Министерство образования и науки Российской Федерации Государственное образовательное учреждение высшего профессионального образования «Томский государственный университет систем управления и радиоэлектроники»

Кафедра электронных приборов

ИНФОРМАТИКА

Методические указания к практическим занятиям для студентов направлений "Фотоника и оптоинформатика" и «Электроника и микроэлектроника» (специальность «Электронные приборы и устройства»

Шандаров, Евгений Станиславович

Информатика: методические указания к практическим занятиям для студентов направлений — Фотоника и оптоинформатика и Электроника и микроэлектроника (специальность "Электронные приборы и устройства")/ Е.С. Шандаров; Министерство образования и науки Российской Федерации, Государственное образовательное учреждение высшего профессионального образования Томский государственный университет систем управления и радиоэлектроники, Кафедра электронных приборов. - Томск: ТУСУР, 2011. - 22 с.

Предназначено для студентов очной и заочной форм, обучающихся по направлениям «Фотоника и оптоинформатика» и "Электроника и микроэлектроника" (специальность "Электронные приборы и устройства") по курсу «Информатика».

© Шандаров Евгений Станиславович, 2011

Министерство образования и науки Российской Федерации Государственное образовательное учреждение высшего профессионального образования «Томский государственный университет систем управления и радиоэлектроники»

Кафедра электронных приборов

УΤ.	ВЕРЖД	ЦАЮ
Зав	.кафед	рой ЭП
		С.М. Шандаров
~	>>	2011 г.

ИНФОРМАТИКА

Методические указания к практическим занятиям для студентов направлений «Фотоника и оптоинформатика» и «Электроника и микроэлектроника» (специальность «Электронные приборы и устъройства»)

Pa3	paoo	ГЧИК
ст. 1	препо	одаватель каф.ЭП
		_Е.С. Шандаров
«	>>>	2011 г

Содержание

Введение	5
OpenOffice.org	
Практическая работа № 1. Текстовый редактор OpenOffice.org Writer	
Практическая работа №2. Редактор формул OpenOffice.org Math	11
Практическая работа №3. Разработка алгоритма. Блок-схема. Алгоритм	ические
структуры	16
Список рекомендуемой литературы	
Приложение А Ошибка! Закладка не опр	

Введение

OpenOffice.org

OpenOffice.org — бесплатно распространяемый офисный пакет, содержащий компоненты для работы с текстом, электронными таблицами, базами данных, для обработки графики. Официальный сайт http://www.openoffice.org/

OpenOffice.org поддерживает множество популярных форматов (RTF, обычный текст, html, xml, а также файлы MS Word, Excel, PowerPoint). Более того, он позволяет экспортировать документы в формат pdf, поддерживает шаблоны, содержит собственный язык программирования OOBasic и исполняет программы на языке Java. Еще одним существенным преимуществом является то, что пакет работает как в Linux, так и в Microsoft Windows.

В пакет OpenOffice.org входят следующие компоненты:

- Writer текстовый редактор;
- Calc табличный процессор;
- Math редактор математических формул;
- Impress инструмент для создания презентаций;
- Base редактор баз данных;
- Draw редактор графических файлов.

В рамках практических работ студенты ознакомятся с текстовым редактором OpenOffice.org Writer и редактором формул OpenOffice.org Math

Практическая работа № 1. Текстовый редактор OpenOffice.org Writer

1.1 Задание на работу

Создать и отформатировать текстовые документы по образцам, приведенным в приложении А и приложении Б.

1.2 Ход выполнения работы

Запустите программу OpenOffice.org Writer. Главное окно редактора имеет следующий вид (рисунок 1.1).

Введите заданный текст с клавиатуры.

Уберите лишние непечатные символы. Для того, чтобы их увидеть, нажмите кнопку **1** на панели

Отформатируйте текст согласно приведенному примеру.

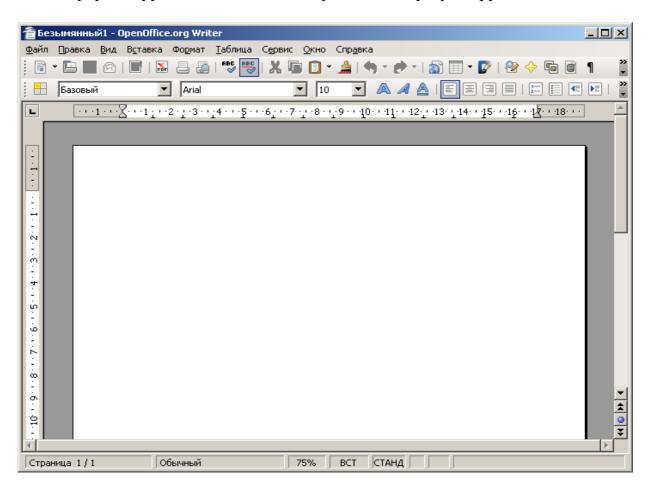


Рисунок 1.1 – Вид главного окна редактора

Форматирование символов

Для форматирования символов необходимо выполнить следующее:

- 1) выделить нужный символ или группу символов;
- 2) выбрать из меню "Формат > Символы" или пункт "Символы" из выпадающего меню, вызываемого нажатием правой кнопки мыши. Появится следующее диалоговое окно (рисунок 1.2).

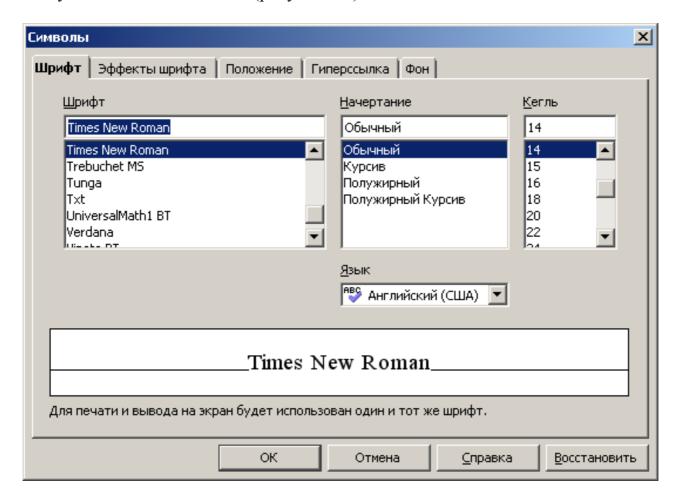


Рисунок 1.2 – Диалоговое окно «Символы»

В этом диалоговом окне можно задать все параметры символа: кегль(размер символа), шрифт, начертание, положение относительно других символов. Некоторые параметры вынесены на панель и доступны в выпадающем меню, вызываемом нажатием правой кнопки мыши.

Форматирование абзацев

Для форматирования абзацев необходимо выделить нужные абзацы (если форматируете один абзац, то нет необходимости выделать его, достаточно поместить курсор в любое место абзаца). Затем выбрать из меню "Формат> Абзац" или пункт "Абзац" из выпадающего меню, вызываемого нажатием

правой кнопки мыши. Появится диалоговое окно (рисунок 1.3).

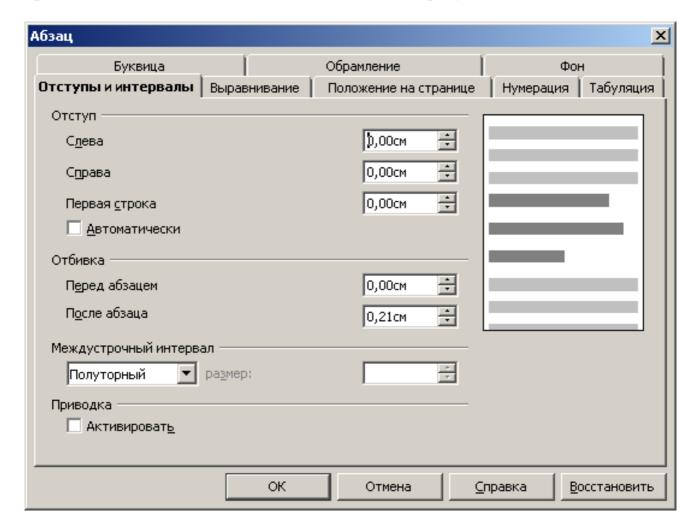


Рисунок 1.3 – Диалоговое окно «Абзац»

В этом окне можно настроить все параметры форматирования абзаца. Кнопки для выравнивания абзаца вынесены на панель. Отступы абзаца можно изменить также на горизонтальной линейке.

Форматирование страницы

Для форматирования выберите в меню «Формат > Страница» или пункт «Страница» из выпадающего меню (рисунок 1.4).

В этом окне можно задать такие параметры страницы, как формат, поля страницы, фон, колонтитулы

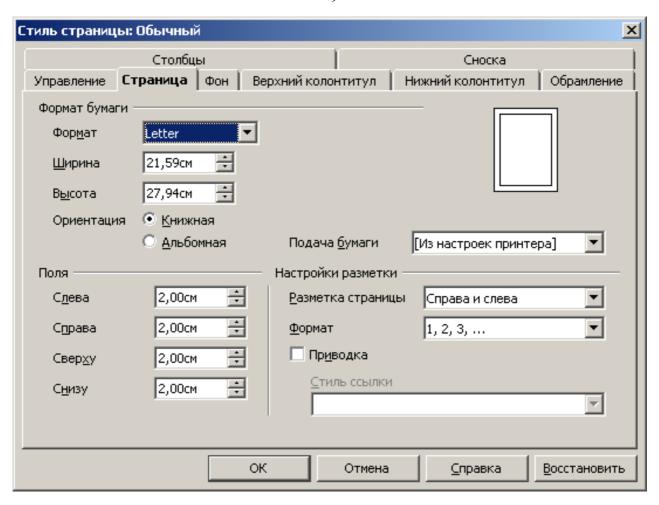


Рисунок 1.4 – Диалоговое окно «Стиль страницы: Обычный»

Форматирование списков

Для создания нумерованного или маркированного списка выделите необходимый фрагмент текста, выберите на панели кнопки «нумерованный список» и «Маркированный список» соответственно. После этого каждый абзац текста станет пунктом меню. Новые пункты в меню можно добавлять простым переводом строки.

Для форматирования списка выберите в меню «Формат > Маркеры и нумерация» или пункт «Список» из выпадающего меню (рисунок 1.5).

Рисунок 1.5 – Диалоговое окно «Маркеры и нумерация»

В этом окне можно задать тип нумерации или маркера, выбрав из предложенных или создав свой, положение маркеров и элементов меню на странице.

Практическая работа №2. Редактор формул OpenOffice.org Math

2.1 Введение

OpenOffice.org Math — редактор формул, входящий состав OpenOffice.org. Позволяет создавать и редактировать формулы внутри любых типов документов openOffice.org, а также автономно.

2.2 Задание на практическую работу

Создать следующие формулы:

$$1) x_{n+1} = x_n + \omega_n$$

2)
$$a(t+1) = a(t) - \alpha \cdot \frac{\partial E}{\partial a}$$

3)
$$A_{1i} = \frac{(x_1 - b_{1i})}{(b_{1i} - a_{1i})^2}$$
,

4)
$$x_{ij}(t+1) = \sum_{k=1}^{M} (\Delta x_{ij}^{k}(t) +_{ij} (t)) \cdot \rho$$

$$5) \mu(x) = \begin{cases} \frac{\sin^2(x)}{\cos(x)} + 1, & \text{при } x \leq b \\ \frac{2\sqrt{x^3}}{x^2 - 5 \cdot x}, & \text{при } x > b \end{cases}$$

$$6) \frac{\partial y}{\partial a_{1i}} = \frac{\partial y}{\partial \mu_{1i}} \frac{\partial \mu_{1i}}{\partial a_{1i}} = \frac{\left(\sum_{g=1}^{5} (y_k - y)\mu_{2g}\right)}{\left(\sum_{g=1}^{24} \mu_{1L}\mu_{2M}\right)} \frac{\partial \mu_{1i}}{\partial a_{1i}}$$

6)
$$\frac{\partial y}{\partial a_{1i}} = \frac{\partial y}{\partial \mu_{1i}} \frac{\partial \mu_{1i}}{\partial a_{1i}} = \frac{\left(\sum_{g=1}^{5} (y_k - y) \mu_{2g}\right)}{\left(\sum_{s=1}^{24} \mu_{1L} \mu_{2M}\right)} \frac{\partial \mu_{1i}}{\partial a_{1i}}$$

7)
$$F(x) = \frac{\sum_{i=1}^{m} b_{i} \cdot \prod_{j=1}^{n} \mu_{Aij}(x_{j})}{\sum_{i=1}^{m} \prod_{j=1}^{n} \mu_{Aij}(x_{j})}$$

2.3 Ход выполнения работы

Откройте документ в OpenOffice.org Writer

Для вставки формулы, необходимо выбрать в меню "Вставить > Объект > Формула" (insert>Object>Formula).

Внизу экрана откроется редактор формул, и появится всплывающее окно «Выбор» (Selection).

Чтобы выйти из редактора формулы, нужно нажать кнопку мыши в области самого документа. Чтобы вернуться к редактрированию формулы, нажно дважды нажать кнопку мыши на формуле.

Существует 3 способа ввода формулы в редакторе:

- использовать окно «Выбор»;
- использовать контекстное меню;
- самостоятельно сделать разметку формулы.

Окно «Выбор» (Selection)

Вид окна представлен на рис.2.1

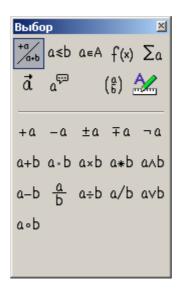


Рисунок 2.1 – Окно «Выбор»

Окно «Выбор» разделено на 2 части. При щелчке на символе в верхней части (категории) в нижней отображаются подчиненные символы.

Категории:

- унарные/бинарные операции;
- отношения
- операции над множествами;
- функции;
- операторы;
- атрибуты;
- скобки;
- форматирование.

Пример. Необходимо ввести формулу $\sqrt[3]{a}$:

- 1) В окне «Выбор» выбираем категорию «Функции»;
- 2) В нижней части окна выбираем соответствующую функцию. Редактор отобразит разметку формулы:

Символы «<?>» нужно заменить соответствующим текстом.

Контекстное меню

Чтобы воспользоваться контекстным меню, нужно нажать правую кнопку мыши в области окна редактора, и из появившегося меню выбрать оператор. Пункты в этом меню такие же, как и в окне «Выбор» (рис.2.2).

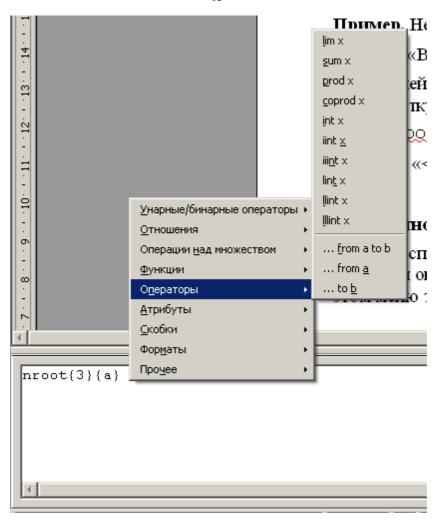


Рисунок 2.2

Язык разметки формул

В редакторе Math символы, операторы, скобки и атрибуты форматирования можно вводить в формулу путем непосредственного ввода соответствующих команд языка разметки. Так, например, чтобы ввести формулу $\sqrt[3]{a}$, нужно набрать в окне редактора:

 $nroot{3}{a}$

Ниже представлены таблицы команд и соответствующих операций:

Таблица 2.1 – Таблица команд и соответствующих операций

Унарные и бинарные операции

глариые и оппарные операции		
Команда	Значение	
1	2	
_	Вычитание	
-	унарный минус	
/	деление	
*	умножение	

1	2
+	сложение
+	унарный плюс
and или &	логическое «и»
neg	логическое «не»
от или	логическое «или»
times	умножение

Функции

Команда	Значение
abs	модуль
arccos	арккосинус
arccot	арккотангенс
arcsin	арксинус
arctan	арктангенс
cos	косинус
cot	котангенс
fact	факториал
ln	натуральный логарифм
nroot	корень п-й степени из х
sin	синус
sqrt	корень квадратный
sup	х в степени у
tan	тангенс

Операторы

Команда	Значение
from	нижний предел оператора
from to	диапазон от (from) до (to)
iint	двойной интеграл
int	интеграл
lint	интеграл по замкнутому контуру
prod	дроизведение
sum	сумма
to	Верхний предел оператора
lim	предел

Атрибуты

Команда	Значение
bold	жирное начертание
hat	"крышка" над символом

10			
1	2		
ital	курсив		
nbold	удалить жирное начертание		
nitalic	удалить атрибут <i>Italic</i>		
widevec	векторная стрелка		
	Другие		
Команда	Значение		
exists	Квантификатор существования		
forall	Квантификатор универсальности		
partial	частичная производная		
	Форматирование		
Команда	Значение		
newline	новая строка		
lsub	левый индекс		
_ или sub или rsub	правый индекс		
`	малый пробел		
alignl	выравнивание по левому краю		
alignc	выравнивание по центру		
alignr	выравнивание по правому краю		
matrix{}	матрица		

Остальные команды можно найти, воспользовавшись справкой по редактору формул Math. Для этого при активном окне редактора формул нужно выбрать в меню "Help > OpenOffice.Org Help", либо нажать клавишу F1.

широкий пробел

Греческие символы

Греческие символы отсутсвуют в окне выбора и в контекстном меню. Один из способов ввода греческих символов — использовать окно «Каталог»: Сервис > Каталог(Tools > Catalog). Окно показано на рис.2.3.

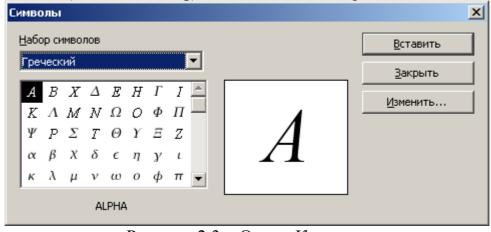


Рисунок 2.3 – Окно «Каталог»

Греческие символы также можно ввести через язык разметки, нужно поставить знак «%» перед названием этого символа по-английски. Регистр выводимого символа будет зависеть от регистра ввода имени символа.

Например		
%alpha	%ALPHA	\boldsymbol{A}
%beta	%BETA	B
%qamma	%GAMMA	

Практическая работа №3. Разработка алгоритма. Блок-схема. Алгоритмические структуры

3.1 Введение

Алгоритм – строго детерминированная последовательность команд описывающая процесс по преобразованию объекта из начального состояния в конечное, написанная на понятном исполнителю языке.

Блок-схема — графическое представление программы или алгоритма с использованием стандартных графических элементов (прямоугольников, ромбов, трапеций и др.), обозначающих команды, действия, данные и т. п.

Правила выполнения блок-схем определяются ГОСТ 19.701-90 (ИСО 5807-85) — Схемы алгоритмов, программ, данных и систем. Условные обозначения и правила выполнения.

Основные символы

Основные символы		
	Данные Данные, носитель данных не определен.	
	Запоминаемые данные Хранимые данные в виде, пригодном для обработки, носитель данных не определен.	
	Процесс Функция обработки данных любого вида (выполнение определенной операции или группы операций, приводящее к изменению значения, формы или размещения информации)	
	Подготовка Модификация команды или группы команд с целью воздействия на некоторую последующую функцию (установка переключателя, модификация индексного регистра или инициализация программы).	
	Решение решение или функция переключательного типа, имеющая один вход и ряд альтернативных выходов, из которых только один может быть активизирован после вычисления условий, определенных внутри этого символа.	

Терминатор Выход во внешнюю среду и вход из внешней среды (начало или конец схемы программы, внешнее использование и источник или пункт назначения данных)
Соединитель Выход в часть схемы и вход из другой части этой схемы; обрыв линии и продолжение ее в другом месте
Комментарий Описательные комментарии или пояснительные записи в целях объяснения или примечания
Линия. Поток данных или управления.
Пунктирная линия. Альтернативная связь между двумя или более символами.

Алгоритмические структуры

1. Линейный алгоритм

Команды в линейном алгоритме выполняются последовательно одна за другой. Такие последовательности называют сериями.

2. Структура «ветвление»

В зависимости от истинности или ложности условия выполняется та или иная серия команд:

если <условие>, то <серия1> иначе <серия2> конец ветвления

Возможен вариант неполного ветвления, когда отсутствует часть «иначе»:

```
если <условие> то <серия> конец ветвления
```

3. Алгоритмическая структура «выбор»

```
выбор при <условие 1> : <серия 1> при <условие 2> : <серия 2> при <условие n> : <серия n> конец выбора
```

4. Алгоритмическая структура «цикл»

Многократное выполнение серии команд (тело цикла). Разделяют следующие типы циклов:

- цикл с параметром (со счетчиком);
- цикл с условием:
 - 1) цикл с предусловием;
 - 2) цикл с постусловием;

Цикл с параметром

Выполнение тела цикла для всех значений некоторой переменной (параметра цикла, счетчика) в заданном диапазоне.

для і от Ін до Ік <тело цикла> конец цикла

Цикл с условием

Выполнение тела цикла, пока истинно условие цикла.

Цикл с предусловием. Условие предшествует телу цикла. Тело цикла может не выполниться ниразу, если условие цикла изначально неверно

пока <условие> выполнять <тело цикла> конец цикла

Цикл с постусловием. Проверка условия происходит после выполнения тела цикла. Поэтому тело цикла выполниться хотя бы один раз.

начало цикла

<тело цикла> пока <условие>

3.2 Задание на практическую работу

- 1. Разработать алгоритмы решения следующих задач:
 - $1.1\,$ Определить площадь треугольника со сторонами $a,\,b$ и c.
- 1.2 Определить, могут ли отрезки с длинами $a,\,b$ и c быть сторонами треугольника.
 - 1.3 Найти среднее арифметическое нечетных элементов заданного

одномерного вектора.

- 1.4 Найти транспонированную матрицу для заданной матрици А.
- 1.5 Найти произведение двух заданных матриц А и В.

Алгоритмы оформить в виде блок-схем.

2. Оформить в виде блок-схемы следующий алгоритм:

```
a=10; b=2; S=10;
```

Пока а>b выполнять

начало цикла

a=a+2:

b=b*2;

S=S+(2a-b);

конец цикла

Рассчитать конечное значение переменной S.

Список рекомендуемой литературы

- 1 Информатика. Базовый курс: учебное пособие для вузов / ред. С. В. Симонович. 2-е изд. СПб.: Питер, 2009
- 2. Лабораторный практикум по информатике: Учебное пособие для вузов/В. С. Микшина, Г. А. Еремеева, К. И. Бушмелева и др; Ред. В. А. Острейковский. -М.: Высшая школа, 2003.-375 с. [5 экз]
- 3. PASCAL 7.0. Практическое программирование. Решение типовых задач: Учебное пособие/ Лала Михайловна Климова. 3-е изд., доп.. М.: КУДИЦ-ОБРАЗ, 2002. 516 с. [2]
- 4. Офицеров Д.В. и др. Программирование на персональных ЭВМ. Практикум.- Минск, Высшая школа. 1993. -256 с. [43экз]

Приложение А

Образец титульного листа отчета

Министерство образования и науки Российской Федерации

Государственное образовательное учреждение высшего профессионального образования «Томский государственный университет систем управления и радиоэлектроники»

Кафедра Электронных приборов (ЭП)

Дисциплина «Информатика»

ОТЧЕТ

по практиче	еской работе
на тему «	<u> </u>
	Выполнил студент гр. 348
	И.О. Фамилия
	«» 20 г
	Проверил
	должность
	И.О. Фамилия
	«»20 г

Учебное пособие

Шандаров Е.С.

Информатика

Методические указания по практическим занятиям

Усл. печ. л. _____ Препринт Томский государственный университет систем управления и радиоэлектроники 634050, г.Томск, пр.Ленина, 40