Н.А. Каратаева, П.С. Киселёв

РАДИОТЕХНИЧЕСКИЕ ЦЕПИ И СИГНАЛЫ Часть 1

Теория сигналов и линейные цепи

Учебное методическое пособие

Министерство образования и науки Российской Федерации

Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования

ТОМСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ СИСТЕМ УПРАВЛЕНИЯ И РАДИОЭЛЕКТРОНИКИ (ТУСУР)

Кафедра телекоммуникаций и основ радиотехники(ТОР)

Н.А. Каратаева, П.С. Киселёв

РАДИОТЕХНИЧЕСКИЕ ЦЕПИ И СИГНАЛЫ

Часть 1

Теория сигналов и линейные цепи

Учебное методическое пособие

Рецензент: Профессор кафедры ТОР ТУСУР, д.т.н. **А.В. Пуговкин**

Корректор: Красовская Е.Н.

Каратаева Н.А., Киселёв П.С.

Радиотехнические цепи и сигналы. Часть 1: Учебное методическое пособие. – Томск: Томский межвузовский центр дистанционного образования, 2012. – 33 с.

Изложена программа первой части лекционного курса по дисциплине РТЦиС. Приведены исходные данные и варианты трех расчетно-графических контрольных работ. Дан пример оформления контрольной работы №1. Пособие предназначено для организации самостоятельной работы студентов всех форм обучения, изучающих дисциплину РТЦиС.

Разработчик электронной версии: П.С. Киселёв

© Каратаева Н.А., Киселёв П.С., 2012 © Факультет дистанционного обучения, 2012

СОДЕРЖАНИЕ

1 Введение	4
2 Программа лекционного курса дисциплины РТЦиС. Часть 1	4
3 Список рекомендуемой литературы	6
4 Содержание расчетно-графических контрольных работ	7
4.1 Контрольная работа №1. Спектральный анализ периодических и	7
непериодических сигналов	
4.2 Контрольная работа №2. Расчет прохождения периодических и	
непериодических сигналов через линейные электрические цепи	
первого порядка	8
4.3 Контрольная работа №3. Расчет прохождения непериодического	
сигнала сложной формы через линейную цепь второго порядка	9
5 Шифры и исходные данные к контрольным работам №1, №2, №3	10
6 Пример расчета и оформления контрольной работы №1	17

1 ВВЕДЕНИЕ

Изучение дисциплины «Радиотехничекие цепи и сигналы» (РТЦиС) согласно учебному плану проводится в двух семестрах (6,7). В весеннем семестре осваивается первая часть дисциплины (60 часов лекций и 30 часов практических занятий), выполняются три расчетно-графические контрольные работы. По первой части предусмотрены 2 формы отчетности:

- зачет по контрольным работам;
- экзамен по теоретическому курсу.

Изучение первой части дисциплины РТЦиС ведется в соответствии с «Государственным образовательным стандартом высшего профессионального образования» (ГОС) по направлению «Радиотехника» и включает в себя следующие темы: детерминированные радиотехнические сигналы, их спектральные и корреляционные характеристики; модулированные сигналы, их временное и спектральное представление; разновидности модулированных сигналов;частотные и временные характеристики электрических цепей; методы анализа прохождения детерминированных сигналов через линейные цепи».

2 ПРОГРАММА ЛЕКЦИОННОГО КУРСА ДИСЦИПЛИНЫ РТЦиС. Часть 1

2.1 Обобщенные линейные представления сигналов

Классификация сигналов, основные определения. Физические характеристики сигналов. Модели сигналов и способы их математического описания. Дельта-функция, функция Хевисайда и их свойства.

Обобщенный ряд Фурье. Погрешность обобщенного аналитического представления. Понятие спектра.

2.2 Гармонический анализ детерминированных сигналов

Гармонический анализ периодических сигналов. Понятие спектра амплитуд и фаз. Свойства спектров периодических сигналов. Гармонический анализ непериодических сигналов. Свойства преобразований Фурье (теоремы о спектрах) и их применение к анализу сигналов и цепей. Спектры некоторых периодических сигналов и их свойства. Спектральная плотность непериодического сигнала. Обобщение преобразований Фурье и Лапласа.

2.3 Корреляционный анализ детерминированных сигналов

Автокорреляционная и взаимно корреляционная функции сигналов. Преобразование Фурье для корреляционных функций. Энергетический спектр. Корреляционные функции типовых радиотехнических сигналов.

2.4 Линейные цепи с постоянными параметрами

Классификация радиотехнических цепей. Дифференциальные уравнения электрического равновесия. Определение, основные свойства линейной цепи. Передаточные функции апериодических и избирательных цепей. Эквивалентные схемы. Частотные и временные характеристики линейных цепей и связь между ними.

2.5 Методы анализа прохождения сигналов через линейные цепи

Методы решения дифференциальных уравнений электрического равновесия. Методы анализа на основе ряда Фурье, преобразований Фурье и преобразований Лапласа. Временные методы анализа. Взаимосвязь различных методов анализа. Условия неискаженной передачи.

2.6 Радиосигналы

Основные свойства и особенности радиосигналов. Радиосигналы с амплитудной модуляцией и их спектры при тональной и сложной модуляции. Угловая модуляция и спектры сигналов при тональной и сложной модуляции. Спектры сигналов с амплитудной и угловой модуляцией. Специальные виды модуляции (ФКМ, КАМ и др.).

Представление радиосигналов в виде узкополосного процесса. Огибающая, частота и фаза узкополосного сигнала. Аналитический сигнал и его свойства.

Корреляционный анализ радиосигналов.

2.7 Методы анализа прохождения радиосигналов через избирательные цепи

Особенности анализа. Приближенный спектральный метод (метод низкочастотного эквивалента). Упрощение метода интеграла наложения. Линейные искажения амплитудно-модулированных сигналов и сигналов с угловой модуляцией при прохождении через избирательные цепи.

З СПИСОК РЕКОМЕНДУЕМОЙ ЛИТЕРАТУРЫ

Книги по радиотехнике

1. Баскаков С.И. Радиотехнические цепи и сигналы: Учебник для вузов. - М.: Высшая школа, 1988. – 448 с.

2. Гоноровский И.С. Радиотехнические цепи и сигналы: Учебник для вузов. - М.: Радио и связь, 1986. - 512 с.

3. Радиотехнические цепи и сигналы: Учебное пособие для вузов/ Под ред. К.А.Самойло. - М.: Радио и связь, 1982. – 528 с.

4. Каратаева Н.А. Радиотехнические цепи и сигналы. Часть 1. Теория сигналов и линейные цепи. Учебное пособие. - Томск: Томский межвузовский центр дистанционного образования 2002. – 260 с.

Задачники по радиотехнике

5. Баскаков С.И. Радиотехнические цепи и сигналы. Руководство к решению задач. - М.: Высшая школа, 1987. – 208 с.

6. Задачник по курсу «Радиотехнические цепи и сигналы»/ В.П. Жуков, В.Г. Карташев, А.М. Николаев. - М.: Высшая школа, 1986. – 192 с.

7. Радиотехнические цепи и сигналы. Примеры и задачи: Учебное пособие для вузов/ Под ред. И.С. Гоноровского. - М.: Радио и связь, 1989. – 248 с.

Книги по математике

8. Андре Анго. Математика для электро- и радиоинженеров: Пер. с франц. - М.: Наука, 1965. – 778 с.

9. Бронштейн И.Н., Семендяев К.А. Справочник для инженеров и учащихся ВТУзов. - М.: Наука, 1986. – 544 с.

10. Диткин В.А., Прудников А.П. Интегральные преобразования и операционное исчисление. - М.: Наука, 1974. – 542 с.

4 СОДЕРЖАНИЕ РАСЧЕТНО-ГРАФИЧЕСКИХ КОНТРОЛЬНЫХ РАБОТ

4.1 Контрольная работа №1. Спектральный анализ периодических и непериодических управляющих сигналов

Решение типовых задач, необходимый теоретический материал содержатся в учебном пособии [4]. Исходные данные для периодического видеосигнала, составленного из прямоугольных однополярных или знакопеременных импульсов, согласно варианту (таблица 1) взять из таблицы 3.

Порядок выполнения первой контрольной работы:

1. Выполнить математическое описание заданного периодического сигнала, изобразить графически два-три периода сигнала, указав на рисунке параметры, характеризующие сигнал. Период сигнала равен 10⁻³ с (1000 мкс).

2. Проанализировать временные свойства сигнала, описать заданные виды симметрии и сформулировать обоснованные предположения о свойствах и особенностях спектрального состава сигнала.

3. Вычислить и построить спектры амплитуд и фаз (не менее десяти спектральных составляющих). Выявить характер огибающей спектра амплитуд.

Указание: при медленно сходящемся спектре изобразить характер огибающих спектров амплитуд и фаз в уменьшенном для наглядности масштабе, указав на них наиболее характерные точки по частоте, амплитуде и фазе.

4. Построить оценку сигнала из трех гармонических колебаний с наибольшими амплитудами.

5. Рассчитать относительную погрешность представления сигнала оценкой из трех гармонических колебаний.

6. Определить комплексную спектральную плотность непериодического сигнала, совпадающего с заданным периодическим на протяжении одного периода в симметричных пределах $\left[-\frac{T}{2}, \frac{T}{2}\right]$ и равного нулю при других временах.

7. Построить графики модуля спектральной плотности и фазового спектра непериодического сигнала.

8. Сопоставить спектры периодического и непериодического сигнала на основе известного соотношения

Ряд значений *А*_{*n*} совместить с графиком спектральной плотности.

9. Определить энергию и среднюю мощность заданного сигнала на участке цепи с сопротивлением 1 Ом.

10. Сделать выводы по проведенному анализу периодического и непериодического сигналов, сопоставив между собой характер спектров, временное и спектральное представления сигналов.

4.2 Контрольная работа №2. Расчет прохождения периодических и непериодических сигналов через линейные электрические цепи первого порядка

Для расчета использовать следующие исходные данные:

• периодический сигнал *s*₁(*t*) согласно варианту (таблица 1) из таблицы 3;

• непериодический импульсный сигнал $s_2(t)$, состоящий из двух соседних униполярных или знакопеременных импульсов, параметры которых заданы в таблице 3;

• электрическая цепь первого порядка в режиме холостого хода; схемы цепей и параметры элементов заданы в таблице 4;

• соотношение параметров цепи и сигнала $\tau_{\mu} \approx \frac{\tau}{2} \frac{31}{31}$.

Порядок выполнения второй контрольной работы:

1. Рассчитать и построить в масштабе АЧХ и ФЧХ интегрирующей и дифференцирующей цепей в диапазоне от нуля до 10 кГц, полагая $\tau_{\mu} \approx \frac{\tau}{2.31}$.

Указание: по шкале абсцисс сделать градуировку частоты в кГц и в безразмерных величинах $\omega \tau_u$.

2. Рассчитать и построить в масштабе переходную и импульсную характеристики цепей от нуля до $t_{\rm max} = 3\tau$ (мкс).

Указание: по шкале абсцисс сделать градуировку времени в мкс и в безразмерных величинах t/τ_{μ} .

3. Проверить выполнение предельных соотношений между частотными и временными характеристиками.

4. Рассчитать спектр амплитуд и фаз на выходе заданной цепи при действии периодического сигнала $s_1(t)$. 5. Построить с учетом масштаба на общей спектрограмме спектры амплитуд и фаз входного и выходного сигналов при действии сигнала $s_2(t)$.

6. Дать представление входного сигнала *s*₂(*t*) с помощью функций Хевисайда.

7. Получить динамическое представление отклика заданной цепи на действие сигнала $s_2(t)$ (с помощью переходных характеристик).

8. Изобразить отклик цепи на интервале времени от нуля до t_{max} , в три раза превышающем длительность воздействия $s_2(t)$ (воздействие и соответствующий отклик цепи изображать на общем рисунке).

9. Сделать выводы по результатам проведенного анализа.

4.3 Контрольная работа №3. Расчет похождения непериодического сигнала сложной формы через линейную цепь второго порядка

Для расчета использовать, согласно варианту (таблица 2), следующие исходные данные:

- схема электрической цепи задается в таблице 6;
- входной сигнал задается таблице 5;

• соотношение параметров цепи и сигнала: постоянные времени электрических цепей $\tau_u = RC$ и $\tau_u = \frac{L}{R}$ – представлены в таблице 6.

Порядок выполнения третьей контрольной работы:

1. Рассчитать и построить в масштабе АЧХ и ФЧХ цепи.

2. Рассчитать и построить в масштабе переходную и импульсную характеристики цепи.

3. Проверить выполнение предельных соотношений между частотными и временными характеристиками.

4. Дать поинтервальное аналитическое представление сигнала по его графику.

5. Рассчитать операторным методом (или методом временного интегрирования) отклик на выходе линейной цепи и дать его поинтервальное описание.

6. По результатам вычислений (не менее трех точек на каждом интервале описания сигнала) изобразить отклик цепи на отрезке времени от момента включения до t_{max} , в три раза превышающем длительность воздействия; сигнал воздействия и отклика совместить на одном рисунке.

7. Сделать выводы (оценка операторного и временного методов применительно к решаемой задаче, физическая интерпретация полученных результатов).

5 ШИФРЫ И ИСХОДНЫЕ ДАННЫЕ К КОНТРОЛЬНЫМ РАБОТАМ №1, 2, 3

Таблица 1 – Шифры к контрольным работам №1, №2

Контрольная работа №1			Контрольная работа №2					
Вариант №	Шифр сигнала (таблица 3)	Соотношение между периодом <i>Т</i> и длительностью импульса <i>т</i>	Соотношение иежду периодом Т Шифр цепи и длительностью импульса т		эношение периодом T Шифр цепи (таблица 4)Значен протилульса τ R_1		ния со- влений <i>R</i> ₂	
1	1	$T = 3\tau$	1	R	R			
2	2	$T = 4\tau$	2	R	R			
3	3	$T = 5\tau$	3	R	2R			
4	4	$T = 6\tau$	4	2R	R			
5	5	$T = 7\tau$	5	R	R			
6	6	$T = 8\tau$	6	R	R			
7	1	$T = 4\tau$	7	R	R			
8	2	$T = 5\tau$	8	R	R			
9	3	$T = 6\tau$	9	R	R			
10	4	$T = 7\tau$	10	R	R			
11	5	$T = 8\tau$	1	2R	R			
12	6	$T = 3\tau$	2	R	2R			
13	1	$T = 5\tau$	3	2R	R			
14	2	$T = 6\tau$	4	R	2R			
15	3	$T = 7\tau$	5	2R	R			
16	4	$T = 8\tau$	6	R	2R			
17	5	$T = 3\tau$	7	2R	R			
18	6	$T = 4\tau$	8	R	2R			
19	1	$T = 6\tau$	9	2R	R			
20	2	$T = 7\tau$	10	R	2R			
21	3	$T = 8\tau$	1	R	0			
22	4	$T = 3\tau$	2	2R	R			
23	5	$T = 4\tau$	3	0	2R			
24	6	$T = 5\tau$	4	2R	0			
25	1	$T = 7\tau$	5	R	2R			
26	2	$T = 8\tau$	6	R	0			
27	3	$T = 3\tau$	7	2R	R			
28	4	$T = 4\tau$	8	2R	R			
29	5	$T = 5\tau$	9	R	2R			
30	6	$T = 6\tau$	10	0	2R			

Вариант	Шифр сигнала (таблица 5)		Шифр цепи (таблица 6)	
N⁰	N_1	N_2	N_3N_4	
1	1	1	11	
2	2	1	21	
3	3	1	31	
4	4	1	41	
5	5	1	51	
6	6	1	61	
7	7	1	12	
8	8	1	22	
9	9	1	32	
10	1	2	42	
11	2	2	52	
12	3	2	62	
13	4	2	13	
14	5	2	23	
15	6	2	33	
16	7	2	43	
17	8	2	53	
18	9	2	63	
19	1	3	14	
20	2	3	24	
21	3	3	34	
22	4	3	44	
23	5	3	54	
24	6	3	64	
25	7	3	15	
26	8	3	25	
27	9	3	35	
28	1	4	45	
29	2	4	55	
30	3	4	65	

Таблица 2 – Шифры к контрольной работе №3

Шифр сигнала	График сигнала						
1	$-\frac{T}{4} \xrightarrow{E} \frac{T}{2}$						
2	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$						
3	$-T \qquad E \\ 0 \qquad T \\ -T/2 \qquad T/2 \qquad t$						
4	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						
5	$-T \qquad 0 \qquad T/2 \qquad T \qquad t$						
6	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						
Примеча	ние						
Период сигнала <i>T</i> равен 0,001 с (<i>T</i> = 1000 мкс)							

Таблица 3 – Модели периодических сигналов к контрольной работе №1

Таблица 4 – Модели линейных цепей первого порядка к контрольной работе №2

Постоянная времени линейной цепи τ_u связана с параметрами элементов (R, L и C) и длительностью импульса τ следующими соотношениями:

$$\tau_{u} = \frac{1}{\alpha} = \frac{L}{R} = R \cdot C, \quad \tau_{u} = \frac{\tau}{2,31}.$$

Шифр N ₁	График сигнала	Шифр N ₂	Параметры импульсов t ₁ и t ₂					
1	$\begin{bmatrix} E \\ 0 \\ -E \end{bmatrix} t_1 t_2 t$	1	$t_2 = 2t_1$					
2	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2	$t_2 = 1,75t_1$					
3	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	3	$t_2 = 1,5t_1$					
4	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	4	$t_2 = 1,25t_1$					
5	$ \begin{array}{c c} E \\ \hline 0 \\ -E \end{array} $ $ \begin{array}{c} t_1 \\ t_2 \\ t \end{array} $	5	$t_2 = 3t_1$					
6	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	6	$t_2 = 3,75t_1$					
7	$\begin{bmatrix} E \\ 0 \\ -E \end{bmatrix} \begin{bmatrix} t_1 \\ t_2 \\ t_1 \end{bmatrix} = t_2$	7	$t_2 = 3,5t_1$					
8	$\begin{bmatrix} E \\ 0 \\ -E \end{bmatrix} = \begin{bmatrix} t_1 \\ t_2 \\ t_1 \end{bmatrix}$	8	$t_2 = 3.25t_1$					
9	$\begin{array}{c c} E \\ \hline 0 \\ -E \end{array} \begin{array}{c} t_1 \\ t_2 \\ t \end{array}$	9	$t_2 = 4t_1$					
Примечание $t_{I} = \tau_{w} = 100 \text{ мкс}$								
1	$v_1 = v_0$							

Таблица 5 – Модели непериодических сигналов к контрольной работе №3

Таблица 6 — Модели линейных электрических цепей второго порядка (шифр $N_3 N_4$) к контрольной работе $N_2 3$

Примечание

Все электрические цепи составлены из сопротивлений *R*, индуктивностей *L*, емкостей *C*.

$$\tau_{u} = \frac{1}{\alpha} = \frac{L}{R} = R \cdot C, \quad \tau_{u} = 100 \text{ MKC}.$$

16

6 ПРИМЕР РАСЧЕТА И ОФОРМЛЕНИЯ КОНТРОЛЬНОЙ РАБОТЫ №1 ПО ТЕМЕ: «СПЕКТРАЛЬНЫЙ АНАЛИЗ ПЕРИОДИЧЕСКИХ И НЕПЕРИОДИЧЕСКИХ УПРАВЛЯЮЩИХ СИГНАЛОВ»

Исходные данные (параметры видеосигнала, изображенного на рисунке 6.1):

- период сигнала *T* = 1000 мкс;
- длительность импульса $\tau = 375$ мкс;
- амплитуда импульса *E* = 3,2 B;
- временные свойства сигнала:
 четная симметрия относительно *t* = 0

$$s(t) = s(-t),$$

нечетная симметрия относительно $t = T / \Delta$

$$s\left(\frac{T}{4}+t\right) = -s\left(\frac{T}{4}-t\right).$$

6.1 Математическое описание заданного периодического сигнала

Периодический сигнал представляет собой знакочередующуюся последовательность импульсов прямоугольной формы. Математическое описание проведем, используя графическую модель сигнала, изображенную на рисунке 6.1.

Скважность, определяемая отношением периода сигнала к длительности прямоугольного импульса, равна

$$q = \frac{T}{\tau} = \frac{1000 \text{ MKc}}{375 \text{ MKc}} = 2\frac{2}{3}.$$

Рисунок 6.1 – Временное представление сигнала

6.2 Анализ временных свойств сигнала и формулировка обоснованных предположений о свойствах и особенностях спектрального состава сигнала

Анализируя временное представление сигнала, видим:

- 1) s(t) = s(-t) сигнал является четной функцией времени;
- 2) сигнал представляет собой знакочередующуюся последовательность импульсов, и в этом случае постоянная составляющая равна нулю:

$$\frac{a_o}{2} = \frac{1}{T} \int_{-T/2}^{T/2} s(t) dt = 0.$$

На основании изложенных свойств предполагаем, что в разложении сигнала будут присутствовать только косинусоидальные элементарные гармонические составляющие, то есть

$$a_n \neq 0, \ b_n = 0, \ \frac{a_o}{2} = 0.$$

И, следовательно, ряд Фурье можно преобразовать следующим образом:

$$s(t) = \frac{a_o}{2} + \sum_{n=1}^{\infty} a_n \cos n\omega_1 t + \sum_{n=1}^{\infty} b_n \sin n\omega_1 t = \sum_{n=1}^{\infty} a_n \cos n\omega_1 t.$$

6.3 Вычисление спектров амплитуд и фаз. Характер огибающей спектра амплитуд

Проведем расчет весовых коэффициентов a_n , используя при этом формулу

$$a_n = \frac{2}{T} \int_{-T/2}^{T/2} s(t) \cos(n\omega_1 t) dt.$$

Заданный сигнал является четной функцией времени. Произведение двух четных функций s(t) и $\cos n\omega_1 t$ образует четную функцию времени. Интеграл от четной функции на симметричном интервале равен удвоенному значению интеграла за половину интервала интегрирования:

$$a_n = \frac{4}{T} \int_0^{T/2} s(t) \cos(n\omega_1 t) dt$$

Обращаясь к графической модели сигнала (рисунок 6.1), производим вычисления:

$$a_{n} = \frac{4}{T} \int_{0}^{T/2} s(t) \cos(n\omega_{1}t) dt = \frac{4}{T} \int_{0}^{\tau/2} E \cos(n\omega_{1}t) dt + \frac{4}{T} \int_{T/2-\tau/2}^{T/2} (-E) \cos(n\omega_{1}t) dt =$$
$$= \frac{4E}{Tn\omega_{1}} \sin(n\omega_{1}t) \Big|_{0}^{\tau/2} - \frac{4E}{Tn\omega_{1}} \sin(n\omega_{1}t) \Big|_{T/2-\tau/2}^{T/2} =$$
$$= \frac{4E}{Tn\omega_{1}} \bigg[\sin\frac{n\omega_{1}\tau}{2} - \sin\frac{n\omega_{1}T}{2} + \sin n\omega_{1} \bigg(\frac{T}{2} - \frac{\tau}{2} \bigg) \bigg].$$

Для проведения дальнейших упрощений воспользуемся очевидными соотношениями

$$q = \frac{T}{\tau} \Rightarrow \tau = \frac{T}{q},$$
$$\omega_1 = \frac{2\pi}{T} \Rightarrow \omega_1 T = 2\pi.$$

В условиях конкретного примера $q = 2\frac{2}{3}$. Таким образом, последнее выражение можно переписать в виде

$$a_n = \frac{2E}{n\pi} \left[\sin\frac{n\pi}{q} - \sin n\pi + \sin\frac{n\pi(q-1)}{q} \right] = \frac{2E}{n\pi} \left[\sin\frac{n\pi}{q} + \sin\frac{n\pi(q-1)}{q} \right] =$$
$$= \frac{2E}{n\pi} \cdot 2\sin\frac{n\pi + n\pi(q-1)}{2q} \cdot \cos\frac{n\pi - n\pi(q-1)}{2q} = \frac{4E}{n\pi} \cdot \sin\frac{n\pi}{2} \cdot \cos\frac{n\pi}{8}.$$

При выполнении преобразований были использованы следующие соотношения между тригонометрическими функциями:

$$\sin n\pi = 0;$$

$$\sin \alpha + \sin \beta = 2\sin \frac{\alpha + \beta}{2} \cos \frac{\alpha - \beta}{2}$$

Систематизируем полученные выражения

$$\begin{aligned} \frac{a_o}{2} &= 0, \ a_n = \frac{4E}{n\pi} \cdot \sin \frac{n\pi}{2} \cdot \cos \frac{n\pi}{8}, \ b_n = 0; \\ A_n &= \sqrt{a_n^2 + b_n^2} = |a_n|; \\ \varphi_n &= -\operatorname{arctg} \frac{b_n}{a_n} = -\operatorname{arctg} \frac{0}{a_n} = \begin{cases} 0 &, \ \text{если } a_n > 0, \\ -\pi &, \ \text{если } a_n < 0. \end{cases} \end{aligned}$$

Результаты расчетов оформляем в виде таблицы 7.

n	0	1	2	3	4	5	6	7	8	9
a _n	$\frac{a_o}{2} = 0$	3,764	0	-0,52	0	-0,312	0	0,538	0	-0,418
b_n		0	0	0	0	0	0	0	0	0
A _n	$\frac{a_o}{2} = 0$	3,764	0	0,52	0	0,312	0	0,538	0	0,418
φ_n		0	_	-π	-	-π	-	-π	-	-π

На основании данных таблицы приступаем к построению спектральных диаграмм. На рисунке 6.2 показано спектральное представление рассматрива-емого сигнала.

6.4 Построение оценки сигнала

Произведем аналитическое восстановление сигнала по его спектру. Восстановление по Фурье имеет следующие формы записи:

$$s_{N}(t) = \frac{a_{o}}{2} + a_{1} \cos \omega_{1}t + a_{2} \cos 2\omega_{1}t + \dots + a_{N} \cos N\omega_{1}t =$$

$$= \frac{a_{o}}{2} + A_{1} \cos(\omega_{1}t + \varphi_{1}) + A_{2} \cos(2\omega_{1}t + \varphi_{2}) + \dots + A_{N} \cos(N\omega_{1}t + \varphi_{N}) =$$

$$= \sum_{n=-N}^{N} \dot{C}_{n} e^{jn\omega_{1}t} .$$

Воспользуемся наиболее удобной в данном случае формулировкой:

$$s_N(t) = \frac{a_o}{2} + a_1 \cos \omega_1 t + a_2 \cos 2\omega_1 t + a_3 \cos 3\omega_1 t + \dots + a_N \cos N\omega_1 t$$

Рисунок 6.2 – Спектральное представление периодического сигнала: а) спектр коэффициентов a_n ; б) спектр амплитуд A_n ; в) спектр фаз φ_n ; г) и д) спектр коэффициентов \dot{C}_n и φ_n комплексного ряда Фурье

при N = 5, тогда $s_5(t) = 3,76 \cdot \cos \omega_1 t + (-0,52) \cdot \cos 3\omega_1 t + (-0,31) \cdot \cos 5\omega_1 t$, где $\omega_1 = \frac{2\pi}{T}$ – угловая частота.

В соответствии с последней формулой производим расчет компонент оценки и их суммы. Всю необходимую информацию включает таблица 8.

				4	
t	0	$\frac{T}{16}$	$\frac{T}{8}$	$3 \cdot \frac{T}{16}$	$\frac{T}{4}$
$3,764 \cdot \cos \omega_1 t$	3,764	3,477	2,662	1,44	0
$-0,52 \cdot \cos 3\omega_1 t$	-0,52	-0,199	0,368	0,48	0
$-0,312 \cdot \cos 5\omega_1 t$	-0,312	0,119	0,221	-0,288	0
$s_5(t)$	2,932	3,397	3,251	1,632	0

Таблица 8 – Поведение оценки в интервале времени $\left[0, \frac{T}{4}\right]$

Дальнейшую зависимость графика функции $s_5(t)$ от времени можно определить, используя свойство четности сигнала s(t) относительно нуля и нечетности относительно точки $\frac{T}{4}$. Это нашло отражение на рисунке 6.3.

Рисунок 6.3 – Оценка сигнала из трех гармонических колебаний

6.5 Расчет относительного значения квадрата среднеквадратической погрешности представления сигнала оценкой из трех гармонических колебаний

Если s(t) представляет собой напряжение или ток, тогда квадрат сигнала $s^2(t)$ численно равен мгновенной мощности p(t), рассеиваемой на сопротивление нагрузки 1 Ом. Средняя мощность сигнала прямо пропорциональна энергии, запасаемой за период, и обратно пропорциональна периоду:

$$P = \frac{1}{T} \int_{t_1}^{t_1+T} s^2(t) dt = \frac{1}{T} \int_{-\tau/2}^{T/2+\tau/2} s^2(t) dt = \frac{1}{T} \int_{-\tau/2}^{\tau/2} E^2 dt + \frac{1}{T} \int_{T/2-\tau/2}^{T/2+\tau/2} E^2 dt =$$
$$= \frac{1}{T} E^2 \left(\frac{\tau}{2} + \frac{\tau}{2} + \frac{\tau}{2} + \frac{\tau}{2} - \frac{\tau}{2} + \frac{\tau}{2} \right) = \frac{2E^2 \tau}{T} = \frac{2E^2}{q} = \frac{2 \cdot 3.2^2}{8/3} \approx 7,68 \,(\text{Br}).$$

Аналогично определяется средняя мощность n-го гармонического сигнала, однако можно произвести существенное упрощение общей формулы:

$$P_{n} = \frac{\Im_{n}}{T} = \frac{1}{T} \int_{t_{1}}^{t_{1}+T} s_{n}^{2}(t) dt = \frac{1}{T} \int_{t_{1}}^{t_{1}+T} A_{n}^{2} \cos^{2}(n\omega_{1}t + \varphi_{n}) dt = \frac{1}{T} \int_{t_{1}}^{t_{1}+T} \frac{A_{n}^{2}}{2} [1 + \cos 2(n\omega_{1}t + \varphi_{n})] dt = \frac{A_{n}^{2}}{2}.$$

Уравнение погрешности (относительное значение квадрата среднеквадратической погрешности представления периодического сигнала усеченным рядом Фурье) имеет вид:

$$\delta = \frac{P - P_N}{P}$$

где $P_N = \sum_{n=0}^{N} P_n$, причем в виду отсутствия постоянной составляющей можно

полагать, что $P_o = 0$.

В таблице 9 представлены результаты численного расчета, исходным для которого можно считать спектр амплитуд, полученный при выполнении предыдущих пунктов задания.

На основании анализа данных таблицы 9 и рисунка 6.4 можно сделать несколько замечаний. При n = 0 погрешность равна 100 %, что является следствием отсутствия постоянной составляющей в спектральном описании процесса. В интервалах между соседними значениями n погрешность либо не изменяется, либо падает скачкообразно, причем величина каждого скачка определяется мощностью новой гармоники как составляющей общей оценки

сигнала. По мере увеличения *n* относительная погрешность представления сигнала суммой гармоник уменьшается до нуля.

14	omiqu y		undi pe							
п	0	1	2	3	4	5	6	7	8	9
A_n, \mathbf{B}	$\frac{a_o}{2} = 0$	3,76	0	0,52	0	0,31	0	0,54	0	0,42
P_n , Вт	0	7,084	0	0,135	0	0,05	0	0,146	0	0,088
P_N , Вт	0	7,084		7,219		7,269		7,415		7,503
δ , %	100	7,76	7,76	6	6	5,35	5,35	3,45	3,45	2,3

Таблица 9 – Результаты расчета погрешности

Рисунок 6.4 – График зависимости величины погрешности от количества слагаемых ряда Фурье

6.6 Определение комплексной спектральной плотности непериодического сигнала, совпадающего с заданным периодическим на протяжении одного периода в симметричных пределах $\left[-\frac{T}{2}, \frac{T}{2}\right]$ и равного нулю при других временах

Проведем расчет спектральной плотности сигнала, изображенного на рисунке 6.5.

Решаем задачу, используя теоремы о спектрах. Для этого рассмотрим несколько простейших импульсных непериодических сигналов, а затем представим искомую спектральную плотность как сумму.

Рисунок 6.5 – Анализируемый непериодический сигнал

Спектральная плотность сигнала $s_1(t)$, изображенного на рисунке 6.6,а, известна:

$$\dot{S}_1(\omega) = \frac{E\tau}{2} \frac{\sin \frac{\omega \tau}{4}}{\frac{\omega \tau}{4}}.$$

По аналогии можно записать спектральную плотность сигнала $s_2(t)$, изображенного на рисунке 6.6,6. Произведем ее преобразование с помощью формулы $\sin 2\alpha = 2\sin \alpha \cdot \cos \alpha$:

$$\dot{S}_{2}(\omega) = E\tau \frac{\sin \frac{\omega\tau}{2}}{\frac{\omega\tau}{2}} = 2E\tau \frac{\sin \frac{\omega\tau}{4} \cdot \cos \frac{\omega\tau}{4}}{\frac{\omega\tau}{2}} = E\tau \frac{\sin \frac{\omega\tau}{4}}{\frac{\omega\tau}{4}} \cdot \cos \omega \frac{\tau}{4}$$

Этот же результат можно получить, воспользовавшись другой технологией, примененной для спектрального анализа сигнала $s_3(t)$.

a)

б)

B)

Рисунок 6.6 – Элементарные составляющие сигнала $s(t) = s_2(t) + s_3(t)$

Сигнал $s_3(t)$ образован суммой двух сигналов вида $s_1(t)$, один из которых сдвинут вправо, а другой – влево на величину $t = \left(\frac{T}{2} - \frac{\tau}{4}\right)$, что ясно видно на рисунке 6.6, в. Применяя теорему сдвига и теорему о взвешенном суммировании, получим

$$\dot{S}_{3}(\omega) = -\frac{E\tau}{2} \frac{\sin\frac{\omega\tau}{4}}{\frac{\omega\tau}{4}} \left[e^{j\omega\left(\frac{T}{2} - \frac{\tau}{4}\right)} + e^{-j\omega\left(\frac{T}{2} - \frac{\tau}{4}\right)} \right] = -E\tau \frac{\sin\frac{\omega\tau}{4}}{\frac{\omega\tau}{4}} \cdot \cos\omega\left(\frac{T}{2} - \frac{\tau}{4}\right).$$

Таким образом, сигнал s(t) имеет спектральную плотность:

$$\dot{S}(\omega) = \dot{S}_2(\omega) + \dot{S}_3(\omega) = E\tau \frac{\sin \frac{\omega\tau}{4}}{\frac{\omega\tau}{4}} \cdot \left[\cos \omega \frac{\tau}{4} - \cos \omega \left(\frac{T}{2} - \frac{\tau}{4}\right)\right].$$

Воспользовавшись формулой $\cos \alpha - \cos \beta = 2\sin \frac{\alpha + \beta}{2} \cdot \sin \frac{\beta - \alpha}{2}$, получим

$$\dot{S}(\omega) = 2E\tau \frac{\sin \frac{\omega \tau}{4}}{\frac{\omega \tau}{4}} \cdot \sin \omega \frac{T}{4} \cdot \sin \omega \left(\frac{T-\tau}{4}\right)$$

Проведем проверку полученного результата:

- 1. Спектральная плотность действительная функция частоты, т.к. мнимая составляющая равна нулю.
- 2. $S(\omega = 0) = 0$ (структура сигнала такова, что суммарная площадь под его временным графиком равна нулю).
- 3. Размерность $|\dot{S}(\omega)| = \mathbf{B} \cdot \mathbf{c}$.

6.7 Построение графика модуля спектральной плотности и фазового спектра непериодического сигнала

Приведем выражение спектральной плотности к виду, удобному для построения графика:

$$\dot{S}(\omega) = 2E\tau \frac{\sin\frac{\omega\tau}{4}}{\frac{\omega\tau}{4}} \cdot \sin\omega\frac{T}{4} \cdot \sin\omega\left(\frac{T-\tau}{4}\right) = 2E\tau \frac{\sin\frac{\omega\tau}{4}}{\frac{\omega\tau}{4}} \cdot \sin\omega\tau\frac{q}{4} \cdot \sin\omega\tau\left(\frac{q-1}{4}\right) = 2E\tau \frac{\sin\frac{\omega\tau}{4}}{\frac{\omega\tau}{4}} \cdot \sin\left(\frac{2}{3}\omega\tau\right) \cdot \sin\left(\frac{5}{12}\omega\tau\right).$$

Анализируя полученное выражение с учетом $\sin n\pi = 0$ для n = 0,1,2,..., получаем точки, в которых график функции $\dot{S}(\omega)$ пересекает частотную ось (нули функции): $\frac{2}{3}\omega\tau = n\pi \Rightarrow \omega = \frac{3\pi}{2\tau}n$; $\frac{5}{12}\omega\tau = n\pi \Rightarrow \omega = \frac{12\pi}{5\tau}n$. К тому же на нулевой частоте $\dot{S}(\omega) = 0$.

Необходимо выбрать шаг, с которым будет производиться изменение аргумента функции. Для этого подходит половина интервала между двумя

нулями, которые находятся на минимальном расстоянии друг от друга. Используем следующие значения частоты:

$$\omega' = \frac{3\pi}{2\tau} \cdot 2 = \frac{6\pi}{2\tau}; \ \omega'' = \frac{12\pi}{5\tau}.$$

Тогда шаг равен: $h = \frac{\omega' - \omega''}{2} = \frac{\frac{6\pi}{2\tau} - \frac{12\pi}{5\tau}}{2} = 0, 3\frac{\pi}{\tau}.$

Перед построением результаты расчета удобно представить в виде таблицы 10.

Таблица 10									
$\frac{\omega \tau}{\pi}$	$rac{\dot{S}(\omega)}{2E au}$	$rac{\omega au}{\pi}$	$rac{\dot{S}(\omega)}{2E au}$	$rac{\omega au}{\pi}$	$rac{\dot{S}(\omega)}{2E au}$				
0,3	0,22	2,7	0,09	5,1	0,07				
0,6	0,65	3	0	5,4	0,14				
0,9	0,81	3,3	-0,11	5,7	0,12				
1,2	0,5	3,6	-0,1	6	0				
1,5	0	3,9	0	6,3	-0,11				
1,8	-0,29	4,2	0,02	6,6	-0,12				
2,1	-0,22	4,5	0	6,9	-0,05				
2,4	0	4,8	0	7,2	0				

На рисунке 6.7,а изображена спектральная плотность исследуемого непрерывного непериодического сигнала $\dot{S}(\omega) = A(\omega)$. На рисунке 6.7,б и в показаны модуль (амплитудно-частотная характеристика спектра) и аргумент (фазо-частотная характеристика спектра) комплексной спектральной плотности.

Рисунок 6.7 – Зависимость спектральной плотности (а) модуля спектральной плотности (б) и фазового спектра (в) непериодического сигнала от частоты

В таблице 10 представлены значения спектральной характеристики исследуемого сигнала при $\omega > 0$. Для построения графика на отрицательной оси частот используем свойство четности $A(\omega)$.

6.8 Сопоставление спектров периодического и непериодического сигналов

Сопоставление спектров периодического и непериодического сигналов проведем на основе известного соотношения

$$\frac{\dot{S}(n\omega_1)}{T} = \frac{A_n}{2}.$$

Для дальнейшего анализа следует определить частоту первой гармоники спектра периодического сигнала на непрерывной частотной оси спектра непериодического сигнала:

$$\omega_1 = \frac{2\pi}{T_1} = \frac{2\pi}{q\tau} = \frac{3\pi}{4\tau} = \frac{1}{2} \cdot \frac{3\pi}{2\tau}$$

Проведен достаточный анализ, чтобы на рисунке 6.8 совместить ряд значений $C_n = \frac{A_n}{2}$, расположенных на частотах $n\omega_1$, с графиком спектральной плотности.

Рисунок 6.8 – Сравнение спектров периодического и непериодического сигналов

Сравнение спектров периодического и непериодического сигналов показывает, что гармоники, построенные на частотах, кратных ω_1 , и ограниченные спектральной плотностью непериодического сигнала, совпадают со значениями C_n на спектральных диаграммах периодического сигнала.

6.9 Определение энергии и средней мощности заданного сигнала на участке цепи с сопротивлением 1 Ом

Определим энергию сигнала по временному представлению:

$$\mathcal{F} = \int_{-\infty}^{\infty} s^2(t) dt.$$

В виду того, что сигнал s(t) отличен от нуля на конечном интервале описания, последнее выражение можно переписать в виде

$$\mathcal{\mathcal{P}} = \int_{t_1}^{t_1 + T_{oc}} s^2(t) dt,$$

где *Т*_{ос} – интервал описания сигнала.

Проведем расчет по полученной формуле:

$$\mathcal{\mathcal{P}} = \int_{-T/2}^{T/2} s^2(t) dt = \int_{-T/2}^{-T/2 + \tau/2} E^2 dt + \int_{-\tau/2}^{\tau/2} E^2 dt + \int_{T/2 - \tau/2}^{T/2} E^2 dt = 2E^2 \tau.$$

Подставляя численные значения E = 3,2 В, $\tau = 375 \cdot 10^{-6}$ с, получим

$$\mathcal{F} = 2E^2 \tau = 7,68 \cdot 10^{-3}$$
Дж.

Тогда, согласно исходным данным, $T_{oc} = 1 \cdot 10^{-3}$ с и средняя мощность равна

$$P = \frac{\Im}{T_{oc}} = 7,68 \,\mathrm{Bt}.$$

6.10 Выводы

В настоящей работе проведено исследование спектральных свойств двух сигналов – периодического и непериодического.

Периодический сигнал представляет собой знакочередующуюся последовательность импульсов прямоугольной формы.

Сигнал описывается аналоговой функцией времени с двумя видами симметрии: четной симметрией относительно нуля

$$s(t) = s(-t)$$

и нечетной симметрией относительно $t = \frac{T}{4}$ (т.е. инверсией сигнала через каждую половину периода)

$$s(t) = -s\left(t - \frac{T}{2}\right).$$

Эти особенности временных свойств сигнала определяют характер его спектра:

1) спектр периодического сигнала дискретный (линейчатый), полностью характеризуется рядом Фурье;

2) инверсия сигнала через каждую половину периода приводит к отсутствию в спектре четных номеров гармоник, в том числе постоянной составляющей;

3) четность функции, описывающей сигнал, определяет наличие в спектре только косинусоидальных составляющих;

4) наличие разрывов в функции приводит к достаточно медленной сходимости ряда Фурье, так как на формирование сигнала в точках разрывов влияют в основном высшие гармоники.

Особенностью исследуемого непериодического сигнала является наличие в его составе импульсов различной длительности, четная симметрия относительно нуля и нулевое среднее значение на интервале описания. Кроме того, на интервале описания $\left(-\frac{T}{2} < t < \frac{T}{2}\right)$ он полностью совпадает с периодическим сигналом, исследованным в начале работы.

Могут быть выделены следующие особенности спектра непериодического сигнала:

1) спектр непериодического сигнала непрерывный (сплошной), полностью характеризуется комплексной спектральной плотностью;

2) четность сигнала во времени определяет вещественный характер спектральной плотности;

3) спектральная плотность равна нулю на нулевой частоте вследствие $\frac{T/2}{t}$

нулевого среднего значения сигнала (
$$\int_{-T/2} s(t)dt = 0$$
);
(1) ограниценность сигнала во времени определяет

4) ограниченность сигнала во времени определяет пульсирующий характер его спектра;

5) ширина спектра зависит от длительности наиболее короткого импульса, входящего в состав сигнала.

Энергия непериодического сигнала - конечная величина. Энергия периодического сигнала бесконечна и физического смысла не имеет.

Модуль спектральной плотности одиночного импульса и огибающая линейчатого спектра периодической последовательности, полученной путем повторения заданного импульса, совпадают по форме и отличаются только масштабом.