Министерство образования и науки Российской Федерации Федеральное государственное бюджетное образовательное учреждение

высшего профессионального образования «Томский государственный университет систем управления и радиоэлектроники»

Кафедра электронных приборов

ФИЗИЧЕСКИЕ ОСНОВЫ НАНОТЕХНОЛОГИЙ ФОТОНИКИ И ОПТОИНФОРМАТИКИ

Методические указания к практическим занятиям для студентов направления 200700.68 – Фотоника и оптоинформатика

Орликов, Леонид Николаевич.

Физические основы нанотехнологий фотоники и оптоинформатики: методические указания к практическим занятиям для студентов направления 200700.68 — Фотоника и оптоинформатика / Л. Н. Орликов; Министерство образования и науки Российской Федерации, Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования Томский государственный университет систем управления и радиоэлектроники, Кафедра электронных приборов. - Томск: ТУСУР, 2012. - 24 с.

Материал пособия составлен так, чтобы он способствовал углублению и закреплению теоретических знаний, а также вырабатывал навык в решении практических вопросов и задач. Прежде, чем решать задачу или ответить на вопрос, надо понять их сущность, смысл заданных величин, вспомнить физические процессы, законы и соотношения, относящиеся к данному вопросу.

Предназначено для студентов очной формы, обучающихся по направлению 200700.68 - Фотоника и оптоинформатика по курсу «Физические основы нанотехнологий фотоники и оптоинформатики».

© Орликов Леонид Николаевич, 2012

Министерство образования и науки Российской Федерации Федеральное государственное бюджетное образовательное учреждение

высшего профессионального образования «Томский государственный университет систем управления и радиоэлектроники»

Кафедра электронных приборов

УΊ	ТВЕРЖД	ĮAЮ
3aı	з.кафедр	рой ЭП
		С.М. Шандаров
~	>>	2012 г.

ФИЗИЧЕСКИЕ ОСНОВЫ НАНОТЕХНОЛОГИЙ ФОТОНИКИ И ОПТОИНФОРМАТИКИ

Методические указания к практическим занятиям для студентов направления 200700.62 — Фотоника и оптоинформатика

Разработчик
д-р техн. наук, проф.каф.ЭП
Л.Н.Орликов
2012 г

Содержание

Введение	5
Тема 1. Введение. Основные определения и физические осно)ВЫ
нанотехнологий фотоники.	6
Занятие 1. Безмасляные вакуумные системы для эпитаксии и их расчет (6
Методические указания	6
Пример расчета вакуумной системы	7
Задание	
Тема 2. Эпитаксия, нанесение металлов и диэлектриков.	8
Занятие 1. Расчет параметров формирования нанослоев (скорос	сти,
толщины, массопереноса)	
Методические указания	8
Задачи	. 11
Задание	
Занятие 2. Разработка алгоритма работы эпитаксиального вакуумно	
оборудования	. 12
Задание	
Занятие 3. Расчет параметров газофазных реакций, расчет сорбционны	
диффузионных процессов	
Занятие 4. Расчет электрофизических параметров оборудования	
формирования и обработки эпитаксиальных нанослоев	
Методические указания	
Задачи	
Задание	
Тема 3. Методы оптической литографии. Современные технолог	
оптической литографии: концепции развития, основы нанолитограф	
иммерсионная литография, голографическая литография	
Занятия 1. Решение задач по теме литографии	
Тема 4. Формирование периодических наноструктур в диэлектрических	
полупроводниковых средах с различной размерностью	
Занятие 1. Разработка маршрутной карты для формирования покрыти	
вакууме	
Задание	
Занятие 2. Разработка операционных карт техпроцесса	
Задание	
Занятие 3. Расчет параметров технологичности процесса формирован	
нанослоев	
Методические указания	
Пример решения задач	
Список литературы	. 22

Введение

В результате выполнения и обсуждения практических заданий студенты приобретают следующие компетенции:

- способностью самостоятельно приобретать с помощью информационных технологий и использовать в практической деятельности новые знания и умения, в том числе в новых областях знаний, непосредственно не связанных со сферой деятельности (ОК- 6);
- способностью применять современные методики исследования основных физико-химических свойств оптических стёкол и кристаллов, методики прогнозирования оптических и физико-химических параметров новых материалов (ПК-18);
- способностью целесообразно разрабатывать фотонное устройство на основе существующей элементной базы или подбирать его из уже существующих изделий, выбирать необходимое оборудование и способ контроля параметров устройства (ПК-19);
- способностью к разработке прикладного программного обеспечения для проектирования технологических процессов и оборудования для обслуживания и ремонта приборов и систем фотоники и оптоинформатики (ПК-45).

Тема 1. Введение. Основные определения и физические основы нанотехнологий фотоники.

Занятие 1. Безмасляные вакуумные системы для эпитаксии и их расчет

В результате выполнения и обсуждения практических заданий студенты приобретают следующие компетенции: ОК-6, ПК-1, ПК-45

Методические указания

Для освоения темы требуется повторить методику расчета откачных средств для традиционных масляных вакуумных систем. Отличие в том, что в систему не напускают газ, в качестве средств откачки применяют безмасляные вакуумные насосы.

Мастер-класс по расчету -1 час

Расчет вакуумной системы необходим для определения требуемой производительности откачных средств и времени откачки до рабочего давления.

Суммарный поток газовыделения складывается из газовыделения стенок камеры, газовыделения из изделий, газовыделения из различных вводов в камеру и потока напускаемого рабочего газа.

Поток газовыделения с поверхности камеры Q определяется произведением площади поверхности A на коэффициент удельного газовыделения g и коэффициент поверхности Ω :

$$Q = Ag\Omega. (1.1)$$

Величины удельного газовыделения приводятся в соответствующей справочной литературе (для стекла и керамики $g=10^{-4}\Pi a \text{ m}^3/\text{c} \text{ c} 1\text{m}^2$). Коэффициент поверхности зависит от качества механической обработки материала (для стали достигает 10).

Обычно число вводов в реальной установке больше 10. Поток натекания через такие элементы Q определяется произведением чувствительности течеискателя $\kappa = 10^{-6}$ на число течей N.

$$Q = \kappa N . \tag{1.2}$$

Таким образом, суммарный поток газов в вакуумной камере определится выражением:

$$\sum Q = (Ag\Omega)_{\kappa} + (Ag\Omega)_{u} + \kappa N + Q_{han}, \qquad (1.3)$$

где первое слагаемое относится к камере, второе к детали, третье к течеискателю, четвертое к потоку напускаемого газа. Обычно напускаемый поток составляет $30-80~{\rm cm}^3~{\rm atm/чаc}$. Поскольку заводы выпускают оборудование с производительностью в литрах в секунду, то выбранную величину напуска газа следует умножить на переводной коэффициент $2,4~{\rm x}10^{-4},$ т.е

$$Q_{\text{наn}} = (30-80) \cdot 2,4 \cdot 10^{-4} \text{ тор л/с.}$$

Необходимая скорость откачки высоковакуумного насоса определится отношением суммарного потока в вакуумной камере Q к рабочему давлению P_{pab} , при котором проводится технологический процесс.

$$S_H = \sum Q / P_{pa\delta} . \tag{1.4}$$

Скорость откачки высоковакуумного насоса следует согласовывать со скоростью откачки форвакуумного насоса. Скорость откачки форвакуумного насоса определяется как отношение газового потока на выходе высоковакуумного насоса Q к выходному давлению высоковакуумного насоса $(P_{\text{вых}})$.

$$S_{\phi} = \sum Q / P_{\theta b l X} . \tag{1.5}$$

В большинстве диффузионных насосов выходное давление составляет $P_{\text{вых}} = 10\Pi \text{a} \ (0,1 \text{ мм рт ст})$. В большинстве турбомолекулярных $P_{\text{вых}} = 1\Pi \text{a}$. Электроразрядные насосы вообще не имеют выхода на форвакуумный насос.

Из основного уравнения вакуумной техники следует, что скорость откачки объекта S_o всегда меньше скорости откачки насоса S_h . При проектировании систем, если проводимость коммуникаций неизвестна, выбирают скорость насоса с коэффициентом запаса γ :

$$S_H = \gamma S_O , \qquad (1.6)$$

где γ =1,25 для форвакуумных насосов; γ =2,00 для высоковакуумных насосов.

Время откачки объекта определяется выражением:

$$t = \frac{V \cdot V'}{S_o} \ln \frac{P_1 - \sum Q/S_o}{P_2 - \sum Q/S_n} , \qquad (1.7)$$

где V – объем, откачиваемого объекта;

 $V = 10^3 -$ приведенный объем;

 P_{1}, P_{2} — начальное и конечное давление.

Принимается, что $S_o \approx S_H$

В расчетах времени откачки в диапазоне давлений, когда существенно возрастают газовыделения (от 10 до 0,01 Па и менее) необходимо учитывать приведенный объем V^{\prime} , увеличенный пропорционально уменьшению давления. (Например, обеспечение рабочего вакуума от 10 до 0,01 Па соответствует, уменьшению давления на три порядка). Соответственно, приведенный объем составит величину $V^{\prime}=10^3$).

При откачке на форвакууме (до 10 Па), газовыделениями пренебрегают ввиду их малости. В этом случае время откачки определяют по формуле:

$$t = V / S_{9} (\ln P_{1} / P_{2}). \tag{1.8}$$

Пример расчета вакуумной системы

При объеме камеры V=50 литров

По формуле (1.3) рассчитаем поток газа в вакуумную систему:

$$\Sigma Q = 192 \times 10^{-4} \text{ торл/с}$$

По формуле (1.4) рассчитаем скорость откачки насоса:

$$S_{H} = 192 \text{ } \pi/c$$

С коэффициентом запаса два выбираем высоковакуумный безмасляный насос ТМН-500.

Задание

Каждый студент выбирает процесс из банка индивидуальных заданий. Делается эскиз безмасляной вакуумной системы. Согласовывается с преподавателем объем камеры, необходимость напуска рабочего газа.

Тема 2. Эпитаксия, нанесение металлов и диэлектриков.

Занятие 1. Расчет параметров формирования нанослоев (скорости, толщины, массопереноса)

В результате выполнения и обсуждения практических заданий студенты приобретают следующие компетенции: ПК-1, ПК-18, ПК-19, ПК-45

Методические указания

Для успешного освоения темы требуется повторить разделы по термическому испарению материалов в вакууме.

Из условия равновесия пар-твердое тело, пар-жидкость путем решения уравнений термодинамики получена зависимость давления насыщенного пара от температуры

$$\lg P_{\rm S} = A - \frac{B}{T},\tag{2.1}$$

где P_S - давление насыщенного пара, Π а;

A и B - постоянные, характеризующие вещество;

T - температура испаряемого вещества, K.

Значения A и B для ряда веществ приведены в [1] или в справочниках по вакуумной технике.

Температура вещества, при которой давление насыщенного пара Ps равно 1,33 Па (10^{-2} торр), называют условной температурой испарения.

При Ps меньших 10^{-2} Па и давлении остаточного газа в технологической камере не более 10^{-2} Па скорость испарения, т.е. количество вещества, покидающее единицу поверхности испарителя в единицу времени, определяется:

$$W = P_S \sqrt{\frac{m}{2\pi\kappa T}} ,$$

где W - скорость испарения, кг / (м² · c);

m - масса молекулы, кг;

 κ - постоянная Больцмана;

T- температура испарения, K.

Поток испаренного вещества, приходящийся на единицу телесного угла, есть

$$dM = \frac{M}{4\pi}$$

где M - общее количество вещества, испаренного с испарителя dS_1 за время t, кг.

В пределах пространственного угла $d\omega$ на площадку dS_2 подложки поступает

$$dM = \frac{M}{4\pi} d\omega, \qquad (2.2)$$

Через любое сечение конуса, ограниченного $d\omega$, проходит один и тот же поток. Сечение конуса сферической поверхностью с центром в dS_1 и радиусом, равным единице, дает меру телесного угла конуса $d\omega$. Если нормаль к dS_2 составляет угол φ с осью конуса, а расстояние от dS_1 до площадки dS_2 есть r, то

$$d\omega = \frac{dS_2 \cdot \cos \varphi}{r^2} \,. \tag{2.3}$$

Количество вещества, поступающего на единицу поверхности подложки, с учетом выражения (2.12) и (2.13) есть

$$dM = \frac{M}{4\pi} \cdot \frac{\cos \varphi}{r^2} \tag{2.4}$$

Это количество обратно пропорционально квадрату расстояния от испарителя до приемной поверхности (подложки) и прямо пропорционально косинусу угла, составляемого направлением потока с нормалью к подложке.

Толщину пленки можно определить через плотность и объем конденсата на подложке

$$dM = \rho \cdot dV = \rho \cdot dS_2 \cdot d , \qquad (2.5)$$

где ρ - плотность конденсата;

V - объем конденсата;

d - толщина пленки на подложке.

С учетом выражения (2.5) и (2.4) получаем выражение для толщины пленки

$$d = \frac{M}{4\pi\rho} \cdot \frac{\cos\varphi}{r^2},\tag{2.6}$$

Если подложка представляет собой плоскую поверхность, расположенную на расстоянии h от испарителя, то толщина пленки на подложке в любой точке A с координатами X, Y может быть определена по выражению:

$$d(x,y) = \frac{M}{4\pi\rho} \cdot \frac{h}{(h^2 + x^2 + y^2)^{3/2}}.$$
 (2.7)

Толщина пленки над испарителем (точка 0 при X=0, Y=0)

$$d_o = \frac{M}{4\pi\rho} \cdot \frac{1}{h^2} \tag{2.8}$$

Отношение толщин в точках A и θ будет:

$$\frac{d(x,y)}{d_o} = \frac{h^3}{(h^2 + x^2 + y^2)^{3/2}} = \frac{1}{(1 + \frac{x^2}{h^2} + \frac{y^2}{h^2})^{3/2}}.$$
 (2.9)

Расчет толщины наносимой пленки в случае поверхностного испарителя

Для поверхностного испарителя количество испаряемого вещества зависит от направления испарения. В соответствии с законом косинуса Ламберта-Кнудсена количество вещества, проходящего в телесном угле $d\omega$ по направлению r, образующему угол θ с нормалью к поверхности испарителя, равно

$$dM = \frac{M}{\pi} \cdot \cos\theta \cdot d\omega \ . \tag{2.10}$$

Используя формулы (2.5 - 2.9) и учитывая формулу (2.10) можно получить выражение для толщины пленки, конденсированной в любой точке A подложки, находящейся параллельно плоскости испарителя

$$d(x,y) = \frac{M}{\pi \rho} \cdot \frac{h^2}{(h^2 + x^2 + y^2)^2}.$$
 (2.11)

Соответственно отношение толщин пленки в точках A и θ будет

$$\frac{d(x,y)}{d_o} = \frac{h^4}{(h^2 + x^2 + y^2)^2} = \frac{1}{(1 + \frac{x^2}{h^2} + \frac{y^2}{h^2})^2}.$$
 (2.12)

Выражения (2.10) и (2.12) используются для оценки равномерности толщины пленки на подложке при использовании соответствующих испарителей.

Количество газа Q , выделевшегося или откачанного вакуумной системой объемом V определяется тем, насколько произойдет изменение давления ΔP за время Δt

$$Q = V \Delta P / \Delta t$$

Примеры решения задач

Задача 2.1 В процессе термовакуумного испарения испарилась навеска весом 10^{-4} кг. При расстоянии до подложки 0,2 м определить толщину полученной пленки. Плотность материала навески принять равной 7,6 г/см³.

Решение. Толщина образующейся пленки определяется по формуле:

$$d=G/4 \pi L \rho$$

где G-вес испарившегося вещества, L-расстояние между испарителем и подложкой, ρ - плотность материала кг/м³ . Ответ: 5 E-5

Задача 2.2. Оценить удельную скорость конденсации пленки углерода с парциальным давлением 1 Па при проведении процесса эпитаксии, если температура подложки составляет 500 градусов Кельвина. Коэффициент конденсации принять равным 0,2.

Решение. Скорость конденсации пленки при термическом испарении определяется выражением:

V=f P/
$$\sqrt{(2\pi mkT)}$$
,

где f-коэффициент конденсации, P -давление паров испаряемого материала, m-молекулярный вес конденсируемого материала, k- постоянная Больцмана ($k=1,38E-23~\rm{Д} \rm{ж/K}$). Ответ: $0,9~E8~\rm{m/c}$

Задача 2.3. Определить количество газа, поглощенного парами титана за время напыления пленки с подложки площадью 1E-2 м^2 в течение 5 секунд, если давление в системе изменилось от 11E-2 до 1E-2 Па. Константа равновесия равна 2. Давление паров титана равно 1 Па.

Решение. Q=kFt(P1-P2)/ ln(P1-P2). Ответ: 0,4

Задачи

Задача 2.4. Определить изменение давления за время напыления пленки в течение 10 сек в камере объемом $0,1\,\mathrm{m}^3$, если количество поглощенного газа составляет $10^{-2}\,\mathrm{\Piam}^3/\mathrm{c}$.

Подсказка.
$$Q = V \Delta P / \Delta t$$

Задача 2.5. Определить КПД испарения, если испарение происходит с поверхности проволочного испарителя. Площадь подложки S_1 составляет 10^{-3} м². Расстояние до испарителя r=0,5 м.

Подсказка. КПД= Sп/Su; Поверхность шара Su= $4\pi r^2$.Ответ: 0,03 %.

Задача 2.6. При измерении толщины титановой пленки «на просвет» показания тока с регистрирующего прибора уменьшились в 2 раза (от 100 до 50 мкА). Определить толщину пленки, если постоянная прибора для титана $K=10^{-6}$.

Решение. I= Io exp(-kd); lnI=-kd lnIo; d=ln100/10⁶ ln50. Ответ: 1.1Е-6м

Задача 2.7. Суммарный поток газовыделения в вакуумную камеру ΣQ составляет 0,02 Па м³/с. Процесс должен проводиться при давлении P_H = 10^{-2} Па. Определить необходимую производительность высоковакуумного насоса S.

Подсказка. $S=\sum Q/P_H$ Задание

1. Провести расчеты массопереноса на подложку и толщины пленки по теме самостоятельного задания.

Занятие 2. Разработка алгоритма работы эпитаксиального вакуумного оборудования

В результате выполнения и обсуждения практических заданий студенты приобретают следующие компетенции: ОК-6, ПК-1, ПК-45

На рисунке 2.1 представлена вакуумная схема установки эпитаксии типа «Катунь».

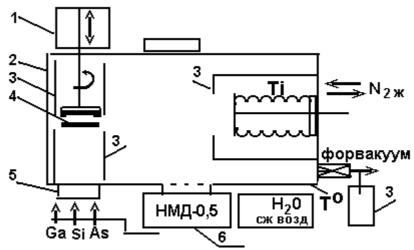


Рисунок 2.1 – Схема установки МЛЭ. 1-манипулятор, 2-вакуумная камера, 3-криосорбционный насос, 4-подложка, 5- испарители, 6- электроразрядный насос

Таблица 2.1 – Общая схема запуска установки молекулярно-лучевой эпитаксии

Закрыть все	Запуск	Откачка 10 мин.	Запуск крио	Откачка
вентили→	форвакуумно	Прогрев	сорбционных	20 минут →
	го насоса	вакуумной	насосов вне камеры	
		камеры		
Запуск	Откачка 40	Запуск крио	Контроль вакуума	Откачка
электро	минут	сорбционных	<0,01∏a	20 минут→
разрядного		насосов в камере		
насоса→				
Прогрев	Запуск	Обезгаживание	Формирование	Отжиг пленки
подложки до	Титановых	испарителя	пленки, 1000°C, 5	200^{0} ,
$200^{0} \mathrm{C}$	насосов	$(200^{0}C)$	сек, 0,5 мкм	30 мин
5^0 /мин \rightarrow				

На рисунке 2.2 представлена общая схема подготовки подложек (очистка) В каждой конкретной ситуации в общую схему могут добавляться

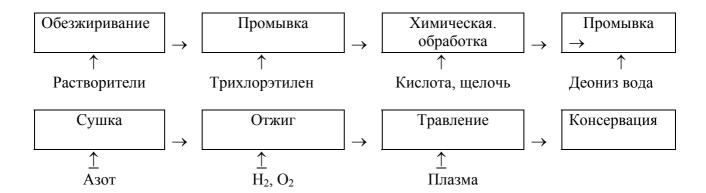


Рисунок 2.2 – Общая схема подготовки подложек

Задание

Составить схему подготовки подложек к своему заданию. Составить алгоритм включения установки.

Занятие 3. Расчет параметров газофазных реакций, расчет сорбционных и диффузионных процессов

В результате выполнения и обсуждения практических заданий студенты приобретают следующие компетенции: ПК-1, ПК-18

Задача 2.8. Определить абсолютную величину изобарного потенциала процесса формирования TiO2 при напылении титана . Температура испарителя 14000 К, парциальное давление паров титана 1,1 Па.

Решение. ΔZ =-RTlnPi; R=8,3 Дж/мольК. Ответ: 1107,5

Задача 2.9. Определить поток газовыделения с поверхности 6 экранов, каждое из которых имеет размеры 0,2x0,2 м. Удельные газовыделения принять равными 4,5E-5 Па м3/с

Подсказка. Q = g*A. Ответ: 40,5 E-5.

Задача 2.10. За время очистки токовводов методом прокаливания в вакууме в течение 2000 с давление в вакуумной камере объемом 0,1 м3 изменилось от 10 Е-3 до 10Па. Считая производительность откачных средств постоянной, определить поток десорбции.

Подсказка. Q=V(dP/dt) Ответ: 5E-4.

Задача 2.11. Рассчитать скорость травления изделий из стали при использовании в качестве ионообразующего газа аргона с плотностью ионного тока 1 А/м2, при ускоряющем напряжении до 10 кВ. Плотность материала принять равной 7,6 г/см3, число Авогадро принять равным 6Е23. Коэффициент травления К принять равным 10-4.

Подсказка. При ускоряющих напряжениях до 10 кВ скорость травления рассчитывается по формуле:

V=(6,23x1025x JxKxMi)/(Nx)

где Ј- плотность тока (A/м2),N-число Авогадро N=6x1023, ρ - плотность материала $\kappa r/м3$, Mi-масса иона (для аргона Mi=40) Ответ: 52 E-6

Задача 2.12. Определить абсолютное число молекул воды, проходящих через стенку вакуумной камеры толщиной 5Е-3 м и площадью 1 м2 из атмосферного давления в вакуум с давлением 10 Е-4 Па. Коэффициент диффузии принять равным 10 Е-5 м2 /с. Концентрацию паров воды атмосферном давлении принять равной 53E19. Убыль концентрации от давления считать линейной.

Подсказка. g1= -D(n1-n2)/2h= 10-5 ($0.53 \times 1019 - 0.53 \times 1010$)/2x 0.005 Ответ: 5.3×15 .

Задача 2.13. В водородную печь для очистки деталей подается водород с парциальным давлением 200 Па. Какое парциальное давление составляют пары воды, если константа равновесия паров по отношению к водороду равна двум.

Подсказка. Кр=РН2О/РН2 Ответ: 400 Па.

Задача 2.14 Скорость травления поверхности вглубь при очистке в 1,5 раза превышает скорость травления вдоль поверхности. Определить показатель анизотропии.

Подсказка. $\hat{K} = V \downarrow / V \rightarrow$; Ответ: 1,5

- Задача 2.15. В вакуумной камере стальная проволока перематывается с барабана на барабан через ионный поток, проводящий ее очистку от газов. Определить глубину очистки, если время пребывания проволоки под пучком ионов составляет 10 сек. Коэффициент диффузии принять равным 10 Е-7 м2 /с. Подсказка. h=2 \sqrt{Dt} Ответ: 2 Е-3
- **Задача 2.16.** В вакуумной камере должно проводиться обезгаживание свинцового испарителя. Определить максимальную температуру обезгаживания, если температура плавления свинца составляет 3430 С.

Подсказка. Тоб= 0,75 Т пл. Ответ: 262

Задача 2.17. Температура плавления вольфрама составляет 28000 С. Учитывая, что вольфрам подвержен рекристаллизации, определить максимальную температуру обезгаживания.

Подсказка. Т об= Т рек= 0,4 Т пл Ответ:700

Задача 2.18. Рассчитать температуру восстановительного отжига кристалла ниобата лития для снятия дислокаций после ионного травления, если температура плавления кристалла равна 14000 К.

Подсказка. Температура восстановительного отжига определяется соотношением: Тв= 0,5 Т пл . Ответ: 700

Занятие 4. Расчет электрофизических параметров оборудования для формирования и обработки эпитаксиальных нанослоев

В результате выполнения и обсуждения практических заданий студенты приобретают следующие компетенции: ОК-7, ПК-18, ПК-19, ПК-37, ПК-45, ПК-49

Методические указания

Некоторые соотношения для расчета электрофизических параметров приведены в таблице 4.1.

Таблица 4.1

	Параметр	Формула
1	Скорость электрона или иона в электрическом	$V_e = \sqrt{\frac{2eU}{m}}$
	поле в вакууме	$v_e = \sqrt{m}$
2	Электронная температура (T_e)	$\frac{3}{2}kT_{e} = eU_{i}$
3	Плотность электрического тока	J=I/S
4	Плотность эмиссионного тока	$J=I/S_9$
5	Напряженность поля	E=U/d
6	Концентрация плазмы	$J=en_eV_e$
7	Пробег молекулы газа (λ_{2a3})	$(\lambda_{eas})=5\cdot10^{-5}/P$
8	Пробег иона	$\lambda_{i} = \sqrt{2} \lambda_{2a3}$ $\lambda_{e} = 4 \sqrt{2} \lambda_{2a3}$
9	Пробег электрона	
10	Дебаевский радиус	$r = \sqrt{\frac{T_e}{n}} cM$
11	Напряжение пробоя (B=300, A=15, d=4 см)	$U = \frac{Bpd}{\ln[Apd / \ln(1/\gamma)]}$
12	Диаметр электронного пучка	$d = (I/U)^{3/8}$

Задачи

Задача 2.19. Рассчитайте мощность электронного источника для изготовления отверстий в подложках микросхем. Принять : a=10E-4, энергия испарения L=20 Дж/см², плотность материала $\rho=7.6$ г/см³, диаметр пучка d=0.01 см, глубина проникновения температуры луча $\delta=0.5$ см.

Указания. Р= $4aL \rho \delta/d^2 = 4x10^{-4} x20x7,6x0,5/0,01$. Примечание: 1 вт= 1дж/сек. Ответ: 30 Вт

Задача 2.20. Вычислить глубину проникновения электронов в сталь в процессе электронно-лучевой сварки при напряжении 50 кВ.

Подсказка. $R = 2.2x 10E-12 \text{ xUE2}/\rho$. Ответ: 1,4E-6

Задача 2.21. Рассчитайте критическую плотность мощности, которую необходимо развить электронно-лучевому источнику с длительностью импульса 10мс для начала процесса испарения стали при размерной обработке материала. Принять коэффициент температуропроводности a=10E-4, плотность материала принять равной $7.6 \, \text{г/см}^3$. Удельная теплота испарения $L=20 \, \text{Дж/см}^2$.

Методическое указание. Критическая плотность мощности определяется по формуле:

 $g=\rho$ L $\sqrt{a/t}$,где t-длительность импульса. Ответ: 15,2 вт/см²

Задание

Оценить мощность электронно-ионного источника применительно к своему индивидуальному заданию.

Тема 3. Методы оптической литографии. Современные технологии оптической литографии: концепции развития, основы нанолитографии, иммерсионная литография, голографическая литография

Занятия 1. Решение задач по теме литографии

В результате выполнения и обсуждения практических заданий студенты приобретают следующие компетенции: ОК-7, ПК-18, ПК-19, ПК-37, ПК-45, ПК-49

- **Задача 3.1.** Рассчитать время сканирования электронорезиста с числом элементов 10E8 при плотности тока 1 A/cm^2 . Коэффициент чувствительности принять равным 10E-6.
- **Задача 3.2.** При ширине резистора 0,5 мм, рассчитать длину диффузионного резистора для толстопленочной микросхемы для получения резистора с сопротивлением 1 кОм. Удельное поверхностное сопротивление принять равным Rn=80 ом/квадрат.
- Задача 3.3. Определить глубину легирования полупроводника примесью за время 4 часа при коэффициенте диффузии Е-7. Допустить, что отношение поверхностной концентрации основных носителей No к концентрации примеси Np составляет два порядка. Ответ округлить.

- **Задача 3.4.** Рассчитать энергию фотона для проведения процесса фотолитографии на длине волны 0,4 мкм.
- **Задача 3.5.** Рассчитать энергию электрона для проведения процесса электронолитографии при напряжении 15 кВ.
- **Задача 3.6.** Рассчитайте длину волны, соответствующую электрону при проведении процесса электронолитографии на напряжении 20 кВ.
- **Задача 3.7.** Рассчитайте концентрацию примеси на расстоянии 1 см от поверхности через 2 часа диффузии из напыленной пленки, если поверхностная концентрация $No=E17\ 1/cm^3$. Значение вероятности диффузии равно 0,8, коэффициент диффузии $D=10E7\ 1/cm^2$
- **Задача 3.8.** Рассчитайте коэффициент диффузии титана в танталат висмута при температуре 1000^0 К . Энергия активации процесса Ea=4,2 эВ, Коэффициент стационарной диффузии Do=1E10.
- **Задача 3.9.** Диаметр электронного пучка для литографии составляет do=10,25 мкм. Рассчитать возможный диаметр пучка с учетом дифракции электронов на фотошаблоне. Угол сходимости пучка б= 0,1 рад. Ускоряющее напряжение равно 10 кВ.
- **Задача 3.10.** Рассчитать яркость электронного пучка для электронолитографии, если плотность тока эмиссии при температуре катода 2000^0 K равна 1A/m^2 при ускоряющем напряжении 10 kB
- Тема 4. Формирование периодических наноструктур в диэлектрических и полупроводниковых средах с различной размерностью
- Занятие 1. Разработка маршрутной карты для формирования покрытий в вакууме
- В результате выполнения и обсуждения практических заданий студенты приобретают следующие компетенции: ПК-1, ПК-35

Мастер-класс

Построим последовательность технологических операций (рис.3.1) для формирования покрытий в вакууме

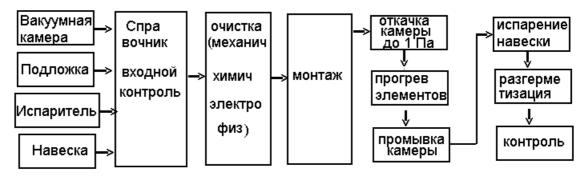


Рисунок 3.1 – Общая схема последовательности технологических операций (маршрутная карта)

Задание

Сформировать маршрутную карту для своего индивидуального задания.

Занятие 2. Разработка операционных карт техпроцесса

В результате выполнения и обсуждения практических заданий студенты приобретают следующие компетенции: ПК-19, ПК-49

Мастер класс. Пример разработки операционных карт формирования оксидных нанослов на основе цинка.

В качестве подложки используется стекло. Поверхность стекла по литературным данным подвержена аморфизации и на нем большие локальные перепады высоты поверхности (по 0,12 мкм). Для восстановления стекла проводится термическая полировка. Стекло следует прогревать при температуре 450 градусов в течение 4 часов. В таблицах 3.2 - 3.6 представлены операционные карты процесса изготовления волноволного оптического слоя на основе окиси цинка.

Таблица 3.2 – Операционная карта подготовки стекла

No	Операция	Материал	Марка	Примечание
1	Выбор марки стекла	Справочник	C 8-93	
2	Раскрой	Стеклорез		
3	Боковая разметка	Наждак		
4	Очистка	Ткань, ацетон	Пинцет	
5	Анализ чистоты	Микроскоп	МИМ 7	
6	Укладка на фланец	Нерж		
7	Нагрев 5град/мин	Выдержка 5 часов	Печь СУОЛ	
8	Остывание в печи			

Таблица 3.3- Операционная карта подготовки цинка

	Two man of the control of the man and the control of the control o					
$N_{\underline{0}}$	Операция	Средства				
1	Выбор марки цинка	справочник	технический			
2	Раскрой	кусачки	Слесарные			
3	Очистка	механич	Нож			
4	Анализ чистоты	Микроскоп	МБС			
5	Переплавка при 760 тор	Железная емкость	0,2 л			

Таблица 3.4 – Операционная карта формирования пленки окиси цинка

No	Операция	Параметр	Указания
1	Откачка до 10 Па	5 мин	Форвакуум
2	Прогрев подложки 5 гр/мин	До 2000 С	
3	Откачка до 1 Па		Форвакуум
4	Промывка камеры водой	Дозатор	
5	Прогрев испарителя		(0,8 Тпл)
6	Снять нагрев подложки		
7	Испарение (1 сек)	Δ=0,1 мкм	
8	Промывка камеры		
9	Испарение (1 сек)	Δ=0,2 мкм	
10	Промывка камеры		
11	Испарение (1 сек)	Δ=0,3 мкм	

Таблица 3.5 – Контроль покрытия

No			
1	Визуальный контроль		
2	Измерение толщины	Микроскоп	МИИ-4
3	Измерение сплошности покрытия	Микроскоп	МИМ7
4	Измерение поверхностного сопротивления	Изм. мост	P-37

Таблица 3.6 – Процесс окисления в барокамере

$N_{\underline{0}}$						
	Заправка: генератор	Камера объем 0,1 л	1	час,	100	Кубик кирпича
	пара+стекло		гра	ад		

Задание

Составить операционные карты для своего индивидуального задания

Занятие 3. Расчет параметров технологичности процесса формирования нанослоев

В результате выполнения и обсуждения практических заданий студенты приобретают следующие компетенции: ПК-19, ПК-49

Методические указания

Для освоения данной темы полезно ознакомиться с литературой по оценке технологичности. В таблице 3.7 представлены показатели стандартизации, унификации, технологичности и готовности к проведению процесса эпитаксии.

Таблица 3.7 – Показатели стандартизации, унификации и технологичности

No	Заготовительные операции 000001, сварка 000005	Примечание
1	Класс точности: требуемый класс точности/ точность	$K_{\rm T} = K_{\rm TP}/K_{\rm of}$
1	оборудования (Литье-7 класс, Токарный -3 класс,	$K_{\rm T} = 3/3$
	Координатный-1 класс)	
2	Коэффициент новизны: число принципиально новых	$K_H = N/N_0$
	деталей/ общее число деталей	Новизны нет
3	Коэффициент сложности: число разработанных	K _{cII} =N/N _a
	деталей/ число подобных в аналоге	Сложных нет
4	Коэффициент использования материала: масса	$K_{\text{M}}=M_{\text{M}}/M_{\text{3}}$
	детали/масса заготовки	$K_{\text{\tiny M}} = 0.5/1 = 0.5$
5	Коэффициент прогрессивной технологии: количество	0
	изготовленных за один прием/количество переходов	
6	Масса заготовки по аналогу: масса аналога х	$M_3 = M_a \cdot K_p$
	коэффициент размера	, , , , , , , , , , , , , , , , , , ,
7		траты/машинные+ ручные
	$K = \sum \beta_{mau} / \left(\sum \beta_{mau} + \sum \beta_{pyq}\right)$	
8	Коэффициент параллельности – отношение времени	
	параллельной работы над деталью/ к времени всего	
	процесса.	
9	Коэффициент освоенности K_o отношение числа	$K_o = \sum N_c / \sum N$
	деталей, приобретенных «на стороне» N_c к сумме	_ <i>_</i>
	всех деталей изделия N без крепежа	
10	Коэффициент стандартизации изделия K_{cm} : число,	$K_{cm} = \left(N_{cmo} + N_{n}\right)/N$
	стандартных деталей $N_{cm,o}$ к числу покупных N_n :	cm (- · cm.o · · · n) · · ·
	crangapinon Actasion 1, cm.o it mostly nonly million 14 n.	
11	Коэффициент повторяемости: (K_n) – отношение	$V = \lambda I / \lambda I$
11	•	$K_{n} = N_{op} / N_{np}$
	числа оригинальных деталей $N_{\it op}$, к числу проекций	
12	Коэффициент стабильности процесса K_c –	$K = \delta / \sum \delta$
	отношение мгновенного отклонения	с м'Д
	контролируемого параметра $\delta_{\scriptscriptstyle M}$ к средне	
	квадратичному отклонению всех параметров δ	
13		V = (S - S)/S + S
	поэффициент настроенности	$K_{_{H}} = (\delta_{_{ca}} - \delta_{_{\partial on}}) / \delta + \delta_{_{np}}$
	среднеарифметического параметра δ_{ca} без допуска на	
	отклонение размеров $\delta_{\partial on}$ к среднеквадратичному	
	отклонение размеров ••• к среднеквадратичному я	
	отклонению всех параметров δ , включая цену	
	деления измерительных приборов δ_{np} :	
14	Коэффициент прямоточности K_{npm} : отношение	$K_{npm} = S_m / (S_m + S_n)$
	общего числа связей (станков) S_m к сумме общих и	$-np_M \sim m' (\sim m \cdot \sim n)$
	обратных S _n связей	
	Средний коэффициент общей готовности: 1-по	$K_H = N/N_o$
	инструменту; 2- по документации; 3- по оснастке для	
	каждой операции	

Таблица 3.8 – Показатели готовности к проведению процесса (норматив 0,6)

Показатели	К
Условный коэффициент весомости в ядре процесса	0,3
Степень обеспеченности материалами	0,9
Степень обеспеченности спец. инструментом	0,7
Степень обеспеченности средствами метрологического контроля	1
Интегральная обеспеченность	

Пример решения задач

Задача 3.4. Рассчитать коэффициент использования материала при изготовлении изделия массой 5 кг. Масса аналога 10 кг. Коэффициент изменения размеров Кр=2.

Решение. Коэффициент использования материала в изделии массой Ми относительно массы заготовки Мз насчитывается по формуле: Ки=Ми /Мз; Масса заготовки с учетом базовых показателей технологичности может быть рассчитана по массе аналога Ма через коэффициент изменения размеров Кр: Мз= Ма Кр.

Находим $M_3=10x2=20$; $K_{\text{И}}=5/20=0,25$

Ответ: 0,25

Задача 3.5. Рассчитать эрготический показатель автоматизации технологического процесса, если при его выполнении тратится 3 кВтч машинных затрат и 2кВч на ручной труд.

Решение. Эрготический показатель-это показатель автоматизации, рассчитываемый по объему машинных и ручных работ.

$$K = \sum \exists Mam / (\sum \exists Mam + \sum \exists pyy)$$

Ответ: 0,6.

Задача 3.6 Определить показатель параллельности процесса при термовакуумном напылении пленок, если весь процесс напыления длился 4 часа, а суммарное время параллельно включенных блоков составило 1 час. Ответ дать в процентах.

Решение. Коэффициент параллельности – это отношение времени параллельной работы к времени всего процесса

Ответ: 25.

Задача 3.7. Рассчитать время изготовления партии микросхем в количестве 100 шт, если время подготовки оборудования составляет Тподг=10ч, время изготовления каждой микросхемы t_i = 0,5 часа, время контроля tk= 0,1ч, планируемые отказы по организационно-техническим причинамТот= 5 ч. Коэффициент использования оборудования Ки=0,5.

Решение. Тизг= Тподг+ $\sum_{m} ti/ki$ +Тк x m +Тот = 10 + (0,5 x 100) / 0,5 + + (0,1 x 100)+5=125 Ответ: 125.

Задачи

- Задача 3.8 Рассчитать коэффициент освоенности изготовления изделия, если число покупных комплектующих Nn=10, число стандартных изделий в отрасли Nc=5, число заимствованных деталей с соседнего завода N3=8, число нестандартных деталей Nнc=2, общее число деталей в изделии N=100, число крепежных стандартных изделий Ncт=20. Ответ дать в процентах.
- **Задача 3.9** Рассчитать процент стандартизации изделия Кст, если число стандартных изделий подобного типа в отрасли Nст.о =8, число покупных деталей Nn=10, а число стандартных изделий без крепежа Ncт=60
- **Задача 3.10.** Рассчитать процент использования прогрессивной технологии при формообразовании изделий, если из 8 кг заготовок 3 кг составляют чистовые.
- **Задача 3.11.** Рассчитать коэффициент повторяемости изделий, если число оригинальных деталей в изделии N=2,а суммарное число проекций этих изделий в чертежах равно 8.
- **Задача 3.12.** Рассчитать коэффициент стабильности процесса, если дисперсия мгновенного распределения контролируемого параметра 6m=0,1, а средне квадратичное отклонение всех параметров 6m=0,8.
- Задача 3.13. Рассчитать коэффициент настроенности линии производства радиоплат, если среднеарифметическое значение толщины стенки равна бса=0.6 мм, средние поля допусков размеров бдоп=0.18 мм, среднеквадратичное отклонение всех параметров 6=0.5 при цене деления измерительных приборов 60.

Список литературы

1. Александров С. Е., Греков Ф. Ф. Технология полупроводниковых материалов: Учебное пособие. 2 е изд., испр. — СПб.: Издательство «Лань», 2012. — 240 с.: ил. — (Учебники для вузов. Специальная литература). ISBN 978 5 8114 1290 7 Режим доступа: http://e.lanbook.com/view/book/3554/

- 2. Основы физики плазмы: Учебное пособие. 2-е изд., испр. и доп. / Голант В.Е., Жилинский А.П., Сахаров И.Е. СПб.: Издательство "Лань", 2011. 448 с. ISBN 978-5-8114-1198-6. Режим доступа: http://e.lanbook.com/view/book/1550/
- 3. Процессы микро- и нанотехнологии : учебное пособие для вузов / Т. И. Данилина [и др.] ; Федеральное агентство по образованию, Томский государственный университет систем управления и радиоэлектроники. Томск : ТУСУР, 2005. 316 с. : ил., табл. Библиогр.: с. 310-313. ISBN 5-86889-244-5
- 4. Задачник по электронным приборам: Учебное пособие для вузов / В. А. Терехов. 3-е изд., перераб и доп. СПб.: Лань, 2003. 276[12] с.: ил. (Учебники для вузов. Специальная литература). Библиогр.: с. 276-277. ISBN 5-8114-0503-0
- 5. Процессы и установки электронно-ионной технологии : учебное пособие для вузов / В. Ф. Попов, Ю. Н. Горин. М. : Высшая школа, 1988. 256 с. : ил. Библиогр.: с. 250-251. Предм. указ.: с. 252-253. ISBN 5-06-001480-0.
- 6. 4. Физико-химические процессы в технологии РЭА: Учебник для вузов / Владимир Николаевич Черняев. М.: Высшая школа, 1987. 375[1] с.
- 7. Молекулярно-лучевая эпитаксия : учебное пособие / Л. Н. Орликов ; Федеральное агентство по образованию, Томский государственный университет систем управления и радиоэлектроники, Кафедра электронных приборов. Томск : ТУСУР, 2007. 107 с. : ил., табл.
- 8. Специальные вопросы технологии: учебное пособие / Л. Н. Орликов; Федеральное агентство по образованию, Томский государственный университет систем управления и радиоэлектроники, Кафедра электронных приборов. Томск: ТУСУР, 2007. 229 с.: ил., табл.
- 9. Приборы и техника эксперимента / Российская Академия Наук (М.), Институт физических проблем им. П.Л. Капицы. М.: Наука. Выходит раз в два месяца. ISSN 0032-8162 с 2008 по 2012 г.г.
- 10. Известия ВУЗов: научный журнал. Физика / Министерство образования Российской Федерации (Томск), Томский государственный университет. Томск: СФТИ. URL: http://wkap.nl/journals/rupj. Выходит ежемесячно. ISSN 0021-3411 с 2008 по 2012 г.г.
- 11. Известия ВУЗов: научно-технический журнал. Электроника / Министерство образования Российской Федерации (М.), Московский государственный институт электронной техники. М.: МИЭТ, 1996 . Выходит раз в два месяца. ISSN 1561-5405 с 2008 по 2012 г.г.
- 12. Электроника: Реферативный журнал. М. : ВИНИТИ. С 1998 г. на CD-ROM. ISSN 0206-5452 с 2008 по 2012 г.г.

Учебное пособие

Орликов Л.Н.

Физические основы нанотехнологий фотоники и оптоинформатики

Методические указания к практическим занятиям

Усл. печ. л. ____Препринт Томский государственный университет систем управления и радиоэлектроники 634050, г.Томск, пр.Ленина, 40