#### Министерство образования и науки РФ

#### ТОМСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ СИСТЕМ УПРАВЛЕНИЯ И РАДИОЭЛЕКТРОНИКИ (ТУСУР)

Кафедра сверхвысокочастотной и квантовой радиотехники (СВЧ и КР)

УТВЕРЖДАЮ Зав.каф СВЧ и КР \_\_\_\_\_С.Н. Шарангович «\_\_\_\_» \_\_\_\_2012г.

## ИЗМЕРЕНИЯ ДИАГРАММ НАПРАВЛЕННОСТИ И ВХОДНОГО СОПРОТИВЛЕНИЯ АНТЕНН

#### Руководство к лабораторной работе по дисциплине «Устройства СВЧ и антенны» направления 210400 - Радиотехника

Разработчики: профессор кафедры СВЧ и КР Гошин Г.Г., доцент кафедры СВЧ и КР Фатеев А.В., УДК 53.17 + 53.08

#### Рецензент: кандидат физ.-мат. наук, доцент кафедры радиофизики Научного исследовательского Томского государственного университета Буянов Ю.И.

Гошин Г.Г., Фатеев А.В.

Измерения диаграмм направленности и входного сопротивления антенн: Руководство к лабораторной работе. — Томск: Томский гос. ун-т систем упр. и радиоэлектроники, 2012. — 18 с.

В руководстве содержится методический материал по измерению диаграмм направленности и входного сопротивления антенн. Отмечаются основные теоретические положения, расчётные формулы, математическую модель эксперимента, входной и выходной тестовый контроль, схемы лабораторных столов и порядок проведения эксперимента, шаблон отчёта, особенности работы программы управления прибором, методика калибровки и порядок работы с прибором.

Руководство рекомендовано к выполнению лабораторной работы по дисциплине «Устройства СВЧ и Антенны» по направлению подготовки 210400 – Радиотехника различных форм обучения.

> © Гошин Г.Г., 2012 © Фатеев А.В., 2012 © Томский гос. ун-т систем управления и радиоэлектроники, 2012

#### СОДЕРЖАНИЕ

| 1. Введение                                                           | 3   |
|-----------------------------------------------------------------------|-----|
| 2. Основные теоретические сведения                                    | 3   |
| 2.1. Диаграмма направленности антенны                                 | 3   |
| 2.2. Входное сопротивление антенны                                    | 5   |
| 3. Экспериментальная часть                                            | 7   |
| 3.1. Измерение в диапазоне частот амплитудной диаграммы направленност | ГИ  |
| антенны                                                               | 7   |
| 3.2. Измерение в диапазоне частот входного сопротивления антенны      | 8   |
| 4Требования к оформлению отчёта                                       | 11  |
| 5Контрольные вопросы                                                  | 12  |
| 6Список литературы                                                    | 12  |
| Приложение А. Обработка данных в MathCAD                              | 13  |
| Приложение Б. Калибровка прибора «Р2М-04» на коэффициент              |     |
| передачи                                                              | 15  |
| Приложение В. Калибровка прибора «Р2М-04» на коэффициент отражения    | í17 |
| Приложение Г. Калибровка прибора «Obzor-103»                          | 18  |
|                                                                       |     |

#### 1. ВВЕДЕНИЕ

Целью лабораторной работы является:

- знакомство с основными характеристиками и параметрами антенн, а также методами их измерений;
- измерение в диапазоне частот диаграммы направленности;
- измерение в диапазоне частот входного сопротивления антенны.

#### 2. ОСНОВНЫЕ ТЕОРЕТИЧЕСКИЕ СВЕДЕНИЯ

Антенна – устройство, которое излучает в окружающее пространство подведенную к нему электромагнитную энергию (передающая антенна) или принимает энергию пространственных волн и преобразует ее в энергию направляемых волн, поступающую по фидеру на вход приёмного устройства (приёмная антенна). Передающая и приёмная антенны, не содержащие невзаимных элементов, обладают свойством взаимности, т.е. одна и та же антенна может излучать или принимать электромагнитные волны, причём в обоих режимах антенна при одинаковых распределениях в ней тока или поля будет иметь одинаковые параметры и характеристики.

#### 2.1. Диаграмма направленности антенны

Диаграмма направленности (ДН) представляет собой функцию F( $\varphi$ ,  $\theta$ ) угловых переменных  $\varphi$  и  $\theta$  сферической системы координат с центром, совпадающим с фазовым центром антенны. Различают комплексную поляризационную амплитудную, фазовую векторную, И диаграммы. Амплитудную ДН обычно нормируют на ее максимальное значение. Для передающей антенны функция нормированной ДН характеризует изменение интенсивности сигналов, излучаемых в различных направлениях относительно фазового центра антенны. Для приёмной антенны функция нормированной ДН характеризует изменение интенсивности принимаемых сигналов в зависимости от направления прихода сигналов. При этом условно полагают, что сигналы принимаются от гипотетического точечного источника постоянной интенсивности, перемещаемого вокруг антенны по поверхности воображаемой сферы постоянного радиуса, находящейся в дальней зоне. Наиболее часто измеряется амплитудная ДН.

Для определенности будем рассматривать антенну как передающую. Напряжённость электрического поля антенны в дальней зоне может быть представлена в виде

$$\dot{\vec{E}}(r,\theta,\varphi) = E_0 F(\theta,\varphi) \vec{P}(\theta,\varphi) e^{j\Phi(\theta,\varphi)} \frac{e^{-jkr}}{r}, \qquad (1)$$

где  $r, \theta, \phi$  – сферические координаты точки наблюдения;

*E*<sub>0</sub> – постоянный множитель, зависящий от типа антенны и мощности передатчика;

*F*(*θ*,*φ*) – амплитудная диаграмма направленности;

 $\vec{P}(\theta, \phi)$  – поляризационная диаграмма;

 $\Phi(\theta, \varphi)$  – фазовая диаграмма;

 $\frac{e^{-jkr}}{r}$  – множитель, определяющий характерную для сферической вол-

ны зависимость фазы и амплитуды вектора  $\vec{E}$  от расстояния r;

$$k = \frac{2\pi}{\lambda}, \quad \lambda -$$
длина волны.

Ближняя граница дальней зоны между двумя антеннами и её протяженность в случае допустимых фазовых искажений, равных  $\pi/8$  и соответствующих фазовому набегу  $\lambda/16$ , определяется по формуле

$$r/\lambda \ge \frac{2(a+b)^2}{\lambda^2},\tag{2}$$

где a и b – максимальные размеры передающей и приёмной антенн, соответственно.

Амплитудная диаграмма направленности (ДН)  $F(\theta, \varphi)$  определяет зависимость амплитуды вектора  $\vec{E}$  от угловых координат точки наблюдения  $\theta$  и  $\varphi$ , находящейся на сфере радиусом r, соответствующем расстоянию дальней зоне. Чтобы сравнивать между собой антенны по их диаграммам, переходят к нормированным ДН. Если обозначить напряжённость поля в направлении максимального излучения  $E_{\text{max}}$ , то нормированная ДН антенны линейной поляризации определяется как

$$\overline{F}(\theta, \varphi) = \frac{|E(\theta, \varphi)|}{|E_{\max}|}.$$
(3)

В работе в качестве приёмной исследуется пирамидальная рупорная антенна с размерами:  $a_p = 500$  мм,  $b_p = 300$  мм,  $L^E = 300$  мм,  $L^H = 360$  мм. Нормированные амплитудные ДН такой антенны, если не учитывать квадратичные фазовые искажения в ее раскрыве, приближенно можно рассчитать по формулам для прямоугольной синфазной апертуры с косинусоидальным в плоскости H и постоянным в плоскости E амплитудными распределениями:

$$\overline{F}(\theta^{H}) = \frac{\cos\left(\frac{\pi a_{p}}{\lambda}\sin\theta^{H}\right)}{1 - \left(\frac{2a_{p}}{\lambda}\sin\theta^{H}\right)^{2}} \frac{1 + \cos\theta^{H}}{2}; \qquad (4)$$

$$\overline{F}(\theta^{E}) = \frac{\sin\left(\frac{\pi \ b_{p}}{\lambda}\sin\theta^{E}\right)}{\frac{\pi \ b_{p}}{\lambda}\sin\theta^{E}} \frac{1+\cos\theta^{E}}{2},$$
(5)

где  $\theta^{H}$ ,  $\theta^{E}$  – углы, отсчитываемые от оси рупора в точку наблюдения в плоскостях H и E соответственно.

Приведенные формулы справедливы для достаточно длинных рупоров, у которых максимальные фазовые искажения в раскрыве удовлетворяют неравенствам

$$\Delta \theta_{\max}^{H} = \frac{ka_{p}}{4L_{H}} \le \pi/8, \qquad \Delta \theta_{\max}^{E} = \frac{kb_{p}}{4L_{E}} \le \pi/8, \qquad (6)$$

где  $L_H$  и  $L_E$  – длины рупора в плоскостях E и H, соответственно, отсчитываемые вдоль оси от вершины рупора до его апертуры.

Пирамидальный рупор может быть остроконечным, если ребра рупора сходятся в вершине ( $L_{onm}^{H} = L_{onm}^{E}$ ), или клиновидным, если ребра не сходятся в одной точке в вершине ( $L_{onm}^{H} \neq L_{onm}^{E}$ ). Рупорные антенны, обеспечивающие максимальную направленность, называются оптимальными. Размеры оптимального клиновидного рупора связаны между собой соотношениями:

$$L_{onm}^{H} = a_p^2 / (3\lambda), \qquad L_{onm}^{E} = b_p^2 / (2\lambda), \tag{7}$$

а остроконечного рассчитываются по формулам

$$L_{onm} = a_p^2 / (3\lambda), \quad b_p = 0.8a_p.$$
 (8)

Ширина ДН (в радианах) оптимального пирамидального рупора в главных плоскостях определяется как:

$$2\theta_{0,5}^{H} \cong 1,4\lambda/a_{p}, \quad 2\theta_{0,5}^{E} \cong 0,93\lambda/b_{p}.$$

$$\tag{9}$$

#### 2.2. Входное сопротивление антенны

Входное сопротивление антенны определяется отношением напряжения к току на её входе. Под входом антенны понимают сечение или точки, к которым подключается линия передачи (фидер). Величину входного сопротивления антенны необходимо знать, чтобы выполнить её согласование с фидером. В согласованном режиме антенна излучает (принимает) наибольшую мощность. При полном согласовании входное сопротивление антенны должно равняться волновому сопротивлению фидера, которое является величиной вещественной и постоянной. В несогласованном режиме входное сопротивление антенны комплексно, т.е. имеет активную и реактивную составляющие. Оно зависит от типа антенны, ее конструктивных особенностей, прежде всего в области входа, от типа и способа подключения фидера.

Антенна имеет чисто активное входное сопротивление, если на фиксированной частоте допускает настройку в резонанс. При небольших

относительно резонансной активная составляющая изменениях частоты входного сопротивления меняется мало, но зато появляется реактивная составляющая. частотах первой резонансной Ha ниже реактивная составляющая имеет ёмкостный характер, а на частотах выше резонансной – индуктивный. Чем медленнее меняется входное сопротивление при изменении частоты, тем более широкополосной будет антенна.

Если антенна не согласована с нагрузкой, то от нагрузки появляется отраженная волна, которая характеризуется коэффициентом отражения. В линии устанавливается смешанный режим, при котором вдоль неё ток и напряжение принимают максимальные и минимальные значения. В этом случае наряду с коэффициентом отражения вводят коэффициенты стоячей волны (КСВ) или бегущей волны (КБВ), которые показывают степень согласования антенны с фидером.

По определении КБВ численно равен отношению напряжённости поля (напряжения) в минимуме распределения в линии к максимальному значению:

$$K \mathcal{E} \mathcal{B} = \frac{E_{MIN}}{E_{MAX}} = \frac{1 + |\Gamma_H|}{1 - |\Gamma_H|} \le 1,$$
(10)

где *E*<sub>*MIN*</sub>, *E*<sub>*MAX*</sub> – минимальные и максимальные значения напряжённости поля;  $|\tilde{A}_i|$  – модуль коэффициента отражения от нагрузки.

КСВ – величина, обратная КБВ, определяется как

$$KCB = \frac{E_{MAX}}{E_{MIN}} = \frac{1 - |\Gamma_H|}{1 + |\Gamma_H|} \ge 1.$$
(11)

Когда отраженная волна отсутствует, ток и напряжение вдоль линии постоянны и в ней устанавливается режим бегущей волны. При этом КБВ = КСВ =1. Модуль коэффициента отражения также связан с входным сопротивлением антенны посредством формулы:

$$\left|\Gamma_{H}\right| = \sqrt{\frac{\left(R_{H} - W_{\phi}\right)^{2} + X_{H}^{2}}{\left(R_{H} + W_{\phi}\right)^{2} + X_{H}^{2}}}.$$
(12)

Для активных нагрузок ( $X_{H} = 0$ ) эта формула становится более простой.

интересоваться её входным сопротивлением, можно Антенну. если рассматривать как четырехполюсник, параметры которого описываются волновой матрицей рассеивания. Согласование в фидерном тракте будет S<sub>11</sub> матрицы рассеяния, являющимся определяться значением элемента комплексным коэффициентом отражения от входа. Параметр  $S_{11}$  также учитывает внутренние отражения OT элементов конструкции антенны. антенне будет Например, рупорной рассогласование определяться В коаксиально-волноводным переходом, его соединением с рупором, а также отражением от раскрыва (апертуры) рупора. Входное сопротивление с коэффициентом отражения  $S_{11}$ комплексным связано следующим соотношением:

$$Z_{BX} = W_B \cdot \frac{1 + S_{11}}{1 - S_{11}},\tag{13}$$

где  $W_{\hat{A}}$  – волновое сопротивление фидера.

В нашем случае оно равно 50 Ом. Таким образом, входное сопротивление антенны можно определить экспериментально, измерив  $S_{11}$ .

#### 3. ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

### 3.1. Измерение в диапазоне частот амплитудной диаграммы направленности антенны

В работе в широком диапазоне частот в главных плоскостях измеряется амплитудная диаграмма направленности как функция угловой (азимутальной) координаты. Методика основана на измерении частотной зависимости модуля коэффициента передачи антенны  $|S_{21}|$ , определяющего амплитудную ДН. Антенна при этом рассматривается как четырехполюсник.

Структурная схема установки для измерения характеристик антенн представлена на рис. 1. Измерения проводятся в частотной области с использованием панорамных измерителей (ПИ) параметров цепей «OBZOR-«Р2М-04». Сигнал подается на передающую антенну А1 и 103» или устройстве располагается излучается. Ha опорно-поворотном (ОПУ) исследуемая приёмная антенна (АИ). Сигнал с АИ поступает в ПИ и отображается как коэффициент передачи. Частотную зависимость наблюдаем на компьютере (ПК). Полученные частотные характеристики обрабатываются в программе DN2 0 и сравниваются с расчётами, выполненными в программе MathCAD (Приложение 1).

Порядок выполнения работы:

1. Рассчитать по формуле (2) на верхней частоте диапазона минимальное расстояние до границы дальней зоны  $R_{\min}$ .

2. Собрать установку в соответствии со структурной схемой (рис. 1).



Рис. 1 – Структурная схема измерительной установки

3. Установить передающую антенну на расстоянии равном или большем  $R_{\min}$ .

4. Включить и настроить в соответствии с инструкцией (Приложение 2) панорамный измеритель.

5. Снять в двух главных плоскостях диаграммы направленности приёмной антенны на частотах  $f_1, f_2$  и  $f_0 = 1200$ МГц. Крайние частоты диапазона брать из табл. 1; номер варианта соответствует номеру бригады.

|         |          | таолица т | Dbioop lacioi |
|---------|----------|-----------|---------------|
| Вариант | 1        | 2         | 3             |
| $f_1$   | 1000 МГц | 1050 МГц  | 1100 МГц      |
| $f_2$   | 1400 МГц | 1350 МГц  | 1300 МГц      |

Таблица 1 – Выбор частот

Используя программу Graphit-P2M, записать данные в файлы с именем, соответствующим азимутальному углу поворота антенны от 0 до 360 градусов. Запустить программу DN2\_0. Загрузить данные путем выделения файлов. Указать номер столбца модуля коэффициента передачи  $|S_{21}|$ . Последовательно вводить в поле выбранные частоты и проводить измерения. Снятые ДН представить в полярной и прямоугольной системах координат в MathCAD.

6. Для этих же частот в двух главных плоскостях по формулам (4), (5) рассчитать нормированные амплитудные ДН и сравнить с измеренными, объединив их на одном графике. Выяснить, каковы фазовые искажения имеет рупорная антенна, относится она к клиновидным или к остроконечным и на каких частотах является оптимальной.

7. Сформировать файл отчета по лабораторной работе, занести в него полученные результаты и сделать выводы по существу выполненного исследования.

#### 3.2. Измерение в диапазоне частот входного сопротивления антенны

При выполнении лабораторной работы измерения могут быть проведены как на векторном анализаторе параметров цепей «Obzor-103», так и на скалярном анализаторе «P2M-04». Оба прибора работают в составе с ЭВМ, которая выполняет необходимые вычисления и обеспечивает панорамное отображение результатов измерений. При использовании прибора «Obzor-103» может быть определено непосредственно комплексное входное сопротивление антенны, а при использовании «P2M-04» – только модуль коэффициента отражения  $|S_{21}|$  от входа и КСВН в фидерном тракте.

Методика измерений с использованием векторного анализатора «Obzor-103»

1. Для измерения комплексного коэффициента отражения  $S_{11}$  собрать схему согласно рис. 2. В ходе выполнения работы для измерения  $S_{11}$  используется вход «А». Порядок измерения  $S_{11}$  для входа «В» аналогичный.

2. Включить прибор и компьютер, установить в приборе режим измерения  $S_{_{11}}$ .

3. Установить параметры частотного сканирования – нижнюю и верхнюю частоту и число точек, как показано на рис. 3. Для того, чтобы задать верхнюю частоту, необходимо в правом углу программы зайти в меню «Настройка – Параметры» и поставить галочку напротив «Расширенный диапазон частот».

4. Провести однопортовую калибровку входа «А» (см. Приложение 4). Необходимо осуществить измерения калибровочных мер «ХХ» и «КЗ», подключая их по очереди ко входу «2» направленного ответвителя, и провести процедуру калибровки.



Рис. 2 – Схема измерения комплексного коэффициента отражения  $S_{11}$ .

5. Включить в схему в качестве нагрузки исследуемую антенну.

6. Установить в одном из каналов индикации измерение «А:  $S_{11}$ » и требуемый формат представления  $S_{11}$ , как показано на рис. 3.

7. Провести измерение S<sub>11</sub> с помощью графика и маркеров.

8. Просмотреть результат, используя формат диаграммы Вольперта – Смита, как показано на рис.3. Диаграмма Вольперта – Смита с форматом маркеров – активное сопротивление (Ом), реактивное сопротивление (Ом), эквивалентная индуктивность (Гн) или емкость (Ф) реактивного сопротивления. Данные параметры являются производными от полного входного сопротивления Z = R + jX, которое определяется по формуле (13). Наименование формата в программе «Вольперт – Смит (R + jX)».

9. Данные измерений входного сопротивления в диапазоне частот занести в файл отчета по лабораторной работе.



Рис. 3 – Диалоговое окно программы

<u>Методика измерений с использованием скалярного анализатора «P2M-04»</u> 1. Для измерения модуля коэффициента отражения  $|S_{11}|$  собрать схему согласно рис. 4.



Рис. 4 – Схема калибровки при измерении модуля коэффициента отражения  $|S_{11}|$ 

2. Установить параметры измерения, выбрав режим измерения модуля коэффициента отражения (КСВН) – вход «А»; вход «В» отключить.

3. Запустить программу Graphit-P2M и провести калибровку входа «А», следуя указаниям Приложения 1. В процессе калибровки допускается проводить калибровку при запросе о подключении нагрузки XX на открытый порт.

4. Подключить к выходу «Изм.» датчика КСВН вместо калибровочного устройства исследуемую антенну (ИУ), как показано на рис. 5, и провести измерения.

5. Данные измерений модуля коэффициента отражения и КСВН в диапазоне частот занести в файл отчета по лабораторной работе. Значение измеряемой величины на определенной частоте можно получить непосредственно по изображенной на экране ЭВМ кривой или при помощи маркеров.



Рис. 5 – Схема измерения модуля коэффициента отражения  $|S_{11}|$ 

#### 4. ТРЕБОВАНИЯ К ОФОРМЛЕНИЮ ОТЧЁТА

1. Отчёт должен быть оформлен в соответствии с общими требованиями и правилами оформления отчётов по лабораторным работам, принятыми в ТУСУР.

2. В отчёте должна быть изложена цель работы, методика измерений и краткое описание экспериментальной установки.

3. Отчёт должен содержать таблицы измерений, расчётные И экспериментально снятые ДH В декартовой системе координат И поляризационную диаграмму.

4. В отчёте должны быть записаны и проанализированы данные по измерению входного сопротивления антенны.

5. В заключении должны быть представлены выводы по существу проделанной работы и результатам.

#### 5. КОНТРОЛЬНЫЕ ВОПРОСЫ

- 1. Что такое диаграмма направленности антенны?
- 2. Что такое дальняя зона?
- 3. Как снимается ДН в дальней зоне?
- 4. Объяснить методику измерения ДН с помощью прибора «Р2М-04».
- 5. Что такое *S* параметры устройства?
- 6. Что такое входное сопротивление антенны?

7. Объяснить методику измерения входного сопротивления антенны с помощью прибора «Obzor-103».

8. Объяснить методику измерения входного сопротивления антенны с помощью прибора «P2M-04».

#### 6. СПИСОК ЛИТЕРАТУРЫ

1. Антенны и устройства СВЧ: Учебник для вузов/ Д.И. Воскресенский и др. – М.: Радиотехника, 2006. – 375с.

2. Сазонов Д.М. Антенны и устройства СВЧ. – М.: ВШ, 1988. – 432 с.

3. Гошин Г.Г. Антенны и фидеры. Сборник задач с формулами и решеними.

– Томск: ТУСУР, 2003. – 242 с.

4. Фрадин А.З., Рыжков Е.В. Измерения параметров антенно-фидерных устройств. – М.: Связь, 1972. – 352 с.

#### ПРИЛОЖЕНИЕ А. ОБРАБОТКА ДАННЫХ В МАТНСАD

Данные измерений диаграмм направленности антенн, полученные в DN, можно сохранить в текстовом файле. Для этого надо выбрать «Запомнить» в всплывающем меню кнопок в левой части программы (Рис. A1). Текстовый файл содержит угол поворота антенны и соответствующее ему значение |S<sub>21</sub>|.



Рисунок А1 – Сохранение ДН на выбранных частотах

Далее полученный текстовый файл загружается в MathCAD и сравнивается с теоретической диаграммой направленности антенны. Текстовый файл должен находиться в одной папке с MathCAD файлом. Ниже приведен текст MathCAD файла. Изменить надо только значения переменных, выделенных жирным шрифтом!

 $f := 1200 \cdot 10^{6} \quad (\Box_{4}) \qquad c_{5} := 3 \cdot 10^{8} \qquad \text{Частоту задавать свою из варианта!!}$   $\lambda := \frac{c}{f} \qquad \lambda = 0.25$   $a_{p} := 50 \cdot 10^{-2} \qquad (M) \qquad -$  ширина раскрыва рупора  $b_{p} := 35 \cdot 10^{-2} \qquad (M) \qquad -$  высота раскрыва рупора  $\Theta_{H} := -\pi, -\pi + 0.01 \dots \pi \qquad \Theta_{E} := -\pi, -\pi + 0.01 \dots \pi$ 

ДН в Е - плоскости:

#### ДН в H - плоскости:

DN := READPRN("DN 1000MGz.txt")

|      |    | 0   | 1     |
|------|----|-----|-------|
|      | 57 | 285 | 0.08  |
|      | 58 | 290 | 0.087 |
|      | 59 | 295 | 0.093 |
|      | 60 | 300 | 0.108 |
|      | 61 | 305 | 0.146 |
|      | 62 | 310 | 0.224 |
|      | 63 | 315 | 0.291 |
| DN = | 64 | 320 | 0.405 |
|      | 65 | 325 | 0.504 |
|      | 66 | 330 | 0.604 |
|      | 67 | 335 | 0.694 |
|      | 68 | 340 | 0.805 |
|      | 69 | 345 | 0.901 |
|      | 70 | 350 | 0.971 |
|      | 71 | 355 | 1     |

360

72

# $\texttt{F1}\big(\boldsymbol{\Theta}_{\underline{E}}\big) \coloneqq \frac{1 + \cos(\boldsymbol{\Theta}_{\underline{E}})}{2} \cdot \frac{\sin\!\left(\frac{\pi \cdot \mathbf{b}_p}{\lambda} \cdot \sin\!\left(\boldsymbol{\Theta}_{\underline{E}}\right)\right)}{\frac{\pi \cdot \mathbf{b}_p}{\lambda} \cdot \sin\!\left(\boldsymbol{\Theta}_{\underline{E}}\right)}$

#### ВНУТРИ КАВЫЧЕК ПИШЕТСЯ ИМЯ ФАЙЛА С ДАННЫМИ ДН

#### ТАБЛИЦА ДАННЫХ СОДЕРЖАЩИХСЯ В ФАЙЛЕ DN 1000MGz.txt записана в переменную DN.

 $\mathrm{DN}_{72,1}\coloneqq\mathrm{DN}_{0,1}$ 

m\_≔ 0..73



 $\theta_{\rm H}, {\rm DN_{m}}, 0, \frac{\pi}{180}$ 

#### ПРИЛОЖЕНИЕ Б.

#### КАЛИБРОВКА ПРИБОРА «Р2М-04» НА КОЭФФИЦИЕНТ ПЕРЕДАЧИ

Собрать схему в соответствии с рис.Б1:



Рисунок Б1 – Схема калибровки на коэффициент передачи

Запустить программу Graphit-P2M и провести калибровку прибора, руководствуясь рис. Б2, в следующей последовательности:

Во вкладке «Общие» выставить требуемый диапазон частот и нажать клавишу ENTER. Выставить количество точек (300) и выходную мощность (15дБм). Проверить, нажата ли кнопка «мощность» на передней панели прибора Р2М-04.

Выбрать вкладку «Измер1», «Модуль КП» и запустить калибровку.



Рисунок Б2 – Панель настройки программы Р2М-04

После калибровки получим:



Рисунок Б3 – Результат калибровки на коэффициент передачи.

#### ПРИЛОЖЕНИЕ В.

#### КАЛИБРОВКА ПРИБОРА «Р2М-04» НА КОЭФФИЦИЕНТ ОТРАЖЕНИЯ

Запустить программу Graphit-P2M и провести калибровку прибора, руководствуясь рис.В1, в следующей последовательности:

Во вкладке «Общие» выставить требуемый диапазон частот и нажать клавишу ENTER. Выставить количество точек (300) и выходную мощность (10дБм).

Выбрать вкладку «Измер1», «Модуль КО» и запустить калибровку. При калибровке на холостой ход (XX) вход датчика КСВ должен быть открыт. Далее необходимо установить короткозамкнутую нагрузку (КЗ) и запустить калибровку на короткое замыкание.

|            | Управление Диаграмма Трасса                  |  |  |  |  |
|------------|----------------------------------------------|--|--|--|--|
|            | Опраничение Накопление                       |  |  |  |  |
|            | Сглаживание РДН                              |  |  |  |  |
|            | Общие Масштаб Линии Формат                   |  |  |  |  |
|            | Има трассыг Трс2                             |  |  |  |  |
|            | Kausa ku |  |  |  |  |
|            | канал. Кнл1/2                                |  |  |  |  |
|            |                                              |  |  |  |  |
|            |                                              |  |  |  |  |
|            |                                              |  |  |  |  |
|            |                                              |  |  |  |  |
|            | Кнл1 Кнл2 Синхронизация                      |  |  |  |  |
|            | Тип канала: АЧХ КСВ 💌                        |  |  |  |  |
|            | Измер1 Измер2 Измер3                         |  |  |  |  |
|            | Режим измерения Модуль КО 🗸                  |  |  |  |  |
| Калибровка | Вход А 🔻                                     |  |  |  |  |
|            | <b>\$</b> 1                                  |  |  |  |  |
|            | Диапазон, МГц;                               |  |  |  |  |
|            |                                              |  |  |  |  |
|            | Центр, МГц: Полоса, МГц:                     |  |  |  |  |
|            |                                              |  |  |  |  |
|            | Количество точек: 300 + +                    |  |  |  |  |
|            | Вых. мощн, дБм: 10                           |  |  |  |  |
|            | Степень усреднения: 5                        |  |  |  |  |
|            |                                              |  |  |  |  |
|            |                                              |  |  |  |  |

Рисунок В1 – Панель настройки программы Р2М-04

#### ПРИЛОЖЕНИЕ Г. КАЛИБРОВКА ПРИБОРА «OBZOR-103»

Перед проведением калибровки убедитесь, что установлен режим измерения и параметры частотного сканирования. Затем необходимо провести процедуру калибровки для каждой калибровочной меры, в зависимости от выбранного метода калибровки.

Перед проведением калибровки следует выбрать в программном обеспечении комплект калибровочных мер, который предполагается использовать. Комплект калибровочных мер – это набор прецизионных физических устройств, используемых для определения погрешностей в измерительной системе. Комплект состоит из четырех мер различных типов: КЗ, ХХ, Согласованная нагрузка и Перемычка (см. табл. Г1).

|                              |                        |                 | Таблица Г                                         |
|------------------------------|------------------------|-----------------|---------------------------------------------------|
| Метод калибровки             | Измеряемые             | Используемые    | Виды корректируемых погрешностей                  |
|                              | параметры              | меры            |                                                   |
| Однопортовая ка-<br>либровка | <i>S</i> <sub>11</sub> | • K3            | • Частотная неравномерность тракта отражения (Er) |
|                              |                        | • XX            | • Согласование источника сигнала (Es)             |
|                              |                        | • Согласованная | • Направленность (Ed)                             |
|                              |                        | нагрузка        |                                                   |

Для выполнения калибровки служит кнопка «Калибровка», которая открывает диалоговое окно (рис. Г1).

| Калибровка                                                                                                                                                                                                  | ×                                |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|
| Вход А       Вход В         Перем.       Перем.         К3       К3         ХХ       К3         Нагр.       Нагр.         Параметры сканирования:       Нагр.         Полная полоса       Текущие установки | Схема подключения                |
| Комплект мер:<br>Не определен                                                                                                                                                                               | 🔽 Сохранять между запусками      |
| Калибровать Калибр. и закр.                                                                                                                                                                                 | Сбросить Закрыть                 |
| А: RS В: Не клб. Парамет                                                                                                                                                                                    | ры: 0,3-1300 МГц 401 Лин 3000 Гц |
| Комплект мер: Не определен                                                                                                                                                                                  | Дата и время: 15.03.2005 17:26   |

Рисунок Г1 – Диалоговое окно калибровки

Перед процедурой калибровки необходимо установить требуемый режим измерения. Режим измерения определяет в процедуре калибровки доступные калибровочные меры.