_1 = 12316$ час, $P_c(12316) = \mathring{a}^{-8,24\cdot 10^{-5}\cdot 12316} = 0,367$

Определение риска системы по точной формуле

Сначала нужно ввести исходные данные своего варианта.

	Α	В	С	D	E	F	G	Н		J	K	L	M	N
1						E	введите ис:	ходные да	нные:					
2	n=	10		λ=	1,2	8,0	0,5	1	1,5	0,6	0,09	0,05	1	1,5
3	T=	1000		r=	2000	300	8000	1000	1200	60	5000	6000	100	120
4	R=	5000												

Примечание: данные можно вводить в любые ячейки, но в данном тексте будут использоваться указания на эти конкретные ячейки

Вычисление интенсивности отказов системы
$$\lambda_c$$
 осуществляется так:
 $\lambda_{\hat{n}} = \sum_{i=1}^{\lambda_i} \lambda_i$ то выбираем ячейку С8 и вводим : =CУММ(E2:N2)*0,00001

Для вычисления суммы $\sum_{i=1}^{n} \lambda_i r_i$ необходимо получить скалярное произведение векторов λ и r, для этого в ячейке E5 вводим: =E2*E3 повторяем эти действия по всем значениям λ_i и r_i (диапазон ячеек от E5 до N5) Далее вычисляем $\sum_{i=1}^{n} \lambda_i r_i$.

Результатом мы получим следующее:

	A	В	С	D	E	F	G	Н		J	K	L	M	N
1						E	ведите ис:	ходные дан	нные:					
2	n=	10		λ=	1,2	8,0	0,5	1	1,5	0,6	0,09	0,05	1	1,5
3	T=	1000		r=	2000	300	8000	1000	1200	60	5000	6000	100	120
4	R=	5000												
5				λ*r=	2400	240	4000	1000	1800	36	450	300	100	180
6														
7														
8		Σλ=	0,0000824											
9														
10		Σλ*r=	0.10506											

$$P_c(t) = e^{-\lambda_c t} = e^{-8,24 \cdot 10^{-5} t},$$
 $T_1 = \frac{1}{\lambda_c}$ yac.

Функция риска: $R_c(t) = \frac{Q_c(t)}{\lambda_c} \sum_{i=1}^n \lambda_i r_i$,

Так как
$$Q_c(t) = 1 - P_c(t) = 1 - e^{-\lambda_c t}$$
, $\lambda_c = 8.24 \cdot 10^{-5}$, $\sum_{i=1}^n \lambda_i r_i = 0.10506$, то в

соответствии с (2.1) функция риска будет равна:

$$R_c(t) = \frac{1 - e^{-8.24 \cdot 10^{-5}t}}{8.24 \cdot 10^{-5}} \cdot 0,10506,$$

Для $t = T_I = 12136$ час значение риска $R_c(t) = 805,953$. Из полученных значений $R_c(t)$ видно, что риск исследуемой системы ниже допустимого значения, равного 5000 условных единиц.

Результатом мы получим следующее:

	А	В	С	D	Е	F	G	Н	I	J	K	L	М	N
1							введите ис	ходные да	нные:					
2	n=	10		λ=	1,2	0,8	0,5	1	1,5	0,6	0,09	0,05	1	1,5
3	T=	1000		r=	2000	300	8000	1000	1200	60	5000	6000	100	120
4	R=	5000												
5				λ*r=	2400	240	4000	1000	1800	36	450	300	100	180
6														
7														
8		Σλ=	0,0000824				T1=	12135,92		P _o (T)=	0,920904			
9										P _c (T1)=	0,367879			
10		Σλ*r=	0,10506							Rc(T)=	100,848			
11										Rc(T1)=	805,9537			

Исследование функции риска

Предполагая, что все элементы системы равнонадежны, а интенсивность

отказа каждого элемента $\lambda = \frac{\lambda_c}{n} = 0.824 \cdot 10^{-5}$ час⁻¹, получим следующее выражение риска:

$$R_{\rm c}(t) = \frac{1 - e^{-n\lambda t}}{n\lambda} \sum_{i=1}^{n} \lambda_i r_i = \frac{1 - e^{-0.824 \cdot 10^{-5} nt}}{0.824 \cdot 10^{-5} n} \cdot 10506 \cdot 10^{-5} = 12750 \cdot \frac{1 - e^{-0.824 \cdot 10^{-5} nt}}{n} \, .$$

Найдем зависимость $R_c(t)$ при различных значениях n в виде графиков и таблиц, используя возможности Excel. Сначала введем временной диапазон

ι												
	Α	В	C	D	E	F	G	Н		J	K	L
16												
17												
18			Nº	1	2	3	4	5	6	7	8	9
19			время t	0	1500	3000	4500	6000	7500	9000	10500	12000

Далее введем в ячейки формулу нахождения $R_c(t)$ при n, 3n, 5n:

	Α	В	C	D	E	F	G	Н	1	J	K	L	M
18			Nº	1	2	3	4	5	6	7	8	9	
19			время t	0	1500	3000	4500	6000	7500	9000	10500	12000	
20			Rc(t) при п	0	148,240089	279,2448	395,018	497,3306	587,7477	6523, 662	738,2666	800,6709	
21			Rc(t) при 3n	0	131,672665	222,5508	285,2732	328,5631	358,441	379,0622	393,2945	403,1175	
22			Rc(t) при 5n	0	117,549542	180,9113	215,0646	233,474	243,397	248,7457	251,6288	253,1829	

Определение критического времени работы системы

Так как $R_c(t)$ возрастает с ростом t, то представляет интерес предельное время, выше которого риск будет превышать допустимое значение. Решение задачи сводится к определению корня уравнения

$$R = \frac{Q_{\rm c}(\tau)}{\lambda_{\rm c}} \sum_{i=1}^{n} \lambda_i r_i .$$

Так как в рассматриваемом случае $\sum_{i=1}^n \lambda_i r_i = 10506 \cdot 10^{-5}, \quad \lambda_c = 8,24 \cdot 10^{-5} \ vac^{-1}, \quad R = 5000 \ , \ \text{то, подставляя эти значения}$ в последнее выражение, получим: $5000 = 1275(1 - e^{-0.24 \cdot 10^{-5}\varepsilon})$

Решая это уравнение получим критическое значение τ . В ячейке С16 введем: =-LN(1-B4*C8/C10)/C8 В нашем примере вещественного корня нет. Это значит, что при любом t риск системы не превосходит допустимого значения.

Варианты заданий к лабораторной работе 2

В заданиях приняты следующие обозначения:

T — суммарное время работы системы, час.

R — допустимый риск, усл ед.

 λ_i —интенсивность отказов i-го элемента, час⁻¹.

 r_i — риск системы из-за отказа i-го элемента, усл. ед.

Вариант 1

Номера элементов	1	2	3	4	5	6	7	8
λ·10 ⁻⁵ , час ⁻¹	1,1	0,5	3	4,2	3,6	2,1	4,4	4,8
<i>r</i> , усл.ед.	2500	6000	3000	2850	6180	4200	680	1000

T = 1450 час, R = 7500 усл. ед.

Вариант 2

Номера элементов	1	2	3	4	5	6	7	8
λ·10 ⁻⁵ , час ⁻¹	2,1	1,5	3,2	2,2	3,9	2,4	1,4	1,8
<i>r</i> , усл.ед.	6800	9200	2000	20000	6450	5200	1680	160

T = 1350 час, R = 3500 усл. ед.

Вариант 3

Номера элементов	1	2	3	4	5	6	7	8
λ·10 ⁻⁵ , час ⁻¹	0,1	2,5	3,1	1,2	1,6	2,3	0,4	4,6
<i>r</i> , усл.ед.	10500	8000	6000	285	6000	5200	68000	1400

T = 2350 час, R = 2500 усл. ед.

Вариант 4

Номера элементов	1	2	3	4	5	6	7	8
$\lambda \cdot 10^{-5}$, час ⁻¹	1,6	1,3	2,3	4,1	3,2	2,7	0,4	0,8
<i>r</i> , усл.ед.	3500	6450	3250	28500	6780	4280	2680	1800

T = 3500 час, R = 7000 усл. ед.

Вариант 5

Номера элементов	1	2	3	4	5	6	7	8
λ·10 ⁻⁵ , час ⁻¹	1,1	2,5	3,7	0,2	2,6	2,4	1,4	3,8
<i>r</i> , усл.ед.	5200	4200	1400	2850	6460	44560	8080	3000

T = 4000 час, R = 7500 усл. ед.

Вариант 6

Номера элементов	1	2	3	4	5	6	7	8
λ·10 ⁻⁵ , час ⁻¹	3,1	1,5	2,9	4,7	3,2	2,9	2,4	1,8
<i>r</i> , усл.ед.	2500	6000	3000	2850	6180	4200	680	1000

T = 1450 час, R = 6500 усл. ед.

Вариант 7

Номера элементов	1	2	3	4	5	6	7	8
λ·10 ⁻⁵ , час ⁻¹	1,2	2,8	4,3	4,1	0,6	0,1	2,5	1,7
<i>r</i> , усл.ед.	4500	6500	3100	1850	6350	5200	380	1400

T = 4350 час, R = 3500 усл. ед.

Вариант 8

Номера элементов	1	2	3	4	5	6	7	8
λ·10 ⁻⁵ , час ⁻¹	0,8	0,7	2,7	1,9	4,6	2,2	3,4	4,2
<i>r</i> , усл.ед.	500	600	300	285	618	420	680	100

T = 4450 час, R = 6500 усл. ед.

Вариант 9

Номера элементов	1	2	3	4	5	6	7	8
$\lambda \cdot 10^{-5}$, час ⁻¹	3,1	2,5	3,2	2,2	2,6	2,4	4,1	3,8
<i>r</i> , усл.ед.	1500	2000	3100	3850	3180	3200	3680	3000

T = 2050 час, R = 3700 усл. ед.

Вариант 10

Номера элементов	1	2	3	4	5	6	7	8
λ·10 ⁻⁵ , час ⁻¹	1,1	2,5	3	4,4	3,3	2,2	4,6	4,1
<i>r</i> , усл.ед.	3500	6300	3300	3330	6380	4300	6830	1300

T = 1290 час, R = 5700 усл. ед.

ЛАБОРАТОРНАЯ РАБОТА №4. Надежность программного средства и технологии его тестирования

Цель работы: получение навыков работы по оценке надежности программных средств с использованием основных принципов организации тестирования.

Темы для предварительного изучения. Изучение опыта организации разработки программного обеспечения, извлеченный из практики ведущих разработчиков.

Задание 4.1.

- 1. Изучить основные принципы организации тестирования.
- 2. Дать характеристику видов тестирования: функциональному и структурному, восходящему и нисходящему.
- 3. Дать математическую оценку числа ошибок на основе алгоритмов "теории программного обеспечения".
- **4.** Подчеркнуть важность тестирования. Дать примеры тестирования отдельных программ. Изучить вопрос об определении момента его окончания.
- **5.** Изучить работу Холстеда по определению момента окончания тестирования и модифицируется его уравнение.

Задание 4.2.

- 1. Разработать простейшее программное средство. (приложение калькулятор, реализация функции вычисления площади треугольника, решение квадратного уравнения, и т.п.)
- 2. Организовать функциональное тестирование выбранного программного средства.
- 3. Организовать восходящее тестирование выбранного программного средства.
- 4. Организовать нисходящее тестирование выбранного программного средства.
- 5. Предоставить отчет о проведенном тестировании.

Методические указания по самостоятельной работе

- 1. Принципы построения отказоустойчивых информационных систем.
- 2. Характеристики программных ошибок и возможность априорного определения надежности программных средств
 - 3. Средства автоматизации тестирования программного обеспечения
- 4. Организация тестирования при испытаниях надежности сложных программных средств
- 5. Специализированные программные средства анализа надежности информационных систем

ТЕОРЕТИЧЕСКАЯ ЧАСТЬ

Тема 1. Принципы построения отказоустойчивых информационных систем (20 часов).

Вопросы для рассмотрения

- 1. Основные задачи создания отказоустойчивых ИС
- 2. Способы и средства устранения ошибок в отказоустойчивых ИС
- 3. Способы восстановления отказоустойчивых ИС.
- **Тема 2**. Характеристики программных ошибок и возможность априорного определения надежности программных средств

Вопросы для рассмотрения

- 1. Цели и задачи исследования статистических характеристик ошибок в программах
- 2. Математические модели описания статистических характеристик ошибок в программах.

Тема 3. Средства автоматизации тестирования программного обеспечения

Вопросы для рассмотрения

- 1. Общая структура средств автоматизации тестирования и отладки программных компонент.
- 2. Методы моделирования (эмуляции и интерпретации) отлаживаемых программ

Тема 4. Организация тестирования при испытаниях надежности сложных программных средств

Вопросы для рассмотрения

- 1. Цели и этапы испытаний надежности сложных программных средств
- 2. Организация завершающих испытаний комплексов программ.
- 3. Генерация тестов для определения надежности сложных программных средств

Тема 5. Специализированные программные средства анализа надежности информационных систем

Вопросы для рассмотрения

- 1. Требования, задачи и специфика программных средств анализа надежности систем
- 2. Методика и алгоритмы программного средства Relass.
- 3. Методика и алгоритмы программного средства Kasm.
- 4. Методика и алгоритмы программного средства Redopt.

ФОРМА КОНТРОЛЯ

- 1. Сообщения в форме докладов, индивидуальный опрос.
- 2. Индивидуальные отчеты, опрос по принципу коллоквиумов.

Список рекомендованной литературы

- 1. Боровской И.Г. Технология разработки программных средств. Уч.пособие. Томск: ТУСУР, 2005. – 300 с.
- 2. Иыуду К.А. Надежность, контроль и диагностика вычислительных машин и систем: Учебное пособие для вузов / К. А. Иыуду. М.: Высшая школа, 1989. 216 с.: ил.
- 3. Липаев В.В. Надежность программных средств / В. В. Липаев. М. : СИНТЕГ, 1998. 232 с.
- 4. Майерс Г. Надежность программного обеспечения : Пер. с англ. / Г. Майерс; Пер. Ю. Ю. Галимов, Ред. В. Ш. Кауфман. М. : Мир, 1980. 360 с. : ил.
- 5. Острейковский В.А. Теория надежности: Учебник для вузов / В. А. Острейковский. М.: Высшая школа, 2003. 462 с.: ил., табл.
- 6. Половко А.М., Гуров С.В. Основы теории надежности Практикум: Издательство: ВНУ Петербург. 2006.- 560с.
- 7. Орлов С.А. Технологии разработки программного обеспечения. Разработка сложных программных систем: Учебное пособие для вузов/ Сергей Александрович. - СПб.: Питер, 2002. - 464 с.: