Н.А. Каратаева

РАДИОТЕХНИЧЕСКИЕ ЦЕПИ И СИГНАЛЫ

Часть 2

Дискретная обработка сигналов и цифровая фильтрация

Учебное пособие

TOMCK – 2012

Министерство образования и науки Российской Федерации

Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования

ТОМСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ СИСТЕМ УПРАВЛЕНИЯ И РАДИОЭЛЕКТРОНИКИ (ТУСУР)

Н.А. Каратаева

РАДИОТЕХНИЧЕСКИЕ ЦЕПИ И СИГНАЛЫ

Часть 2

Дискретная обработка сигналов и цифровая фильтрация

Учебное пособие

Рецензент: Профессор кафедры ТОР ТУСУР, д.т.н. А.В. Пуговкин

Корректор:

Каратаева Н.А.

РАДИОТЕХНИЧЕСКИЕ ЦЕПИ И СИГНАЛЫ. Дискретная обработка сигналов и цифровая фильтрация: Учебное пособие. – Томск: Томский государственный университет систем управления и радиоэлектроники (ТУ-СУР), 2012.–257 с.

Изложены основные определения и комментарии к дискретной обработке сигналов, анализу и синтезу цифровых фильтров. Приведены варианты задач, рассмотрены примеры расчета. Пособие предназначено для студентов всех форм обучения, изучающих дисциплину «Радиотехнические цепи и сигналы».

Разработчики электронной версии: Алексеева М.Я., Архипов П.П., Барашков А.Ю., Платонов А.В., Филиппов К.Н.

© Каратаева Н.А., 2012

1	ВВЕДЕНИЕ	9
2 月1	ОСНОВНЫЕ ОПРЕДЕЛЕНИЯ И КОММЕНТАРИИ К ІСКРЕТНОЙ ОБРАБОТКЕ СИГНАЛОВ	.11
2.′	Дискретизация сигналов	.11
2.2	2 Дискретизация сигналов по частоте	.12
2.:	В Дискретизация сигналов по времени	.15
2.4	Ряд и теорема Котельникова	.20
2.	5 Дискретное преобразование Фурье (ДПФ)	.21
2.0	б Прямое и обратное Z -преобразования	.25
3 Cl	ПРАКТИЧЕСКОЕ ПРИЛОЖЕНИЕ К ДИСКРЕТНОЙ ОБРАБОТКИ ІГНАЛОВ	E .30
3.′	Расчет спектральной плотности аналогового сигнала	.30
3.2	2 Дискретизация аналогового сигнала по времени	.32
3.:	В Расчет спектральной плотности дискретизированного сигнала	.33
3.4	Расчет коэффициентов ДПФ	.34
3.	Б Восстановление исходного сигнала по ДПФ	.37
3.0	Б Z-преобразование дискретной последовательности	.38
3.7 Ка	 Восстановление аналогового сигнала использованием ряда тельникова 	.40
3.8	В Задачи для самостоятельного решения	.41
4 P <i>A</i>	ОПИСАНИЕ АЛГОРИТМОВ РАБОТЫ ЦИФРОВЫХ ФИЛЬТРОВ СЧЕТ ОСНОВНЫХ ХАРАКТЕРИСТИК	И .44
4.′ pe	Описание алгоритмов работы трансверсальных (ТЦФ) и курсивных (РЦФ) фильтров	.44
4.2 TI	2 Определение системных функций и построение структурных схе [Ф и РЦФ	м .45
4.:	В Расчет частотных характеристик цифровых фильтров	.48

4.4	Расчет временных характеристик цифровых фильтров49
4.4.1	Расчет импульсной характеристики ЦФ49
4.4.2	Расчет переходной характеристики ЦФ50
4.5 фильт	Расчет дискретной последовательности на выходе цифрового ра51
4.6	Устойчивость цифровых фильтров52
4.7	Соединение цифровых фильтров53
4.8	Задачи для самостоятельного решения54
5 CV	ІНТЕЗ ЦИФРОВЫХ ФИЛЬТРОВ64
5.1 функц	Синтез ЦФ методом билинейного Z-преобразования передаточной ции известного аналогового фильтра- прототипа
5.2 фильт харак	Синтез ЦФ по импульсной характеристике известного аналогового ра-прототипа (метод инвариантности импульсной геристики)67
5.3	Пример анализа линейной электрической цепи (ЛЭЦ)70
5.3.1	Расчет передаточной функции ЛЭЦ70
5.3.2	Расчет и построение частотных характеристик
5.3.3	Расчет и построение временных характеристик ЛЭЦ72
5.4 импул	Пример синтеза цифрового фильтра методом инвариантности њсных характеристик74
5.4.1	Дискретизация импульсной характеристики ЛЭЦ
5.4.2 ЦФ	Расчет системных функций трансверсального и рекурсивного 75
5.4.3	Расчет АЧХ трансверсального и рекурсивного ЦФ77
5.5 задані	Пример синтеза ЦФ методом билинейного Z-преобразования по ной ЛЭЦ
5.5.1	Расчет системной функции цифрового фильтра
5.5.2	Расчет АЧХ ЦФ канонического вида81

5.5.3	Расчет импульсной характеристики ЦФ	83
5.5.4	Обсуждение полученных результатов	84
5.5.5	Прохождение дискретного сигнала через цифровые фильтры	85
6 СИ КЛА(ИНТЕЗ РЕКУРСИВНЫХ ЦИФРОВЫХ ФИЛЬТРОВ ПО ССИЧЕСКОМУ НИЗКОЧАСТОТНОМУ (НЧ-) ПРОТОТИПУ	88
6.1	Технические характеристики идеальных фильтров-прототипов.	88
6.2	Классические НЧ-прототипы Баттерворта и их характеристики	90
6.3 харак	Классические НЧ-прототипы Чебышева 1-го типа и их теристики	92
6.4 прото	Синтез РЦФ различного назначения по классическому НЧ- отипу методом билинейного Z -преобразования	96
6.4.1	Деформация аналоговой частоты НЧ-прототипа	96
6.4.2 разли	Частотные преобразования НЧ-прототипов при синтезе РЦФ чного назчения	97
6.4.3	Синтез РЦФ методом обобщенного билинейного	103
Z-пре	образования	103
6.5	Синтез РЦФ методом инвариантной импульсной характеристик 107	си
6.5.1	Расчет цифрового НЧ-прототипа	107
6.5.2 преоб	Частотные преобразования НЧ-прототипа с помощью разований Константинидиса	109
6.5.3	Порядок расчета РЦФ методом ИИХ	114
7 ПІ ЦИФ	РАКТИЧЕСКОЕ ПРИЛОЖЕНИЕ К СИНТЕЗУ РЕКУРСИВНЫХ РОВЫХ ФИЛЬТРОВ РАЗЛИЧНОГО НАЗНАЧЕНИЯ	115
7.1 билин	Синтез цифрового ФНЧ Баттерворта методом обобщённого чейного Z- преобразования	115
7.2 билин	Синтез цифрового ФНЧ Баттерворта методом обобщённого нейного Z-преобразования	116

7.3 Синтез цифрового ФВЧ Баттерворта методом обобщенного билинейного Z-преобразования120
7.4 Синтез цифрового ФВЧ Баттерворта методом обобщенного билинейного Z-преобразования121
7.5 Синтез цифрового ПФ Чебышева методом обобщённого билинейного Z-преобразования125
7.6 Синтез цифрового ПФ Чебышева методом обобщённого билинейного Z-преобразования127
7.7 Синтез цифрового РФ Баттерворта методом обобщенного билинейного Z-преобразования129
7.8 Синтез цифрового РФ Баттерворта методом обобщенного билинейного Z-преобразования133
7.9 Синтез цифрового ФНЧ Баттерворта методом инвариантной импульсной характеристики137
7.10 Синтез цифрового ФНЧ Баттерворта методом инвариантной импульсной характеристики138
7.11 Синтез цифрового ПФ Баттерворта методом инвариантной импульсной характеристики141
7.12 Синтез цифрового ПФ Баттерворта методом инвариантной импульсной характеристики144
8 СИНТЕЗ ТРАНСВЕРСАЛЬНЫХ ЦИФРОВЫХ ФИЛЬТРОВ149
8.1 Метод частотной выборки149
8.2 Пример синтеза КИХ-фильтра методом частотной выборки152
8.3 Метод взвешивания155
8.4 Пример синтеза КИХ-фильтров методом взвешивания156
8.5 Метод оконных функций160
8.6 Пример синтеза КИХ-фильтров методом оконных функций163
9 ПРИЛОЖЕНИЯ167
9.1 Приложение 1

9.1.1 Описание пакета программ для исследования частотных и временных характеристик цифровых фильтров, синтезированных методом Билинейного z-преобразования167			
9.1. фил	2 Описание пакета программ для исследования цифровых октоов, синтезированных метолом инвариантности импульсных		
xap	актеристик	170	
9.2	Приложение 2	173	
9.3	Приложение 3	182	
9.4	Приложение 4	218	
10	СПИСОК ИСПОЛЬЗОВАННОЙ ЛИТЕРАТУРЫ	254	
11	СПИСОК ПРИНЯТЫХ СОКРАЩЕНИЙ	255	
12	СПИСОК УСЛОВНЫХ ОБОЗНАЧЕНИЙ	256	

1 ВВЕДЕНИЕ

Цифровая обработка сигналов как направление развития науки и техники зародилась в 1950-х годах и поначалу представляла собой довольно экзотическую область радиоэлектроники, практическая ценность которой была далеко не очевидной. Однако за прошедшие пятьдесят лет благодаря успехам микроэлектроники системы цифровой обработки сигналов не только воплотились в реальность, но и вошли в нашу повседневную жизнь в виде CD- и DVD-проигрывателей, модемов, сотовых телефонов и многого другого. Более того, в некоторых прикладных областях цифровая обработка сигналов стала вытеснять аналоговую. В значительной мере это произошло в аудиотехнике, интенсивно идёт процесс перехода телевизионного вещания на цифровую основу.

Под термином «цифровая фильтрация» обычно понимают локальную цифровую обработку сигнала скользящим окном или апертурой. В основе такой фильтрации лежит преобразование аналоговых сигналов в последовательность чисел и обработка этой последовательности в цифровом вычислительном устройстве, роль которого может играть как универсальная ЦВМ, так и специализированный цифровой процессор.

Применение в радиоэлектронике цифровой фильтрации открывает дополнительные возможности при обработке сигналов. В частности, могут быть реализованы сложные алгоритмы фильтрации, которые аналоговыми методами в ряде случаев вообще не удается осуществить. С другой стороны, возможен синтез в цифровой форме аналогов известных радиотехнических устройств различного функционального назначения, а именно: фильтров, преобразователей частоты, детекторов и т.п.

Настоящее пособие посвящено курсовой работе «Дискретная обработка сигналов и цифровая фильтрация». Текст пособия разбит на главы, в каждой из которых повествуется о каком-либо аспекте дискретной обработки сигналов и цифровой фильтрации.

Так, вторая глава пособия посвящается основным определениям дискретной обработки сигналов: дискретизации сигналов по частоте и по времени, теореме Котельникова, дискретному преобразованию Фурье и Zпреобразованию. Третья глава является логическим продолжением второй: в ней подробно рассмотрено практическое приложение к дискретной обработке сигналов. В четвёртой главе говорится об описании алгоритмов работы цифровых фильтров и расчёте их основных характеристик (частотных и временных). Кроме того, третья и четвёртая главы пособия дополнены задачами, предназначенными для самостоятельного решения. Пятая глава посвящена синтезу цифровых фильтров методами билинейного Zпреобразования и методом инвариантности импульсной характеристики. В шестой главе рассматривается синтез рекурсивных цифровых фильтров по классическому низкочастотному прототипу. Седьмая глава дополняет шестую практическим приложением к синтезу рекурсивных цифровых фильтров. В восьмой главе ставится вопрос о синтезе трансверсальных цифровых фильтров, основными методами которого являются метод частотной выборки, метод взвешивания и метод оконных функций.

В девятой главе представлены приложения: описание пакета программ для исследования частотных И временных характеристик цифровых TOP фильтров, разработанного студентами кафедры Томского государственного университета систем управления и радиоэлектроники; преобразования пересчётные таблицы Константинидиса, a также передаточные функции И частотные характеристики низкочастотных прототипов Баттерворта и Чебышева.

При помощи настоящего пособия студент может не только самостоятельно подготовиться к выполнению и защите курсовой работы, но и получить базовые знания для дальнейшей научной работы.

2 ОСНОВНЫЕ ОПРЕДЕЛЕНИЯ И КОММЕНТАРИИ К ДИСКРЕТНОЙ ОБРАБОТКЕ СИГНАЛОВ

2.1 Дискретизация сигналов

В первой части курса «Радиотехнические цепи и сигналы» [9] рассматривались сигналы, моделью которых являлась функция времени *s*(*t*), значения которой заданы для непрерывной совокупности всех точек по оси времени (рисунок 2.1,а). Такие сигналы называются непрерывными или аналоговыми.

Сигнал s(t) может быть задан спектральной плотностью $\dot{S}(\omega)$, поскольку s(t) и $\dot{S}(\omega)$ связаны парой преобразований Фурье:

$$\dot{S}(\omega) = \int_{-\infty}^{+\infty} s(t)e^{-j\omega t}dt, \qquad (2.1)$$

$$s(t) = \frac{1}{2\pi} \int_{-\infty}^{+\infty} \dot{S}(\omega) e^{j\omega t} d\omega.$$
(2.2)

Как и s(t), спектральная плотность $\dot{S}(\omega)$ также является аналоговой функцией частоты (рисунок 2.1,б).

 а)
 Б)
 Рисунок 2.1 – Временное (а) и частотное (б) представления аналогового непериодического сигнала

В радиотехнике часто встречаются задачи, в которых значения сигнала могут быть определены лишь в счетном множестве точек по оси времени (..., t_0 , t_1 , t_2 , ...). Обычно моменты времени t_n следуют через равные промежутки $T_{\rm A}$, которые называются шагом (интервалом) дискретизации. В этом случае моделью сигнала являются отсчетные значения (..., s(0), $s(T_{\rm A})$,

 $s(2T_{A}), ..., s(nT_{A}), ...)$ в точках (..., 0, $T_{A}, 2T_{A}, ..., nT_{A}$). Такие сигналы называются дискретными (от лат. слова discretis – раздельный, прерывистый).

Спектральная плотность сигнала также может быть задана своими отсчетными значениями (..., $\dot{S}(\omega_1)$, $\dot{S}(2\omega_1)$, $\dot{S}(3\omega_1)$, ...). Шаг дискретизации по оси частот обозначен ω_1 .

Ясно, что, чем меньше шаг дискретизации T_{π} (или ω_1), тем точнее сигнал s(t) (или $\dot{S}(\omega)$) может быть восстановлен по своим отсчетным значениям. Однако с уменьшением шага дискретизации увеличивается число отсчетных значений, поэтому задача о выборе шага дискретизации требует специального исследования.

2.2 Дискретизация сигналов по частоте

Рассмотрим для определенности аналоговый непериодический сигнал s(t)(рисунок 2.1,а), длительность которого равна τ , а спектральная плотность описывается функцией $\dot{S}(\omega)$. Преобразуем непериодический сигнал s(t) в периодическую последовательность сигналов $s_{\Pi}(t)$ с периодом $T_{oc} > \tau$ (рисунок 2.2,а).

$$s_{\Pi}(t) = \sum_{m=-\infty}^{\infty} s(t - mT_{oc}), \qquad (2.3)$$

где $m = \pm 0, \pm 1, \pm 2, ...$

Рисунок 2.2 – Временное (а) и спектральное (б) представления аналогового периодического сигнала

Периодическую последовательность $s_T(t)$ представим рядом Фурье:

$$s_{\Pi}(t) = \sum_{k=-\infty}^{\infty} \dot{C}_k e^{jk\omega_{\mathrm{I}}t} = C_0 + \sum_{k=1}^{\infty} 2\left|\dot{C}_k\right| \cos\left(k\omega_{\mathrm{I}}t + \arg\dot{C}_k\right), \ -\infty < t < \infty.$$

$$(2.4)$$

Здесь коэффициенты \dot{C}_k вычисляются по формуле:

$$\dot{C}_{k} = \frac{1}{T_{oc}} \int_{-T_{oc}/2}^{T_{oc}/2} s(t) e^{-jk\omega_{1}t} dt .$$
(2.5)

Сравнение выражений (2.1) и (2.5) позволяет утверждать, что $\dot{S}(k\omega_1)$ – отсчетные значения (отсчеты) спектральной плотности с шагом дискретизации ω_1 (рисунок 2.2,б), с точностью до постоянного множителя T_{oc} совпадают с комплексными коэффициентами \dot{C}_k :

$$S(0) = T_{oc} \cdot C_0, \quad \dot{S}(\omega_1) = T_{oc} \cdot \dot{C}_1, \quad \dots, \quad \dot{S}(k\omega_1) = T_{oc} \cdot \dot{C}_k.$$
(2.6)

Исходный непериодический сигнал s(t) совпадает с периодической последовательностью $s_T(t)$ на интервале $0 \le t \le T_{oc}$ и вычисляется по дискретным отсчетам $\dot{S}(k\omega_1)$ спектральной плотности, взятым с шагом дискретизации $\omega_1 = 2\pi/T_{oc}$.

Формула (2.4) с учетом (2.6) имеет вид:

$$s_{\Pi}(t) = \frac{1}{T_{oc}} \sum_{k=-\infty}^{\infty} \dot{S}(k\omega_{1})e^{jk\omega_{1}t} =$$

$$= \frac{\dot{S}(0)}{T_{oc}} + \sum_{k=1}^{\infty} 2\left|\frac{\dot{S}(k\omega_{1})}{T_{oc}}\right| \cos\left(k\omega_{1}t + \arg\dot{S}(k\omega_{1})\right), \ 0 \le t \le T_{oc}.$$
(2.7)

Для увеличения шага дискретизации по оси частот, необходимо уменьшать период T_{oc} . Но формула (2.4) справедлива при условии $T_{oc} > \tau$. (Наибольший шаг дискретизации по оси частот при $T_{oc} = \tau$).

Заметим, что ширина спектральной плотности реально ограничена, т. е. существуют верхние частоты $\pm \omega_{e}$, при превышении которых ($|\omega| > \omega_{e}$) спектральную плотность можно считать равной нулю (рисунок 2.2 б). Это означает, что число слагаемых, учитываемых при вычислении ряда (2.4) или (2.7), конечно.

Для оценки числа учитываемых слагаемых N достаточно поделить ширину спектральной плотности $2\omega_e$ на шаг дискретизации $\omega_l = 2\pi/T_{oc}$:

$$N \approx 2\omega_{e}/\omega_{1} = 2f_{e} \cdot T_{oc}.$$
 (2.8)

Итак, используя (2.7), можно восстановить непрерывный сигнал s(t) по дискретным отсчетам $\dot{S}(k\omega_1)$ спектральной плотности, взятыми с шагом ω_1 . Число слагаемых N, учитываемых в (2.7), оценивается формулой (2.8).

2.3 Дискретизация сигналов по времени

Сравнение моделей сигналов, изображенных на рисунках 2.1 и 2.2 и описанных в предыдущих параграфах, позволяет сформулировать следующие обобщения.

- 1. Аналоговому непериодическому сигналу s(t) соответствует аналоговая непериодическая функция частоты, называемая спектральной плотностью $\dot{S}(\omega)$.
 - 2. Дискретизация аналоговой спектральной плотности с шагом ω_1 приводит к преобразованию непериодического сигнала s(t) конечной длительности τ в периодическую последовательность $s_n(t)$ с периодом повторения $T_{oc} = 2\pi/\omega_1$, где $T_{oc} > \tau$.
 - 3. Уместно предположить (и нетрудно показать, учитывая взаимообратимость преобразований Фурье), что дискретизация аналогового непериодического сигнала s(t) с шагом $T_{\rm A}$ приведет к преобразованию спектральной плотности, реальная ширина которой равна $2\omega_{\rm s}$, в периодическую последовательность $\dot{S}_{\rm A}(\omega)$ с периодом повторения $\omega_{\rm A} = 2\pi/T_{\rm A}$, причем $\omega_{\rm A}$ должна быть больше или равна $2\omega_{\rm s}$ (рисунок 2.3,а и б).

Рисунок 2.3 – Временное (а) и частотное (б) представления дискретизированного по времени сигнала

Модель дискретного сигнала, показанного на рисунке 2.3,а, задается отсчетами $s(nT_{\rm A})$ непрерывного сигнала s(t), взятыми в дискретные моменты времени $t=nT_{\rm A}$, где $T_{\rm A}$ – шаг дискретизации, $n = \pm 0, \pm 1, \pm 2, ...$

Для фиксации моментов времени nT_{π} воспользуемся периодической последовательностью δ -функций:

$$\eta(t) = \sum_{n = -\infty}^{\infty} \delta(t - nT_{\mathrm{II}}).$$
(2.9)

Математической моделью дискретного сигнала, заданного в фиксированные моменты времени, является

$$s_{\mathrm{d}}(t) = s(t) \cdot \eta(t) = s(t) \sum_{n = -\infty}^{\infty} \delta(t - nT_{\mathrm{d}}).$$
(2.10)

Так как $\delta(t - nT_{\rm d})$ существует лишь в момент $t = nT_{\rm d}$, то из формулы (2.10) можно получить второй вариант математической модели дискретного сигнала:

$$s_{\ddot{a}}(t) = \sum_{n=-\infty}^{\infty} s(nT_{\ddot{a}}) \delta(t - nT_{\ddot{a}}).$$
(2.11)

Периодическую последовательность δ -функций с периодом T_{π} можно выразить рядом Фурье (формула (2.4)):

$$\eta(t) = \sum_{m=-\infty}^{\infty} \dot{C}_m e^{jm\frac{2\pi}{T_{\pi}}t} = \frac{1}{T_{\pi}} \sum_{m=-\infty}^{\infty} e^{jm\frac{2\pi}{T_{\pi}}t}, \qquad (2.12)$$

так как для периодической последовательности δ -функций $\dot{C}_m = 1/T_{\rm d}$.

Подстановка (2.12) в (2.10) дает третий вид математической модели дискретного сигнала:

$$s_{\rm A}(t) = s(t) \cdot \frac{1}{T_{\rm A}} \sum_{m=-\infty}^{\infty} e^{jm \frac{2\pi}{T_{\rm A}}t}$$
 (2.13)

Для вычисления спектральной плотности дискретного сигнала $\dot{S}_{\rm d}(\omega)$ воспользуемся прямым преобразованием Фурье (2.2):

$$\dot{S}_{\mathrm{II}}(\omega) = \int_{-\infty}^{\infty} s_{\mathrm{II}}(t) e^{-j\omega t} dt \,.$$
(2.14)

Подстановка в (2.14) сигнала $s_{d}(t)$ в виде (2.13) дает

$$\dot{S}_{\mathrm{II}}(\omega) = \frac{1}{T_{\mathrm{II}}} \int_{-\infty}^{\infty} s(t) \sum_{m=-\infty}^{\infty} e^{jm \frac{2\pi}{T_{\mathrm{II}}}t} \cdot e^{-j\omega t} dt. \qquad (2.15)$$

Изменяя порядок интегрирования и суммирования, получаем

$$\dot{S}_{\mathrm{II}}(\omega) = \frac{1}{T_{\mathrm{II}}} \sum_{m=-\infty}^{\infty} \int_{-\infty}^{\infty} s(t) \cdot e^{-j\left(\omega - m \cdot \frac{2\pi}{T_{\mathrm{II}}}\right)t} dt. \qquad (2.16)$$

Интеграл

$$\int_{-\infty}^{\infty} s(t) \cdot e^{-j\left(\omega - m \cdot \frac{2\pi}{T_{\mu}}\right)t} dt = \dot{S}\left(\omega - m \cdot \frac{2\pi}{T_{\mu}}\right)$$
(2.17)

является спектральной плотностью непрерывного сигнала s(t), перемещенной по оси частот на величину $m \cdot \frac{2\pi}{T_{a}}$. Таким образом,

$$\dot{S}_{\mathrm{II}}(\omega) = \frac{1}{T_{\mathrm{II}}} \sum_{m=-\infty}^{\infty} \dot{S}\left(\omega - m \cdot \frac{2\pi}{T_{\mathrm{II}}}\right).$$
(2.18)

Формула (2.18) устанавливает связь спектральной плотности дискретного сигнала $\dot{S}_{\rm d}(\omega)$ со спектральной плотностью непрерывного сигнала $\dot{S}(\omega)$. Из формулы (2.18) следует, что дискретизированному по времени сигналу $s_{\rm d}(t)$ (рисунок 2.3,а) соответствует периодическая последовательность спектральных плотностей с периодом $\frac{2\pi}{T_{\rm d}}$ по оси частот (рисунок 2.3,б).

Замечание

Следует обратить внимание на тот факт, что размерность спектральной плотности аналогового сигнала $\dot{S}(\omega)$ равна произведению размерности сигнала s(t) и времени (например, Вольт-секунда). Размерность спектральной плотности дискретного сигнала $\dot{S}_{\rm d}(\omega)$ совпадает с размерностью отсчета $s(nT_{\rm d})$.

Спектральную плотность дискретного сигнала $\dot{S}_{\rm d}(\omega)$ можно вычислить непосредственно по отсчетам сигнала $s(nT_{\rm d})$. Для этого воспользуемся выражением (2.14), подставив в него вместо $s_{\rm d}(t)$ математическую модель (2.11):

$$\dot{S}_{\mathrm{II}}(\omega) = \int_{-\infty}^{\infty} \sum_{n=-\infty}^{\infty} s(nT_{\mathrm{III}}) \cdot \delta(t - nT_{\mathrm{III}}) \cdot e^{-j\omega t} dt .$$
(2.19)

Изменяя порядок интегрирования и суммирования и используя фильтрующее свойство *б*-функции, получаем

$$\dot{S}_{\mathrm{II}}(\omega) = \sum_{n = -\infty}^{\infty} s(nT_{\mathrm{III}}) \cdot e^{-jnT_{\mathrm{IIII}}\omega} . \qquad (2.20)$$

Определим модуль и аргумент комплексной спектральной плотности дискретного сигнала по формулам:

$$\left|\dot{S}_{\mathcal{A}}(\omega)\right| = \sqrt{\left(\sum_{n=-\infty}^{\infty} s(nT_{\mathcal{A}})\cos(nT_{\mathcal{A}}\omega)\right)^{2} + \left(\sum_{n=-\infty}^{\infty} s(nT_{\mathcal{A}})\sin(nT_{\mathcal{A}}\omega)\right)^{2}}; \qquad (2.21)$$

$$\arg \dot{S}_{\mathrm{A}}(\omega) = -\operatorname{arctg} \frac{\sum_{n=-\infty}^{\infty} s(nT_{\mathrm{A}}) \sin(nT_{\mathrm{A}}\omega)}{\sum_{n=-\infty}^{\infty} s(nT_{\mathrm{A}}) \cos(nT_{\mathrm{A}}\omega)}.$$
(2.22)

Формулы (2.21) и (2.22) позволяют рассчитать амплитудно-частотную (АЧХ) и фазочастотную (ФЧХ) характеристики спектральной плотности дискретного сигнала.

Спектральную плотность аналогового сигнала $\dot{S}(\omega)$ можно выразить через спектральную плотность дискретизированного сигнала $\dot{S}_{d}(\omega)$ на интервале частот – $\omega_{e} < \omega < \omega_{e}$:

$$\dot{S}(\omega) = T_{\mathrm{A}} \cdot \dot{S}_{\mathrm{A}}(\omega). \tag{2.23}$$

Подставляя в (2.23) спектральную плотность дискретного сигнала в виде (2.20), получим

$$\dot{S}(\omega) = T_{\mathcal{A}} \sum_{n = -\infty}^{\infty} s(nT_{\mathcal{A}}) \cdot e^{-j\omega nT_{\mathcal{A}}}, \ |\omega| \le \omega_{\theta}.$$
(2.24)

Формула (2.24) справедлива, если $2\omega_{6} \leq \frac{2\pi}{T_{A}}$, откуда следует требование к шагу дискретизации T_{A} :

$$T_{\mathrm{II}} \leq \frac{\pi}{\omega_{\theta}} = \frac{1}{2f_{\theta}}.$$
(2.25)

Если $T_{\rm d}$ выбрать из условия $T_{\rm d} = \frac{1}{2f_{\theta}}$, то

$$\dot{S}(\omega) = \frac{1}{2f_{\theta}} \sum_{n=-\infty}^{\infty} s(nT_{\mu}) \cdot e^{-jn\frac{\omega}{2f_{\theta}}}, \ |\omega| \le \omega_{\theta}.$$
(2.26)

Формула (2.26) позволяет восстановить спектральную плотность аналогового сигнала s(t) по его дискретным отсчетам, взятым с интервалом $T_{\pi} = \frac{1}{1-t_{\pi}}$.

$$T_{\mathcal{A}} = \frac{1}{2f_{\mathcal{B}}}$$

Заметим, что при заданной длительности сигнала T_{oc} число слагаемых *N*, учитываемых при вычислении ряда (2.26), конечно и оценивается отношением интервала описания сигнала T_{oc} к шагу дискретизации $T_{Д} = \frac{1}{2f_{g}}$:

$$N \approx T_{oc} / T_{\mathrm{II}} = 2 f_{\theta} T_{oc} \,. \tag{2.27}$$

Полученный результат для оценки числа требуемых отсчетов сигнала совпадает с оценкой числа требуемых отсчетов спектральной плотности (формула (2.8)).

2.4 Ряд и теорема Котельникова

Получим выражение, связывающее аналоговый сигнал s(t) с его дискретными отсчетами $s(nT_{A})$. Для этого найдем s(t) по его спектральной плотности $\dot{S}(\omega)$, используя (2.2) и (2.26):

$$s(t) = \frac{1}{2\pi} \int_{-\omega_{\theta}}^{\omega_{\theta}} \left[\frac{1}{2f_{\theta}} \sum_{n=-\infty}^{\infty} s(nT_{\Pi}) e^{-jn \cdot \frac{\omega}{2f_{\theta}}} \right] e^{j\omega t} d\omega.$$
(2.28)

Изменяя порядок интегрирования и суммирования и учитывая, что $\omega_{6} = 2\pi f_{6}$, $T_{\pm} = \frac{1}{2f_{6}}$, получаем

$$s(t) = \frac{1}{2\omega_{\theta}} \sum_{n=-\infty}^{\infty} s(nT_{\pi}) \int_{-\omega_{\theta}}^{\omega_{\theta}} e^{j\omega(t-nT_{\pi})} d\omega = \frac{1}{2\omega_{\theta}} \sum_{n=-\infty}^{\infty} s(nT_{\pi}) \frac{e^{j\omega(t-nT_{\pi})}}{j(t-nT_{\pi})} \bigg|_{-\omega_{\theta}}^{-\omega_{\theta}} = \sum_{n=-\infty}^{\infty} s(nT_{\pi}) \frac{1}{\omega_{\theta}(t-nT_{\pi})} \cdot \frac{e^{j\omega_{\theta}(t-nT_{\pi})} - e^{-j\omega_{\theta}(t-nT_{\pi})}}{2j}.$$

Так как $\frac{e^{jx} - e^{-jx}}{2j} = \sin x$ и $\omega_{\theta} = \pi/T_{\mu}$ окончательно имеем

$$s(t) = \sum_{n=-\infty}^{\infty} s(nT_{\mathrm{A}}) \frac{\sin[\omega_{\theta}(t-nT_{\mathrm{A}})]}{\omega_{\theta}(t-nT_{\mathrm{A}})} = \sum_{n=-\infty}^{+\infty} s(nT_{\mathrm{A}}) \frac{\sin[\pi/T_{\mathrm{A}}(t-nT_{\mathrm{A}})]}{\pi/T_{\mathrm{A}}(t-nT_{\mathrm{A}})}.$$
 (2.29)

Полученное выражение называется рядом Котельникова.

Из (2.29) следует, что непрерывный сигнал s(t), ширина спектральной плотности которого ограничена верхней частотой $\omega_{\rm s}$, может быть полностью восстановлен по его дискретным отсчетам, взятым с интервалом дискретизации $1/2f_{\rm g} = \pi/\omega_{\rm g}$. Это положение доказано В. А. Котельниковым в 1933 году и называется теоремой Котельникова.

Ряд (2.29) представляет собой разложение непрерывного сигнала *s*(*t*) в ряд по элементарным сигналам вида

$$\sin c_n(t) = \frac{\sin \left[\omega_{\theta}(t - nT_{\pi})\right]}{\omega_{\theta}(t - nT_{\pi})} = \frac{\sin \left[\pi/T_{\pi}(t - nT_{\pi})\right]}{\pi/T_{\pi}(t - nT_{\pi})}.$$
(2.30)

Сигналы (2.30) называются функциями отсчетов (или функциями Котельникова), которые показаны на рисунке 2.4.

Рисунок 2.4 – Функции отсчетов, сдвинутые друг относительно друга на интервал времени $nT_{\rm A}$

Коэффициентами ряда (2.29) являются отсчеты $s(nT_{\pi})$ сигнала s(t) в моменты времени $t=nT_{\pi}$. Функции Котельникова $sinc_n(t)$ равны единице в момент времени $t=nT_{\pi}$ и равны нулю в других отсчетных точках $t=kT_{\pi}, k \neq n$. Следовательно, ряд (2.29) всегда принимает отсчетное значение $s(nT_{\pi})$ в точках $t=nT_{\pi}$. Последнее свойство позволяет использовать ряд (2.29) для приближенного нахождения s(t) по его дискретным отсчетам $s(nT_{\pi})$ в тех случаях, когда частота ω_s является приближенной оценкой ширины спектральной плотности $\dot{S}(\omega)$.

2.5 Дискретное преобразование Фурье (ДПФ)

Аналоговые преобразования Фурье (2.1) и (2.2) связывают между собой две текущие переменные: время t и частоту ω . Дискретные преобразования Фурье (ДПФ) связывают между собой две дискретные переменные: дискретное время nT_{d} и дискретную частоту $k\omega_{1}$. При дискретизации по частоте и по времени выполняются два условия:

1) функция, описывающая сигнал во временной области, будет периодической (с периодом $T_{oc} = 2\pi/\omega_{\rm l}$) и дискретизированной с шагом $nT_{\rm g}$;

2) функция, описывающая сигнал в частотной области, будет периодической (с периодом $\omega_{\rm d} = 2\omega_{\rm g} = 2\pi/T_{\rm d}$) и дискретизированной с шагом $k\omega_{\rm l}$.

Модели периодических и дискретизированных сигналов показаны на рисунке 2.5.

а) б) Рисунок 2.5 – Временное (а) и частотное (б) представления сигнала, дискретизированного по времени nT_{μ} и по частоте $k\omega_{1}$

Вернемся к выражениям (2.7) и (2.26). Эти выражения позволяют по N дискретным отсчетам сигнала или его спектральной плотности получить непрерывные величины s(t) или $\dot{S}(\omega)$ для всех значений переменных t или ω . Конечно, эти выражения можно использовать и для нахождения дискретных отсчетов $s(nT_{\pi})$ и $\dot{S}(k\omega_1)$. Формула (2.7) при вычислении s(t) справедлива для $0 \le t \le T_{oc}$ (рисунок 2.5,а, сплошная линия). Если $-\infty < t < \infty$, то формула (2.7) дает периодическую функцию времени $s_{II}(t)$ с периодом T_{oc} (рисунок 2.5,а, пунктирная линия). Очевидно, что отсчетные значения $s(nT_{\pi})$, полученные по формуле (2.7) для моментов времени $t = nT_{\pi}$, где $T_{\pi} = T_{oc}/N$, периодически повторяются с периодом N, т.е. $s(nT_{\pi}) = s[(n+N)T_{\pi}]$.

Формула (2.26) при вычислении $\dot{S}(\omega)$ справедлива для $|\omega| < \omega_e$ (рисунок 2.7,6, сплошная линия). Если $-\infty < \omega < \infty$, то формула (2.26) дает периодическую функцию частоты $\dot{S}_{\rm d}(\omega)$ с периодом $\omega_{\rm d} = 2\omega_e$ (рисунок 2.5,6, пунктирная линия).

Отсчетные значения $\dot{S}(k\omega_1)$, полученные по формуле (2.26) для $\omega = k\omega_1$, где $\omega_1 = 2\omega_g/N$, периодически повторяются с периодом N, т.е. $\dot{S}(k\omega_1) = \dot{S}[(k+N)\omega_1]$.

Как указывалось выше, в формулах (2.7) и (2.26) необходимо учитывать *N* членов ряда. Так как отсчетные значения $s(nT_{\rm A})$ и $\dot{S}(k\omega_{\rm I})$, полученные по формулам (2.7) и (2.26), периодически повторяются с периодом *N*, то суммирование в этих формулах можно начинать с любого номера. Для определенности примем, что суммирование в формулах (2.7) и (2.26) проводится в пределах от 0 до N - 1. Таким образом, если в формуле (2.7) и (2.26) положить $t=nT_{\pi}$, $\omega=k\omega_{1}$, $T_{\pi}=1/2f_{\theta}$, $\omega_{1}=2\pi/T_{oc}$, $N=T_{oc}/T_{\pi}=2\omega_{\theta}/\omega_{1}$, то они записываются следующим образом:

$$s(nT_{\rm A}) = \frac{1}{T_{oc}} \sum_{k=0}^{N-1} \dot{S}(k\omega_{\rm I}) e^{jnk \frac{2\pi}{N}}; \qquad (2.31)$$

$$\dot{S}(k\omega_{1}) = T_{\mathcal{A}} \sum_{n=0}^{N-1} s(nT_{\mathcal{A}}) e^{-jnk \frac{2\pi}{N}}.$$
(2.32)

Обычно вводится обозначение, связывающее отсчеты спектральной плотности $\dot{S}(k\omega_1)$ и коэффициенты комплексного ряда Фурье \dot{C}_k :

$$\dot{C}_k = \frac{1}{T_{oc}} \dot{S}(k\omega_1).$$

Отсчеты спектральной плотности нормируются, чтобы размерность отсчетов сигнала и нормированных отсчетов спектральной плотности была одинаковой. Окончательно формулы (2.31) и (2.32) преобразуются к виду:

$$\dot{C}_{k} = \frac{1}{N} \sum_{n=0}^{N-1} s_{n} e^{-jnk \frac{2\pi}{N}}; \qquad (2.33)$$

$$s_n = \sum_{k=0}^{N-1} \dot{C}_k e^{jnk\frac{2\pi}{N}}.$$
 (2.34)

Здесь использовано сокращенное обозначение отсчетов $s(nT_{\pi})=s_n$. Полученные выражения называются дискретным преобразованием Фурье (ДПФ). Из них выражение (2.33) является прямым преобразованием и позволяет по N дискретным отсчетам сигнала s_n получить N дискретных нормированных отсчетов спектральной плотности \dot{C}_k . Обратное преобразование (2.34) позволяет найти N отсчетов сигнала s_n по N нормированным отсчетам спектральной плотности \dot{C}_k .

Для дискретных преобразований Фурье (2.33) и (2.34) справедливы многие теоремы, доказанные для пары аналоговых преобразований Фурье (2.1) и (2.2), такие как теорема о линейности преобразования, теорема о запаздывании и др.

Принципиально новым свойством преобразований (2.33) и (2.34) является их периодичность с периодом *N*, т. е.

$$s_n = s_{n+N}, \qquad \dot{C}_k = \dot{C}_{k+N}.$$
 (2.35)

Следовательно, в формулах (2.33) и (2.34) суммирование можно начинать с любого значения k и n, однако общее число слагаемых при этом должно оставаться равным N.

Если отсчеты сигнала $s(nT_{\rm A})$ представляют действительные величины, то комплексные коэффициенты \dot{C}_k обладают свойством

$$\dot{C}_k = \dot{C}_{-k}^*$$
 (2.36)

Учет периодичности (2.35) позволяет преобразовать (2.36) к виду

$$\dot{C}_k = C_{N-k}^*.$$

Поэтому коэффициенты \dot{C}_k на интервале от 0 до *N-1* образуют комплексно-сопряженные пары (при любом *k*, за исключением k = 0 и k = N/2 при *N* – четном):

$$\dot{C}_1 = \dot{C}_{N-1}^*, \ \dot{C}_2 = \dot{C}_{N-2}^*, \ \dots, \ \dot{C}_k = \dot{C}_{N-k}^*.$$
 (2.37)

Коэффициент C_0 является действительной величиной при любом значении N. Коэффициент $C_{N/2}$ равен действительной величине, если N – число четное.

Для восстановления аналогового сигнала s(t), дискретизация которого дала N отсчетов, можно использовать ряд Фурье (2.7), представляющий конечную сумму двух видов:

$$s(t) = C_0 + \sum_{k=1}^{(N-1)/2} 2 |\dot{C}_k| \cos(k\omega_1 t + \arg \dot{C}_k), \qquad (2.38)$$

если N – нечетное число;

$$s(t) = C_0 + \sum_{k=1}^{N/2-1} 2 |\dot{C}_k| \cos(k\omega_1 t + \arg \dot{C}_k) + C_{N/2} \cdot \cos\left(\frac{N}{2}\omega_1 t\right), \qquad (2.39)$$

если *N* – четное число.

Следует особо подчеркнуть, что восстановление непрерывного сигнала по формулам (2.38) и (2.39) есть не приближенная, а точная операция, полностью эквивалентная получению текущих значений сигнала с ограниченным спектром по его выборкам, образующим ряд Котельникова. Однако процедура, использующая дискретное преобразование Фурье, в ряде случаев предпочтительна, поскольку она приводит к конечным суммам гармоник, в то время как ряд Котельникова для периодического сигнала принципиально должен содержать бесконечное число членов.

2.6 Прямое и обратное Z-преобразования

Для анализа линейных аналоговых систем и цепей, а также анализа прохождения сигналов через них используются преобразования Лапласа и метод контурного интегрирования на плоскости комплексной частоты $p=c+j\omega$. Преобразования Лапласа позволяют линейные дифференциальные уравнения, которыми описываются непрерывные системы, свести к алгебраическим.

Аппарат Z-преобразований играет в цифровой обработке сигналов и цифровой фильтрации такую же роль, что и преобразования Лапласа в аналоговой.

Рассмотрим дискретный сигнал, заданный математической моделью (2.11):

$$s_{\mathrm{d}}(t) = \sum_{n=-\infty}^{\infty} s(nT_{\mathrm{d}}) \delta(t-nT_{\mathrm{d}}).$$

Спектральная плотность такого сигнала, равная

$$\dot{S}_{\mathrm{II}}(\omega) = \sum_{n=-\infty}^{\infty} s(nT_{\mathrm{III}}) \cdot e^{-jnT_{\mathrm{IIII}}\omega},$$

может быть записана в виде

$$\dot{S}_{\mathrm{II}}(\omega) = \sum_{n = -\infty}^{\infty} s(nT_{\mathrm{III}}) \cdot \left(e^{jT_{\mathrm{IIII}}}\omega\right)^{-n}.$$
(2.40)

Формула (2.40) показывает, что спектральная плотность дискретного сигнала выражается через трансцендентную периодическую функцию частоты $e^{jT_{\rm A}\omega}$.

Вводя новую комплексную переменную

$$z = e^{jT_{\rm I}\omega},\tag{2.41}$$

переходим к Z-преобразованию.

Определение. Пусть задана последовательность отсчетов (числовая последовательность) $\{s(nT_{A})\}$. Тогда прямым Z-преобразованием последовательности $\{s(nT_{A})\}$ называется сумма

$$S(z) = \sum_{n = -\infty}^{\infty} s(nT_{\mathrm{A}}) z^{-n} , \qquad (2.42)$$

где *z* – комплексная переменная.

Функцию S(z) называют Z-образом дискретного сигнала. Функция S(z) определена лишь для тех значений z, при которых ряд (2.42) сходится. Это означает, что в теории Z-преобразования комплексная переменная z рассматривается для большей области значений, чем дается формулой (2.41).

Выясним, как по Z-преобразованию S(z) можно найти последовательность $\{s(nT_{A})\}$.

Умножим обе части (2.42) на z^{m-1} и вычислим от обеих частей контурный интеграл в Z-плоскости по любому замкнутому контуру в области сходимости S(z), охватывающему начало координат:

$$\oint z^{m-1} S(z) dz = \sum_{n=-\infty}^{\infty} s(nT_{\mu}) \oint z^{m-n-1} dz \,.$$
(2.43)

Из теории функций комплексного переменного известно, что

$$\oint z^n dz = \begin{cases} 2\pi j, n = -1, \\ 0, n \neq -1. \end{cases}$$
(2.44)

Таким образом, контурные интегралы от всех слагаемых в правой части (2.44) обращаются в нуль, кроме случая m = n. Следовательно, обратное *Z*-преобразование определяется выражением

$$s(nT_{\mathrm{f}}) = \frac{1}{2\pi j} \oint S(z) z^{n-1} dz. \qquad (2.45)$$

Полученный интеграл вычислим с помощью теоремы о вычетах:

$$s(nT_{\mathcal{I}}) = \sum_{i} \operatorname{Res}_{i} S(z), \qquad (2.46)$$

$$\operatorname{Res}_{i} S(z) = \lim_{z=z_{i}} \frac{1}{(k-1)!} \frac{d^{k-1}}{dz^{k-1}} \Big[S(z)(z-z_{i})^{k} z^{n-1} \Big], \qquad (2.47)$$

где *k* – кратность полюса.

Рассмотрим основные свойства Z-преобразования.

Линейность

Если X(z) и Y(z) являются Z-преобразованиями последовательностей { $x(nT_{\pi})$ } и { $y(nT_{\pi})$ }, то последовательности { $a \cdot x(nT_{\pi}) + b \cdot y(nT_{\pi})$ } соответствует Z-преобразование aX(z) + bY(z).

Теорема о задержке

Если последовательность $\{x(nT_{A})\}$ имеет Z-преобразование X(z), то последовательности $\{x[(n-m)T_{A}]\}$ соответствует Z-преобразование $z^{-m}X(z)$.

Теорема о свертке

Если X(z) и Y(z) являются Z-преобразованиями последовательностей $\{x(nT_{\pi})\}$ и $\{y(nT_{\pi})\}$, то дискретной свертке

$$\sum_{m=-\infty}^{\infty} x[(n-m)T_{\mathrm{A}}] \cdot y[mT_{\mathrm{A}}] = \sum_{m=-\infty}^{\infty} y[(n-m)T_{\mathrm{A}}] \cdot x[mT_{\mathrm{A}}]$$
(2.48)

соответствует Z-преобразование $X(z) \cdot Y(z)$.

Перечисленные свойства доказываются непосредственным вычислением Z-преобразования.

В таблице 2.1 в комплексной форме представлены, с одной стороны, односторонние сигналы и изображения по Лапласу, а с другой стороны односторонние дискретные сигналы и их *Z*-образы. В таблицу 2.2 помещены наиболее распространенные модели аналоговых и дискретных сигналов, а также *Z*-образы дискретных последовательностей.

	Преобразование Лапласа		Z-преобразование	
N⁰	Оригиналы	Изображения	Дискретные	Z-образы
	s(t)	S(p)	сигналы $s(nT_{d})$	S(z)
1	$\int_{0}^{\infty} s(t)e^{-pt}dt$	S(p)	$\sum_{n=0}^{\infty} s(nT_{\mathrm{II}}) z^{-n}$	S(z)
2	s(t)	$\frac{1}{2\pi j} \int_{c-j\infty}^{c+j\infty} S(p) e^{pt} dp$	$s(nT_{\mathcal{A}})$	$\frac{1}{2\pi j}\oint S(z)z^{n-1}dz$
3	$as_1(t) + bs_2(t)$	$aS_1(p) + bS_2(p)$	$as_1(nT_{\mathrm{d}})+bs_2(nT_{\mathrm{d}})$	$aS_1(z) + bS_2(z)$
4	s(t- au)	$S(p)e^{-p\tau}$	$s[(n-k)T_{\mu}]$	$S(z)z^{-k}$
5	$s(t)e^{-\alpha t}$	$S(p+\alpha)$	$s(nT_{\mathrm{A}})\left(e^{-\alpha T_{\mathrm{A}}}\right)^{n}$	$S\left(z\cdot e^{\alpha T_{\mathcal{A}}}\right)$
6	$t \cdot s(t)$	$-\frac{d}{dp}S(p)$	$n \cdot s(nT_{\mu})$	$-z\frac{d}{dz}S(z)$
7	$\int_{0}^{t} s_1(\tau) s_2(t-\tau) d\tau$	$S_1(p) \cdot S_2(p)$	$\sum_{k=0}^{n} s_1 \left[(n-k) T_{\mathrm{A}} \right] \cdot s_2 \left(k T_{\mathrm{A}} \right)$	$S_1(z)S_2(z)$
8	$\lim_{t \to 0_+} h(t) = \lim_{p \to \infty} pH(p)$		$\lim_{n \to 0} h(nT_{\mathrm{II}}) = \lim_{z \to \infty} H(z)$	
9	$\lim_{t \to \infty} h(t) = \lim_{p \to 0} pH(p)$		$\lim_{n \to \infty} h(nT_{\mathrm{II}}) = \lim_{z \to 1}$	$\left(1-z^{-1}\right)H(z)$
10	$L^{-}[S(p)] = \sum_{k=1}^{n} \frac{1}{(m-1)!} \lim_{p \to p_{k}} \left[\frac{d^{m-1}}{dp^{m-1}} \left(S(p) \cdot (p-p_{k})^{m} e^{pt} \right) \right]$			
11	$Z^{-}[S(z)] = \sum_{k=1}^{n} \frac{1}{(m-1)!} \lim_{z \to z_{k}} \left[\frac{d^{m-1}}{dz^{m-1}} \left(S(z) \cdot (z - z_{k})^{m} z^{n-1} \right) \right]$			
Габл	 Таблица 2.2 – Связь между дискретными сигнадами и Z-образами			

Таблица 2.1 – Преобразование Лапласа аналоговых сигналов и *Z*-преобразование дискретных сигналов

	аналоговые	дискретные	S(z)
	сигналы $s(t)$	СИГНАЛЫ $S(nI_{\rm A})$	
1	$\delta(t) = \begin{cases} \infty, t = 0, \\ 0, t \neq 0 \end{cases}$	$\delta(n) = \begin{cases} 1, n = 0, \\ 0, n \neq 0 \end{cases}$	1
2	$\sigma(t) = \frac{1}{2} + \frac{1}{2} \operatorname{sign}(t)$	$\sigma(n) = 1, n = 0, 1, 2, \dots$	$\frac{z}{z-1}$
3	t	nT _A	$\frac{\frac{z}{T_{\mathcal{I}} \cdot z}}{(z-1)^2}$
4	t^2	$(nT_{\mathrm{A}})^2$	$\frac{T_{\mathcal{A}}^2 \cdot z(z+1)}{(z-1)^3}$
5	t^3	$(nT_{\mathcal{A}})^3$	$\frac{T_{\mathcal{I}}^{3} \cdot z(z^{2} + 4z + 1)}{(z - 1)^{4}}$
6	$e^{-\alpha t}$	$\left(e^{-\alpha T_{\mathrm{II}}}\right)^{n}$	$\frac{z}{z-e^{-\alpha T_{\mu}}}$
7	$te^{-\alpha t}$	$nT_{\mathrm{A}}\left(e^{-lpha T_{\mathrm{A}}}\right)^{n}$	$\frac{T_{\rm A}e^{-\alpha T_{\rm A}}z}{\left(z-e^{-\alpha T_{\rm A}}\right)^2}$
8	sin <i>w t</i>	$\sin(\omega nT_{\rm g})$	$\frac{z\sin(\omega T_{\rm A})}{z^2 - 2z\cos(\omega T_{\rm A}) + 1}$
9	$\cos \omega t$	$\cos(\omega nT_{\rm A})$	$\frac{z(z-\cos(\omega T_{\pi}))}{z^2-2z\cos(\omega T_{\pi})+1}$
10	$e^{-\alpha t}\sin\omega t$	$\left(e^{-\alpha T_{\mathrm{A}}}\right)^{n}\sin(\omega nT_{\mathrm{A}})$	$\frac{ze^{-\alpha T_{\rm A}}\sin(\omega T_{\rm A})}{z^2 - 2ze^{-\alpha T_{\rm A}}\cos(\omega T_{\rm A}) + e^{-2\alpha T_{\rm A}}}$
11	$e^{-\alpha t}\cos\omega t$	$\left(e^{-\alpha T_{\mathrm{I}}}\right)^{n}\cos(\omega nT_{\mathrm{I}})$	$\frac{\overline{z\left(z-e^{-\alpha T_{\rm d}}\cos(\omega T_{\rm d})\right)}}{z^2-2ze^{-\alpha T_{\rm d}}\cos(\omega T_{\rm d})+e^{-2\alpha T_{\rm d}}}$

З ПРАКТИЧЕСКОЕ ПРИЛОЖЕНИЕ К ДИСКРЕТНОЙ ОБРАБОТКЕ СИГНАЛОВ

3.1 Расчет спектральной плотности аналогового сигнала

В качестве примера рассмотрим прямоугольный импульс, изображенный на рисунке 3.1.

Поинтервальное описание сигнала выглядит следующим образом:

$$s(t) = \begin{cases} E, ecли 0 \le t \le \tau; \\ 0, ecли 0 > t > \tau. \end{cases}$$

Для составления математической модели можно использовать функции Хевисайда:

$$s(t) = E\sigma(t) - E\sigma(t-\tau).$$

Спектральная плотность прямоугольного импульса, изображенного на рисунке 3.1, равна

$$\dot{S}(\omega) = E \tau \cdot \frac{\sin(\omega \tau/2)}{\omega \tau/2} \cdot e^{-j\omega \tau/2}.$$

Фазовый множитель $e^{-j\omega\tau/2}$ свидетельствует о сдвиге сигнала во временной области на $\tau/2$.

Для построения частотных характеристик спектральную плотность полезно нормировать относительно интервала описания сигнала $T_{oc} = 2\tau$.

$$\frac{\dot{S}(\omega)}{T_{oc}} = \frac{E}{2} \cdot \frac{\sin(\omega \tau/2)}{\omega \tau/2} \cdot e^{-j\omega \tau/2}.$$

На рисунках 3.2 и 3.3 представлены графики модуля и аргумента комплексной спектральной плотности сигнала.

Рисунок 3.2 – График модуля спектральной плотности

б)

Рисунок 3.3 – Графики аргумента комплексной спектральной плотности: ненормированный (а) и нормированный (б) относительно 2 лп

Анализируя рисунки 3.2 и 3.3, можно сказать, что сдвиг сигнала во временной области не изменяет значения модуля спектральной плотности, а приводит к изменению фазовой характеристики.

3.2 Дискретизация аналогового сигнала по времени

Руководствуясь теоремой Котельникова, частоту дискретизации $\omega_{\rm d}$ выбираем так, чтобы $\omega_{\rm d} = 2\omega_6$. Для определения верхней частоты ω_6 спектра сигнала воспользуемся пороговым критерием: для частот выше «верхней» модуль спектральной плотности не превышает уровня 0,1 от максимального значения:

$$0,1\frac{E}{2} = \frac{E}{2} \left| \frac{\sin \frac{\omega_{e}\tau}{2}}{\frac{\omega_{e}\tau}{2}} \right|$$

Так как $\sin \frac{\omega_{e} \tau}{2}$ не превышает 1, положим $\omega_{e} \approx 20/\tau \approx 6\pi/\tau$. Таким образом частота дискретизации ω_{d} и интервал дискретизации T_{d} будут равны

$$\omega_{\rm A} = 2\omega_{\rm B} = 12\pi/\tau$$
, $T_{\rm A} = 2\pi/\omega_{\rm A} = \pi/\omega_{\rm B} = T_{oc}/12$.

Строго говоря, все реальные сигналы имеют конечную длительность и, следовательно, бесконечно протяженный спектр. Однако начиная с некоторого значения частоты спектральные составляющие становятся настолько малы, что ими можно пренебречь.

Сигнал может быть приближенно описан конечным числом выборочных значений. Число выборочных значений, которыми полностью описывается сигнал, называют числом степеней свободы сигнала. Число степеней свободы N будет равно

$$N = \frac{T_{oc}}{T_{\pi}} = 12.$$

На рисунке 3.4 приведены отсчеты прямоугольного импульса.

Рисунок 3.4 – Отсчеты исходного аналогового сигнала

Таким образом, сигнал задается последовательностью отсчетов вида

E{1,1,1,1,1,0,0,0,0,0,0}.

Запишем математическую модель дискретного сигнала $s_{\rm d}(t)$ с помощью дискретных функций Хэвисайда:

$$s_{\mathcal{A}}(t) = E\sigma(n) - E\sigma(n-6).$$

3.3 Расчет спектральной плотности дискретизированного сигнала

Для нахождения спектральной плотности дискретизированного сигнала применим прямое преобразование Фурье (2.19). Выполняя нормировку относительно числа степеней свободы *N*, найдем

$$\frac{\dot{S}_{\mathcal{A}}(\omega)}{N} = \frac{E}{N} \int_{0}^{T_{oc}} \left[\delta(t) + \delta(t - T_{\mathcal{A}}) + \dots + \delta(t - 5T_{\mathcal{A}}) \right] e^{-j\omega t} dt.$$

Используя фильтрующее свойство б-функции, получим

$$\begin{split} \frac{\dot{S}_{\pi}(\omega)}{N} &= \frac{E}{N} (e^{-j0\omega T_{\pi}} + e^{-j\omega T_{\pi}} + e^{-j2\omega T_{\pi}} + e^{-j3\omega T_{\pi}} + e^{-j4\omega T_{\pi}} + e^{-j5\omega T_{\pi}}) = \\ &= \frac{E}{12} \Biggl[e^{j\frac{5}{2}\omega T_{\pi}} + e^{j\frac{3}{2}\omega T_{\pi}} + e^{j\frac{1}{2}\omega T_{\pi}} + e^{-j\frac{1}{2}\omega T_{\pi}} + e^{-j\frac{3}{2}\omega T_{\pi}} + e^{-j\frac{5}{2}\omega T_{\pi}} \Biggr] e^{-j\frac{5}{2}\omega T_{\pi}} = \\ &= \frac{2E}{12} \Biggl[\cos\Biggl(\frac{5}{2}\omega T_{\pi}\Biggr) + \cos\Biggl(\frac{3}{2}\omega T_{\pi}\Biggr) + \cos\Biggl(\frac{1}{2}\omega T_{\pi}\Biggr) \Biggr] e^{-j\frac{5}{2}\omega T_{\pi}} . \end{split}$$

Проанализируем полученное выражение. Для этого на рисунке 3.5 изобразим множители выражения $\frac{\dot{S}_{\mu}(\omega)}{N}$, отвечающие за модуль спектральной плотности.

Рисунок 3.5 Представление множителей, входящих в выражение $\frac{\dot{S}_{\mu}(\omega)}{N}$

На рисунке 3.6 изображен модуль спектральной плотности дискретного непериодического сигнала $|\dot{S}_{II}(\omega)|$.

Рисунок 3.6 – Модули спектральных плотностей исходного аналогового (пунктирная линия) и дискретизированного (сплошная линия) сигналов

Анализируя рисунок 3.6, можно сделать очень важный вывод: при дискретизации сигнала во временной области спектральная плотность становится периодической функцией частоты с периодом, равным $\omega_{\text{д}}$. В то время как аналоговый сигнал имеет апериодический спектр.

3.4 Расчет коэффициентов ДПФ

В тех случаях, когда последовательность отсчетов периодична, можно установить однозначную связь между временными отсчетами сигнала и

отсчетами его спектральной плотности с помощью прямого дискретного преобразования Фурье (ПДПФ):

$$\dot{C}_k = \frac{1}{N} \sum_{n=0}^{N-1} s(nT_{\mathrm{II}}) e^{-j\frac{2\pi nk}{N}}.$$

Расчет комплексных коэффициентов ряда Фурье \dot{C}_k с использованием ЦВМ не составляет труда. Однако необходимо представлять себе, каким образом происходит векторное суммирование компонент.

На рисунках 3.7 – 3.9 изображены векторные диаграммы, отражающие расчет комплексных коэффициентов ряда Фурье. Рисунку 3.7 соответствует аналитическое выражение

Рисунок 3.7 – Векторная диаграмма определения коэффициента \dot{C}_1

Рисунку 3.8 соответствует аналитическое выражение $C_2 = \frac{E}{12} \left[1 + e^{-j\frac{4\pi}{12}} + e^{-j\frac{8\pi}{12}} + e^{-j\frac{12\pi}{12}} + e^{-j\frac{16\pi}{12}} + e^{-j\frac{20\pi}{12}} + 0 + 0 + 0 + 0 + 0 + 0 + 0 \right] = 0.$

Рисунок 3.8 – Векторная диаграмма определения коэффициента \dot{C}_2

Рисунок 3.9 – Векторная диаграмма определения коэффициента \dot{C}_3

В таблице 3.1 приведены все коэффициенты ряда Фурье.
	· · · · · · · · · · · · · · · · · · ·	$\mathbf{r} = \mathbf{r} \mathbf{k}$	
Ċ ₀	0,5 <i>E</i>	Ċ ₆	0
Ċ ₁	<i>E</i> (0,083 <i>-j</i> 0,311)	Ċ ₇	<i>E</i> (0,083+ <i>j</i> 0,022)
Ċ ₂	0	\dot{C}_8	0
Ċ ₃	<i>E</i> (0,083- <i>j</i> 0,083)	Ċ ₉	<i>E</i> (0,083+ <i>j</i> 0,083)
\dot{C}_4	0	Ċ ₁₀	0
Ċ ₅	E(0,083-j0,022)	Ċ ₁₁	<i>E</i> (0,083+ <i>j</i> 0,311)

Таблица 3.1 – Комплексные коэффициенты ряда Фурье \dot{C}_{k}

На рисунке 3.10 представлены графически модули комплексных коэффициентов Фурье

Рисунок 3.10 – Отсчеты спектральной плотности, полученные по ДПФ

Дискретный периодический сигнал обладает дискретным периодическим спектром. Отсчеты во временной и частотной областях связаны парой ДПФ. При этом число степеней свободы во временной и частотной областях имеет одно и то же значение *N*:

$$N = \frac{\omega_{\theta}}{2\pi/T_{oc}}$$

3.5 Восстановление исходного сигнала по ДПФ

Если на основании совокупности отсчетов $s_0, s_1, s_2, ..., s_{N-1}$ некоторого сигнала найдены коэффициенты ДПФ $C_0, C_1, C_2, ..., C_{N-1}$, то по ним всегда можно восстановить исходный сигнал s(t) с ограниченным спектром, который был подвергнут дискретизации. Ряд Фурье такого сигнала (для четного числа N) принимает вид конечной суммы

$$s(t) = C_0 + 2\left|\dot{C}_1\right| \cos\left(\frac{2\pi}{T_{oc}}t + \varphi_1\right) + 2\left|\dot{C}_2\right| \cos\left(\frac{4\pi}{T_{oc}}t + \varphi_2\right) + \dots + \left|\dot{C}_{\frac{N}{2}}\right| \cos\left(\frac{N\pi}{T_{oc}}t + \varphi_{\frac{N}{2}}\right)$$

В данном случае $\varphi_i = \arg C_i$ - фазовый угол коэффициента ДПФ.

Следует подчеркнуть, что восстановление непрерывного сигнала по данной формуле есть не приближенная, а точная операция, полностью эквивалентная получению текущих значений сигнала с ограниченным спектром по его отсчетам.

На рисунке 3.11 представлен результат восстановления сигнала по отсчетам его спектральной плотности.

Рисунок 3.11 – Аналоговый периодический сигнал, восстановленный по коэффициентам ДПФ

Восстановленный сигнал является периодической функцией времени. Он точно проходит по отсчетам выборки на первом периоде. Очевидно, что при большем значении N восстановление будет точнее.

3.6 **Z**-преобразование дискретной последовательности

Прямое Z-преобразование последовательности $s(nT_{\rm d})$ определяется формулой

$$S(z) = \sum_{n=0}^{\infty} s(nT_{\mathrm{II}}) z^{-n}$$

Функцию S(z) называют Z-образом последовательности $s(nT_{II})$.

Рассматриваемый дискретный сигнал представляет собой сумму двух дискретизированных функций Хэвисайда, одна из которых сдвинута относительно другой на 6 отсчетов.

Найдем Z-образ дискретной функции Хэвисайда $\sigma(n)$:

$$Z[\sigma(n)] = \boldsymbol{\sigma}(z),$$

$$-\frac{\sigma(z)=1+z^{-1}+z^{-2}+z^{-3}+\ldots+z^{-n}\ldots}{z^{-1}\sigma(z)=z^{-1}+z^{-2}+z^{-3}+z^{-4}+\ldots+z^{-n+1}\ldots}\cdot(1-z^{-1})\sigma(z)=1-z^{-(n+1)}}$$

Если |z| < 1, то $\lim_{n \to \infty} z^{-(n+1)} = 0$, откуда

$$\sigma(z) = \frac{1}{1-z^{-1}}.$$

Сдвиг дискретной последовательности приводит к умножению Z-образа на оператор сдвига z^{-6} :

$$Z[\sigma(n-6)] = \boldsymbol{\sigma}(z)z^{-6}.$$

Таким образом, Z-образ дискретизированного прямоугольного импульса равен

$$S(z) = E\left[\sigma(z) - \sigma(z)z^{-6}\right] = E\frac{1 - z^{-6}}{1 - z^{-1}}$$

Преобразуем *Z*-образ к виду, удобному для получения спектральной плотности дискретного сигнала:

$$S(z) = E \frac{z^3 - z^{-3}}{z^{-1/2} - z^{1/2}} \cdot z^{-5/2}.$$

Для того чтобы на основании Z-образа последовательности отсчетов было возможно получить спектральную плотность, необходимо сделать замену вида

$$z = e^{j\omega T_{\mathrm{d}}}$$

В результате подстановки получим

На рисунке 3.12 изображен модуль спектральной плотности дискретизированного сигнала, полученной на основе Z-преобразования (с учетом нормирования относительно числа степеней свободы N = 12).

Таким образом, пара Z-преобразований позволяет связать частотный и временной образы дискретного сигнала. Причем выборке отсчетов сигнала во временной области соответствует периодическая спектральная плотность в частотной области с периодом повторения, равным $\omega_{\rm A}$.

Рисунок 3.12 – Спектральная плотность последовательности отсчетов с учетом нормирования относительно N

3.7 Восстановление аналогового сигнала использованием ряда Котельникова

Восстановление аналогового сигнала по заданным отсчетам произведем, используя ряд Котельникова, а именно

$$s(t) = \sum_{n=-\infty}^{\infty} s(nT_{\mathrm{I}}) \frac{\sin\left[\pi/T_{\mathrm{I}}\left(t-nT_{\mathrm{I}}\right)\right]}{\pi/T_{\mathrm{I}}\left(t-nT_{\mathrm{I}}\right)}.$$

Другими словами, восстановленный сигнал представляет собой сумму функций Котельникова с весами, равными отсчетам сигнала. На рисунке 3.13 приведен результат восстановления.

Рисунок 3.13 – Аналоговый сигнал, восстановленный с помощью ряда Котельникова

На основании рисунка 3.13 можно утверждать, что восстановленный сигнал остался апериодическим и его форма напоминает исходную, однако значения исходного сигнала и восстановленного точно совпадают лишь в точках отсчета.

3.8 Задачи для самостоятельного решения

1. Экспоненциальный видеоимпульс $s(t) = E \exp(-\alpha t)\sigma(t)$ дискретизируется по времени с шагом $T_{\rm d}$. Выберите величину $T_{\rm d}$ таким образом, чтобы на граничной частоте $\omega_{\rm g} = \pi/T_{\rm d}$ модуль спектральной плотности $\dot{S}(\omega_{\rm g})$ уменьшался до уровня $0.1 \cdot \dot{S}(0)$.

2. Вычислите спектральную плотность $\dot{S}_{d}(\omega)$ дискретного сигнала, рассмотренного в задаче 1. Постройте график модуля функции $\dot{S}_{d}(\omega)$.

3. Применительно к условиям задачи 1 вычислите величину $\Delta S(0)$ – вклад в спектральную плотность дискретизированного сигнала на нулевой частоте, который вносится ближайшими «копиями» спектра исходного колебания, имеющими центральные частоты $\pm 2\pi/T_{\rm d}$.

4. Оцените величину $\Delta S(0)$ – дополнительный вклад в спектральную плотность на нулевой частоте для дискретизированного сигнала, описанного в задаче 1, который вносится всей бесконечной совокупностью «копий» спектра исходного аналогового сигнала.

5. Периодический дискретный сигнал $s_{d}(t)$ на интервале своей периодичности задан четырьмя равноотстоящими отсчетами {0,25; 0,8; -1,5; -0,2}. Вычислите постоянную составляющую C_{0} дискретного преобразования Фурье данного сигнала.

6. Какой период имеет дискретная последовательность $s_1(n) = e^{j0.3\pi n}$?

7. Синусоидальная последовательность $s(n) = A\cos(w_0 n + \varphi)$ принимает следующие значения за один период: $s(n) = \{2, 0, -2, 0\}$. Найдите значения A, ω_0 и φ .

8. Докажите, что если все N отсчетов дискретного сигнала, заданные на интервале периодичности, равны между собой, то все коэффициенты ДПФ такого сигнала, за исключением C_0 , равны нулю.

9. Периодическая последовательность прямоугольных видеоимпульсов с амплитудой U_0 , периодом T и длительностью отдельного импульса T/3 дискретизирована таким образом, что на один период последовательности приходится N отсчетов. Вычислите величины коэффициента C_1 в ДПФ данного сигнала при N = 6 и при N = 12.

10. Вычислите коэффициенты ДПФ C_n (n = 0, 1, 2) дискретного периодического сигнала $s_{\pi}(t)$, заданного тремя отсчетами {0, 10, 20}.

11. Дискретный периодический сигнал $s_{Д}(t)$ задан четырьмя отсчетами $\{1, 0, -1, 0\}$. Вычислите коэффициенты ДПФ C_n (n = 0, 1, 2, 3).

12. Получите выражение периодического аналогового сигнала s(t), каждому периоду которого отвечает дискретный сигнал, состоящий из четырех равноотстоящих выборок {1; 0; -0,5; 0}.

13. Восстановите аналоговый сигнал s(t) по коэффициентам ДПФ, вычисленным в задаче 12. Убедитесь, что значения сигнала s(t) в отсчетных точках совпадают со значениями дискретного сигнала. Предполагайте, что период сигнала *T* задан.

14. Вычислите Z - преобразование дискретного сигнала $\{s_n\}$, имеющего

вид $s_n = \begin{cases} 0, & n \le 0, \\ 2.5, & n = 1, 2, 3 \\ 0, & n > 3. \end{cases}$

15. Получите формулу Z -преобразования $\sigma(z)$ дискретной ступенчатой

функции $\{\sigma_k\}$, общий член которой задан выражением $\sigma_n = \begin{cases} 0, & n < 0, \\ 1, & n \ge 0. \end{cases}$

16. Найдите *Z*-преобразование S(z) дискретной ступенчатой функции $\{s_k\}$, имеющего общий член $s_n = \alpha^n$, n = 0, 1, 2, ...

17. Получите формулу, описывающую *Z* -преобразование *S*(*z*) дискретного сигнала {*s*_k} с общим членом $s_n = \alpha^n / n!$ при $n \ge 0$.

18. Найдите дискретный сигнал $\{s_n\}$, которому отвечает Zпреобразование $S(z) = \frac{1}{1 - 0.3z^{-1}}$. **19.** Вычислите седьмой член s_6 дискретной последовательности $\{s_n\}$, Z-преобразование которой $S(z) = 25/(1-0.9z^{-1})$.

20. Задано Z-преобразование $S(z) = \frac{1}{(1 - 0.4z^{-1})(1 - 0.6z^{-1})}$. Найдите общий член s_n последовательности $\{s_n\}$.

21. Найдите дискретный сигнал $\{s_n\}$, *Z*-преобразование которого $S(z) = z^{-2}$.

22. Вычислите Z -преобразование свертки двух дискретных сигналов $\{s_1\} = (1, 1, 1, 0, 0, ...)$ и $\{s_2\} = (0, 0, 1, 1, 0, 0, ...).$

23. Получите выражение свертки двух сигналов, рассмотренных в задаче 22.

24. Путем непосредственного вычисления найдите свертку двух дискретных сигналов $\{s_1\} = (4, 4, 4, 3, 2, 1, 0, ...)$ и $\{s_2\} = (4, 3, 2, 1, 0, ...)$

4 ОПИСАНИЕ АЛГОРИТМОВ РАБОТЫ ЦИФРОВЫХ ФИЛЬТРОВ И РАСЧЕТ ОСНОВНЫХ ХАРАКТЕРИСТИК

4.1 Описание алгоритмов работы трансверсальных (ТЦФ) и рекурсивных (РЦФ) фильтров

В цифровом фильтре над элементами последовательности осуществляются операции сложения, вычитания, умножения и задержки по времени согласно заданному алгоритму обработки, в результате чего на выходе фильтра формируется новый дискретный сигнал.

Отличительной особенностью цифровой обработки является квантование сигнала по уровню, необходимое для перевода его значений в числовую последовательность и преобразования ее в вычислительном устройстве – цифровом фильтре. В основе анализа цифровых и дискретных устройств лежит один и тот же математический аппарат – теория линейных схем. Учет эффектов квантования представляет дискретных собой самостоятельную и весьма сложную задачу.

Будем понимать под цифровым фильтром устройство, на вход которого поступает поток отсчетов x_n , а на выходе образуется поток y_n . Причем последовательность y_n представляет собой линейную комбинацию, состоящую из (M+1) равноотстоящих входных отсчетов x_{n-k} (некоторого входного сигнала), а также вычисленных ранее (N) выходных отсчетов y_{n-k} .

Если учесть односторонность воздействия, то алгоритм работы ЦФ можно представить в виде двух взвешенных сумм:

$$y_n = \sum_{k=0}^{M} a_k \cdot x_{n-k} + \sum_{k=1}^{N} b_k \cdot y_{n-k} .$$
 (4.1)

Обработка входной последовательности (первая сумма в выражении (4.1)) начинается с нулевого входного отсчета (k = 0). Обработка выходной последовательности (вторая сумма в выражении (4.1)) начинается после предварительного вычисления и запоминания выходного отсчета, т.е. k = 1.

Выражение (4.1) называется разностным уравнением цифрового фильтра, т.к. оно связывает между собой разности соседних значений входного $x(k \cdot T_{\pi}) = x_k$ и выходного $y(n \cdot T_{\pi}) = y_n$ дискретных сигналов.

Различают цифровые фильтры трансверсальные (ТЦФ) и рекурсивные (РЦФ).

Отсчеты сигнала *y_n* на выходе ТЦФ зависят только от отсчетов входного сигнала *x_n* и описываются разностным уравнением:

$$y_n = \sum_{k=0}^{M} a_k \cdot x_{n-k} = a_0 \cdot x_n + a_1 \cdot x_{n-1} + a_2 \cdot x_{n-2} + \dots$$
(4.2)

Отсчеты сигнала y_n на выходе РЦФ зависят не только от входных x_n , но и от выходных y_n отсчетов и описываются разностным уравнением:

$$y_n = x_n + \sum_{k=1}^N b_k \cdot y_{n-k}$$
 (4.3)

В общем случае цифровой фильтр, содержащий трансверсальную и рекурсивную части, называется фильтром канонического типа и описывается разностным уравнением (4.1).

4.2 Определение системных функций и построение структурных схем ТЦФ и РЦФ

Системная функция *K*(*z*) цифрового фильтра определяется как отношение *Z*-преобразований его выходного и входного сигналов:

$$K(z) = \frac{Y(z)}{X(z)}.$$
(4.4)

Применяя прямое Z-преобразование к уравнению (4.1), получим

$$Y(z) = \left(\sum_{k=0}^{M} a_k z^{-k}\right) X(z) + \left(\sum_{k=1}^{N} b_k z^{-k}\right) Y(z).$$
(4.5)

Уравнения (4.4) и (4.5) связывают между собой Z-образы входной X(z) и выходной Y(z) последовательностей. Разрешая (4.5) относительно Y(z), найдем

$$Y(z) = X(z) \frac{\sum_{k=0}^{M} a_k z^{-k}}{1 - \sum_{k=1}^{N} b_k z^{-k}}.$$
(4.6)

Разделив правую и левую части выражения (4.6) на X(z), выведем формулы для расчета системных функций трансверсального фильтра ($K_{\text{тщ}\phi}(z)$), рекурсивного фильтра ($K_{\text{рщ}\phi}(z)$) и цифрового фильтра канонического вида ($K_{\text{кщ}\phi}(z)$):

$$K_{P \amalg \Phi}(z) = \frac{1}{1 - \sum_{k=1}^{N} b_k z^{-k}} = \frac{1}{1 - B(z)};$$
(4.8)

$$K_{KU}\phi(z) = \frac{\sum_{k=0}^{M} a_k z^{-k}}{1 - \sum_{k=1}^{N} b_k z^{-k}} = \frac{A(z)}{1 - B(z)}.$$
(4.9)

Из формул (4.7), (4.8) и (4.9) видно, что для реализации фильтров необходимы устройства, выполняющие три операции: задержку (запоминание) отсчетов сигналов, сложение и умножение, – а также соединяющие эти устройства линии передачи сигналов.

11

На рисунках 4.1, 4.2 и 4.3 изображены структурные схемы, реализующие алгоритмы работы ТЦФ, РЦФ и цифрового фильтра канонического вида.

Рисунок 4.1 – Обобщенное представление (а) и структурная схема (б) трансверсального цифрового фильтра (ТЦФ)

а) б) Рисунок 4.2 – Обобщенное представление (а) и структурная схема (б) рекурсивного цифрового фильтра (РЦФ)

б)

Рисунок 4.3 – Обобщенное представление (а) и структурная схема (б) цифрового фильтра канонического типа

4.3 Расчет частотных характеристик цифровых фильтров

Комплексной частотной характеристикой (КЧХ) цифрового фильтра называется отношение спектральной плотности дискретной последовательности на выходе ЦФ к спектральной плотности дискретной последовательности на входе ЦФ. Получим КЧХ из системной функции ЦФ (4.4), заменяя $z = e^{j\omega T_{\rm d}}$.

$$\dot{K}\left(e^{j\omega T_{\mathrm{A}}}\right) = \frac{\dot{Y}\left(e^{j\omega T_{\mathrm{A}}}\right)}{\dot{X}\left(e^{j\omega T_{\mathrm{A}}}\right)}$$
(4.10)

Комплексную функцию $\dot{K}\left(e^{j\omega T_{\mathrm{d}}}\right)$ можно выразить через модуль и аргумент

$$\dot{K}\left(e^{j\omega T_{\mathrm{A}}}\right) = \left|\dot{K}\left(e^{j\omega T_{\mathrm{A}}}\right)\right|e^{j\arg\dot{K}\left(e^{j\omega T_{\mathrm{A}}}\right)} = A(\omega) \cdot e^{j\varphi(\omega)}$$
(4.11)

Модуль частотной характеристики $\dot{K}\left(e^{j\omega T_{\rm d}}\right)$ называют амплитудночастотной характеристикой (АЧХ):

$$A(\omega) = \left| \dot{K} \left(e^{j\omega T_{\mu}} \right) \right|, \qquad (4.12)$$

а аргумент – фазочастотной характеристикой (ФЧХ) ЦФ:

$$\varphi(\omega) = \arg \dot{K}\left(e^{j\omega T_{\mathrm{II}}}\right) \tag{4.13}$$

Для рекурсивного фильтра канонического вида КЧХ, АЧХ и ФЧХ можно вычислить по формулам:

$$\dot{K}\left(e^{j\omega T_{\pi}}\right) = \frac{\sum_{k=0}^{M} a_{\kappa} \cdot e^{-jk\omega T_{\pi}}}{1 - \sum_{k=1}^{N} b_{\kappa} \cdot e^{-jk\omega T_{\pi}}}$$
(4.14)

$$A(\omega) = \frac{\sqrt{\left[\sum_{k=0}^{M} a_{\kappa} \cos k\omega T_{\pi}\right]^{2} + \left[\sum_{k=0}^{M} a_{\kappa} \sin k\omega T_{\pi}\right]^{2}}}{\sqrt{\left[1 - \sum_{k=1}^{N} b_{\kappa} \cos k\omega T_{\pi}\right]^{2} + \left[\sum_{k=1}^{N} b_{\kappa} \sin k\omega T_{\pi}\right]^{2}}}$$
(4.15)

$$\varphi(\omega) = -\operatorname{arctg} \frac{\sum_{k=0}^{M} a_{\kappa} \sin k \omega T_{\pi}}{\sum_{k=0}^{M} a_{\kappa} \cos k \omega T_{\pi}} - \operatorname{arctg} \frac{\sum_{k=1}^{N} b_{\kappa} \sin k \omega T_{\pi}}{1 - \sum_{k=1}^{N} b_{\kappa} \cos k \omega T_{\pi}}$$
(4.16)

Комплексную частотную характеристику ЦФ можно рассматривать как отношение комплексной частотной реакции ЦФ к дискретному комплексному гармоническому воздействию в установившемся режиме.

4.4 Расчет временных характеристик цифровых фильтров

4.4.1 Расчет импульсной характеристики ЦФ

Импульсной характеристикой g(n) цифрового фильтра называется последовательность отсчетных значений, формирующаяся на его выходе при воздействии на вход единичного дискретного сигнала $\delta(n)$ (при нулевых начальных условиях).

Импульсная характеристика связана с системной функцией K(z) цифрового фильтра Z-преобразованием [1–5]. Поскольку выражение K(z) уже получено в п. 4.2, можно воспользоваться формулой обратного Z-преобразования [1, 2]

$$g(n) = Z^{-}[K(z)]$$
 (4.17)

Применение (4.17) вызывает определенные трудности и необходимо в тех случаях, когда нельзя использовать более простые методы. Положив в (4.9) M=N=n и переходя к положительным показателям степенной переменной *z*, получим общее выражение для системной функции *K*(*z*) цифрового фильтра:

$$K(z) = \frac{a_0 z^n + a_1 z^{n-1} + \dots + a_n}{z^n - b_1 z^{n-1} - \dots - b_n}.$$
(4.18)

С целью отыскания импульсной характеристики g(nT) данного фильтра необходимо выполнить некоторые преобразования:

$$K(z) = c_0 + \frac{c_1 z^{n-1} + c_2 z^{n-2} + \dots + c_n}{z^n - b_1 z^{n-1} - \dots - b_n},$$
(4.19)

где $c_0, c_1, ..., c_n$ - вещественные коэффициенты.

Значения коэффициентов c_n легко устанавливаются, если учесть, что выражения (4.18) и (4.19) тождественно равны. Из неправильной дроби (4.18) выделяется целая часть c_0 .

Второе слагаемое в формуле (4.19) является правильной дробнорациональной функцией и, следовательно, может быть разложено на сумму простейших дробей, причем, как известно из математики, вещественному корню z_r и паре комплексно-сопряженных корней z_C и z_C^* знаменателя единичной кратности соответствует следующее выражение:

$$\frac{A}{z-z_r} + \frac{Bz+D}{(z-z_k)(z-z_k^*)},$$
(4.20)

где *А*, *В*, *D* - вещественные коэффициенты.

Обратное Z-преобразование можно определить с помощью вычетов [6]:

$$Res_{i} = \frac{1}{(k-1)!} \lim_{z \to z_{i}} \frac{d^{k-1}}{dz^{k-1}} \left[\frac{A(z)}{(z-z_{i})^{k}(z-z_{r})} (z-z_{i})^{k} z^{n-1} \right]_{z=z_{i1}}, \quad (4.21)$$

где k – кратность корня.

Импульсная характеристика равна сумме вычетов:

$$g(nT_{\rm II}) = \sum_{i=1}^{l} Res_i$$
 (4.22)

4.4.2 Расчет переходной характеристики ЦФ

Переходной характеристикой ЦФ называется реакция фильтра h(n) на единичную ступенчатую функцию $\sigma(n)$ (функция Хэвисайда) при нулевых начальных условиях.

Z-преобразование дискретной функции Хэвисайда и переходной характеристики равны:

$$\sigma(z) = \frac{z}{z - 1} \tag{4.23}$$

$$H(z) = K(z) \cdot \frac{z}{z-1} \tag{4.24}$$

Таким образом,

$$h(n) = Z^{-} \left[K(z) \cdot \frac{z}{z-1} \right]$$
(4.25)

Связь импульсной и переходной характеристик во временной области

$$h(n) = \sum_{k=0}^{\infty} g(n-k)$$
 (4.26)

$$g(n) = h(n) - h(n-1)$$
(4.27)

Анализ ЦФ по переходной характеристике подобен анализу аналогового фильтра. По переходной характеристике определяют время задержки, амплитуду первого выброса, спад вершины импульса и другие схемотехнические параметры.

4.5 Расчет дискретной последовательности на выходе цифрового фильтра

Дискретная обработка сигналов завершается решением задачи анализа прохождения дискретизированного сигнала через цифровой фильтр. Постановка ее проста и состоит в следующем. Имеется цифровой фильтр (рисунок 4.4), системная функция которого K(z) определена в п. 4.2., а импульсная характеристика $g(nT)=g_n$, вычислена в п. 4.4.2. На его вход поступает последовательность отсчетов $x(n)=x_n$, полученная в гл. 3 результате дискретизации непрерывного сигнала. Требуется установить вид сигнала $y(n)=y_n$ на выходе цифрового фильтра.

$$x(n)$$
 $K(z)$ $y(n)$
 $y(n)$
Рисунок 4.4 -

Можно решить данную задачу тремя методами: с помощью обратного Z-преобразования; с помощью дискретной свертки [9]; или пользуясь алгоритмом работы цифрового фильтра.

$$y_n = Z^{-} [X(z) \cdot K(z)]$$
(4.28)

$$y_n = \sum_{k=0}^n g_k x_{n-k} . (4.29)$$

$$y_n = \sum_{k=0}^{M} a_k \cdot x_{n-k} + \sum_{k=1}^{N} b_k \cdot y_{n-k} .$$
 (4.30)

Процедура вычисления дискретной свертки является достаточно трудоемкой. Ее можно осуществить двумя путями, а именно: следуя непосредственно выражению (4.29) или применяя метод косвенного вычисления, основанный на использовании дискретного преобразования Фурье [2]. В обоих случаях расчеты целесообразно выполнять на ЦВМ.

Рассчитать сигнал на выходе цифрового фильтра можно, программируя разностное уравнение вида (4.30).

4.6 Устойчивость цифровых фильтров

Фильтр называется устойчивым, если при любых начальных условиях реакция фильтра на любое ограниченное воздействие также ограничена. Устанавливая параллель с аналоговой обработкой, можно сказать, что сигналы на входе и выходе устойчивого цифрового фильтра будут удовлетворять условиям Дирихле, т.е.:

$$\sum_{n=1}^{\infty} |x(n)| < \infty \tag{4.31}$$

$$\sum_{n}^{\infty} |y(n)| < \infty \tag{4.32}$$

Для того чтобы цифровой фильтр был устойчив, необходимо и достаточно, чтобы выполнялось условие абсолютной сходимости ряда:

$$\sum_{n}^{\infty} |g(n)| < \infty \tag{4.33}$$

Устойчивость фильтра можно оценить не только по импульсной характеристике, но и по системной функции цифрового фильтра. Для того чтобы цифровой фильтр был устойчив, необходимо и достаточно, чтобы все полюсы ее системной функции K(z) находились внутри круга единичного радиуса комплексной *z*-плоскости.

4.7 Соединение цифровых фильтров

В таблице 4.1 приведены каскадное соединение ЦФ, параллельное включение и соединение с обратными связями.

Таблица 4.1 – Структурные схемы и системные функции ЦФ

		12	
Схема		Системная функция	
1	$\bullet \underbrace{x(nT)}_{K_1(z)} \underbrace{K_2(z)}_{K_2(z)} \underbrace{y(nT)}_{K_n(z)} \underbrace{y(nT)}_{K_n(z)} \bullet$	$K(z) = K_1(z) \cdot K_2(z) \cdot \ldots \cdot K_n(z)$	
2	(nT)	$K(z) = K_1(z) + K_2(z) + \dots + K_n(z)$	
3	$ \xrightarrow{x(nT)} + \underbrace{K_1(z)}_{K_2(z)} \xrightarrow{y(nT)} $	$K(z) = \frac{K_1(z)}{1 - K_1(z) \cdot K_2(z)}$	
4	(x(nT)) + $y(nT)$	$K(z) = \frac{1}{1 - K_2(z)}$	

Соединение, при котором выход одного фильтра соединен со входом другого, называют каскадным (последовательным).

Соединение, при котором фильтры имеют общие входы, а выходы подключены ко входам одного сумматора, называют параллельным.

Третье и четвёртое соединения, показанные в таблице 4.1, называют включением фильтра $K_2(z)$ в обратную связь фильтра $K_1(z)$.

4.8 Задачи для самостоятельного решения

- **1.** Покажите. **Z**-образ что дискретной последовательности $x(n) = (n+1)a^n \sigma(n)$ paben $X(z) = z/(z-a)^2$
- **2.** Найдите *Z*-образы следующих последовательностей: $x_1(n) = (0,1)^{n-3} \sigma(n);$ $x_2(n) = (0,1)^n \sigma(n-3);$

 $x_3(n) = e^{-j\pi n} \cos(0.5\pi n)\sigma(n).$

3. Найдите *Z*-образы следующих двух функций:

$$x_1(n) = -n(0,5)^{n-2}\sigma(n)$$

$$x_2(n) = (0,5)^n \sigma(n-2).$$

4. Найдите *Z*-образы следующих двух функций:

$$x_1(n) = -na^n \sigma(-n-1);$$

$$x_2(n) = (-1)^n \cos(\frac{\pi}{2}n)\sigma(n).$$

5. Найдите Z-образы следующих последовательностей:

$$x_{1}(n) = (-1)^{n} 2^{-n} \sigma(n);$$

$$x_{2}(n) = na^{n} \sin(\omega_{0}n)\sigma(n);$$

$$x_{3}(n) = (n^{2} + n)a^{n-1}\sigma(n-1);$$

$$x_{4}(n) = (0,5)^{n}[\sigma(n) - \sigma(n-5)].$$

6. Покажите, что

X(

$$(z) = 1 + z^{-1} + z^{-2} + \dots + z^{-(N-1)} = \begin{cases} N & \text{при } z = 1\\ \frac{1 - z^{-N}}{1 - z^{-1}} & \text{при } z \neq 1 \end{cases}$$

- **7.** Найдите **Z**-образ входной дискретной последовательности $x(n) = (-1)^n [\sigma(n-4) - \sigma(n-8)].$ Какой будет выходная последовательность y(n) линейной стационарной дискретной системы, определяемой импульсной характеристикой $g(n) = (0,1)^n \sigma(n)$, если на вход подается x(n); $n \ge 0$?
- 8. Импульсная характеристика линейной стационарной дискретной системы представляется выражением $g(n) = (0,1)^n \sigma(n)$. Какой будет дискретная последовательность y(n) на выходе, если на вход подается дискретная последовательность $x(n) = (n+1)(0,5)^n \sigma(n)$?

- **9.** Найдите обратное *Z*-преобразование функции $K(z) = 0,3 + 1/[(z+0,5)(z+0,2)^2(z+0,3)].$
- **10.** Найдите обратное *Z*-преобразование функции $K(z) = 0.6z/[(z+0.1)(z-0.5)^3]$
- **11.** Получить x(n) из $X(z) = (z + 0,3)/[z(z + 0,5)^2]$ с помощью обратного *Z*-преобразования
- **12.** Найдите обратное *Z*-преобразование функции $X(z) = z(z+0,5)/(z^2+0,6z+0,5)$.
- **13.** Найдите обратное Z-преобразование функции X(z) = (z+0,2)/[(z+0,5)(z-1)(z-0,1)].
- **14.** Найдите обратное *Z*-преобразование функции $Y(z^{-1}) = (z^{-1} 0.4z^{-1})/(1 + z^{-1} + 0.25z^{-2})$
- **15.** Найдите обратное *Z*-преобразование следующих двух системных функций:

$$K_{1}(z) = \frac{z + 0.6}{(z^{2} + 0.8z + 0.5)(z - 0.4)}$$
$$K_{2}(z) = \frac{(z + 0.4)(z + 1)}{(z - 0.5)^{2}}$$

- **16.** Найдите обратное *Z*-преобразование функции $K(z) = z/[(z+0,5)^2(z^2+0,25)].$
- **17.** Найдите обратное *Z*-преобразование функции $K(z) = [0,1z(z+1)]/[(z-1)(z^2 z + 0,9)].$
- **18.** Найдите обратное *Z*-преобразование функции $K(z) = (z + 0.5)/[z(z^2 + 0.2z + 0.02)]$
- 19. Найдите обратное *Z*-преобразование следующих двух функций:

$$K_{1}(z) = \frac{1+0.1 \cdot z^{-1}+0.8 \cdot z^{-1}}{1+z^{-1}}$$
$$K_{2}(z) = \frac{0.2 \cdot z^{2}+z+1}{(z-0.2)(z+0.1)}$$

- **20.** Найдите обратное *Z*-преобразование функции $X(z) = (3+1,35z^{-1}+0,28z^{-2}+0,03z^{-3})/(1+0,5z^{-1}+0,06z^{-2}).$
- **21.** Покажите, что обратное *Z*-преобразование функции $K(z) = 1/[1-2r(\cos\theta)z^{-1}+r^2z^{-2}]$ равно

$$g(n) = \frac{r^n \sin(n+1)\theta}{\sin\theta} \sigma(n)$$

22. Покажите, что обратное *Z*-преобразование функции $K(z) = z/(z-a)^3$ равно

$$g(n) = \frac{n(n-1)a^{n-2}}{2}\sigma(n-2)$$

23. Работа цифрового фильтра описывается уравнением y(n) + 0.25y(n-2) = x(n-6),

где y(-1) = 1, y(-2) = 0, а $x(n) = \sigma(n)$. Найдите отклик.

24. Работа цифрового фильтра описывается уравнением y(n) + 0, 2y(n-1) + 0, 2y(n-2) = 0, 5x(n-1),

где y(-1)=1, y(-2)=-2, а $x(n)=(-0,3)^n \sigma(n)$. Найдите отклик. Какова импульсная характеристика этой системы?

- **25.** Работа цифрового фильтра описывается ее разностным уравнением y(n) 0,09y(n-2) = x(n), где y(-1) = 1, y(-2) = 0. Найдите переходную характеристику ЦФ.
- **26.** Дан цифровой фильтр, описываемый разностным уравнением y(n) = -0, 2y(n-1) + 0, 3y(n-2) + 0, 1y(n-3) + 0, 5x(n) + x(n-1),

где y(-1)=1, y(-2)=1, y(-3)=2, а $x(n)=(0,5)^n \sigma(n)$. Найдите ее системную функцию K(z).

27. Дан цифровой фильтр, описываемый разностным уравнением y(n) + 0.6y(n-1) + 0.25y(n-2) = x(n) + 0.04x(n-2),

где y(-1) = 0, y(-2) = 0,4, а $x(n) = (-1)^n \sigma(n)$. Найдите отклик.

28. Дан цифровой фильтр, описываемый разностным уравнением y(n) - 0.5y(n-1) + 0.06y(n-2) = x(n),

где y(-1) = y(-2) = 0. Найдите отклик, если на вход ЦФ подается дискретная последовательность $x(n) = \sigma(n)$. Какой будет его импульсная характеристика g(n)?

29. Найдите отклик y(n) на выходе цифрового фильтра, определяемый следующим разностным уравнением

$$y(n) = 0.25 y(n-1) + y(n-2) = (0.5)^n \sigma(n),$$

где y(-1) = 1, y(-2) = -1.

30. Найдите отклик y(n) на выходе цифрового фильтра, заданный разностным уравнением $y(n)+1,4y(n-1)+0,44y(n-2)=0,5\delta(n-2)$, где y(-1)=1, y(-2)=0,5 – начальные условия.

- **31.** Найдите отклик y(n) на выходе цифрового фильтра, описываемый разностным уравнением y(n) + 0.5y(n-1) + 0.04y(n-2) = x(n), где y(-1) = 0, y(-2) = 0, a $x(n) = \{1; 0.5; -1\}$.
- **32.** Решите следующее разностное уравнение относительно y(n) при $n \ge 0$

$$y(n) + 0.6y(n-1) - 0.4y(n-2) = 2x(n-2)$$
,

где y(-1) = 2, y(-2) = 0,5, a $x(n) = (0,1)^n \sigma(n)$.

33. Дан цифровой фильтр, описываемый разностным уравнением y(n) + 0, 4y(n-1) + 0, 04y(n-2) = x(n) - 0, 5x(n-1),

где y(-1) = 2, y(-2) = 2, а $x(n) = (e^{-0,1n})\sigma(n)$. Найдите его импульсную характеристику g(n).

34. Разностное уравнение, описывающее цифровой фильтр, выглядит следующим образом:

y(n) + 0.4y(n-1) + 0.03y(n-2) = x(n-2)

если y(-1)=1, y(-2)=1, a $x(n)=(0,5)^n \sigma(n)$. Решите его относительно y(n).

35. Найдите отклик *у*(*n*) на выходе цифрового фильтра, описываемый следующим разностным уравнением

$$y(n) - 0,3y(n-1) + 0,02y(n-2) = x(n) - 0,1x(n-1),$$

где y(-1) = 0, y(-2) = 0, a $x(n) = (-0,2)^n \sigma(n)$.

36. Найдите отклик *y*(*n*) на выходе цифрового фильтра, описываемый следующим разностным уравнением

$$y(n) - 0.04 y(n-2) = x(n-1),$$

где $y(-1) = -0,2, y(-2) = 1, a x(n) = (0,2)^n \sigma(n)$

37. Цифровой фильтр описывается следующим разностным уравнением y(n) + 0.25y(n-2) = x(n-1),

где y(-1) = 0, y(-2) = 2, а $x(n) = (0,5)^n \sigma(n)$. Вычислите отклик.

38. Дан цифровой фильтр, описываемый разностным уравнением y(n) - 0.5y(n-1) = x(n) + 0.5x(n-1),

где y(-1) = 2, а $x(n) = (0,5)^n \sigma(n)$ – дискретная последовательность на входе цифрового фильтра. Найдите дискретную последовательность y(n) на выходе фильтра, а также импульсную характеристику цифрового фильтра.

39. Дана системная функция цифрового фильтра $K(z) = z/[(z-1)^2(z+1)]$. Вычислите и постройте график значений

импульсной характеристики фильтра g(n) для значений n = 0, 1, 2, 3, 4, 5. Чему равен предел $\lim_{n \to \infty} g(n)$?

- $n \rightarrow \infty$
- **40.** Дан *Z*-образ входной дискретной последовательности $X(z^{-1}) = 1 + 0.1z^{-1} + 0.2z^{-2}$ и системная функция цифрового фильтра K(z) = z/[(z-0,2)(z+0,3)]. Найдите дискретную последовательность y(n) на выходе фильтра.
- **41.** Получите линейное разностное уравнение для цифрового фильтра, описанного его системной функцией

$$K(z) = \frac{z(z+0,4)}{z^3 + 0.2z^2 - 0.4z + 0.05}$$

42. Дан цифровой фильтр, описываемый разностным уравнением $y(n) = 4\cos(0,4)y(n-1) - 4y(n-2) + x(n)$.

Найдите импульсную характеристику g(n) цифрового фильтра.

43. Получите системную функцию K(z) цифрового фильтра, структурная схема которого приведена на рисунке 4.5.

Рисунок 4.5 – К задаче 43

44. Получите системную функцию K(z) цифрового фильтра, структурная схема которого приведена на рисунке 4.6, и напишите разностное уравнение, связывающее между собой входную и выходную дискретные последовательности x(n) и y(n).

Рисунок 4.6 – К задаче 44

45. Получите связь входной и выходной дискретных последовательностей x(n) и y(n) в виде разностного уравнения для цифрового фильтра, изображенного на рисунке 4.7.

Рисунок 4.7 – К задаче 45

- **46.** Получить системную функцию $K(z) = Y_3(z)/X(z)$ как отношение полиномов для цифрового фильтра, структурная схема которого дана: 1) на рисунке 4.8,а;
 - 2) на рисунке 4.8,б.

б) Рисунок 4.8 – К задаче 46

47. Запишите уравнения в *z*-области для цифрового фильтра, структурная схема которого дана на рисунке 4.9. Найдите *Z*-образ $Y_2(z)$

Рисунок 4.9 – К задаче 47

48. Получите системную функцию K(z) цепи, показанной на рисунке 4.10. Найдите ее дискретную импульсную характеристику g(n).

Рисунок 4.10 – К задаче 48

49. Запишите уравнения в *z*-области, необходимые для описания цифрового фильтра, структурная схема которого дана на рисунке 4.11. Получите системную функцию $K(z) = Y_3(z)/X(z)$ в виде отношения двух полиномов.

Рисунок 4.11 – К задаче 49

50. Найдите импульсную характеристику цифрового фильтра, структурная схема которого изображена на рисунке 4.12.

Рисунок 4.12 – К задаче 50

51. Запишите уравнения в *z*-области цифрового фильтра, структурная схема которого дана на рисунке 4.13. Получите системную функцию $K(z) = Y_3(z)/X(z)$ в виде отношения двух полиномов.

Рисунок 4.13 – К задаче 51

52. Найдите импульсную характеристику цифрового фильтра, структурная схема которого изображена на рисунке 4.14.

Рисунок 4.14 – К задаче 52

53. Определите, является ли устойчивым цифровой фильтр, заданный следующей системной функцией:

$$K(z) = \frac{z + 0.5}{z^3 + z^2 + 2z + 5}$$

54. Найдите системную функцию K(z) цифрового фильтра, изображенного на рисунке 4.15.

Рисунок 4.15 – К задаче 54

- **55.** Системная функция $K(z^{-1})$ приведена к следующему виду: $K(z^{-1}) = \frac{1}{(1-0.5z^{-1})(1-0.1z^{-1})} = \frac{R_1}{(1-0.5z^{-1})} + \frac{R_2}{(1-0.1z^{-1})}.$ Найдите значения R_1 , R_2 .
- **56.** Даны три разностных уравнения, описывающие цифровой фильтр. Найдите $Y_2(z)$, если $x(n) = \delta(n)$ $y_1(n) = 0, 1x(n) + 0, 2y_1(n-1) + 0, 3y_2(n-2)$ $y_2(n) = 0, 2y_1(n) + 0, 4y_3(n)$

$$y_3(n) = y_1(n-1) + y_3(n-1)$$

57. Получите линейное разностное уравнение для цифрового фильтра, описанного его системной функцией

$$K(z) = \frac{z + 0.1}{z^2 + 0.5z + 0.4}$$

58. Получите линейное разностное уравнение для цифрового фильтра, описанного его системной функцией

$$K(z) = \frac{z(z+0,4)}{z^3 + 0,2z^2 - 0,4z + 0,05}$$

59. Для цифрового фильтра дана системная функция

$$K(z^{-1}) = \frac{z^{-1}}{1 + 0.3z^{-1}}.$$

Найдите импульсную характеристику фильтра.

63

5 СИНТЕЗ ЦИФРОВЫХ ФИЛЬТРОВ

5.1 Синтез ЦФ методом билинейного Z-преобразования передаточной функции известного аналогового фильтрапрототипа

Среди различных методов синтеза цифровых фильтров особое место занимают такие, которые основаны на применении опыта, накопленного радиоспециалистами при разработке аналоговых устройств Использование фильтрасоответствующего назначения. аналогового прототипа дает возможность синтезировать цифровой фильтр либо исходя из требуемой импульсной характеристики, либо обеспечивая заданную частотную характеристику.

Чаще всего применяется метод билинейного *Z*-преобразования, суть которого требует следующих комментариев.

Допустим, что известен вид коэффициента передачи K(p) в операторной форме, который имеет необходимый аналоговый фильтр-прототип. Чтобы преобразовать коэффициент передачи K(p) в системную функцию цифрового фильтра K(z), необходимо выполнить замены вида:

$$z = e^{pT_{\mathcal{A}}}, \qquad \ln z = pT_{\mathcal{A}}, \qquad p = \ln z/T_{\mathcal{A}}. \qquad (5.1)$$

Очевидно, подстановкой $p=\ln z/T_{\rm A}$, вытекающей из определения *Z*-преобразования, легко получить системную функцию K(z) цифрового фильтра, который будет иметь частотную характеристику, в точности совпадающую с исходной характеристикой аналогового фильтра-прототипа. Однако данная системная функция окажется нереализуемой, так как при дробно-рациональном характере K(p) она будет содержать трансцендентные выражения. Чтобы добиться физической реализуемости системной функции и одновременно не исказить существенно частотную характеристику фильтрапрототипа, используют разложение зависимости $p = \ln z/T_{\rm A}$ в ряд по степеням отношения двух линейных функций (z - 1)/(z + 1).

При сохранении только первого члена ряда получают следующее билинейное соотношение [1-6]:

$$p = \frac{2}{T_{\pi}} \cdot \frac{z-1}{z+1} = \frac{2}{T_{\pi}} \cdot \frac{1-z^{-1}}{1+z^{-1}}.$$
(5.2)

В этом случае при подстановке комплексной переменной p в форме (4.10) в выражение для операторного коэффициента передачи фильтрапрототипа удается получить дробно-рациональную системную функцию K(z). Однако вследствие принятых приближений происходит трансформация частотной оси при переходе от аналогового фильтра-прототипа к цифровому варианту, а именно: точки частотной характеристики аналогового фильтра, соответствующие текущему значению аналоговой частоты Ω (в отличие от цифровой частоты ω), будут расположены на частотной характеристике цифрового фильтра на частоте $\omega \neq \Omega$. Связь между данными частотами устанавливается из соотношения (5.2), если положить в нем $p=j\Omega$, а $z=e^{j\omega T_{\Lambda}}$. Она носит нелинейный характер и имеет вид

$$\Omega = \frac{2}{T_{\mathcal{A}}} \cdot tg \frac{\omega \cdot T_{\mathcal{A}}}{2} \,. \tag{5.3}$$

Это означает, что при использовании метода билинейного *z*преобразования прежде всего необходимо привести в соответствие частотные характеристики синтезируемого цифрового фильтра и аналогового фильтрапрототипа. Коэффициент передачи аналогового фильтра-прототипа представляет собой дробно-рациональную функцию

$$K(p) = \frac{H_1(p)}{H_2(p)} \to K(\hat{p}) = \frac{H_1(\hat{p})}{H_2(\hat{p})},$$
 (5.4)

где $\hat{p} = p / \Omega_{\ddot{1}}$, т.е. $p = \hat{p} \cdot \Omega_{\ddot{1}}$,

 \hat{p} - аналоговая комплексная переменная, нормированная относительно граничной частоты (границы полосы пропускания Ω_{Π}).

Билинейная замена (5.2) с учетом трансформации аналоговой частотной оси (5.3) должна быть преобразована к виду

$$p = \gamma \cdot \frac{1 - z^{-1}}{1 + z^{-1}},$$
(5.5)

где $\gamma = 2/(T_{\rm A} \cdot \Omega_{\rm H})$, т.е. $\gamma = ctg(\omega_{\rm H}T_{\rm A}/2)$,

$$\Omega_{\Pi} = \frac{2}{T_{\Lambda}} \cdot tg \frac{\omega_{\Pi} \cdot T_{\Lambda}}{2}, \qquad (5.6)$$

Ω_п- деформированная аналоговая граничная частота (деформированная граничная частота полосы пропускания).

Следует также отметить, что приближенный характер рассматриваемого метода синтеза даже при учете трансформации частотной оси позволяет реализовать частотную характеристику прототипа с некоторой погрешностью, исчезающей лишь в том случае, когда исходная частотная характеристика имеет вид ступенчатой функции.

Как и в случае аналоговых цепей, существует однозначная связь между системной функцией цифрового фильтра K(z) и его частотной характеристикой $\dot{K}(\omega)$. Переход от системной функции K(z) к частотному коэффициенту передачи осуществляется заменой комплексной переменной z на комплексную функцию $e^{j\omega T_{d}}$:

$$\dot{K}(\omega) = K\left(z = e^{j\omega T_{\mathrm{II}}}\right). \tag{5.7}$$

При этом соотношение для АЧХ будет выглядеть следующим образом:

$$\left|K(\omega)\right| = \left|K\left(e^{j\omega T_{\pi}}\right)\right|,\tag{5.8}$$

где обозначение частоты с индексом введено, чтобы избежать путаницы при трансформации частотной оси в методе билинейного *Z*-преобразования.

Приведенное выражение может быть использовано для расчета АЧХ цифрового фильтра, однако данный путь не является самым простым в рассматриваемом случае. При заданной АЧХ аналогового фильтра-прототипа $|K(\Omega)|$ АЧХ цифрового фильтра $|K(\omega)|$ можно приближенно вычислить, если учесть трансформацию частотной оси (рисунок 5.1) в соответствии с формулой (5.3).

Необходимое соотношение имеет вид

Рисунок 5.1 – Графическое представление трансформации аналоговой частотной оси

5.2 Синтез ЦФ по импульсной характеристике известного аналогового фильтра-прототипа (метод инвариантности импульсной характеристики)

Импульсной характеристикой линейной аналоговой электрической цепи с нулевыми начальными условиями называется отклик цепи на воздействие дельта-функции $\delta(t)$.

Импульсной характеристикой цифрового фильтра с нулевыми начальными условиями называется реакция ЦФ на воздействие единичного отсчета $\delta(n)$, показанного на рис. 5.2.

Рисунок 5.2 – Представление дельта-функции $\delta(t)$ и единичного отсчета $\delta(n)$, применяемых для испытания аналоговых (а) и цифровых (б) цепей

Дельта-функцию $\delta(t)$ можно представить пределом импульса прямоугольной формы, длительность которого совпадает с шагом дискретизации $T_{\rm d}$, а амплитуда равна $1/T_{\rm d}$ (площадь δ -функции равна 1):

$$\delta(t) = \lim_{T_{\mathcal{I}} \to 0} (\Pi(t)) = \begin{cases} \infty, \text{если } t = 0, \\ 0, \text{если } t \neq 0, \end{cases}$$
(5.10)
$$\int_{-\infty}^{\infty} \delta(t) dt = 1.$$

Цифровую дельта-функцию $\delta(n)$ можно получить путем умножения аналоговой дельта-функции $\delta(t)$ на интервал дискретизации:

$$\delta(n) = T_{\mathcal{I}} \cdot \delta(t) = \begin{cases} 1, \ n = 0, \\ 0, \ n \neq 0. \end{cases}$$
(5.11)

Можно предположить, что синтезируемый ЦФ должен обладать импульсной характеристикой, представляющей собой последовательность чисел $g_0, g_1, g_2, ..., g_n$. Эта последовательность может быть получена после дискретизации импульсной характеристики аналогового фильтра-прототипа и последующей нормировки путем умножения на интервал дискретизации:

$$g(n) = T_{\mathrm{A}} \cdot g(t = nT_{\mathrm{A}}).$$

Для определения системной функции ЦФ и последующего построения структурной схемы необходимо применить прямое Z-преобразование к конечной последовательности g(n).

Системная функция трансверсального фильтра с конечной импульсной характеристикой (КИХ-фильтр) имеет вид

$$K(z) = \sum_{n=0}^{M} g(n) \cdot z^{-n}.$$
(5.12)

Системная функция рекурсивного цифрового фильтра, имеющего бесконечную импульсную характеристику (БИХ-фильтр), определяется путём сворачивания бесконечной геометрической прогрессии (5.13).

$$K(z) = \sum_{n=0}^{\infty} g(n) \cdot z^{-n}$$
(5.13)

В общем виде импульсная характеристика g(t) аналоговой цепи (с передаточной функцией K(p)) представляет обратное преобразование Лапласа от передаточной функции K(p):

$$g(t) = B \cdot \delta(t) + \sigma(t) \sum_{i=1}^{m} A_i \cdot e^{\gamma_i t}, \qquad (5.14)$$

где $B = \lim_{p \to \infty} K(p);$

m – порядок аналогового фильтра-прототипа.

Первое слагаемое в выражении (5.14), содержащее δ -функцию, присутствует в том случае, если $\lim_{p \to \infty} K(p) \neq 0$.

Второе слагаемое в выражении (5.14) представляет взвешенную сумму экспоненциальных функций, количество которых зависит от порядка m аналогового фильтра-прототипа.

Дискретизация импульсной характеристики выполняется по тем же правилам, что и дискретизация сигнала по времени, рассмотренная в п.3.

В результате дискретизации и последующей нормировки с учетом (5.11) получается последовательность g(n):

$$g(n) = \begin{cases} g_0, \text{если } n = 0, \\ \sum_{i=1}^m A_i T_{\mathcal{I}} (e^{\gamma_i T_{\mathcal{I}}})^n, \text{если } n \ge 1, \end{cases}$$
(5.15)

где
$$g_0 = B + \frac{1}{2} \sum_{i=1}^{m} A_i \cdot T_{\mathcal{A}}$$
 (5.16)

Применение Z-преобразования и последующее сворачивание геометрической прогрессии дает системную функцию РЦФ:

$$K_{\text{pup}}(z) = g_0 + \sum_{i=1}^m A_i T_{\mathcal{I}} \sum_{n=1}^\infty (a_i)^n \cdot z^{-n}, \qquad (5.17)$$

где $a_i = e^{\gamma_i T_{\mathrm{A}}}$.

$$K_{\text{pup}}(z) = g_0 + \sum_{i=1}^m A_i T_{\mathcal{A}} \frac{a_i z^{-1}}{1 - a_i z^{-1}}.$$
(5.18)

Если импульсная характеристика аналогового фильтра-прототипа не содержит δ -функции, то

$$g_n = \sum_{i=1}^m A_i T_{\mathcal{I}}(a_i)^n \text{ при } n = 0, 1, 2, ...,$$
(5.19)

$$K_{\text{pup}}(z) = \sum_{i=1}^{m} A_i T_{\text{A}} \sum_{n=0}^{\infty} (a_i)^n \cdot z^{-n} = \sum_{i=1}^{m} A_i T_{\text{A}} \frac{1}{1 - a_i z^{-1}},$$
 (5.20)

Порядок РЦФ будет совпадать с порядком аналогового фильтрапрототипа. Импульсная характеристика РЦФ – бесконечная затухающая последовательность

5.3 Пример анализа линейной электрической цепи (ЛЭЦ)

5.3.1 Расчет передаточной функции ЛЭЦ

В качестве примера рассмотрим фильтр нижних частот (ФНЧ), изображенный на рисунке 5.3.

Рисунок 5.3 – Аналоговый фильтр-прототип

Для нахождения передаточной функции цепи воспользуемся законами Ома и Кирхгофа:

$$K(p) = \frac{\frac{\left(\frac{R+1}{pC}\right)^{1}/pC}{\frac{R+2}{pC}}}{\frac{\left(\frac{R+1}{pC}\right)^{1}/pC}{\frac{R+2}{pC}+R}} \cdot \frac{\frac{1}{pC}}{\frac{R+1}{pC}} = \frac{1}{p^{2}C^{2}R^{2}+3pCR+1}}$$

Полагая, что $\alpha = \frac{1}{CR}$, получим:

$$K(p) = \frac{\alpha^2}{p^2 + 3p\alpha + \alpha^2} = \frac{\alpha^2}{(p + 2,62\alpha)(p + 0,38\alpha)}.$$

5.3.2 Расчет и построение частотных характеристик

В выражении K(p) заменим p на $j\Omega$ и получим частотный коэффициент передачи $\dot{K}(\Omega)$:

$$\dot{K}(\Omega) = \frac{\alpha^2}{(j\Omega)^2 + 3j\Omega\alpha + \alpha^2}$$

Возьмем модуль от полученного выражения, в результате чего получим амплитудно-частотную характеристику (АЧХ) фильтра-прототипа:

$$\left|\dot{K}(\Omega)\right| = \frac{\alpha^2}{\sqrt{\left(\alpha^2 - \Omega^2\right)^2 + (3\Omega\alpha)^2}} = \frac{1}{\sqrt{\left(1 - \left(\Omega_{\alpha}^{\prime}\right)^2\right)^2 + \left(3\Omega_{\alpha}^{\prime}\right)^2}},$$

На рисунке 5.4 приведен график АЧХ фильтра-прототипа с параметрами:

- граничная частота полосы пропускания Ω_{Π} по уровню 0,707 составляет $\Omega_{\Pi} = 0,374\alpha;$
- верхняя частота, определенная по уровню 0,1, равна $\Omega_{e} = 2,655\alpha$;
- на частоте заграждения Ω₃, равной удвоенной граничной частоте полосы пропускания 2Ω_п, коэффициент передачи аналогового фильтра-прототипа равен |K(2Ω_п)|=0,437, т.е. подавление составляет 7,2 дБ.

Рисунок 5.4 – АЧХ аналогового фильтра-прототипа

ФЧХ цепи определим следующим образом:

$$\varphi(\Omega) = -\operatorname{arctg}\left(\frac{3\Omega\alpha}{\alpha^2 - \Omega^2}\right) = -\operatorname{arctg}\left(\frac{3\Omega/\alpha}{1 - (\Omega/\alpha)^2}\right).$$

Фазочастотная характеристика АФП приведена на рисунке 5.5.

Рисунок 5.5 – ФЧХ аналогового фильтра-прототипа

5.3.3 Расчет и построение временных характеристик ЛЭЦ

Расчет переходной характеристики h(t) выполним по формуле

$$h(t) = L^{-}\left[\frac{K(p)}{p}\right],$$

$$h(t) = L^{-} \left[\frac{\alpha^2}{p(p^2 + 3p\alpha + \alpha^2)} \right] = L^{-} \left[\frac{\alpha^2}{p(p - p_1)(p - p_2)} \right] =$$
$$= \underset{p=0}{\operatorname{Res}} \left[\frac{K(p)}{p} \right] + \underset{p=p_1}{\operatorname{Res}} \left[\frac{K(p)}{p} \right] + \underset{p=p_2}{\operatorname{Res}} \left[\frac{K(p)}{p} \right],$$

$$h(t) = 1 + \frac{e^{-2,62 \cdot \alpha t}}{2,62 \cdot \sqrt{5}} - \frac{e^{-0,38 \cdot \alpha t}}{0,38 \cdot \sqrt{5}} = 1 + 0,17e^{-2,62\alpha t} - 1,17e^{-0,38\alpha t}, \text{ при } t \ge 0.$$

При построении графика переходной характеристики (рисунок 5.6) целесообразно нормировать временную ось через *аt*.

Рисунок 5.6 – Переходная характеристика фильтр-прототипа

Расчет импульсной характеристики g(t) выполним по формуле
$$g(t) = L^{-} \left[\frac{\alpha^{2}}{\left(p^{2} + 3p\alpha + \alpha^{2}\right)} \right] = L^{-} \left[\frac{\alpha^{2}}{(p - p_{1})(p - p_{2})} \right] =$$
$$= \underset{p=p_{1}}{\operatorname{Res}} \left[\frac{K(p)}{p} \right] + \underset{p=p_{2}}{\operatorname{Res}} \left[\frac{K(p)}{p} \right],$$
$$g(t) = \frac{\alpha}{\sqrt{5}} \left[e^{-0.38 \cdot \alpha t} - e^{-2.62 \cdot \alpha t} \right], \text{ при } t \ge 0.$$

На рисунке 5.7 приведена нормированная импульсная характеристика фильтра-прототипа.

Рисунок 5.7 – Импульсная характеристика фильтра-прототипа

Для проверки полученных результатов можно воспользоваться предельными соотношениями, связывающими передаточную функцию и переходную характеристику цепи.

$$\lim_{p \to \infty} K(p) = \lim_{t \to 0} h(t) = 0,$$
$$\lim_{p \to 0} K(p) = \lim_{t \to \infty} h(t) = 1.$$

АЧХ анализируемого ФНЧ быстро затухает, следовательно, интегрирующие свойства цепи довольно высоки.

Необходимо обратить внимание на то, что ФЧХ цепи изменяется от 0° до -180°. Этот факт скажется на виде АЧХ синтезируемого цифрового фильтра методом инвариантности импульсных характеристик.

5.4 Пример синтеза цифрового фильтра методом инвариантности импульсных характеристик

Необходимо ясно представлять себе, что получение цифрового фильтра с точной копией АЧХ аналогового фильтра-прототипа невозможно. Дело в том, что частотная характеристика синтезируемого цифрового фильтра является *периодической* функцией частоты с периодом, определяемым шагом дискретизации. Поэтому существует несколько методов синтеза ЦФ по заданному аналоговому фильтру-прототипу.

Метод инвариантности импульсных характеристик базируется на предположении о подобии импульсных характеристик фильтра-прототипа и цифрового фильтра, т.е. импульсная характеристика ЦФ представляет собой выборку из импульсной характеристики соответствующего аналогового фильтра-прототипа.

Наиболее простым является тот случай, когда число отсчетов дискретизированной импульсной характеристики конечно. При этом реализуется трансверсальный ЦФ (КИХ-фильтр, т.е. фильтр с конечной импульсной характеристикой). При рассмотрении бесконечного числа отсчетов импульсной характеристики получается рекурсивный ЦФ (БИХ-фильтр, т.е. фильтр с бесконечной импульсной характеристикой).

5.4.1 Дискретизация импульсной характеристики ЛЭЦ

Для дискретизации импульсной характеристики g(t) необходимо непрерывный аргумент t заменить на дискретный – nT_{π} . Затем пронормировать полученное выражение относительно T_{π} :

$$g_n = g(nT_{\mathcal{A}}) \cdot T_{\mathcal{A}} = \frac{\alpha T_{\mathcal{A}}}{\sqrt{5}} \left[\left(e^{-0.38\alpha T_{\mathcal{A}}} \right)^n - \left(e^{-2.62\alpha T_{\mathcal{A}}} \right)^n \right].$$

Параметр T_{π} определим по формуле (3.25)

$$T_{\mathrm{II}} = \pi / \Omega_{\mathrm{g}}$$
,

где Ω₆ – частота, на которой коэффициент передачи аналогового фильтрапрототипа (рисунок 5.4) достигает уровня 0,1 от своего максимального значения (в примере $\frac{\Omega_{6}}{\alpha}$ – безразмерная величина, т.к. частотная ось проградуирована в долях α).

$$\frac{1}{10} = \frac{1}{\sqrt{\left(1 - \left(\frac{\Omega_{\beta}}{\alpha}\right)^{2}\right)^{2} + \left(3\frac{\Omega_{\beta}}{\alpha}\right)^{2}}},$$

$$\Omega_{\theta} = 2,655\alpha$$
.

Таким образом, $T_{\mathcal{A}} = \frac{\pi}{2,655\alpha} = \frac{1.18}{\alpha}$.

На рисунке 5.8 представлена дискретизированная импульсная характеристика.

Рисунок 5.8 – Дискретизированная импульсная характеристика

5.4.2 Расчет системных функций трансверсального и рекурсивного ЦФ

Системная функция трансверсального ЦФ представляет собой сумму следующего вида:

$$K(z) = \sum_{n=0}^{M} a_n \cdot z^{-n} \, .$$

где $a_n = g(nT_{\mathcal{A}}) \cdot T_{\mathcal{A}}$.

Трансверсальный ЦФ имеет конечную импульсную характеристику (КИХ-фильтр).

Для реализации КИХ-фильтра необходимо взять конечное число *М* нормированных отсчетов импульсной характеристики. Для определения порядка фильтра воспользуемся пороговым критерием. Коэффициенты *a_n*

соответствуют значениям отсчетов импульсной характеристики, т.е. $a_n = g_n$ и приведены в таблице 5.1.

Таблица 5.1 – Коэффициенты *а_n* трансверсального ЦФ пятого порядка

a_0	a_1	a_2	<i>a</i> ₃	a_4	a_5
0	0,314	0,214	0,137	0,088	0,056

Максимальное значение a_n равно 0,314. С ростом *n* значения коэффициентов уменьшаются. Начиная с n = 6 значения коэффициентов не превышают уровня 0,1 от максимального. Поэтому порядок *M* трансверсального фильтра равен 5. Структура КИХ-фильтра приведена на рисунке 5.9.

Работа трансверсального ЦФ пятого порядка описывается алгоритмом

$$y_n = 0.314x_{n-1} + 0.214x_{n-2} + 0.137x_{n-3} + 0.088x_{n-4} + 0.056x_{n-5}.$$

Цифровой фильтр с бесконечной импульсной характеристикой (БИХфильтр) реализуется при учете в дискретной импульсной характеристике бесконечного числа слагаемых.

Рисунок 5.9 – Структурная схема трансверсального цифрового фильтра

Сворачивая бесконечно убывающую геометрическую прогрессию, получим системную функцию ЦФ канонического вида:

$$K(z) = \frac{\alpha T_{\pi}}{\sqrt{5}} \left[\sum_{n=0}^{\infty} \left(e^{-0.38 \cdot \alpha T_{\pi}} \right)^n z^{-n} - \sum_{n=0}^{\infty} \left(e^{-2.62 \cdot \alpha T_{\pi}} \right)^n z^{-n} \right] = K(z) = \frac{\alpha T_{\pi}}{\sqrt{5}} \left[\frac{1}{1 - e^{-0.38 \cdot \alpha T_{\pi}} \cdot z^{-1}} - \frac{1}{1 - e^{-2.62 \cdot \alpha T_{\pi}} \cdot z^{-1}} \right] = \frac{0.314 \cdot z^{-1}}{1 - [0.683 \cdot z^{-1} - 0.029 \cdot z^{-2}]}.$$

Трансверсальная часть ЦФ описывается числителем системной функции, а рекурсивная – знаменателем. Коэффициенты a_n и b_n цифрового фильтра приведены в таблице 5.2

Таблица 5.2 – Коэффициенты *a_n* и *b_n* рекурсивного ЦФ

a_1	61	62
0,314	0,683	- 0,029

Структура БИХ-фильтра приведена на рисунке 5.10.

Рисунок 5.10 – Структурная схема рекурсивного цифрового фильтра

Работа рекурсивного БИХ-фильтра описывается алгоритмом

 $y_n = 0.314x_{n-1} + 0.683y_{n-1} - 0.029y_{n-2}.$

5.4.3 Расчет АЧХ трансверсального и рекурсивного ЦФ

Чтобы от системной функции цифрового фильтра перейти к его амплитудно-частотной характеристике, достаточно в K(z) сделать замену следующего вида:

На рисунке 5.11 приведена АЧХ трансверсального цифрового фильтра пятого порядка с параметрами:

 $z = e^{j\omega T_{\mathrm{II}}}$

$$|K(\omega)| \xrightarrow{12}{0.6} \xrightarrow{$$

$$\omega_{\rm d} = 5,31\alpha; \quad \omega_{\rm d} = 0,556\alpha; \quad \partial_{\rm d} = 9,6.$$

Рисунок 5.11 – АЧХ трансверсального цифрового фильтра

На рисунке 5.12 приведена АЧХ рекурсивного цифрового фильтра с параметрами:

Рисунок 5.12 – АЧХ рекурсивного цифрового фильтра

На рисунках 5.11 и 5.12 пунктиром изображены АЧХ аналогового фильтра-прототипа, частота среза которого по уровню 3 дБ составляет $\Omega_{\Pi} = 0,374\alpha$.

Периодичность АЧХ ЦФ стала результатом дискретизации импульсной характеристики аналогового фильтра-прототипа и представляет собой наложенный вариант частотной характеристики аналогового фильтра. Если шаг дискретизации достаточно мал, то эффект наложения минимален. На рисунках 5.11 и 5.12 в точке ω_{s} описанный выше эффект проявляется в двукратном увеличении коэффициента передачи относительно исходного. В точках $\omega = n \cdot \omega_{\Lambda}$, где n = 0, 1, 2, ... эффект наложения также присутствует. Однако в результате того, что комплексные коэффициенты передачи, складываемые в этих точках, находятся в разных четвертях комплексной плоскости, эффект проявляется в уменьшении коэффициента передачи относительно исходного.

Пульсации АЧХ трансверсального фильтра объясняются ограничением импульсной характеристики во времени (конечным числом отсчетов g_n).

АЧХ рекурсивного фильтра, полученного методом инвариантности импульсных характеристик, более точно повторяет частотную характеристику аналогового фильтра-прототипа. Однако рекурсивный фильтр необходимо проверять на устойчивость.

5.5 Пример синтеза ЦФ методом билинейного Zпреобразования по заданной ЛЭЦ

5.5.1 Расчет системной функции цифрового фильтра

Данный метод позволяет с помощью билинейной замены (5.2) установить однозначное непрерывное отображение из *p*-плоскости в *z*-плоскость.

Эта связь имеет следующий вид:

$$p = \frac{2}{T_{\pi}} \cdot \frac{z-1}{z+1}.$$

При такой подстановке изменится масштаб АЧХ ЦФ. В области малых частот АЧХ ЦФ и аналогового фильтра-прототипа практически совпадают. При $\omega \to \omega_{s}$ происходит сжатие АЧХ аналогового фильтра-прототипа по закону (5.3):

$$\Omega = \frac{2}{T_{\rm A}} tg \frac{\omega T_{\rm A}}{2} \, .$$

Используя билинейную замену, преобразуем передаточную функцию аналогового фильтра-прототипа следующим образом:

$$\begin{split} K(z) &= \frac{\alpha^2}{\left[\frac{2}{T_{\rm A}} \cdot \frac{z-1}{z+1}\right]^2 + 3\alpha \cdot \left(\frac{2}{T_{\rm A}} \cdot \frac{z-1}{z+1}\right) + \alpha^2} = \\ &= \frac{\left(\alpha T_{\rm A}\right)^2}{4 + 6\alpha T_{\rm A} + (\alpha T_{\rm A})^2} + 2\frac{\left(\alpha T_{\rm A}\right)^2}{4 + 6\alpha T_{\rm A} + (\alpha T_{\rm A})^2} \cdot z^{-1} + \frac{\left(\alpha T_{\rm A}\right)^2}{4 + 6\alpha T_{\rm A} + (\alpha T_{\rm A})^2} \cdot z^{-2}} \\ &= \frac{1 + \frac{2 \cdot (\alpha T_{\rm A})^2 - 8}{4 + 6\alpha T_{\rm A} + (\alpha T_{\rm A})^2} \cdot z^{-1}}{1 + \frac{2 \cdot (\alpha T_{\rm A})^2 - 8}{4 + 6\alpha T_{\rm A} + (\alpha T_{\rm A})^2} \cdot z^{-1}} + \frac{4 - 6\alpha T_{\rm A} + (\alpha T_{\rm A})^2}{4 + 6\alpha T_{\rm A} + (\alpha T_{\rm A})^2} \cdot z^{-2}}. \end{split}$$

Параметр αT_{μ} определим точно так же, как в п. 5.3.2:

$$\alpha T_{\mathrm{II}} = \alpha \frac{\pi}{\omega_{e}},$$

где ω_{e} – частота, на которой коэффициент передачи аналогового фильтрапрототипа достигает уровня 0,1 от своего максимального значения.

Таким образом,
$$\alpha T_{\rm A} = \frac{\pi}{2,655} = 1,18$$
.

В результате подстановки значения $\alpha T_{\rm d}$ в системную функцию ЦФ получим

$$K(z) = \frac{0,112 + 0,224 \cdot z^{-1} + 0,112 \cdot z^{-2}}{1 - \left[0,416 \cdot z^{-1} + 0,136 \cdot z^{-2}\right]}.$$
 (*)

Трансверсальная часть ЦФ описывается числителем системной функции, а рекурсивная – знаменателем.

Таблица 5.3 – Коэффициенты *a_n* и *b_n* рекурсивного ЦФ канонического вида

a_0	a_1	a_2	в1	62
0,112	0,224	0,112	0,416	0,136

Структура цифрового фильтра приведена на рисунке 5.13.

Рисунок 5.13 – Структурная схема ЦФ

Работа рекурсивного БИХ-фильтра описывается алгоритмом

$$y_n = 0,112x_n + 0,244x_{n-1} + 0,112x_{n-2} + 0,416y_{n-1} + 0,136y_{n-2}.$$

5.5.2 Расчет АЧХ ЦФ канонического вида

Чтобы от системной функции цифрового фильтра перейти к его амплитудно-частотной характеристике, достаточно сделать замену следующего вида:

$$z = e^{j\omega T_{\mathrm{II}}}$$

На рисунке 5.14 приведена АЧХ цифрового фильтра с параметрами: $\omega_{\rm A} = 5,31\alpha$; $\omega_{\rm H} = 0,368\alpha$; $\omega_{\rm A}/\omega_{\rm H} = 14,4$.

Рисунок 5.14 – АЧХ цифрового фильтра

Чтобы скомпенсировать сжатие частотной оси ЦФ ($\omega_{\Pi} = 0,368\alpha$ вместо 0,374 α), деформируем передаточную функцию заданной ЛЭЦ.

$$K(p) = \frac{\alpha^2}{p^2 + 3p\alpha + \alpha^2} = \frac{\alpha^2}{\hat{p}^2(0,374\alpha)^2 + 3\hat{p}(0,374\alpha)\alpha + \alpha^2},$$
$$K(\hat{p}) = \frac{1}{\hat{p}^2(0,374)^2 + 3\hat{p}(0,374) + 1},$$

где $\hat{p} = p/0,374 \alpha$.

Выполняя билинейную замену

$$\hat{p} = \gamma \cdot \frac{1 - z^{-1}}{1 + z^{-1}}, \text{ где } \gamma = ctg\left(\frac{0,374\alpha}{5,31\alpha}\pi\right) = 4,4453,$$

получим

$$K(z) = \frac{1}{(0,374 \cdot 4,4453)^2 \left(\frac{1-z^{-1}}{1+z^{-1}}\right)^2 + 3(0,374 \cdot 4,4453) \left(\frac{1-z^{-1}}{1+z^{-1}}\right) + 1},$$

$$K(z) = \frac{0,114 + 0,228z^{-1} + 0,114z^{-2}}{1-0,403z^{-1} - 0,144z^{-2}}.$$
 (**)

Сравнивая системные функции (*) и (**), видим, что коэффициенты изменились незначительно, однако граничная частота полосы пропускания точно совпадает с заданной. На рисунке 5.15 приведена АЧХ цифрового фильтра с параметрами:

$$\omega_{\rm A} = 5,31\alpha; \ \omega_{\rm H} = 0,374\alpha; \ \mathcal{M}_{\rm A} = 14,2.$$

Рисунок 5.15 – АЧХ цифрового фильтра, синтезированного по деформированной передаточной функции ЛЭЦ

5.5.3 Расчет импульсной характеристики ЦФ

Для получения импульсной характеристики цифрового фильтра необходимо произвести обратное *Z*-преобразование системной функции ЦФ

$$g_n = Z^{-}[K(z)] = Z^{-}\left[\frac{0,112 \cdot (z+1)^2}{z^2 - 0,416 \cdot z - 0,136}\right] = Z^{-}\left[\frac{0,112 \cdot (z+1)^2}{(z-z_1)(z-z_2)}\right] = \operatorname{Res}_1 + \operatorname{Res}_2.$$

Здесь $z_1 = 0,631, z_2 = -0,215$ — корни полинома знаменателя системной функции ЦФ.

$$\operatorname{Res}_{1} = \lim_{z \to z_{1}} \left[\frac{0.112 \cdot (z+1)^{2}}{(z-z_{1})(z-z_{2})} (z-z_{1}) z^{n-1} \right] = \frac{0.112 \cdot (0.631+1)^{2}}{(0.631+0.215)} (0.631)^{n-1} = 0.352 \cdot (0.631)^{n-1},$$
если $n \ge 1.$

$$\operatorname{Res}_{2} = \lim_{z \to z_{2}} \left[\frac{0,112 \cdot (z+1)^{2}}{(z-z_{1})(z-z_{2})} (z-z_{2}) z^{n-1} \right] = \frac{0,112 \cdot (-0,215+1)^{2}}{(-0,251-0,631)} (-0,251)^{n-1} = -0,081 \cdot (-0,215)^{n-1}, \text{если } n \ge 1.$$
$$g_{n} = 0.352 \cdot (0.631)^{n-1} - 0.081 \cdot (-0.215)^{n-1}, \text{если } n \ge 1.$$

Значение нулевого отсчета импульсной характеристики *g*₀ равно *a*₀. Это значение мы определим непосредственно из схемы фильтра (рисунок 5.13). Дискретная импульсная характеристика ЦФ приведена на рисунке 5.16.

Рисунок 5.16 – Отсчеты импульсной характеристики ЦФ (пунктиром показана импульсная характеристика аналогового фильтра-прототипа)

В подтверждение правильности проведенного расчета определим отсчеты импульсной характеристики ЦФ с помощью алгоритма его работы:

 $y_n = 0,112x_n + 0,224x_{n-1} + 0,112x_{n-2} + 0,416y_{n-1} + 0,136y_{n-2}.$

Массив входных данных для определения отсчетов импульсной характеристики имеет вид

 $\{1, 0, 0, 0, ...\}.$ $g_0 = y_0 = 0,112x_0 = 0,112,$ $g_1 = y_1 = 0,112x_1 + 0,224x_0 + 0,416y_0 = 0,271,$ $g_2 = y_2 = 0,112x_2 + 0,224x_1 + 0,112x_0 + 0,416y_1 + 0,136y_0 =$ $= 0,112 + 0,416 \cdot 0,271 + 0,136 \cdot 0,112 = 0,24$...

Полученные результаты полностью совпадает со значениями отсчетов, вычисленных методом обратного Z-преобразования.

5.5.4 Обсуждение полученных результатов

Метод билинейной замены позволяет избежать эффекта наложения АЧХ. При этом в области малых частот, где Z-преобразование почти линейно, АЧХ ЦФ точно повторяет АЧХ аналогового фильтра-прототипа. Сжатие АЧХ аналогового фильтра-прототипа в области высоких частот привело к искажениям дискретной импульсной характеристики в области малых времен. Отсчеты импульсной характеристики ЦФ при большом их количестве в точности повторяют исходную импульсную характеристику аналогового фильтра-прототипа.

На частоте *ω*_в АЧХ обращается в ноль, тем самым обеспечивая затухание много больше исходного. Это связано с тем, что вся бесконечная ось частот, соответствующая аналоговому фильтру-прототипу, преобразуется интервал частот ЦФ, равный *ω*_в.

5.5.5 Прохождение дискретного сигнала через цифровые фильтры

Проводя параллель между цифровыми и аналоговыми цепями, отклик на выходе ЦФ можно получить двумя способами: перемножив Z-образ сигнала на входе фильтра с системной функцией цепи, получить Z-образ выходного сигнала. Затем с помощью обратного Z-преобразования перейти к выходной дискретной последовательности.

Либо воспользоваться аналогом временной свертки, т.е. дискретной сверткой, получив при этом значения отсчетов выходного сигнала. Рассмотрим подробно второй способ для расчета на выходе ЦФ, полученных разными способами.

Дискретная свертка задается следующим соотношением:

$$y_n = \sum_{k=0}^n x_k g_{n-k} = \sum_{k=0}^n g_k x_{n-k}$$
.

Значения отсчетов входного сигнала были вычислены в п.3. Отсчеты импульсной характеристики для каждого из видов ЦФ различны и также были рассчитаны в соответствующих примерах.

На рисунках 5.17 – 5.19 приведены отсчеты сигнала на выходе различных ЦФ.

Рисунок 5.17 – Результат прохождения прямоугольного импульса через трансверсальный ЦФ (КИХ-фильтр)

Рисунок 5.18 – Результат прохождения прямоугольного импульса через рекурсивный ЦФ (БИХ-фильтр)

Рисунок 5.19 – Результат прохождения прямоугольного импульса через ЦФ, полученный методом билинейной замены

Отклики ЦФ оказываются довольно предсказуемыми:

КИХ-фильтр имеет лишь трансверсальную часть, поэтому отклик этого фильтра обладает конечной длительностью.

БИХ-фильтр имеет как трансверсальную, так и рекурсивную части, поэтому отклик этого фильтра к нулю стремится лишь асимптотически, имея бесконечную длительность.

Следует обратить внимание на точность совпадения переходных процессов в моменты переключения с аналоговым фильтром-прототипом ($t = 0, t = 6T_{\rm A}$).

В целом для фильтров, построенных по методу ИИХ, характерно увеличение коэффициента передачи в окрестности точки ω_{e} в сравнении с фильтром-прототипом (эффект наложения АЧХ). Поэтому при сравнении откликов фильтра-прототипа и ЦФ можно отметить незначительное ухудшение интегрирующих свойств ЦФ. Проявление данного эффекта можно уменьшить, если увеличить ω_{q} .

Для ЦФ, синтезированного по методу ИЧХ, характерно искажение импульсной характеристики в области малых времен, что приводит к заметному искажению переднего фронта прошедшего импульса.

В процессе расчета мы предполагали, что интервал дискретизации сигнала совпадает с аналогичным интервалом цифрового фильтра, т.е.

 $\frac{T_{oc}}{12} = \frac{\pi}{2,655 \alpha}$, и благодаря этому отклик ЦФ схож с откликом фильтрапрототипа при $\alpha T_{oc} \approx 14$.

6 СИНТЕЗ РЕКУРСИВНЫХ ЦИФРОВЫХ ФИЛЬТРОВ ПО КЛАССИЧЕСКОМУ НИЗКОЧАСТОТНОМУ (НЧ-) ПРОТОТИПУ

6.1 Технические характеристики идеальных фильтров-прототипов

Расчет цифровых фильтров включает в себя процесс нахождения подходящей передаточной функции, которая соответствует предъявленным требованиям. Характеристики цифровых фильтров чаще всего задаются в частотной области. Частотные характеристики цифровых фильтров являются периодическими функциями частоты, которые повторяются через интервал, кратный частоте дискретизации $\omega_{\rm д}$. Для иллюстрации этой периодичности в таблице 6.1 приведены амплитудно-частотные характеристики (АЧХ) идеальных частотно-избирательных фильтров нижних и верхних частот (ФНЧ и ФВЧ), полосовых (ПФ), режекторных (РФ) и всепропускающих (ВПФ).

При синтезе цифровых фильтров решается задача аппроксимации непериодической АЧХ идеального низкочастотного (НЧ-) прототипа $|\dot{K}(\Omega)|$ функциями (полиномами) Баттерворта, Чебышева 1 и 2-го типов и др.

На рисунке 6.1 показаны идеальные периодическая (а) АЧХ цифрового ФНЧ и непериодическая (б) АЧХ аналогового ФНЧ (НЧ-прототипа).

аналогового НЧ-прототипа (б)

Для цифрового фильтра приняты следующие обозначения:

 $\hat{\omega} = \omega / \omega_{\ddot{a}}$ - цифровая частота, нормированная относительно частоты дискретизации ω_{π} ;

 $\hat{\omega}_{i} = \omega_{i} / \omega_{a}$, $\hat{\omega}_{c} = \omega_{c} / \omega_{a}$ - нормированные цифровые граничные частоты полос пропускания и заграждения.

Таблица 6.1 – АЧХ идеальных цифровых фильтров низких частот, полосовых, верхних частот, режекторных и всепропускающих

Для аналогового фильтра приняты следующие обозначения:

 $\hat{\Omega} = \Omega / \Omega_{i}$ - аналоговая частота НЧ-прототипа, нормированная относительно частоты среза – граничной частоты полосы пропускания Ω_{i} ;

 $\hat{\Omega}_{\ddot{I}} = \Omega_{\ddot{I}} / \Omega_{\ddot{I}} = 1$, $\hat{\Omega}_{c} = \Omega_{c} / \Omega_{\ddot{I}}$ - нормированные аналоговые граничные частоты полос пропускания и заграждения НЧ-прототипа;

 $\hat{\Omega} = \Omega / \Omega_{\tilde{I}}$ - аналоговая частота НЧ-прототипа, нормированная относительно частоты среза – граничной частоты полосы пропускания Ω_{Π} ;

 $\hat{\Omega}_{\ddot{i}} = \Omega_{\ddot{i}} / \Omega_{\ddot{i}} = 1$, $\hat{\Omega}_{c} = \Omega_{c} / \Omega_{\ddot{i}}$ - нормированные аналоговые граничные частоты полос пропускания и заграждения НЧ-прототипа;

 δ_1 – допустимое отклонение АЧХ от 1 в пределах полосы пропускания;

 δ_2 – допустимое отклонение АЧХ от 0 в пределах полосы заграждения.

К АЧХ как ЦФ так и аналогового НЧ-прототипа предъявляют следующие требования: неравномерность в полосе пропускания A_{π} (в децибелах) и затухание в полосе заграждения A_3 (в децибелах)

$$A_{\mathbf{i}} = 201g \frac{\left| K_{\max} \left(\hat{\Omega} \right) \right|}{\left| K \left(\hat{\Omega} = \hat{\Omega}_{\mathbf{i}} \right) \right|} = 201g \frac{1}{\left| 1 - \delta_{\mathbf{i}} \right|}$$
(6.1)

$$A_{\rm c} = 201 {\rm g} \frac{\left| K_{\rm max} \left(\hat{\Omega} \right) \right|}{\left| K \left(\hat{\Omega} = \hat{\Omega}_{\rm c} \right) \right|} = 201 {\rm g} \frac{1}{\delta_2}$$
(6.2)

Проектируемый цифровой фильтр должен удовлетворять следующим условиям:

- Затухание в полосе заграждения не менее A_3 , дБ.
- Неравномерность АЧХ в полосе пропускания не более $A_{\rm n}$, дБ.

6.2 Классические НЧ-прототипы Баттерворта и их характеристики

Максимально плоская АЧХ аналогового фильтра Баттерворта описывается выражением:

$$\left| K_{\hat{A}} \left(\hat{\Omega} \right) \right| = \frac{1}{\sqrt{1 + \varepsilon^2 \left(\hat{\Omega}^2 \right)^N}}, \qquad (6.3)$$

где *N*= 1, 2, 3, ... - порядок фильтра;

є – параметр, характеризующий затухание АЧХ в пределах полосы пропускания.

При $\hat{\Omega} = \hat{\Omega}_{\ddot{1}} = 1$ АЧХ (рис. 6.2) падает до уровня $\sqrt{2}/2 = 0,7071$ от своего максимального значения, если $\varepsilon = 1$.

Для полного описания данной АЧХ необходимо установить две величины: коэффициент затухания є и порядок фильтра *N*.

Рисунок 6.2 – АЧХ фильтров Баттерворта при $\varepsilon = 1$

Используя уравнения (6.1) и (6.2), получим:

$$A_{\mathbf{\ddot{i}}} = 201g \frac{\left| K_{\max}\left(\hat{\Omega}\right) \right|}{\left| K\left(\hat{\Omega} = \hat{\Omega}_{\mathbf{\ddot{i}}}\right) \right|} = 201g \sqrt{1 + \varepsilon^2} = 101g \left(1 + \varepsilon^2\right)$$
(6.4)

$$A_{\rm c} = 201g \frac{\left|K_{\rm max}\left(\hat{\Omega}\right)\right|}{\left|K\left(\hat{\Omega}=\hat{\Omega}_{\rm c}\right)\right|} = 201g \sqrt{1+\varepsilon^2 \left(\hat{\Omega}_{\rm c}^2\right)^N} = 101g \left[1+\varepsilon^2 \left(\hat{\Omega}_{\rm c}^2\right)^N\right] \quad (6.5)$$

Решая (6.4) относительно є, найдем

$$\varepsilon = \sqrt{10^{0,1A_{\Pi}} - 1} \tag{6.6}$$

Если затухание АЧХ в пределах полосы пропускания составляет 3 дБ, то коэффициент є отличается от единицы и АЧХ падает до уровня 0,7071 от своего максимального значения.

$$\varepsilon = \sqrt{10^{0,1\cdot 3} - 1} = 0,9976$$
 и $\left| K_{\hat{A}} \left(\hat{\Omega} = 1 \right) \right| = \frac{1}{\sqrt{1 + \varepsilon^2}} = 0,7078$

Решая (6.5) относительно $\hat{\Omega}^N_{\mathrm{c}}$, найдем

$$\hat{\Omega}_{\varsigma}^{N} = \frac{\sqrt{10^{0,1A_{\varsigma}} - 1}}{\varepsilon}$$
(6.7)

Используя (6.6) и (6.7), получим формулу для расчета наименьшего значения *N*:

$$N = \lg \sqrt{\frac{10^{0,1A_{\rm c}} - 1}{10^{0,1A_{\rm i}} - 1}} / \lg \hat{\Omega}_{\rm c}$$
(6.8)

Основные параметры НЧ-прототипов Баттерворта приведены в таблице 6.2.

НЧ-прототип Баттерворта *N*-го порядка при $\varepsilon = 1$ имеет следующее выражение для коэффициента передачи:

$$\hat{E}_{\hat{A}}(\hat{\sigma}) = \frac{1}{\hat{\sigma}^{N} + a_{N-1} \cdot \hat{\sigma}^{N-1} + \dots + a_{1} \cdot \hat{p} + 1} = \frac{1}{(\hat{p} - \hat{p}_{1})\dots(\hat{p} - \hat{p}_{n})}, \quad (6.9)$$

где $\hat{p} = p/\Omega_{\mathrm{i}}$;

*а*₁, *а*₂, ..., *а*_{*n*},... – вещественные коэффициенты;

 $\hat{p}_1, \hat{p}_2, \hat{p}_3, ..., \hat{p}_n$ – полюса функции $\hat{E}_{\hat{A}}(\hat{\partial})$.

Для фильтров Баттерворта, порядок которых не превышает 9, характеристик математические модели импульсных И операторных для ε ≠1 приведены в таблицах 9.3.1-9.3.9 коэффициентов передачи настоящего пособия. Передаточные функции представлены В виде произведений биквадратных звеньев.

$$K_{\hat{A}}(\hat{p}) = \frac{l}{(\hat{p}+m)} \cdot \frac{1}{(\hat{p}^2 + k_1 \cdot \hat{p} + m_1)} \cdot \dots \cdot \frac{1}{(\hat{p}^2 + k_4 \cdot \hat{p} + m_4)}$$
(6.9a)

где l, m, m_{1-4} и k_{1-4} - вещественные коэффициенты.

6.3 Классические НЧ-прототипы Чебышева 1-го типа и их характеристики

Равноволновая в полосе пропускания АЧХ фильтра Чебышева имеет следующий вид:

$$\left|K_{\times}\left(\hat{\Omega}\right)\right| = \frac{1}{\sqrt{1 + \varepsilon^2 \hat{O}_N^2\left(\hat{\Omega}\right)}},\tag{6.10}$$

где *є* - параметр, характеризующий неравномерность АЧХ в полосе пропускания;

 $\dot{O}_N(\hat{\Omega})$ - полином Чебышева первого рода порядка *N*;

$$\hat{O}_{N}(\hat{\Omega}) = \begin{cases} \cos(N \arccos \hat{\Omega}), \text{ anëe } \hat{\Omega} \le \hat{\Omega}_{\ddot{1}}; \\ \cosh(N \cdot \operatorname{Arch} \hat{\Omega}), \text{ anëe } \hat{\Omega} \ge \hat{\Omega}_{\ddot{1}}. \end{cases}$$
(6.11)

Toomuuo 6 2		DOMOTOR III TI	ACTOTION FOTTON	anto u Hafi unano	1
таолица 0.2 —	Основные па	раметры пя-п	опотинов раттерв	орга и чебышева.	Глипа

	Аппроксимация АЧХ		Расчет порядков и
Наимен.	График и математическая модель	Передаточные функции и расчет полюсов	параметров АЧХ НЧ- прототипов
	АЧХ	I	НЧ-прототипов
Полином Баттерворт а	$ \begin{array}{c} 1 & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & $	$K_{A}(\hat{p}) = K_{0} / \prod_{k=1}^{N} (\hat{p} - \hat{p}_{k})$ $\hat{p} = p / \Omega_{i}$ K_{0} - нормировочный коэффициент $\hat{E}_{\times} (\hat{p}) = \frac{b_{0}}{\partial^{N} + b_{N-1} \cdot \partial^{N-1} + \dots + b_{1} \cdot \hat{p} + b_{0}}$ $\alpha_{k} = -\varepsilon^{-1/N} \sin(2k-1)\pi/2N$ $\beta_{k} = \varepsilon^{-1/N} \cos(2k-1)\pi/2N$	$\begin{split} N_{\hat{A}} \geq & \frac{\lg \sqrt{\frac{10^{0,1A_{\varsigma}} - 1}{10^{0,1A_{\tilde{i}}} - 1}}}{\lg \hat{\Omega}_{\varsigma} / \hat{\Omega}_{\tilde{i}}} \\ N_{\times} \geq & \frac{Arch \sqrt{\frac{10^{0,1A_{\varsigma}} - 1}{10^{0,1A_{\tilde{i}}} - 1}}}{Arch (\hat{\Omega}_{\varsigma} / \hat{\Omega}_{\tilde{i}})} \end{split}$
Полином Чебышева 1 типа	$1 \underbrace{\delta_{1}}_{\hat{\Omega}_{n}=1} \frac{1}{\sqrt{1+\varepsilon^{2}}}$ $ K_{\times}(\hat{\Omega}) = 1/\sqrt{1+\varepsilon^{2}}\partial_{N}^{2}(\hat{\Omega})$ $T_{N}(\hat{\Omega}) = \begin{cases} \cos(N \cdot \arccos\hat{\Omega}), \hat{\Omega} < \hat{\Omega}_{i} \\ ch(N \cdot Arch\hat{\Omega}), \hat{\Omega} > \hat{\Omega}_{i} \end{cases}$	$K_{\times}(\hat{p}) = K_0 / \prod_{k=1}^{N} (\hat{p} - \hat{p}_k)$ $\hat{p} = p / \Omega_{i}$ K_0 - нормировочный коэффициент $\hat{p}_k = \alpha_k + j\beta_k$ $\alpha_k = -sh[1/N \cdot Arcsh(1/\varepsilon)]sin(2k-1)\pi/2N$ $\beta_k = ch[1/N \cdot Arsh(1/\varepsilon)]cos(2k-1)\pi/2N$	$A_{\varsigma} = 201g \frac{ K_{\max} }{ K(\hat{\Omega}_{\varsigma}) } =$ $= -201g \delta_{2}$ $A_{\tilde{i}} = 201g \frac{ K_{\max} }{ K(\hat{\Omega}_{\tilde{i}}) } =$ $= 201g \sqrt{1 + \varepsilon^{2}} =$ $= -201g(1 - \delta_{1})$

Полиномы Чебышева нулевого и первого порядков без особых проблем можно рассчитать по формуле (6.11).

$$T_0(\hat{\Omega}) = 1$$
, если $N = 0$.
 $T_1(\hat{\Omega}) = \hat{\Omega}$, если $N = 1$.

При произвольном значении *N* математическая модель полинома Чебышева может быть определена по рекуррентной формуле вида:

$$T_N(\hat{\Omega}) = 2\hat{\Omega} \cdot T_{N-1}(\hat{\Omega}) - T_{N-2}(\hat{\Omega}).$$
(6.12)

С помощью соотношения (6.12) записываются математические модели полиномов Чебышева при N = 2, 3, 4...

$$T_{2}(\hat{\Omega}) = 2\hat{\Omega} \cdot (\hat{\Omega}) - 1 = 2\hat{\Omega} - 1$$

$$T_{3}(\hat{\Omega}) = 2\hat{\Omega} \cdot (2\hat{\Omega} - 1) - \hat{\Omega} = 4\hat{\Omega}^{2} - 3\hat{\Omega}$$

$$T_{4}(\hat{\Omega}) = 2\hat{\Omega} \cdot (4\hat{\Omega}^{2} - 3\hat{\Omega}) - (2\hat{\Omega} - 1) = 8\hat{\Omega}^{4} - 8\hat{\Omega}^{2} + 1$$
(6.13)

Если $\hat{\Omega} = \hat{\Omega}_{i} = 1$, то $T_N(\hat{\Omega}_{i}) = 1$ при любом значении N.

Соотношение (6.10) содержит два параметра, подлежащие определению, а именно, ε и *N*. На рисунке 6.3 показаны АЧХ фильтровЧебышева при ε =0,5 и *N*=2, 3 и 4.

Величина ε вычисляется по заданной неравномерности A_{Π} АЧХ в полосе пропускания фильтра. При этом следует исходить из выражения

$$A_{\mathbf{\ddot{i}}} = 201g \frac{|K_{\times}|\max}{|K_{\times}(\hat{\Omega}_{\mathbf{\ddot{i}}})|} = 201g\sqrt{1+\varepsilon^2} = 101g(1+\varepsilon^2).$$
(6.14)

Рисунок 6.3 – АЧХ фильтров Чебышева при є=0,5

Порядок НЧ-прототипа Чебышева определяется, как и в п.6.2, величиной затухания АЧХ в полосе заграждения *А*₃.

$$A_{\rm c} = 201 g \frac{|K_{\times}|\max}{|K_{\times}(\hat{\Omega}_{\rm c})|} = 201 g \sqrt{1 + \varepsilon^2 \partial_N^2(\hat{\Omega})} = 101 g \left(1 + \varepsilon^2 T_N^2(\hat{\Omega})\right). \quad (6.15)$$

Решая (6.14) и (6.15), получим:

$$\varepsilon = \sqrt{10^{0,1A_{\Pi}} - 1} \tag{6.16}$$

$$T_N(\hat{\Omega}_{\varsigma}) = \frac{\sqrt{10^{0,1A_{\varsigma}} - 1}}{\varepsilon} = \sqrt{\frac{10^{0,1A_{\varsigma}} - 1}{10^{0,1A_{\varsigma}} - 1}}$$
(6.17)

Применяя (6.11) при $\hat{\Omega} \ge \hat{\Omega}_{\ddot{I}}$, найдем

$$\operatorname{ch}(N \cdot \operatorname{Arch}\hat{\Omega}_{c}) = \sqrt{\frac{10^{0,1A_{c}} - 1}{10^{0,1A_{\tilde{1}}} - 1}}$$
 (6.18)

$$N = \operatorname{Arch}_{\sqrt{\frac{10^{0,1A_{\rm c}} - 1}{10^{0,1A_{\rm i}} - 1}}} / \operatorname{Arch}_{\hat{\Omega}_{\rm c}}^{\hat{\Omega}_{\rm c}}$$
(6.19)

НЧ-прототип Чебышева, основные параметры которого приведены в таблице 6.1, имеет следующее выражение для коэффициента передачи:

$$\hat{E}_{\times}(\hat{\partial}) = \frac{b_0}{(\hat{\partial} - p_1)...(\hat{\partial} - p_n)} = \frac{b_0}{\hat{\partial}^N + b_{N-1} \cdot \hat{\partial}^{N-1} + ... + b_1 \cdot \hat{p} + b_0}.$$
 (6.20)

где $\hat{p} = p/\Omega_{\mathrm{ii}}$;

*а*₁, *а*₂, ..., *а*_{*n*},... – вещественные коэффициенты;

 $\hat{p}_1, \hat{p}_2, \hat{p}_3, ..., \hat{p}_n$ – полюса функции $\hat{K}_A(\delta)$.

Для фильтров Чебышева 1 типа порядка с 1 по 9 математические модели импульсных характеристик и операторных коэффициентов передачи приведены в таблицах 9.4.1-9.4.9, данных в настоящем пособии в качестве приложений. Передаточные функции представлены в виде произведений биквадратных звеньев.

$$K_{\times}(\hat{p}) = \frac{l}{(\hat{p}+m)} \cdot \frac{1}{(\hat{p}^{2}+k_{1}\cdot\hat{p}+m_{1})} \cdot \dots \cdot \frac{1}{(\hat{p}^{2}+k_{4}\cdot\hat{p}+m_{4})}$$
(6.20a)

где l, m, m_{1-4} и k_{1-4} - вещественные коэффициенты.

6.4 Синтез РЦФ различного назначения по классическому НЧпрототипу методом билинейного Z-преобразования

6.4.1 Деформация аналоговой частоты НЧ-прототипа

При использовании билинейного Z-преобразования (5.2) следует учитывать деформацию аналоговой частоты НЧ-прототипа

$$\hat{p} = \frac{2}{\Omega_{\tilde{i}} \cdot \dot{O}_{\tilde{A}}} \cdot \frac{1 - z^{-1}}{1 + z^{-1}} = \gamma_{\hat{0}\hat{i} \div} \cdot \frac{1 - z^{-1}}{1 + z^{-1}},$$
(6.21)
где $\gamma_{\hat{\Phi}H\Psi} = \frac{2}{\Omega_{\Pi} \cdot T_{\Pi}}.$

Выполняя в (6.21) замены переменных $\hat{p} = j \Omega / \Omega_{\tilde{I}}$ и $z = e^{-j\omega T_{\pi}}$, получим выражение для расчета нормированной аналоговой частоты $\hat{\Omega}$ НЧ-прототипа.

$$\hat{\Omega} = \gamma_{\hat{0}\hat{1} \div} \cdot tg\left(\frac{\omega T_{\ddot{a}}}{2}\right) = \gamma_{\hat{0}\hat{1} \div} \cdot tg(\pi\hat{\omega}).$$
(6.22)

Откуда
$$\hat{\Omega}_{\mathbf{\ddot{i}}} = \gamma_{\hat{0}\hat{i} \div} \cdot tg(\pi \hat{\omega}_{\mathbf{\ddot{i}}}) = 1$$
, поэтому
 $\gamma_{\hat{0}\hat{i} \div} = ctg(\pi \hat{\omega}_{\mathbf{\ddot{i}}}).$ (6.23)

Графическая иллюстрация деформации аналоговой частотной оси (6.22) показана на рисунке 6.4, результаты расчетов приведены в таблице 6.3.

Рисунок 6.4 – Связь между аналоговыми и цифровыми частотами Таблица 6.3 - Деформация аналоговых частот

Нормированные ци	Отношение		
Нижняя граничная	Верхняя	Отношение	деформированных
частота	граничная	граничных частот	аналоговых
	частота		частот
$\hat{\omega}_{i_1}$	$\hat{\omega}_{i_2}$	$\hat{\omega}_{i_2}$	$\Omega \pi_2 /$
1	2	$2/\hat{\omega}_{i_1}$	$/\Omega_{\Pi_1}$
0,05	0,1	2	2,05114
0,245	0,255	1,0408	1,06486
0,4	0,45	1,125	2,05262

Равноотстоящие цифровые полосы преобразуются в аналоговые полосы. Полосы аналогового прототипа растягиваются тем больше, чем ближе полоса ЦФ к частоте Найквиста $\hat{\omega} = 0,5$. Соотношение между цифровыми и аналоговыми частотами мало меняется (практически сохраняется) в области низких частот.

6.4.2 Частотные преобразования НЧ-прототипов при синтезе РЦФ различного назчения

Проектирование цифровых фильтров различного назначения (полосовых (ПФ), фильтров верхних частот (ФВЧ), заграждающих (РФ) и всепропускающих (ВПФ)) сопряжено с частотными преобразованиями. Основные методы частотных преобразований показаны на рисунке 6.5.

Рисунок 6.5 – Основные методы частотных преобразований

В первом случае происходит преобразование полосы частот аналогового фильтра-прототипа, а во втором – преобразование полосы частот

цифрового ФНЧ. Метод цифровых частотных преобразований предложил американский ученый А. Дж. Константинидис. По данному методу синтезируется низкочастотный цифровой фильтр, а затем он преобразуется в цифровой ФВЧ, ПФ или РФ.

В первом случае передаточная функция аналогового НЧ-прототипа преобразуется в передаточную функцию аналогового ПФ, РФ или ФВЧ. При этом делаются замены нормированного оператора \hat{p} в соответствии с приведенными в таблице 6.4 соотношениями, и рассчитываются граничные частоты НЧ-прототипа.

Во втором случае системная функция цифрового ФНЧ преобразуется в системную функцию цифрового ПФ, РФ или ФВЧ. При этом делаются замены нормированного оператора Z^{-1} в соответствии с соотношениями, приведенными в таблице 6.5, и рассчитываются граничные частоты НЧ-прототипа.

Для сравнительного анализа двух основных методов частотных преобразований выполним переход от НЧ-прототипа к цифровому полосовому фильтру двумя путями.

Первый путь частотных преобразований (на примере ПФ).

• Преобразование аналоговой частоты согласно третьей строке таблицы 6.4

$$K_{\hat{0}\hat{1}\div}(\hat{p}) \to K_{\hat{1}\hat{0}} \left(\frac{\hat{p}^2 + \hat{\Omega}_{\hat{1}_1} \hat{\Omega}_{\hat{1}_2}}{\hat{p}(\hat{\Omega}_{\hat{1}_2} - \hat{\Omega}_{\hat{1}_1})} \right)$$
(6.24)

• Билинейное Z-преобразование аналогового полосового фильтра

$$K_{\mathbf{i}\hat{0}}(\hat{p}) \to K_{\mathbf{i}\hat{0}}(z), \tilde{a}\ddot{a}\mathring{a}\hat{p} = \gamma_{\hat{0}\hat{1}\div} \frac{1-z^{-1}}{1+z^{-1}}$$

$$\hat{p} \to \frac{\hat{p}^2 + \hat{\Omega}_{\mathbf{i}_1}\hat{\Omega}_{\mathbf{i}_2}}{\hat{p}(\hat{\Omega}_{\mathbf{i}_2} - \hat{\Omega}_{\mathbf{i}_1})} \to \frac{\gamma_{\hat{0}\hat{1}\div}^2 \cdot \left(\frac{1-z^{-1}}{1+z^{-1}}\right)^2 + \gamma_{\hat{0}\hat{1}\div} \cdot tg(\pi\hat{\omega}_{\mathbf{i}_1}) \cdot \gamma_{\hat{0}\hat{1}\div} \cdot tg(\pi\hat{\omega}_{\mathbf{i}_2})}{\gamma_{\hat{0}\hat{1}\div} \cdot \left(\frac{1-z^{-1}}{1+z^{-1}}\right) \cdot \gamma_{\hat{0}\hat{1}\div} \cdot \left(tg(\pi\hat{\omega}_{\mathbf{i}_2}) - tg(\pi\hat{\omega}_{\mathbf{i}_1})\right)}$$

$$\hat{p} \to \frac{\left(\frac{1-z^{-1}}{1+z^{-1}}\right)^2 + tg(\pi\hat{\omega}_{\mathbf{i}_1}) \cdot tg(\pi\hat{\omega}_{\mathbf{i}_2})}{\left(\frac{1-z^{-1}}{1+z^{-1}}\right) \cdot \left(tg(\pi\hat{\omega}_{\mathbf{i}_2}) - tg(\pi\hat{\omega}_{\mathbf{i}_1})\right)} = \frac{\left(1-z^{-1}\right)^2 + \left(1+z^{-1}\right)^2 \cdot tg(\pi\hat{\omega}_{\mathbf{i}_1}) \cdot tg(\pi\hat{\omega}_{\mathbf{i}_2})}{\left(1-z^{-2}\right) \cdot \left(tg(\pi\hat{\omega}_{\mathbf{i}_2}) - tg(\pi\hat{\omega}_{\mathbf{i}_1})\right)} = \frac{1-z^{-1}}{\left(1-z^{-2}\right) \cdot \left(tg(\pi\hat{\omega}_{\mathbf{i}_2}) - tg(\pi\hat{\omega}_{\mathbf{i}_1})\right)} = \frac{1-z^{-1}}{\left(1-z^{-1}\right) \cdot \left(tg(\pi\hat{\omega}_{\mathbf{i}_2}) - tg(\pi\hat{\omega}_{\mathbf{i}_1})\right)} = \frac{1-z^{-1}}{\left(1-z^{-1}\right) \cdot \left(tg(\pi\hat{\omega}_{\mathbf{i}_2}) - tg(\pi\hat{\omega}_{\mathbf{i}_1})\right)} = \frac{1-z^{-1}}{\left(1-z^{-1}\right) \cdot \left(tg(\pi\hat{\omega}_{\mathbf{i}_2}) - tg(\pi\hat{\omega}_{\mathbf{i}_1})\right)} = \frac{1-z^{-1}}{\left(1-z^$$

$$=\frac{1+tg(\pi\hat{\omega}_{i_{1}})tg(\pi\hat{\omega}_{i_{2}})-2z^{-1}(1-tg(\pi\hat{\omega}_{i_{1}})tg(\pi\hat{\omega}_{i_{2}}))+z^{-2}(1+tg(\pi\hat{\omega}_{i_{1}})tg(\pi\hat{\omega}_{i_{2}}))}{(1-z^{-2})\cdot(tg(\pi\hat{\omega}_{i_{2}})-tg(\pi\hat{\omega}_{i_{1}}))}=$$

$$=\frac{cos(\pi(\hat{\omega}_{i_{2}}-\hat{\omega}_{i_{1}}))-2z^{-1}cos(\pi(\hat{\omega}_{i_{2}}+\hat{\omega}_{i_{1}}))+z^{-2}cos(\pi(\hat{\omega}_{i_{2}}-\hat{\omega}_{i_{1}}))}{(1-z^{-2})\cdot sin(\pi(\hat{\omega}_{i_{2}}-\hat{\omega}_{i_{1}}))}$$

$$\hat{p} \to \gamma_{\tilde{1}\hat{0}} \ \frac{1 - 2\alpha \cdot z^{-1} + z^{-2}}{1 - z^{-2}}$$
 (6.26)

$$\gamma_{\mathbf{i}\hat{\mathbf{0}}} = ctg\pi \left(\hat{\omega}_{\mathbf{i}_2} - \hat{\omega}_{\mathbf{i}_1} \right) \tag{6.27}$$

$$\alpha = \frac{\cos \pi (\hat{\omega}_{i_{2}} + \hat{\omega}_{i_{1}})}{\cos \pi (\hat{\omega}_{i_{2}} - \hat{\omega}_{i_{1}})}$$
(6.28)

Второй путь частотных преобразований (на примере ПФ).

• Билинейное Z-преобразование НЧ-прототипа в соответствии с формулой (5.2)

$$K_{\hat{0}\hat{1}\div}(\hat{p}) \rightarrow K_{\hat{0}\hat{1}\div}(Z), \quad \hat{p} = \gamma_{\hat{0}\hat{1}\div} \frac{1-z^{-1}}{1+z^{-1}},$$
где $\gamma_{\hat{0}\hat{1}\div} = ctg(\pi\hat{\omega}_{\hat{1}}^{\hat{i}}), \quad \omega_{\hat{1}}^{\hat{i}} - ctg(\pi\hat{\omega}_{\hat{1}}), \quad \omega_{\hat{1}^{\hat{i}} - ctg(\pi\hat{\omega}_{\hat{1}}), \quad \omega_$

нормированная граничная частота цифрового ФНЧ-прототипа.

 Преобразование полосы частот цифрового ФНЧ в соответствии с третьей строкой таблицы 6.5
 K1 (Z) → K1 (z)

$$\begin{aligned}
R_{\phi H \eta}(Z) &\to R_{\phi H \eta}(Z) \\
Z^{-1} &\to -\frac{\frac{\beta - 1}{\beta + 1} - \frac{2\alpha\beta}{\beta + 1} \cdot z^{-1} + z^{-2}}{1 - \frac{2\alpha\beta}{\beta + 1} \cdot z^{-1} + \frac{\beta - 1}{\beta + 1} \cdot z^{-2}} = -\frac{(\beta - 1) - 2\alpha\beta \cdot z^{-1} + (\beta + 1)z^{-2}}{(\beta + 1) - 2\alpha\beta \cdot z^{-1} + (\beta - 1) \cdot z^{-2}} \quad (6.29) \\
\hat{p} &= \gamma_{\hat{0}\hat{1} \div} \frac{1 - Z^{-1}}{1 + Z^{-1}} = \gamma_{\hat{0}\hat{1} \div} \frac{1 + \frac{(\beta - 1) - 2\alpha\beta \cdot z^{-1} + (\beta + 1)z^{-2}}{(\beta + 1) - 2\alpha\beta \cdot z^{-1} + (\beta - 1) \cdot z^{-2}}}{1 - \frac{(\beta - 1) - 2\alpha\beta \cdot z^{-1} + (\beta + 1)z^{-2}}{(\beta + 1) - 2\alpha\beta \cdot z^{-1} + (\beta - 1) \cdot z^{-2}}} \\
\hat{p} &= \gamma_{\hat{1}\hat{0}} \cdot \frac{1 - 2\alpha \cdot z^{-1} + z^{-2}}{1 - z^{-2}} \quad (6.30)
\end{aligned}$$

$$\alpha = \frac{\cos \left[\pi (\hat{\omega}_{i_{2}} + \hat{\omega}_{i_{1}}) \right]}{\cos \left[\pi (\hat{\omega}_{i_{2}} - \hat{\omega}_{i_{1}}) \right]}$$
(6.31)

$$\beta = ctg[\pi(\hat{\omega}_{i_{2}} - \hat{\omega}_{i_{1}})] \cdot tg(\pi\hat{\omega}_{i}^{i})$$
(6.32)

$$\gamma_{\hat{1}\hat{0}} = ctg[\pi(\hat{\omega}_{\hat{1}_{2}} - \hat{\omega}_{\hat{1}_{1}})]$$
(6.33)

$$\beta = \gamma_{\Pi \oplus} / \gamma_{\oplus H \Psi} \tag{6.34}$$

Вне зависимости от того, в каком порядке выполняются частотные преобразования (сначала аналоговое перемещение полосы частот НЧ-прототипа в требуемую область, а затем дискретизация аналогового фильтра; либо сначала дискретизация НЧ-прототипа, а затем цифровой перенос полосы частот в требуемый диапазон), результирующее преобразование остается неизменным и называется обобщенным билинейным *Z*-преобразованием, если граничная частота полосы пропускания ω_{Π}^{Π} цифрового ФНЧ-прототипа совпадает с граничной частотой ω_{Π} проектируемого ФНЧ.

$$\omega_{\Pi}^{\Pi} = \omega_{\Pi}$$
или $\hat{\omega}_{i}^{I} = \hat{\omega}_{i}$

При аналоговом переносе полосы частот деформированная полоса определяется как разность деформированных граничных частот. При цифровом перемещении полосы частот деформированная полоса определяется как деформированная разность граничных частот. Таблица 6.4 – Преобразование аналогового ФНЧ в аналоговые фильтры различного назначения и расчёт граничных частот НЧ-прототипа

Тип фильтра	Преобразование передаточных функций	Расчет граничных частот НЧ-прототипа	Обобщенное билинейное z- преобразование
ФНЧ	$\hat{p} \rightarrow \hat{p} = \frac{p}{\Omega_{i}}$	$\hat{\Omega} = \gamma_{\hat{0}\hat{1} \div} \cdot tg(\pi\hat{\omega}), \\ \gamma_{\hat{0}\hat{1} \div} = ctg(\pi\hat{\omega}_{\hat{1}}).$	$\hat{p} = \gamma_{\hat{0}\hat{1} \div} \frac{1 - z^{-1}}{1 + z^{-1}}$
ФВЧ	$\hat{p} \rightarrow \frac{1}{\hat{p}} = \frac{\Omega_{i}}{p}$	$\hat{\Omega} = \gamma_{\hat{0}\hat{a} \div} \cdot ctg(\pi\hat{\omega}),$ $\gamma_{\hat{0}\hat{a} \div} = tg(\pi\hat{\omega}_{i}).$	$\hat{p} = \gamma_{\hat{o}\hat{a} \div} \frac{1 + z^{-1}}{1 - z^{-1}}$
ПФ	$\hat{p} \rightarrow \frac{\hat{p}^2 + \hat{\Omega}_{i_1} \hat{\Omega}_{i_2}}{\hat{p} (\hat{\Omega}_{i_2} - \hat{\Omega}_{i_1})}$	$\hat{\Omega} = \gamma_{i\hat{0}} \frac{\alpha - \cos(2\pi\hat{\omega})}{\sin(2\pi\hat{\omega})},$ $\gamma_{i\hat{0}} = ctg\pi(\hat{\omega}_{i_2} - \hat{\omega}_{i_1}),$ $\alpha = \frac{\cos\pi(\hat{\omega}_{i_2} + \hat{\omega}_{i_1})}{\cos\pi(\hat{\omega}_{i_2} - \hat{\omega}_{i_1})}.$	$\hat{p} = \gamma_{ii\hat{0}} \frac{1 - 2\alpha \cdot z^{-1} + z^{-2}}{1 - z^{-2}}$
РФ	$\hat{p} \rightarrow \frac{\hat{p}(\hat{\Omega}_{\mathbf{i}_{2}} - \hat{\Omega}_{\mathbf{i}_{1}})}{\hat{p}^{2} + \hat{\Omega}_{\mathbf{i}_{1}}\hat{\Omega}_{\mathbf{i}_{2}}}$	$\hat{\Omega} = \gamma_{\tilde{\partial}\hat{\partial}} \frac{\sin(2\pi\hat{\omega})}{\alpha - \cos(2\pi\hat{\omega})},$ $\gamma_{\tilde{\partial}\hat{\partial}} = tg\pi(\hat{\omega}_{i_{2}} - \hat{\omega}_{i_{1}}),$ $\alpha = \frac{\cos\pi(\hat{\omega}_{i_{2}} + \hat{\omega}_{i_{1}})}{\cos\pi(\hat{\omega}_{i_{2}} - \hat{\omega}_{i_{1}})}.$	$\hat{p} = \gamma_{\tilde{\partial}\hat{O}} \frac{1 - z^{-2}}{1 - 2\alpha \cdot z^{-1} + z^{-2}}$

Таблица 6.5 – Преобразование цифрового ФНЧ в цифровые фильтры различного назначения и расчёт граничных частот НЧ-прототипа

Тип фильтра	Преобразование Z^{-1}	Расчетные формулы	Обобщенное билинейное Z- преобразование
ФНЧ	$Z^{-1} \rightarrow -\frac{\alpha - z^{-1}}{1 - \alpha \cdot z^{-1}}$	$\alpha = -\frac{\sin \left[\pi \left(\hat{\omega}_{i} - \hat{\omega}_{i}^{T}\right)\right]}{\sin \left[\pi \left(\hat{\omega}_{i} + \hat{\omega}_{i}^{T}\right)\right]}$ $\hat{\omega}_{i} = \omega_{i} / \omega_{\ddot{a}}$ $\hat{\omega}_{i}^{T} = \omega_{i}^{T} / \omega_{\ddot{a}}$	$\hat{p} = \gamma_{\hat{0}\hat{1} \div} \frac{1 - z^{-1}}{1 + z^{-1}},$ $\alpha = 0, \ \hat{\omega}_{\hat{1}}^{\hat{i}} = \hat{\omega}_{\hat{1}}, \ \gamma_{\hat{0}\hat{1} \div} = ctg(\pi \hat{\omega}_{\hat{1}}^{\hat{i}})$ $\hat{\Omega} = ctg(\pi \hat{\omega}_{\hat{1}}^{\hat{i}}) \cdot tg(\pi \hat{\omega})$
ФВЧ	$Z^{-1} \rightarrow -\frac{\alpha + z^{-1}}{1 + \alpha \cdot z^{-1}}$	$\alpha = -\frac{\cos \pi \left(\hat{\omega}_{i} + \hat{\omega}_{i}^{i}\right)}{\cos \pi \left(\hat{\omega}_{i} - \hat{\omega}_{i}^{i}\right)}$	$\hat{p} = \gamma_{\hat{0}\hat{a}\div} \frac{1+z^{-1}}{1-z^{-1}},$ $\alpha = 0, \ \hat{\omega}_{i}^{\vec{i}} = \hat{\omega}_{i}, \ \gamma_{\hat{0}\hat{a}\div} = tg(\pi\hat{\omega}_{i}^{\vec{i}})$ $\hat{\Omega} = tg(\pi\hat{\omega}_{i}^{\vec{i}}) \cdot \tilde{n}tg(\pi\hat{\omega}).$
ПФ	$Z^{-1} \rightarrow -\frac{\frac{\beta-1}{\beta+1} - \frac{2\alpha\beta}{\beta+1} \cdot z^{-1} + z^{-2}}{1 - \frac{2\alpha\beta}{\beta+1} \cdot z^{-1} + \frac{\beta-1}{\beta+1} \cdot z^{-2}}$	$\alpha = \frac{\cos \pi (\hat{\omega}_{i_2} + \hat{\omega}_{i_1})}{\cos \pi (\hat{\omega}_{i_2} - \hat{\omega}_{i_1})}$ $\beta = ctg[\pi (\hat{\omega}_{i_2} - \hat{\omega}_{i_1})] \cdot tg(\pi \hat{\omega}_{i_1})$	$\hat{p} = \gamma_{i\hat{0}} \frac{1 - 2\alpha \cdot z^{-1} + z^{-2}}{1 - z^{-2}}$ $\hat{\Omega} = \gamma_{i\hat{0}} \frac{\alpha - \cos(2\pi\hat{\omega})}{\sin(2\pi\hat{\omega})}$ $\gamma_{i\hat{0}} = ctg\pi(\hat{\omega}_{i_2} - \hat{\omega}_{i_1})$
РФ	$Z^{-1} \rightarrow -\frac{\frac{\beta-1}{\beta+1} + \frac{2\alpha}{\beta+1} \cdot z^{-1} - z^{-2}}{1 - \frac{2\alpha}{\beta+1} \cdot z^{-1} - \frac{\beta-1}{\beta+1} \cdot z^{-2}}$	$\alpha = \frac{\cos \pi (\hat{\omega}_{i_2} + \hat{\omega}_{i_1})}{\cos \pi (\hat{\omega}_{i_2} - \hat{\omega}_{i_1})}$ $\beta = tg[\pi(\hat{\omega}_{i_2} - \hat{\omega}_{i_1})] \cdot tg(\pi \hat{\omega}_{i_1}^{\vec{i}})$	$\hat{p} = \gamma_{\eth \Diamond} \frac{1 - z^{-2}}{1 - 2\alpha \cdot z^{-1} + z^{-2}}$ $\hat{\Omega} = \gamma_{\eth \Diamond} \frac{\sin(2\pi\hat{\omega})}{\alpha - \cos(2\pi\hat{\omega})}$ $\gamma_{\eth \Diamond} = tg\pi(\hat{\omega}_{i_{2}} - \hat{\omega}_{i_{1}})$

Примечание. В таблице 6.5 приняты обозначения: $\hat{\omega}$ – нормированная частота требуемого цифрового ФНЧ; $\hat{\omega}^{i}$ – нормированная частота цифрового ФНЧ-прототипа; $\hat{\omega}^{i}_{i}$ – нормированная граничная частота полосы пропускания цифрового ФНЧ-прототипа; $Z = e^{j2\pi\hat{\omega}^{i}}$ и $z = e^{j2\pi\hat{\omega}}$; $\hat{\Omega}$ – нормированная частота аналогового НЧ-прототипа.

Если для синтеза ЦФ применяется билинейное Z-преобразование, то применение аналогового переноса полосы частот сопровождается деформацией, величина которой нелинейно растет по мере приближения полосы пропускания к частоте Найквиста. Если же используется цифровой перенос полосы частот цифрового ФНЧ или обобщенное Z-преобразование, то деформация полосы частот проектируемого ЦФ не зависит от положения средней частоты, что является очень важным при частотном разделении сигналов в ходе цифровой обработки.

6.4.3 Синтез РЦФ методом обобщенного билинейного **Z-**преобразования

Примерный порядок проектирования РЦФ методом обобщенного билинейного Z-преобразования приведен на рисунке 6.6.

Рисунок 6.6 – Порядок синтеза РЦФ

• Расчет нормированных граничных цифровых частот полос пропускания и заграждения $\hat{\omega} = \omega/\omega_{\ddot{a}} = f/f_{\ddot{a}}$ требуемого цифрового фильтра.

• Определение деформированных аналоговых граничных частот полос пропускания и заграждения НЧ-прототипа $\hat{\Omega} = \Omega / \Omega_{\tilde{1}}$.

• Выбор (или задание) классического НЧ-прототипа Баттерворта, Чебышева или др.

• Расчет порядка классического НЧ-прототипа и выбор передаточной функции по таблицам, приведённым как приложения в пунктах 9.3 и 9.4.

• Расчет параметров обобщенной билинейной замены в зависимости от назначения цифрового фильтра.

• Выполнение обобщенной билинейной замены и переход от передаточной функции НЧ-прототипа $K(\hat{p})$ к системной функции K(z) цифрового фильтра, заданного назначения (ФНЧ, ФВЧ, ПФ, РФ).

• Расчет частотных характеристик ЦФ, системная функция которых представлена произведением биквадратных звеньев.

• Расчет временных характеристик

Основные формулы для выполнения обобщенного билинейного *Z*-преобразования и расчета граничных частот НЧ-прототипа приведены в таблицах 6.6 и 6.7.

Вид преобразования	Фильтр нижних частот (ФНЧ)	Полосовой фильтр (ПФ)
Преобразование ЦФ в НЧ-прототип	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} 0,5 & \hat{\omega} & 0,5 & \hat{\omega} \\ \hat{\omega}_{3_2} & & 0,5 & \hat{\omega} \\ \hat{\omega}_{1_2} & & \hat{\omega}_{1_1} \\ \hat{\omega}_{3_1} & & 0 & 0 \\ & & & \hat{\omega}_{3_1} \\ K(\hat{\omega}) & & 0 & & \hat{\Omega} \\ & & & & K(\hat{\Omega}) \\ & & & & \hat{\Omega}_{3_1} & -1 & 0 & 1 & \hat{\Omega}_{3_2} & \hat{\Omega} \end{array}$
Расчет аналоговых частот	$\hat{\Omega} = \gamma_{\hat{0}\hat{1} \div} tg(\pi\hat{\omega}), \ \hat{\Omega} = \frac{\Omega}{\Omega_{\hat{1}}}, \ \hat{\omega} = \frac{\omega}{\omega_{\hat{a}}}$	$\hat{\Omega} = \gamma_{\hat{i}\hat{0}} \ \frac{\alpha - \cos(2\pi\hat{\omega})}{\sin(2\pi\hat{\omega})}$
Обобщенная билинейная замена	$\hat{p} = \gamma_{\hat{0}\hat{1} \div} \frac{1 - z^{-1}}{1 + z^{-1}}, \ \hat{p} = p / \Omega_{\hat{1}}$	$\hat{p} = \gamma_{i\hat{0}} \frac{1 - 2\alpha \cdot z^{-1} + z^{-2}}{1 - z^{-2}}$
Параметры билинейной замены	$\gamma_{\hat{0}\hat{1}\div} = ctg(\pi\hat{\omega}_{\hat{1}})$	$\gamma_{\mathbf{i}\hat{0}} = ctg\pi(\hat{\omega}_{\mathbf{i}_{2}} - \hat{\omega}_{\mathbf{i}_{1}})$ $\alpha = \frac{\cos\pi(\hat{\omega}_{\mathbf{i}_{2}} + \hat{\omega}_{\mathbf{i}_{1}})}{\cos\pi(\hat{\omega}_{\mathbf{i}_{2}} - \hat{\omega}_{\mathbf{i}_{1}})}$

Таблица 6.6 – Преобразование передаточных функций НЧ-прототипов *К*(*p*) в системные функции ЦФ *К*(*z*)

Вид преобразования	Фильтр верхних частот (ФВЧ)	Режекторный фильтр (РФ)
Преобразование ЦФ в НЧ-прототип	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c} \hat{\omega}_{0,5} \\ \hat{\omega}_{\pi_{2}} \\ \hat{\omega}_{3_{2}} \\ \hat{\omega}_{3_{1}} \\ $
Расчет аналоговых частот	$\hat{\Omega} = \gamma_{\hat{0}\hat{a} \div} \tilde{n}tg(\pi\hat{\omega}), \ \hat{\Omega} = \frac{\Omega}{\Omega_{\hat{1}}}, \ \hat{\omega} = \frac{\omega}{\omega_{\hat{a}}}$	$\hat{\Omega} = \gamma_{\tilde{\partial}\tilde{\partial}} \frac{\sin(2\pi\hat{\omega})}{\alpha - \cos(2\pi\hat{\omega})}$
Обобщенная билинейная замена	$\hat{p} = \gamma_{\hat{0}\hat{a} \div} \frac{1 + z^{-1}}{1 - z^{-1}}, \ \hat{p} = p / \Omega_{\hat{1}}$	$\hat{p} = \gamma_{\delta \hat{o}} \frac{1 - z^{-2}}{1 - 2\alpha \cdot z^{-1} + z^{-2}}$
Параметры билинейной замены	$\gamma_{\hat{o}\hat{a}\div} = tg(\pi\hat{\omega}_{i})$	$\gamma_{\tilde{0}\hat{0}} = tg\pi(\hat{\omega}_{i_{2}} - \hat{\omega}_{i_{1}})$ $\alpha = \frac{\cos\pi(\hat{\omega}_{i_{2}} + \hat{\omega}_{i_{1}})}{\cos\pi(\hat{\omega}_{i_{2}} - \hat{\omega}_{i_{1}})}$

Таблица 6.7 – Преобразование передаточных функций НЧ-прототипов *К*(*p*) в системные функции ЦФ *К*(*z*)

6.5 Синтез РЦФ методом инвариантной импульсной характеристики

6.5.1 Расчет цифрового НЧ-прототипа

Проектирование цифровых фильтров различного назначения (полосовых (ПФ), фильтров верхних частот (ФВЧ) и заграждающих (РФ)) сопряжено с частотными преобразованиями.

Примерный порядок проектирования РЦФ методом инвариантной импульсной характеристики (ИИХ) приведен на рисунке 6.7. По данному методу сначала синтезируется низкочастотный цифровой фильтр, а затем он преобразуется в цифровой ФВЧ, ПФ или РФ с помощью цифрового переноса полосы частот, предложенного американским ученым А. Дж. Константинидисом.

Рисунок 6.7 – Порядок синтеза РЦФ методом ИИХ

Периодической АЧХ ЦФ становится в результате дискретизации импульсной характеристики аналогового НЧ-прототипа и представляет собой наложение частотных характеристик аналогового фильтра, сдвинутых относительно друг друга на интервал, кратный частоте дискретизации $\omega_{\rm n}$.

За счет эффекта наложения АЧХ цифрового фильтра отличается от АЧХ НЧ-прототипа. Однако в результате того, что складываемые комплексные коэффициенты передачи находятся в разных четвертях комплексной плоскости, эффект проявляется в уменьшении коэффициента передачи. Если частота дискретизации достаточно велика, то эффект наложения минимален.

Главным достоинством синтеза ЦФ методом ИИХ является отсутствие деформации аналоговой частотной оси, то есть цифровая частота ФНЧ-прототипа ω^{n} равна аналоговой частоте Ω аналогового НЧ-прототипа

$$\omega^{\hat{\mathbf{I}}} = \Omega \tag{6.35}$$

Для аналоговых НЧ-прототипов Баттерворта и Чебышева порядка с 1 по 9 математические модели импульсных характеристик $g(\hat{t})$ и операторных

коэффициентов передачи $K(\hat{p})$ приведены в таблицах 9.3.1-9.3.9 и 9.4.1-9.4.9.

В общем случае импульсная характеристика $g(\hat{t})$ аналогового НЧпрототипа 9-го порядка представляет обратное преобразование Лапласа от передаточной функции $K(\hat{p})$ и описывается выражением вида: $g(\hat{t})/\Omega_{\tilde{i}} = Ae^{-a\cdot\hat{t}} + e^{-b\cdot\hat{t}} \cdot (B_1\cos(w_b\cdot\hat{t}) + B_2\sin(w_b\cdot\hat{t})) + \dots +$ $+ e^{-f\cdot\hat{t}} \cdot (F_1\cos(w_f\cdot\hat{t}) + F_2\sin(w_f\cdot\hat{t})),$ (6.36) ãäå $\hat{t} \rightarrow (\Omega_{\tilde{i}} \cdot t).$

Денормирование импульсной характеристики и последующая дискретизация

$$g(t) = \Omega_{\vec{i}} \cdot g(t \cdot \Omega_{\vec{i}}), \quad \tilde{a}\ddot{a}\dot{a} \quad t = n \cdot T_{\vec{a}}, \\g(n) = T_{\vec{a}} \cdot \Omega_{\vec{i}} \cdot g(\Omega_{\vec{i}} \cdot t = \Omega_{\vec{i}} \cdot n \cdot T_{\vec{a}}) \\g(n) = 2\pi\hat{\omega}_{\vec{i}}^{\vec{i}} \cdot g(t = n \cdot \hat{\omega}_{\vec{i}}^{\vec{i}}), \quad \tilde{a}\ddot{a}\dot{a} \quad T_{\vec{a}} \cdot \Omega_{\vec{i}} = T_{\vec{a}} \cdot \omega_{\vec{i}}^{\vec{i}} = 2\pi\hat{\omega}_{\vec{i}}^{\vec{i}}$$

преобразуют математическую модель (6.36) к виду

ſ

$$g(n) = \left(2\pi \cdot \hat{\omega}_{i}^{\vec{i}}\right) \cdot A \cdot \left(e^{-2\pi \cdot a \cdot \hat{\omega}_{i}^{\vec{i}}}\right)^{n} + \left(2\pi \cdot \hat{\omega}_{i}^{\vec{i}}\right) \cdot \left(e^{-2\pi \cdot b \cdot \hat{\omega}_{i}^{\vec{i}}}\right)^{n} \left[B_{1} \cos\left(2\pi \cdot w_{b} \cdot \hat{\omega}_{i}^{\vec{i}} \cdot n\right) + B_{2} \sin\left(2\pi \cdot w_{b} \cdot \hat{\omega}_{i}^{\vec{i}} \cdot n\right)\right] + \dots + \left(2\pi \cdot \hat{\omega}_{i}^{\vec{i}}\right) \cdot \left(e^{-2\pi \cdot f \cdot \hat{\omega}_{i}^{\vec{i}}}\right)^{n} \left[F_{1} \cos\left(2\pi \cdot w_{f} \cdot \hat{\omega}_{i}^{\vec{i}} \cdot n\right) + F_{2} \sin\left(2\pi \cdot w_{f} \cdot \hat{\omega}_{i}^{\vec{i}} \cdot n\right)\right]$$

$$(6.37)$$

Применение к (6.37) прямого Z-преобразования и последующее сворачивание геометрических прогрессий в соответствии с таблицей 2.1 дает системную функцию цифрового НЧ-прототипа

$$K_{\hat{0}\hat{i}\div}(z) = \left(2\pi \cdot \hat{\omega}_{\hat{i}}^{\tilde{i}}\right) \left\{ \frac{A}{1 - z^{-1} \left(e^{-2\pi \cdot \alpha \cdot \hat{\omega}_{\hat{i}}^{\tilde{i}}}\right)} + \frac{B_{1} + z^{-1} \left(e^{-2\pi \cdot b \cdot \hat{\omega}_{\hat{i}}^{\tilde{i}}}\right) \cdot \left[B_{2} sin \left(2\pi \cdot \sigma_{b} \hat{\omega}_{\hat{i}}^{\tilde{i}}\right) - B_{1} cos \left(2\pi \cdot \sigma_{b} \hat{\omega}_{\hat{i}}^{\tilde{i}}\right)\right]}{1 - 2z^{-1} \left(e^{-2\pi \cdot b \cdot \hat{\omega}_{\hat{i}}^{\tilde{i}}}\right) cos \left(2\pi \cdot \sigma_{b} \hat{\omega}_{\hat{i}}^{\tilde{i}}\right) + z^{-2} \left(e^{-2\pi \cdot b \cdot \hat{\omega}_{\hat{i}}^{\tilde{i}}}\right)^{2}} + \cdots \right\}.$$
(6.38)
6.5.2 Частотные преобразования НЧ-прототипа с помощью преобразований Константинидиса

Применение метода инвариантной импульсной характеристики для проектирования цифровых фильтров различного назначения (полосовых (ПФ), фильтров верхних частот (ФВЧ) и заграждающих (РФ)) связано с частотными преобразованиями, для реализации которых используется цифровое преобразование полосы частот (преобразование Константинидиса).

Системная функция цифрового ФНЧ-прототипа преобразуется в системную функцию ПФ, РФ или ФВЧ путем замены нормированного оператора Z^{-1} в соответствии с формулами, приведенными в таблице 6.5, с последующим расчетом граничных частот аналогового НЧ-прототипа.

Применение преобразований Константинидиса приводит к деформации граничных частот цифрового фильтра-прототипа.

Рассмотрим деформацию граничных частот цифрового фильтрапрототипа на примере полосового фильтра (таблица 6.5).

$$Z^{-1} \rightarrow -\frac{\frac{\beta - 1}{\beta + 1} - \frac{2\alpha\beta}{\beta + 1} \cdot z^{-1} + z^{-2}}{1 - \frac{2\alpha\beta}{\beta + 1} \cdot z^{-1} + \frac{\beta - 1}{\beta + 1} \cdot z^{-2}} = -\frac{(\beta - 1) - (2\alpha\beta) \cdot z^{-1} + (\beta + 1)z^{-2}}{(\beta + 1) - (2\alpha\beta) \cdot z^{-1} + (\beta - 1) \cdot z^{-2}}$$
(6.39)

$$Z \to -\frac{(\beta+1) - (2\alpha\beta) \cdot z + (\beta-1)z^2}{(\beta-1) - (2\alpha\beta) \cdot z + (\beta+1) \cdot z^2} = -\frac{\beta(z+z^{-1}) + (z-z^{-1}) - 2\alpha\beta}{\beta(z+z^{-1}) - (z-z^{-1}) - 2\alpha\beta}$$
(6.40)

Переходя в (6.40) к цифровым частотам и комплексным функциям $Z = e^{j\omega^{\Pi}T_{\Lambda}}$ и $z = e^{j\omega^{\Pi}T_{\Lambda}}$, а также применяя формулы Эйлера, получим

$$e^{j\omega^{\Pi}T_{\Pi}} = -\frac{\beta(\cos\omega T_{\Pi} - \alpha) + j\sin\omega T_{\Pi}}{\beta(\cos\omega T_{\Pi} - \alpha) - j\sin\omega T_{\Pi}} = e^{-j\pi}e^{j2\arg[\beta(\cos\omega T_{\Pi} - \alpha) + j\sin\omega T_{\Pi}]}, (6.41)$$

где

 ω^{Π} - частота цифрового ФНЧ-прототипа,

 ω - частота проектируемого цифрового П Φ .

Приравнивая мнимые составляющие выражения (6.41), найдем

$$\omega^{\Pi} T_{\Pi} \to -\pi + 2\arg[\beta(\cos\omega T_{\Pi} - \alpha) + j \cdot \sin\omega T_{\Pi}]$$
(6.42)

Перейдем к нормированным цифровым частотам

$$2\pi \cdot \hat{\omega}^{\hat{i}} \rightarrow -\pi + 2\arg[\beta(\cos 2\pi\hat{\omega} - \alpha) + j \cdot \sin 2\pi\hat{\omega}]$$
(6.42a)

Вычисляя аргумент комплексного выражения (6.42а), получим

$$\hat{\omega}^{\mathbf{i}} \rightarrow \begin{cases} -\frac{1}{2} + \frac{1}{\pi} \operatorname{arctg} \frac{\sin 2\pi \hat{\omega}}{\beta \cdot (\tilde{n} \operatorname{os} 2\pi \hat{\omega} - \alpha)}, & \text{i} \eth \grave{e} & \tilde{n} \operatorname{os} 2\pi \hat{\omega} > \alpha; \\ \frac{1}{2} + \frac{1}{\pi} \operatorname{arctg} \frac{\sin 2\pi \hat{\omega}}{\beta \cdot (\tilde{n} \operatorname{os} 2\pi \hat{\omega} - \alpha)}, & \text{i} \eth \grave{e} & \tilde{n} \operatorname{os} 2\pi \hat{\omega} < \alpha. \end{cases}$$
(6.43)

Результаты расчётов по формулам (6.43) для трёх частных случаев показаны на рисунке 6.8.

Рисунок 6.8 – Графическая иллюстрация связи между нормированной частотой $\hat{\omega}^{i}$ цифрового ФНЧ-прототипа и нормированными частотами требуемых цифровых ПФ с граничными частотами полос пропускания: $\hat{\omega}^{i}_{1}$ ($\hat{\omega}_{i_{1}} = 0,075$ и $\hat{\omega}_{i_{2}} = 0,1$); $\hat{\omega}^{i}_{2}$ ($\hat{\omega}_{i_{1}} = 0,2125$ и $\hat{\omega}_{i_{2}} = 0,2875$); $\hat{\omega}^{i}_{3}$ ($\hat{\omega}_{i_{1}} = 0,4$ и $\hat{\omega}_{i_{2}} = 0,475$).

Проведя аналогичные рассуждения для цифрового режекторного фильтра (таблица 6.5), выведем формулы для расчёта деформации граничных частот цифрового фильтра-прототипа.

$$\hat{\omega}^{\ddot{i}} \to \frac{1}{\pi} \arg[(\tilde{n}os2\pi\hat{\omega} - \alpha) + j \cdot \beta \cdot sin2\pi\hat{\omega}] = \frac{1}{\pi} \arg[(\tilde{n}os2\pi\hat{\omega} - \alpha) + j \cdot \beta \cdot sin2\pi\hat{\omega}] = \frac{1}{\pi} \arg[(\tilde{n}os2\pi\hat{\omega} - \alpha) + j \cdot \beta \cdot sin2\pi\hat{\omega}] = \frac{1}{\pi} \arg[(\tilde{n}os2\pi\hat{\omega} - \alpha) + j \cdot \beta \cdot sin2\pi\hat{\omega}] = \frac{1}{\pi} \arg[(\tilde{n}os2\pi\hat{\omega} - \alpha) + j \cdot \beta \cdot sin2\pi\hat{\omega}] = \frac{1}{\pi} \arg[(\tilde{n}os2\pi\hat{\omega} - \alpha) + j \cdot \beta \cdot sin2\pi\hat{\omega}] = \frac{1}{\pi} \arg[(\tilde{n}os2\pi\hat{\omega} - \alpha) + j \cdot \beta \cdot sin2\pi\hat{\omega}] = \frac{1}{\pi} \arg[(\tilde{n}os2\pi\hat{\omega} - \alpha) + j \cdot \beta \cdot sin2\pi\hat{\omega}] = \frac{1}{\pi} \arg[(\tilde{n}os2\pi\hat{\omega} - \alpha) + j \cdot \beta \cdot sin2\pi\hat{\omega}] = \frac{1}{\pi} \arg[(\tilde{n}os2\pi\hat{\omega} - \alpha) + j \cdot \beta \cdot sin2\pi\hat{\omega}] = \frac{1}{\pi} \arg[(\tilde{n}os2\pi\hat{\omega} - \alpha) + j \cdot \beta \cdot sin2\pi\hat{\omega}] = \frac{1}{\pi} \arg[(\tilde{n}os2\pi\hat{\omega} - \alpha) + j \cdot \beta \cdot sin2\pi\hat{\omega}] = \frac{1}{\pi} \arg[(\tilde{n}os2\pi\hat{\omega} - \alpha) + j \cdot \beta \cdot sin2\pi\hat{\omega}] = \frac{1}{\pi} \arg[(\tilde{n}os2\pi\hat{\omega} - \alpha) + j \cdot \beta \cdot sin2\pi\hat{\omega}] = \frac{1}{\pi} \arg[(\tilde{n}os2\pi\hat{\omega} - \alpha) + j \cdot \beta \cdot sin2\pi\hat{\omega}] = \frac{1}{\pi} \arg[(\tilde{n}os2\pi\hat{\omega} - \alpha) + j \cdot \beta \cdot sin2\pi\hat{\omega}] = \frac{1}{\pi} \arg[(\tilde{n}os2\pi\hat{\omega} - \alpha) + j \cdot \beta \cdot sin2\pi\hat{\omega}] = \frac{1}{\pi} \arg[(\tilde{n}os2\pi\hat{\omega} - \alpha) + j \cdot \beta \cdot sin2\pi\hat{\omega}] = \frac{1}{\pi} \arg[(\tilde{n}os2\pi\hat{\omega} - \alpha) + j \cdot \beta \cdot sin2\pi\hat{\omega}] = \frac{1}{\pi} \arg[(\tilde{n}os2\pi\hat{\omega} - \alpha) + j \cdot \beta \cdot sin2\pi\hat{\omega}] = \frac{1}{\pi} \arg[(\tilde{n}os2\pi\hat{\omega} - \alpha) + j \cdot \beta \cdot sin2\pi\hat{\omega}] = \frac{1}{\pi} \arg[(\tilde{n}os2\pi\hat{\omega} - \alpha) + j \cdot \beta \cdot sin2\pi\hat{\omega}] = \frac{1}{\pi} \arg[(\tilde{n}os2\pi\hat{\omega} - \alpha) + j \cdot \beta \cdot sin2\pi\hat{\omega}] = \frac{1}{\pi} \arg[(\tilde{n}os2\pi\hat{\omega} - \alpha) + j \cdot \beta \cdot sin2\pi\hat{\omega}] = \frac{1}{\pi} \arg[(\tilde{n}os2\pi\hat{\omega} - \alpha) + j \cdot \beta \cdot sin2\pi\hat{\omega}] = \frac{1}{\pi} \arg[(\tilde{n}os2\pi\hat{\omega} - \alpha) + j \cdot \beta \cdot sin2\pi\hat{\omega}] = \frac{1}{\pi} \arg[(\tilde{n}os2\pi\hat{\omega} - \alpha) + j \cdot \beta \cdot sin2\pi\hat{\omega}] = \frac{1}{\pi} \arg[(\tilde{n}os2\pi\hat{\omega} - \alpha) + j \cdot \beta \cdot sin2\pi\hat{\omega}] = \frac{1}{\pi} \arg[(\tilde{n}os2\pi\hat{\omega} - \alpha) + j \cdot \beta \cdot sin2\pi\hat{\omega}] = \frac{1}{\pi} \arg[(\tilde{n}os2\pi\hat{\omega} - \alpha) + j \cdot \beta \cdot sin2\pi\hat{\omega}] = \frac{1}{\pi} \arg[(\tilde{n}os2\pi\hat{\omega} - \alpha) + j \cdot \beta \cdot sin2\pi\hat{\omega}] = \frac{1}{\pi} \arg[(\tilde{n}os2\pi\hat{\omega} - \alpha) + j \cdot \beta \cdot sin2\pi\hat{\omega}] = \frac{1}{\pi} \arg[(\tilde{n}os2\pi\hat{\omega} - \alpha) + j \cdot \beta \cdot sin2\pi\hat{\omega}] = \frac{1}{\pi} \arg[(\tilde{n}os2\pi\hat{\omega} - \alpha) + j \cdot \beta \cdot sin2\pi\hat{\omega}] = \frac{1}{\pi} \arg[(\tilde{n}os2\pi\hat{\omega} - \alpha) + j \cdot \beta \cdot sin2\pi\hat{\omega}] = \frac{1}{\pi} \arg[(\tilde{n}os2\pi\hat{\omega} - \alpha) + j \cdot \beta \cdot sin2\pi\hat{\omega}] = \frac{1}{\pi} \arg[(\tilde{n}os2\pi\hat{\omega} - \alpha) + j \cdot \beta \cdot sin2\pi\hat{\omega}] = \frac{1}{\pi} \arg[(\tilde{n}os2\pi\hat{\omega} - \alpha) + j \cdot \beta \cdot sin2\pi\hat{\omega}] = \frac{1}{\pi} \arg[(\tilde{n}os2\pi\hat{\omega} - \alpha) + j \cdot \beta \cdot sin2\pi\hat{\omega}] = \frac{$$

Результаты расчётов по формуле (6.44)для трёх частных случаев показаны на рисунке 6.9.

Рисунок 6.9 – Графическая иллюстрация связи между нормированной частотой $\hat{\omega}^{\ddot{i}}$ цифрового ФНЧ-прототипа и нормированными частотами требуемых цифровых РФ с граничными частотами полос пропускания: $\hat{\omega}^{\ddot{i}}_{1}$ ($\hat{\omega}_{\dot{i}|1} = 0,075$ и $\hat{\omega}_{\dot{i}|2} = 0,1$); $\hat{\omega}^{\ddot{i}}_{2}$ ($\hat{\omega}_{\dot{i}|1} = 0,2125$ и $\hat{\omega}_{\dot{i}|2} = 0,2875$); $\hat{\omega}^{\ddot{i}}_{3}$ ($\hat{\omega}_{\dot{i}|1} = 0,4$ и $\hat{\omega}_{\dot{i}|2} = 0,475$).

Переход к аналоговой частоте НЧ-прототипа от частоты цифрового ФНЧ-прототипа согласно (6.35) запишется следующим образом:

$$\Omega = \hat{\omega} \cdot \omega_{\dot{a}} \,\,\dot{e} \ddot{e} \dot{e} \,\,\hat{\Omega} = \Omega / \Omega_{\ddot{i}} = \hat{\omega}^{\ddot{i}} / \hat{\omega}_{\dot{i}}^{\ddot{i}} \tag{6.46}$$

Графическая иллюстрация цифрового преобразования полосы частот для полосовых и режекторных фильтров показана на рисунке 6.10. Необходимые расчетные формулы представлены в таблице 6.8. Результаты расчетов деформированных цифровых частот ФНЧ-прототипа для некоторых полос пропускания (заграждения) приведены в таблицах 9.2.1-9.2.4.

Рисунок 6.10– Преобразование цифрового ФНЧ в цифровой ПФ (РФ) с нормированными граничными частотами полосы пропускания $\hat{\omega}_{\Pi 1} = 0,025$, $\hat{\omega}_{\Pi 2} = 0,1$ ($\hat{\omega}_{\Pi 1} = 0,025$, $\hat{\omega}_{\Pi 2} = 0,1$) с помощью преобразования Константинидиса

Таблица 6.8 – Преобразования Константинидиса и расчет частот цифрового ФНЧ-прототипа при синтезе РЦФ методом ИИХ

Тип фильтра	Преобразование Z ⁻¹	Формулы для расчета частот НЧ-прототипа
ФНЧ	$Z^{-1} \to z^{-1}$ $(Z \to z)$	$\alpha = 0, \hat{\omega}^{\ddot{i}} \to \hat{\omega}, \\ \hat{\omega} - нормированная частота требуемого цифрового ФНЧ, \hat{\omega}^{\ddot{i}} - нормированная частота цифрового ФНЧ-прототипа$
ФВЧ	$Z^{-1} \rightarrow -z^{-1}$ $(Z \rightarrow -z)$	$\alpha = 0, \qquad \hat{\omega}^{\mathbf{i}} = -0.5 + \hat{\omega}$
ПФ	$Z^{-1} \to -\frac{(\beta - 1) - 2\alpha\beta \cdot z^{-1} + (\beta + 1) \cdot z^{-2}}{(\beta + 1) - 2\alpha\beta \cdot z^{-1} + (\beta - 1) \cdot z^{-2}}$	$ \hat{\omega}^{\mathbf{i}} \rightarrow -\frac{1}{2} + \frac{1}{\pi} \arg[\beta \cdot (\tilde{n}os2\pi\hat{\omega} - \alpha) + j \cdot sin2\pi\hat{\omega}], \\ \hat{\omega}^{\mathbf{i}} \rightarrow \begin{cases} -\frac{1}{2} + \frac{1}{\pi} \arccos\frac{sin2\pi\hat{\omega}}{\beta \cdot (\tilde{n}os2\pi\hat{\omega} - \alpha)}, & \tilde{a}\tilde{\mathbf{n}}\tilde{\mathbf{e}}\tilde{\mathbf{e}} \tilde{n}os2\pi\hat{\omega} > \alpha; \\ \frac{1}{2} + \frac{1}{\pi} \arccos\frac{sin2\pi\hat{\omega}}{\beta \cdot (\tilde{n}os2\pi\hat{\omega} - \alpha)}, & \tilde{a}\tilde{\mathbf{n}}\tilde{\mathbf{e}}\tilde{\mathbf{e}} \tilde{n}os2\pi\hat{\omega} < \alpha. \end{cases} \\ \beta = \operatorname{ctg}[\pi(\hat{\omega}_{\mathbf{i}}_{2} - \hat{\omega}_{\mathbf{i}}_{1})] \cdot \operatorname{tg}(\pi\hat{\omega}_{\mathbf{i}}^{\mathbf{i}}) $
РФ	$Z^{-1} \to -\frac{(\beta - 1) + 2\alpha \cdot z^{-1} - (\beta + 1) \cdot z^{-2}}{(\beta + 1) - 2\alpha \cdot z^{-1} - (\beta - 1) \cdot z^{-2}}$	$\hat{\omega}^{\mathbf{i}} \rightarrow \frac{1}{\pi} \arg[(\tilde{n}os 2\pi\hat{\omega} - \alpha) + j \cdot \beta \cdot \sin 2\pi\hat{\omega}]$ $\hat{\omega}^{\mathbf{i}} \rightarrow \frac{1}{\pi} \arccos\frac{\beta \cdot \sin 2\pi\hat{\omega}}{(\tilde{n}os 2\pi\hat{\omega} - \alpha)}.$ $\beta = tg[\pi(\hat{\omega}_{\mathbf{i}_{2}} - \hat{\omega}_{\mathbf{i}_{1}})] \cdot tg(\pi\hat{\omega}_{\mathbf{i}_{1}}^{\mathbf{i}_{1}})$
Вспомогательные параметры		$\alpha = \frac{\cos \pi (\hat{\omega}_{i_{2}} + \hat{\omega}_{i_{1}})}{\cos \pi (\hat{\omega}_{i_{2}} - \hat{\omega}_{i_{1}})}, \ \hat{\omega}_{i}^{i} = \frac{\hat{\omega}_{i_{2}} - \hat{\omega}_{i_{1}}}{2}$

6.5.3 Порядок расчета РЦФ методом ИИХ

Порядок расчета РЦФ методом инвариантной импульсной характеристики (ИИХ) включает следующие шаги

• Переход от граничных цифровых частот полос пропускания и заграждения к нормированным $\hat{\omega} = \omega/\omega_{\ddot{a}} = f/f_{\ddot{a}}$.

• Определение деформированных цифровых граничных частот полос пропускания и заграждения цифрового ФНЧ по формулам, приведенным в таблице 6.8 (или по таблицам приложений 9.2.1-9.2.4).

• Переход от граничных частот цифрового ФНЧ к аналоговым граничным частотам полос пропускания и заграждения НЧ-прототипа $\hat{\Omega} = \Omega/\Omega_{\rm i}$.

• Выбор (или задание) классического НЧ-прототипа Баттерворта, Чебышева или др.

• Расчет порядка классического НЧ-прототипа и выбор импульсной характеристики по таблицам 9.3.1-9.3.9 или 9.4.1-9.4.9.

• Выполнение дискретизации импульсной характеристики НЧ-прототипа.

• Применение прямого z-преобразования к дискретизированной импульсной характеристике НЧ-прототипа и получение системной функции цифрового ФНЧ путем сворачивания геометрических прогрессий.

• Расчёт параметров преобразований Константинидиса.

• Преобразование системной функции цифрового ФНЧ в системную функцию цифрового фильтра, требуемого назначения с помощью преобразований Константинидиса.

• Расчет частотных характеристик ЦФ, системная функция которых представлена суммой биквадратных звеньев.

• Расчет временных характеристик.

7 ПРАКТИЧЕСКОЕ ПРИЛОЖЕНИЕ К СИНТЕЗУ РЕКУРСИВНЫХ ЦИФРОВЫХ ФИЛЬТРОВ РАЗЛИЧНОГО НАЗНАЧЕНИЯ

7.1 Синтез цифрового ФНЧ Баттерворта методом обобщённого билинейного Z-преобразования

Разработать цифровой ФНЧ с параметрами:

- частота дискретизации 100 кГц;
- граничная частота полосы пропускания 8 кГц;
- граничная частота полосы заграждения 16 кГц;
- затухание АЧХ в пределах полосы пропускания 3 дБ;
- затухание АЧХ в пределах полосы заграждения 13 дБ.

1. Расчет нормированных цифровых частот

$$\hat{\omega}_{\rm i} = \omega_{\rm i} / \omega_{\rm a} = f_{\rm i} / f_{\rm a} = 8/100 = 0.08$$

$$\hat{\omega}_{\rm c} = \omega_{\rm c}/\omega_{\rm a} = f_{\rm c}/f_{\rm a} = 16/100 = 0.16$$

2. Расчет нормированных аналоговых частот фильтра-прототипа $\hat{\Omega}_{\ddot{i}} = \gamma_{\hat{0}\dot{i} \div} tg(\pi \hat{\omega}_{\dot{i}}) = 1.$

Здесь
$$\hat{\Omega} = \Omega/\Omega_{\tilde{1}}$$
, $\gamma_{\hat{0}\hat{1}+} = ctg(\pi\hat{\omega}_{\tilde{1}}) = ctg(\pi \cdot 0.08) = 3.8947$.

$$\hat{\Omega}_{\rm c} = \gamma_{\hat{0}\hat{1} \div} tg(\pi \hat{\omega}_{\rm c}) = ctg(\pi \cdot 0.08) \cdot tg(\pi \cdot 0.16) = 3.8947 \cdot 0.5498 = 2.1411$$

3. Расчет порядка фильтра Баттерворта

$$N_{\rm E} \ge \frac{\lg\sqrt{\frac{10^{0,1A_3} - 1}{10^{0,1A_{\rm II}} - 1}}}{\lg|\Omega_3 / \Omega_{\rm II}|} = \frac{\lg\sqrt{\frac{10^{0,1\cdot 3} - 1}{10^{0,1\cdot 3} - 1}}}{\lg|2,1411/1|} = \frac{\lg\sqrt{\frac{19,9526 - 1}{1,9953 - 1}}}{0,3306} = \frac{0.6399}{0,3306} = 1,9354$$

$$N_{\rm E} = 2$$

4. Определение передаточной функции фильтра Баттерворта согласно таблице 9.3.9

$$K_{A}(\hat{p}) = \frac{l}{\hat{p}^{2} + k \cdot \hat{p} + m}$$
, где $\hat{p} = p/\Omega_{\tilde{1}}$, $l=1,00237729$, $m=1,00237729$,

k = 1,41589356.

5. Определение системной функции цифрового ФНЧ Баттерворта

$$\hat{p} = \gamma_{\hat{0}\hat{1} \div} \frac{1 - z^{-1}}{1 + z^{-1}}$$
$$\gamma_{\phi_{HY}} = ctg(\pi \cdot 0, 08) = 3,8947$$

$$K_{1}(z) = \frac{m}{\left(\gamma_{\phi H^{q}} \frac{1-z^{-1}}{1+z^{-1}}\right)^{2} + k_{1} \cdot \gamma_{\phi H^{q}} \frac{1-z^{-1}}{1+z^{-1}} + k}}{k_{1}(z) = \frac{m \cdot (1+z^{-1})^{2}}{\gamma_{\phi H^{q}}^{2} (1-z^{-1})^{2} + k_{1} \cdot \gamma_{\phi H^{q}} (1-z^{-2}) + k(1+z^{-1})^{2}}}{\left[\gamma_{\phi H^{q}}^{2} + k_{1}\gamma_{\phi H^{q}} + k\left[1 - \frac{2\gamma_{\phi H^{q}}^{2} - 2}{\gamma_{\phi H^{q}}^{2} + k_{1}\gamma_{\phi H^{q}} + k} z^{-1} + \frac{\gamma_{\phi H^{q}}^{2} - k_{1}\gamma_{\phi H^{q}} + k}{\gamma_{\phi H^{q}}^{2} + k_{1}\gamma_{\phi H^{q}} + k} z^{-2}\right]}$$

$$K_{1}(z) = 0.0462 \cdot \frac{1 + 2z^{-1} + z^{-2}}{1 - 1.3065z^{-1} + 0.4914z^{-2}}$$

Амплитудно-частотная характеристика фильтра $|K_1(\hat{\omega})|$ получена из системной функции $K_1(z)$ при $z = e^{j\omega T_{\ddot{a}}} = e^{j2\pi\hat{\omega}}$ и представлена на рис.7.1.

Рисунок 7.1 – Амплитудно-частотные характеристики двух ФНЧ, рассчитанных в пунктах 7.1 и 7.2

7.2 Синтез цифрового ФНЧ Баттерворта методом обобщённого билинейного Z-преобразования

Разработать цифровой ФНЧ с параметрами:

- частота дискретизации 100 кГц;
- граничная частота полосы пропускания 22 кГц;
- граничная частота полосы заграждения 36 кГц;
- затухание АЧХ в пределах полосы пропускания 3 дБ;
- затухание АЧХ в пределах полосы заграждения 15 дБ.

1. Расчет нормированных цифровых частот $\hat{\omega}_{i} = \omega_{i} / \omega_{\ddot{a}} = f_{i} / f_{\ddot{a}} = 22/100 = 0,22$ $\hat{\omega}_{\varsigma} = \omega_{\varsigma} / \omega_{\ddot{a}} = f_{\varsigma} / f_{\ddot{a}} = 36/100 = 0,36$ 2. Расчет нормированных аналоговых частот фильтра-прототипа

 $\hat{\Omega}_{\ddot{i}} = \gamma_{\hat{0}\dot{i} \div} tg(\pi \hat{\omega}_{\dot{i}}) = 1.$ Здесь $\hat{\Omega} = \Omega/\Omega_{\ddot{i}}$, $\gamma_{\hat{0}\dot{i} \div} = ctg(\pi \hat{\omega}_{\dot{i}}) = ctg(\pi \cdot 0,22) = 1,2088.$ $\hat{\Omega}_{c} = \gamma_{\hat{0}\dot{i} \div} tg(\pi \hat{\omega}_{c}) = ctg(\pi \cdot 0,22) \cdot tg(\pi \cdot 0,36) = 1,2088 \cdot 2,1251 = 2,5688$ 3. Расчет порядка фильтра Баттерворта

$$N_{\rm b} \ge \frac{\lg \sqrt{\frac{10^{0,1A_3} - 1}{10^{0,1A_{\rm II}} - 1}}}{\lg |\Omega_3 / \Omega_{\rm II}|} = \frac{\lg \sqrt{\frac{10^{0,1 \cdot 15} - 1}{10^{0,1 \cdot 3} - 1}}}{\lg |2,5688/1|} = \frac{\lg \sqrt{\frac{31,6228 - 1}{1,9953 - 1}}}{0,4097} = \frac{0,7441}{0,4097} = 1,8162$$

$$N_{\rm b} = 2$$

4. Определение передаточной функции фильтра Баттерворта по таблице 9.3.9 (аналогично примеру 7.1).

$$K_{\text{A}}(\hat{p}) = \frac{l}{\hat{p}^2 + k \cdot \hat{p} + m}$$
, где $\hat{p} = p/\Omega_{\text{i}}$, $l=1,00237729$, $m=1,00237729$,

k = 1,41589356.

5. Определение системной функции цифрового ФНЧ Баттерворта

$$\begin{split} \hat{p} &= \gamma_{\delta i \div} \frac{1-z^{-1}}{1+z^{-1}} \\ \gamma_{\phi H H} &= ctg(\pi \cdot 0,22) = 1,2088 \\ K_2(z) &= \frac{1}{\left(\gamma_{\phi H H} \frac{1-z^{-1}}{1+z^{-1}}\right)^2 + \sqrt{2} \cdot \gamma_{\phi H H} \frac{1-z^{-1}}{1+z^{-1}} + 1} \\ K_2(z) &= \frac{\left(1+z^{-1}\right)^2}{\gamma_{\phi H H}^2 \left(1-z^{-1}\right)^2 + \sqrt{2} \cdot \gamma_{\phi H H} \left(1-z^{-2}\right) + \left(1+z^{-1}\right)^2} \\ K_2(z) &= \frac{\left(1+z^{-1}\right)^2}{\left[\gamma_{\phi H H}^2 + \sqrt{2} \cdot \gamma_{\phi H H} + 1\right] \left[1 - \frac{2\gamma_{\phi H H}^2 - 2}{\gamma_{\phi H H}^2 + \sqrt{2} \cdot \gamma_{\phi H H} + 1} z^{-1} + \frac{\gamma_{\phi H H}^2 - \sqrt{2} \cdot \gamma_{\phi H H} + 1}{\gamma_{\phi H H}^2 + \sqrt{2} \cdot \gamma_{\phi H H} + 1} z^{-2}\right]} \\ K_2(z) &= 0,2398 \cdot \frac{1+2z^{-1}+z^{-2}}{1-0,2212z^{-1}+0,1803z^{-2}} \end{split}$$

Амплитудно-частотная характеристика фильтра $|K_2(\hat{\omega})|$ получена из системной функции $K_2(z)$ при $z = e^{j\omega T_{a}} = e^{j2\pi\hat{\omega}}$ и представлена на рисунке 7.1.

Частотные (амплитудно-частотные и фазочастотные) и временные (переходные и импульсные) характеристики двух ФНЧ, рассчитанных в пунктах 7.1 и 7.2, показаны на рисунке 7.2.

Рисунок 7.2 – Рабочее окно программы, иллюстрирующее частотные и временные характеристики цифровых ФНЧ

7.3 Синтез цифрового ФВЧ Баттерворта методом обобщенного билинейного Z-преобразования

Разработать цифровой ФВЧ с параметрами:

- частота дискретизации 100 кГц;
- граничная частота полосы пропускания 8 кГц;
- граничная частота полосы заграждения 3,4 кГц;
- затухание АЧХ в пределах полосы пропускания 3 дБ;
- затухание АЧХ в пределах полосы заграждения 15 дБ.

1. Расчет нормированных цифровых частот ФВЧ $\hat{\omega}_{i} = \omega_{i} / \omega_{\ddot{a}} = f_{i} / f_{\ddot{a}} = 8/100 = 0,08$ $\hat{\omega}_{\varsigma} = \omega_{\varsigma} / \omega_{\ddot{a}} = f_{\varsigma} / f_{\ddot{a}} = 3,4/100 = 0,034$ 2. Расчет деформированных частот аналогового НЧ-прототипа $\hat{\Omega} = \gamma_{\hat{0}\hat{a} \div} \cdot \tilde{n}tg\pi\hat{\omega}$ $\gamma_{\hat{0}\hat{a} \div} = tg\pi\hat{\omega}_{i} = tg(\pi \cdot 0,08) = 0,2568$ $\hat{\Omega}_{\ddot{i}} = \gamma_{\hat{0}\hat{a} \div} ctg\pi\hat{\omega}_{i} = tg(\pi \cdot 0,08) \cdot ctg(\pi \cdot 0,08) = 1$ $\hat{\Omega}_{\varsigma} = \gamma_{\hat{0}\hat{a} \div} ctg\pi\hat{\omega}_{\varsigma} = 0,2568 \cdot ctg(\pi \cdot 0,034) = 2,395$ 3. Расчет порядка НЧ-прототипа Баттерворта $N_{\vec{A}} \ge \frac{\lg\sqrt{\frac{10^{0,1A_{\varsigma} - 1}{10^{0,1A_{\breve{i}}} - 1}}}{\lg|\hat{\Omega}_{\varsigma}/\hat{\Omega}_{\breve{i}}|} = \frac{\lg\sqrt{\frac{10^{0,1\cdot15} - 1}{10^{0,1\cdot3} - 1}}}{\lg|2,395|} = \frac{0,7441}{0,3793} = 1,9616$ $N_{\vec{b}} = 2$

4. Определение передаточной функции НЧ-прототипа Баттерворта согласно таблице 9.3.9 (аналогично примеру 7.1)

$$K_{\text{A}}(\hat{p}) = \frac{l}{\hat{p}^2 + k \cdot \hat{p} + m}$$
, где $\hat{p} = p/\Omega_{\text{i}}$, $l=1,00237729$, $m=1,00237729$,

k = 1,41589356.

5. Определение системной функции цифрового ФВЧ Баттерворта

$$K_{1}(z) = \frac{1}{\gamma_{\phi B \Psi}^{2} \left(\frac{1+z^{-1}}{1-z^{-1}}\right)^{2} + \sqrt{2} \cdot \gamma_{\phi B \Psi} \frac{1+z^{-1}}{1-z^{-1}} + 1} = \frac{1}{\gamma_{\phi B \Psi}^{2} + \sqrt{2} \cdot \gamma_{\phi B \Psi} + 1} \cdot \frac{1-2z^{-1}+z^{-2}}{\left\{1 - \frac{2\left(1-\gamma_{\phi B \Psi}^{2}\right)}{\gamma_{\phi B \Psi}^{2} + \sqrt{2} \cdot \gamma_{\phi B \Psi} + 1} \cdot z^{-1} + \frac{\gamma_{\phi B \Psi}^{2} - \sqrt{2} \cdot \gamma_{\phi B \Psi} + 1}{\gamma_{\phi B \Psi}^{2} + \sqrt{2} \cdot \gamma_{\phi B \Psi} + 1} \cdot z^{-2}\right\}}$$

При уфвч = 0,25676

$$K_1(z) = 0,6998 \cdot \frac{1 - 2z^{-1} + z^{-2}}{1 - 1,3073z^{-1} + 0,4918z^{-2}}$$

Амплитудно-частотная характеристика фильтра $|K_1(\hat{\omega})|$ получена из системной функции $K_1(z)$ при $z = e^{j\omega T_a} = e^{j2\pi\hat{\omega}}$ и представлена на рисунке 7.3.

Рисунок 7.3 – Амплитудно-частотные характеристики двух ФВЧ, рассчитанных в примерах 7.3 и 7.4

7.4 Синтез цифрового ФВЧ Баттерворта методом обобщенного билинейного Z-преобразования

Разработать цифровой ФВЧ с параметрами:

- частота дискретизации 100 кГц;
- граничная частота полосы пропускания 22 кГц;
- граничная частота полосы заграждения 10 кГц;
- затухание АЧХ в пределах полосы пропускания 3 дБ;
- затухание АЧХ в пределах полосы заграждения 15 дБ.

1. Расчет нормированных цифровых частот ФВЧ

$$\hat{\omega}_{i} = \omega_{i} / \omega_{\ddot{a}} = f_{i} / f_{\ddot{a}} = 8/100 = 0,22$$

 $\hat{\omega}_{\varsigma} = \omega_{\varsigma} / \omega_{\ddot{a}} = f_{\varsigma} / f_{\ddot{a}} = 10/100 = 0,1$
2. Расчет деформированных частот аналогового НЧ-прототипа
 $\hat{\Omega} = \gamma_{\hat{0}\hat{a} \div} \cdot \tilde{n}tg\pi\hat{\omega}$
 $\gamma_{\hat{0}\hat{a} \div} = tg\pi\hat{\omega}_{i} = tg(\pi \cdot 0,22) = 0,8273$
 $\hat{\Omega}_{\ddot{i}} = \gamma_{\hat{0}\hat{a} \div} ctg\pi\hat{\omega}_{\dot{i}} = tg(\pi \cdot 0,22) \cdot ctg(\pi \cdot 0,22) = 1$
 $\hat{\Omega}_{\varsigma} = \gamma_{\hat{0}\hat{a} \div} ctg\pi\hat{\omega}_{\varsigma} = 0,8273 \cdot ctg(\pi \cdot 0,1) = 2,5462$
3. Расчет порядка НЧ-прототипа Баттерворта
 $N_{\acute{A}} \ge \frac{\lg\sqrt{\frac{10^{0,1A_{\varsigma}-1}{10^{0,1A_{\tilde{i}}}-1}}}{\lg|\hat{\Omega}_{\varsigma}/\hat{\Omega}_{i}|} = \frac{\lg\sqrt{\frac{10^{0,1\cdot15}-1}{10^{0,1\cdot3}-1}}}{\lg|2,5462|} = \frac{0,7441}{0,4059} = 1,8332$
 $N_{\breve{B}} = 2$

4. Определение передаточной функции НЧ-прототипа Баттерворта согласно таблице 9.3.9 (аналогично примеру 7.1)

$$K_{\text{A}}(\hat{p}) = \frac{l}{\hat{p}^2 + k \cdot \hat{p} + m}$$
, где $\hat{p} = p/\Omega_{\text{i}}$, $l=1,00237729$, $m=1,00237729$,

k = 1,41589356.

5. Определение системной функции цифрового ФВЧ Баттерворта

$$K_{2}(z) = \frac{1}{\gamma_{\Phi B \Psi}^{2} \left(\frac{1+z^{-1}}{1-z^{-1}}\right)^{2} + \sqrt{2} \cdot \gamma_{\Phi B \Psi} \frac{1+z^{-1}}{1-z^{-1}} + 1} = \frac{1}{\gamma_{\Phi B \Psi}^{2} + \sqrt{2} \cdot \gamma_{\Phi B \Psi} + 1} \cdot \frac{1-2z^{-1}+z^{-2}}{\left\{1 - \frac{2\left(1-\gamma_{\Phi B \Psi}^{2}\right)}{\gamma_{\Phi B \Psi}^{2} + \sqrt{2} \cdot \gamma_{\Phi B \Psi} + 1} \cdot z^{-1} + \frac{\gamma_{\Phi B \Psi}^{2} - \sqrt{2} \cdot \gamma_{\Phi B \Psi} + 1}{\gamma_{\Phi B \Psi}^{2} + \sqrt{2} \cdot \gamma_{\Phi B \Psi} + 1} \cdot z^{-2}\right\}}$$

При $\gamma_{\phi B^{\Psi}} = 0,8273$

$$K_2(z) = 0.3503 \cdot \frac{1 - 2z^{-1} + z^{-2}}{1 - 0.2211z^{-1} + 0.1802z^{-2}}$$

Амплитудно-частотная характеристика фильтра $|K_2(\hat{\omega})|$ получена из системной функции $K_2(z)$ при $z = e^{j\omega T_{\pi}} = e^{j2\pi\hat{\omega}}$ и представлена на рисунке 6.6.

Частотные (амплитудно-частотные и фазочастотные) и временные (переходные и импульсные) характеристики двух ФВЧ, рассчитанных в примерах 7.3 и 7.4, показаны на рисунке 7.4.

Рисунок 7.4 – Рабочее окно программы, иллюстрирующее частотные и временные характеристики цифровых ФВЧ

7.5 Синтез цифрового ПФ Чебышева методом обобщённого билинейного Z-преобразования

Разработать цифровой ПФ с параметрами:

- частота дискретизации 100 кГц;
- граничные частоты полосы пропускания –2кГц и 8 кГц;
- граничные частоты полосы заграждения 1 кГц и 16 кГц;
- затухание АЧХ в пределах полосы пропускания 2 дБ;
- затухание АЧХ в пределах полосы заграждения 15 дБ.

1. Расчет нормированных цифровых частот

$$\hat{\omega}_{i_1} = \omega_{i_1}/\omega_{a} = f_{i_1}/f_{a} = 2/100 = 0,02$$

 $\hat{\omega}_{i_2} = \omega_{i_2}/\omega_{a} = f_{i_2}/f_{a} = 8/100 = 0,08$
 $\hat{\omega}_{c_1} = \omega_{c_1}/\omega_{a} = f_{c_1}/f_{a} = 1/100 = 0,01$
 $\hat{\omega}_{c_2} = \omega_{c_2}/\omega_{a} = f_{c_2}/f_{a} = 16/100 = 0,16$
2. Расчет нормированных аналоговых частот HU-прототипа
 $\hat{\Omega} = \gamma_{i0} \frac{\alpha - \cos(2\pi\hat{\omega})}{\sin(2\pi\hat{\omega})}$.
3десь $\hat{\Omega} = \Omega/\Omega_{i}$, $\gamma_{i0} = ctg\pi(\hat{\omega}_{i_2} - \hat{\omega}_{i_1})$, $\alpha = \frac{\cos\pi(\hat{\omega}_{i_2} + \hat{\omega}_{i_1})}{\cos\pi(\hat{\omega}_{i_2} - \hat{\omega}_{i_1})}$
 $\gamma_{n\phi} = ctg\pi(0,08 - 0,02) = 5,2422$
 $\alpha = \frac{\cos\pi(0,08 + 0,02)}{\cos\pi(0,08 - 0,02)} = \frac{0,95106}{0,98229} = 0,9682$
 $\hat{\Omega}_{i_1} = 5,2422 \cdot \frac{0,9682 - \cos(2\pi \cdot 0,02)}{\sin(2\pi \cdot 0,02)} = 5,2422 \cdot \frac{0,9682 - 0,9921}{0,1253} = -1$
 $\hat{\Omega}_{i_2} = -\hat{\Omega}_{i_1} = 1$
 $\hat{\Omega}_{3_1} = 5,2422 \cdot \frac{0,9682 - \cos(2\pi \cdot 0,08)}{\sin(2\pi \cdot 0,01)} = 5,2422 \cdot \frac{0,9682 - 0,8763}{0,48175} = 1$
 $\hat{\Omega}_{3_2} = 5,2422 \cdot \frac{0,9682 - \cos(2\pi \cdot 0,01)}{\sin(2\pi \cdot 0,01)} = 5,2422 \cdot \frac{0,9682 - 0,9980}{0,06279} = -2,4879$

Из двух значений частот заграждения выбираем меньшее, поскольку оно определяет порядок фильтра.

3. Расчет порядка фильтра Чебышева

$$N_{\rm H} \ge \frac{Arch_{\sqrt{\frac{10^{0,1A_3} - 1}{10^{0,1A_{\rm II}} - 1}}}}{Arch(\hat{\Omega}_3/\hat{\Omega}_{\rm II})} = \frac{Arch_{\sqrt{\frac{10^{0,1\cdot 15} - 1}{10^{0,1\cdot 2} - 1}}}}{Arch(2,4879/1)} = \frac{2,6674}{1,5615} = 1,7082$$

$$N_{\rm H} = 2.$$

4. Определение передаточной функции НЧ-прототипа Чебышева по таблице 9.4.7

 $K_{\times}(\hat{p}) = \frac{l}{\hat{p}^2 + k \cdot \hat{p} + m}$, где $\hat{p} = p/\Omega_{\tilde{1}}$, l = 0.65378014, k = 0.80381643, m = 0.82306043.

5. Определение системной функции пифрового ПФ Чебышева

$$\hat{p} = \gamma_{10} \frac{1 - 2\alpha \cdot z^{-1} + z^{-2}}{1 - z^{-2}}$$

$$\gamma_{n\phi} = 5,2422, \alpha = 0,9682$$

$$K(z) = \frac{l}{\left(\gamma_{n\phi} \frac{1 - 2\alpha \cdot z^{-1} + z^{-2}}{1 - z^{-2}}\right)^2 + k \cdot \gamma_{n\phi} \frac{1 - 2\alpha \cdot z^{-1} + z^{-2}}{1 - z^{-2}} + m}$$

$$K(z) = \frac{a_0 + a_2 z^{-2} + a_4 z^{-4}}{1 - [b_1 z^{-1} + b_2 z^{-2} + b_3 z^{-3} + b_4 z^{-4}]}$$

$$a_0 = \frac{l}{\gamma_{n\phi}^2 + k\gamma_{n\phi} + m}$$

$$a_2 = -\frac{2 \cdot l}{\gamma_{n\phi}^2 + k\gamma_{n\phi} + m}$$

$$a_4 = \frac{l}{\gamma_{n\phi}^2 + k\gamma_{n\phi} + m}$$

$$b_1 = \frac{4\alpha \gamma_{n\phi}^2 + 2\alpha k\gamma_{n\phi}}{\gamma_{n\phi}^2 + k\gamma_{n\phi} + m}$$

$$b_1 = \frac{4\alpha \gamma_{n\phi}^2 + k\gamma_{n\phi} + m}{\gamma_{n\phi}^2 + k\gamma_{n\phi} + m}$$

$$K(z) = \frac{0,0201 - 0,0402z^{-2} + 0,0201z^{-4}}{1 - [3,5239z^{-1} - 4,8085z^{-2} + 3,022z^{-3} - 0,7408z^{-4}]}$$

Амплитудно-частотная характеристика фильтра $|K_1(\hat{\omega})|$ получена из системной функции $K_1(z)$ при $z = e^{j\omega T_{\ddot{a}}} = e^{j2\pi\hat{\omega}}$ и представлена на рисунке 7.5.

Рисунок 7.5 – Амплитудно-частотные характеристики двух ПФ, рассчитанных в пунктах 7.5 и 7.6

7.6 Синтез цифрового ПФ Чебышева методом обобщённого билинейного Z-преобразования

Разработать цифровой ПФ с параметрами:

- частота дискретизации 100 кГц;
- граничные частоты полосы пропускания –22кГц и 28 кГц;
- граничные частоты полосы заграждения 18 кГц и 32 кГц;
- затухание АЧХ в пределах полосы пропускания 2 дБ;
- затухание АЧХ в пределах полосы заграждения 15 дБ.

1. Расчет нормированных цифровых частот

$$\hat{\omega}_{i_{1}} = \omega_{i_{1}} / \omega_{\ddot{a}} = f_{\ddot{i}_{1}} / f_{\ddot{a}} = 22/100 = 0,22$$

$$\hat{\omega}_{i_{2}} = \omega_{i_{2}} / \omega_{\ddot{a}} = f_{i_{2}} / f_{\ddot{a}} = 28/100 = 0,28$$

$$\hat{\omega}_{\varsigma_{1}} = \omega_{\varsigma_{1}} / \omega_{\ddot{a}} = f_{\varsigma_{1}} / f_{\ddot{a}} = 18/100 = 0,18$$

$$\hat{\omega}_{\varsigma_{2}} = \omega_{\varsigma_{2}} / \omega_{\ddot{a}} = f_{\varsigma_{2}} / f_{\ddot{a}} = 32/100 = 0,32$$

2. Расчет нормированных аналоговых частот НЧ-прототипа $\hat{\Omega} = \gamma_{\tilde{1}\hat{0}} \frac{\alpha - \cos(2\pi\hat{\omega})}{\sin(2\pi\hat{\omega})}.$

Здесь
$$\hat{\Omega} = \Omega/\Omega_{i}$$
, $\gamma_{i\hat{0}} = ctg\pi(\hat{\omega}_{i_{2}} - \hat{\omega}_{i_{1}}), \alpha = \frac{\cos\pi(\hat{\omega}_{i_{2}} + \hat{\omega}_{i_{1}})}{\cos\pi(\hat{\omega}_{i_{2}} - \hat{\omega}_{i_{1}})}$
 $\gamma_{n\varphi} = ctg\pi(0,28 - 0,22) = 5,2422$
 $\alpha = \frac{\cos\pi(0,28 + 0,22)}{\cos\pi(0,28 - 0,22)} = \frac{0}{0,98229} = 0$
 $\hat{\Omega}_{i_{1}} = 5,2422 \cdot \frac{0 - \cos(2\pi \cdot 0,22)}{\sin(2\pi \cdot 0,22)} = 5,2422 \cdot \frac{-0,1874}{0,9823} = -1$
 $\hat{\Omega}_{i_{2}} = 5,2422 \cdot \frac{0 - \cos(2\pi \cdot 0,28)}{\sin(2\pi \cdot 0,28)} = 5,2422 \cdot \frac{-(-0,1874)}{0,9823} = 1$
 $\hat{\Omega}_{i_{2}} = -\hat{\Omega}_{i_{1}} = 1$
 $\hat{\Omega}_{3_{1}} = 5,2422 \cdot \frac{0 - \cos(2\pi \cdot 0,18)}{\sin(2\pi \cdot 0,18)} = 5,2422 \cdot \frac{-0,4258}{0,9048} = -2,467$
 $\hat{\Omega}_{3_{2}} = 5,2422 \cdot \frac{0 - \cos(2\pi \cdot 0,32)}{\sin(2\pi \cdot 0,32)} = 5,2422 \cdot \frac{-(-0,4258)}{0,9048} = 2,467$

Два значения частот заграждения получились одинаковыми, т.к. центральная частота полосового фильтра равна половине частоты Найквиста.

3. Расчет порядка фильтра Чебышева

$$N_{\times} \geq \frac{Arch_{\sqrt{\frac{10^{0,1A_{\varsigma}} - 1}{10^{0,1A_{\tilde{i}}} - 1}}}}{Arch_{\tilde{\Omega}_{\varsigma}}/\tilde{\Omega}_{\tilde{i}}}} = \frac{Arch_{\sqrt{\frac{10^{0,1\cdot 15} - 1}{10^{0,1\cdot 2} - 1}}}}{Arch_{(2,467/1)}} = \frac{2,6674}{1,5523} = 1,7184$$

$$N_{\rm H} = 2.$$

4. Определение передаточной функции НЧ-прототипа Чебышева согласно таблице 9.4.7

$$K_{\times}(\hat{p}) = \frac{l}{\hat{p}^2 + k \cdot \hat{p} + m}$$
, где $\hat{p} = p/\Omega_{\tilde{1}}$, $l = 0.65378014$, $k = 0.80381643$, $m = 0.82306043$.

5. Определение системной функции цифрового ПФ Чебышева $\hat{p} = \gamma_{i\hat{0}} \frac{1 - 2\alpha \cdot z^{-1} + z^{-2}}{1 - z^{-2}} = 5,2422 \cdot \frac{1 + z^{-2}}{1 - z^{-2}}$ $\gamma_{ii\phi} = 5,2422, \ \alpha = 0$

$$K(z) = \frac{l}{\left(\gamma_{\Pi\varphi} \frac{1+z^{-2}}{1-z^{-2}}\right)^2 + k \cdot \gamma_{\Pi\varphi} \frac{1+z^{-2}}{1-z^{-2}} + m}$$

$$K(z) = \frac{a_0 + a_2 z^{-2} + a_4 z^{-4}}{1-[b_2 z^{-2} + b_4 z^{-4}]}$$

$$a_0 = \frac{l}{\gamma_{\Pi\varphi}^2 + k\gamma_{\Pi\varphi} + m}$$

$$b_2 = \frac{-2\gamma_{\Pi\varphi}^2 + 2m}{\gamma_{\Pi\varphi}^2 + k\gamma_{\Pi\varphi} + m}$$

$$b_2 = \frac{-2\gamma_{\Pi\varphi}^2 + 2m}{\gamma_{\Pi\varphi}^2 + k\gamma_{\Pi\varphi} + m}$$

$$b_4 = \frac{-\gamma_{\Pi\varphi}^2 + k\gamma_{\Pi\varphi} - m}{\gamma_{\Pi\varphi}^2 + k\gamma_{\Pi\varphi} + m}$$

$$k(z) = \frac{0,0201 - 0,0402z^{-2} + 0,0201z^{-4}}{1-[-1,6396z^{-2} - 0,7408z^{-4}]}$$

Амплитудно-частотная характеристика фильтра $|K_2(\hat{\omega})|$ получена из системной функции $K_2(z)$ при $z = e^{j\omega T_{\ddot{a}}} = e^{j2\pi\hat{\omega}}$ и представлена на рисунке 7.6.

Частотные (амплитудно-частотные и фазочастотные) и временные (переходные и импульсные) характеристики двух ПФ, рассчитанных в пунктах 7.5 и 7.6, показаны на рисунке 7.7.

7.7 Синтез цифрового РФ Баттерворта методом обобщенного билинейного Z-преобразования

Разработать цифровой РФ с параметрами:

- частота дискретизации 128 кГц;
- граничные частоты полосы пропускания 2,56 кГц и 10,24 кГц;
- граничные частоты полосы заграждения 3,84 кГц и 6,4 кГц;

- затухание АЧХ в пределах полосы пропускания 3,01 дБ (*ε*=1);
- затухание АЧХ в пределах полосы заграждения 15 дБ.

1. Расчет нормированных цифровых частот ПФ

$$\hat{\omega}_{i_1} = \omega_{i_1} / \omega_{\ddot{a}} = f_{i_1} / f_{\ddot{a}} = 2,56/128 = 0,02$$

 $\hat{\omega}_{i_2} = \omega_{i_2} / \omega_{\ddot{a}} = f_{i_2} / f_{\ddot{a}} = 10,24/128 = 0,08$
 $\hat{\omega}_{\varsigma_1} = \omega_{\varsigma_1} / \omega_{\ddot{a}} = f_{\varsigma_1} / f_{\ddot{a}} = 3,84/128 = 0,03$
 $\hat{\omega}_{\varsigma_2} = \omega_{\varsigma_2} / \omega_{\ddot{a}} = f_{\varsigma_2} / f_{\ddot{a}} = 6,4/128 = 0,05$
2. Расчет деформированных частот аналогового НЧ-прототипа
 $\hat{\Omega} = \gamma_{\delta\hat{0}} \frac{\sin(2\pi\hat{\omega})}{\alpha - \cos(2\pi\hat{\omega})}$

$$\gamma_{\delta\hat{0}} = tg\pi(\hat{\omega}_{i_{2}} - \hat{\omega}_{i_{1}}) = tg\pi(0,08 - 0,02) = 0,1908$$

Рисунок 7.7 – Рабочее окно программы, иллюстрирующее частотные и временные характеристики цифровых ПФ

$$\alpha = \frac{\cos \pi (\hat{\omega}_{i_{2}} + \hat{\omega}_{i_{1}})}{\cos \pi (\hat{\omega}_{i_{2}} - \hat{\omega}_{i_{1}})} = \frac{\cos \pi (0,08 + 0,02)}{\cos \pi (0,08 - 0,02)} = 0,9682$$

$$\hat{\Omega}_{i_{2}} = -\hat{\Omega}_{i_{1}} = 1$$

$$\hat{\Omega}_{i_{2}} = \gamma_{\delta\delta} \frac{\sin(2\pi \hat{\omega}_{i_{2}})}{\alpha - \cos(2\pi \hat{\omega}_{i_{2}})} = 0,1908 \frac{\sin(2\pi \cdot 0,08)}{0,9683 - \cos(2\pi \cdot 0,08)} = 1$$

$$\hat{\Omega}_{c_{1}} = 0,1908 \cdot \frac{\sin(2\pi \cdot \hat{\omega}_{c_{1}})}{0,9683 - \cos(2\pi \cdot \hat{\omega}_{c_{1}})} = 0,1908 \cdot \frac{\sin(2\pi \cdot 0,03)}{0,9683 - \cos(2\pi \cdot 0,03)} = -2,5561$$

$$\hat{\Omega}_{c_{2}} = 0,1908 \cdot \frac{\sin(2\pi \cdot \hat{\omega}_{c_{2}})}{0,9683 - \cos(2\pi \cdot \hat{\omega}_{c_{2}})} = 0,1908 \cdot \frac{\sin(2\pi \cdot 0,03)}{0,9683 - \cos(2\pi \cdot 0,03)} = 3,4193$$
3. Расчет порядка НЧ-прототипа Баттерворта
$$\sqrt{10^{0,14}c_{1} - 1} = \sqrt{10^{0,1+15} - 1}$$

$$N_{\hat{A}} \ge \frac{\lg \sqrt{\frac{10^{0,1A_{\hat{Y}}} - 1}{10^{0,1A_{\hat{Y}}} - 1}}}{\lg |\hat{\Omega}_{\hat{y}_{1}}/\hat{\Omega}_{\hat{Y}}|} = \frac{\lg \sqrt{\frac{10^{0,1\cdot13} - 1}{10^{0,1\cdot3,01} - 1}}}{\lg |2,5561|} = \frac{0,7431}{0,4076} = 1,8231$$

$$N_{F} = 2$$

4. Определение передаточной функции НЧ-прототипа Баттерворта $K(\hat{p}) = 1/(\hat{p}^2 + \sqrt{2}\hat{p} + 1),$ где $\hat{p} = p/\Omega_{\text{i}}$. $K(\hat{p}) = \frac{1}{\sqrt{2}},$ где $\hat{p}_{\text{i}} = -\frac{\sqrt{2}}{\sqrt{2}} \pm i\frac{\sqrt{2}}{\sqrt{2}}$

$$K(\hat{p}) = \frac{1}{(\hat{p} - \hat{p}_1)(\hat{p} - \hat{p}_2)},$$
 где $\hat{p}_{1,2} = -\frac{\sqrt{2}}{2} \pm j\frac{\sqrt{2}}{2}$
5. Отволяющие системной фили инферерес

5. Определение системной функции цифрового ПФ Баттерворта

$$p = \gamma_{p\varphi} \frac{1 - z^{-2}}{1 - 2\alpha \cdot z^{-1} + z^{-2}} = 0,1908 \frac{1 - z^{-2}}{1 - 2\alpha \cdot z^{-1} + z^{-2}}$$
3 десь $\alpha = 0,9683$, $\gamma_{\delta\delta} = tg\pi(\hat{\omega}_{1_2} - \hat{\omega}_{1_1}) = 0,1908$.

$$K(z) = \frac{1}{\left(\gamma_{\delta\delta} \frac{1 - z^{-2}}{1 - 2\alpha \cdot z^{-1} + z^{-2}}\right)^2 + \sqrt{2} \cdot \gamma_{\delta\delta} \frac{1 - z^{-2}}{1 - 2\alpha \cdot z^{-1} + z^{-2}} + 1}$$

$$K(z) = \frac{\left(1 - 2\alpha \cdot z^{-1} + z^{-2}\right)^2}{\gamma_{p\varphi}^2 \left(1 - z^{-2}\right)^2 + \sqrt{2} \cdot \gamma_{p\varphi} \cdot \left(1 - z^{-2}\right) \cdot \left(1 - 2\alpha \cdot z^{-1} + z^{-2}\right) + \left(1 - 2\alpha \cdot z^{-1} + z^{-2}\right)^2}$$

$$K(z) = \frac{A \cdot \left(a_0 + a_1 \cdot z^{-1} + a_2 \cdot z^{-2} + a_3 \cdot z^{-3} + a_4 \cdot z^{-4}\right)}{1 - \left(b_1 \cdot z^{-1} + b_2 \cdot z^{-2} + b_3 \cdot z^{-3} + b_4 \cdot z^{-4}\right)},$$

$$\begin{split} A &= \frac{1}{\sqrt{2} \cdot \gamma_{p\varphi} + 1 + \gamma_{p\varphi}^{2}}, \\ a_{0} &= 1, \quad a_{1} = -4 \cdot \alpha, \quad a_{2} = 2 + 4 \cdot \alpha^{2}, \quad a_{3} = -4 \cdot \alpha, \quad a_{4} = 1, \\ b_{1} &= \frac{2\sqrt{2} \cdot \gamma_{p\varphi} \cdot \alpha + 4 \cdot \alpha}{\sqrt{2} \cdot \gamma_{p\varphi} + 1 + \gamma_{p\varphi}^{2}}, \quad b_{2} = \frac{2 \cdot \gamma_{p\varphi}^{2} - 2 - 4 \cdot \alpha^{2}}{\sqrt{2} \cdot \gamma_{p\varphi} + 1 + \gamma_{p\varphi}^{2}}, \\ b_{3} &= \frac{-2\sqrt{2} \cdot \gamma_{p\varphi} \cdot \alpha + 4 \cdot \alpha}{\sqrt{2} \cdot \gamma_{p\varphi} + 1 + \gamma_{p\varphi}^{2}}, \quad b_{4} = \frac{\sqrt{2} \cdot \gamma_{p\varphi} - 1 - \gamma_{p\varphi}^{2}}{\sqrt{2} \cdot \gamma_{p\varphi} + 1 + \gamma_{p\varphi}^{2}}. \\ K(z) &= \frac{0,7656 \cdot \left(1 - 3,87282 \cdot z^{-1} + 5,74969 \cdot z^{-2} - 3,87282 \cdot z^{-3} + z^{-4}\right)}{1 - \left(3,3649 \cdot z^{-1} - 4,3461 \cdot z^{-2} + 2,565 \cdot z^{-3} - 0,5869 \cdot z^{-4}\right)} \end{split}$$

Амплитудно-частотная характеристика фильтра $|K_1(\hat{\omega})|$ получена из системной функции $K_1(z)$ при $z = e^{j\omega T_{\ddot{a}}} = e^{j2\pi\hat{\omega}}$ и представлена на рисунке 7.8.

Рисунок 7.8 – Амплитудно-частотные характеристики двух РФ, рассчитанных в пунктах 7.7 и 7.8

7.8 Синтез цифрового РФ Баттерворта методом обобщенного билинейного Z-преобразования

Разработать цифровой РФ с параметрами:

- частота дискретизации 128 кГц;
- граничные частоты полосы пропускания 28,16 кГц и 35,84 кГц;
- граничные частоты полосы заграждения 30,08 кГц и 33,92 кГц;
- затухание АЧХ в пределах полосы пропускания 3,01 дБ;
- затухание АЧХ в пределах полосы заграждения 12 дБ.

1. Расчет нормированных цифровых частот ПФ

$$\hat{\omega}_{i_1} = \omega_{i_1} / \omega_{\ddot{a}} = f_{\ddot{i}_1} / f_{\ddot{a}} = 28,16/128 = 0,22$$

 $\hat{\omega}_{i_2} = \omega_{i_2} / \omega_{\ddot{a}} = f_{i_2} / f_{\ddot{a}} = 35,84/128 = 0,28$
 $\hat{\omega}_{\varsigma_1} = \omega_{\varsigma_1} / \omega_{\ddot{a}} = f_{\varsigma_1} / f_{\ddot{a}} = 30,08/128 = 0,235$
 $\hat{\omega}_{\varsigma_2} = \omega_{\varsigma_2} / \omega_{\ddot{a}} = f_{\varsigma_2} / f_{\ddot{a}} = 33,92/128 = 0,265$

2. Расчет деформированных частот аналогового НЧ-прототипа

$$\hat{\Omega} = \gamma_{\delta\delta} \frac{\sin(2\pi\hat{\omega})}{\alpha - \cos(2\pi\hat{\omega})}$$

$$\gamma_{\delta\delta} = tg\pi(\hat{\omega}_{i_{2}} - \hat{\omega}_{i_{1}}) = tg\pi(0,28 - 0,22) = 0,1908$$

$$\alpha = \frac{\cos\pi(\hat{\omega}_{i_{2}} + \hat{\omega}_{i_{1}})}{\cos\pi(\hat{\omega}_{i_{2}} - \hat{\omega}_{i_{1}})} = \frac{\cos\pi(0,28 + 0,22)}{\cos\pi(0,28 - 0,22)} = 0$$

$$\hat{\Omega}_{i_{2}} = -\hat{\Omega}_{i_{1}} = 1$$

$$\hat{\Omega}_{i_{2}} = \gamma_{\delta\delta} \frac{\sin(2\pi\hat{\omega}_{i_{2}})}{\alpha - \cos(2\pi\hat{\omega}_{i_{2}})} = 0,1908 \frac{\sin(2\pi \cdot 0,28)}{0 - \cos(2\pi \cdot 0,28)} = 1$$

$$\hat{\Omega}_{\varsigma_{1}} = 0,1908 \cdot \frac{\sin(2\pi \cdot \hat{\omega}_{\varsigma_{1}})}{0,9683 - \cos(2\pi \cdot \hat{\omega}_{\varsigma_{1}})} = -0,1908 \cdot \frac{\sin(2\pi \cdot 0,235)}{\cos(2\pi \cdot 0,235)} = -2,0275$$

$$\hat{\Omega}_{\varsigma_{2}} = 0,1908 \cdot \frac{\sin(2\pi \cdot \hat{\omega}_{\varsigma_{2}})}{0 - \cos(2\pi \cdot \hat{\omega}_{\varsigma_{2}})} = -0,1908 \cdot \frac{\sin(2\pi \cdot 0,265)}{\cos(2\pi \cdot 0,265)} = 2,0275$$
3. Расчет порядка НЧ-прототипа Баттерворта

$$N_{\hat{A}} \ge \frac{\lg \sqrt{\frac{10^{0,1A_{\hat{y}}} - 1}{10^{0,1A_{\hat{i}}} - 1}}}{\lg \left| \hat{\Omega}_{\hat{y}_{1}} / \hat{\Omega}_{\hat{i}} \right|} = \frac{\lg \sqrt{\frac{10^{0,1\cdot 12} - 1}{10^{0,1\cdot 3,01} - 1}}}{\lg \left| 2,0275 \right|} = \frac{0,5859}{0,307} = 1,9084$$

$$N_{F} = 2$$

- 4. Определение передаточной функции НЧ-прототипа Баттерворта $K(\hat{p}) = 1/(\hat{p}^2 + \sqrt{2}\hat{p} + 1),$ где $\hat{p} = p/\Omega_{\tilde{1}}$. $K(\hat{p}) = \frac{1}{(\hat{p} - \hat{p}_1)(\hat{p} - \hat{p}_2)},$ где $\hat{p}_{1,2} = -\frac{\sqrt{2}}{2} \pm j\frac{\sqrt{2}}{2}$
 - 5. Определение системной функции цифрового ПФ Баттерворта.

$$p = \gamma_{p\varphi} \frac{1 - z^{-2}}{1 - 2\alpha \cdot z^{-1} + z^{-2}} = 0,1908 \frac{1 - z^{-2}}{1 + z^{-2}}$$
3 десь $\alpha = 0$, $\gamma_{\delta\delta} = tg\pi(\hat{\omega}_{1_2} - \hat{\omega}_{1_1}) = 0,1908$.

$$K(z) = \frac{1}{\left(\gamma_{p\varphi} \frac{1 - z^{-2}}{1 + z^{-2}}\right)^2 + \sqrt{2} \cdot \gamma_{p\varphi} \frac{1 - z^{-2}}{1 + z^{-2}} + 1}$$

$$K(z) = \frac{A \cdot \left(a_0 + a_1 \cdot z^{-1} + a_2 \cdot z^{-2} + a_3 \cdot z^{-3} + a_4 \cdot z^{-4}\right)}{1 \cdot \left(b_1 \cdot z^{-1} + b_2 \cdot z^{-2} + b_3 \cdot z^{-3} + b_4 \cdot z^{-4}\right)},$$

$$A = \frac{1}{\sqrt{2} \cdot \gamma_{p\varphi} + 1 + \gamma_{p\varphi}^2},$$

$$a_0 = 1, \quad a_1 = 0, \quad a_2 = 2, \quad a_3 = 0, \quad a_4 = 1,$$

$$b_1 = 0, \quad b_2 = \frac{2 \cdot \gamma_{p\varphi}^2 - 2}{\sqrt{2} \cdot \gamma_{p\varphi} + 1 + \gamma_{p\varphi}^2}, \quad b_3 = 0, \quad b_4 = \frac{\sqrt{2} \cdot \gamma_{p\varphi} - 1 - \gamma_{p\varphi}^2}{\sqrt{2} \cdot \gamma_{p\varphi} + 1 + \gamma_{p\varphi}^2}.$$

$$K(z) = \frac{1,304 \cdot \left(1 + 2 \cdot z^{-2} + z^{-4}\right)}{1 \cdot \left(-2,514 \cdot z^{-2} - 1,704 \cdot z^{-4}\right)}.$$

Амплитудно-частотная характеристика фильтра $|K_2(\hat{\omega})|$ получена из системной функции $K_2(z)$ при $z = e^{j\omega T_{\ddot{a}}} = e^{j2\pi\hat{\omega}}$ и представлена на рисунке 7.8.

Частотные (амплитудно-частотные и фазочастотные) и временные (переходные и импульсные) характеристики двух ПФ, рассчитанных в пунктах 7.7 и 7.8, показаны на рисунке 7.9.

Рисунок 7.9 – Рабочее окно программы, иллюстрирующее частотные и временные характеристики цифровых РФ

7.9 Синтез цифрового ФНЧ Баттерворта методом инвариантной импульсной характеристики

Разработать цифровой ФНЧ с параметрами:

- частота дискретизации 128 кГц;
- граничная частота полосы пропускания 15 кГц;
- граничная частота полосы заграждения 30 кГц;
- затухание АЧХ в пределах полосы пропускания 3 дБ;
- затухание АЧХ в пределах полосы заграждения 10 дБ.

1. Расчет нормированных цифровых частот $\hat{\omega}_{i} = \omega_{i} / \omega_{\ddot{a}} = f_{\ddot{i}} / f_{\ddot{a}} = 15/128 = 0,1172$ $\hat{\omega}_{c} = \omega_{c} / \omega_{\ddot{a}} = f_{c} / f_{\ddot{a}} = 30/128 = 0,2344$ $\hat{\omega}_{c} / \hat{\omega}_{i} = \frac{0,2344}{0,1172} = 2$

Так как метод инвариантной импульсной характеристики не дает деформации частотной оси, то отношение граничных частот цифрового ФНЧ и отношение граничных частот аналогового НЧ-прототипа совпадают, то есть

$$\hat{\Omega}_{
m c}/\hat{\Omega}_{
m i}=\hat{\omega}_{
m c}/\hat{\omega}_{
m i}$$
 .

2. Расчет порядка фильтра Баттерворта

$$N_{\hat{\mathbf{A}}} \ge \frac{\lg \sqrt{\frac{10^{0,1A_{\hat{\mathbf{c}}}} - 1}{10^{0,1A_{\hat{\mathbf{i}}}} - 1}}}{\lg |\hat{\Omega}_{\hat{\mathbf{c}}}/\hat{\Omega}_{\hat{\mathbf{i}}}|} = \frac{\lg \sqrt{\frac{10^{0,1\cdot 10} - 1}{10^{0,1\cdot 3} - 1}}}{\lg |2|} = \frac{0,4782}{0,301} = 1,5885$$

$$N_{\hat{\mathbf{b}}} = 2$$

3. Определение импульсной характеристики фильтра Баттерворта, нормированной относительно граничной частоты полосы пропускания ω_{Π} , согласно таблице 9.3.9

$$g(t)/\Omega_{\Pi} = Ae^{-a \cdot t} \sin(w_a \cdot t), \ \ \Gamma de \ t \to \Omega_{\Pi} \cdot t$$

 $A = 1,41589356,$
 $a = 0,70794678,$
 $w_a = 0,70794678.$
4. Денормирование импульсной характеристики
 $g(t) = \Omega_{\Pi} \cdot Ae^{-a \cdot t \cdot \Omega_{\Pi}} \sin(w_a \cdot t \cdot \Omega_{\Pi})$
5. Дискретизация импульсной характеристики
 $g(n) = T_{\Pi} \cdot g(t = n \cdot T_{\Pi})$
 $\Omega_{I} \cdot T_{II} = 2\pi \cdot \hat{\omega}_{I}, \ \ \Pi ockonbky \ \Omega_{\Pi} = \omega_{\Pi}.$
 $g(n) = A(2\pi \cdot \hat{\omega}_{I}) \cdot (e^{-2\pi \cdot a \cdot \hat{\omega}_{I}})^{n} \sin(2\pi \cdot w_a \cdot \hat{\omega}_{I} \cdot n)$

$$g(n) = 1,0426 \cdot \left(e^{-0.5213}\right)^n \sin(0.5213 \cdot n)$$

$$g(n) = 1,0426 \cdot (0.5938)^n \sin(0.5213 \cdot n)$$

6. Определение системной функции цифрового ФНЧ (в соответствии с таблицей 2.2)

$$K_{\sin}(z) = \frac{A \cdot z^{-1} e^{-\alpha T_{\pi}} \sin(\omega \cdot T_{\pi})}{1 - 2z^{-1} e^{-\alpha T_{\pi}} \cos(\omega \cdot T_{\pi}) + z^{-2} e^{-2\alpha T_{\pi}}}$$
$$K_{1}(z) = \frac{z^{-1} \cdot 1,0426 \cdot 0,5938 \cdot \sin(0,5213)}{1 - 2 \cdot 0,5938 \cdot \cos(0,5213) \cdot z^{-1} + 0,5938^{2} \cdot z^{-2}}$$
$$K_{1}(z) = \frac{z^{-1} \cdot 0,3083}{1 - 1,0299 \cdot z^{-1} + 0,3526 \cdot z^{-2}}$$

Амплитудно-частотная характеристика фильтра $|K_1(\hat{\omega})|$ получена из системной функции $K_1(z)$ при $z = e^{j\omega T_a} = e^{j2\pi\hat{\omega}}$ и представлена на рисунке 7.10.

Рисунок 7.10 – Амплитудно-частотные характеристики ФНЧ, рассчитанных в пунктах 7.9 и 7.10

7.10 Синтез цифрового ФНЧ Баттерворта методом инвариантной импульсной характеристики

Разработать цифровой ФНЧ с параметрами:

- частота дискретизации 128 кГц;
- граничная частота полосы пропускания 15 кГц;
- граничная частота полосы заграждения 30 кГц;
- затухание АЧХ в пределах полосы пропускания 3 дБ;
- затухание АЧХ в пределах полосы заграждения 20 дБ.

1. Расчет нормированных цифровых частот

$$\hat{\omega}_{i} = \omega_{i} / \omega_{\ddot{a}} = f_{\ddot{i}} / f_{\ddot{a}} = \frac{15}{128} = 0.1172$$
$$\hat{\omega}_{c} = \omega_{c} / \omega_{\ddot{a}} = f_{c} / f_{\ddot{a}} = \frac{30}{128} = 0.2344$$
$$\hat{\omega}_{c} / \hat{\omega}_{\dot{i}} = \frac{0.2344}{0.1172} = 2$$

Так как метод инвариантной импульсной характеристики не дает деформации частотной оси, то отношение граничных частот цифрового ФНЧ и отношение граничных частот аналогового НЧ-прототипа совпадают, то есть

$$\hat{\Omega}_{\rm c}/\hat{\Omega}_{\rm i} = \hat{\omega}_{\rm c}/\hat{\omega}_{\rm i}$$

•

2. Расчет порядка фильтра Баттерворта

$$N_{\hat{\mathrm{A}}} \ge \frac{\lg \sqrt{\frac{10^{0,1A_{\hat{\mathrm{v}}}} - 1}{10^{0,1A_{\hat{\mathrm{r}}}} - 1}}}{\lg |\hat{\Omega}_{\hat{\mathrm{v}}}/\hat{\Omega}_{\hat{\mathrm{r}}}|} = \frac{\lg \sqrt{\frac{10^{0,1\cdot 20} - 1}{10^{0,1\cdot 3} - 1}}}{\lg |2|} = \frac{0,9988}{0,301} = 3,3184$$
$$N_{\mathrm{B}} = 4$$

3. Определение импульсной характеристики фильтра Баттерворта по таблице 9.3.9

$$\begin{split} g(t) &/ \Omega_{\Pi} = e^{-a \cdot t} \cdot (A_1 \cos(w_a \cdot t) + A_2 \sin(w_a \cdot t)) + \\ &+ e^{-b \cdot t} \cdot (B_1 \cos(w_b \cdot t) + B_2 \sin(w_b \cdot t)), \text{где } t \to \Omega_{\Pi} \cdot t \\ A_1 &= -0.9244, \\ a &= 0.3829, \\ w_a &= 0.9244, \\ A_2 &= -0.3829, \\ B_1 &= 0.9244, \\ b &= 0.9244, \\ w_b &= 0.3829, \\ B_2 &= 2.2318. \end{split}$$

4. Дискретизация импульсной характеристики

$$g(n) = (\Omega_{\tilde{i}} \cdot T_{\tilde{a}}) \cdot g(t = \Omega_{\tilde{i}} \cdot T_{\tilde{a}} \cdot n)$$

 $\Omega_{\tilde{i}} \cdot T_{\tilde{a}} = 2\pi \cdot \hat{\omega}_{\tilde{i}}$, поскольку $\Omega_{\Pi} = \omega_{\Pi}$.
 $g(n) = (2\pi \cdot \hat{\omega}_{\tilde{i}}) \{ (e^{-2\pi \cdot a \hat{\omega}_{\tilde{i}}})^{n} [A_{1} \cdot \cos(2\pi w_{a} \hat{\omega}_{\tilde{i}} n) + A_{2} \cdot \sin(2\pi w_{a} \hat{\omega}_{\tilde{i}} n)] + (e^{-2\pi \cdot b \hat{\omega}_{\tilde{i}}})^{n} [B_{1} \cdot \cos(2\pi w_{b} \hat{\omega}_{\tilde{i}} n) + B_{2} \cdot \sin(2\pi w_{b} \hat{\omega}_{\tilde{i}} n)] \}$
 $g(n) = (0,7364) \{ (0,7543)^{n} [-0,9244 \cdot \cos(0,6807n) - 0,3829 \cdot \sin(0,6807n)] + (0,5063)^{n} [0,9244 \cdot \cos(0,2820n) + 2,2318 \cdot \sin(0,2820n)] \}$

5. Определение системной функции ЦФ (в соответствии с таблицей 2.2)

$$K_{\cos}(z) = \frac{A_{l} \left[1 - z^{-1} \cdot e^{-\alpha T_{\pi}} \cos(\omega \cdot T_{\pi}) \right]}{1 - 2z^{-1} \cdot e^{-\alpha T_{\pi}} \cos(\omega \cdot T_{\pi}) + z^{-2} \cdot e^{-2\alpha T_{\pi}}}$$

$$K_{\sin}(z) = \frac{A_{2} \cdot z^{-1} \cdot e^{-\alpha T_{\pi}} \sin(\omega \cdot T_{\pi})}{1 - 2z^{-1} \cdot e^{-\alpha T_{\pi}} \cos(\omega \cdot T_{\pi}) + z^{-2} \cdot e^{-2\alpha T_{\pi}}}$$

$$K_{2}(z) = 0.7364 \left\{ -\frac{0.9244 - z^{-1} \cdot 0.9244 \cdot 0.7543\cos(0.6807)}{1 - z^{-1} \cdot 2 \cdot 0.7543\cos(0.6807) + z^{-2} \cdot (0.7543)^{2}} - \frac{z^{-1} \cdot 0.3829 \cdot 0.7543\sin(0.6807)}{1 - z^{-1} \cdot 2 \cdot 0.7543\cos(0.6807) + z^{-2} \cdot (0.7543)^{2}} + \frac{0.9244 - z^{-1} \cdot 0.9244 \cdot 0.5063\cos(0.2820)}{1 - z^{-1} \cdot 2 \cdot 0.5063\cos(0.2820) + z^{-2} \cdot (0.5063)^{2}} + \frac{z^{-1} \cdot 2.2318 \cdot 0.5063\sin(0.2820)}{1 - z^{-1} \cdot 2 \cdot 0.5063\cos(0.2820) + z^{-2} \cdot (0.5063)^{2}} \right\}$$

$$K_{2}(z) = 0.7364 \left\{ \frac{-0.9244 + z^{-1}(0.6973\cos(0.6807) - 0.2888\sin(0.6807))}{1 - z^{-1} \cdot 1.5086\cos(0.6807) + z^{-2} \cdot 0.569} + \frac{0.9244 - z^{-1}(0.4680\cos(0.2820) - 1.13\sin(0.2820))}{1 - z^{-1} \cdot 0.126\cos(0.2820) + z^{-2} \cdot 0.2563} \right\}$$

Амплитудно-частотная характеристика фильтра $|K_2(\hat{\omega})|$ получена из системной функции $K_2(z)$ при $z = e^{j\omega T_{\ddot{a}}} = e^{j2\pi\hat{\omega}}$ и представлена на рисунке 7.10.

7.11 Синтез цифрового ПФ Баттерворта методом инвариантной импульсной характеристики

Разработать цифровой ПФ с параметрами:

- частота дискретизации 100 кГц;
- граничные частоты полосы пропускания 2,5 кГц и 10 кГц;
- граничные частоты полосы заграждения 1,2 кГц и 20 кГц;
- затухание АЧХ в пределах полосы пропускания 3 дБ;
- затухание АЧХ в пределах полосы заграждения 15 дБ.

1. Расчет нормированных цифровых частот ПФ

$$\hat{\omega}_{i_1} = \omega_{i_1} / \omega_{\ddot{a}} = f_{\ddot{i}_1} / f_{\ddot{a}} = 2,5/100 = 0,025;$$

 $\hat{\omega}_{i_2} = \omega_{i_2} / \omega_{\ddot{a}} = f_{\ddot{i}_2} / f_{\ddot{a}} = 10/100 = 0,1;$
 $\hat{\omega}_{\varsigma_1} = \omega_{\varsigma_1} / \omega_{\ddot{a}} = f_{\varsigma_1} / f_{\ddot{a}} = 1,2/100 = 0,012;$
 $\hat{\omega}_{\varsigma_2} = \omega_{\varsigma_2} / \omega_{\ddot{a}} = f_{\varsigma_2} / f_{\ddot{a}} = 20/100 = 0,2.$

2. Расчет деформированных частот цифрового ФНЧ-прототипа

ω^п – частота цифрового ФНЧ-прототипа (обратите внимание на верхний индекс, обозначающий прототип)

Границу полосы пропускания цифрового НЧ-прототипа определим как половину полосы пропускания проектируемого ПФ, для того чтобы минимизировать деформирование частот при применении преобразования Константинидиса.

$$\hat{\omega}_{i}^{i} = \frac{\hat{\omega}_{i_{2}} - \hat{\omega}_{i_{1}}}{2} = \frac{0.1 - 0.025}{2} = 0.0375.$$

Нормированные граничные частоты полосы пропускания проектируемого фильтра равны соответственно равны $\hat{\omega}_{i_1} = 0,025$ и $\hat{\omega}_{\Pi_2} = 0,1$. Пересчет граничных частот полосы заграждения ПФ $\hat{\omega}_{\varsigma_1}$ и $\hat{\omega}_{\varsigma_2}$ в частоты цифрового НЧ-прототипа $\hat{\omega}_{\varsigma_1}^{i}$ и $\hat{\omega}_{\varsigma_2}^{i}$ проведем в соответствии с формулами таблицы 6.8.

$$\hat{\omega}^{\mathbf{i}} \rightarrow \begin{cases} -\frac{1}{2} + \frac{1}{\pi} \operatorname{arctg} \frac{\sin 2\pi \hat{\omega}}{\beta \cdot (\tilde{n} \cos 2\pi \hat{\omega} - \alpha)}, & \text{ide} \quad \tilde{n} \cos 2\pi \hat{\omega} > \alpha; \\ \frac{1}{2} + \frac{1}{\pi} \operatorname{arctg} \frac{\sin 2\pi \hat{\omega}}{\beta \cdot (\tilde{n} \cos 2\pi \hat{\omega} - \alpha)}, & \text{ide} \quad \tilde{n} \cos 2\pi \hat{\omega} < \alpha. \end{cases}$$
$$\beta = tg(\pi \hat{\omega}_{\mathbf{i}}^{\mathbf{i}}) / tg[\pi(\hat{\omega}_{\mathbf{i}}_{2} - \hat{\omega}_{\mathbf{i}}_{1})]$$
$$\alpha = \frac{\cos \pi (\hat{\omega}_{\mathbf{i}}_{2} + \hat{\omega}_{\mathbf{i}}_{1})}{\cos \pi (\hat{\omega}_{\mathbf{i}}_{2} - \hat{\omega}_{\mathbf{i}}_{1})}$$

$$\begin{split} &\beta = tg(\pi \cdot 0,0375)/tg[\pi(0,1-0,025)] = 0,1184/0,2401 = 0,4932 \\ &\alpha = \frac{\cos \pi(0,1+0,025)}{\cos \pi(0,1-0,025)} = \frac{0,9239}{0,9724} = 0,9501 \\ &\text{Проверим выполнение условия } \tilde{n}os2\pi\hat{\omega} > (<) \, \alpha \, \text{для } \hat{\omega}_{\varsigma_1} \quad \text{и} \, \hat{\omega}_{\varsigma_2} \\ &\tilde{n}os2\pi\hat{\omega}_{\varsigma_1} = \tilde{n}os(2\pi \cdot 0,012) = 0,9972 > 0,9501 \\ &\tilde{n}os2\pi\hat{\omega}_{\varsigma_2} = \tilde{n}os(2\pi \cdot 0,2) = 0,309 < 0,9501 \\ &\hat{\omega}_{\varsigma_1}^{\text{i}} = -\frac{1}{2} + \frac{1}{\pi} \arctan g \frac{\sin 2\pi\hat{\omega}_{\varsigma_1}}{\beta \cdot (\tilde{n}os2\pi\hat{\omega}_{\varsigma_1} - \alpha)} = \\ &= -\frac{1}{2} + \frac{1}{\pi} \arctan g \frac{\sin 2\pi\hat{\omega}_{\varsigma_1}}{0,4932 \cdot [\tilde{n}os(2\pi \cdot 0,012) - 0,9501]} = \\ &= -0,5 + \frac{1}{\pi} \arctan g \frac{\sin 2\pi\hat{\omega}_{\varsigma_2}}{\beta \cdot (\tilde{n}os2\pi\hat{\omega}_{\varsigma_2} - \alpha)} = \\ &= \frac{1}{2} + \frac{1}{\pi} \arctan g \frac{\sin 2\pi\hat{\omega}_{\varsigma_2}}{\beta \cdot (\tilde{n}os(2\pi \cdot 0,2) - 0,9501]} = \\ &= 0,5 + \frac{1}{\pi} \arctan g \frac{\sin 2\pi\hat{\omega}_{\varsigma_2}}{0,4932 \cdot [\tilde{n}os(2\pi \cdot 0,2) - 0,9501]} = \\ &= 0,5 + \frac{1}{\pi} \arctan g \frac{\sin 2\pi\hat{\omega}_{\varsigma_2}}{0,4932 \cdot [\tilde{n}os(2\pi \cdot 0,2) - 0,9501]} = \\ &= 0,5 + \frac{1}{\pi} \arctan g (-3,0079) = 0,5 + \frac{-1,2498}{\pi} = 0,1022 \end{split}$$

В условиях поставленной задачи пересчет граничных частот полосы заграждения ПФ $\hat{\omega}_{\varsigma_1}$ и $\hat{\omega}_{\varsigma_2}$ в частоты цифрового НЧ-прототипа $\hat{\omega}_{\varsigma_1}^{\tilde{i}}$ и $\hat{\omega}_{\varsigma_2}^{\tilde{i}}$ можно провести в соответствии с таблицей 9.2.1.

 $\hat{\omega}_{c_1} = 0,012 \Rightarrow 3$ -я строка, 4-й столбец таблицы 9.2.1 $\hat{\omega}_{c_1}^{i} = -0,095.$ $\hat{\omega}_{c_2} = 0,2 \Rightarrow 22$ -я строка, 2-й столбец таблицы 9.2.1 $\hat{\omega}_{c_2}^{i} = 0,1021.$

Выберем из двух возможных значений $\hat{\omega}_{\varsigma_1}^{i}$ и $\hat{\omega}_{\varsigma_2}^{i}$ то, которое соответствует более жесткому требованию по порядку, то есть меньшее по модулю $\hat{\omega}_{\varsigma}^{i} = -0,095$.

Отношение граничных частот цифрового ФНЧ-прототипа и отношение граничных частот аналогового НЧ-прототипа совпадают, то есть

$$\hat{\Omega}_{c}/\hat{\Omega}_{\ddot{i}} = \hat{\omega}_{c}^{\ddot{i}}/\hat{\omega}_{\dot{i}}^{\ddot{i}}$$

3. Расчет порядка аналогового ФНЧ-прототипа Баттерворта

$$N_{\hat{A}} \ge \frac{\lg \sqrt{\frac{10^{0,1A_{\hat{v}}} - 1}{10^{0,1A_{\hat{i}}} - 1}}}{\lg |\hat{\Omega}_{\hat{v}}/\hat{\Omega}_{\hat{i}}|} = \frac{\lg \sqrt{\frac{10^{0,1\cdot 15} - 1}{10^{0,1\cdot 3} - 1}}}{\lg |-0,095/0,0375|} = \frac{0,7441}{0,4037} = 1,8432$$

Примем порядок N_Б=2.

4. Определение импульсной характеристики аналогового ФНЧпрототипа Баттерворта, нормированной относительно граничной частоты полосы пропускания $\hat{\Omega} = \Omega/\Omega_{i}$ согласно таблице 9.3.9

$$g(t)/\Omega_{\Pi} = Ae^{-a \cdot t} \sin(w_a \cdot t)$$
, где $t \to \Omega_{\Pi} \cdot t$, где $\Omega_{\Pi} = \omega_{\Pi}^{\Pi}$.
A = 1,41589356, a = 0,70794678, w_a = 0,70794678.

5. Денормирование импульсной характеристики

Учитывая, что импульсная характеристика аналогового НЧ-прототипа нормирована относительно граничной частоты полосы пропускания Ω_{Π} , ее нужно преобразовать следующим образом:

$$g(t) = \Omega_{\Pi} \cdot Ae^{-a \cdot t \cdot \Omega_{\Pi}} \sin(w_a \cdot t \cdot \Omega_{\Pi})$$

6. Дискретизация импульсной характеристики
 $g(n) = T_{\Pi} \cdot g(t = n \cdot T_{\Pi})$
 $\Omega_{I} \cdot T_{\ddot{a}} = 2\pi \cdot \hat{\omega}_{I}^{I}$, поскольку $\Omega_{\Pi} = \omega_{\Pi}^{\Pi}$.
 $g(n) = A \left(2\pi \cdot \hat{\omega}_{I}^{I} \right) \cdot \left(e^{-2\pi \cdot a \cdot \hat{\omega}_{I}^{I}} \right)^{n} \sin \left(2\pi \cdot w_a \cdot \hat{\omega}_{I}^{I} \cdot n \right),$
где $\hat{\omega}_{I}^{I} = \frac{\hat{\omega}_{I2} - \hat{\omega}_{I1}}{2} = \frac{0.1 - 0.025}{2} = 0.0375.$
 $g(n) = 0.3336 \cdot \left(e^{-0.1668} \right)^{n} \sin(0.1668 \cdot n)$
 $g(n) = 0.3336 \cdot (0.8464)^{n} \sin(0.1668 \cdot n)$

7. Определение системной функции цифрового ФНЧ-прототипа в соответствии с таблицей 2.2

$$K_{\sin}(z) = \frac{z^{-1} \cdot [0,3336 \cdot (e^{-0,1668}) \sin(0,1668)]}{1 - 2z^{-1} \cdot e^{-0,1668} \cdot \cos(0,1668) + z^{-2} (e^{-0,1668})^2},$$

$$K_{\phi H \Psi}(z) = \frac{0,0469 \cdot z^{-1}}{1 - 1,6693 \cdot z^{-1} + 0,7164 \cdot z^{-2}}$$

8. Расчет параметров преобразования Константинидиса

$$\alpha = \frac{\cos[\pi(\hat{\omega}_{i_{2}} + \hat{\omega}_{i_{1}})]}{\cos[\pi(\hat{\omega}_{i_{2}} - \hat{\omega}_{i_{1}})]} = \frac{\cos[\pi(0, 1 + 0, 025)]}{\cos[\pi(0, 1 - 0, 025)]} = \frac{0,9239}{0,9274} = 0,9501$$
$$\beta = \frac{tg(\pi\hat{\omega}_{i_{2}}^{i})}{tg[\pi(\hat{\omega}_{i_{2}} - \hat{\omega}_{i_{1}})]} = \frac{tg(0,0375\pi)}{tg[\pi(0, 1 - 0, 025)]} = \frac{0,1184}{0,2401} = 0,493$$

$$z^{-1} \rightarrow -\frac{\frac{\beta - 1}{\beta + 1} - \frac{2\alpha\beta}{\beta + 1} \cdot z^{-1} + z^{-2}}{1 - \frac{2\alpha\beta}{\beta + 1} \cdot z^{-1} + \frac{\beta - 1}{\beta + 1} \cdot z^{-2}} = -\frac{-0.3396 - 0.6275 \cdot z^{-1} + z^{-2}}{1 - 0.6275 \cdot z^{-1} - 0.3396 \cdot z^{-2}}$$

9. Определение системной функции цифрового ПФ Баттерворта

$$K_{\Pi\Phi_{1}}(z) = \frac{0,0469 \cdot \frac{0,3396 + 0,6275 \cdot z^{-1} - z^{-2}}{1 - 0,6275 \cdot z^{-1} - 0,3396 \cdot z^{-2}}}{1 - 1,6693 \frac{0,3396 + 0,6275z^{-1} - z^{-2}}{1 - 0,6275z^{-1} - 0,3396z^{-2}} + 0,7164 \left(\frac{0,3396 + 0,6275z^{-1} - z^{-2}}{1 - 0,6275z^{-1} - 0,3396z^{-2}}\right)^{2}}{K_{\Pi\Phi_{1}}(z)} = \frac{0,0309 + 0,0377 \cdot z^{-1} - 0,1372 \cdot z^{-2} + 0,0377 \cdot z^{-3} + 0,0309 \cdot z^{-4}}{1 - 3,1826 \cdot z^{-1} + 3,9342 \cdot z^{-2} - 2,2578 \cdot z^{-3} + 0,5134 \cdot z^{-4}}$$

Амплитудно-частотная характеристика $|K_{\ddot{1}\hat{0}_1}(\hat{\omega})|$ получена из системной функции $K_{\Pi \Phi_1}(z)$ при $z = e^{j\omega T_{\ddot{a}}} = e^{j2\pi\hat{\omega}}$ и представлена на рисунке 7.11.

Рисунок 7.11 – Амплитудно-частотные характеристики двух ПФ, рассчитанных в пунктах 7.11 и 7.12

7.12 Синтез цифрового ПФ Баттерворта методом инвариантной импульсной характеристики

Разработать цифровой ПФ с параметрами:

- частота дискретизации 100 кГц;
- граничные частоты полосы пропускания 21,25 кГц и 28,75 кГц;
• граничные частоты полосы заграждения – 15 кГц и 40 кГц; • затухание АЧХ в пределах полосы пропускания – 3 дБ; • затухание АЧХ в пределах полосы заграждения – 17 дБ. 1. Расчет нормированных цифровых частот ПФ $\hat{\omega}_{i_1} = \omega_{i_1} / \omega_{\ddot{a}} = f_{i_1} / f_{\ddot{a}} = 21,25/100 = 0,2125;$ $\hat{\omega}_{i_2} = \omega_{i_2} / \omega_{\ddot{a}} = f_{i_2} / f_{\ddot{a}} = 28,75/100 = 0,2875;$

$$\omega_{i_{2}} = \omega_{i_{2}} / \omega_{\ddot{a}} = f_{i_{2}} / f_{\ddot{a}} = 28,75/100 = 0,28$$
$$\hat{\omega}_{c_{1}} = \omega_{c_{1}} / \omega_{\ddot{a}} = f_{c_{1}} / f_{\ddot{a}} = 15/100 = 0,15;$$
$$\hat{\omega}_{c_{2}} = \omega_{c_{2}} / \omega_{\ddot{a}} = f_{c_{2}} / f_{\ddot{a}} = 40/100 = 0,4.$$

2. Расчет деформированных частот цифрового ФНЧ-прототипа

Граница полосы пропускания цифрового НЧ-прототипа определим как половину полосы пропускания проектируемого ПФ, для того чтобы минимизировать деформирование частот при применении преобразования Константинидиса.

$$\hat{\omega}_{i}^{\ddot{i}} = \frac{\hat{\omega}_{i_2} - \hat{\omega}_{i_1}}{2} = \frac{0.1 - 0.025}{2} = 0.0375.$$

За неимением пересчетных таблиц для случая проектирования цифрового ПФ с граничными частотами полосы пропускания, соответственно равными $\hat{\omega}_{i_1} = 0,2125$ и $\hat{\omega}_{i_2} = 0,2875$, расчет деформированных частот цифрового ФНЧ-прототипа ведется по аналогии с примером 7.11.

Пересчет граничных частот полосы заграждения ПФ $\hat{\omega}_{\varsigma_1}$ и $\hat{\omega}_{\varsigma_2}$ в частоты цифрового НЧ-прототипа $\hat{\omega}_{\varsigma_1}^{i}$ и $\hat{\omega}_{\varsigma_2}^{i}$ проведем в соответствии с формулами таблицы 6.8.

$$\begin{split} \hat{\omega}^{\ddot{i}} &\to \begin{cases} -\frac{1}{2} + \frac{1}{\pi} \arccos \frac{\sin 2\pi \hat{\omega}}{\beta \cdot (\tilde{n}os 2\pi \hat{\omega} - \alpha)}, & \text{and the } \tilde{n}os 2\pi \hat{\omega} > \alpha ; \\ \frac{1}{2} + \frac{1}{\pi} \arccos \frac{\sin 2\pi \hat{\omega}}{\beta \cdot (\tilde{n}os 2\pi \hat{\omega} - \alpha)}, & \text{and the } \tilde{n}os 2\pi \hat{\omega} < \alpha . \end{cases} \\ \beta &= tg(\pi \hat{\omega}^{\ddot{i}}_{1}) / tg[\pi(\hat{\omega}_{12} - \hat{\omega}_{11})] \\ \alpha &= \frac{\cos \pi (\hat{\omega}_{12} + \hat{\omega}_{11})}{\cos \pi (\hat{\omega}_{12} - \hat{\omega}_{11})} \\ \beta &= tg(\pi \cdot 0.0375) / tg[\pi(0.2875 - 0.2125)] = 0.1184 / 0.2401 = 0.4931 \\ \alpha &= \frac{\cos \pi (0.2875 + 0.2125)}{\cos \pi (0.2875 - 0.2125)} = \frac{0}{0.9724} = 0 \\ \Pi \text{роверим выполнение условия } \tilde{n}os 2\pi \hat{\omega} > (<) \alpha \text{ для } \hat{\omega}_{\varsigma_{1}} \text{ и } \hat{\omega}_{\varsigma_{2}} . \\ \tilde{n}os 2\pi \hat{\omega}_{\varsigma_{1}} &= \tilde{n}os(2\pi \cdot 0.15) = 0.5878 > 0 \\ \tilde{n}os 2\pi \hat{\omega}_{\varsigma_{2}} &= \tilde{n}os(2\pi \cdot 0.4) = -0.809 < 0 \end{split}$$

$$\hat{\omega}_{\varsigma_{1}}^{\ddot{i}} = -\frac{1}{2} + \frac{1}{\pi} \arctan \frac{\sin 2\pi \hat{\omega}_{\varsigma_{1}}}{\beta \cdot (\tilde{n}os 2\pi \hat{\omega}_{\varsigma_{1}} - \alpha)} = \\ = -\frac{1}{2} + \frac{1}{\pi} \arctan \frac{\sin (2\pi \cdot 0, 15)}{0,4931 \cdot [\tilde{n}os (2\pi \cdot 0, 15) - 0]} = \\ = -0.5 + \frac{1}{\pi} \arctan \frac{1}{2},7913 = -0.5 + 0.3905 = -0.1095 \\ \hat{\omega}_{\varsigma_{2}}^{\ddot{i}} = \frac{1}{2} + \frac{1}{\pi} \arctan \frac{\sin 2\pi \hat{\omega}_{\varsigma_{2}}}{\beta \cdot (\tilde{n}os 2\pi \hat{\omega}_{\varsigma_{2}} - \alpha)} = \\ = \frac{1}{2} + \frac{1}{\pi} \arctan \frac{\sin (2\pi \cdot 0, 4)}{0.4931 \cdot [\tilde{n}os (2\pi \cdot 0, 4) - 0]} = \\ = 0.5 + \frac{1}{\pi} \arctan (-1,4734) = 0.5 + \frac{-0.9745}{\pi} = 0.1898 \\ \end{cases}$$

Выберем из двух возможных значений $\hat{\omega}_{\varsigma_1}^{\tilde{i}}$ и $\hat{\omega}_{\varsigma_2}^{\tilde{i}}$ то, которое соответствует более жесткому требованию по порядку, то есть меньшее по модулю $\omega_3^{\Pi} = -0,1095$.

Отношение граничных частот цифрового ФНЧ-прототипа и отношение граничных частот аналогового НЧ-прототипа совпадают, то есть

$$\hat{\Omega}_{c}/\hat{\Omega}_{\ddot{i}} = \hat{\omega}_{c}^{\ddot{i}}/\hat{\omega}_{\dot{i}}^{\ddot{i}}$$

3. Расчет порядка аналогового ФНЧ-прототипа Баттерворта

$$N_{\hat{A}} \ge \frac{\lg \sqrt{\frac{10^{0,1A_{\hat{y}}} - 1}{10^{0,1A_{\hat{i}}} - 1}}}{\lg |\hat{\Omega}_{\hat{y}}/\hat{\Omega}_{\hat{i}}|} = \frac{\lg \sqrt{\frac{10^{0,1\cdot 17} - 1}{10^{0,1\cdot 3} - 1}}}{\lg |-0,095/0,0375|} = \frac{0,8467}{0,4653} = 1,8196$$

Примем порядок $N_{E} = 2$.

4. Определение импульсной характеристики аналогового ФНЧпрототипа Баттерворта, нормированной относительно граничной частоты полосы пропускания $\hat{\omega}_{i}^{i}$ согласно таблице 9.3.9

$$g(t)/\Omega_{\Pi} = Ae^{-a \cdot t} \sin(w_a \cdot t)$$
, где $t \to \Omega_{\Pi} \cdot t$, где $\Omega_{\Pi} = \omega_{\Pi}^{\Pi}$.
A = 1,41589356, a = 0,70794678, w_a = 0,70794678.

5. Денормирование импульсной характеристики

Учитывая, что импульсная характеристика фильтра-прототипа нормирована относительно граничной частоты полосы пропускания $\hat{\omega}_{i}^{i}$, ее следует преобразовать следующим образом

$$g(t) = \Omega_{\Pi} \cdot Ae^{-a \cdot t \cdot \Omega_{\Pi}} \sin(w_a \cdot t \cdot \Omega_{\Pi})$$

6. Дискретизация импульсной характеристики
$$g(n) = T_{\Pi} \cdot g(t = n \cdot T_{\Pi})$$

$$\Omega_{\mathbf{\ddot{i}}} \cdot \mathbf{T}_{\mathbf{\ddot{a}}} = 2\pi \cdot \hat{\omega}_{\mathbf{\ddot{i}}}^{\mathbf{\ddot{i}}}, \text{ поскольку } \Omega_{\mathbf{\Pi}} = \omega_{\mathbf{\Pi}}^{\mathbf{\Pi}}.$$

$$g(n) = A \left(2\pi \cdot \hat{\omega}_{\mathbf{\ddot{i}}}^{\mathbf{\ddot{i}}} \right) \cdot \left(e^{-2\pi \cdot a \cdot \hat{\omega}_{\mathbf{\ddot{i}}}^{\mathbf{\ddot{i}}}} \right)^{n} \sin \left(2\pi \cdot w_{a} \cdot \hat{\omega}_{\mathbf{\ddot{i}}}^{\mathbf{\ddot{i}}} \cdot n \right),$$
Где $\hat{\omega}_{\mathbf{\ddot{i}}}^{\mathbf{\ddot{i}}} = \frac{\hat{\omega}_{\mathbf{\ddot{i}}}}{2} - \hat{\omega}_{\mathbf{\ddot{i}}}}{2} = \frac{0,2875 - 0,2125}{2} = 0,0375.$

$$g(n) = 0,3336 \cdot \left(e^{-0,1668} \right)^{n} \sin(0,1668 \cdot n)$$

$$g(n) = 0,3336 \cdot (0,8464)^{n} \sin(0,1668 \cdot n)$$

7. Определение системной функции цифрового ФНЧ-прототипа в соответствии с таблицей 2.2

$$K_{\sin}(z) = \frac{z^{-1} \cdot [0,3336 \cdot (e^{-0,1668}) \sin(0,1668)]}{1 - 2z^{-1} \cdot e^{-0,1668} \cdot \cos(0,1668) + z^{-2} (e^{-0,1668})^2},$$

$$K_{\phi H^{\text{H}}}(z) = \frac{0,0469 \cdot z^{-1}}{1 - 1,6693 \cdot z^{-1} + 0,7164 \cdot z^{-2}}$$

8. Расчет параметров преобразования Константинидиса

$$\alpha = \frac{\cos[\pi(\hat{\omega}_{i_{2}} + \hat{\omega}_{i_{1}})]}{\cos[\pi(\hat{\omega}_{i_{2}} - \hat{\omega}_{i_{1}})]} = \frac{\cos[\pi(0,2875 + 0,2125)]}{\cos[\pi(0,2875 - 0,2125)]} = \frac{0}{0,9274} = 0$$

$$\beta = \frac{tg(\pi\hat{\omega}_{i_{2}}^{i})}{tg[\pi(\hat{\omega}_{i_{2}} - \hat{\omega}_{i_{1}})]} = \frac{tg(0,0375\pi)}{tg[\pi(0,1 - 0,025)]} = \frac{0,1184}{0,2401} = 0,493$$

$$z^{-1} \rightarrow -\frac{\frac{\beta - 1}{\beta + 1} - \frac{2\alpha\beta}{\beta + 1} \cdot z^{-1} + z^{-2}}{1 - \frac{2\alpha\beta}{\beta + 1} \cdot z^{-1} + z^{-2}} = -\frac{-0,3396 + z^{-2}}{1 - 0,3396 \cdot z^{-2}}$$

9. Определение системной функции цифрового ПФ Баттерворта

$$K_{\Pi\Phi_{2}}(z) = \frac{0,0469 \cdot \left(-\frac{-0,3396 + z^{-2}}{1 - 0,3396 \cdot z^{-2}}\right)}{1 - 1,6693 - \frac{-0,3396 + z^{-2}}{1 - 0,3396 \cdot z^{-2}} + 0,7164 \left(-\frac{-0,3396 + z^{-2}}{1 - 0,3396 \cdot z^{-2}}\right)^{2}}$$
$$K_{\Pi\Phi_{2}}(z) = \frac{0,0309 - 0,1014 \cdot z^{-2} + 0,0309 \cdot z^{-4}}{1 + 3,9495 \cdot z^{-2} + 0,5134 \cdot z^{-4}}$$

Амплитудно-частотная характеристика $|K_{\ddot{1}\dot{0}_{2}}(\hat{\omega})|$ получена из системной функции $K_{\Pi\dot{\Phi}_{2}}(z)$ при $z = e^{j\omega T_{\ddot{a}}} = e^{j2\pi\hat{\omega}}$ и представлена на рисунке 7.11.

8 СИНТЕЗ ТРАНСВЕРСАЛЬНЫХ ЦИФРОВЫХ ФИЛЬТРОВ

8.1 Метод частотной выборки

Трансверсальный цифровой фильтр имеет импульсную характеристику конечной длины *N*, и его называют КИХ-фильтром.

Стандартный КИХ-фильтр характеризуется следующими уравнениями:

$$y_n = \sum_{k=0}^{N-1} g_k \cdot x_{n-k} , \qquad (8.1)$$

$$K(z) = \sum_{n=0}^{N-1} g_n \cdot z^{-n} , \qquad (8.2)$$

$$\dot{K}_{\hat{e}\hat{e}\tilde{o}}\left(\hat{\omega}\right) = \sum_{n=0}^{N-1} g_n \cdot (e^{-j2\pi\hat{\omega}})^n \tag{8.3}$$

где g_n - коэффициенты импульсной характеристики ЦФ;

K(z) - системная функция ЦФ, $z = e^{j\omega T_{\ddot{a}}} = e^{j2\pi\hat{\omega}};$

 $\dot{K}_{\hat{e}\hat{e}\tilde{o}}(\hat{\omega})$ - комплексная передаточная функция КИХ-фильтра.

Отсчеты импульсной характеристики КИХ-фильтров одновременно являются и коэффициентами системной функции ЦФ, поэтому задача синтеза сводится к получению импульсной характеристики ЦФ.

В аналоговых линейных системах импульсная характеристика g(t) и комплексная передаточная функция $\dot{K}(\omega)$ линейной электрической цепи (ЛЭЦ) связаны между собой двойным интегралом Фурье:

$$\dot{K}(\omega) = \int_{0}^{\infty} \left[\frac{1}{2\pi} \int_{-\infty}^{\infty} \dot{K}(\omega) \cdot e^{j\omega t} d\omega \right] \cdot e^{-j\omega t} dt \qquad (8.4)$$

Графическая иллюстрация импульсных и частотных характеристик идеального аналогового ФНЧ представлена на рисунке 8.1.

Рисунок 8.1 – б) АЧХ г) ФЧХ идеального ФНЧ и импульсные характеристики а) без учета ФЧХ и в) с учетом линейной ФЧХ

Переход от аналоговых линейных систем к дискретным сопровождается заменой аналоговых переменных t и ω двойного интеграла Фурье (8.4) на дискретные переменные n и m дискретных преобразований Фурье (ДПФ)

Для этого периодическую частотную характеристику идеального цифрового фильтра дискретизируют, разбивая интервал (0; $\omega_{\rm d}$) на N равных частей ($\omega_{\rm d} = N\omega_{\rm l}$). Интервал взятия выборки на частотной оси $\omega_{\rm l}$ должен быть таким, чтобы передать все особенности АЧХ. При этом импульсная характеристика НЧ-прототипа становится периодической (с периодом $T_{\rm og} = 2\pi/\omega_{\rm l}$), дискретизированной с шагом дискретизации $T_{\rm d} = 2\pi/\omega_{\rm d}$ и периодом $T_{\rm og}$, разбитым на N равных частей $T_{\rm og} = N \cdot T_{\rm d}$.

Графическая иллюстрация дискретизированных импульсных и частотных характеристик идеального цифрового ФНЧ представлена на рисунке 8.2.

Рисунок 8.2 – б) АЧХ г) ФЧХ идеального цифрового ФНЧ и импульсные характеристики а) без учета ФЧХ и в) с учетом линейной ФЧХ

Импульсная характеристика g(n) и системная функция K(z) цифрового фильтра связаны между собой соотношениями вида:

$$\dot{K}(m) = \sum_{n=0}^{\infty} \left[\frac{1}{N} \sum_{m=0}^{N-1} \dot{K}(m) \cdot \left(e^{j2\pi/N} \right)^{m \cdot n} \right] \cdot \left(e^{-j2\pi/N} \right)^{m \cdot n} \quad (8.5)$$

При переходе от двойного интеграла (8.4) к двойной сумме (8.5) были выполнены следующие замены переменных:

$$\begin{split} & \omega \to m \cdot \omega_{1}; & \dot{K}(\omega) \to \dot{K}(m \cdot \omega_{1}) = \dot{K}(m); & d\omega \to \omega_{1}; \\ & t \to n \cdot T_{\mu}; & g(t) \to g(n \cdot T_{\mu}) = g(n); & dt \to T_{\mu}; \\ & dt \cdot d\omega \to T_{\mu} \cdot \omega_{1} = 2\pi/N \,. \end{split}$$

В выражении (8.5) к последовательности значений $\dot{K}(m)$ применяют обратное дискретное преобразование Фурье и находят импульсную характеристику g(n).

$$g(n) = \frac{1}{N} \sum_{m=0}^{N-1} \dot{K}(m) \cdot \left(e^{j2\pi/N}\right)^{m \cdot n}$$
(8.6)

Значения g(n) являются коэффициентами КИХ-фильтра. Число выборок в АЧХ равно числу отсчетов импульсной характеристики. АЧХ является четной функцией частоты, поэтому импульсная характеристика является четной функцией времени. Отсчеты импульсной характеристики обладают попарной симметрией, которая показана в таблице 8.1.

Таблица 8.1 – Свойства четных импульсных характеристик КИХфильтров

N нечетное	N четное
------------	----------

Попарно симметричные значения коэффициентов	Непарные значения	Попарно симметричные значения коэффициентов	Непарные значения
$g_{1} = g_{N-1}$ $g_{2} = g_{N-2}$ $g_{(N-1)/2} = g_{(N+1)/2}$	g_0	$g_{1} = g_{N-1}$ $g_{2} = g_{N-2}$ $g_{(N-2)/2} = g_{(N+2)/2}$	g ₀ и g _{N/2}

Значения коэффициентов g(n) можно по аналогии с (2.38) и (2.39) рассчитать по формулам

$$g(n) = \frac{1}{N} \left\{ K(0) + \sum_{m=1}^{(N-1)/2} 2 \cdot \left| \dot{K}(m) \right| \cdot \cos\left(\frac{2\pi}{N}m \cdot n + \arg \dot{K}(m)\right) \right\}, \quad N - i\dot{a} \div \dot{a} \dot{o} i i \ddot{a} \quad (8.6)$$

$$g(n) = \frac{1}{N} \left\{ K(0) + \sum_{m=1}^{(N-2)/2} 2 \cdot \left| \dot{K}(m) \right| \cdot \cos\left(\frac{2\pi}{N}m \cdot n + \arg \dot{K}(m)\right) + \left| \dot{K}\left(\frac{N}{2}\right) \right| \cos\left(\pi \cdot n + \arg \dot{K}\left(\frac{N}{2}\right) \right) \right\}, \quad N - \dot{a} \dot{a} \dot{o} i i \ddot{a}$$

$$g_0 = 0.5555 \qquad g_6 = g_3 = -0.1111$$

$$g_8 = g_1 = 0.3199 \qquad g_5 = g_4 = 0.07852$$

$$g_7 = g_2 = -0.05912$$

Замечание. При дискретизации частотной характеристики можно не учитывать аргумент, а чтобы импульсная характеристика соответствовала физически реализуемому фильтру, ее сдвигают вправо на половину своей длины. При таком смещении АЧХ фильтра остается неизменной, а ФЧХ получает линейное приращение.

8.2 Пример синтеза КИХ-фильтра методом частотной выборки

Необходимо спроектировать цифровой КИХ-ФНЧ с граничной частотой полосы пропускания $\omega_{\Pi} = 0.15 \omega_{\Lambda}$, порядок которого равен N = 14.

Интервал взятия выборки на частотной оси составляет $\omega_{l} = \omega_{d}/14$. На рисунке 8.3,а показана периодическая АЧХ требуемого ЦФ, а на рисунке 8.3,6 - дискретизированная частотная характеристика. Математическая модель частотной выборки имеет вид: {1,1,1,0,0,0,0,0,0,0,0,0,1,1}.

Рисунок 8.3 – Непрерывная (а) и дискретизированная (б) АЧХ цифрового КИХ-ФНЧ

Значения импульсной характеристики можно рассчитать, применив обратное дискретное преобразование Фурье (8.5) к частотной выборке, или получить значения $g_{\mu}(n)$ по формуле (8.7) без учета линейной ФЧХ:

$$g_{\rm H}(n) = \frac{1}{14} \left[1 + 2\cos(\frac{2\pi}{14} \cdot n) + 2\cos(\frac{2\pi}{14} \cdot 2 \cdot n) \right],$$
где $0 \le n \le N - 1$

Графическая модель рассчитанной импульсной характеристики представлена на рисунке 8.4.

Рисунок 8.4 – Дискретная последовательность

Сдвигая последовательность $g_{\rm H}(n)$ на $N/_2$, получаем импульсную характеристику g(n) цифрового КИХ-фильтра, показанную на рисунке 8.5.

$$g(n) = g_{\rm H}\left(n - \frac{N}{2}\right), \ n = 0,...,(N-1).$$

Рисунок 8.5 – Импульсная характеристика КИХ-ФНЧ 14 порядка

Структурная схема КИХ фильтра 14 порядка изображена на рисунке 8.6, а значения коэффициентов представлены в таблице 8.2.

Рисунок 8.6 – Структурная схема КИХ-фильтра 14 порядка

- ***	- · · · · · · · · · · · · · · · · · · ·								
n	0	1	2	3	4	5	6		
g(n)	1	0,445	-0,692	-1,247	-0,357	1,802	4,049		
n	7	8	9	10	11	12	13		
g(n)	5	4,049	1,802	-0,357	-1,247	-0,692	0,445		

Таблица 8.2 – Коэффициенты КИХ фильтра 14 порядка

С помощью прямого *Z*-преобразования найдем системную функцию цифрового КИХ-ФНЧ.

$$K(z) = \sum_{n=0}^{N-1} g(n) z^{-n}$$

Найдем комплексную передаточную функцию цифрового КИХ-ФНЧ, полагая

$$\dot{K}(\hat{\omega}) = \dot{K}\left(e^{j\omega T_{\ddot{a}}}\right) = \dot{K}\left(e^{j\cdot 2\pi\hat{\omega}}\right) = \sum_{n=0}^{13} g_n \left(e^{-j\cdot 2\pi\hat{\omega}}\right)^n$$

На рисунке 8.7 показана АЧХ цифрового КИХ-ФНЧ 14 порядка.

Рисунок 8.7 – АЧХ цифрового КИХ-ФНЧ 14 порядка

8.3 Метод взвешивания

Частотная характеристика цифрового фильтра и соответствующая ей импульсная характеристика связаны преобразованием Фурье.

$$g(n) = \int_{-\hat{\omega}_{\mathbf{i}}}^{\hat{\omega}_{\mathbf{i}}} \dot{K}(\hat{\omega}) \cdot \left(e^{j2\pi\hat{\omega}}\right)^{n} d\hat{\omega}$$
(8.8)

Положим для определенности, что требуется разработать идеальный ФНЧ, представленный на рис. 8.3,а.

$$g(n) = \int_{-\hat{\omega}_{i}}^{\hat{\omega}_{i}} 1 \cdot \left(e^{j2\pi\hat{\omega}}\right)^{n} d\hat{\omega} = 2\hat{\omega}_{i} \left(\frac{\sin 2\pi \cdot n\hat{\omega}_{i}}{2\pi \cdot n\hat{\omega}_{i}}\right)$$
(8.9)

Импульсная характеристика идеального ФНЧ имеет затухающий характер, но теоретически она бесконечна.

Для получения КИХ-фильтра импульсную характеристику усекают, что равносильно умножению идеальной импульсной характеристики на прямоугольную функцию. Это приводит к появлению выбросов (явлений Гиббса) и переходной полосы $\Delta \dot{\omega}$ на частотной характеристике (рисунок 8.8).

Идеальные импульсные характеристики стандартных частотноизбирательных фильтров показаны в таблице 8.3.

Рисунок 8.8 – Влияние на частотную характеристику ЦФ ограничения длины импульсной характеристики до а) 21 коэффициента; б) 31 коэффициента; в) 41 коэффициента

Таблица 8.3 – Идеальные импульсные характеристики стандартных частотно-избирательных фильтров

Тип фильтра	$g(n), n \neq 0$	g(n), n=0
ФНЧ	$2\hat{\omega}_{\mathbf{i}}\left(\frac{\sin 2\pi \cdot n\hat{\omega}_{\mathbf{i}}}{2\pi \cdot n\hat{\omega}_{\mathbf{i}}}\right)$	$2\hat{\omega}_{i}$
ФВЧ	$-2\hat{\omega}_{\mathbf{i}}\left(\frac{\sin 2\pi \cdot n\hat{\omega}_{\mathbf{i}}}{2\pi \cdot n\hat{\omega}_{\mathbf{i}}}\right)$	$1-2\hat{\omega}_{i}$
ПФ	$2\hat{\omega}_{i_{2}}\left(\frac{\sin 2\pi \cdot n\hat{\omega}_{i_{2}}}{2\pi \cdot n\hat{\omega}_{i_{2}}}\right) - 2\hat{\omega}_{i_{1}}\left(\frac{\sin 2\pi \cdot n\hat{\omega}_{i_{1}}}{2\pi \cdot n\hat{\omega}_{i_{1}}}\right)$	$2(\hat{\omega}_{i_2} - \hat{\omega}_{i_1})$
РФ	$2\hat{\omega}_{i_{1}}\left(\frac{\sin 2\pi \cdot n\hat{\omega}_{i_{1}}}{2\pi \cdot n\hat{\omega}_{i_{1}}}\right) - 2\hat{\omega}_{i_{2}}\left(\frac{\sin 2\pi \cdot n\hat{\omega}_{i_{2}}}{2\pi \cdot n\hat{\omega}_{i_{2}}}\right)$	$1 - 2(\hat{\omega}_{i_2} - \hat{\omega}_{i_1})$

8.4 Пример синтеза КИХ-фильтров методом взвешивания

Необходимо спроектировать цифровые частотно-избирательные КИХфильтры с частотой дискретизации 128 кГц, порядок которых *N*=31.

• Граничная частота полосы пропускания ФНЧ и ФВЧ составляет $f_{\Pi} = 12,8$ кГц.

• Граничные частоты полос пропускания ПФ и РФ равны $f_{\Pi_1} = 6,4$ кГц. и $f_{\Pi_2} = 32$ кГц.

1. Расчет импульсной характеристики цифрового ФНЧ

$$g(n) = 2\hat{\omega}_{i} \left(\frac{\sin 2\pi \cdot n\hat{\omega}_{i}}{2\pi \cdot n\hat{\omega}_{i}}\right) = 0, 2\frac{\sin 0, 2\pi \cdot n}{0, 2\pi \cdot n} \quad \text{ide} \quad n \ge 1$$

$$g(n=0) = 2\hat{\omega}_{i} = 0, 2 \quad ,$$
где $\hat{\omega}_{i} = f_{i} / f_{ii} = 12, 8/128 = 0, 1.$

2. Расчет импульсной характеристики цифрового ФВЧ

$$g(n) = -2\hat{\omega}_{i} \left(\frac{\sin 2\pi \cdot n\hat{\omega}_{i}}{2\pi \cdot n\hat{\omega}_{i}} \right) = -0, 2 \frac{\sin 0, 2\pi \cdot n}{0, 2\pi \cdot n} \quad \text{ide} \quad n \ge 1,$$

$$g(n=0) = 1 - 2\hat{\omega}_{i} = 0, 8$$

где $\hat{\omega}_{i} = f_{i} / f_{ii} = 12, 8/128 = 0, 1.$

3. Расчет импульсной характеристики цифрового ПФ

$$g(n) = \begin{cases} 2\left(\hat{\omega}_{i_{2}} - \hat{\omega}_{i_{1}}\right) = 2 \cdot (0,25 - 0,05) = 0,4 \text{ "iðe} \quad n = 0\\ 2\hat{\omega}_{i_{2}}\left(\frac{\sin 2\pi \cdot n\hat{\omega}_{i_{2}}}{2\pi \cdot n\hat{\omega}_{i_{2}}}\right) - 2\hat{\omega}_{i_{1}}\left(\frac{\sin 2\pi \cdot n\hat{\omega}_{i_{1}}}{2\pi \cdot n\hat{\omega}_{i_{1}}}\right) =\\ = 0,5\frac{\sin 0,5\pi \cdot n}{0,5\pi \cdot n} - 0,1\frac{\sin 0,1\pi \cdot n}{0,1\pi \cdot n} \qquad \text{"iðe} \quad n \ge 1\\ \text{где} \quad \hat{\omega}_{i_{1}} = f_{i_{1}}/f_{i_{1}} = 6,4/128 = 0,05; \quad \hat{\omega}_{i_{2}} = f_{i_{2}}/f_{i_{1}} = 32/128 = 0,25\\ 4. \qquad \text{Расчет импульсной характеристики цифрового РФ} \end{cases}$$

$$g(n) = \begin{cases} 1 - 2(\hat{\omega}_{i_{2}} - \hat{\omega}_{i_{1}}) = 1 - 2 \cdot (0,25 - 0,05) = 0,6 \quad \text{i}\,\text{d}\,\text{e} \quad n = 0\\ 2\hat{\omega}_{i_{2}} \left(\frac{\sin 2\pi \cdot n\hat{\omega}_{i_{1}}}{2\pi \cdot n\hat{\omega}_{i_{1}}} \right) - 2\hat{\omega}_{i_{1}} \left(\frac{\sin 2\pi \cdot n\hat{\omega}_{i_{2}}}{2\pi \cdot n\hat{\omega}_{i_{2}}} \right) =\\ = 0,1 \frac{\sin 0,1\pi \cdot n}{0,1\pi \cdot n} - 0,5 \frac{\sin 0,5\pi \cdot n}{0,5\pi \cdot n} \qquad \text{i}\,\text{d}\,\text{e} \quad n \ge 1 \end{cases}$$
The $\hat{\omega}_{i_{1}} = f_{i_{1}} / f_{i_{1}} = 6.4/128 = 0.05; \quad \hat{\omega}_{i_{1}} = f_{i_{1}} / f_{i_{1}} = 32/128 = 0$

где $\hat{\omega}_{i_1} = f_{i_1} / f_{i_1} = 6,4/128 = 0,05; \hat{\omega}_{i_2} = f_{i_2} / f_{i_1} = 32/128 = 0,25$ 5. Расчет смещенной импульсной характеристики цифрового ФНЧ

$$g\left(n - \frac{N-1}{2}\right) = 0, 2\frac{\sin 0, 2\pi \cdot (n - (N-1)/2)}{0, 2\pi \cdot (n - (N-1)/2)} \quad \text{ide} \quad 0 \le n \le N-1$$
$$g\left(n = (N-1)/2\right) = 0, 2$$

6. Расчет смещенной импульсной характеристики цифрового ФВЧ $g\left(n - \frac{N-1}{2}\right) = -0.2 \frac{\sin 0.2\pi \cdot (n - (N-1)/2)}{0.2\pi \cdot (n - (N-1)/2)} \quad \text{ide} \quad 0 \le n \le N-1$ $g\left(n = (N-1)/2\right) = 1 - 0.2 = 0.8$

7. Расчет смещенной импульсной характеристики цифрового ПФ

$$g\left(n-\frac{N-1}{2}\right) = 0.5 \frac{\sin 0.5\pi \cdot (n-(N-1)/2)}{0.5\pi \cdot (n-(N-1)/2)} - 0.1 \frac{\sin 0.1\pi \cdot (n-(N-1)/2)}{0.1\pi \cdot (n-(N-1)/2)}$$
 їде $0 \le n \le N-1$
 $g\left(n = (N-1)/2\right) = 0.5 - 0.1 = 0.4$
8. Расчет смещенной импульсной характеристики цифрового РФ
 $g\left(n = \frac{N-1}{2} - 0.1 \sin 0.1\pi \cdot (n-(N-1)/2)\right)$

$$g\left(n - \frac{N-1}{2}\right) = 0.1 \frac{\sin(0, N/(n-(N-1)/2))}{0.1\pi \cdot (n-(N-1)/2)} - 0.5 \frac{\sin(0, 5\pi \cdot (n-(N-1)/2))}{0.5\pi \cdot (n-(N-1)/2)} \quad \text{ide} \quad 0 \le n \le N-1$$
$$g\left(n = (N-1)/2\right) = 1 - (0, 5 - 0, 1) = 0.6$$

9. Расчёт частотных характеристик цифровых КИХ-фильтров различного назначения

$$K_{\hat{e}\hat{e}\tilde{o}}(z) = \sum_{n=0}^{N-1} g_n z^{-n}$$

$$\dot{K}_{\hat{e}\hat{e}\tilde{o}}(\hat{\omega}) = \sum_{n=0}^{N-1} g_n (e^{-j\omega T_{\ddot{a}}})^n = \sum_{n=0}^{N-1} g_n (e^{-j2\pi \cdot \hat{\omega}})^n$$

В таблице 8.4 приведены результаты расчетов коэффициентов КИХфильтров различного назначения. В таблице 8.5 представлены импульсные и частотные характеристики рассчитанных фильтров.

Таблица 8.4 – Коэффициенты КИХ-фильтров (ФНЧ, ФВЧ, ПФ, РФ)

таолица			цров (¥П I, ¥В	1, 11 + , 1 + /
	ФНЧ	ФВЧ	ΠΦ	РФ
$g_0 = g_{30}$	0	0	0	0
$g_1 = g_{29}$	0,0134	-0,0134	0,0216	-0,0216
$g_2 = g_{28}$	0,0233	-0,0233	0,0443	-0,0443
$g_3 = g_{27}$	0,0252	-0,0252	0,0156	-0,0156
$g_4 = g_{26}$	0,017	-0,017	-0,02	0,02
$g_5 = g_{25}$	0	0	0	0
$g_6 = g_{24}$	-0,0208	0,0208	0,0244	-0,0244
$g_7 = g_{23}$	-0,0378	0,0378	-0,0234	0,0234
$g_8 = g_{22}$	-0,0432	0,0432	-0,0823	0,0823
$g_9 = g_{21}$	-0,0312	0,0312	-0,0505	0,0505
$g_{10} = g_{20}$	0	0	0	0
$g_{11} = g_{19}$	0,0468	-0,0468	-0,0757	0,0757
$g_{12} = g_{18}$	0,1009	-0,1009	-0,1919	0,1919
$g_{13} = g_{17}$	0,1514	-0,1514	-0,0935	0,0935
$g_{14} = g_{16}$	0,1871	-0,1871	0,2199	-0,2199
<i>g</i> ₁₅	0,2	0,8	0,4	0,6

Тип фильтра и смещенные импульсн	Частотные характеристики	
Фильтр нижних частот (ФНЧ) $g\left(n - \frac{N-1}{2}\right) = 0,2 \frac{\sin 0,2\pi \cdot (n - (N-1)/2)}{0,2\pi \cdot (n - (N-1)/2)}$	$ \begin{array}{c} g(n) \\ 0 \\ 0 \\ 5 \\ 10 \\ 15 \\ 20 \\ 25 \\ 30 \\$	$ K(\hat{\omega}) / 1 / 1 / 1 / 1 / 1 / 1 / 1 / 1 / 1 / $
Фильтр верхних частот (ФВЧ) $g\left(n - \frac{N-1}{2}\right) = -0.2 \frac{\sin 0.2\pi \cdot (n - (N-1)/2)}{0.2\pi \cdot (n - (N-1)/2)}$ $g(n = (N-1)/2) = 1 - 0.2 = 0.8$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$-0,5 \qquad 0 \qquad 0,5 \hat{\omega}$
Полосовой фильтр (ПФ) $g\left(n - \frac{N-1}{2}\right) = \begin{cases} 0.5 \frac{\sin 0.5\pi \cdot (n - (N-1)/2)}{0.5\pi \cdot (n - (N-1)/2)} - \\ -0.1 \frac{\sin 0.1\pi \cdot (n - (N-1)/2)}{0.1\pi \cdot (n - (N-1)/2)} \end{cases}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	-0,5
Режекторный фильтр (РФ) $g\left(n - \frac{N-1}{2}\right) = \begin{cases} 0.1 \frac{\sin 0.1\pi \cdot (n - (N-1)/2)}{0.1\pi \cdot (n - (N-1)/2)} \\ -0.5 \frac{\sin 0.5\pi \cdot (n - (N-1)/2)}{0.5\pi \cdot (n - (N-1)/2)} \\ g(n = (N-1)/2) = 1 - (0.5 - 0.1) = 0.6 \end{cases}$	g(n) 0 5 10 15 20 25 30	$-0,5 \qquad \qquad$

8.5 Метод оконных функций

Проектирование КИХ-фильтра неизбежно приводит к усечению импульсной характеристики. Однако из известного явления Гиббса следует, что усечение бесконечной импульсной характеристики вызывает выбросы и колебания в требуемой частотной характеристике до и после любой точки разрыва (таблица 8.5).

Величина этих выбросов и колебаний не уменьшается с увеличением длины последовательности при условии сохранения её конечности. Прямое усечение импульсной характеристики для получения цифрового КИХфильтра не обеспечивает хороших результатов.

Метод оконных функций основан на применении весовых последовательностей w(n), называемых *окнами*, которые сглаживают значения импульсной характеристики конечной длительности

$$g_{\tilde{n}\tilde{a}\ddot{e}}(n) = g(n) \cdot w(n) \tag{8.10}$$

Сглаженная импульсная характеристика $g_{\tilde{n}\tilde{a}\ddot{e}}(n)$ имеет ту же протяжённость, что и оконная функция.

В простейшем случае роль ограничивающей функции выполняет окно Дирихле $w_D(n)$.

$$w_D(n) = 1, \ 0 \le n \le N - 1$$

$$w_D(n) = 0 \quad \text{ide} \quad \text{adoãeo} \quad n \tag{8.11}$$

Применяя к (8.11) прямое дискретное преобразование Фурье, получим спектральную плотность окна Дирихле $\dot{W}_{D}(\hat{\omega})$.

$$\dot{W}_{D}(\hat{\omega}) = \sum_{n=0}^{N-1} e^{-j\omega \cdot nT_{\ddot{a}}} = \sum_{n=0}^{N-1} e^{-j2\pi\hat{\omega} \cdot n}$$
$$\dot{W}_{D}(\hat{\omega}) = 1 + e^{-j2\pi\hat{\omega}} + \dots + e^{-j2\pi\hat{\omega}(N-1)}$$
$$\dot{W}_{D}(\hat{\omega}) = \frac{1 - e^{-j2\pi\hat{\omega}N}}{1 - e^{-j2\pi\hat{\omega}}} = \frac{\sin\pi\hat{\omega}N}{\sin\pi\hat{\omega}} e^{-j\pi\hat{\omega}(N-1)} = \dot{D}(\hat{\omega})$$
(8.12)

$$\dot{D}(k) = \frac{\sin k\pi}{\sin k\pi/N} e^{-j\pi \cdot k(N-1)/N}$$
(8.13)

где $\hat{\omega} = \omega / \omega_{\ddot{a}} = k \cdot \omega_1 / \omega_{\ddot{a}} = k / N$.

Примеры математических моделей оконных функций во временной и частотной областях представлены в таблицах 8.6 и 8.7. Основные параметры оконных функций приведены в таблице 8.8.

Приведём примерный порядок расчёта КИХ-фильтров методом оконных функций.

1. Расчёт частотной характеристики КИХ-фильтра методом частотной выборки или методом взвешивания.

- 2. Определение импульсной характеристики (по таблице 8.3).
- 3. Выбор подходящей функции окна (по таблице 8.6).

4. Расчёт сглаженной импульсной характеристики.

Таблица 8.6 – Аналитическое представление оконных функций во временной и частотной областях

Название окна	Дискретная временная функция w(n)	Частотная характеристика $\dot{W}(k)$
Прямоуг. (окно Дирихле)	$w_D(n) = 1, \ 0 \le n \le N - 1$ $w_D(n) = 0, \ $ iðe äð. n	$ \dot{W}_D(k) = \frac{\sin k\pi}{\sin k\pi/N} e^{-j\pi \cdot k(N-1)/N} \\ \dot{W}_D(k) = \dot{D}(\pi \cdot k/N) $
Косинус- квадрат (окно Ханна)	$w_{\tilde{O}ai}(n) = 1 - \cos^2(n\pi/(N-1)) =$ = 0,5 - 0,5 cos(2n\pi/(N-1)), 0 \le n \le N - 1 w_{\tilde{O}ai}(n) = 0, \expression \vee \vee \vee \vee \vee \vee \vee \ve	$\dot{W}_{XaH}(k) = 0.5\dot{D}(\pi \cdot k/N) - 0.25\dot{D}[\pi(k-1)/N] - 0.25\dot{D}[\pi(k+1)/N]$
Приподн. косинус (окно Хэмминга)	$w_{\tilde{O}\hat{y}\hat{\imath}}(n) = 0,54 - 0,46\cos\left(\frac{2\pi \cdot n}{N-1}\right),$ $0 \le n \le N-1$ $w_{\tilde{O}\hat{y}\hat{\imath}}(n) = 0, \text{ide} \text{ad.} n$	$\dot{W}_{X_{3M}}(k) = 0,54\dot{D}(\pi \cdot k/N) - 0,23\dot{D}[\pi(k-1)/N] - 0,23\dot{D}[\pi(k+1)/N]$
Обобщ. косинус (окно Блэкмана)	$w_{\dot{A}\ddot{e}}(n) = 0,42 - 0,5\cos\left(\frac{2\pi \cdot n}{N-1}\right) + 0,08\cos\left(\frac{4\pi \cdot n}{N-1}\right),$ $0 \le n \le N-1$ $w_{\dot{A}\ddot{e}}(n) = 0, \ddot{n} \eth \ddot{O} n$	$\dot{W}_{B\pi}(k) = 0.42\dot{D}(\pi \cdot k/N) - 0.25\dot{D}\left[\frac{\pi}{N}\left(k - \frac{N}{N-1}\right)\right] - 0.25\dot{D}\left[\frac{\pi}{N}\left(k + \frac{N}{N-1}\right)\right] + 0.04\dot{D}\left[\frac{\pi}{N}\left(k - \frac{2N}{N-1}\right)\right] + 0.04\dot{D}\left[\frac{\pi}{N}\left(k - \frac{2N}{N-1}\right)\right] + 0.04\dot{D}\left[\frac{\pi}{N}\left(k + \frac{2N}{N-1}\right)\right]$

Таблица 8.7 – Графическое представление оконных функций во временной и частотных областях

Наименование	Название окна					
параметра	Дирихле	Ханна	Хэмминга	Блэкмана		
Ширина						
главного	1/N	2/N	2/N	3/N		
лепестка						
Ширина						
перехода	0,9/N	3,1/N	3,3/N	5,5/N		
$\Delta \hat{\omega} = \hat{\omega}_{\rm c} - \hat{\omega}_{\rm i}$						
Неравномерность						
АЧХ в полосе	0,7416	0,0546	0,0194	0,0017		
пропуск. А _п , дБ						
Главный						
лепесток отн-но	13	31	41	57		
боковых, дБ						
Неравномерность						
АЧХ в полосе	21	44	53	75		
загражд. А ₃ , дБ						
Коэффициент						
пульсаций, %	22,34	2,62	1,47	0,08		
N=11						
Коэффициент						
пульсаций, %	21,89	2,67	0,93	0,12		
N=21						
Коэффициент		2,67	0,82	0,12		
пульсаций, %	21,8					
N=31						

Таблица 8.8 – Значения основных параметров оконных функций

8.6 Пример синтеза КИХ-фильтров методом оконных функций

Разработать цифровой КИХ- ФНЧ с параметрами:

- частота дискретизации 128 кГц;
- граничная частота полосы пропускания 14,72 кГц;
- ширина полосы перехода 12,8 кГц;
- затухание АЧХ в пределах полосы подавления 44 дБ.

1. Выбор оконной функции по таблице 8.7. Требованиям к затуханию в полосе подавления удовлетворяют функции Ханна, Хэмминга и Блэкмана. Для простоты выберем окно Ханна.

$$w_{Xah}(n) = 0, 5 - 0,5\cos(2n\pi/N), 0 \le n \le N - 1$$

$$w_{Xah}(n) = 0, при др. n$$

2. Определение нормированной ширины перехода

$$\Delta \hat{\omega} = \Delta f / f_{\ddot{a}} = 12,8/128 = 0,1$$

3. Вычисление порядка фильтра из соотношения (см. табл. 8.7)

$$N = 3,1/\Delta \hat{\omega} = 3,1/0,1 = 31$$

4. Расчет нормированной частоты пропускания

$$\hat{\omega}_{\ddot{i}} = \omega_{\ddot{i}} / \omega_{\ddot{a}} = f_{\ddot{i}} / f_{\ddot{a}} = 14,72/128 = 0,115$$

5. Определение идеальной импульсной характеристики из таблицы 8.3

$$g(n) = 2\hat{\omega}_{\ddot{i}} \left(\frac{\sin 2\pi \cdot n \hat{\omega}_{\ddot{i}}}{2\pi \cdot n \hat{\omega}_{\ddot{i}}}\right) = 0,23 \frac{\sin 0,23\pi \cdot n}{0,23\pi \cdot n}, \text{ при } n \neq 0$$

$$g(n) = 0,23, \text{ при } n = 0$$

6. Определение смещенной импульсной характеристики

$$g\left(n - \frac{N-1}{2}\right) = 0, 2\frac{\sin 0, 23\pi \cdot \left(n - (N-1)/2\right)}{0, 23\pi \cdot \left(n - (N-1)/2\right)}$$
при $0 \le n \le N-1$
 $g\left(n = (N-1)/2\right) = 0, 23$
Здесь $N=31$.

7. Умножение смещенной импульсной характеристики на оконную функцию

 $g_{\tilde{n}\tilde{a}\ddot{e}}(n) = g(n - (N-1)/2) \cdot w_{\tilde{O}\dot{a}i}(n)$

8. Определение системной функции фильтра, сглаженного с помощью окна Ханна

$$K(z) = \sum_{n=0}^{N-1} g_{c\tilde{a}\ddot{e}}(n) \cdot z^{-n}$$

9. Определение комплексной передаточной функции цифрового КИХфильтра, сглаженного с помощью окна Ханна

$$K(\hat{\omega}) = \sum_{n=0}^{N-1} g_{c\tilde{a}\ddot{e}}(n) \cdot \left(e^{-j2\pi\hat{\omega}}\right)^n$$

В таблице 8.9 приведены результаты расчетов коэффициентов КИХфильтров различного назначения, сглаженных с помощью оконных функций. В таблице 8.10 представлены импульсные и частотные характеристики рассчитанных фильтров после применения оконных функций.

	ФНЧ	ФВЧ	ПФ	РФ
$g_0 = g_{30}$	0	0	0	0
$g_1 = g_{29}$	$-1,5835 \cdot 10^{-4}$	$1,5835 \cdot 10^{-4}$	$2,3626 \cdot 10^{-4}$	- 2,3626 · 10 ⁻⁴
$g_2 = g_{28}$	$0,3325 \cdot 10^{-4}$	$-0,3325 \cdot 10^{-4}$	$1,9147 \cdot 10^{-3}$	$-1,9147 \cdot 10^{-3}$
$g_3 = g_{27}$	$1,734 \cdot 10^{-3}$	$-1,734 \cdot 10^{-3}$	$1,4889 \cdot 10^{-3}$	$-1,4889 \cdot 10^{-3}$
$g_4 = g_{26}$	$4,766 \cdot 10^{-3}$	$-4,766 \cdot 10^{-3}$	$-3,3079 \cdot 10^{-3}$	$3,3079 \cdot 10^{-3}$
$g_5 = g_{25}$	$6,438 \cdot 10^{-3}$	$-6,438 \cdot 10^{-3}$	0	0
$g_6 = g_{24}$	$2,6655 \cdot 10^{-3}$	$-2,6655 \cdot 10^{-3}$	8,4433 · 10 ⁻³	$-8,4433 \cdot 10^{-3}$
$g_7 = g_{23}$	$-8,5824 \cdot 10^{-3}$	$8,5824 \cdot 10^{-3}$	-0,0105	0,0105
$g_8 = g_{22}$	-0,0236	0,0236	-0,0454	0,0454
$g_9 = g_{21}$	-0,0323	0,0323	-0,033	0,033
$g_{10} = g_{20}$	-0,0217	0,0217	0	0
$g_{11} = g_{19}$	0,0165	-0,0165	-0,0632	0,0632
$g_{12} = g_{18}$	0,0794	-0,0794	-0,1736	0,1736
$g_{13} = g_{17}$	0,1511	-0,1511	-0,0895	0,0895
$g_{14} = g_{16}$	0,2082	-0,2082	0,2175	0,2175
<i>8</i> 15	0,23	0,77	0,4	0,6

Таблица 8.9 – Коэффициенты КИХ-фильтров, (ФНЧ, ФВЧ, ПФ, РФ) сглаженных с помощью оконных функций

Ти	т фильтра и сглаженные импульсные	Частотные характеристики до и
Х	карактеристики $g_{\tilde{n}\tilde{a}\check{e}}(n-(N-1)/2)$	после оконной функции
ФНЧ	$ \begin{array}{c} $	-0,5 0,5 ŵ
ФВЧ	$ \begin{array}{c} g(n) \\ 0,2 \\ 0 \\ 0 \\ 5 \\ 0 \\ 0 \\ 0 \\ 15 \\ 20 \\ 25 \\ 30 \\ $	$ K(\hat{\omega}) = 1$ -0,5 $0,5\hat{\omega}$
ПФ	g(n) 0 5 10 15 20 25 30	-0,5 (Å)
РФ	g(n) 0 5 10 15 20 25 30	-0,5 K(ŵ) -0,5 0,5 ŵ

Таблица 8.10 – Сглаженные импульсные и частотные характеристики цифровых частотно-избирательных КИХ-фильтров (ФНЧ, ФВЧ, ПФ, РФ)

9 ПРИЛОЖЕНИЯ

9.1 Приложение 1

9.1.1 Описание пакета программ для исследования частотных и временных характеристик цифровых фильтров, синтезированных методом Билинейного **Z**-преобразования

Известная системная функция цифрового фильтра позволяет определить его частотную характеристику следующим образом:

$$\left|\hat{E}\left(\hat{\omega}\right)\right| = \left|K\left(\hat{a}^{j2\pi\hat{\omega}}\right)\right|.\tag{9.1}$$

Приведенное выражение может быть использовано для расчета АЧХ цифрового фильтра, однако данный путь не является самым простым в рассматриваемом случае. При заданной АЧХ аналогового фильтра-прототипа $|\hat{E}(\hat{\Omega})|$ АЧХ цифрового фильтра $|\hat{E}(\hat{\omega})|$ может быть приближенно вычислена, если учесть трансформацию частотной оси. Необходимое соотношение имеет вид

$$\left| \hat{E}(\hat{\omega}) \right| = \left| \hat{E}\left(\frac{2}{\dot{O}}tg\frac{\Omega\dot{O}}{2}\right) \right|. \tag{9.2}$$

Таким образом, если аналоговыми фильтрами-прототипами служат фильтры Чебышева и Баттерворта *N*-го порядка, то для АЧХ цифровых фильтров могут быть записаны следующие формулы:

$$\left| \hat{E}_{\hat{A}}(\hat{\omega}) \right| = \frac{1}{\sqrt{1 + \varepsilon^2 \left(\frac{tg\hat{\omega}\pi}{tg\hat{\omega}_{i}\pi} \right)^{2N}}}, \qquad \left| \hat{E}_{\times}\left(\hat{\omega} \right) \right| = \frac{1}{\sqrt{1 + \varepsilon^2 \cdot \left(T_{N} \left(\frac{tg\hat{\omega}\pi}{tg\hat{\omega}_{i}\pi} \right) \right)^{2}}}, (9.3)$$

Приведенные соотношения (9.3) рекомендуется использовать для расчета АЧХ цифровых фильтров. Следует отметить, что в силу периодичности рассматриваемых функций расчет нужно проводить лишь для $\hat{\omega} \in [0;0,5]$. Кроме того, при построении АЧХ чебышевского типа полезно предварительно выяснить расположение нулей и максимумов функций $\hat{O}_N(\hat{\Omega})$ при $\hat{\Omega} \le 1$ [8], что позволяет грамотно выбирать шаг по частоте и не пройти мимо характерных точек АЧХ в полосе пропускания цифрового фильтра.

Для визуализации результатов расчетов в среде Windows на языке программирования C++ с использованием библиотеки Qt v.4.2.0 разработан пакет прикладных программ, позволяющий анализировать частотные и временные характеристики цифровых фильтров (ЦФ) разного назначения.

Полная структурная схема ЦФ представлена как последовательное включение биквадратных звеньев. Для определения временных характеристик использованы методы расчета отклика ЦФ на воздействие цифровых дельта-функции и единичного скачка.

Алгоритм работы *i*-го биквадратного звена ЦФ описывается уравнением вида:

$$y_{i(n)} = x_{i(n)} + A_i \cdot x_{i(n-1)} + B_i \cdot x_{i(n-2)} + C_i \cdot y_{i(n-1)} + D_i \cdot y_{i(n-2)}$$
(9.4)

где *і* – номер звена;

 A_i, B_i, C_i и D_i – коэффициенты взвешенного суммирования.

При помощи выражения (9.4) рассчитываются импульсные характеристики всех звеньев фильтра. С помощью свертки импульсных характеристик звеньев $g_{i(n)}$ друг с другом и умножения полученного результата на нормировочный множитель K_0 , получается импульсная характеристика ЦФ, представленного каскадным включением биквадратных звеньев.

$$g_n = K_0 \cdot g_{1(n)} \otimes g_{2(n)} \otimes g_{3(n)} \otimes \dots \otimes g_{q(n)}$$
(9.5)

где *q* – количество звеньев.

Переходная характеристика ЦФ рассчитана свёрткой импульсной характеристики с цифровой функцией единичного скачка ($\sigma_n = 1, 1, 1...$).

$$h_n = g_n \otimes \sigma_n \tag{9.6}$$

На рисунке (9.1) показана блок-схема алгоритма расчета временных и частотных характеристик ЦФ, примененного в программе.

Отклик определен свёрткой импульсной характеристики со входной последовательностью.

$$y_n = g_n \otimes x_n \tag{9.7}$$

Для определения частотных характеристик ЦФ использованы системные функции K(z), представленные в виде произведения системных функций каждого биквадратного звена $K_i(z)$, при $z = e^{j\omega T}$:

$$K(z) = K_0 \cdot K_1(z) \cdot K_2(z) \cdot K_3(z) \cdot \dots \cdot K_q(z)$$
(9.8)

$$K(e^{j\omega T}) = K_0 \cdot K_1(e^{j\omega T}) \cdot K_2(e^{j\omega T}) \cdot \dots \cdot K_q(e^{j\omega T})$$
(9.9)

Рисунок 9.1 – Блок-схема алгоритма расчета временных и частотных характеристик ЦФ

Амплитудно-частотная характеристика (АЧХ) рассчитана как произведение модулей комплексных функций биквадратных звеньев. Фазочастотная характеристика (ФЧХ) определена как сумма аргументов комплексных функций биквадратных звеньев. При синтезе ЦФ методом инвариантности импульсной характеристики полная структурная схема ЦФ представлена как параллельное включение биквадратных звеньев.

При помощи выражения (9.4) рассчитываются импульсные характеристики всех звеньев фильтра. С помощью свертки импульсных характеристик звеньев $g_{i(n)}$ друг с другом и умножения полученного результата на нормировочный множитель K_0 , получается импульсная характеристика ЦФ, представленного парллельным включением биквадратных звеньев.

$$g_n = K_0 \cdot \left(g_{1(n)} \otimes g_{2(n)} \otimes g_{3(n)} \otimes \dots \otimes g_{q(n)} \right)$$
(9.5)

где *q* – количество звеньев.

Переходная характеристика ЦФ рассчитана свёрткой импульсной характеристики с цифровой функцией единичного скачка ($\sigma_n = 1, 1, 1...$).

$$h_n = g_n \otimes \sigma_n \tag{9.6}$$

Отклик определен свёрткой импульсной характеристики со входной последовательностью.

$$y_n = g_n \otimes x_n \tag{9.7}$$

Для определения частотных характеристик ЦФ использованы системные функции K(z), представленные в виде суммы системных функций каждого биквадратного звена $K_i(z)$, при $z = e^{j\omega T}$:

$$K(z) = K_0 \cdot \left(K_1(z) + K_2(z) + K_3(z) + \dots + K_q(z) \right)$$
(9.8)

$$K(e^{j\omega T}) = K_0 \cdot \left(K_1(e^{j\omega T}) + K_2(e^{j\omega T}) + \dots + K_q(e^{j\omega T}) \right)$$
(9.9)

Амплитудно-частотная характеристика (АЧХ) рассчитана как сумма модулей комплексных функций биквадратных звеньев. Фазочастотная характеристика (ФЧХ) определена как аргумент комплексной функций ЦФ.

Созданный пакет программ для исследования частотных и временных характеристик ЦФ позволяет визуализировать расчет характеристик фильтров и может быть использован не только в учебном процессе, но и специалистами, разрабатывающими цифровые фильтры.

Рисунок 9.2 - Рабочее окно программы

171

Рисунок 9.3 – Рабочее окно программы

9.2 Приложение 2

Пересчётные таблицы преобразования Константинидиса

Таблица 9.2.1 – Пересчет цифрового ПФ1(ПФ2) с нормированными граничными частотами полосы пропускания $\hat{\omega}_{\Pi 1} = 0,025$, $\hat{\omega}_{\Pi 2} = 0,1$ ($\hat{\omega}_{\Pi 1} = 0,4$, $\hat{\omega}_{\Pi 2} = 0,475$) в цифровой ФНЧ с помощью преобразования Константинидиса

ΠΦ1	0,000	0,001	0,002	0,003	0,004	0,005	0,006	0,007	0,008	0,009	0,010	
0,00	-0,5000	-0,4203	-0,3494	-0,2912	-0,2455	-0,2099	-0,1819	-0,1596	-0,1417	-0,1269	-0,1145	0,49
0,01	-0,1145	-0,1040	-0,0950	-0,0872	-0,0804	-0,0744	-0,0690	-0,0641	-0,0597	-0,0558	-0,0521	0,48
0,02	-0,0521	-0,0487	-0,0456	-0,0427	-0,0400	-0,0375	-0,0351	-0,0329	-0,0308	-0,0288	-0,0269	0,47
0,03	-0,0269	-0,0250	-0,0233	-0,0217	-0,0201	-0,0185	-0,0171	-0,0156	-0,0143	-0,0129	-0,0116	0,46
0,04	-0,0116	-0,0104	-0,0092	-0,0080	-0,0068	-0,0057	-0,0046	-0,0035	-0,0025	-0,0015	-0,0005	0,45
0,05	-0,0005	0,0005	0,0015	0,0024	0,0034	0,0043	0,0052	0,0061	0,0070	0,0078	0,0087	0,44
0,06	0,0087	0,0095	0,0103	0,0112	0,0120	0,0128	0,0136	0,0144	0,0151	0,0159	0,0167	0,43
0,07	0,0167	0,0174	0,0182	0,0189	0,0197	0,0204	0,0211	0,0219	0,0226	0,0233	0,0240	0,42
0,08	0,0240	0,0247	0,0254	0,0261	0,0268	0,0275	0,0282	0,0289	0,0295	0,0302	0,0309	0,41
0,09	0,0309	0,0316	0,0322	0,0329	0,0336	0,0342	0,0349	0,0355	0,0362	0,0368	0,0375	0,40
0,10	0,0375	0,0382	0,0388	0,0394	0,0401	0,0407	0,0414	0,0420	0,0427	0,0433	0,0439	0,39
0,11	0,0439	0,0446	0,0452	0,0458	0,0465	0,0471	0,0477	0,0484	0,0490	0,0496	0,0503	0,38
0,12	0,0503	0,0509	0,0515	0,0522	0,0528	0,0534	0,0541	0,0547	0,0553	0,0559	0,0566	0,37
0,13	0,0566	0,0572	0,0578	0,0585	0,0591	0,0597	0,0603	0,0610	0,0616	0,0622	0,0629	0,36
0,14	0,0629	0,0635	0,0641	0,0647	0,0654	0,0660	0,0666	0,0673	0,0679	0,0685	0,0692	0,35
0,15	0,0692	0,0698	0,0704	0,0711	0,0717	0,0724	0,0730	0,0736	0,0743	0,0749	0,0756	0,34
0,16	0,0756	0,0762	0,0768	0,0775	0,0781	0,0788	0,0794	0,0801	0,0807	0,0814	0,0820	0,33
0,17	0,0820	0,0827	0,0833	0,0840	0,0846	0,0853	0,0859	0,0866	0,0873	0,0879	0,0886	0,32
0,18	0,0886	0,0892	0,0899	0,0906	0,0912	0,0919	0,0926	0,0933	0,0939	0,0946	0,0953	0,31
0,19	0,0953	0,0960	0,0966	0,0973	0,0980	0,0987	0,0994	0,1001	0,1007	0,1014	0,1021	0,30
0,20	0,1021	0,1028	0,1035	0,1042	0,1049	0,1056	0,1063	0,1070	0,1077	0,1084	0,1092	0,29
0,21	0,1092	0,1099	0,1106	0,1113	0,1120	0,1127	0,1135	0,1142	0,1149	0,1156	0,1164	0,28
0,22	0,1164	0,1171	0,1178	0,1186	0,1193	0,1201	0,1208	0,1216	0,1223	0,1231	0,1238	0,27
0,23	0,1238	0,1246	0,1253	0,1261	0,1269	0,1276	0,1284	0,1292	0,1299	0,1307	0,1315	0,26
0,24	0,1315	0,1323	0,1331	0,1338	0,1346	0,1354	0,1362	0,1370	0,1378	0,1386	0,1394	0,25
0,25	0,1394	0,1402	0,1411	0,1419	0,1427	0,1435	0,1443	0,1452	0,1460	0,1468	0,1477	0,24

1	7	5
		~

0,26	0,1477	0,1485	0,1494	0,1502	0,1511	0,1519	0,1528	0,1536	0,1545	0,1554	0,1562	0,23
0,27	0,1562	0,1571	0,1580	0,1589	0,1597	0,1606	0,1615	0,1624	0,1633	0,1642	0,1651	0,22
0,28	0,1651	0,1660	0,1669	0,1679	0,1688	0,1697	0,1706	0,1716	0,1725	0,1734	0,1744	0,21
0,29	0,1744	0,1753	0,1763	0,1773	0,1782	0,1792	0,1801	0,1811	0,1821	0,1831	0,1841	0,20
0,30	0,1841	0,1851	0,1861	0,1871	0,1881	0,1891	0,1901	0,1911	0,1921	0,1932	0,1942	0,19
0,31	0,1942	0,1952	0,1963	0,1973	0,1984	0,1994	0,2005	0,2015	0,2026	0,2037	0,2048	0,18
0,32	0,2048	0,2059	0,2069	0,2080	0,2091	0,2102	0,2114	0,2125	0,2136	0,2147	0,2159	0,17
0,33	0,2159	0,2170	0,2181	0,2193	0,2204	0,2216	0,2228	0,2239	0,2251	0,2263	0,2275	0,16
0,34	0,2275	0,2287	0,2299	0,2311	0,2323	0,2335	0,2347	0,2360	0,2372	0,2384	0,2397	0,15
0,35	0,2397	0,2409	0,2422	0,2435	0,2447	0,2460	0,2473	0,2486	0,2499	0,2512	0,2525	0,14
0,36	0,2525	0,2538	0,2551	0,2565	0,2578	0,2591	0,2605	0,2618	0,2632	0,2646	0,2659	0,13
0,37	0,2659	0,2673	0,2687	0,2701	0,2715	0,2729	0,2743	0,2758	0,2772	0,2786	0,2801	0,12
0,38	0,2801	0,2815	0,2830	0,2844	0,2859	0,2874	0,2889	0,2904	0,2919	0,2934	0,2949	0,11
0,39	0,2949	0,2964	0,2979	0,2995	0,3010	0,3025	0,3041	0,3057	0,3072	0,3088	0,3104	0,10
0,40	0,3104	0,3120	0,3136	0,3152	0,3168	0,3184	0,3201	0,3217	0,3233	0,3250	0,3267	0,09
0,41	0,3267	0,3283	0,3300	0,3317	0,3334	0,3350	0,3367	0,3385	0,3402	0,3419	0,3436	0,08
0,42	0,3436	0,3454	0,3471	0,3489	0,3506	0,3524	0,3541	0,3559	0,3577	0,3595	0,3613	0,07
0,43	0,3613	0,3631	0,3649	0,3667	0,3686	0,3704	0,3722	0,3741	0,3759	0,3778	0,3796	0,06
0,44	0,3796	0,3815	0,3834	0,3853	0,3872	0,3891	0,3910	0,3929	0,3948	0,3967	0,3986	0,05
0,45	0,3986	0,4006	0,4025	0,4044	0,4064	0,4083	0,4103	0,4122	0,4142	0,4162	0,4182	0,04
0,46	0,4182	0,4201	0,4221	0,4241	0,4261	0,4281	0,4301	0,4321	0,4341	0,4362	0,4382	0,03
0,47	0,4382	0,4402	0,4422	0,4443	0,4463	0,4483	0,4504	0,4524	0,4545	0,4565	0,4586	0,02
0,48	0,4586	0,4606	0,4627	0,4647	0,4668	0,4689	0,4709	0,4730	0,4751	0,4771	0,4792	0,01
0,49	0,4792	0,4813	0,4834	0,4854	0,4875	0,4896	0,4917	0,4938	0,4958	0,4979	0,5000	0,00
	0,010	0,009	0,008	0,007	0,006	0,005	0,004	0,003	0,002	0,001	0,000	ΠΦ2

Замечание: Все значения нормированных частот цифрового ФНЧ для ПФ2 брать с обратным знаком

Таблица 9.2.2 – Пересчет цифрового ПФ1(ПФ2) с нормированными граничными частотами полосы пропускания $\hat{\omega}_{\Pi 1} = 0,15, \ \hat{\omega}_{\Pi 2} = 0,225 \ (\hat{\omega}_{\Pi 1} = 0,275, \ \hat{\omega}_{\Pi 2} = 0,35)$ в цифровой ФНЧ с помощью преобразования Константинидиса

ΠΦ1	0,000	0,001	0,002	0,003	0,004	0,005	0,006	0,007	0,008	0,009	0,010	
0,00	-0,5000	-0,4933	-0,4866	-0,4800	-0,4733	-0,4667	-0,4600	-0,4534	-0,4469	-0,4404	-0,4339	0,49
0,01	-0,4339	-0,4275	-0,4211	-0,4148	-0,4085	-0,4023	-0,3961	-0,3900	-0,3840	-0,3780	-0,3722	0,48
0,02	-0,3722	-0,3663	-0,3606	-0,3549	-0,3494	-0,3439	-0,3384	-0,3331	-0,3278	-0,3226	-0,3175	0,47
0,03	-0,3175	-0,3125	-0,3075	-0,3027	-0,2979	-0,2932	-0,2885	-0,2840	-0,2795	-0,2751	-0,2708	0,46
0,04	-0,2708	-0,2665	-0,2623	-0,2582	-0,2542	-0,2502	-0,2463	-0,2425	-0,2387	-0,2350	-0,2314	0,45
0,05	-0,2314	-0,2278	-0,2243	-0,2208	-0,2174	-0,2141	-0,2108	-0,2076	-0,2044	-0,2013	-0,1982	0,44
0,06	-0,1982	-0,1952	-0,1922	-0,1893	-0,1865	-0,1836	-0,1808	-0,1781	-0,1754	-0,1728	-0,1701	0,43
0,07	-0,1701	-0,1676	-0,1650	-0,1625	-0,1601	-0,1577	-0,1553	-0,1529	-0,1506	-0,1483	-0,1461	0,42
0,08	-0,1461	-0,1438	-0,1416	-0,1395	-0,1374	-0,1352	-0,1332	-0,1311	-0,1291	-0,1271	-0,1251	0,41
0,09	-0,1251	-0,1232	-0,1213	-0,1194	-0,1175	-0,1157	-0,1138	-0,1120	-0,1102	-0,1085	-0,1067	0,40
0,10	-0,1067	-0,1050	-0,1033	-0,1016	-0,0999	-0,0983	-0,0967	-0,0950	-0,0934	-0,0919	-0,0903	0,39
0,11	-0,0903	-0,0887	-0,0872	-0,0857	-0,0842	-0,0827	-0,0812	-0,0798	-0,0783	-0,0769	-0,0754	0,38
0,12	-0,0754	-0,0740	-0,0726	-0,0712	-0,0699	-0,0685	-0,0672	-0,0658	-0,0645	-0,0632	-0,0619	0,37
0,13	-0,0619	-0,0606	-0,0593	-0,0580	-0,0567	-0,0554	-0,0542	-0,0530	-0,0517	-0,0505	-0,0493	0,36
0,14	-0,0493	-0,0481	-0,0469	-0,0457	-0,0445	-0,0433	-0,0421	-0,0410	-0,0398	-0,0386	-0,0375	0,35
0,15	-0,0375	-0,0364	-0,0352	-0,0341	-0,0330	-0,0319	-0,0308	-0,0297	-0,0286	-0,0275	-0,0264	0,34
0,16	-0,0264	-0,0253	-0,0242	-0,0232	-0,0221	-0,0210	-0,0200	-0,0189	-0,0179	-0,0168	-0,0158	0,33
0,17	-0,0158	-0,0147	-0,0137	-0,0127	-0,0117	-0,0106	-0,0096	-0,0086	-0,0076	-0,0066	-0,0056	0,32
0,18	-0,0056	-0,0046	-0,0036	-0,0026	-0,0016	-0,0006	0,0004	0,0014	0,0023	0,0033	0,0043	0,31
0,19	0,0043	0,0053	0,0062	0,0072	0,0082	0,0091	0,0101	0,0111	0,0120	0,0130	0,0139	0,30
0,20	0,0139	0,0149	0,0158	0,0168	0,0178	0,0187	0,0196	0,0206	0,0215	0,0225	0,0234	0,29
0,21	0,0234	0,0244	0,0253	0,0263	0,0272	0,0281	0,0291	0,0300	0,0309	0,0319	0,0328	0,28
0,22	0,0328	0,0338	0,0347	0,0356	0,0366	0,0375	0,0384	0,0394	0,0403	0,0412	0,0422	0,27
0,23	0,0422	0,0431	0,0440	0,0450	0,0459	0,0469	0,0478	0,0487	0,0497	0,0506	0,0516	0,26
0,24	0,0516	0,0525	0,0534	0,0544	0,0553	0,0563	0,0572	0,0582	0,0591	0,0601	0,0610	0,25
0,25	0,0610	0,0620	0,0629	0,0639	0,0648	0,0658	0,0667	0,0677	0,0686	0,0696	0,0706	0,24

0,26	0,0706	0,0715	0,0725	0,0735	0,0745	0,0754	0,0764	0,0774	0,0784	0,0793	0,0803	0,23
0,27	0,0803	0,0813	0,0823	0,0833	0,0843	0,0853	0,0863	0,0873	0,0883	0,0893	0,0903	0,22
0,28	0,0903	0,0913	0,0923	0,0934	0,0944	0,0954	0,0964	0,0975	0,0985	0,0995	0,1006	0,21
0,29	0,1006	0,1016	0,1027	0,1037	0,1048	0,1058	0,1069	0,1080	0,1090	0,1101	0,1112	0,20
0,30	0,1112	0,1123	0,1133	0,1144	0,1155	0,1166	0,1177	0,1188	0,1199	0,1211	0,1222	0,19
0,31	0,1222	0,1233	0,1244	0,1256	0,1267	0,1279	0,1290	0,1302	0,1313	0,1325	0,1336	0,18
0,32	0,1336	0,1348	0,1360	0,1372	0,1384	0,1396	0,1408	0,1420	0,1432	0,1444	0,1457	0,17
0,33	0,1457	0,1469	0,1481	0,1494	0,1506	0,1519	0,1531	0,1544	0,1557	0,1570	0,1583	0,16
0,34	0,1583	0,1596	0,1609	0,1622	0,1635	0,1648	0,1661	0,1675	0,1688	0,1702	0,1716	0,15
0,35	0,1716	0,1729	0,1743	0,1757	0,1771	0,1785	0,1799	0,1813	0,1827	0,1842	0,1856	0,14
0,36	0,1856	0,1871	0,1885	0,1900	0,1915	0,1930	0,1945	0,1960	0,1975	0,1990	0,2005	0,13
0,37	0,2005	0,2021	0,2036	0,2052	0,2068	0,2083	0,2099	0,2115	0,2131	0,2148	0,2164	0,12
0,38	0,2164	0,2180	0,2197	0,2214	0,2230	0,2247	0,2264	0,2281	0,2298	0,2316	0,2333	0,11
0,39	0,2333	0,2351	0,2368	0,2386	0,2404	0,2422	0,2440	0,2458	0,2477	0,2495	0,2514	0,10
0,40	0,2514	0,2532	0,2551	0,2570	0,2589	0,2608	0,2628	0,2647	0,2667	0,2687	0,2706	0,09
0,41	0,2706	0,2726	0,2747	0,2767	0,2787	0,2808	0,2828	0,2849	0,2870	0,2891	0,2912	0,08
0,42	0,2912	0,2934	0,2955	0,2977	0,2998	0,3020	0,3042	0,3064	0,3087	0,3109	0,3132	0,07
0,43	0,3132	0,3154	0,3177	0,3200	0,3223	0,3246	0,3270	0,3293	0,3317	0,3341	0,3365	0,06
0,44	0,3365	0,3389	0,3413	0,3437	0,3462	0,3486	0,3511	0,3536	0,3561	0,3586	0,3611	0,05
0,45	0,3611	0,3637	0,3662	0,3688	0,3714	0,3740	0,3766	0,3792	0,3818	0,3845	0,3871	0,04
0,46	0,3871	0,3898	0,3924	0,3951	0,3978	0,4005	0,4032	0,4060	0,4087	0,4114	0,4142	0,03
0,47	0,4142	0,4170	0,4197	0,4225	0,4253	0,4281	0,4309	0,4337	0,4366	0,4394	0,4422	0,02
0,48	0,4422	0,4451	0,4479	0,4508	0,4537	0,4565	0,4594	0,4623	0,4652	0,4681	0,4709	0,01
0,49	0.4709	0,4738	0,4767	0,4796	0,4825	0,4855	0,4884	0,4913	0,4942	0,4971	0,5000	0,00
	-,			,							,	•

Замечание: Все значения нормированных частот цифрового ФНЧ для ПФ2 брать с обратным знаком

0,0			, , , , , , , , , , , , , , , , , , ,	0, 110 / 2 =	mpozon		олощию	inpere e puis	0.0000000000000000000000000000000000000			
ΡΦ1	0,000	0,001	0,002	0,003	0,004	0,005	0,006	0,007	0,008	0,009	0,010	
0,00	0,0000	0,0011	0,0023	0,0034	0,0046	0,0058	0,0069	0,0081	0,0093	0,0106	0,0119	0,49
0,01	0,0119	0,0131	0,0145	0,0158	0,0173	0,0187	0,0202	0,0218	0,0234	0,0251	0,0269	0,48
0,02	0,0269	0,0288	0,0308	0,0329	0,0351	0,0375	0,0400	0,0427	0,0457	0,0488	0,0522	0,47
0,03	0,0522	0,0560	0,0600	0,0646	0,0695	0,0751	0,0813	0,0884	0,0964	0,1057	0,1164	0,46
0,04	0,1164	0,1290	0,1440	0,1620	0,1839	0,2109	0,2444	0,2861	0,3373	0,3983	0,4666	0,45
0,05	0,4666	-0,4633	-0,3978	-0,3410	-0,2941	-0,2563	-0,2259	-0,2014	-0,1814	-0,1649	-0,1511	0,44
0,06	-0,1511	-0,1394	-0,1295	-0,1208	-0,1133	-0,1068	-0,1009	-0,0957	-0,0911	-0,0869	-0,0831	0,43
0,07	-0,0831	-0,0796	-0,0764	-0,0735	-0,0709	-0,0684	-0,0661	-0,0640	-0,0620	-0,0601	-0,0584	0,42
0,08	-0,0584	-0,0567	-0,0552	-0,0537	-0,0524	-0,0511	-0,0498	-0,0487	-0,0476	-0,0465	-0,0455	0,41
0,09	-0,0455	-0,0445	-0,0436	-0,0427	-0,0419	-0,0411	-0,0403	-0,0396	-0,0389	-0,0382	-0,0375	0,40
0,10	-0,0375	-0,0369	-0,0362	-0,0356	-0,0351	-0,0345	-0,0340	-0,0335	-0,0330	-0,0325	-0,0320	0,39
0,11	-0,0320	-0,0315	-0,0311	-0,0306	-0,0302	-0,0298	-0,0294	-0,0290	-0,0287	-0,0283	-0,0279	0,38
0,12	-0,0279	-0,0276	-0,0272	-0,0269	-0,0266	-0,0263	-0,0259	-0,0256	-0,0253	-0,0251	-0,0248	0,37
0,13	-0,0248	-0,0245	-0,0242	-0,0240	-0,0237	-0,0234	-0,0232	-0,0230	-0,0227	-0,0225	-0,0223	0,36
0,14	-0,0223	-0,0220	-0,0218	-0,0216	-0,0214	-0,0212	-0,0210	-0,0208	-0,0206	-0,0204	-0,0202	0,35
0,15	-0,0202	-0,0200	-0,0198	-0,0196	-0,0194	-0,0193	-0,0191	-0,0189	-0,0187	-0,0186	-0,0184	0,34
0,16	-0,0184	-0,0183	-0,0181	-0,0179	-0,0178	-0,0176	-0,0175	-0,0173	-0,0172	-0,0170	-0,0169	0,33
0,17	-0,0169	-0,0168	-0,0166	-0,0165	-0,0164	-0,0162	-0,0161	-0,0160	-0,0158	-0,0157	-0,0156	0,32
0,18	-0,0156	-0,0155	-0,0154	-0,0152	-0,0151	-0,0150	-0,0149	-0,0148	-0,0147	-0,0145	-0,0144	0,31
0,19	-0,0144	-0,0143	-0,0142	-0,0141	-0,0140	-0,0139	-0,0138	-0,0137	-0,0136	-0,0135	-0,0134	0,30
0,20	-0,0134	-0,0133	-0,0132	-0,0131	-0,0130	-0,0129	-0,0128	-0,0128	-0,0127	-0,0126	-0,0125	0,29
0,21	-0,0125	-0,0124	-0,0123	-0,0122	-0,0121	-0,0121	-0,0120	-0,0119	-0,0118	-0,0117	-0,0116	0,28
0,22	-0,0116	-0,0116	-0,0115	-0,0114	-0,0113	-0,0113	-0,0112	-0,0111	-0,0110	-0,0109	-0,0109	0,27
0,23	-0,0109	-0,0108	-0,0107	-0,0107	-0,0106	-0,0105	-0,0104	-0,0104	-0,0103	-0,0102	-0,0102	0,26
0,24	-0,0102	-0,0101	-0,0100	-0,0100	-0,0099	-0,0098	-0,0098	-0,0097	-0,0096	-0,0096	-0,0095	0,25

Таблица 9.2.3 – Пересчет цифрового РФ1(РФ2) с нормированными граничными частотами полосы пропускания $\hat{\omega}_{\Pi 1} = 0,025, \ \hat{\omega}_{\Pi 2} = 0,1 \ (\hat{\omega}_{\Pi 1} = 0,4, \ \hat{\omega}_{\Pi 2} = 0,475)$ в цифровой ФНЧ с помощью преобразования Константинидиса

0,25	-0,0095	-0,0095	-0,0094	-0,0093	-0,0093	-0,0092	-0,0091	-0,0091	-0,0090	-0,0090	-0,0089	0,24
0,26	-0,0089	-0,0089	-0,0088	-0,0087	-0,0087	-0,0086	-0,0086	-0,0085	-0,0085	-0,0084	-0,0083	0,23
0,27	-0,0083	-0,0083	-0,0082	-0,0082	-0,0081	-0,0081	-0,0080	-0,0080	-0,0079	-0,0079	-0,0078	0,22
0,28	-0,0078	-0,0078	-0,0077	-0,0077	-0,0076	-0,0076	-0,0075	-0,0075	-0,0074	-0,0074	-0,0073	0,21
0,29	-0,0073	-0,0073	-0,0072	-0,0072	-0,0071	-0,0071	-0,0070	-0,0070	-0,0069	-0,0069	-0,0068	0,20
0,30	-0,0068	-0,0068	-0,0067	-0,0067	-0,0066	-0,0066	-0,0066	-0,0065	-0,0065	-0,0064	-0,0064	0,19
0,31	-0,0064	-0,0063	-0,0063	-0,0062	-0,0062	-0,0062	-0,0061	-0,0061	-0,0060	-0,0060	-0,0059	0,18
0,32	-0,0059	-0,0059	-0,0059	-0,0058	-0,0058	-0,0057	-0,0057	-0,0057	-0,0056	-0,0056	-0,0055	0,17
0,33	-0,0055	-0,0055	-0,0055	-0,0054	-0,0054	-0,0053	-0,0053	-0,0053	-0,0052	-0,0052	-0,0051	0,16
0,34	-0,0051	-0,0051	-0,0051	-0,0050	-0,0050	-0,0049	-0,0049	-0,0049	-0,0048	-0,0048	-0,0048	0,15
0,35	-0,0048	-0,0047	-0,0047	-0,0046	-0,0046	-0,0046	-0,0045	-0,0045	-0,0045	-0,0044	-0,0044	0,14
0,36	-0,0044	-0,0044	-0,0043	-0,0043	-0,0042	-0,0042	-0,0042	-0,0041	-0,0041	-0,0041	-0,0040	0,13
0,37	-0,0040	-0,0040	-0,0040	-0,0039	-0,0039	-0,0039	-0,0038	-0,0038	-0,0038	-0,0037	-0,0037	0,12
0,38	-0,0037	-0,0037	-0,0036	-0,0036	-0,0036	-0,0035	-0,0035	-0,0035	-0,0034	-0,0034	-0,0034	0,11
0,39	-0,0034	-0,0033	-0,0033	-0,0033	-0,0032	-0,0032	-0,0032	-0,0031	-0,0031	-0,0031	-0,0030	0,10
0,40	-0,0030	-0,0030	-0,0030	-0,0029	-0,0029	-0,0029	-0,0028	-0,0028	-0,0028	-0,0027	-0,0027	0,09
0,41	-0,0027	-0,0027	-0,0026	-0,0026	-0,0026	-0,0025	-0,0025	-0,0025	-0,0024	-0,0024	-0,0024	0,08
0,42	-0,0024	-0,0024	-0,0023	-0,0023	-0,0023	-0,0022	-0,0022	-0,0022	-0,0021	-0,0021	-0,0021	0,07
0,43	-0,0021	-0,0020	-0,0020	-0,0020	-0,0020	-0,0019	-0,0019	-0,0019	-0,0018	-0,0018	-0,0018	0,06
0,44	-0,0018	-0,0017	-0,0017	-0,0017	-0,0017	-0,0016	-0,0016	-0,0016	-0,0015	-0,0015	-0,0015	0,05
0,45	-0,0015	-0,0014	-0,0014	-0,0014	-0,0014	-0,0013	-0,0013	-0,0013	-0,0012	-0,0012	-0,0012	0,04
0,46	-0,0012	-0,0011	-0,0011	-0,0011	-0,0011	-0,0010	-0,0010	-0,0010	-0,0009	-0,0009	-0,0009	0,03
0,47	-0,0009	-0,0008	-0,0008	-0,0008	-0,0008	-0,0007	-0,0007	-0,0007	-0,0006	-0,0006	-0,0006	0,02
0,48	-0,0006	-0,0006	-0,0005	-0,0005	-0,0005	-0,0004	-0,0004	-0,0004	-0,0003	-0,0003	-0,0003	0,01
0,49	-0,0003	-0,0003	-0,0002	-0,0002	-0,0002	-0,0001	-0,0001	-0,0001	-0,0001	0,0000	0,0000	0,00
	0,010	0,009	0,008	0,007	0,006	0,005	0,004	0,003	0,002	0,001	0,000	ΡΦ2

Замечание: Все значения нормированных частот цифрового ФНЧ для РФ2 брать с обратным знаком

	$10, \omega_{II2}$		$, , , \omega_{12}$	0, 170 / 5 1	mabon		отощые	npeoopus		and Rolle Pairting and						
ΡΦ1	0,000	0,001	0,002	0,003	0,004	0,005	0,006	0,007	0,008	0,009	0,010					
0,00	0,0000	0,0001	0,0002	0,0003	0,0004	0,0005	0,0006	0,0007	0,0008	0,0008	0,0009	0,49				
0,01	0,0009	0,0010	0,0011	0,0012	0,0013	0,0014	0,0015	0,0016	0,0017	0,0018	0,0019	0,48				
0,02	0,0019	0,0020	0,0021	0,0022	0,0023	0,0024	0,0025	0,0026	0,0027	0,0028	0,0029	0,47				
0,03	0,0029	0,0030	0,0031	0,0032	0,0033	0,0034	0,0035	0,0036	0,0037	0,0038	0,0039	0,46				
0,04	0,0039	0,0040	0,0041	0,0042	0,0043	0,0045	0,0046	0,0047	0,0048	0,0049	0,0050	0,45				
0,05	0,0050	0,0051	0,0052	0,0054	0,0055	0,0056	0,0057	0,0058	0,0060	0,0061	0,0062	0,44				
0,06	0,0062	0,0063	0,0065	0,0066	0,0067	0,0069	0,0070	0,0071	0,0073	0,0074	0,0075	0,43				
0,07	0,0075	0,0077	0,0078	0,0080	0,0081	0,0083	0,0084	0,0086	0,0087	0,0089	0,0090	0,42				
0,08	0,0090	0,0092	0,0093	0,0095	0,0097	0,0099	0,0100	0,0102	0,0104	0,0106	0,0107	0,41				
0,09	0,0107	0,0109	0,0111	0,0113	0,0115	0,0117	0,0119	0,0121	0,0124	0,0126	0,0128	0,40				
0,10	0,0128	0,0130	0,0132	0,0135	0,0137	0,0140	0,0142	0,0145	0,0147	0,0150	0,0153	0,39				
0,11	0,0153	0,0156	0,0159	0,0161	0,0165	0,0168	0,0171	0,0174	0,0177	0,0181	0,0184	0,38				
0,12	0,0184	0,0188	0,0192	0,0196	0,0200	0,0204	0,0208	0,0212	0,0217	0,0221	0,0226	0,37				
0,13	0,0226	0,0231	0,0236	0,0242	0,0247	0,0253	0,0259	0,0265	0,0271	0,0278	0,0285	0,36				
0,14	0,0285	0,0292	0,0300	0,0308	0,0316	0,0325	0,0334	0,0343	0,0353	0,0364	0,0375	0,35				
0,15	0,0375	0,0387	0,0399	0,0412	0,0426	0,0441	0,0457	0,0474	0,0492	0,0511	0,0532	0,34				
0,16	0,0532	0,0554	0,0578	0,0605	0,0633	0,0664	0,0699	0,0736	0,0778	0,0824	0,0876	0,33				
0,17	0,0876	0,0934	0,1000	0,1075	0,1162	0,1263	0,1381	0,1521	0,1689	0,1893	0,2144	0,32				
0,18	0,2144	0,2455	0,2843	0,3322	0,3902	0,4564	-0,4735	-0,4060	-0,3463	-0,2965	-0,2561	0,31				
0,19	-0,2561	-0,2236	-0,1975	-0,1763	-0,1589	-0,1444	-0,1323	-0,1219	-0,1130	-0,1052	-0,0985	0,30				
0,20	-0,0985	-0,0925	-0,0872	-0,0825	-0,0783	-0,0744	-0,0709	-0,0678	-0,0649	-0,0622	-0,0598	0,29				
0,21	-0,0598	-0,0575	-0,0554	-0,0534	-0,0516	-0,0499	-0,0483	-0,0468	-0,0454	-0,0441	-0,0428	0,28				
0,22	-0,0428	-0,0416	-0,0405	-0,0395	-0,0385	-0,0375	-0,0366	-0,0357	-0,0349	-0,0341	-0,0333	0,27				
0,23	-0,0333	-0,0326	-0,0319	-0,0312	-0,0306	-0,0300	-0,0294	-0,0288	-0,0283	-0,0277	-0,0272	0,26				
0,24	-0,0272	-0,0267	-0,0263	-0,0258	-0,0253	-0,0249	-0,0245	-0,0241	-0,0237	-0,0233	-0,0229	0,25				

Таблица 9.2.4 – Пересчет цифрового РФ1(РФ2) с нормированными граничными частотами полосы пропускания $\hat{\omega}_{_{II}} = 0,015, \ \hat{\omega}_{_{II}} = 0,1 \ (\hat{\omega}_{_{II}} = 0,4, \ \hat{\omega}_{_{II}} = 0,475)$ в цифровой ФНЧ с помощью преобразования Константинидиса
1	ο	1
	n	
-	~	•

0,25	-0,0229	-0,0226	-0,0222	-0,0219	-0,0216	-0,0212	-0,0209	-0,0206	-0,0203	-0,0200	-0,0198	0,24
0,26	-0,0198	-0,0195	-0,0192	-0,0189	-0,0187	-0,0184	-0,0182	-0,0180	-0,0177	-0,0175	-0,0173	0,23
0,27	-0,0173	-0,0171	-0,0168	-0,0166	-0,0164	-0,0162	-0,0160	-0,0158	-0,0156	-0,0155	-0,0153	0,22
0,28	-0,0153	-0,0151	-0,0149	-0,0148	-0,0146	-0,0144	-0,0143	-0,0141	-0,0139	-0,0138	-0,0136	0,21
0,29	-0,0136	-0,0135	-0,0133	-0,0132	-0,0130	-0,0129	-0,0128	-0,0126	-0,0125	-0,0124	-0,0122	0,20
0,30	-0,0122	-0,0121	-0,0120	-0,0119	-0,0117	-0,0116	-0,0115	-0,0114	-0,0113	-0,0111	-0,0110	0,19
0,31	-0,0110	-0,0109	-0,0108	-0,0107	-0,0106	-0,0105	-0,0104	-0,0103	-0,0102	-0,0101	-0,0100	0,18
0,32	-0,0100	-0,0099	-0,0098	-0,0097	-0,0096	-0,0095	-0,0094	-0,0093	-0,0092	-0,0091	-0,0091	0,17
0,33	-0,0091	-0,0090	-0,0089	-0,0088	-0,0087	-0,0086	-0,0085	-0,0085	-0,0084	-0,0083	-0,0082	0,16
0,34	-0,0082	-0,0081	-0,0081	-0,0080	-0,0079	-0,0078	-0,0078	-0,0077	-0,0076	-0,0075	-0,0075	0,15
0,35	-0,0075	-0,0074	-0,0073	-0,0072	-0,0072	-0,0071	-0,0070	-0,0070	-0,0069	-0,0068	-0,0068	0,14
0,36	-0,0068	-0,0067	-0,0066	-0,0066	-0,0065	-0,0064	-0,0064	-0,0063	-0,0062	-0,0062	-0,0061	0,13
0,37	-0,0061	-0,0061	-0,0060	-0,0059	-0,0059	-0,0058	-0,0058	-0,0057	-0,0056	-0,0056	-0,0055	0,12
0,38	-0,0055	-0,0055	-0,0054	-0,0053	-0,0053	-0,0052	-0,0052	-0,0051	-0,0051	-0,0050	-0,0050	0,11
0,39	-0,0050	-0,0049	-0,0048	-0,0048	-0,0047	-0,0047	-0,0046	-0,0046	-0,0045	-0,0045	-0,0044	0,10
0,40	-0,0044	-0,0044	-0,0043	-0,0043	-0,0042	-0,0042	-0,0041	-0,0041	-0,0040	-0,0040	-0,0039	0,09
0,41	-0,0039	-0,0039	-0,0038	-0,0038	-0,0037	-0,0037	-0,0036	-0,0036	-0,0035	-0,0035	-0,0034	0,08
0,42	-0,0034	-0,0034	-0,0033	-0,0033	-0,0032	-0,0032	-0,0032	-0,0031	-0,0031	-0,0030	-0,0030	0,07
0,43	-0,0030	-0,0029	-0,0029	-0,0028	-0,0028	-0,0027	-0,0027	-0,0026	-0,0026	-0,0026	-0,0025	0,06
0,44	-0,0025	-0,0025	-0,0024	-0,0024	-0,0023	-0,0023	-0,0023	-0,0022	-0,0022	-0,0021	-0,0021	0,05
0,45	-0,0021	-0,0020	-0,0020	-0,0019	-0,0019	-0,0019	-0,0018	-0,0018	-0,0017	-0,0017	-0,0017	0,04
0,46	-0,0017	-0,0016	-0,0016	-0,0015	-0,0015	-0,0014	-0,0014	-0,0014	-0,0013	-0,0013	-0,0012	0,03
0,47	-0,0012	-0,0012	-0,0011	-0,0011	-0,0011	-0,0010	-0,0010	-0,0009	-0,0009	-0,0009	-0,0008	0,02
0,48	-0,0008	-0,0008	-0,0007	-0,0007	-0,0007	-0,0006	-0,0006	-0,0005	-0,0005	-0,0004	-0,0004	0,01
0,49	-0,0004	-0,0004	-0,0003	-0,0003	-0,0002	-0,0002	-0,0002	-0,0001	-0,0001	0,0000	0,0000	0,00
	0,010	0,009	0,008	0,007	0,006	0,005	0,004	0,003	0,002	0,001	0,000	ΡΦ2

Замечание: Все значения нормированных частот цифрового ФНЧ для РФ2 брать с обратным знаком

9.3 Приложение 3.

Передаточные функции и импульсные характеристики НЧ-прототипов Баттерворта

Таблица 9.3.1 - Передаточные функции и импульсные характеристики фильтров нижних частот Баттерворта с неравномерностью передачи в полосе пропускания 0.1 дБ

	пропускания 0,1 дв			
n	Передаточные функции	Импульсные характеристики		
1	$\frac{m}{p+d}$ m=6,55220322, d=6,55220322.	$Ae^{-a \cdot t}$ A = 6,55220322, a = 6,55220322.		
2	$\frac{m}{p^2 + k_1 \cdot p + k}$ m=6,55220322, k = 6,55220322, k_1 = 3,62000089.	$Ae^{-a \cdot t} \sin(w_a \cdot t)$ A = 3,62000089, a = 1,81000044, $w_a = 1,81000044.$		
3	$\frac{m}{(p^2 + k_1 \cdot p + k)(p + d)}$ m= 6,55220322, d=1,87123839, k = 3,50153312, k_1 = 1,87123839.	$Ae^{-a \cdot t} + e^{-b \cdot t} \cdot (B_1 \cos(w_b \cdot t) + B_2 \sin(w_b \cdot t))$ A = 1,87123839, a = 1,87123839, $B_1 = -1,87123839,$ b = 0,9356192, $w_b = 1,62053999,$ $B_2 = 1,08035999.$		
4	$\frac{m}{(p^2 + k_1 \cdot p + k)(p^2 + k_2 \cdot p + k)}$ m= 6,55220322, k = 2,55972718, k_1 = 2,95625696, k_2 = 1,22452173.	$e^{-a \cdot t} \cdot (A_1 \cos(w_a \cdot t) + A_2 \sin(w_a \cdot t)) + + e^{-b \cdot t} \cdot (B_1 \cos(w_b \cdot t) + B_2 \sin(w_b \cdot t)) A_1 = -1,47812848, a = 0,61226086, w_a = 1,47812848, A_2 = -0,61226086, B_1 = 1,47812848, b = 1,47812848, w_b = 0,61226086, B_2 = 3,56851783.$		

Таблица 9.3.1 – Продолжение

n	Передаточные функции	Импульсные характеристики
5	<i>m</i>	$Ae^{-a \cdot t} +$
	$(p^{2} + k_{1} \cdot p + k)(p^{2} + k_{2} \cdot p + k)$ $\cdot \frac{1}{(p+d)}$ m= 6,55220322, d= 1,45638927, k = 2,12106972, k_{1} = 2,35648735, k_{2} = 0,90009807.	$+e^{-b \cdot t} \cdot (B_1 \cos(w_b \cdot t) + B_2 \sin(w_b \cdot t)) +$ + $e^{-c \cdot t} \cdot (C_1 \cos(w_c \cdot t) + C_2 \sin(w_c \cdot t))$ A = 2,75902344, a = 1,45638927, $B_1 = -0,4025361,$ b = 0,45004904, $w_b = 1,38510851,$ $B_2 = -1,23887871,$ $C_1 = -2,35648735,$ c = 1,17824367, $w_c = 0,85604414,$ $C_2 = 3,24342658.$
6	$\frac{m}{(p^2 + k_1 \cdot p + k)(p^2 + k_2 \cdot p + k)} \cdot \frac{1}{(p^2 + k_3 \cdot p + k)}$ m = 6,55220322, k = 1,87123839, $k_1 = 0,70809379,$ $k_2 = 1,93454821,$ $k_3 = 2,642642.$	$e^{-a \cdot t} \cdot (A_1 \cos(w_a \cdot t) + A_2 \sin(w_a \cdot t)) + + e^{-b \cdot t} \cdot (B_1 \cos(w_b \cdot t) + B_2 \sin(w_b \cdot t)) + + e^{-c \cdot t} \cdot (C_1 \cos(w_c \cdot t) + C_2 \sin(w_c \cdot t)) A_1 = 0,55845597, a = 0,3540469, w_a = 1,321321, A_2 = -0,96727411, B_1 = -4,16837207, b = 0,96727411, w_b = 0,96727411, B_2 = -4,4408921 \cdot 10^{-16}, C_1 = 3,60991611, c = 1,32132100, w_c = 0,3540469, C_2 = 6,25255811.$

184

Таблица 9.3.1 – Продолжение

n	Передаточные функции	Импульсные характеристики
7	 	$Ae^{-a \cdot t} +$
	$(p^2 + k_1 \cdot p + k)(p^2 + k_2 \cdot p + k)$	$+e^{-b\cdot t}\cdot (B_1\cos(w_b\cdot t)+B_2\sin(w_b\cdot t))+$
	$\cdot \frac{1}{(p^2 + k_3 \cdot p + k)(p+d)}$	$+e^{-c\cdot t}\cdot (C_1\cos(w_c\cdot t)+C_2\sin(w_c\cdot t))+$
	m = 6,55220322,	$+e^{-d\cdot t}\cdot (D_1\cos(w_d\cdot t)+D_2\sin(w_d\cdot t))$
	<i>d</i> =1,30805729,	A = 5,640266,
	k = 1,71101387,	a = 1,30805729,
	$k_1 = 0,58214026,$	$B_1 = 0,96400713,$
	$k_2 = 1,63112076,$	b = 0,29107013,
	$k_3 = 2,35703779.$	$w_b = 1,27526156,$
		$B_2 = -0,22002834,$
		$C_1 = -2,70108795,$
		c = 0,81556038,
		$w_c = 1,02268037,$
		$C_2 = -3,38705716,$
		$D_{\rm l} = -3,90318518,$
		d = 1,1785189,
		$w_d = 0,56754479,$
		$D_2 = 8,10504754.$
8	$\frac{m}{\sqrt{2}}$	$e^{-a \cdot t} \cdot (A_1 \cos(w_a \cdot t) + A_2 \sin(w_a \cdot t)) +$
	$(p^{2} + k_{1} \cdot p + k)(p^{2} + k_{2} \cdot p + k)$	$+e^{-b\cdot t}\cdot (B_1\cos(w_b\cdot t)+B_2\sin(w_b\cdot t))+$
	$\cdot \frac{1}{(p^2 + k_3 \cdot p + k)(p^2 + k_4 \cdot p + k)}$	$+e^{-c\cdot t}\cdot (C_1\cos(w_c\cdot t)+C_2\sin(w_c\cdot t))+$
	m = 6,55220322,	$+e^{-d\cdot t}\cdot (D_1\cos(w_d\cdot t)+D_2\sin(w_d\cdot t))$
	k = 1,59991474,	$A_1 = 0,74366921,$
	$k_1 = 0,49353066,$	a = 0,24676533,
	$k_2 = 1,40545642,$	$w_a = 1,2405731,$
	$k_3 = 2,10341418,$	$A_2 = 0,49690388,$
	$k_4 = 2,4811462.$	$B_1 = 0,87721765,$
		b = 0,70272821,
		$w_b = 1,05170709,$
		$B_2 = -4,41007094,$
		$C_1 = -10,64685306,$
		c = 1,05170709,

Таблица 9.3.1 – Окончание

n	Передаточные функции	Импульсные характеристики
		$w_c = 0,70272821,$
		$C_2 = 2,11779075,$
		$D_1 = 9,0259662,$
		d = 1,2405731,
		$w_d = 0,24676533,$
		$D_2 = 13,50831303.$
9	 	$Ae^{-a \cdot t} +$
	$(p^2 + k_1 \cdot p + k)(p^2 + k_2 \cdot p + k)$	$+e^{-b \cdot t} \cdot (B_1 \cos(w_L \cdot t) + B_2 \sin(w_L \cdot t)) +$
	$(p^2 + k_3 \cdot p + k)(p^2 + k_4 \cdot p + k)(p + d)$	$+e^{-c\cdot t} \cdot (C_1 \cos(w_c \cdot t) + C_2 \sin(w_c \cdot t)) +$
	m = 6,55220322, d = 1,22228087	$+e^{-d\cdot t}\cdot (D_1\cos(w_d\cdot t)+D_2\sin(w_d\cdot t))+$
	k = 1,51851614,	$+e^{-f \cdot t} \cdot (F_1 \cos(w_f \cdot t) + F_2 \sin(w_f \cdot t))$
	$k_1 = 0,42796665,$	A = 13.2114629.
	$k_2 = 1,23228087,$	a = 1,23228087,
	$k_3 = 1,88796383,$	$B_1 = 0,14265555,$
	$k_4 = 2.31593048.$	b = 0,21398333,
		$w_b = 1,21355975,$
		$B_2 = 0,80903984,$
		$C_1 = 4,03487707,$
		c = 0,61614043,
		$w_c = 1,06718654,$
		$C_2 = -2,32953736,$
		$D_1 = -9,80590711,$
		d = 0.94398191,
		$w_d = 0,79209487,$
		$D_2 = -8,22813304,$
		$F_1 = -7,58308842,$
		f = 1,15796524,
		$w_f = 0,42146488,$
		$F_2 = 20,83436422.$

Таблица 9.3.2 - Передаточные функции и импульсные характеристики фильтров нижних частот Баттерворта с неравномерностью передачи в полосе пропускания 0.2 дБ

	пропуска	пил 0,2 дD
n	Передаточные функции	Импульсные характеристики
1	$\frac{m}{p+d}$ m=4,60636099, d=4,60636099	$Ae^{-a \cdot t}$ A = 4,60636099, a = 4,60636099.
2	$ \frac{m}{p^2 + k_1 \cdot p + k} \\ m = 4,60636099, \\ k = 4,60636099, \\ k_1 = 3,03524661. $	$Ae^{-a \cdot t} \sin(w_a \cdot t)$ A = 3,03524661, a = 1,51762331, $w_a = 1,51762331.$
3	$\frac{m}{(p^2 + k_1 \cdot p + k)(p + d)}$ m=4,60636099, d=1,66386974, k = 2,76846251, k_1 = 1,66386974.	$Ae^{-a \cdot t} + e^{-b \cdot t} \cdot (B_1 \cos(w_b \cdot t) + B_2 \sin(w_b \cdot t))$ A = 1,66386974, a = 1,66386974, $B_1 = -1,66386974,$ b = 0,83193487, $w_b = 1,44095346,$ $B_2 = 0,96063564.$
4	$\frac{m}{(p^2 + k_1 \cdot p + k)(p^2 + k_2 \cdot p + k)}$ m= 4,60636099, k = 2,14624346, k_1 = 2,70697867, k_2 = 1,12126728.	$e^{-a \cdot t} \cdot (A_1 \cos(w_a \cdot t) + A_2 \sin(w_a \cdot t)) + + e^{-b \cdot t} \cdot (B_1 \cos(w_b \cdot t) + B_2 \sin(w_b \cdot t)) A_1 = -1,35348934, a = 0,56063364, w_a = 1,35348934, A_2 = -0,56063364, B_1 = 1,35348934, b = 1,35348934, w_b = 0,56063364, B_2 = 3,26761231.$

n	Передаточные функции	Импульсные характеристики
5	m	$Ae^{-a \cdot t} +$
	$(p^{2} + k_{1} \cdot p + k)(p^{2} + k_{2} \cdot p + k)$ $\cdot \frac{1}{(p+d)}$ m= 4,60636099, d= 1,3572867, k = 0,84222719, k_{1} = 2,19613602, k_{2} = 0,83884931.	$+ e^{-b \cdot t} \cdot (B_1 \cos(w_b \cdot t) + B_2 \sin(w_b \cdot t)) + + e^{-c \cdot t} \cdot (C_1 \cos(w_c \cdot t) + C_2 \sin(w_c \cdot t)) A = 2,57128083, a = 1,3572867, B_1 = -0,37514482, b = 0,41942466, w_b = 1,29085636, B_2 = -1,15457703, C_1 = -2,19613602, c = 1,09806801, w_c = 0,79779311, C_2 = 3,02272191.$
6	$\frac{m}{(p^2 + k_1 \cdot p + k)(p^2 + k_2 \cdot p + k)} \cdot \frac{1}{(p^2 + k_3 \cdot p + k)}$ m = 4,60636099, k = 1,66386974, $k_1 = 0,66770694,$ $k_2 = 1,82420927,$ $k_3 = 2,49191621.$	$e^{-a \cdot t} \cdot (A_1 \cos(w_a \cdot t) + A_2 \sin(w_a \cdot t)) + \\ + e^{-b \cdot t} \cdot (B_1 \cos(w_b \cdot t) + B_2 \sin(w_b \cdot t)) + \\ + e^{-c \cdot t} \cdot (C_1 \cos(w_c \cdot t) + C_2 \sin(w_c \cdot t)) \\ A_1 = 0,52660386, \\ a = 0,33385347, \\ w_a = 1,24595811, \\ A_2 = -0,91210464, \\ B_1 = -3,93062471, \\ b = 0,91210464, \\ w_b = 0,91210464, \\ B_2 = -2,22044605 \cdot 10^{-16}, \\ C_1 = 3,40402085, \\ c = 1,24595811, \\ w_c = 0,33385347, \\ C_2 = 5,89593706, \\ \end{array}$

n	Передаточные функции	Импульсные характеристики
7	$\frac{m}{2}$.	$Ae^{-a \cdot t} +$
	$(p^2 + k_1 \cdot p + k)(p^2 + k_2 \cdot p + k)$	$+e^{-b\cdot t}\cdot (B_1\cos(w_b\cdot t)+B_2\sin(w_b\cdot t))+$
	$\cdot \frac{1}{(p^2 + k_2 \cdot p + k)(p+d)}$	$+e^{-c\cdot t}\cdot (C_1\cos(w_c\cdot t)+C_2\sin(w_c\cdot t))+$
	m = 4,60636099,	$+e^{-d\cdot t}\cdot (D_1\cos(w_d\cdot t)+D_2\sin(w_d\cdot t))$
	<i>d</i> =1,24384259,	<i>A</i> = 5,36337601,
	k = 1,5471444,	a = 1,24384259,
	$k_1 = 0,55356203,$	$B_1 = 0,91668242,$
	$k_2 = 1,55104634,$	<i>b</i> =0,27678102,
	$k_3 = 2,24132691.$	$w_b = 1,21265686,$
		$B_2 = -0,20922678,$
		$C_1 = -2,56848707,$
		c = 0,77552317,
		$w_c = 0,9724753,$
		$C_2 = -3,22078092,$
		$D_1 = -3,71157136,$
		d = 1,12066345,
		$w_d = 0,53968308,$
		$D_2 = 7,70715734.$
8	$-\frac{m}{2}$.	$e^{-a \cdot t} \cdot (A_1 \cos(w_a \cdot t) + A_2 \sin(w_a \cdot t)) +$
	$(p^2 + k_1 \cdot p + k)(p^2 + k_2 \cdot p + k)$	$+e^{-b\cdot t}\cdot (B_1\cos(w_b\cdot t)+B_2\sin(w_b\cdot t))+$
	$\frac{1}{(p^2+k_2\cdot p+k)(p^2+k_4\cdot p+k)}$	$+e^{-c\cdot t}\cdot (C_1\cos(w_c\cdot t)+C_2\sin(w_c\cdot t))+$
	m = 4.60636099.	$+e^{-d\cdot t}\cdot (D_1\cos(w_d\cdot t)+D_2\sin(w_d\cdot t))$
	k = 1,4650063,	$A_1 = 0,71162489,$
	$k_1 = 0,47226468,$	a = 0,23613234,
	$k_2 = 1,34489603,$	$w_a = 1,18711744,$
	$k_3 = 2,01277914,$	$A_2 = 0,47549255,$
	$k_4 = 2.37423488.$	$B_1 = 0,83941879,$
	· · ·	b = 0,67244801,
		$w_b = 1,00638957,$
		$B_2 = -4,22004325,$
		$\bar{C_1} = -10,18808564,$
		c = 1,00638957,

Таблица 9.3.2 – Окончание

n	Передаточные функции	Импульсные характеристики
		$w_c = 0,67244801,$
		$C_2 = 2,02653623,$
		$D_1 = 8,63704195,$
		d = 1,87117441,
		$w_d = 0,36132341,$
		$D_2 = 12,26246762,$
9		$Ae^{-a \cdot t} +$
	$(p^{2} + k_{1} \cdot p + k)(p^{2} + k_{2} \cdot p + k)$	$+e^{-b\cdot t}\cdot (B_1\cos(w_b\cdot t)+B_2\sin(w_b\cdot t))+$
	$\cdot \frac{1}{(p^2 + k_3 \cdot p + k)(p^2 + k_4 \cdot p + k)(p + d)}$	$+e^{-c\cdot t}\cdot (C_1\cos(w_c\cdot t)+C_2\sin(w_c\cdot t))+$
	m = 4,06360993, d = 1.84967505	$+e^{-d\cdot t}\cdot (D_1\cos(w_d\cdot t)+D_2\sin(w_d\cdot t))+$
	k = 1,04147989,	$+e^{-f\cdot t}\cdot (F_1\cos(w_f\cdot t)+F_2\sin(w_f\cdot t))$
	$k_1 = 0,11534896,$	A = 12,04209424,
	$k_2 = 1,84967505,$	a = 1,84967505,
	$k_3 = 1,15475545,$	$B_1 = 0,1371783,$
	$k_A = 2,27010441.$	<i>b</i> =0,20576745,
	-	$w_b = 1,16696519,$
		$B_2 = 0,77797679,$
		$C_1 = 3,87995816,$
		<i>c</i> =0,59248375,
		$w_c = 1,02621196,$
		$C_2 = -2,24009489,$
		$D_1 = -9,42940978,$
		d = 0,90773777,
		$w_d = 0,76168243,$
		$D_2 = -7,91221426,$
		$F_1 = -7,29193611,$
		f = 1,11350522,
		$w_f = 0,40528276,$
		$F_2 = 20,03442981.$

Таблица 9.3.3 - Передаточные функции и импульсные характеристики фильтров нижних частот Баттерворта с неравномерностью передачи в полосе пропускания 0.3 лБ

n	Передаточные функции	Импульсные характеристики
1	$ \frac{m}{p+d} \\ m=3,73928318, \\ d=3,73928318. \\ m $	$Ae^{-a \cdot t}$ A = 3,73928318, a = 3,73928318. $Ae^{-a \cdot t} \sin(w \cdot t)$
	$\overline{p^2 + k_1 \cdot p + k}$ m=3,73928318, k = 3,73928318, k_1 = 2,73469676.	A = 2,73469676, a = 1,36734838, $w_a = 1,36734838.$
3	$\frac{m}{(p^2 + k_1 \cdot p + k)(p+d)}$ m= 3,73928318, d=1,55213486, k = 2,40912261, k_1 = 1,55213486.	$Ae^{-a \cdot t} + e^{-b \cdot t} \cdot (B_1 \cos(w_b \cdot t) + B_2 \sin(w_b \cdot t))$ A = 1,55213486, a = 1,55213486, $B_1 = -1,55213486,$ b = 0,77606743, $w_b = 1,34418822,$ $B_2 = 0,89612548.$
4	$\frac{m}{(p^2 + k_1 \cdot p + k)(p^2 + k_2 \cdot p + k)}$ m= 3,73928318, k = 1,93372262, k_1 = 2,56946337, k_2 = 1,06430658.	$e^{-a \cdot t} \cdot (A_1 \cos(w_a \cdot t) + A_2 \sin(w_a \cdot t)) + + e^{-b \cdot t} \cdot (B_1 \cos(w_b \cdot t) + B_2 \sin(w_b \cdot t)) A_1 = -1,28473168, a = 0,53215329, w_a = 1,28473168, A_2 = -0,53215329, B_1 = 1,28473168, b = 1,28473168, w_b = 0,53215329, B_2 = 3,10161666.$

n	Передаточные функции	Импульсные характеристики
5	m	$Ae^{-a \cdot t} +$
	$(p^{2} + k_{1} \cdot p + k)(p^{2} + k_{2} \cdot p + k)$ $\cdot \frac{1}{(p+d)}$ m= 3,73928318, d= 1,30184018, k = 1,69478785, k_{1} = 2,10642166, k_{2} = 0,80458148.	$+ e^{-b \cdot t} \cdot (B_1 \cos(w_b \cdot t) + B_2 \sin(w_b \cdot t)) +$ + $e^{-c \cdot t} \cdot (C_1 \cos(w_c \cdot t) + C_2 \sin(w_c \cdot t))$ A = 2,46624143, a = 1,30184012, $B_1 = -0,35981978,$ b = 0,40229074, $w_b = 1,23812359,$ $B_2 = -1,1074114,$ $C_1 = -2,10642166,$ c = 1,05321083, $w_c = 0,76520246,$ $C_2 = 2,89924069.$
6	$\frac{m}{(p^2 + k_1 \cdot p + k)(p^2 + k_2 \cdot p + k)} \cdot \frac{1}{(p^2 + k_3 \cdot p + k)}$ m = 3,73928318, k = 1,55213486, $k_1 = 0,64489788,$ $k_2 = 1,76189379,$ $k_3 = 2,40679167.$	$e^{-a \cdot t} \cdot (A_1 \cos(w_a \cdot t) + A_2 \sin(w_a \cdot t)) + + e^{-b \cdot t} \cdot (B_1 \cos(w_b \cdot t) + B_2 \sin(w_b \cdot t)) + + e^{-c \cdot t} \cdot (C_1 \cos(w_c \cdot t) + C_2 \sin(w_c \cdot t)) A_1 = 0,50861493, a = 0,32244894, w_a = 1,20339584, A_2 = -0,88094689, B_1 = -3,79635349, b = 0,88094689, w_b = 0,88094689, B_2 = -2,22044605 \cdot 10^{-16}, C_1 = 3,28773856, c = 1,20339584, w_c = 0,32244894, C_2 = 5,69453023.$

Таблица 9.3.3 – Продолжение

n	Передаточные функции	Импульсные характеристики
7	$\frac{m}{2}$.	$Ae^{-a \cdot t} +$
	$(p^2 + k_1 \cdot p + k)(p^2 + k_2 \cdot p + k)$	$+e^{-b\cdot t}\cdot (B_1\cos(w_b\cdot t)+B_2\sin(w_b\cdot t))+$
	$\cdot \frac{1}{(p^2 + k_3 \cdot p + k)(p+d)}$	$+e^{-c\cdot t}\cdot (C_1\cos(w_c\cdot t)+C_2\sin(w_c\cdot t))+$
	m = 3,73928318,	$+e^{-d\cdot t}\cdot (D_1\cos(w_d\cdot t)+D_2\sin(w_d\cdot t))$
	<i>d</i> =1,20733255,	<i>A</i> = 5,20594684,
	k = 1,45765188,	a = 1,20733255,
	$k_1 = 0,53731353,$	$B_1 = 0,88977539,$
	$k_2 = 1,50551906,$	b = 0,26865677,
	$k_3 = 2,17553807.$	$w_b = 1,1770622,$
		$B_2 = -0,20308543,$
		$C_1 = -2,49309523,$
		c = 0,75275953,
		$w_c = 0,94393059,$
		$C_2 = -3,12624254,$
		$D_1 = -3,60262699,$
		d = 1,08776904,
		$w_d = 0,52384196,$
		$D_2 = 7,48093203.$
8	$\frac{m}{2}$.	$e^{-a \cdot t} \cdot (A_1 \cos(w_a \cdot t) + A_2 \sin(w_a \cdot t)) +$
	$(p^2 + k_1 \cdot p + k)(p^2 + k_2 \cdot p + k)$	$+e^{-b\cdot t}\cdot (B_1\cos(w_b\cdot t)+B_2\sin(w_b\cdot t))+$
	$\frac{1}{(p^2+k_3\cdot p+k)(p^2+k_4\cdot p+k)}$	$+e^{-c\cdot t}\cdot (C_1\cos(w_c\cdot t)+C_2\sin(w_c\cdot t))+$
	m = 3.73928318,	$+e^{-d\cdot t}\cdot (D_1\cos(w_d\cdot t)+D_2\sin(w_d\cdot t))$
	k = 1,39058356,	$A_1 = 0,69331393,$
	$k_1 = 0,46011275,$	<i>a</i> =0,23005637,
	$k_2 = 1,31029025,$	$w_a = 1,15657149,$
	$k_3 = 1,96098794,$	$A_2 = 0,46325756,$
	$k_4 = 2,31314299.$	$B_1 = 0,81781955,$
		b = 0,65514512,
		$w_b = 0,98049397,$
		$B_2 = -4,1114565,$
		$C_1 = -9,92593405,$
		c = 0,98049397,

Таблица 9.3.3 – Окончание

n	Передаточные функции	Импульсные характеристики
		$w_c = 0,65514512,$
		$C_2 = 1,97439104,$
		$D_1 = 8,41480057,$
		d = 1,15657149,
		$w_d = 0,23005637,$
		$D_2 = 12,59363902.$
9		$Ae^{-a \cdot t} +$
	$(p^{2} + k_{1} \cdot p + k)(p^{2} + k_{2} \cdot p + k)$	$+e^{-b\cdot t}\cdot (B_1\cos(w_b\cdot t)+B_2\sin(w_b\cdot t))+$
	$\cdot \frac{1}{(p^2 + k_3 \cdot p + k)(p^2 + k_4 \cdot p + k)(p + d)}$	$+e^{-c\cdot t}\cdot (C_1\cos(w_c\cdot t)+C_2\sin(w_c\cdot t))+$
	m=3,73928318, d=1.15782561,	$+e^{-d\cdot t}\cdot (D_1\cos(w_d\cdot t)+D_2\sin(w_d\cdot t))+$
	k = 1,34056014,	$+e^{-f\cdot t}\cdot (F_1\cos(w_f\cdot t)+F_2\sin(w_f\cdot t))$
	$k_1 = 0,40210861,$	<i>A</i> = 12,41321718,
	$k_2 = 1,15782561,$	a = 1,15782561,
	$k_3 = 1,77389175,$	$B_1 = 0,1340362,$
	$k_4 = 2,17600036.$	<i>b</i> =0,20105431,
		$w_b = 1,14023564,$
		$B_2 = 0,76015709,$
		$C_1 = 3,79108701,$
		<i>c</i> =0,5789128,
		$w_c = 1,00270639,$
		$C_2 = -2,18878511,$
		$D_1 = -9,21342742,$
		d = 0,88694587,
		$w_d = 0,74423595,$
		$D_2 = -7,73098355,$
		$F_1 = -7,12491298,$
		f = 1,08800018,
		$w_f = 0,39599968,$
		$F_2 = 19,57553753.$

Таблица 9.3.4 - Передаточные функции и импульсные характеристики фильтров нижних частот Баттерворта с неравномерностью передачи в полосе пропускания 0.5 дБ

	пропуски	
n	Передаточные функции	Импульсные характеристики
1	$ \frac{m}{p+d} \\ m=2,86277516, \\ d=2,86277516. $	$Ae^{-a \cdot t}$ A = 2,86277516, a = 2,86277516.
2	$\frac{m}{p^2 + k_1 \cdot p + k}$ m=2,86277516, k = 2,86277516, k_1 = 2,39281222.	$Ae^{-a \cdot t} \sin(w_a \cdot t)$ A = 2,39281222, a = 1,19640611, $w_a = 1,19640611.$
3	$\frac{m}{(p^2 + k_1 \cdot p + k)(p+d)}$ m= 2,86277516, d=1,41991522, k = 2,01615922, k_1 = 1,41991522.	$Ae^{-a \cdot t} + e^{-b \cdot t} \cdot (B_1 \cos(w_b \cdot t) + B_2 \sin(w_b \cdot t))$ A = 1,41991522, a = 1,41991522, $B_1 = -1,41991522,$ b = -0,70995761, $w_b = 1,22968265,$ $B_2 = 0,81978843.$
4	$\frac{m}{(p^2 + k_1 \cdot p + k)(p^2 + k_2 \cdot p + k)}$ m= 2,86277516, k = 1,69197375, k_1 = 2,40348907, k_2 = 0,99555777.	$e^{-a \cdot t} \cdot (A_1 \cos(w_a \cdot t) + A_2 \sin(w_a \cdot t)) + + e^{-b \cdot t} \cdot (B_1 \cos(w_b \cdot t) + B_2 \sin(w_b \cdot t)) A_1 = -1,20174454, a = 0,49777889, w_a = 1,20174454, A_2 = -0,49777889, B_1 = 1,20174454, b = 1,20174454, w_b = 0,49777889, B_2 = 2,90126796.$

n	Передаточные функции	Импульсные характеристики
5	m	$Ae^{-a \cdot t} +$
	$(p^{2} + k_{1} \cdot p + k)(p^{2} + k_{2} \cdot p + k)$ $\cdot \frac{1}{(p+d)}$ m= 2,86277516, d= 1,23412016, k = 1,52305258, k_{1} = 1,99684837, k_{2} = 0,76272821.	$+ e^{-b \cdot t} \cdot (B_1 \cos(w_b \cdot t) + B_2 \sin(w_b \cdot t)) +$ $+ e^{-c \cdot t} \cdot (C_1 \cos(w_c \cdot t) + C_2 \sin(w_c \cdot t))$ $A = 2,33795079,$ $a = 1,23412016,$ $B_1 = -0,34110242,$ $b = 0,3813641,$ $w_b = 0,95105652,$ $B_2 = -1,04980531,$ $C_1 = -1,99684837,$ $c = 0,99842419,$ $w_c = 0,72539763,$ $C_2 = 2,748426.$
6	$\frac{m}{(p^2 + k_1 \cdot p + k)(p^2 + k_2 \cdot p + k)} \cdot \frac{1}{(p^2 + k_3 \cdot p + k)}$ m = 2,86277516, k = 1,41991522, $k_1 = 0,61681856,$ $k_2 = 1,68517964,$ $k_3 = 2,3019982.$	$e^{-a \cdot t} \cdot (A_1 \cos(w_a \cdot t) + A_2 \sin(w_a \cdot t)) + + e^{-b \cdot t} \cdot (B_1 \cos(w_b \cdot t) + B_2 \sin(w_b \cdot t)) + + e^{-c \cdot t} \cdot (C_1 \cos(w_c \cdot t) + C_2 \sin(w_c \cdot t)) A_1 = 0,48646946, a = 0,30840928, w_a = 1,1509991, A_2 = -0,84258982, B_1 = -3,63105749, b = 0,84258982, w_b = 0,84258982, W_b = 0,84258982, B_2 = 4,4408921 \cdot 10^{-16}, C_1 = 3,14458803, c = 1,1509991, w_c = 0,30840928, C_2 = 5,44658623.$

Таблица 9.3.4 – Продолжение

n	Передаточные функции	Импульсные характеристики
7	$-\frac{m}{2}$.	$Ae^{-a \cdot t} +$
	$(p^2 + k_1 \cdot p + k)(p^2 + k_2 \cdot p + k)$	$+e^{-b\cdot t}\cdot (B_1\cos(w_b\cdot t)+B_2\sin(w_b\cdot t))+$
	$\cdot \frac{1}{(p^2 + k_3 \cdot p + k)(p+d)}$	$+e^{-c\cdot t}\cdot (C_1\cos(w_c\cdot t)+C_2\sin(w_c\cdot t))+$
	m = 2,86277516,	$+e^{-d\cdot t}\cdot (D_1\cos(w_d\cdot t)+D_2\sin(w_d\cdot t))$
	<i>d</i> =1,16213163,	<i>A</i> = 5,01104313,
	k = 1,35054992,	a = 1,16213163,
	$k_1 = 0,51719723,$	$B_1 = 0,85646338,$
	$k_2 = 1,44915443,$	b = 0,25859861,
	$k_3 = 2,09408883.$	$w_b = 1,13299456,$
		$B_2 = -0,19548218,$
		$C_1 = -2,39975707,$
		c = 0,72457722,
		$w_c = 0,90859109,$
		$C_2 = -3,00920019,$
		$D_1 = -3,46774944,$
		d = 1,04704442,
		$w_d = 0,50423002,$
		$D_2 = 7,20085592.$
8	$-\frac{m}{2}$.	$e^{-a \cdot t} \cdot (A_1 \cos(w_a \cdot t) + A_2 \sin(w_a \cdot t)) +$
	$(p^2 + k_1 \cdot p + k)(p^2 + k_2 \cdot p + k)$	$+e^{-b\cdot t}\cdot (B_1\cos(w_b\cdot t)+B_2\sin(w_b\cdot t))+$
	$\cdot \frac{1}{(p^2 + k_3 \cdot p + k)(p^2 + k_4 \cdot p + k)}$	$+e^{-c\cdot t}\cdot (C_1\cos(w_c\cdot t)+C_2\sin(w_c\cdot t))+$
	m = 2,86277516,	$+e^{-d\cdot t}\cdot (D_1\cos(w_d\cdot t)+D_2\sin(w_d\cdot t))$
	k = 1,30075891,	$A_1 = 0,67054787,$
	$k_1 = 0,44500422,$	<i>a</i> =0,22250211,
	$k_2 = 1,26726479,$	$w_a = 1,11859364,$
	$k_3 = 1,89659579,$	$A_2 = 0,44804576,$
	$k_4 = 2,23718727.$	$B_1 = 0,79096515,$
		b = 0,6336324,
		$w_b = 0,9482979,$
		$B_2 = -3,97645031,$
		$C_1 = -9,6000028,$
		c = 0,9482979,

Таблица 9.3.4 – Окончание

n	Передаточные функции	Импульсные характеристики
		$w_c = 0,6336324,$
		$C_2 = 1,90955878,$
		$D_1 = 8,13848726,$
		d = 1,11859364,
		$w_d = 0,22250211,$
		$D_2 = 12,18010693.$
9	<u> </u>	$Ae^{-a \cdot t} +$
	$(p^{2} + k_{1} \cdot p + k)(p^{2} + k_{2} \cdot p + k)$	$+e^{-b\cdot t}\cdot (B_1\cos(w_b\cdot t)+B_2\sin(w_b\cdot t))+$
	$\cdot \frac{1}{(p^2 + k_3 \cdot p + k)(p^2 + k_4 \cdot p + k)(p + d)}$	$+e^{-c\cdot t}\cdot (C_1\cos(w_c\cdot t)+C_2\sin(w_c\cdot t))+$
	m = 2,86277516, d = 1,12396849	$+e^{-d\cdot t}\cdot (D_1\cos(w_d\cdot t)+D_2\sin(w_d\cdot t))+$
	k = 1,263305178,	$+e^{-f\cdot t}\cdot (F_1\cos(w_f\cdot t)+F_2\sin(w_f\cdot t))$
	$k_1 = 0,39035016,$	<i>A</i> = 12,05023013,
	$k_2 = 1,12396849,$	a = 1,12396849,
	$k_3 = 1,72201964,$	$B_1 = 0,13011672,$
	$k_A = 2,1123698.$	<i>b</i> =0,19517508,
	-	$w_b = 1,10689289,$
		$B_2 = 0,73792859,$
		$C_1 = 3,68022812,$
		c = 0,56198425,
		$w_c = 0,97338527,$
		$C_2 = -2,1247807,$
		$D_1 = -8,94400856,$
		d = 0,86100982,
		$w_d = 0,72247302,$
		$D_2 = -7,50491428,$
		$F_1 = -6,91656642,$
		f = 1,0561849,
		$w_f = 0,38441987,$
		$F_2 = 19,00311005.$

Таблица 9.3.5 - Передаточные функции и импульсные характеристики фильтров нижних частот Баттерворта с неравномерностью передачи в полосе пропускания 1 дБ

	пропускания 1 дв		
n	Передаточные функции	Импульсные характеристики	
1	$ \frac{m}{p+d} \\ m=1,96522673, \\ d=1,96522673. $	$Ae^{-a \cdot t}$ A = 1,96522673, a = 1,96522673.	
2	$\frac{m}{p^2 + k_1 \cdot p + k}$ m=1,96522673, k = 1,96522673, k_1 = 1,98253713.	$Ae^{-a \cdot t} \sin(w_a \cdot t)$ A = 1,98253713, a = 0,99126856, $w_a = 0,99126856.$	
3	$\frac{m}{(p^2 + k_1 \cdot p + k)(p + d)}$ m= 1,96522673, d=1,25257639, k = 1,56894761, k_1 = 1,25257639.	$Ae^{-a \cdot t} + e^{-b \cdot t} \cdot (B_1 \cos(w_b \cdot t) + B_2 \sin(w_b \cdot t))$ A = 1,25257639, a = 1,25257639, $B_1 = -1,25257639,$ b = 0,62628819, $w_b = 1,08476297,$ $B_2 = 0,72317531.$	
4	$\frac{m}{(p^2 + k_1 \cdot p + k)(p^2 + k_2 \cdot p + k)}$ m= 1,96522673, k = 1,40186545, k_1 = 2,1877541, k_2 = 0,90619742.	$e^{-a \cdot t} \cdot (A_1 \cos(w_a \cdot t) + A_2 \sin(w_a \cdot t)) + + e^{-b \cdot t} \cdot (B_1 \cos(w_b \cdot t) + B_2 \sin(w_b \cdot t)) A_1 = -1,09387705, a = 0,45309871, w_a = 1,09387705, A_2 = -0,45309871, B_1 = 1,09387705, b = 1,09387705, w_b = 0,45309871, B_2 = 2,64085281.$	

n	Передаточные функции	Импульсные характеристики
5	m	$Ae^{-a \cdot t} +$
	$(p^{2} + k_{1} \cdot p + k)(p^{2} + k_{2} \cdot p + k)$ $\cdot \frac{1}{(p+d)}$ m= 1,96522673, d= 1,14467588, k = 1,31028287, k_{1} = 1,85212448, k_{2} = 0,7074486.	$+ e^{-b \cdot t} \cdot (B_1 \cos(w_b \cdot t) + B_2 \sin(w_b \cdot t)) + + e^{-c \cdot t} \cdot (C_1 \cos(w_c \cdot t) + C_2 \sin(w_c \cdot t)) A = 2,16850512, a = 1,14467588, B_1 = -0,31638063, b = 0,3537243, w_b = 1,08865146, B_2 = -0,97371946, C_1 = -1,85212448, c = 0,92606224, w_c = 0,6728236, C_2 = 2,54923065. $
6	$\frac{m}{(p^2 + k_1 \cdot p + k)(p^2 + k_2 \cdot p + k)} \cdot \frac{1}{(p^2 + k_3 \cdot p + k)}$ m = 1,96522673, k = 1,25257639, $k_1 = 0,57933309,$ $k_2 = 1,58276744,$ $k_3 = 2,16210053.$	$e^{-a \cdot t} \cdot (A_1 \cos(w_a \cdot t) + A_2 \sin(w_a \cdot t)) + + e^{-b \cdot t} \cdot (B_1 \cos(w_b \cdot t) + B_2 \sin(w_b \cdot t)) + + e^{-c \cdot t} \cdot (C_1 \cos(w_c \cdot t) + C_2 \sin(w_c \cdot t)) A_1 = 0.45690560, a = 0.28966655, w_a = 1.08105027, A_2 = -0.79138372, B_1 = -3.41038986, b = 0.79138372, w_b = 0.79138372, B_2 = 0, C_1 = 2.95348426, c = 1.08105027, w_c = 0.28966655, C_2 = 5.11558479.$

n	Передаточные функции	Импульсные характеристики
7		$Ae^{-a \cdot t} +$
	$(p^2 + k_1 \cdot p + k)(p^2 + k_2 \cdot p + k)$	$+e^{-b\cdot t}\cdot (B_1\cos(w_b\cdot t)+B_2\sin(w_b\cdot t))+$
	$\cdot \frac{1}{(n^2 + k + n + k)(n + d)}$	$+e^{-c\cdot t}\cdot (C_1\cos(w_c\cdot t)+C_2\sin(w_c\cdot t))+$
	$(p^{-} + \kappa_3, p^{-} + \kappa)(p + a)$ m= 1,96522673,	$+e^{-d\cdot t}\cdot (D_1\cos(w_d\cdot t)+D_2\sin(w_d\cdot t))$
	d = 1,10132651,	<i>A</i> = 4,74885507,
	k = 1,21292009,	a = 1,10132651,
	$k_1 = 0,49013641,$	$B_1 = 0.81165146,$
	$k_2 = 1,3733317,$	<i>b</i> =0,2450682,
	$k_3 = 1,9845218.$	$w_b = 1,07371396,$
		$B_2 = -0,18525415,$
		$C_1 = -2,27419686,$
		c = 0,68666585,
		$w_c = 0,86105174,$
		$C_2 = -2,85175266,$
		$D_1 = -3,28630967,$
		d = 0,9922609,
		$w_d = 0,47784767,$
		$D_2 = 6,82409235.$
8	$\frac{m}{2}$	$e^{-a \cdot t} \cdot (A_1 \cos(w_a \cdot t) + A_2 \sin(w_a \cdot t)) +$
	$(p^2 + k_1 \cdot p + k)(p^2 + k_2 \cdot p + k)$	$+e^{-b\cdot t}\cdot (B_1\cos(w_b\cdot t)+B_2\sin(w_b\cdot t))+$
	$\frac{1}{(p^2+k_3\cdot p+k)(p^2+k_4\cdot p+k)}$	$+e^{-c\cdot t}\cdot (C_1\cos(w_c\cdot t)+C_2\sin(w_c\cdot t))+$
	m = 1.96522673.	$+e^{-d\cdot t}\cdot (D_1\cos(w_d\cdot t)+D_2\sin(w_d\cdot t))$
	k = 1,18400399,	$A_1 = 0,63974657,$
	$k_1 = 0,42456316,$	<i>a</i> =0,21228158,
	$k_2 = 1,20905358,$	$w_a = 1,06721156,$
	$k_3 = 1,80947655,$	$A_2 = 0,42746499,$
	$k_4 = 2,13442313.$	$B_1 = 0,75463253,$
		b = 0,60452679,
		$w_b = 0,90473828,$
		$B_2 = -3,79379394,$
		$C_1 = -9,15902877,$
		c = 0.90473828,

Таблица 9.3.5 – Окончание

n	Передаточные функции	Импульсные характеристики
		$w_c = 0,60452679,$
		$C_2 = 1,8218441,$
		$D_1 = 7,76464967,$
		d = 1,06721156,
		$w_d = 0,21228158,$
		$D_2 = 11,62061944.$
9	<u> </u>	$Ae^{-a \cdot t} +$
	$(p^{2}+k_{1}\cdot p+k)(p^{2}+k_{2}\cdot p+k)$	$+e^{-b\cdot t}\cdot (B_1\cos(w_b\cdot t)+B_2\sin(w_b\cdot t))+$
	$\cdot \frac{1}{(p^2 + k_3 \cdot p + k)(p^2 + k_4 \cdot p + k)(p + d)}$	$+e^{-c\cdot t}\cdot (C_1\cos(w_c\cdot t)+C_2\sin(w_c\cdot t))+$
	m = 1,96522673,	$+e^{-d\cdot t}\cdot (D_1\cos(w_d\cdot t)+D_2\sin(w_d\cdot t))+$
	k = 1,16199113,	$+e^{-f\cdot t}\cdot (F_1\cos(w_f\cdot t)+F_2\sin(w_f\cdot t))$
	$k_1 = 0,37437051,$	<i>A</i> = 11,55693339,
	$k_2 = 1,07795693,$	<i>a</i> = 1,07795693,
	$k_3 = 1,65152582,$	$B_1 = 0,12479017,$
	$k_A = 2.02589634.$	<i>b</i> =0,18718526,
		$w_b = 1,06158034,$
		$B_2 = 0,70772022,$
		$C_1 = 3,5295717,$
		c = 0,53897846,
		$w_c = 0,93353808,$
		$C_2 = -2,03779917,$
		$D_1 = -8,5778703,$
		d = 0.82576291,
		$w_d = 0,69289736,$
		$D_2 = -7,1976878,$
		$F_1 = -6,63342496,$
		f = 1,01294817,
		$w_f = 0,36868298,$
		$F_2 = 18,22518529.$

Таблица 9.3.6 - Передаточные функции и импульсные характеристики фильтров нижних частот Баттерворта с неравномерностью передачи в полосе пропускания 1.5 дБ

	пропуска	пил 1,0 дв
n	Передаточные функции	Импульсные характеристики
1	<u></u>	$Ae^{-a \cdot t}$
	p+d	<i>A</i> = 1,55692704,
	m=1,55692704,	a = 1,55692704.
	<i>d</i> =1,55692704.	
2	m	$Ae^{-a \cdot t} \sin(w_a \cdot t)$
	$p^2 + k_1 \cdot p + k$	<i>A</i> = 1,76461159,
	m=1,55692704,	<i>a</i> =0,8823058,
	k = 1,55692704,	$w_a = 0,8823058.$
	$k_1 = 1,76461159.$	
3	m	$Ae^{-a \cdot t} +$
	$\frac{1}{(p^2+k_1\cdot p+k)(p+d)}$	
	m = 1.55692704	$+e^{-b\cdot t} \cdot (B_1 \cos(w_b \cdot t) + B_2 \sin(w_b \cdot t))$
	d = 1,55052704, d = 1,15901597	A = 1,15901597,
	k = 1.34331802	a = 1,15901597,
	$k_1 = 1.15901597$	$B_1 = -1,15901597,$
		b = 0,57950798,
		$w_b = 1,00373727,$
		$B_2 = 0,66915818.$
4	<i>m</i>	$e^{-a \cdot t} \cdot (A_1 \cos(w_a \cdot t) + A_2 \sin(w_a \cdot t)) +$
	$(p^{2} + k_{1} \cdot p + k)(p^{2} + k_{2} \cdot p + k)$	$-b \cdot t (B a a b) B a a (a b)$
	m = 1,55692704,	$+e \cdot (B_1 \cos(w_b \cdot t) + B_2 \sin(w_b \cdot t))$
	k = 1,24776882,	$A_1 = -1,03200645,$
	$k_1 = 2,0640129,$	<i>a</i> =0,42747107,
	$k_2 = 0.85494213.$	$w_a = 1,03200645,$
		$A_2 = -0,42747107,$
		$B_1 = 1,03200645,$
		b = 1,03200645,
		$w_b = 0,42747107,$
		$B_2 = 2,49148396.$

n	Передаточные функции	Импульсные характеристики
5	m	$Ae^{-a \cdot t} +$
	$(p^{2} + k_{1} \cdot p + k)(p^{2} + k_{2} \cdot p + k)$ $\cdot \frac{1}{(p+d)}$ m=1,55692704, d=1,09258102, k=1,19373329, k_{1} = 1,76783323, k_{2} = 0,67525221.	$+e^{-b \cdot t} \cdot (B_1 \cos(w_b \cdot t) + B_2 \sin(w_b \cdot t)) +$ + $e^{-c \cdot t} \cdot (C_1 \cos(w_c \cdot t) + C_2 \sin(w_c \cdot t))$ A = 2,06981519, a = 1,09258102, $B_1 = -0,30198197,$ b = 0,3376261, $w_b = 1,0391063,$ $B_2 = -0,92940493,$ $C_1 = -1,76783323,$ c = 0,88391661, $w_c = 0,64220301,$ $C_2 = 2,43321369.$
6	$\frac{m}{(p^2 + k_1 \cdot p + k)(p^2 + k_2 \cdot p + k)} \cdot \frac{1}{(p^2 + k_3 \cdot p + k)}$ $m = 1,55692704,$ $k = 1,15901597,$ $k_1 = 0,55727677,$ $k_2 = 1,52250844,$ $k_3 = 2,0797852.$	$e^{-a \cdot t} \cdot (A_1 \cos(w_a \cdot t) + A_2 \sin(w_a \cdot t)) + + e^{-b \cdot t} \cdot (B_1 \cos(w_b \cdot t) + B_2 \sin(w_b \cdot t)) + + e^{-c \cdot t} \cdot (C_1 \cos(w_c \cdot t) + C_2 \sin(w_c \cdot t)) A_1 = 0,43951033, a = 0,27863838, w_a = 1,0398926, A_2 = -0,76125422, B_1 = -3,28054975, b = 0,76125422, w_b = 0,76125422, B_2 = 2,22044605 \cdot 10^{-16}, C_1 = 2,84103942, c = 1,0398926, w_c = 0,27863838, C_2 = 4,92082462. $

n	Передаточные функции	Импульсные характеристики
7	<i>m</i>	$Ae^{-a \cdot t} +$
	$(p^{2} + k_{1} \cdot p + k)(p^{2} + k_{2} \cdot p + k)$	$+e^{-b\cdot t}\cdot (B_1\cos(w_b\cdot t)+B_2\sin(w_b\cdot t))+$
	$\cdot \frac{1}{(p^2 + k_2 \cdot p + k)(p+d)}$	$+e^{-c\cdot t}\cdot (C_1\cos(w_c\cdot t)+C_2\sin(w_c\cdot t))+$
	m = 1,55692704,	$+e^{-d\cdot t}\cdot (D_1\cos(w_d\cdot t)+D_2\sin(w_d\cdot t))$
	d = 1,06528766,	<i>A</i> =4,59345763,
	k = 1,13483779,	a = 1,06528766,
	$k_1 = 0,47409761,$	$B_1 = 0,78509168,$
	$k_2 = 1,32839199,$	b = 0,2370488,
	$k_3 = 1,91958203.$	$w_b = 1,03857867,$
		$B_2 = -0,17919205,$
		$C_1 = -2,199778,$
		c = 0,66419599,
		$w_c = 0,83287543,$
		$C_2 = -2,75843437,$
		$D_1 = -3,17877131,$
		d = 0.95979101,
		$w_d = 0,46221099,$
		$D_2 = 6,60078664.$
8	$\frac{m}{2}$	$e^{-a \cdot t} \cdot (A_1 \cos(w_a \cdot t) + A_2 \sin(w_a \cdot t)) +$
	$(p^2 + k_1 \cdot p + k)(p^2 + k_2 \cdot p + k)$	$+e^{-b\cdot t}\cdot (B_1\cos(w_b\cdot t)+B_2\sin(w_b\cdot t))+$
	$\frac{1}{(p^2+k_2\cdot p+k)(p^2+k_4\cdot p+k)}$	$+e^{-c\cdot t}\cdot (C_1\cos(w_c\cdot t)+C_2\sin(w_c\cdot t))+$
	m = 1.55692704.	$+e^{-d\cdot t}\cdot (D_1\cos(w_d\cdot t)+D_2\sin(w_d\cdot t))$
	k = 1,11703573,	$A_1 = 0,62139094,$
	$k_1 = 0,41238158,$	a = 0,20619079,
	$k_2 = 1,17436337,$	$w_a = 1,03659109,$
	$k_3 = 1,75755899,$	$A_2 = 0,41520015,$
	$k_A = 2.07318218.$	$B_1 = 0,73298059,$
		b = 0,58718169,
		$w_b = 0,87877949,$
		$B_2 = -3,68494227,$
		$\bar{C_1} = -8,89623759,$
		c = 0.87877949,

Таблица 9.3.6 – Окончание

n	Передаточные функции	Импульсные характеристики
		$w_c = 0,58718169,$
		$C_2 = 1,76957168,$
		$D_1 = 7,54186606,$
		d = 1,03659109,
		$w_d = 0,20619079,$
		$D_2 = 11,28720021.$
9		$Ae^{-a \cdot t} +$
	$(p^2 + k_1 \cdot p + k)(p^2 + k_2 \cdot p + k)$	$b = -b \cdot t$ (<i>B</i> as $a(w, t) + B$ sin(<i>w</i> , t)) +
	1	$+e^{-(B_1\cos(w_b\cdot t)+B_2\sin(w_b\cdot t))+}$
	$(p^2 + k_3 \cdot p + k)(p^2 + k_4 \cdot p + k)(p + d)$	$+e^{-c\cdot t}\cdot (C_1\cos(w_c\cdot t)+C_2\sin(w_c\cdot t))+$
	m = 1,55692704, d = 1,05042038	$+e^{-d\cdot t}\cdot (D_1\cos(w_d\cdot t)+D_2\sin(w_d\cdot t))+$
	k = 1,10338298,	$+e^{-f\cdot t}\cdot (F_1\cos(w_f\cdot t)+F_2\sin(w_f\cdot t))$
	$k_1 = 0,36480717,$	<i>A</i> = 11,26171009,
	$k_2 = 1,05042038,$	a = 1,05042038,
	$k_3 = 1,60933739,$	$B_1 = 0,12160239,$
	$k_4 = 1,97414456.$	<i>b</i> =0,18240359,
		$w_b = 1,03446214,$
		$B_2 = 0,68964142,$
		$C_1 = 3,43940835,$
		<i>c</i> =0,52521019,
		$w_c = 0,90969074,$
		$C_2 = -1,98574334,$
		$D_1 = -8,35874754,$
		d = 0,8046687,
		$w_d = 0,67519721,$
		$D_2 = -7,01382198,$
		$F_1 = -6,4639733,$
		f = 0,98707228,
		$w_f = 0,35926493,$
		$F_2 = 17,75962068.$

Таблица 9.3.7 - Передаточные функции и импульсные характеристики фильтров нижних частот Баттерворта с неравномерностью передачи в полосе пропускания 2 дБ

	пропуск	
n	Передаточные функции	Импульсные характеристики
1	<i>m</i>	$Ae^{-a \cdot t}$
	p+d	<i>A</i> = 1,30756027,
	m=1,30756027,	a = 1,30756027.
	<i>d</i> =1,30756027.	
2	<i>m</i>	$Ae^{-a \cdot t} \sin(w_a \cdot t)$
	$p^2 + k_1 \cdot p + k$	<i>A</i> =1,61713343,
	m=1,30756027,	a = 0,80856672,
	k = 1,30756027,	$w_a = 0,80856672.$
	$k_1 = 1,61713343.$	
3	<i>m</i>	$Ae^{-a \cdot t} +$
	$\frac{1}{(p^2+k_1\cdot p+k)(p+d)}$	$-b \cdot t$ (D) (D) (D) (D)
	m = 1 30756027	$+e^{-(B_1\cos(w_b \cdot t) + B_2\sin(w_b \cdot t))}$
	d=1.09350449	A = 1,09350449,
	k = 1.19575208.	a = 1,09350449,
	$k_1 = 1.09350449.$	$B_1 = -1,09350449,$
		b = 0,54675225,
		$w_b = 0.94700267,$
		$B_2 = 0,63133511.$
4	<i>m</i>	$e^{-a \cdot t} \cdot (A_1 \cos(w_a \cdot t) + A_2 \sin(w_a \cdot t)) +$
	$(p^2 + k_1 \cdot p + k)(p^2 + k_2 \cdot p + k)$	$+e^{-b \cdot t} \cdot (B \cdot \cos(w_t \cdot t) + B \cdot \sin(w_t \cdot t))$
	m = 1,30756027,	A = 0.08704047
	k = 1,14348602,	$A_1 = -0.98794047,$
	$k_1 = 1,97588093,$	a = 0,40921834,
k	$k_2 = 0.81843668.$	$w_a = 0.98794047,$
		$A_2 = -0,40921834,$
		$B_1 = 0.98794047,$
		b = 0.98794047,
		$w_b = 0,40921834,$
		$B_2 = 2,38509928.$

n	Передаточные функции	Импульсные характеристики
5	<i>m</i>	$Ae^{-a \cdot t} +$
	$(p^{2} + k_{1} \cdot p + k)(p^{2} + k_{2} \cdot p + k)$ $\cdot \frac{1}{(p+d)}$ m= 1,30756027, d= 1,05509689, k = 1,11322945, k_{1} = 1,70718263, k_{2} = 0,65208574.	$+e^{-b \cdot t} \cdot (B_1 \cos(w_b \cdot t) + B_2 \sin(w_b \cdot t)) +$ $+e^{-c \cdot t} \cdot (C_1 \cos(w_c \cdot t) + C_2 \sin(w_c \cdot t))$ $A = 1,99880424,$ $a = 1,05509689,$ $B_1 = -0,29162161,$ $b = 0,32604287,$ $w_b = 1,00345677,$ $B_2 = -0,89751902,$ $C_1 = -1,70718263,$ $c = 0,85359132,$ $w_c = 0,62017039,$ $C_2 = 2,34973531$
6	$\frac{m}{(p^2 + k_1 \cdot p + k)(p^2 + k_2 \cdot p + k)} \cdot \frac{1}{(p^2 + k_3 \cdot p + k)}$ m = 1,30756027, k = 1,09350449, $k_1 = 0,54129811,$ $k_2 = 1,47885394,$ $k_3 = 2,02015206.$	$e^{-a \cdot t} \cdot (A_1 \cos(w_a \cdot t) + A_2 \sin(w_a \cdot t)) + + e^{-b \cdot t} \cdot (B_1 \cos(w_b \cdot t) + B_2 \sin(w_b \cdot t)) + + e^{-c \cdot t} \cdot (C_1 \cos(w_c \cdot t) + C_2 \sin(w_c \cdot t)) A_1 = 0,42690836, a = 0,27064906, w_a = 1,01007603, A_2 = -0,73942697, B_1 = -3,18648739, b = 0,73942697, w_b = 0,73942697, B_2 = -2,22044605 \cdot 10^{-16}, C_1 = 2,75957903, c = 1,01007603, w_c = 0,27064906, C_2 = 4,77973108.$

Таблица 9.3.7 – Продолжение

n	Передаточные функции	Импульсные характеристики
7	$-\frac{m}{2}$.	$Ae^{-a \cdot t} +$
	$(p^2 + k_1 \cdot p + k)(p^2 + k_2 \cdot p + k)$	$+e^{-b\cdot t}\cdot (B_1\cos(w_b\cdot t)+B_2\sin(w_b\cdot t))+$
	$\cdot \frac{1}{(p^2 + k_3 \cdot p + k)(p+d)}$	$+e^{-c\cdot t}\cdot (C_1\cos(w_c\cdot t)+C_2\sin(w_c\cdot t))+$
	m=1,30756027,	$+e^{-d\cdot t}\cdot (D_1\cos(w_d\cdot t)+D_2\sin(w_d\cdot t))$
	<i>d</i> =1,03905225,	<i>A</i> = 4,48033212,
	k = 1,07962958,	a = 1,03905225,
	$k_1 = 0,46242176,$	$B_1 = 0,76575681,$
	$k_2 = 1,29567697,$	<i>b</i> =0,23121088,
	$k_3 = 1,87230746.$	$w_b = 1,01300104,$
		$B_2 = -0,174779,$
		$C_1 = -2,1456029,$
		<i>c</i> =0,64783848,
		$w_c = 0,81236376,$
		$C_2 = -2,69050094,$
		$D_1 = -3,10048603,$
		d = 0,93615373,
		$w_d = 0,45082788,$
		$D_2 = 6,43822558.$
8	$-\frac{m}{2}$.	$e^{-a \cdot t} \cdot (A_1 \cos(w_a \cdot t) + A_2 \sin(w_a \cdot t)) +$
	$(p^2 + k_1 \cdot p + k)(p^2 + k_2 \cdot p + k)$	$+e^{-b\cdot t}\cdot (B_1\cos(w_b\cdot t)+B_2\sin(w_b\cdot t))+$
	$\cdot \frac{1}{(p^2 + k_3 \cdot p + k)(p^2 + k_4 \cdot p + k)}$	$+e^{-c\cdot t}\cdot (C_1\cos(w_c\cdot t)+C_2\sin(w_c\cdot t))+$
	m = 1.30756027,	$+e^{-d\cdot t}\cdot (D_1\cos(w_d\cdot t)+D_2\sin(w_d\cdot t))$
	k = 1,06933906,	$A_1 = 0,60797973,$
	$k_1 = 0,40348132,$	<i>a</i> =0,20174066,
	$k_2 = 1,14901759,$	$w_a = 1,01421879,$
	$k_3 = 1,71962635,$	$A_2 = 0,40623907,$
	$k_4 = 2,02843759.$	$B_1 = 0,71716099,$
		b = 0,5745088,
		$w_b = 0,85981318,$
		$B_2 = -3,60541175,$
		$C_1 = -8,70423395,$
		<i>c</i> =0,85981318,

Таблица 9.3.7 – Окончание

n	Передаточные функции	Импульсные характеристики
		$w_c = 0,5745088,$
		$C_2 = 1,73137978,$
		$D_1 = 7,37909323,$
		d = 1,01421879,
		$w_d = 0,20174066,$
		$D_2 = 11,04359346.$
9	 	$Ae^{-a \cdot t} +$
	$(p^2 + k_1 \cdot p + k)(p^2 + k_2 \cdot p + k)$	$+e^{-b \cdot t} \cdot (B_1 \cos(w_L \cdot t) + B_2 \sin(w_L \cdot t)) +$
	$(p^2 + k_3 \cdot p + k)(p^2 + k_4 \cdot p + k)(p + d)$	$+e^{-c_1} \cdot (C_1 \cos(w_c \cdot t) + C_2 \sin(w_c \cdot t)) +$
	m = 1,30756027, d = 1,03024423	$+e^{-d\cdot t}\cdot (D_1\cos(w_d\cdot t)+D_2\sin(w_d\cdot t))+$
	k = 1,05024423, k = 1,06140317,	$+e^{-f\cdot t}\cdot (F_1\cos(w_f\cdot t)+F_2\sin(w_f\cdot t))$
	$k_1 = 0,35780007,$	A = 11,04539862,
	$k_2 = 1,03024423,$	a = 1,03024423,
	$k_3 = 1,57842573,$	$B_1 = 0,11926669,$
	$k_A = 1.9362258.$	<i>b</i> =0,17890003,
		$w_b = 1,0145925,$
		$B_2 = 0,676395,$
		$C_1 = 3,37334525,$
		c = 0,51512211,
		$w_c = 0,89221767,$
		$C_2 = -1,94760179,$
		$D_1 = -8,19819528,$
		d = 0,78921287,
		$w_d = 0,66222823,$
		$D_2 = -6,87910264,$
		$F_1 = -6,33981528,$
		f = 0,9681129,
		$w_f = 0,35236428,$
		$F_2 = 17,41849933.$

Таблица 9.3.8 - Передаточные функции и импульсные характеристики фильтров нижних частот Баттерворта с неравномерностью передачи в полосе пропускания 2.5 дБ

n	Передаточные функции	Импульсные характеристики
1	$\frac{m}{n+d}$	$Ae^{-a \cdot t}$ A = 1.13352794.
	p + a m - 1 13352794	a = 1,13352794.
	d=1,13352794.	
2	<i>m</i>	$Ae^{-a \cdot t} \sin(w_a \cdot t)$
	$p^2 + k_1 \cdot p + k$	A = 1,50567456,
	m=1,13352794,	a = 0,75283728,
	k = 1,13352794,	$w_a = 0,75283728.$
	$k_1 = 1,50567456.$	
3	<i>m</i>	$Ae^{-a \cdot t} +$
	$(p^2 + k_1 \cdot p + k)(p + d)$	$+e^{-b \cdot t} \cdot (B_1 \cos(w_b \cdot t) + B_2 \sin(w_b \cdot t))$
	m=1,13352794,	A = 1.04266327
	<i>d</i> =1,04266327,	a = 1.04266327, a = 1.04266327.
	k = 1,0871467,	$B_1 = -1.04266327,$
	$k_1 = 1,04266327.$	b = 0.52133164.
		$w_b = 0.90297288,$
		$B_2 = 0,60198192.$
4	m	$e^{-a \cdot t} \cdot (A_1 \cos(w_a \cdot t) + A_2 \sin(w_a \cdot t)) +$
	$(p^2 + k_1 \cdot p + k)(p^2 + k_2 \cdot p + k)$	$+e^{-b\cdot t}\cdot (B_1\cos(w_h\cdot t)+B_2\sin(w_h\cdot t))$
	m = 1,13352794,	$A_1 = -0.95328641.$
	k = 1,0646/269,	a = 0.39486416
	$k_1 = 1,90057285,$	$w_{\alpha} = 0.95328641.$
	$k_2 = 0,78972832.$	$A_2 = -0.39486416$
		$B_1 = 0.95328641,$
		b = 0.95328641.
		$w_b = 0,39486416,$
		$B_2 = 2,30143699.$

n	Передаточные функции	Импульсные характеристики
5	<i>m</i>	$Ae^{-a \cdot t} +$
	$(p^{2} + k_{1} \cdot p + k)(p^{2} + k_{2} \cdot p + k)$ $\cdot \frac{1}{(p+d)}$ m= 1,13352794, d= 1,02538379, k = 1,05141191, k_{1} = 1,65910582, k_{2} = 0,63372203.	$+ e^{-b \cdot t} \cdot (B_1 \cos(w_b \cdot t) + B_2 \sin(w_b \cdot t)) + + e^{-c \cdot t} \cdot (C_1 \cos(w_c \cdot t) + C_2 \sin(w_c \cdot t)) A = 1,94251493,a = 1,02538379,B_1 = -0,28340911,b = 0,31686102,w_b = 0,97519793,B_2 = -0,87224355,C_1 = -1,65910582,c = 0,82955291,w_c = 0,60270547,C_2 = 2,28356325.$
6	$\frac{m}{(p^2 + k_1 \cdot p + k)(p^2 + k_2 \cdot p + k)} \cdot \frac{1}{(p^2 + k_3 \cdot p + k)}$ m = 1,13352794, k = 1,04266327, $k_1 = 0,52856483,$ $k_2 = 1,44406598,$ $k_3 = 1,97263081.$	$e^{-a \cdot t} \cdot (A_1 \cos(w_a \cdot t) + A_2 \sin(w_a \cdot t)) + + e^{-b \cdot t} \cdot (B_1 \cos(w_b \cdot t) + B_2 \sin(w_b \cdot t)) + + e^{-c \cdot t} \cdot (C_1 \cos(w_c \cdot t) + C_2 \sin(w_c \cdot t)) A_1 = 0,41686594, a = 0,26428242, w_a = 0,98631541, A_2 = -0,72203299, B_1 = -3,11152974, b = 0,72203299, w_b = 0,72203299, w_b = 0,72203299, B_2 = 0, C_1 = 2,6946638, c = 0,98631541, w_c = 0,26428242, C_2 = 4,66729461. $

Таблица 9.3.8 – Продолжение

n	Передаточные функции	Импульсные характеристики
7	$-\frac{m}{2}$.	$Ae^{-a \cdot t} +$
	$(p^2 + k_1 \cdot p + k)(p^2 + k_2 \cdot p + k)$	$+e^{-b\cdot t}\cdot (B_1\cos(w_b\cdot t)+B_2\sin(w_b\cdot t))+$
	$\cdot \frac{1}{(p^2 + k_3 \cdot p + k)(p+d)}$	$+e^{-c\cdot t}\cdot (C_1\cos(w_c\cdot t)+C_2\sin(w_c\cdot t))+$
	m=1,13352794,	$+e^{-d\cdot t}\cdot (D_1\cos(w_d\cdot t)+D_2\sin(w_d\cdot t))$
	d = 1,01806623,	<i>A</i> = 4,38984164,
	k = 1,03645885,	a = 1,01806623,
	$k_1 = 0,4530821,$	$B_1 = 0,75029061,$
	$k_2 = 1,26950783,$	b = 0,22654105,
	$k_3 = 1,83449196.$	$w_b = 0,99254119,$
		$B_2 = -0,17124894,$
		$C_1 = -2,10226758,$
		<i>c</i> =0,63475391,
		$w_c = 0,79595623,$
		$C_2 = -2,63616017,$
		$D_{\rm l} = -3,03786467,$
		d = 0,91724598,
		$w_d = 0,44172238,$
		$D_2 = 6,30819099.$
8	$\frac{m}{\sqrt{2}}$	$e^{-a \cdot t} \cdot (A_1 \cos(w_a \cdot t) + A_2 \sin(w_a \cdot t)) +$
	$(p^{2} + k_{1} \cdot p + k)(p^{2} + k_{2} \cdot p + k)$	$+e^{-b\cdot t}\cdot (B_1\cos(w_b\cdot t)+B_2\sin(w_b\cdot t))+$
	$\cdot \frac{1}{(p^2 + k_3 \cdot p + k)(p^2 + k_4 \cdot p + k)}$	$+e^{-c\cdot t}\cdot (C_1\cos(w_c\cdot t)+C_2\sin(w_c\cdot t))+$
	m = 1,13352794,	$+e^{-d\cdot t}\cdot (D_1\cos(w_d\cdot t)+D_2\sin(w_d\cdot t))$
	k = 1,03182978,	$A_1 = 0,59722147,$
	$k_1 = 0,39634168,$	<i>a</i> =0,19817084,
	$k_2 = 1,12868562,$	$w_a = 0,9962721,$
	$k_3 = 1,68919741,$	$A_2 = 0,39905063,$
	$k_4 = 1,9925442.$	$B_1 = 0,70447076,$
		b = 0,56434281,
		$w_b = 0,8445987,$
		$B_2 = -3,54161366,$
		$C_1 = -8,55021173,$
		<i>c</i> =0,8445987,

Таблица 9.3.8 – Окончание

n	Передаточные функции	Импульсные характеристики
		$w_c = 0,56434281,$
		$C_2 = 1,70074286,$
		$D_1 = 7,2485195,$
		d = 0,9962721,
		$w_d = 0,19817084,$
		$D_2 = 10,84817606.$
9		$Ae^{-a \cdot t} +$
	$(p^2 + k_1 \cdot p + k)(p^2 + k_2 \cdot p + k)$	$a^{-b \cdot t}$ (<i>P</i> app(<i>u</i> , <i>t</i>) + <i>P</i> gin(<i>u</i> , <i>t</i>)) +
	1	$+e \cdot (B_1 \cos(w_b \cdot t) + B_2 \sin(w_b \cdot t)) +$
	$(p^2 + k_3 \cdot p + k)(p^2 + k_4 \cdot p + k)(p + d)$	$+e^{-c\cdot t}\cdot (C_1\cos(w_c\cdot t)+C_2\sin(w_c\cdot t))+$
	m = 1,13352794, d = 1,01402351	$+e^{-d\cdot t}\cdot (D_1\cos(w_d\cdot t)+D_2\sin(w_d\cdot t))+$
	k = 1,02824369,	$+e^{-f\cdot t}\cdot (F_1\cos(w_f\cdot t)+F_2\sin(w_f\cdot t))$
	$k_1 = 0,35216667,$	A = 10,87149395,
	$k_2 = 1,01402351,$	<i>a</i> = 1,01402351,
	$k_3 = 1,55357415,$	$B_1 = 0,11738889,$
	$k_A = 1,90574083.$	<i>b</i> =0,17608334,
	Т /	$w_b = 0,99861822,$
		$B_2 = 0,66574548,$
		$C_1 = 3,3202335,$
		c = 0,50701176,
		$w_c = 0,87817012,$
		$C_2 = -1,91693774,$
		$D_1 = -8,06911851,$
		d = 0,77678708,
		$w_d = 0,65180175,$
		$D_2 = -6,77079436,$
		$F_1 = -6,23999784,$
		f = 0.95287041,
		$w_f = 0,34681647,$
		$F_2 = 17,14425316.$

Таблица 9.3.9 - Передаточные функции и импульсные характеристики фильтров нижних частот Баттерворта с неравномерностью передачи в полосе пропускания 3 дБ

	пропускания о др		
n	Передаточные функции	Импульсные характеристики	
1	<i>m</i>	$Ae^{-a \cdot t}$	
	p+d	<i>A</i> = 1,00237729,	
	m=1,00237729,	a = 1,00237729.	
	<i>d</i> =1,00237729.		
2	<i>m</i>	$Ae^{-a \cdot t} \sin(w_a \cdot t)$	
	$p^2 + k_1 \cdot p + k$	A = 1,41589356,	
	m=1.00237729.	a = 0,70794678,	
	k = 1,00237729,	$w_a = 0,70794678.$	
	$k_1 = 1,41589356.$		
3	m	$Ae^{-a \cdot t} +$	
	$\frac{1}{(n^2+k_1\cdot n+k)(n+d)}$	-ht -	
	m = 1.00237729	$+e^{-b\cdot t} \cdot (B_1 \cos(w_b \cdot t) + B_2 \sin(w_b \cdot t))$	
	m = 1,00237723, d = 1,0007918	A = 1,0007918,	
	k = 1,0007910, k = 1,00158423	a = 1,0007918,	
	k = 1,00130423, $k_1 = 1,0007918$	$B_1 = 0.57780742,$	
	k] = 1,0007910.	<i>b</i> = 0,5003959,	
		$w_b = 0,86671113,$	
		$B_2 = -1,0007918.$	
4	<i>m</i>	$e^{-a \cdot t} \cdot (A_1 \cos(w_a \cdot t) + A_2 \sin(w_a \cdot t)) +$	
	$(p^{2} + k_{1} \cdot p + k)(p^{2} + k_{2} \cdot p + k)$	$-b \cdot t (D = a \cdot a) (D = b \cdot a \cdot a)$	
	m = 1.00237729,	$+e^{-(B_1\cos(w_b\cdot t)+B_2\sin(w_b\cdot t))}$	
	k = 1.00118794,	$A_1 = -0,92442813,$	
	$k_1 = 1.84885625$,	<i>a</i> =0,38291067,	
	$k_2 = 0.76582134.$	$w_a = 0,92442813,$	
		$A_2 = -0,38291067,$	
		$B_1 = 0,92442813,$	
		b = 0,92442813,	
		$w_b = 0,38291067,$	
		$B_2 = 2,23176692.$	

n	Передаточные функции	Импульсные характеристики
5	m	$Ae^{-a \cdot t} +$
	$(p^{2} + k_{1} \cdot p + k)(p^{2} + k_{2} \cdot p + k)$ $\cdot \frac{1}{(p+d)}$ m= 1,00237729, d= 1,00047501, k = 1,00095024, k_{1} = 1,61880257, k_{2} = 0,61832756.	$+ e^{-b \cdot t} \cdot (B_1 \cos(w_b \cdot t) + B_2 \sin(w_b \cdot t)) + + e^{-c \cdot t} \cdot (C_1 \cos(w_c \cdot t) + C_2 \sin(w_c \cdot t)) A = 1,89532706,a = 1,00047501,B_1 = -0,27652449,b = 0,30916378,w_b = 0,95150827,B_2 = -0,85105487,C_1 = -1,61880257,c = 0,80940128,w_c = 0,58806445,C_2 = 2,22809059.$
6	$\frac{m}{(p^2 + k_1 \cdot p + k)(p^2 + k_2 \cdot p + k)} \cdot \frac{1}{(p^2 + k_3 \cdot p + k)}$ m = 1,00237729, k = 1,0007918, $k_1 = 0,51784298,$ $k_2 = 1,41477334,$ $k_3 = 1,93261633.$	$e^{-a \cdot t} \cdot (A_1 \cos(w_a \cdot t) + A_2 \sin(w_a \cdot t)) + \\ + e^{-b \cdot t} \cdot (B_1 \cos(w_b \cdot t) + B_2 \sin(w_b \cdot t)) + \\ + e^{-c \cdot t} \cdot (C_1 \cos(w_c \cdot t) + C_2 \sin(w_c \cdot t)) \\ A_1 = 0,40840988, \\ a = 0,25892149, \\ w_a = 0,96630816, \\ A_2 = -0,70738667, \\ B_1 = -3,04841288, \\ b = 0,70738667, \\ w_b = 0,70738667, \\ B_2 = -2,22044605 \cdot 10^{-16}, \\ C_1 = 2,640003, \\ c = 0,96630816, \\ w_c = 0,25892149, \\ C_2 = 4,57261932. \end{cases}$

Таблица 9.3.9 – Продолжение

n	Передаточные функции	Импульсные характеристики
7	$\frac{m}{2}$.	$Ae^{-a \cdot t} +$
	$(p^2 + k_1 \cdot p + k)(p^2 + k_2 \cdot p + k)$	$+e^{-b\cdot t}\cdot (B_1\cos(w_b\cdot t)+B_2\sin(w_b\cdot t))+$
	$\cdot \frac{1}{(p^2 + k_3 \cdot p + k)(p+d)}$	$+e^{-c\cdot t}\cdot (C_1\cos(w_c\cdot t)+C_2\sin(w_c\cdot t))+$
	m = 1,00237729,	$+e^{-d\cdot t}\cdot (D_1\cos(w_d\cdot t)+D_2\sin(w_d\cdot t))$
	d=1,00033927,	<i>A</i> = 4,31340401,
	k = 1,00067865,	a = 1,00033927,
	$k_1 = 0,44519286,$	$B_1 = 0,73722626,$
	$k_2 = 1,24740266,$	<i>b</i> =0,22259643,
	$k_3 = 1,80254908.$	$w_b = 0.97525867,$
		$B_2 = -0,16826708,$
		$C_1 = -2,06566208,$
		<i>c</i> =0,62370133,
		$w_c = 0,78209673,$
		$C_2 = -2,59025832,$
		$D_1 = -2,98496819,$
		d = 0,90127454,
		$w_d = 0,43403094,$
		$D_2 = 6,19835032.$
8	$\frac{m}{2}$.	$e^{-a \cdot t} \cdot (A_1 \cos(w_a \cdot t) + A_2 \sin(w_a \cdot t)) +$
	$(p^2 + k_1 \cdot p + k)(p^2 + k_2 \cdot p + k)$	$+e^{-b\cdot t}\cdot (B_1\cos(w_b\cdot t)+B_2\sin(w_b\cdot t))+$
	$\frac{1}{(p^2+k_2\cdot p+k)(p^2+k_4\cdot p+k)}$	$+e^{-c\cdot t}\cdot (C_1\cos(w_c\cdot t)+C_2\sin(w_c\cdot t))+$
	m = 1.00237729.	$+e^{-d\cdot t}\cdot (D_1\cos(w_d\cdot t)+D_2\sin(w_d\cdot t))$
	k = 1,00059379,	$A_1 = 0,58811233,$
	$k_1 = 0,39029647,$	a = 0,19514824,
	$k_2 = 1,11147031,$	$w_a = 0,98107643,$
	$k_3 = 1,66343287,$	$A_2 = 0,3929641,$
	$k_{\Delta} = 1,96215286.$	$B_1 = 0,6937258,$
		b = 0,55573516,
		$w_b = 0,83171644,$
		$B_2 = -3,48759509,$
		$C_1 = -8,41979937,$
		<i>c</i> =0,83171644,
Таблица 9.3.9 – Окончание

n	Передаточные функции	Импульсные характеристики
		$w_c = 0,55573516,$
		$C_2 = 1,67480223,$
		$D_1 = 7,13796124,$
		d = 0.98107643,
		$w_d = 0,19514824,$
		$D_2 = 10,68271393.$
9		$Ae^{-a \cdot t} +$
	$(p^2 + k_1 \cdot p + k)(p^2 + k_2 \cdot p + k)$	$+a^{-b \cdot t}$, $(B_{t} \cos(w_{t}, t) + B_{t} \sin(w_{t}, t)) +$
	1	$+e^{-(D_1\cos(w_b, i)+D_2\sin(w_b, i))+}$
	$(p^2 + k_3 \cdot p + k)(p^2 + k_4 \cdot p + k)(p + d)$	$+e^{-c\cdot t}\cdot (C_1\cos(w_c\cdot t)+C_2\sin(w_c\cdot t))+$
	m = 1,00237729,	$+e^{-d\cdot t}\cdot (D_1\cos(w_d\cdot t)+D_2\sin(w_d\cdot t))+$
	a = 1,00020380, k = 1,0005278,	$+e^{-f \cdot t} \cdot (F_1 \cos(w_f \cdot t) + F_2 \sin(w_f \cdot t))$
	$k_1 = 0,34738799,$	A = 10.72397476.
	$k_2 = 1,00026386,$	a = 1,00026386,
	$k_3 = 1.53249315$,	$B_1 = 0,115796,$
	$k_A = 1.87988115.$	b = 0,173694,
	4 -,	$w_b = 0,98506761,$
		$B_2 = 0,65671174,$
		$C_1 = 3,27518006,$
		c = 0,50013193,
		$w_c = 0,86625392,$
		$C_2 = -1,89092609,$
		$D_1 = -7,95962575,$
		d = 0,76624658,
		$w_d = 0,64295722,$
		$D_2 = -6,67891903,$
		$F_1 = -6,15532507,$
		f = 0,93994057,
		$w_f = 0,34211039,$
		$F_2 = 16,91161665.$

9.4 Приложение 4

Передаточные функции и импульсные характеристики НЧпрототипов Чебышева

Таблица 9.4.1 - Передаточные функции и импульсные характеристики фильтра нижних частот Чебышева с неравномерностью передачи в полосе пропускания 0.1 дБ

	пропуска	пил 0,1 дD
n	Передаточные функции	Импульсные характеристики
1		$Ae^{-a \cdot t}$
	p + m	A = 6,55220322,
	l = 6,55220322,	<i>a</i> =6,55220322.
	m = 6,55220322.	
2	<i>l</i>	$Ae^{-a \cdot t} \sin(w_a \cdot t)$
	$p^2 + k \cdot p + m$	A = 2,37235625,
	l = 3,27610161,	a = 1,18617813,
	k = 2,37235625,	$w_a = 1,38094842.$
	m = 2,37235625.	
3		$Ae^{-a \cdot t} +$
	$\left(p^2 + k \cdot p + m_1\right)$	$+ e^{-b \cdot t} [B_{t} \cos(w_{t}, t) + B_{t} \sin(w_{t}, t)]$
	1	$+e^{-[D]\cos(w_b \cdot i) + D_2 \sin(w_b \cdot i)]}$
	$\cdot \frac{1}{(p+m_2)}$	a = 0.96940571
	$(p + m_2)$	$B_1 = 0.3895632$
	k = 0.96940571	b = 0.48470286
	$m_1 = 1 68974743$	$w_1 = 1.20615529$
	$m_1 = 1,000711100,$ $m_2 = -0.96940571$	$W_0 = 1,20010020,$ $B_0 = 0.06040571$
1	1	$D_2 = -0.90940371.$
4	$\frac{l}{2}$	$e^{-a \cdot t} \left[A_1 \cos(w_a \cdot t) + A_2 \sin(w_a \cdot t) \right] +$
	$(p^2 + k_1 \cdot p + m_1)$	$+e^{-b\cdot t}[B_1\cos(w_b\cdot t)+B_2\sin(w_b\cdot t)]$
	1	$A_1 = -0.40217011.$
	$(p^2 + k_2 \cdot p + m_2)$	a = 0.26415637
	l = 0.8190254,	$w_{\alpha} = 1.12260981.$
	$k_1 = 0,52831273,$	$A_2 = -0.43367986$
	$k_2 = 1,27545977,$	$B_1 = 0.40217011$
	$m_1 = 1.33003138.$	$b_1 = 0, +0217011,$ $b_2 = 0, +0217011,$
	$m_2 = 0.6229246$	v = 0.03772989, $v_{2} = 0.46500021$
	$m_2 = 0,02292 \pm 0.$	$w_b = 0.40300021,$
		$B_2 = 1,3/009265.$

Таблица 9.4.1 – Продолжение

n	Передаточные функции	Импульсные характеристики
5	<i>l</i>	$Ae^{-a \cdot t} +$
	$(p^2 + k_1 \cdot p + m_1)$	$+e^{-b \cdot t} [B_1 \cos(w_b \cdot t) + B_2 \sin(w_b \cdot t)] +$
	1	$= \frac{-c \cdot t}{c} \left[C \cos(\omega - t) + C \sin(\omega - t) \right]$
	$(p^2 + k_2 \cdot p + m_2)$	$+e^{-1} [C_1 \cos(w_c \cdot t) + C_2 \sin(w_c \cdot t)]$
		A = 0.08700418, a = 0.53891432
	$\left(\frac{1}{(n+m_2)}\right)$	$B_1 = 0.18491751.$
	$(p + m_3)$ l = 0.4095127	b = 0.16653369.
	$k_1 = 0.33306737$	$w_b = 1,08037201,$
	$k_1 = 0.87198169$	$B_2 = -0.33255984,$
	$m_1 = 1.19493715$	$C_1 = -0.87198169,$
	$m_1 = 0.63592015$	c = 0,43599085,
	$m_2 = 0.53891432$	$w_c = 0,66770662,$
		$C_2 = 0,56937586.$
		-
6	$\frac{l}{2}$.	$e^{-a \cdot t} [A_1 \cos(w_a \cdot t) + A_2 \sin(w_a \cdot t)] +$
	$(p^2 + k_1 \cdot p + m_1)$	$+e^{-b\cdot t}[B_1\cos(w_b\cdot t)+B_2\sin(w_b\cdot t)]+$
	$\cdot \frac{1}{(2+1)}$	$+e^{-c\cdot t}[C_1\cos(w_c\cdot t)+C_2\sin(w_c\cdot t)]$
	$(p + k_2 \cdot p + m_2)$	$A_1 = 0,25782178,$
		<i>a</i> =0,11469337,
	$(p^2 + k_3 \cdot p + m_3)$	$w_a = 1,05651891,$
	l = 0,20475635,	$A_2 = 6,20193544 \cdot 10^{-2},$
	$k_1 = 0,22938674,$	$B_1 = -0,57953129,$
	$k_2 = 0,62669622,$	<i>b</i> =0,31334811,
	$k_3 = 0,85608296,$	$w_b = 0,77342552,$
	$m_1 = 1,12938678,$	$B_2 = -0.51772834,$
	$m_2 = 0,69637408,$	$C_1 = 0,3217095,$
	$m_3 = 0,26336138.$	<i>c</i> =0,42804148,
		$w_c = 0,2830934,$
		$C_2 = 1,13241823.$

n	Передаточные функции	Импульсные характеристики
7	$\frac{l}{l}$	$Ae^{-a \cdot t} +$
	$(p^2 + k_1 \cdot p + m_1)$	$+e^{-b\cdot t}[B_1\cos(w_b\cdot t)+B_2\sin(w_b\cdot t)]+$
	$\cdot \frac{1}{2}$	$+e^{-c \cdot t} [C_1 \cos(w_c \cdot t) + C_2 \sin(w_c \cdot t)] +$
	$(p^2 + k_2 \cdot p + m_2)$	$+e^{-d \cdot t} [D_1 \cos(w_d \cdot t) + D_2 \sin(w_d \cdot t)]$
	$\cdot \frac{1}{\sqrt{2}}$	A = 0.56252587.
	$(p^2 + k_3 \cdot p + m_3)$	a = 0,37677788,
		$B_1 = 1,01026952 \cdot 10^{-5},$
	$(p + m_4)$	$b = 8,3840965 \cdot 10^{-2},$
	<i>l</i> = 0,10237818,	$w_b = 1,04183333,$
	$k_1 = 0,16768193,$	$B_2 = 0,19528518,$
	$k_2 = 0,46983433,$	$C_1 = 0,28408637,$
	$k_3 = 0,67893028,$	c = 0,23491717,
	$m_1 = 1,092446,$	$w_c = 0,83548547,$
	$m_2 = 0.75322204,$	$C_2 = -0,52432773,$
	$m_3 = 0.33021667,$	$D_1 = -0.84662234,$
	$m_A = 0.37677788.$	d = 0.33946514,
	4	$w_d = 0,46365945,$
		$D_2 = 0,48721045.$
8		$e^{-a \cdot t} \left[A_1 \cos(w_a \cdot t) + A_2 \sin(w_a \cdot t) \right] +$
	$(p^2 + k_1 \cdot p + m_1)$	$+e^{-b\cdot t}[B_1\cos(w_b\cdot t)+B_2\sin(w_b\cdot t)]+$
	$\cdot \frac{1}{2}$	$+e^{-c\cdot t}[C_1\cos(w_c\cdot t)+C_2\sin(w_c\cdot t)]+$
	$(p^2 + k_2 \cdot p + m_2)$	$+e^{-d\cdot t}[D_1\cos(w_d\cdot t)+D_2\sin(w_d\cdot t)]$
	$\cdot \frac{1}{\sqrt{2}}$	$A_1 = -0,14741656,$
	$(p^2 + k_3 \cdot p + m_3)$	$a = 6,3980125 \cdot 10^{-2},$
		$w_a = 1,03218136,$
	$(p^2 + k_4 \cdot p + m_4)$	$A_2 = 3,00402552 \cdot 10^{-2},$
	l = 0,05118909,	$B_1 = 0,45126925,$
	$k_1 = 0,12796025,$	<i>b</i> =0,18219998,
	$k_2 = 0,36439996,$	$w_b = 0,87504111,$
	$k_3 = 0,54536308,$	$B_2 = 0,13929234.$
	$k_4 = 0,63429961,$	$C_1 = -0,54020529,$
	$m_1 = 1,06949182,$	<i>c</i> =0,27268154,
	$m_2 = 0,79889377,$	$w_c = 0,58468378,$

Таблица 9.4.1 – Окончание

n	Передаточные функции	Импульсные характеристики
	$m_3 = 0,41621034,$	$C_2 = -0.61250036,$
	$m_4 = 0,14561229.$	$D_1 = 0,2363526,$
		d = 0,31714981,
		$w_d = 0,21219871,$
		$D_2 = 0,969234.$
9	!	$Ae^{-a \cdot t} +$
	$(p^2 + k_1 p + m_1)$	$+e^{-b\cdot t}[B_1\cos(w_b\cdot t)+B_2\sin(w_b\cdot t)]+$
	$(\frac{1}{(p^2 + k_2 p + m_2)})$	$+e^{-c\cdot t}[C_1\cos(w_c\cdot t)+C_2\sin(w_c\cdot t)]+$
	$(p + n_2p + m_2)$	$+e^{-d\cdot t} [D_1 \cos(w_d \cdot t) + D_2 \sin(w_d \cdot t)] +$
	$(p^2 + k_3 p + m_3)$	$+e^{-f\cdot t} \left[F_1 \cos(w_f \cdot t) + F_2 \sin(w_f \cdot t) \right]$
	1	A = 0,48045649,
	$\frac{1}{(n^2+k_An+m_A)}$	<i>a</i> =0,29046118,
	$(P + m_4P + m_4)$	$B_1 = -4,5476552 \cdot 10^{-2},$
	$\cdot \frac{1}{(1-1)}$	b = 5,0438055e-2,
	$(p+m_5)$	$w_b = 1,02550964,$
	l = 0.02559454, k = 0.10087611	$B_2 = -0,10939197,$
	$k_1 = 0.10087011,$	$C_1 = -3,97385265 \cdot 10^{-2},$
	$k_2 = 0.29046118,$	c = 0,14523059,
	$k_3 = 0.44501235,$	$w_c = 0,90181804,$
	$k_4 = 0,54588846,$	$C_2 = 0,37628986,$
	$m_1 = 1,05421401,$	$D_1 = 0,40136956,$
	$m_2 = 0,8343677,$	d = 0,22250618,
	$m_3 = 0,49754361,$	$w_d = 0,66935388,$
	$m_4 = 0,20134548,$	$D_2 = -0,53892371,$
	$m_5 = 0,29046118.$	$F_1 = -0,79661097,$
		f = 0,27294423,
		$w_f = 0,35615576,$
		$F_2 = 0,38447788.$

Таблица 9.4.2 - Передаточные функции и импульсные характеристики фильтра нижних частот Чебышева с неравномерностью передачи в полосе пропускания 0.2 дБ

	пропуеки	ания 0,2 дв
n	Передаточные функции	Импульсные характеристики
1		$Ae^{-a \cdot t}$
	p + m	<i>A</i> = 4,60636099,
	<i>l</i> = 4,60636099,	<i>a</i> =4,60636099.
	m = 4,60636099.	
2	<i>l</i>	$Ae^{-a \cdot t} \sin(w_a \cdot t)$
	$p^2 + k \cdot p + m$	<i>A</i> = 1,92708508,
	<i>l</i> = 2,30318049,	a = 0,96354254,
	k = 1,92708508,	$w_a = 1,19516285.$
	m = 2,35682846.	
3	l	$Ae^{-a \cdot t} +$
	$\left(p^2 + k \cdot p + m_1\right)$	$+e^{-b\cdot t}\cdot (B_1\cos(w_b\cdot t)+B_2\sin(w_b\cdot t))$
	1	A = 0.81463413.
	$\frac{1}{(p+m_2)}$	a = 0.81463413,
	l = 1,15159025,	$B_1 = 0,29705466,$
	k = 0,81463413,	b = 0,40731707,
	$m_1 = 1,41362877,$	$w_b = 1,11701458,$
	$m_2 = 0,81463413.$	$B_2 = -0.81463413.$
4	<i>l</i>	$e^{-a \cdot t} \cdot (A_1 \cos(w_a \cdot t) + A_2 \sin(w_a \cdot t)) +$
	$(p^2 + k_1 \cdot p + m_1)$	$+e^{-b\cdot t}\cdot (B_1\cos(w_L\cdot t)+B_2\sin(w_L\cdot t))$
	1	$A_1 = -0.30849788$
	$\frac{1}{(p^2+k_2\cdot p+m_2)}$	a = 0.22481072
	l = 0.57579513.	$w_{z} = 1.07150421$
	$k_1 = 0.44962144,$	$A_2 = -0.38489596$
	$k_2 = 1.08548218$	$R_{2} = -0.30840788$
	$m_1 = 1.19866114$	$D_{1} = 0,30047700,$
	$m_{2} = -0.49155436$	b = 0.542/4109,
	$m_2 = 0,47155450.$	$w_b = 0.44303130,$
		$B_2 = 1,15020768.$

Таблица 9.4.2 – Продолжение

n	Передаточные функции	Импульсные характеристики
5	<i>l</i>	$Ae^{-a \cdot t} +$
	$(p^2 + k_1 \cdot p + m_1)$	$+e^{-b\cdot t}\cdot (B_1\cos(w_b\cdot t)+B_2\sin(w_b\cdot t))+$
	$\cdot \frac{1}{(p^2 + k_2 \cdot p + m_2)}$	$+e^{-c\cdot t}\cdot (C_1\cos(w_c\cdot t)+C_2\sin(w_c\cdot t))$
		A = 0.56270466, a = 0.46141058
	$\cdot \frac{1}{(n+m_2)}$	$B_1 = 0.18387333.$
	$(p + m_3)$ 1 - 0.28789756	b = 0.14258371
	$k_1 = 0.28516742$	$w_b = 1,04741496,$
	$k_1 = 0.74657799$	$B_2 = -0.259232,$
	$m_1 = 1.11740822.$	$C_1 = 0,74657799,$
	$m_2 = 0.55839122$.	c = 0,373289,
	$m_2 = 0.46141058.$	$w_c = 0,64733805,$
		$C_2 = 0,43051594.$
6		$e^{-a \cdot t} \cdot (A_1 \cos(w_a \cdot t) + A_2 \sin(w_a \cdot t)) +$
	$(p^2 + k_1 \cdot p + m_1)$	$+e^{-b\cdot t}\cdot (B_1\cos(w_b\cdot t)+B_2\sin(w_b\cdot t))+$
	$\cdot \frac{1}{2}$	$+e^{-c \cdot t} \cdot (C_1 \cos(w_c \cdot t) + C_2 \sin(w_c \cdot t))$
	$(p^2 + k_2 \cdot p + m_2)$	$A_1 = 0.2058765.$
	1	$a = 9.8524315 \cdot 10^{-2}$
	$(p^2 + k_3 \cdot p + m_3)$	$w_a = 1,03354455,$
	<i>l</i> = 0,14394878,	$A_2 = 8,20213362 \cdot 10^{-2},$
	$k_1 = 0,19704863,$	$B_1 = -0.43832338,$
	$k_2 = 0,53834686,$	b = 0,26917343,
	$k_3 = 0,73539548,$	$w_b = 0,75660712,$
	$m_1 = 1,07792137,$	$B_2 = -0.46597506,$
	$m_2 = 0,64490867,$	$C_1 = 0,23244688,$
	$m_3 = 0,21189597.$	<i>c</i> =0,36769774,
		$w_c = 0,27693743,$
		$C_2 = 0,23786126.$

Таблица 9.4.2 – Продолжение

n	Передаточные функции	Импульсные характеристики
7	<i>l</i>	$Ae^{-a \cdot t} +$
	$(p^2 + k_1 \cdot p + m_1)$	$+e^{-b \cdot t} \cdot (B \cdot \cos(w_t \cdot t) + B \cdot \sin(w_t \cdot t)) +$
	1	$= C^{\dagger} C^$
	$(p^2 + k_2 \cdot p + m_2)$	$+e^{-c\cdot t}\cdot (C_1\cos(w_c\cdot t)+C_2\sin(w_c\cdot t))+$
	1	$+e^{-d\cdot t}\cdot (D_1\cos(w_d\cdot t)+D_2\sin(w_d\cdot t))$
	$\cdot \frac{1}{(n^2 + k_2 \cdot n + m_2)}$	A = 0,4475208,
	$(p + k_3 + p + m_3)$	<i>a</i> =0,32431242,
	$\cdot \frac{1}{\langle \cdot \rangle}$	$B_1 = -2,80919734 \cdot 10^{-2},$
	$(p+m_4)$	$b = 7,21663 \cdot 10^{-2},$
	l = 0,07197439,	$w_b = 1,02491707,$
	$k_1 = 0,14433260,$	$B_2 = 0,16081036,$
	$k_2 = 0,40441097,$	$C_1 = 0,28120258,$
	$k_3 = 0,58439078,$	c = 0,20220549,
	$m_1 = 1,05566298,$	$w_c = 0,82191967,$
	$m_2 = 0,71643901,$	$C_2 = -0,40033171,$
	$m_3 = 0,29343364,$	$D_1 = -0.7006314,$
	$m_4 = 0,32431242.$	d = 0,29219539,
		$w_d = 0,45613101,$
		$D_2 = 0,34961868.$
8	$\frac{l}{l}$.	$e^{-a \cdot t} \cdot (A_1 \cos(w_a \cdot t) + A_2 \sin(w_a \cdot t)) +$
	$(p^2 + k_1 \cdot p + m_1)$	$+e^{-b\cdot t}\cdot (B_1\cos(w_b\cdot t)+B_2\sin(w_b\cdot t))+$
	$\cdot \frac{1}{2}$.	$+e^{-c \cdot t} \cdot (C_1 \cos(w_c \cdot t) + C_2 \sin(w_c \cdot t)) +$
	$(p^2 + k_2 \cdot p + m_2)$	$+e^{-d\cdot t}\cdot (D_1\cos(w_d\cdot t)+D_2\sin(w_d\cdot t))$
		$A_1 = -0.12520141$
	$(p^2 + k_3 \cdot p + m_3)$	$a = 55143275 \cdot 10^{-2}$
	1	$w_{\alpha} = 1.0192119.$
	$\frac{1}{(p^2+k_4\cdot p+m_4)}$	$A_2 = 1,05623647 \cdot 10^{-2},$
	l = 0,03598719,	$B_1 = 0.34905626.$
	$k_1 = 0,11028655,$	b = 0.15703476
	$k_2 = 0,31406951,$	$w_b = 0.86404612,$
	$k_3 = 0,47003824,$	$B_2 = 0,16101705,$
	$k_4 = 0,55444791,$	$\tilde{C_1} = -0.39984486,$
	$m_1 = 1,04183367,$	c = 0.23501912,
	$m_2 = 0,77123562,$	$w_c = 0,57733717,$

n	Передаточные функции	Импульсные характеристики
	$m_3 = 0,38855219,$	$C_2 = -0,51169606,$
	$m_4 = 0,11795414.$	$D_1 = 0,16688843,$
		d = 0,27722396,
		$w_d = 0,20273386,$
		$D_2 = 0,77718514.$
9	!	$Ae^{-a \cdot t} +$
	$(p^2 + k_1 p + m_1)$	$+e^{-b\cdot t}\cdot (B_1\cos(w_b\cdot t)+B_2\sin(w_b\cdot t))+$
	$\cdot \frac{1}{(p^2 + k_2 p + m_2)}$	$+e^{-c\cdot t}\cdot (C_1\cos(w_c\cdot t)+C_2\sin(w_c\cdot t))+$
	$\frac{1}{1}$	$+e^{-d\cdot t}\cdot (D_1\cos(w_d\cdot t)+D_2\sin(w_d\cdot t))+$
	$(p^2 + k_3 p + m_3)$	$+e^{-f\cdot t}\cdot (F_1\cos(w_f\cdot t)+F_2\sin(w_f\cdot t))$
	1	<i>A</i> =0,37409691,
	$\frac{1}{(p^2+k_Ap+m_A)}$	<i>a</i> =0,25056884,
	$(P \cdots AP \cdots A)$	$B_1 = -1,67637812 \cdot 10^{-2},$
	$\cdot \frac{1}{(m+m)}$	$b = 4,3510825 \cdot 10^{-2},$
	$(p+m_5)$	$w_b = 1,01525261,$
	l = 0.01/9930, $k_{\rm c} = 0.08702165$	$B_2 = -9,76220674 \cdot 10^{-2},$
	$k_1 = 0.05702103,$	$C_1 = -8,28310206 \cdot 10^{-2},$
	$k_2 = 0.23030804,$	c = 0,12528442,
	$k_3 = 0,38389574,$	$w_c = 0.892/981/,$
	$k_4 = 0.47091539,$	$C_2 = 0,29786225,$
	$m_1 = 1,03263106,$	$D_1 = 0,36415119,$
	$m_2 = 0.812/84/5,$	d = 0,19194687,
	$m_3 = 0,47596066,$	$w_d = 0,66265908,$
	$m_4 = 0,17976252,$	$D_2 = -0,39013,$
	$m_5 = 0,25056884.$	$F_1 = -0,6386533,$
		f = 0,2354577,
		$w_f = 0,35259352,$
		$F_2 = 0,26618586.$

Таблица 9.4.3 - Передаточные функции и импульсные характеристики фильтра нижних частот Чебышева с неравномерностью передачи в полосе пропускания 0.3 дБ

	пропускания 0,5 др		
n	Передаточные функции	Импульсные характеристики	
1		$Ae^{-a \cdot t}$	
	p + m	<i>A</i> = 3,73928318,	
	l = 3,73928318,	<i>a</i> = 3,73928318.	
	m = 3,73928318		
2	<i>l</i>	$Ae^{-a \cdot t} \sin(w_a \cdot t)$	
	$p^2 + k \cdot p + m$	<i>A</i> = 1,69431098,	
	l = 1,93534485,	<i>a</i> =0,84715549,	
	k = 1,69431098,	$w_a = 1,10348196.$	
	m = 1,93534485.		
3	l	$Ae^{-a\cdot t} + e^{-b\cdot t}[B_1\cos(w_b\cdot t) +$	
	$\left(p^2 + k \cdot p + m_1\right)$	$+B_2\sin(w_b\cdot t)$]	
	1	<i>A</i> =0,72927733,	
	$\frac{1}{(n+m_2)}$	<i>a</i> =0,72927732,	
	(P - 1) = 0.0000000000000000000000000000000000	$B_1 = 0,2480946,$	
	$k_1 = 0.72927732$	b = 0,36463866,	
	$m_1 = 1.28184542$.	$w_b = 1,0718601,$	
	$m_2 = 0,72927732.$	$B_2 = -0,72927733.$	
4		$e^{-a \cdot t} [A_1 \cos(w_a \cdot t) + A_2 \sin(w_a \cdot t)] +$	
	$(p^2 + k_1 \cdot p + m_1)$	$-\frac{b}{t} \left[D \right] = \frac{b}{t} \left$	
	1	$+e \left[B_1 \cos(w_b \cdot t) + B_2 \sin(w_b \cdot t)\right]$	
	$\cdot \frac{1}{(2+1)}$	$A_1 = -0,25888103,$	
	$(p^- + k_2 \cdot p + m_2)$	a = 0,20259811,	
	<i>l</i> = 0,4674104,	$w_a = 1,04536451,$	
	$k_1 = 0,40519622,$	$A_2 = -0,35103599,$	
	$k_2 = 0,98723020,$	$B_1 = 0,25888103,$	
	$m_1 = 1,13383296,$	b = 0.4936151,	
	$m_2 = 0.42672618.$	$w_b = 0.42786717$	
		$B_2 = 1.03373052$	
		2_ 1,00010002.	
1	1		

Таблица 9.4.3 – Продолжение

n	Передаточные функции	Импульсные характеристики
5	<i>l</i>	$Ae^{-a \cdot t} +$
	$(p^2 + k_1 \cdot p + m_1)$	$+e^{-b\cdot t}[B_1\cos(w_b\cdot t)+B_2\sin(w_b\cdot t)]+$
	$\cdot \frac{1}{(x^2 + b - x + x^2)}$	$+e^{-c\cdot t}[C_1\cos(w_c\cdot t)+C_2\sin(w_c\cdot t)]$
	$(p + k_2 \cdot p + m_2)$	<i>A</i> = 0,49548309,
		<i>a</i> =0,41712909,
	$(p + m_3)$	$B_1 = 0,17944595,$
	l = 0,2337052,	<i>b</i> =0,12889998,
	$k_1 = 0,25779995,$	$w_b = 1,03048045,$
	$k_2 = 0,67492904,$	$B_2 = -0.21904173,$
	$m_1 = 1,07850517,$	$C_1 = -0.67492903,$
	$m_2 = 0.51948818,$	<i>c</i> =0,33746452,
	$m_3 = 0.41712909.$	$w_c = 0,63687195,$
		$C_2 = 0,35763015.$
6	$-\frac{l}{2}$.	$e^{-a \cdot t} [A_1 \cos(w_a \cdot t) + A_2 \sin(w_a \cdot t)] +$
	$(p^2 + k_1 \cdot p + m_1)$	$+e^{-b\cdot t}[B_1\cos(w_b\cdot t)+B_2\sin(w_b\cdot t)]+$
	$\cdot \frac{1}{(n^2 + k - n + m)}$	$+e^{-e\cdot t}[C_1\cos(w_c\cdot t)+C_2\sin(w_c\cdot t)]$
	$(p + k_2 \cdot p + m_2)$	$A_1 = 0,17619164,$
	· <u> </u>	$a = 8,9222665 \cdot 10^{-2},$
	$(p^2 + k_3 \cdot p + m_3)$	$w_a = 1,02170971,$
	l = 0,1168526,	$A_2 = 8,92223191 \cdot 10^{-2},$
	$k_1 = 0,17844533,$	$B_1 = -0,36415745,$
	$k_2 = 0,48752172,$	b = 0,24376086,
	$k_3 = 0,66596706,$	$w_b = 0,74794342,$
	$m_1 = 1,05185142,$	$B_2 = -0,43244125,$
	$m_2 = 0,61883871,$	$C_1 = 0,18796581,$
	$m_3 = 0,18582601.$	c = 0,33298353,
		$w_c = 0,27376628,$
		$C_2 = 0,81027051.$

Таблица 9.4.3 – Продолжение

n	Передаточные функции	Импульсные характеристики
7	l .	$Ae^{-a\cdot t} +$
	$(p^2 + k_1 \cdot p + m_1)$	$+e^{-b \cdot t}[B_1\cos(w_b \cdot t) + B_2\sin(w_b \cdot t)] +$
		$= \frac{1}{2} \left[\frac{1}{2}$
	$(p^2 + k_2 \cdot p + m_2)$	$+e \left[C_1 \cos(w_c \cdot t) + C_2 \sin(w_c \cdot t)\right] +$
	1	$+e^{-d\cdot t}[D_1\cos(w_d\cdot t)+D_2\sin(w_d\cdot t)]$
	$\frac{1}{(p^2+k_3\cdot p+m_3)}$	A = 0,3877074,
	1	a = 0,29400149, $B_{a} = 4.02685384.10^{-2}$
	$\cdot \frac{1}{(n+m_A)}$	$b_1 = -4,02083384^{-10}$, $b_2 = 6.5421485 \cdot 10^{-2}$
	l = 0.0584263.	$w_{L} = 1.01618962.$
	$k_1 = 0,13084297,$	$B_2 = 0.13981147.$
	$k_2 = 0,36661387,$	$C_1 = 0.27290795.$
	$k_3 = 0,52977239,$	c = 0,18330694,
	$m_1 = 1,03692131,$	$w_c = 0,8149208,$
	$m_2 = 0,69769735,$	$C_2 = -0,33426583,$
	$m_3 = 0,27469198,$	$D_1 = -0.62034681,$
	$m_4 = 0,29400149.$	d = 0,2648862,
		$w_d = 0,45224693,$
		$D_2 = 0,28166462.$
8	$-\frac{l}{2}$.	$e^{-a \cdot t} [A_1 \cos(w_a \cdot t) + A_2 \sin(w_a \cdot t)] +$
	$(p^2 + k_1 \cdot p + m_1)$	$+e^{-b\cdot t}[B_1\cos(w_b\cdot t)+B_2\sin(w_b\cdot t)]+$
	$\cdot \frac{1}{2}$	$+e^{-c \cdot t} [C_1 \cos(w_c \cdot t) + C_2 \sin(w_c \cdot t)] +$
	$(p^2 + k_2 \cdot p + m_2)$	$+e^{-d \cdot t} [D_1 \cos(w_d \cdot t) + D_2 \sin(w_d \cdot t)]$
	$\cdot \frac{1}{2}$	$A_1 = -0.11086109.$
	$(p^2 + k_3 \cdot p + m_3)$	$a = 5.002353 \cdot 10^{-2}$.
		$w_a = 1,01251401,$
	$(p^2 + k_4 \cdot p + m_4)$	$A_2 = -1,28002756 \cdot 10^{-2},$
	<i>l</i> = 0,03023976,	$B_1 = 0,2938395,$
	$k_1 = 0,10004706,$	b = 0,14245497,
	$k_2 = 0,28490993,$	$w_b = 0,85836793,$
	$k_3 = 0,42639785,$	$B_2 = 0,16832425,$
	$k_4 = 0,50297056,$	$C_1 = -0.31506982,$
	$m_1 = 1,02'/6869'/,$	c = 0,21319893,
	$m_2 = 0,75708892,$	$w_c = 0.5/354311,$

n	Передаточные функции	Импульсные характеристики
	$m_3 = 0,37440548,$	$C_2 = -0,46118432,$
	$m_4 = 0,10380743.$	$D_1 = 0,13209141,$
		d = 0,25148528,
		$w_d = 0,20140155,$
		$D_2 = 0,6720164.$
9	<i>l</i>	$Ae^{-a \cdot t} +$
	$(p^2 + k_1 p + m_1)$	$+e^{-b\cdot t}[B_1\cos(w_b\cdot t)+B_2\sin(w_b\cdot t)]+$
	$\left(\frac{1}{\left(p^{2}+k_{2}p+m_{2}\right)}\right)$	$+e^{-c\cdot t}[C_1\cos(w_c\cdot t)+C_2\sin(w_c\cdot t)]+$
	$\frac{1}{1}$	$+e^{-d\cdot t}[D_1\cos(w_d\cdot t)+D_2\sin(w_d\cdot t)]+$
	$(p^2 + k_3p + m_3)$	$+e^{-f\cdot t}[F_1\cos(w_f\cdot t)+F_2\sin(w_f\cdot t)]$
	1	<i>A</i> = 0,32035092,
	$\frac{1}{(p^2+k_4p+m_4)}$	a = 0,22741138, $B = 0.227416567, 10^{-2}$
		$B_1 = -8,8241050/10^2,$ $h = 2.048057.10^{-2}$
	$\cdot {(p+m_5)}$	b = 3,94893710, $w_{1} = 1,00995189$
	l = 0.01460657.	$R_{0} = 2,85003647 \cdot 10^{-3}$
	$k_1 = 0,07897914,$	$D_2 = -2,85505047 \ 10^{-2}$
	$k_2 = 0,22741138,$	c = 0.11370560
	$k_3 = 0.34841445$.	w = 0.88813679
	$k_A = 0.42739360$,	$C_2 = 0.25336238$
	$m_1 = 1,02156225,$	$D_1 = 0.33731286.$
	$m_2 = 0.80171594,$	d = 0.17420723.
	$m_3 = 0,46489185,$	$w_d = 0,65919928,$
	$m_4 = 0,16869372,$	$D_2 = -0.31575991,$
	$m_5 = 0,22741138.$	$F_1^- = -0,55554229,$
		f = 0,2136968,
		$w_f = 0,35075262,$
		$F_2 = 0,2102469.$

Таблица 9.4.4 - Передаточные функции и импульсные характеристики фильтра нижних частот Чебышева с неравномерностью передачи в полосе пропускания 0.5 дБ

n	Передаточные функции	Импульсные характеристики
1		$Ae^{-a \cdot t}$
	p + m	<i>A</i> = 2.86277516,
	l = 2.86277516,	<i>a</i> = 2.86277516.
	m = 2.86277516.	
2	<i>l</i>	$Ae^{-a \cdot t} \sin(w_a \cdot t)$
	$p^2 + k \cdot p + m$	A = 1,42562451,
	l = 1,43138758,	a = 0,71281226,
	k = 1,42562451,	$w_a = 1,00404249.$
	m = 1,51620263.	
3	l \cdot \cdot \cdot	$Ae^{-a \cdot t} +$
	$\left(p^2 + k \cdot p + m_1\right)$	$+e^{-b \cdot t} \cdot (B_1 \cos(w_1 \cdot t) + B_2 \sin(w_1 \cdot t))$
	1	A = 0.62645649
	$\frac{1}{(p+m_2)}$	a = 0.62645649,
	l = 0.71569379,	B1 = 0,19201349,
	k = 0,62645649,	b = 0,31322825,
	$m_1 = 1,41362877,$	$w_b = 1,02192749,$
	$m_2 = 0,62645649.$	$B_2 = -0,62645649.$
4	<i>l</i>	$e^{-a \cdot t} \cdot (A_1 \cos(w_a \cdot t) + A_2 \sin(w_a \cdot t)) +$
	$(p^2 + k_1 \cdot p + m_1)$	$+ e^{-b \cdot t} \cdot (B \cdot \cos(w_t \cdot t) + B \cdot \sin(w_t \cdot t))$
	1	A = 0.20062281
	$\frac{1}{(n^2+k_2\cdot n+m_2)}$	$A_1 = -0.20005381,$
	$(p + n_2 - p + m_2)$	a = 0, 1/555507,
	$k_1 = 0.35070614$	$W_a = 1,01023289,$
	k = 0.84667052	$A_2 = -0.31608/05,$
	$\kappa_2 = 0.04007932,$	$B_1 = 0,20063381,$
	$m_1 = 1,06351864,$	b = 0,42333976,
	$m_2 = 0,35641186.$	$w_b = 0,42094573,$
		$B_2 = 0,88129862.$

Таблица 9.4.4 – Продолжение

n	Передаточные функции	Импульсные характеристики
5	<i>l</i>	$Ae^{-a \cdot t} +$
	$(p^2 + k_1 \cdot p + m_1)$	$+e^{-b\cdot t}\cdot (B_1\cos(w_b\cdot t)+B_2\sin(w_b\cdot t))+$
	$\cdot \frac{1}{(n^2 + k_2 + n + m_2)}$.	$+e^{-c\cdot t}\cdot (C_1\cos(w_c\cdot t)+C_2\sin(w_c\cdot t))$
	$(p + \kappa_2 \cdot p + m_2)$	A = 0,41645953,
		a = 0.36231962,
	$(p+m_3)$	$B_1 = 0,169/8595,$
	l = 0,17892345,	b = 0,11196292,
	$k_1 = 0,22392584,$	$W_b = 1,01155/5/,$
	$k_2 = 0,58624547,$	$B_2 = -0, 1/1/9/04,$
	$m_1 = 1,03578401,$	$C_1 = -0,58624548,$
	$m_2 = 0,47676701,$	c = 0,29312274,
	$m_3 = 0,36231962.$	$w_c = 0,62517683,$
		$C_2 = 0,27486923.$
6	<u>l</u>	$e^{-a \cdot t} \cdot (A_1 \cos(w_a \cdot t) + A_2 \sin(w_a \cdot t)) +$
	$(p^2 + k_1 \cdot p + m_1)$	$+e^{-b\cdot t}\cdot (B_1\cos(w_b\cdot t)+B_2\sin(w_b\cdot t))+$
	$\cdot \frac{1}{2}$	$+e^{-c \cdot t} \cdot (C_1 \cos(w_c \cdot t) + C_2 \sin(w_c \cdot t))$
	$(p^2 + k_2 \cdot p + m_2)$	$A_1 = 0.14021635,$
	1	$a = 7.7650075 \cdot 10^{-2}$
	$\frac{1}{(p^2+k_2\cdot p+m_2)}$	$w_a = 1,00846084,$
	l = 0.08946172.	$A_2 = 9.34542847 \cdot 10^{-2}$
	$k_1 = 0.15530015,$	$B_1 = -0.27991305.$
	$k_2 = 0.4242879$,	b = 0.21214395.
	$k_2 = 0.57958805.$	$w_b = 0.73824458,$
	$m_1 = 1.02302281$	$B_2 = -0.38695715$,
	$m_2 = 0.59001011$	$C_1 = 0.1396967.$
	$m_2 = 0.15699741$	c = 0.28979403
	1113 -0,13077741.	$w_{c} = 0.27021627.$
		$C_2 = 0.67876463$
1		

Таблица 9.4.4 – Продолжение

n	Передаточные функции	Импульсные характеристики
7	<u>l</u>	$Ae^{-a \cdot t} +$
	$(p^2 + k_1 \cdot p + m_1)$	$+e^{-b\cdot t}\cdot (B_1\cos(w_b\cdot t)+B_2\sin(w_b\cdot t))+$
	1	$= \frac{-c \cdot t}{c \cdot t} \left(C \exp(\alpha t) + C \exp(\alpha t) \right)$
	$(p^2 + k_2 \cdot p + m_2)$	$+e \cdot (C_1 \cos(w_c \cdot t) + C_2 \sin(w_c \cdot t)) +$
	1	$+e^{-a\cdot t}\cdot (D_1\cos(w_d\cdot t)+D_2\sin(w_d\cdot t))$
	$\cdot \frac{1}{(p^2 + k_2 \cdot p + m_2)}$	A = 0,3196279,
	1	a = 0.2561/001, $B = 5.08068002.10^{-2}$
	$\cdot \frac{1}{(n+m_{\star})}$	$b_1 = -5,0000092.10^{-3},$ $b_2 = 5,700210.10^{-2},$
	$(p + m_4)$	b = 3,700319.10, $w_{1} = 1,00640854$
	l = 0.04475080, $k_1 = 0.11400638$	$B_{2} = 0.11324004$
	$k_1 = 0,11400050,$ $k_2 = 0.31943878$	$C_1 = 0.25598087$
	$k_2 = 0.46160241$	c = 0.15971939
	$m_1 = 1.01610751$	$w_a = 0.80707698.$
	$m_1 = 1,01010751,$ $m_2 = 0.67688354$	$C_2 = -0.25841559.$
	$m_2 = 0.07000000000000000000000000000000000$	$D_1 = -0.52471196.$
	$m_3 = 0.25507017$, $m_4 = 0.25617001$	d = 0.23080121.
	<i>m</i> ₄ = 0,23017001.	$w_d = 0,44789393,$
		$D_2 = 0,20842945.$
8	<i>l</i>	$e^{-a \cdot t} \cdot (A_1 \cos(w_a \cdot t) + A_2 \sin(w_a \cdot t)) +$
	$(p^2 + k_1 \cdot p + m_1)$	$+e^{-b\cdot t}\cdot (B_1\cos(w_h\cdot t)+B_2\sin(w_h\cdot t))+$
	$\cdot \frac{1}{2}$.	$+e^{-c \cdot t} \cdot (C_1 \cos(w_c \cdot t) + C_2 \sin(w_c \cdot t)) +$
	$(p^2 + k_2 \cdot p + m_2)$	$+e^{-d\cdot t}\cdot (D_1\cos(w_d\cdot t)+D_2\sin(w_d\cdot t))$
	· <u> </u>	$A_1 = -9.15973141 \cdot 10^{-2}.$
	$(p^2 + k_3 \cdot p + m_3)$	$a = 4.3620075 \cdot 10^{-2}$.
	1	$w_a = 1,00500207,$
	$(p^2 + k_4 \cdot p + m_4)$	$A_2 = -2,60600535 \cdot 10^{-2},$
	<i>l</i> = 0,02236543,	$B_1 = 0,22926192,$
	$k_1 = 0,08724015,$	b = 0,12421947,
	$k_2 = 0,24843894,$	$w_b = 0,85199961,$
	$k_3 = 0,37181515,$	$B_2 = 0,16934604,$
	$k_4 = 0,43858587,$	$C_1 = -0,23338441,$
	$m_1 = 1,01193187,$	c = 0,18590758,
	$m_2 = 0,74133382,$	$w_c = 0,56928794,$

	$m_3 = 0,35865039,$	$C_2 = -0,39788732,$
	$m_4 = 0,08805234.$	$D_1 = 9,57197959 \cdot 10^{-2},$
		d = 0,21929294,
		$w_d = 0,19990735,$
		$D_2 = 0,55278685.$
9		$Ae^{-a \cdot t} +$
	$(p^2 + k_1 p + m_1)$	$+e^{-b\cdot t}\cdot (B_1\cos(w_b\cdot t)+B_2\sin(w_b\cdot t))+$
	$\cdot \frac{1}{2}$	$+e^{-c\cdot t}\cdot (C_1\cos(w_c\cdot t)+C_2\sin(w_c\cdot t))+$
	$(p^2 + k_2 p + m_2)$	$+e^{-d\cdot t}\cdot (D_1\cos(w_d\cdot t)+D_2\sin(w_d\cdot t))+$
	$\cdot \frac{1}{(p^2 + k_2 p + m_2)}$	$+e^{-f\cdot t}\cdot (F_1\cos(w_f\cdot t)+F_2\sin(w_f\cdot t))$
	$(p + n_3p + n_3)$	A = 0,26056173,
	$\cdot \frac{1}{2}$	a = 0,19840529,
	$(p^2 + k_4 p + m_4)$	$B_1 = 1,1109277 \cdot 10^{-2},$
	1	$b = 3,4452715 \cdot 10^{-2},$
	$\frac{(p+m_5)}{(p+m_5)}$	$w_b = 1,00400397,$
	l = 0.01118272,	$B_2 = -7,45195335 \cdot 10^{-2},$
	$k_1 = 0,06890543,$	$C_1 = -0,11117692,$
	$k_2 = 0,19840529,$	$c = 9,9202645 \cdot 10^{-2},$
	$k_3 = 0.30397454,$	$w_c = 0,88290628,$
	$k_A = 0.37287997$,	$C_2 = 0,19997297,$
	$m_1 = 1.00921097.$	$D_1 = 0,29961447,$
	$m_2 = 0.78936466$	d = 0,15198727,
	$m_2 = 0.45254057$	$w_d = 0,65531705,$
	$m_3 = 0, +525 + 057,$ $m_2 = 0, 15634244$	$D_2 = -0.23489685,$
	$m_4 = 0,1303+2++,$ $m_5 = 0.10840520$	$F_1 = -0.46010855,$
	$m_5 = 0,17040527.$	f = 0,18643999,
		$w_f = 0,34868693,$
		$E_2 = 0.15199281$
		12 - 0, 13177201.

Таблица 9.4.5 - Передаточные функции и импульсные характеристики фильтра нижних частот Чебышева с неравномерностью передачи в полосе пропускания 1 дБ

	пропускания і дв		
n	Передаточные функции	Импульсные характеристики	
1		$Ae^{-a \cdot t}$	
	p+m	<i>A</i> = 6,55220322	
	l = 1,96522673,	<i>a</i> = 6,55220322	
	m = 1,96522673.		
2	<i>l</i>	$Ae^{-a \cdot t} \sin(w_a \cdot t)$	
	$p^2 + k \cdot p + m$	A = 1.09773433.	
	l = 0.98261337,	a = 0,54886717,	
	k = 1,09773433,	$w_a = 0,89512857.$	
	m = 1,10251033.		
3	l l	$Ae^{-a \cdot t} +$	
	$\left(p^2 + k \cdot p + m_1\right)$	$-bt$ (\mathbf{p} (\mathbf{r})) \mathbf{p} (\mathbf{r}))	
	1	$+e^{-(B_1\cos(w_b \cdot t) + B_2\sin(w_b \cdot t))}$	
	$\cdot \frac{1}{(n+m_{2})}$	A = 0,4941706,	
	$(p + m_2)$	a = 0.4941700, B = 0.4041706	
	l = 0,49130668,	$B_1 = -0.4941700,$	
	k = 0,4941/060,	b = 0,2470853,	
	$m_1 = 0.99420459,$	$w_b = 0,96599868,$	
	$m_2 = 0,4941706.$	$B_2 = 0,15640007.$	
4	\underline{l} .	$e^{-a \cdot t} \cdot (A_1 \cos(w_a \cdot t) + A_2 \sin(w_a \cdot t)) +$	
	$(p^2 + k_1 \cdot p + m_1)$	$a^{-b \cdot t}$ (P $a \circ s(u - t) + P = sin(u - t))$	
	1	$+e^{-1}(D_1\cos(w_b \cdot i) + D_2\sin(w_b \cdot i))$	
	$\cdot \frac{1}{(n^2 + k_2 \cdot n + m_2)}$	$A_1 = -0.13253023,$	
	$(p + k_2 - p + k_2)$ 1 - 0.24565334	a = 0,139536,	
	$k_{-} = 0.24303334,$ $k_{-} = 0.27007100$	$W_a = 0.98557917,$	
	$k_1 = 0,27307133,$	$A_2 = -0,26026669,$	
	$k_2 = 0.6/3/3939,$	$B_1 = 0,13253023,$	
	$m_1 = 0,98650488,$	b = 0,3368697,	
	$m_2 = 0,27939809.$	$w_b = 0,40732898,$	
		$B_2 = 0,69254468.$	

Таблица 9.4.5 – Продолжение

n	Передаточные функции	Импульсные характеристики
5	<i>l</i>	$Ae^{-a \cdot t} +$
	$(p^2 + k_1 \cdot p + m_1)$	$+e^{-b\cdot t}\cdot (B_1\cos(w_b\cdot t)+B_2\sin(w_b\cdot t))+$
	$\cdot \frac{1}{(n^2 + k - n + m)}$	$+e^{-c\cdot t}\cdot (C_1\cos(w_c\cdot t)+C_2\sin(w_c\cdot t))$
	$(p + \kappa_2 \cdot p + m_2)$	<i>A</i> =0,31888466,
		a = 0,28949334,
	$(p + m_3)$	$B_1 = 0,1495254,$
	l = 0,12282667,	$b = 8,945836 \cdot 10^{-2},$
	$k_1 = 0,17891672,$	$w_b = 0.99010/11,$
	$k_2 = 0,46841007,$	$B_2 = -0,11485293,$
	$m_1 = 0,98831489,$	$C_1 = -0,46841006,$
	$m_2 = 0,4292979,$	c = 0,23420504,
	$m_3 = 0,28949334.$	$w_c = 0,61191985,$
		$C_2 = 0,17927837.$
6		$e^{-a \cdot t} \cdot (A_1 \cos(w_a \cdot t) + A_2 \sin(w_a \cdot t)) +$
	$(p^2 + k_1 \cdot p + m_1)$	$+e^{-b\cdot t}\cdot (B_1\cos(w_b\cdot t)+B_2\sin(w_b\cdot t))+$
	$\cdot \frac{1}{2}$	$+e^{-c \cdot t} \cdot (C_1 \cos(w_c \cdot t) + C_2 \sin(w_c \cdot t))$
	$(p^2 + k_2 \cdot p + m_2)$	$A_1 = 9,53387209 \cdot 10^{-2},$
	1	$a = 6.2181025 \cdot 10^{-2}$,
	$(p^2 + k_3 \cdot p + m_3)$	$w_a = 0,9934112,$
	l = 0.06141334,	$A_2 = 9,06624149 \cdot 10^{-2},$
	$k_1 = 0,12436205,$	$B_1 = -0.18258041,$
	$k_2 = 0,33976343,$	b = 0.16988172,
	$k_3 = 0.46412548,$	$w_h = 0,72722748,$
	$m_1 = 0.9907323,$	$B_2 = -0.31996899,$
	$m_2 = 0.5577196$,	$\overline{C_1} = 8,72416846 \cdot 10^{-2},$
	$m_2 = 0.12470689$	c = 0.23206274,
		$w_c = 0,26618372,$
		$C_2 = 0,51761961.$

Таблица 9.4.5 – Продолжение

n	Передаточные функции	Импульсные характеристики
7	<i>l</i>	$Ae^{-a \cdot t} +$
	$(p^2 + k_1 \cdot p + m_1)$	$+e^{-b\cdot t}\cdot (B_1\cos(w_b\cdot t)+B_2\sin(w_b\cdot t))+$
		$+e^{-c \cdot t} \cdot (C_1 \cos(w_2 \cdot t) + C_2 \sin(w_2 \cdot t)) +$
	$(p^2 + k_2 \cdot p + m_2)$	$-\frac{d}{dt} \left(D \left(\left(\frac{1}{c} \right) \right) + \frac{1}{c^2} \right) = \frac{1}{c^2} \left(\frac{1}{c^2} \right) + \frac{1}$
	1	$+e^{-\alpha \cdot \cdot} \cdot (D_1 \cos(w_d \cdot t) + D_2 \sin(w_d \cdot t))$
	$(p^2 + k_3 \cdot p + m_3)$	A = 0,23903041, a = 0.2054143
	1	$B_1 = -5.68211123 \cdot 10^{-2}$
	$\cdot \frac{1}{(n+m_A)}$	$b_1 = 5,00211125 10^{-2}$
	l = 0.03070667	$w_b = 0.99528396,$
	$k_1 = 0.09141796,$	$B_2 = 7,85455929 \cdot 10^{-2},$
	$k_2 = 0.25614744,$	$C_1 = 0.22253136$,
	$k_3 = 0.37014377$,	c = 0.12807372,
	$m_1 = 0.99267947,$	$w_c = 0,79815576,$
	$m_2 = 0.6534555,$	$C_2 = -0,16968939,$
	$m_3 = 0.23045013$,	$D_1 = -0.40474066,$
	$m_A = 0,2054143.$	d = 0,18507189,
	T <i>i</i>	$w_d = 0,44294303,$
		$D_2 = 0,12949912.$
8	$\frac{l}{2}$.	$e^{-a \cdot t} \cdot (A_1 \cos(w_a \cdot t) + A_2 \sin(w_a \cdot t)) +$
	$(p^2 + k_1 \cdot p + m_1)$	$+e^{-b\cdot t}\cdot (B_1\cos(w_b\cdot t)+B_2\sin(w_b\cdot t))+$
	$\cdot \frac{1}{\sqrt{2}}$	$+e^{-c\cdot t}\cdot (C_1\cos(w_c\cdot t)+C_2\sin(w_c\cdot t))+$
	$(p^- + k_2 \cdot p + m_2)$	$+e^{-d\cdot t}\cdot (D_1\cos(w_d\cdot t)+D_2\sin(w_d\cdot t))$
	·	$A_1 = -6.4943036 \cdot 10^{-2}.$
	$(p^2 + k_3 \cdot p + m_3)$	$a = 3.5008235 \cdot 10^{-2}$.
	1	$w_a = 0,99645129,$
	$(p^2 + k_4 \cdot p + m_4)$	$A_2 = -3,62292965 \cdot 10^{-2},$
	<i>l</i> = 0,01535333,	$B_1 = 0,15213967,$
	$k_1 = 0,07001647,$	$b = 9,9695015 \cdot 10^{-2},$
	$k_2 = 0,19939003,$	$w_b = 0,8447506,$
	$k_3 = 0,29840826$,	$B_2 = 0,15740467,$
	$k_4 = 0,35199655,$	$C_1 = -0,14517706,$
	$m_1 = 0,99414074,$	c = 0,14920413,

Передаточные функции	Импульсные характеристики
$m_2 = 0,72354268,$	$w_c = 0,56444431,$
$m_3 = 0,34085925,$	$C_2 = -0,31385598,$
$m_4 = 0,0702612.$	$D_1 = 5,79804217 \cdot 10^{-2},$
	d = 0,17599828,
	$w_d = 0,19820648,$
	$D_2 = 0,41232117.$
	$Ae^{-a \cdot t} +$
$(p^2 + k_1 p + m_1)$	$+e^{-b\cdot t}\cdot (B_1\cos(w_b\cdot t)+B_2\sin(w_b\cdot t))+$
$\cdot \frac{1}{2}$	$+e^{-c\cdot t}\cdot (C_1\cos(w_c\cdot t)+C_2\sin(w_c\cdot t))+$
$(p^2 + k_2 p + m_2)$	$+e^{-d\cdot t}\cdot (D_1\cos(w_d\cdot t)+D_2\sin(w_d\cdot t))+$
$\cdot \frac{1}{(p^2 + k_2 p + m_2)}$	$+e^{-f\cdot t}\cdot (F_1\cos(w_f\cdot t)+F_2\sin(w_f\cdot t))$
(p · ···3p · ···3)	<i>A</i> =0,19177398,
$\cdot \frac{1}{2}$	<i>a</i> =0,15933047,
$(p^2 + k_4 p + m_4)$	$B_1 = 2,31559283 \cdot 10^{-2},$
1	$b = 2,7667445 \cdot 10^{-2},$
$\frac{1}{(p+m_5)}$	$w_b = 0,99722967,$
l = 0,00767667,	$B_2 = -5,40870744 \cdot 10^{-2},$
$k_1 = 0,05533489,$	$C_1 = -0,11284795,$
$k_2 = 0,15933047,$	$c = 7,9665235 \cdot 10^{-2},$
$k_3 = 0.24410845$,	$w_c = 0,87694906,$
$k_A = 0,29944334,$	$C_2 = 0,13443568,$
$m_1 = 0.99523251$.	$D_1 = 0,2438441,$
$m_2 = 0.7753862$	d = 0,12205423,
$m_2 = 0.43856211$	$w_d = 0,65089544,$
$m_{4} = 0.14236398$	$D_2 = -0,14684072,$
$m_4 = 0.15933047$	$F_1 = -0.34592605,$
115 - 0,137330+7.	f = 0,14972167,
	$w_f = 0,34633423,$
	$F_2 = 9.18118002 \cdot 10^{-2}$.
	Передаточные функции $m_2 = 0.72354268,$ $m_3 = 0.34085925,$ $m_4 = 0.0702612.$ $(p^2 + k_1p + m_1)$ $\cdot \frac{1}{(p^2 + k_2p + m_2)}$ $\cdot \frac{1}{(p^2 + k_3p + m_3)}$ $\cdot \frac{1}{(p^2 + k_4p + m_4)}$ $\cdot \frac{1}{(p + m_5)}$ l = 0.00767667, $k_1 = 0.05533489,$ $k_2 = 0.15933047,$ $k_3 = 0.24410845,$ $k_4 = 0.29944334,$ $m_1 = 0.99523251,$ $m_2 = 0.7753862,$ $m_3 = 0.43856211,$ $m_4 = 0.14236398,$ $m_5 = 0.15933047.$

Таблица 9.4.6 - Передаточные функции и импульсные характеристики фильтра нижних частот Чебышева с неравномерностью передачи в полосе пропускания 1.5 дБ

	пропускания 1,5 дв		
n	Передаточные функции	Импульсные характеристики	
1		$Ae^{-a \cdot t}$	
	p + m	A = 1,55692704,	
	l = 1,55692704,	a = 1,55692704.	
	m = 1,55692704.		
2	<i>l</i>	$Ae^{-a \cdot t} \sin(w_a \cdot t)$	
	$p^2 + k \cdot p + m$	<i>A</i> =0,92217745,	
	l = 0,77846352,	a = 0,46108873,	
	k = 0,92217746,	$w_a = 0,84415805.$	
	m = 0,92520563.		
3	l	$Ae^{-a\cdot t}$ +	
	$\left(p^2 + k \cdot p + m_1\right)$	$+e^{-b \cdot t} \cdot (B_1 \cos(w_1 \cdot t) + B_2 \sin(w_1 \cdot t))$	
	1	4 - 0.42011237	
	$\frac{1}{(p+m_2)}$	a = 0.42011237, a = 0.42011237.	
	l = 0.38923176,	$B_1 = 9,394537 \cdot 10^{-2},$	
	k = 0,42011237,	b = 0,21005619,	
	$m_1 = 0,9264944,$	$w_b = 0,93934594,$	
	$m_2 = 0,42011237.$	$B_2 = -0,42011237.$	
4	<i>l</i>	$e^{-a \cdot t} \cdot (A_1 \cos(w_a \cdot t) + A_2 \sin(w_a \cdot t)) +$	
	$(p^2 + k_1 \cdot p + m_1)$	$+e^{-b \cdot t}$, (B, $\cos(w_t, t) + B_0 \sin(w_t, t)$)	
	1	$A = 0.86592922.10^{-2}$	
	$\frac{1}{(n^2+k_2\cdot n+m_2)}$	$A_1 = -9,00302022^{-10}$,	
	$(p + n_2 - p + m_2)$	a = 0,1191307, a = 0.96761105	
	$k_1 = 0.2382614$	$W_a = 0.90701103,$	
	$k_1 = 0.2502014,$ $k_2 = 0.5752139$	$A_2 = -0.220114/0,$	
	$k_2 = 0.5752135,$	$B_1 = 9,86582821 \cdot 10^{-2},$	
	$m_1 = 0.93040327,$	b = 0.28760695,	
	$m_2 = 0,24335649.$	$w_b = 0,400'/9'/62,$	
		$B_2 = 0,58736056.$	

Таблица 9.4.6 – Продолжение

n	Передаточные функции	Импульсные характеристики
5	<u>l</u>	$Ae^{-a \cdot t} +$
	$(p^2 + k_1 \cdot p + m_1)$	$+e^{-b\cdot t}\cdot (B_1\cos(w_b\cdot t)+B_2\sin(w_b\cdot t))+$
	$\cdot \frac{1}{\sqrt{2} + 1}$	$+e^{-c\cdot t}\cdot (C_1\cos(w_c\cdot t)+C_2\sin(w_c\cdot t))$
	$(p + \kappa_2 \cdot p + m_2)$	<i>A</i> = 0,26662811,
		a = 0,2476503,
	$(p + m_3)$	$B_1 = 0,13407849,$
	l = 0,09730794,	$b = 7,652815 \cdot 10^{-2},$
	$k_1 = 0,1530563,$	$w_b = 0.97978702,$
	$k_2 = 0,4007066,$	$B_2 = -8,60130475 \cdot 10^{-2},$
	$m_1 = 0.96583917,$	$C_1 = -0,40070659,$
	$m_2 = 0.40682217$,	c = 0,2003533,
	$m_2 = 0.2476503.$	$w_c = 0,60554168,$
		$C_2 = 0,13258029.$
6	l .	$e^{-a \cdot t} \cdot (A_1 \cos(w_a \cdot t) + A_2 \sin(w_a \cdot t)) +$
	$(p^2 + k_1 \cdot p + m_1)$	$+e^{-b\cdot t}\cdot (B_1\cos(w_b\cdot t)+B_2\sin(w_b\cdot t))+$
	· <u> </u>	$+e^{-c \cdot t} \cdot (C_1 \cos(w_0 \cdot t) + C_2 \sin(w_0 \cdot t))$
	$(p^2 + k_2 \cdot p + m_2)$	$4_1 = 7 \ 1993406 \cdot 10^{-2}$
	1	$a = 5.325112 \cdot 10^{-2}$
	$\frac{1}{(p^2+k_2\cdot p+m_2)}$	$w_a = 0.98615854.$
	l = 0.04865399	$A_2 = 8.47026277 \cdot 10^{-2}$.
	$k_1 = 0,10650224$,	$B_1 = -0.1350243.$
	$k_2 = 0.29096953,$	b = 0.14548477.
	$k_2 = 0.39747177.$	$w_b = 0.72191815$,
	$m_1 = 0.97534434.$	$B_2 = -0.27834094$,
	$m_2 = 0.54233163$	$C_1 = 6.30308893 \cdot 10^{-2}$
	$m_2 = 0.10931893$	c = 0.19873589.
	<i>m</i> ₃ = 0,10,510,51	$w_c = 0.26424038,$
		$C_2 = 0.43189995$
1		

Таблица 9.4.6 – Продолжение

n	Передаточные функции	Импульсные характеристики
7	<i>l</i>	$Ae^{-a \cdot t} +$
	$(p^2 + k_1 \cdot p + m_1)$	$+e^{-b\cdot t}\cdot (B_1\cos(w_b\cdot t)+B_2\sin(w_b\cdot t))+$
	1	$+ a^{-c \cdot t} \left(C \cos(w \cdot t) + C \sin(w \cdot t) \right) + c$
	$(p^2 + k_2 \cdot p + m_2)$	$+e^{-(C_1\cos(w_c\cdot t)+C_2\sin(w_c\cdot t))+}$
	1	$+e^{-a\cdot t}\cdot (D_1\cos(w_d\cdot t)+D_2\sin(w_d\cdot t))$
	$\frac{1}{(n^2+k_2\cdot n+m_2)}$	A = 0,19746603,
	$(p + n_3 + p + m_3)$	a = 0,1760297, $B = 5,58020486,10^{-2}$
	$\cdot \frac{1}{(m+m)}$	$B_1 = -5,38939480.10^{-7},$
	$(p + m_4)$	$b = 3.9170295 \cdot 10^{-2}$, $w_{1} = 0.98991746$
	l = 0.02432698, $l_{r_{1}} = 0.07824050$	$W_b = 0,30331740,$ $P = 5,08828177.10^{-2}$
	$k_1 = 0.07834039,$ $k_2 = 0.21050545$	$D_2 = -3,3882817710$, C = 0.10806004
	$k_2 = 0,21930343,$	$C_1 = 0,19800904,$
	$k_3 = 0.31/19430,$	c = 0,10975275, w = 0.79385216
	$m_1 = 0.98147089,$	$W_c = 0,77505210,$ $C_c = 0.12500445$
	$m_2 = 0.64224692,$	$C_2 = -0.123904443,$ $D_1 = 0.22064112$
	$m_3 = 0,21924156,$	$D_{\rm I} = -0.53904113,$
	$m_4 = 0,1760297.$	u = 0,13839728, $w_{t} = 0.44055472$
		$W_d = 0,44033472,$ $D_2 = 9.33219723 \cdot 10^{-2}.$
8	l	$a^{-a \cdot t}$, $(A \cdot \cos(w \cdot t) + A \cdot \sin(w \cdot t)) + b^{-a \cdot t}$
	$\frac{1}{(p^2+k_1\cdot p+m_1)}$	$c = (n \cos(w_a + t) + n \sin(w_a + t)) + \frac{-b \cdot t}{2} \sin(w_a + t)) + \frac{-b \cdot t}{2} \sin(w_a + t) + \frac{b}{2} \sin(w_a + t)) + \frac{-b \cdot t}{2} \sin(w_a + t) + \frac{b}{2} \sin(w_a + t)) + \frac{b}{2} \sin(w_a + t) + \frac{b}{2} \sin(w_a + t)) + \frac{b}{2} \sin(w_a + t) + \frac{b}{2} \sin(w_a + t)) + \frac{b}{2} \sin(w_a + t) + \frac{b}{2} \sin(w_a + t)) + \frac{b}{2} \sin(w_a + t) + \frac{b}{2} \sin(w_a + t)) + \frac{b}{2} \sin(w_a + t) + \frac{b}{2} \sin(w_a + t)) + \frac{b}{2} \sin(w_a + t) + \frac{b}{2} \sin(w_a + t) + \frac{b}{2} \sin(w_a + t)) + \frac{b}{2} \sin(w_a + t) + \frac{b}{2} \sin(w_a + t) + \frac{b}{2} \sin(w_a + t) + \frac{b}{2} \sin(w_a + t)) + \frac{b}{2} \sin(w_a + t) + \frac{b}{2} \sin$
	1	$+e \cdot (B_1 \cos(w_b \cdot t) + B_2 \sin(w_b \cdot t)) +$
	$\cdot \frac{1}{(n^2 + k_2 + n + m_2)}$	$+e^{-c \cdot t} \cdot (C_1 \cos(w_c \cdot t) + C_2 \sin(w_c \cdot t)) +$
	$(p + \kappa_2 \cdot p + m_2)$	$+e^{-d\cdot t}\cdot (D_1\cos(w_d\cdot t)+D_2\sin(w_d\cdot t))$
	$\cdot \frac{1}{\sqrt{2}}$	$A_1 = -5,00264743 \cdot 10^{-2},$
	$(p^2 + k_3 \cdot p + m_3)$	$a = 3,0013065 \cdot 10^{-2},$
		$w_a = 0,99232369,$
	$(p^2 + k_4 \cdot p + m_4)$	$A_2 = -3,8025831 \cdot 10^{-2},$
	<i>l</i> = 0,01216349,	$B_1 = 0,11346133,$
	$k_1 = 0,06002613,$	$b = 8,5469975 \cdot 10^{-2},$
	$k_2 = 0,17093995,$	$w_b = 0,8412514,$
	$k_3 = 0,25582972,$	$B_2 = 0,14413953,$
	$k_4 = 0,30177173,$	$C_1 = -0,10468244,$
	$m_1 = 0,98560709,$	c = 0,12791486,
	$m_2 = 0,71500904,$	

n	Передаточные функции	Импульсные характеристики
	$m_3 = 0,33232561,$	$w_c = 0,56210622,$
	$m_4 = 0,06172756.$	$C_2 = -0,26621663,$
		$D_1 = 4,12475867 \cdot 10^{-2},$
		d = 0,15088587,
		$w_d = 0,19738545,$
		$D_2 = 0,34018567.$
9	!	$Ae^{-a \cdot t} +$
	$(p^2 + k_1 p + m_1)$	$+e^{-b\cdot t}\cdot (B_1\cos(w_b\cdot t)+B_2\sin(w_b\cdot t))+$
	$\cdot \frac{1}{\sqrt{2}}$	$+e^{-c\cdot t}\cdot (C_1\cos(w_c\cdot t)+C_2\sin(w_c\cdot t))+$
	$(p^2 + k_2 p + m_2)$	$+e^{-d\cdot t}\cdot (D_1\cos(w_d\cdot t)+D_2\sin(w_d\cdot t))+$
	$\cdot \frac{1}{(p^2 + k_2 p + m_2)}$	$+e^{-f\cdot t}\cdot (F_1\cos(w_f\cdot t)+F_2\sin(w_f\cdot t))$
	1	<i>A</i> =0,15717336,
	$\cdot \frac{1}{\sqrt{2}}$	<i>a</i> =0,13663622,
	$(p^2 + k_4 p + m_4)$	$B_1 = 2,64172935 \cdot 10^{-2},$
		$b = 2,372663 \cdot 10^{-2},$
	$(p + m_5)$	$w_b = 0,99395816,$
	l = 0,00608175,	$B_2 = -4,21166349 \cdot 10^{-2},$
	$k_1 = 0,04745326,$	$C_1 = -0,10690936,$
	$k_2 = 0,13663622,$	$c = 6,831811 \cdot 10^{-2},$
	$k_3 = 0,20933884,$	$w_c = 0,87407213,$
	$k_4 = 0,2567921,$	$C_2 = 0,10088198,$
	$m_1 = 0,98851577,$	$D_1 = 0,20983791,$
	$m_2 = 0.76866946,$	d = 0,10466942,
	$m_3 = 0.43184537$,	$w_d = 0,64876011,$
	$m_A = 0,13564724,$	$D_2 = -0,10613752,$
	$m_5 = 0.13663622.$	$F_1 = -0,2865192,$
		f = 0,12839605,
		$w_f = 0,34519805,$
		$F_2 = 6,52264278 \cdot 10^{-2}.$

Таблица 9.4.7 - Передаточные функции и импульсные характеристики фильтра нижних частот Чебышева с неравномерностью передачи в полосе пропускания 2 дБ

-	пропускания 2 дв		
n	Передаточные функции	Импульсные характеристики	
1	l	$Ae^{-a \cdot t}$	
	$\overline{p+m}$	A = 1,30756027,	
	l = 1.30756027,	a = 1,30756027.	
	m = 1,30756027.		
2	<i>l</i>	$Ae^{-a \cdot t} \sin(w_a \cdot t)$	
	$p^2 + k \cdot p + m$	<i>A</i> = 0,80381643,	
	l = 0,65378014,	<i>a</i> = 0,40190822,	
	k = 0,80381643,	$w_a = 0.81334508.$	
	m = 0.82306043.		
3	l	$Ae^{-a \cdot t} +$	
	$\left(p^2 + k \cdot p + m_1\right)$	$-b \cdot t \left[B \cos(a t - b) + B \sin(a t - b) \right]$	
	1	$+e [B_1 \cos(w_b \cdot i) + B_2 \sin(w_b \cdot i)]$	
	$\cdot \frac{1}{(p+m_{\tau})}$	A = 0.36891079,	
	$(p + m_2)$	a = 0,50891079, $B = 7.37182017.10^{-2}$	
	l = 0.32089007, k = 0.36801070	$D_1 = 7,3718201710$,	
	k = 0.30891079, $m_{\star} = 0.88600517$	b = 0,1844554,	
	$m_1 = 0,88009317,$	$W_b = 0.92307712,$	
	$m_2 = 0,368910/9.$	$B_2 = -0.36891079.$	
4	$\left \frac{l}{l} \right $	$e^{-a \cdot t} \left[A_1 \cos(w_a \cdot t) + A_2 \sin(w_a \cdot t) \right] +$	
	$(p^2 + k_1 \cdot p + m_1)$	$+e^{-b \cdot t} [B_1 \cos(w_k \cdot t) + B_2 \sin(w_k \cdot t)]$	
	1	$A_{-} = 7.74001383.10^{-2}$	
	$\frac{1}{(n^2+k_2\cdot n+m_2)}$	$A_1 = -7,74501385 10$,	
	$(p + n_2 - p + m_2)$	a = 0,10488/25,	
	$k_1 = 0.2097745$	$W_a = 0,93793290,$	
	$k_1 = 0.50644045$	$A_2 = -0.20129003,$	
	$k_2 = 0,50044045,$	$B_1 = 7,74901383 \cdot 10^{-2},$	
	$m_1 = 0.9280/521,$	b = 0,25322023,	
	$m_2 = 0,22156843.$	$w_b = 0,39679711,$	
		$B_2 = 0,51492493.$	

Таблица 9.4.7 – Продолжение

n	Передаточные функции	Импульсные характеристики
5	<i>l</i>	$Ae^{-a \cdot t} +$
	$(p^2 + k_1 \cdot p + m_1)$	$+e^{-b\cdot t} \left[B_1 \cos(w_b \cdot t) + B_2 \sin(w_b \cdot t) \right] +$
	$\left \cdot \frac{1}{(n^2 + k_2 \cdot n + m_2)} \right $	$+ e^{-c \cdot t} \left[C_1 \cos(w_c \cdot t) + C_2 \sin(w_c \cdot t) \right]$
	$(p + k_2 - p + k_2)$	A = 0,23156136,
	$\cdot \frac{1}{1}$	a = 0,21830832,
	$(p + m_3)$	$B_1 = 0,12166893,$
	<i>l</i> = 0,08172252,	$b = 6,746098 \cdot 10^{-2},$
	$k_1 = 0,13492196,$	$w_b = 0.97345572,$
	$k_2 = 0,35323028,$	$B_2 = -6,78119802 \cdot 10^{-2},$
	$m_1 = 0,95216702,$	$C_1 = -0,3532303,$
	$m_2 = 0,39315003,$	c = 0,17661514,
	$m_3 = 0,21830832.$	$w_c = 0,60162872,$
		$C_2 = 0,10369488.$
6	$-\frac{l}{2}$.	$e^{-a \cdot t} \left[A_1 \cos(w_a \cdot t) + A_2 \sin(w_a \cdot t) \right] +$
	$(p^2 + k_1 \cdot p + m_1)$	$+e^{-b\cdot t} \left[B_1 \cos(w_b \cdot t) + B_2 \sin(w_b \cdot t) \right] +$
	$\cdot \frac{1}{2}$	$+e^{-c \cdot t} [C_1 \cos(w_c \cdot t) + C_2 \sin(w_c \cdot t)]$
	$(p^2 + k_2 \cdot p + m_2)$	$A_1 = 5.70514006 \cdot 10^{-2}.$
	1	$a = 4.6973215 \cdot 10^{-2}$
	$(p^2 + k_3 \cdot p + m_3)$	$w_a = 0.98170517$,
	l = 0.04086126,	$A_2 = 7.87054358 \cdot 10^{-2}$.
	$k_1 = 0,09394643,$	$B_1 = -0.10560683.$
	$k_2 = 0,25666642,$	b = 0.12833321.
	$k_3 = 0.35061285,$	$w_b = 0.71865807$,
	$m_1 = 0.96595153,$	$B_2 = -0.24791414$,
	$m_2 = 0,53293883,$	$C_1 = 4,8555433 \cdot 10^{-2},$
	$m_3 = 0.09992612.$	c = 0.17530643.
		$w_c = 0.2630471,$
		$C_2 = 0,37460617.$

Таблица 9.4.7 – Продолжение

n	Передаточные функции	Импульсные характеристики
7	<i>l</i>	$Ae^{-a \cdot t} +$
	$(p^2 + k_1 \cdot p + m_1)$	$+e^{-b \cdot t} [B_1 \cos(w_t \cdot t) + B_2 \sin(w_t \cdot t)] +$
	1	$= Ct[z] = Cos(w_b - t) + D_2 sin(w_b - t)] + Ct[z]$
	$(p^2 + k_2 \cdot p + m_2)$	$+e^{-Ct}[C_1\cos(w_c\cdot t)+C_2\sin(w_c\cdot t)]+$
		$+e^{-d\cdot t} \left[D_1 \cos(w_d \cdot t) + D_2 \sin(w_d \cdot t) \right]$
	$\frac{1}{(n^2+k_2+n+m_2)}$	<i>A</i> = 0,17019195,
	$(p + \kappa_3 \cdot p + m_3)$	a = 0,1553398,
	$\cdot \frac{1}{1}$	$B_1 = -5,34103786 \cdot 10^{-2},$
	$(p+m_4)$	$b = 3,4566355 \cdot 10^{-2},$
	<i>l</i> =0,02043063,	$w_b = 0.98662052,$
	$k_1 = 0,06913271,$	$B_2 = 4,77336413 \cdot 10^{-2},$
	$k_2 = 0,19370556,$	$C_1 = 0,17885341,$
	$k_3 = 0,27991264,$	$c = 9,685278 \cdot 10^{-2},$
	$m_1 = 0,97461489,$	$w_c = 0,79120823,$
	$m_2 = 0,63539092,$	$C_2 = -9,86751993 \cdot 10^{-2},$
	$m_3 = 0,21238555,$	$D_1 = -0,29563498,$
	$m_4 = 0,1553398.$	d = 0,13995632,
		$w_d = 0,43908744,$
		$D_2 = 7,17749673 \cdot 10^{-2}.$
8	<u>l</u>	$e^{-a \cdot t} \left[A_1 \cos(w_a \cdot t) + A_2 \sin(w_a \cdot t) \right] +$
	$(p^2 + k_1 \cdot p + m_1)$	$+e^{-b\cdot t}[B_1\cos(w_b\cdot t)+B_2\sin(w_b\cdot t)]+$
	$\cdot \frac{1}{\sqrt{2} + L}$	$+e^{-c \cdot t} \left[C_1 \cos(w_c \cdot t) + C_2 \sin(w_c \cdot t) \right] +$
	$(p^2 + k_2 \cdot p + m_2)$	$+e^{-d\cdot t}[D_1\cos(w_d\cdot t)+D_2\sin(w_d\cdot t)]$
	$\cdot \frac{1}{2}$	$A_1 = -4,0127719 \cdot 10^{-2},$
	$(p^2 + k_3 \cdot p + m_3)$	$a = 2,649238 \cdot 10^{-2},$
		$w_a = 0,98978701,$
	$(p^2 + k_4 \cdot p + m_4)$	$A_2 = -3,75407339 \cdot 10^{-2},$
	l = 0,01021532,	$B_1 = 8,920342 \cdot 10^{-2},$
	$k_1 = 0,05298476,$	$b = 7,5443915 \cdot 10^{-2},$
	$k_2 = 0,15088783,$	$w_b = 0.83910091,$
	$k_3 = 0,22581959,$	$B_2 = 0,13230753,$
	$k_4 = 0,26637237,$	$C_1 = -8,05423495 \cdot 10^{-2},$
	$m_1 = 0,98038017,$	<i>c</i> =0,1129098,
	$m_2 = 0,70978212,$	$w_c = 0,5606693,$

	$m_3 = 0,32709869,$	$C_2 = -0,23325226,$
	$m_4 = 0.05650064.$	$D_1 = 3,14666484 \cdot 10^{-2},$
		d = 0,13318619,
		$w_d = 0,19688088,$
		$D_2 = 0,29296408.$
9	!	$Ae^{-a \cdot t} +$
	$(p^2 + k_1 p + m_1)$	$+e^{-b\cdot t}[B_1\cos(w_b\cdot t)+B_2\sin(w_b\cdot t)]+$
	$\cdot \frac{1}{(x^2 + b + x + x)}$	$+e^{-c \cdot t} \left[C_1 \cos(w_c \cdot t) + C_2 \sin(w_c \cdot t)\right] +$
	$\frac{(p + \kappa_2 p + m_2)}{1}$	$+e^{-d\cdot t}[D_1\cos(w_d\cdot t)+D_2\sin(w_d\cdot t)]+$
	$\cdot \frac{1}{(p^2 + k_3 p + m_3)} \cdot$	$+e^{-f\cdot t} \left[F_1 \cos(w_f \cdot t) + F_2 \sin(w_f \cdot t)\right]$
	1	<i>A</i> =0,13479375,
	$\frac{1}{(n^2+k+n+m+1)}$	a = 0,1206298,
	$(p + k_4 p + m_4)$	$B_1 = 2,7091265 \cdot 10^{-2},$
	· <u> </u>	$b = 2,0947145 \cdot 10^{-2},$
	$(p+m_5)$	$w_b = 0,99194711,$
	<i>l</i> = 0,00510766,	$B_2 = -3,40029842 \cdot 10^{-2},$
	$k_1 = 0,04189429,$	$C_1 = -9,99967354 \cdot 10^{-2},$
	$m_1 = 0,98439786,$	$c = 6,03149 \cdot 10^{-2},$
	$k_2 = 0,1206298,$	$w_c = 0,87230365,$
	$m_2 = 0,76455155,$	$C_2 = 7,96149691 \cdot 10^{-2},$
	$k_3 = 0,18481557,$	$D_1 = 0,18545482,$
	$m_3 = 0,42772746,$	$d = 9,2407785 \cdot 10^{-2},$
	$k_4 = 0,22670986,$	$w_d = 0,6474475,$
	$m_4 = 0,13152933,$	$D_2 = -8,17836831 \cdot 10^{-2},$
	$m_5 = 0,12062980.$	$F_1 = -0,2473431,$
		f = 0,11335493,
		$w_f = 0,34449962,$
		$F_{2} = 4.971738 \cdot 10^{-2}$.
1		- 2 .,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

Таблица 9.4.8 - Передаточные функции и импульсные характеристики фильтра нижних частот Чебышева с неравномерностью передачи в полосе пропускания 2.5 дБ

n	Передаточные функции	Импульсные характеристики
1		$Ae^{-a \cdot t}$
	p + m	A = 1,13352794,
	l = 1,13352794,	a = 1,13352794.
	m = 1,13352794.	
2	<i>l</i>	$Ae^{-a \cdot t} \sin(w_a \cdot t)$
	$p^2 + k \cdot p + m$	<i>A</i> =0,71525087,
	l = 0,56670930,	a = 0,35762544,
	k = 0,71525087,	$w_a = 0,79239886.$
	m = 0,7557190.	
3	l $($	$Ae^{-a \cdot t} +$
	$\left(p^2 + k \cdot p + m_1\right)$	$+e^{-b\cdot t}\cdot (B_1\cos(w_1\cdot t)+B_2\sin(w_1\cdot t))$
	1	A = 0.3299/891
	$\frac{1}{(p+m_2)}$	a = 0.32994891, a = 0.3299489
	l = 0.28338198	$B_1 = -0.32994891,$
	k = 0,32994890,	b = 0.16497445.
	$m_1 = 0,85886628,$	$w_b = 0.9119483,$
	$m_2 = 0,32994890.$	$B_2 = 5,96888432 \cdot 10^{-2}.$
		2
4	l.	$e^{-a \cdot t} \cdot (A_1 \cos(w_a \cdot t) + A_2 \sin(w_a \cdot t)) +$
	$(p^2 + k_1 \cdot p + m_1)$	$+e^{-b\cdot t}\cdot (B_1\cos(w_b\cdot t)+B_2\sin(w_b\cdot t))$
	1	$A_1 = -6.27832861 \cdot 10^{-2}$
	$(p^2 + k_2 \cdot p + m_2)$	$a = 9 398023 \cdot 10^{-2}$
	l = 0.141690996,	$w_{\alpha} = 0.95133155.$
	$k_1 = 0,18796046,$	$A_2 = -0.18175822.$
	$k_2 = 0,45377670,$	$B_1 = 6.27832861 \cdot 10^{-2}.$
	$m_1 = 0.91386400,$	b = 0.22688835.
	$m_2 = 0,20675722.$	$w_h = 0,39405443,$
	-	$B_2 = 0.45997894.$

Таблица 9.4.8 – Продолжение

n	Передаточные функции	Импульсные характеристики
5	l .	$Ae^{-a \cdot t} +$
	$(p^2 + k_1 \cdot p + m_1)$	$+e^{-b\cdot t}\cdot (B_1\cos(w_b\cdot t)+B_2\sin(w_b\cdot t))+$
	$\cdot \frac{1}{\sqrt{2} + 1}$	$+e^{-c\cdot t}\cdot (C_1\cos(w_c\cdot t)+C_2\sin(w_c\cdot t))$
	$(p^- + \kappa_2 \cdot p + m_2)$	A = 0,20545865,
		<i>a</i> =0,19577212,
	$(p + m_3)$	$B_1 = 0,11130732,$
	l = 0,070845495,	$b = 6,0496915 \cdot 10^{-2},$
	$k_1 = 0,12099383,$	$w_b = 0,96911059,$
	$k_2 = 0,31676595,$	$B_2 = -5,50854022 \cdot 10^{-2},$
	$m_1 = 0,94283522,$	$C_1 = -0,31676597,$
	$m_2 = 0.38381823,$	c = 0,15838298,
	$m_3 = 0.19577212.$	$w_c = 0,59894329,$
		$C_2 = 8,37647507 \cdot 10^{-2}.$
6	$-\frac{l}{2}$.	$e^{-a \cdot t} \cdot (A_1 \cos(w_a \cdot t) + A_2 \sin(w_a \cdot t)) +$
	$(p^2 + k_1 \cdot p + m_1)$	$+e^{-b\cdot t}\cdot (B_1\cos(w_b\cdot t)+B_2\sin(w_b\cdot t))+$
	$\cdot \frac{1}{(p^2 + k_2 \cdot p + m_2)}$	$+e^{-c\cdot t}\cdot (C_1\cos(w_c\cdot t)+C_2\sin(w_c\cdot t))$
		$A_1 = 4,65090684 \cdot 10^{-2},$
	$(p^2 + k_3 \cdot p + m_3)$	$a = 4,2143495 \cdot 10^{-2},$
		$w_a = 0,9/864/14,$
	<i>l</i> = 0,04723699,	$A_2 = 7,31386855 \cdot 10^{-2},$
	$k_1 = 0,08428699,$	$B_1 = -8,53092324 \cdot 10^{-2},$
	$k_2 = 0,23027635,$	b = 0,11513818,
	$k_3 = 0.31456334,$	$w_b = 0,71641943,$
	$m_1 = 0,95952630,$	$B_2 = -0,22391334,$
	$m_2 = 0,52651360,$	$C_1 = 3,8800164 \cdot 10^{-2},$
	$m_3 = 0.09350090.$	c = 0,15728167,
	-	$w_c = 0,26222772,$
		$C_2 = 0,3320746.$

Таблица 9.4.8 – Продолжение

n	Передаточные функции	Импульсные характеристики
7	<i>l</i>	$Ae^{-a \cdot t} +$
	$(p^2 + k_1 \cdot p + m_1)$	$+e^{-b\cdot t}\cdot (B_1\cos(w_b\cdot t)+B_2\sin(w_b\cdot t))+$
		$= -\frac{c}{c} \frac{1}{c} \left(\frac{c}{c} \cos(\omega - t) + \frac{c}{c} \sin(\omega - t) \right) + \frac{c}{c} \sin(\omega - t) + \frac{c}{$
	$(p^2 + k_2 \cdot p + m_2)$	$+e \cdot (C_1 \cos(w_c \cdot t) + C_2 \sin(w_c \cdot t)) +$
	1	$+e^{-d\cdot t}\cdot (D_1\cos(w_d\cdot t)+D_2\sin(w_d\cdot t))$
	$\frac{1}{(p^2+k_2\cdot p+m_2)}$.	A = 0,15020205,
	1	a = 0,13940668, $B_{-} = 5,05267424,10^{-2}$
	$\left \cdot \frac{1}{(m+m)} \right $	$B_1 = -3,0320742410$, $b = 2,1020005,10^2$
	$(p+m_4)$	$b = 5,1020905^{\circ}10$, $w_{1} = 0.98435581$
	l = 0.01771137	$B_{2} = 3.90700743 \cdot 10^{-2}$
	$k_1 = 0.06204181.$	$C_{1} = 0.16304185$
	$k_2 = 0.17383729.$	$c = 8.6918645 \cdot 10^{-2}$
	$k_2 = 0.25120216.$	$w_{c} = 0.78939207.$
	$m_1 = 0.96991866.$	$C_2 = -7.98224596 \cdot 10^{-2}$.
	$m_2 = 0.63069469.$	$D_1 = -0.26271716.$
	$m_2 = 0.20768932.$	d = 0.12560108.
	$m_4 = 0.13940668.$	$w_d = 0,43807955,$
		$D_2 = 5,72908819 \cdot 10^{-2}.$
8	<i>l</i>	$e^{-a \cdot t} \cdot (A_1 \cos(w_a \cdot t) + A_2 \sin(w_a \cdot t)) +$
	$(p^2 + k_1 \cdot p + m_1)$	$+e^{-b\cdot t}\cdot (B_1\cos(w_b\cdot t)+B_2\sin(w_b\cdot t))+$
	$\cdot \frac{1}{2}$.	$+e^{-c \cdot t} \cdot (C_1 \cos(w_c \cdot t) + C_2 \sin(w_c \cdot t)) +$
	$(p^2 + k_2 \cdot p + m_2)$	$+e^{-d\cdot t}\cdot (D_1\cos(w_d\cdot t)+D_2\sin(w_d\cdot t))$
	· <u>1</u> .	$A_1 = -3.29852445 \cdot 10^{-2}.$
	$(p^2 + k_3 \cdot p + m_3)$	$a = 2.377936 \cdot 10^{-2}$.
		$w_a = 0.98804414,$
	$(p^2 + k_4 \cdot p + m_4)$	$A_2 = -3,62301337 \cdot 10^{-2},$
	l = 0,01180925,	$B_1 = 7,23168261 \cdot 10^{-2},$
	$k_1 = 0,04755872,$	$b = 6,771789 \cdot 10^{-2},$
	$k_2 = 0,13543578,$	$w_b = 0,83762338,$
	$k_3 = 0,20269397,$	$B_2 = 0,12192468,$
	$k_4 = 0,23909383,$	$C_1 = -6,43056572 \cdot 10^{-2},$
	$m_1 = 0.97679669,$	c = 0,10134699,
	$m_2 = 0,70619864,$	$w_c = 0,55968205,$

n	Передаточные функции	Импульсные характеристики
	$m_4 = 0,12870446,$	$C_2 = -0,20821703,$
	$m_5 = 0,10828979.$	$D_1 = 2,49740756 \cdot 10^{-2},$
		d = 0,11954692,
		$w_d = 0,19653421,$
		$D_2 = 0,25841052.$
9	<i>l</i>	$Ae^{-a \cdot t} +$
	$(p^2 + k_1 p + m_1)$	$+e^{-b\cdot t}\cdot (B_1\cos(w_b\cdot t)+B_2\sin(w_b\cdot t))+$
	$\cdot \frac{1}{(n^2 + k_z n + m_z)}$.	$+e^{-c\cdot t}\cdot (C_1\cos(w_c\cdot t)+C_2\sin(w_c\cdot t))+$
	$(p + k_2 p + m_2)$ 1	$+e^{-d\cdot t}\cdot (D_1\cos(w_d\cdot t)+D_2\sin(w_d\cdot t))+$
	$\cdot \frac{1}{(p^2 + k_3 p + m_3)} \cdot $	$+e^{-f\cdot t}\cdot (F_1\cos(w_f\cdot t)+F_2\sin(w_f\cdot t))$
	1	A = 0,1059535,
	$\frac{1}{(n^2+k_1n+m_1)}$	$a = 9,82/45/(10^{-2}),$
	$(p + k_4p + m_4)$	$B_1 = 2,39073997710^-,$
	$\cdot \frac{1}{\left(-\frac{1}{2} \right)}$	$b = 1,70052 \cdot 10^{-1},$
	$(p+m_5)$	$W_b = 0.3535131,$ $P = 0.25259222, 10^{-2}$
	l = 0.00442784,	$B_2 = -2,53536352 \cdot 10^{-2},$
	$k_1 = 0.03760865,$	$C_1 = -8,7002336 \cdot 10^2,$
	$k_2 = 0,10828979,$	$c = 4,913/285 \cdot 10^{-2},$
	$k_3 = 0,16590959,$	$W_c = 0.87019734,$
	$k_4 = 0,20351824,$	$C_2 = 5,3631509 \cdot 10^{-2},$
	$m_1 = 0,98157299,$	$D_1 = 0,15110971,$
	$m_2 = 0,76172668,$	$d = 7,528269 \cdot 10^{-2},$
	$m_3 = 0,42490259,$	$w_d = 0.64588414,$
	$m_4 = 0,12870446,$	$D_2 = -5,3495306 \cdot 10^{-2},$
	$m_5 = 0,10828979.$	$F_1 = -0,19596828,$
	~	$f = 9,234789 \cdot 10^{-2},$
		$w_f = 0,34366777,$
		$F_2 = 3,20948959 \cdot 10^{-2}.$

Таблица 9.4.9 - Передаточные функции и импульсные характеристики фильтра нижних частот Чебышева с неравномерностью передачи в полосе пропускания 3 дБ

	пропускания 5 др		
n	Передаточные функции	Импульсные характеристики	
1		$Ae^{-a \cdot t}$	
	p + m	A = 1,00237729,	
	l = 1,00237729,	a = 1,00237729.	
	m = 1,00237729.		
2	<i>l</i>	$Ae^{-a \cdot t} \sin(w_a \cdot t)$	
	$p^2 + k \cdot p + m$	A=0,64489965,	
	l = 0,50118865,	<i>a</i> =0,32244983,	
	k = 0,64489965,	$w_a = 0,77715757.$	
	m = 0,70794778.		
3		$Ae^{-a \cdot t} +$	
	$\left(p^2 + k \cdot p + m_1\right)$	$+ e^{-b \cdot t} [B_{t} \cos(w_{t} \cdot t) + B_{t} \sin(w_{t} \cdot t)]$	
		$+e [D] \cos(w_b \cdot i) + D_2 \sin(w_b \cdot i)]$	
	$\left(\frac{n+m_2}{n+m_2}\right)$	A = 0,2980202, a = 0.29862021	
	$(p + m_2)$ l = 0.25059432	$B_1 = -0.2986202$	
	k = 0.29862021	b = 0.14931011	
	$m_1 = 0.83917403$	$w_1 = 0.90381443$	
	$m_1 = 0.29862021.$	$B_{2} = 4.93320449 \cdot 10^{-2}$	
4	1	$\frac{-a \cdot t}{a} \left[4 \cos(a \cdot t) + 4 \sin(a \cdot t) \right]$	
	$\frac{1}{(m^2+k-m+m)}$	$e [A_1 \cos(w_a \cdot t) + A_2 \sin(w_a \cdot t)] +$	
	$(p + \kappa_1 \cdot p + m_1)$	$+e^{-b\cdot t}\left[B_1\cos(w_h\cdot t)+B_2\sin(w_h\cdot t)\right]$	
		$A_1 = -5.19137062 \cdot 10^{-2}$,	
	$(p^2 + k_2 \cdot p + m_2)$	$a = 8.51704 \cdot 10^{-2}$.	
	<i>l</i> =0,12529717,	$w_{\alpha} = 0.94648443,$	
	$k_1 = 0,1703408,$	$A_2 = -0.16566929.$	
	$k_2 = 0,41123906,$	$B_1 = 5.19137062 \cdot 10^{-2}$.	
	$m_1 = 0,90308678,$	b = 0.20561953	
	$m_2 = 0.19598.$	$w_b = 0.39204669.$	
		$B_{2} = 0.41591058$	
	$m_1 = 0,90308078,$ $m_2 = 0,19598.$	b = 0,20561953, $w_b = 0,39204669,$ $B_2 = 0,41591058.$	

Таблица 9.4.9 – Продолжение

n	Передаточные функции	Импульсные характеристики
5	<i>l</i>	$Ae^{-a \cdot t} +$
	$(p^2 + k_1 \cdot p + m_1)$	$+e^{-b\cdot t} \left[B_1 \cos(w_b \cdot t) + B_2 \sin(w_b \cdot t) \right] +$
	$\left \cdot \frac{1}{(n^2 + k_2 \cdot n + m_2)} \right $	$+e^{-c\cdot t} \left[C_1 \cos(w_c \cdot t) + C_2 \sin(w_c \cdot t)\right]$
	$(p + n_2 - p + m_2)$	A = 0,18482521,
	$\cdot \frac{1}{1}$	a = 0, 17/53027,
	$(p + m_3)$	$B_1 = 0,1024248,$
	l = 0.06264858,	$b = 5,485987 \cdot 10^{-2},$
	$k_1 = 0.10971974,$	$w_b = 0.96592747,$
	$k_2 = 0.28725001,$	$B_2 = -4,56364367 \cdot 10^{-2},$
	$m_1 = 0.93602549,$	$C_1 = -0,28725001,$
	$m_2 = 0.37700850,$	c = 0,14362501,
	$m_3 = 0.17753027.$	$w_c = 0,59697601,$
	5	$C_2 = 6,91087819 \cdot 10^{-2}.$
6	$-\frac{l}{2}$.	$e^{-a \cdot t} \left[A_1 \cos(w_a \cdot t) + A_2 \sin(w_a \cdot t) \right] +$
	$(p^2 + k_1 \cdot p + m_1)$	$+e^{-b\cdot t}[B_1\cos(w_b\cdot t)+B_2\sin(w_b\cdot t)]+$
	$\cdot \frac{1}{2}$	$+e^{-c \cdot t} [C_1 \cos(w_c \cdot t) + C_2 \sin(w_c \cdot t)]$
	$(p^2 + k_2 \cdot p + m_2)$	$A_1 = 3.86319928 \cdot 10^{-2}$
	1	$a = 3.8229515 \cdot 10^{-2}$
	$\frac{1}{(p^2+k_2\cdot p+m_2)}$	$w_{z} = 0.97640602$
	l = 0.03132429	$A_2 = 6.80583182 \cdot 10^{-2}$
	$k_1 = 0.07645903.$	$R_{2} = 0.00505102 \cdot 10^{-2}$
	$k_2 = 0.20888994$	$B_1 = -7,0382333310^{\circ},$ $b_2 = 0.10444407$
	$k_2 = 0.28534897$	b = 0,10444497, w = 0.71477881
	$k_3 = 0.2635 + 677,$	$w_b = 0,71477881,$
	$m_1 = 0.93463021,$	$D_2 = -0.2041109,$
	$m_2 = 0.52181/5,$	$C_1 = 3,1/509665 \cdot 10^{-2},$
	$m_3 = 0,0888048.$	c = 0,14267449,
		$w_c = 0,2616272,$
		$C_2 = 0,29852276.$

Таблица 9.4.9 – Продолжение

n	Передаточные функции	Импульсные характеристики
7	<u>l</u>	$Ae^{-a\cdot t} +$
	$(p^2 + k_1 \cdot p + m_1)$	$+e^{-b \cdot t} [B_1 \cos(w_k \cdot t) + B_2 \sin(w_k \cdot t)] +$
	1	
	$(p^2 + k_2 \cdot p + m_2)$	$+e^{-c}\left[C_1\cos(w_c \cdot t) + C_2\sin(w_c \cdot t)\right] +$
	1	$+e^{-d\cdot t}\left[D_1\cos(w_d\cdot t)+D_2\sin(w_d\cdot t)\right]$
	$\frac{1}{(n^2+k_2\cdot n+m_2)}$	<i>A</i> =0,13458211,
	$(p + n_3, p + m_3)$	a = 0,12648537,
	$\cdot \frac{1}{(m+m)}$	$B_1 = 3,25487561 \cdot 10^{-2},$
	$(p+m_4)$	$b = 2,8145645 \cdot 10^{-2},$
	l = 0.01566215, $k_{\rm c} = 0.05620120$	$w_b = 0.98209508,$
	$k_1 = 0.05029129,$ $k_2 = 0.15772469$	$B_2 = -4, /6060/4 \cdot 10^{-2},$
	$k_2 = 0.13772408,$	$C_1 = 0,14962803,$
	$k_3 = 0.22/918/0,$	$c = 7,886234 \cdot 10^{-2},$
	$m_1 = 0.90048298,$	$W_c = 0,78800073,$
	$m_2 = 0.62725902,$	$C_2 = -6,59247295 \cdot 10^{-2},$
	$m_3 = 0,20425365,$	$D_1 = -0.23660406,$
	$m_4 = 0,12648537.$	d = 0,11395938,
		$W_d = 0.43734072,$
0	7	$D_2 = 4,08437921\cdot10^{-1}$
8	$\frac{l}{l}$	$e^{-a \cdot t} \left[A_1 \cos(w_a \cdot t) + A_2 \sin(w_a \cdot t) \right] +$
	$(p^2 + k_1 \cdot p + m_1)$	$+e^{-b\cdot t}[B_1\cos(w_b\cdot t)+B_2\sin(w_b\cdot t)]+$
	$\cdot \frac{1}{\sqrt{2} + 1}$	$+e^{-c\cdot t}[C_1\cos(w_c\cdot t)+C_2\sin(w_c\cdot t)]+$
	$(p^- + k_2 \cdot p + m_2)$	$+e^{-d\cdot t}[D_1\cos(w_d\cdot t)+D_2\sin(w_d\cdot t)]$
	$\cdot \frac{1}{2}$	$A_1 = -2,75652565 \cdot 10^{-2},$
	$(p^2 + k_3 \cdot p + m_3)$	$a = 2,1578155 \cdot 10^{-2},$
		$w_a = 0,98676635,$
	$(p^2 + k_4 \cdot p + m_4)$	$A_2 = -3,46020718 \cdot 10^{-2},$
	$l = 7,83106972 \cdot 10^{-3},$	$B_1 = 5,98208407 \cdot 10^{-2},$
	$k_1 = 0,04315631,$	$b = 6,1449395 \cdot 10^{-2},$
	$k_2 = 0,12289879,$	$w_b = 0,83654012,$
	$k_3 = 0,18393103,$	$B_2 = 0,11276199,$
	$k_4 = 0,21696145,$	$C_1 = -5,25893994 \cdot 10^{-2},$
	$m_1 = 0.97417345,$	$c = 9,1965515 \cdot 10^{-2},$
	$m_2 = 0,7035754,$	$w_c = 0,55895824,$
Таблица 9.4.9 – Окончание

n	Передаточные функции	Импульсные характеристики
	$m_3 = 0,32089197,$	$C_2 = -0,18814067,$
	$m_4 = 0,05029392.$	$D_1 = 2,03338152 \cdot 10^{-2},$
		d = 0,10848073,
		$w_d = 0,19628004,$
		$D_2 = 0,23144263.$
9	!	$Ae^{-a \cdot t} +$
	$(p^2 + k_1 p + m_1)$	$+e^{-b\cdot t} \left[B_1 \cos(w_b \cdot t) + B_2 \sin(w_b \cdot t) \right] +$
	$(\frac{1}{(p^2 + k_2 p + m_2)})$	$+e^{-c\cdot t} \left[C_1 \cos(w_c \cdot t) + C_2 \sin(w_c \cdot t)\right] +$
	$\frac{1}{1}$	$+e^{-d\cdot t} \left[D_1 \cos(w_d \cdot t) + D_2 \sin(w_d \cdot t) \right] +$
	$(p^2 + k_3 p + m_3)^{-1}$	$+e^{-f\cdot t} \left[F_1 \cos(w_f \cdot t) + F_2 \sin(w_f \cdot t) \right]$
	1	<i>A</i> =0,1059535,
	$\frac{1}{(p^2+k_Ap+m_A)}$	$a = 9,827457 \cdot 10^{-2},$
		$B_1 = 2,590/399/(10^{-2}),$
	$\cdot \frac{1}{(m+m)}$	$b = 1,70652 \cdot 10^{-2},$
	$(p+m_5)$	$w_b = 0,98955191,$
	l = 0,00391554,	$B_2 = -2,35358332 \cdot 10^{-2},$
	$k_1 = 0.03413040,$	$C_1 = -8,7002336 \cdot 10^{-2},$
	$k_2 = 0.0982/457,$	$c = 4,9137285 \cdot 10^{-2},$
	$k_3 = 0,15056538,$	$w_c = 0,87019734,$
	$k_4 = 0,18469578,$	$C_2 = 5,3631509 \cdot 10^{-2},$
	$m_1 = 0,97950420,$	$D_1 = 0,15110971,$
	$m_2 = 0,75965789,$	$d = 7,528269 \cdot 10^{-2},$
	$m_3 = 0,42283380,$	$w_d = 0,64588414,$
	$m_4 = 0,12663567,$	$D_2 = -5,3495306 \cdot 10^{-2},$
	$m_5 = 0,09827457.$	$F_1 = -0,19596828,$
		$f = 9,234789 \cdot 10^{-2},$
		$w_f = 0,34366777,$
		$F_2 = 3,20948959 \cdot 10^{-2}.$

10 СПИСОК ИСПОЛЬЗОВАННОЙ ЛИТЕРАТУРЫ

- 1. Гоноровский И.С. Радиотехнические цепи и сигналы. 4-е изд., перераб. и доп. М.: Радио и связь, 1986. 512 с.
- 2. Баскаков С. И. Радиотехнические цепи и сигналы. 2-е изд., перераб. и доп. М.: Высш. шк, 1988. 448 с.
- 3. Хемминг Р.В. Цифровые фильтры. Пер.с англ./Под ред. А. М. Трахтмана. М.: Сов. Радио, 1980. 224 с.
- 4. Гольденберг Л.М., Матюшкин Б.Д., Поляк М.Н. Цифровая обработка сигналов: Справочник. М: Радио и связь, 1985. 312 с.
- 5. Рабинер Л., Гоулд Б. Теория и применение цифровой обработки сигналов. М.: Мир, 1978. 848 с.
- Лэм Г. Аналоговые и цифровые фильтры. Расчет и реализация. Пер. с англ. В. Л. Левина, М. Н. Микшиса и И. И. Теплюка /Под ред. И. Н. Теплюка. – М.: Мир, 1982. – 592 с.
- 7. Карни Ш. Теория цепей. Анализ и синтез. М.: Связь, 1973.
- 8. Янке Е., Эмде Ф., Леш Ф. Специальные функции. М.: Наука, 1977.
- Каратаева Н.А. Радиотехнические цепи и сигналы. Теория сигналов и линейные фильтры: Учебное пособие. – Томск: Томск. гос. ун-т систем управления и радиоэлектроники, 2003. – 255 с. ISBN 5-86889-175-9
- Айфичер Э., Эммануил С., Джервис., Барри У. Цифровая обработка сигналов: практический подход, 2-е издание.: Пер. с англ. – М.: Издательский дом «Вильямс», 2004. – 992 с.: – Парал. тит. англ. ISBN 5-8459-0710-1 (рус.)
- Литюк В.И., Литюк Л.В. Методы цифровой многопроцессорной обработки ансамблей радиосигналов. М.: СОЛОН-ПРЕСС, 2007. 592 с.: ил. (Серия «Библиотека инженера») ISBN 5-98003-303-3
- Сергиенко А. Б. Цифровая обработка сигналов: Учебник для вузов. 2-е изд. – СПб.: Питер, 2006. – 751 с.: ил. ISBN 5-469-00816-9
- Основы цифровой обработки сигналов: Курс лекций / А. И. Солонина, Д. А. Улахович, С. М. Арбузов, Е. Б. Соловьева / Изд. 2-е испр. и перераб. СПб.: БХВ- Петербург, 2005. 768 с.: ил. ISBN 5-94157-604-8

11 СПИСОК ПРИНЯТЫХ СОКРАЩЕНИЙ

АФП – аналоговый фильтр- прототип;

АЧХ – амплитудно- частотная характеристика;

БИХ-фильтр – фильтр с бесконечной импульсной характеристикой;

ДПФ – дискретное преобразование Фурье;

ИИХ – инвариантность импульсной характеристики;

КИХ-фильтр – фильтр с конечной импульсной характеристикой;

КЧХ – комплексная частотная характеристика;

ЛЭЦ – линейная электрическая цепь;

НЧ-прототип – низкочастотный прототип;

РЦФ – рекурсивный цифровой фильтр;

ТЦФ – трансверсальный цифровой фильтр;

ПФ – полосовой фильтр;

РФ – режекторный фильтр;

ФВЧ – фильтр верхних частот;

ФНЧ – фильтр нижних частот;

ФЧХ – фазочастотная характеристика;

ЦВМ – цифровая вычислительная машина;

ЦФ – цифровой фильтр.

12 СПИСОК УСЛОВНЫХ ОБОЗНАЧЕНИЙ

Аз – затухание АЧХ фильтра в полосе заграждения, дБ;

 $A_{\rm n}$ – неравномерность АЧХ фильтра в полосе пропускания, дБ; arg $\dot{K}(\omega)$ – ФЧХ фильтра;

 \dot{C}_k – коэффициенты ДПФ;

g(n) – дискретизированная импульсная характеристика (импульсная характеристика ЦФ);

g(t) – импульсная характеристика аналогового фильтра;

h(n) – дискретизированная переходная характеристика (переходная характеристика ЦФ);

h(t) – переходная характеристика аналогового фильтра

К(*p*) – передаточная функция аналоговой ЛЭЦ

K(z) – системная функция цифрового фильтра

 $\dot{K}(\omega)$ – комплексная передаточная функция фильтра

 $|\dot{K}(\omega)|$ – АЧХ фильтра

N – порядок фильтра

p – комплексная частота преобразований Лапласа

 \hat{p} – комплексная частота, нормированная относительно граничной частоты полосы пропускания ФНЧ

 $\hat{p}_{1}, \hat{p}_{2}, \hat{p}_{3}, ..., \hat{p}_{n}$ – полюса функции $\hat{E}(\delta)$

s(t) – мгновенное значение сигнала

 $\dot{S}(\omega)$ – комплексная спектральная плотность функции s(t)

 $s(nT_{\pi})$ – дискретизированный сигнал

S(z) – Z-образ дискретизированного сигнала $s(nT_{\pi})$

*T*_д – интервал дискретизации на временной оси

*T*_{oc} – интервал описания сигнала

*T*_{og} – интервал описания импульсной характеристики

 $\dot{O}_N(\hat{\Omega})$ – полином Чебышева первого рода порядка N

Ω – аналоговая частота НЧ-прототипа

 $\hat{\Omega}$ — аналоговая частота НЧ-прототипа, нормированная относительно граничной частоты полосы пропускания Ω_{Π}

 $\hat{\Omega}_{\ddot{1}_{1}}, \hat{\Omega}_{\ddot{1}_{2}}$ ($\hat{\Omega}_{3_{1}}, \hat{\Omega}_{3_{2}}$) – нормированные аналоговые граничные частоты полосы пропускания (заграждения) НЧ-прототипа

ω – цифровая частота

 $\hat{\omega}$ - цифровая частота, нормированная относительно частоты дискретизации $\omega_{\rm д}$

*ω*_д – частота дискретизации

 $\hat{\omega}_{i_1}, \hat{\omega}_{i_2} (\hat{\omega}_{\varsigma_1}, \hat{\omega}_{\varsigma_2})$ – нормированные цифровые граничные частоты полосы пропускания (заграждения)

*w*₁ – шаг дискретизации на частотной оси

*ω*_в – верхняя частота, ограничивающая ширину спектра сигнала

о^п – частота цифрового ФНЧ-прототипа

 $\hat{\omega}^{\rm ï}$ — нормированная частота цифрового ФНЧ-прототипа

 $\hat{\omega}_{i}^{\ddot{i}}$, ($\hat{\omega}_{c}^{\ddot{i}}$) – нормированная граничная частота полосы пропускания (заграждения) цифрового ФНЧ-прототипа

 $\Delta \hat{\omega}$ — ширина перехода между границами полос пропускания и заграждения

 δ_1 – допустимое отклонение AЧX от 1 в пределах полосы пропускания

 δ_2 – допустимое отклонение АЧХ от 0 в пределах полосы заграждения

є – параметр, характеризующий затухание АЧХ в пределах полосы пропускания

 $\delta(t)$ – аналоговая дельта- функция

 $\sigma(t)$ – аналоговая функция Хевисайда

 $\delta(n)$ – дискретная дельта- функция

 $\sigma(n)$ – дискретная функция Хевисайда

x_n, *y_n* – входная и выходная последовательности

X(z), Y(z) - Z-образы входной и выходной последовательностей