МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ

ТОМСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ СИСТЕМ УПРАВЛЕНИЯ И РАДИОЭЛЕКТРОНИКИ (ТУСУР)

Кафедра сверхвысокочастотной и квантовой радиотехники (СВЧиКР)

ИССЛЕДОВАНИЕ ВЛИЯНИЯ ЗЕМЛИ НА ИЗЛУЧЕНИЕ АНТЕНН

Руководство к лабораторной работе по дисциплинам «Электродинамика и распространение радиоволн», «Электромагнитные поля и волны» для бакалавров направлений подготовки: 210700.62 «Инфокоммуникационные технологии и системы связи»; 210400.62 «Радиотехника», специалистов направления подготовки; 210601.65 «Радиоэлектронные системы и комплексы».

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ

ТОМСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ СИСТЕМ УПРАВЛЕНИЯ И РАДИОЭЛЕКТРОНИКИ (ТУСУР)

Кафедра сверхвысокочастотной и квантовой радиотехники (СВЧиКР)

УТВЕРЖДАЮ Зав. каф. СВЧиКР

_____С.Н.Шарангович "____"____2013 г

ИССЛЕДОВАНИЕ ВЛИЯНИЯ ЗЕМЛИ НА ИЗЛУЧЕНИЕ АНТЕНН

Руководство к лабораторной работе по дисциплинам «Электродинамика и распространение радиоволн», «Электромагнитные поля и волны» для бакалавров направлений подготовки: 210700.62 «Инфокоммуникационные технологии и системы связи»; 210400.62 «Радиотехника»; специалистов направления подготовки 210601.65 «Радиоэлектронные системы и комплексы».

> Разработчики: доц. каф. СВЧ и КР _____ Ж.М. Соколова проф. каф. СВЧ и КР _____А.Е. Мандель доц. каф. СВЧ и КР _____А.В.Фатеев Зав.лаб. ЭДиРРВ _____А.Н. Никифоров

Содержание

1.Введение	4
2. Теоретические сведения	4
2.1. Характеристики антенн в свободном пространстве	4
2.2 Влияние земли на ДН вибраторов	7
3. Описание экспериментальной установки	10
4. Порядок выполнения работы	11
5. Расчетное домашнее задание	12
6. Содержание отчета	13
7. Контрольные вопросы	13
8. Список литературы	13

1. Цель работы

* Изучить теоретические вопросы влияния проводящей земли на диаграммы направленности антенн (ДН), расположенных вблизи её поверхности;

* Экспериментальное измерение сигнала в точке приема для вертикального и горизонтального вибраторов передающей антенны для двух значений высоты подвеса - h.

* Расчет и построение диаграмм направленности для вертикального и горизонтального вибраторов для двух заданных значений высоты подвеса передающей антенны – h.

* Для случаев, когда теоретические ДН не рассчитываются, следует рассчитать направления максимумов и минимумов ДН по формулам (2.8) и (2.9), и нанести их на экспериментальные ДН.

2. ТЕОРЕТИЧЕСКИЕ СВЕДЕНИЯ

2.1. Характеристики вибраторов (антенн) в свободном пространстве

Антенна, расположенная вблизи земли или какого-либо объекта – самолета, ракеты, корабля и т.п., является неотъемлемой частью любой линии радиосвязи. В этом случае характеристики антенн, как правило, существенно отличаются от характеристик тех же антенн, расположенных в свободном пространстве. Происходит это в основном из-за интерференции прямых волн и волн, отраженных от поверхности земли или объекта. Явления интерференции электромагнитных волн являются основополагающими в теории электромагнитных волн, они лежат в основе теории антенн, распространения радиоволн, устройств СВЧ и других смежных дисциплин. Поэтому прочное закрепление этих понятий на лабораторном практикуме является очень важным.

В данной лабораторной работе в качестве передающей антенны используется симметричный полуволновой вибратор, а в качестве земли - плоский металлический лист, который с достаточной точностью можно считать идеально проводящей землей. Хотя антенны такого типа не являются элементарными излучателями (диполями Герца), которые изучаются в курсе электродинамики, однако, их диаграммы направленности близки к диаграмме диполя Герца. В то же время, входное сопротивление их составляет десятки Ом (у диполя Герца гораздо меньше), что облегчает их согласование с питающим коаксиальным кабелем.

Модель идеально проводящей земли хорошо соответствует действительности в случае расположения антенн над проводящими поверхностями: телевизионные антенны над металлическими крышами, антенны над палубами кораблей, корпусами самолетов и т.п.

Основными характеристиками любой антенны являются:

- диаграмма направленности,

- вид поляризации поля антенны

- входное сопротивление.

Другие характеристики: коэффициенты направленного действия, коэффициент усиления и к.п.д., являются следствием этих основных.

Диаграмма направленности (ДН) антенны – это нормированная зависимость комплексных компонент напряженности электрического или магнитного поля (в точке наблюдения М в дальней зоне) от угловых переменных θ и ϕ сферической системы координат при постоянном расстоянии г (рис. 2.1). Антенна предполагается передающей и расположенной в начале координат.

Рис.2.1 Сферическая система координат

По теореме взаимности ДН антенны, работающей на передачу и на прием, совпадают [1]. Когда говорят о ДН, то предполагают, что точка наблюдения находится на бесконечном удалении от антенны ($r \rightarrow \infty$), так что лучи, идущие в точку М от разных точек антенны, можно считать параллельными. Эту область пространства ($r \rightarrow \infty$) называют дальней зоной или областью Фраунгофера. В реальных условиях граница дальней зоны определяется выражением [1,2]

$$r \ge \frac{2L^2}{\lambda},\tag{2.1}$$

где L размер длины антенны.

Поляризация волны задается передающей антенной. Как известно из курса электродинамики [3], поляризация монохроматической волны определяет закон изменения направления и величины вектора E (и H) этой волны в данной точке пространства за период колебания. Существует три вида поляризации монохроматических волн: линейная, круговая и эллиптическая. Линейная поляризация, у которой направление колебаний векторов $\vec{E} \ e \ H$ остается неизменным во времени и в пространстве. Линейная поляризация, в свою очередь, может быть вертикальной или горизонтальной, в зависимости от ориентации вектора E относительно поверхности земли. В данной работе передающая антенна имеет линейную поляризацию, а при ручном повороте антенн может становиться горизонтальной или вертикальной. Поляризация приемной антенны должна совпадать с поляризацией передающей антенны. **Нормированная функция направленности** антенны $F(\theta, \varphi)$ – В общем случае величину напряженности электрического поля от любой передающей антенны в дальней зоне можно представить в виде

$$E(r,\theta,\varphi) = \frac{A}{r} F(\theta,\varphi) \cdot e^{-jkr}, \qquad (2.2)$$

где *r*, θ , ϕ – сферические координаты точки наблюдения,

 $F(\theta, \phi)$ – нормированная функция направленности антенны,

А – константа, зависящая от типа антенны и подводимой мощности,

 $k = 2\pi / \lambda$ - волновое число.

Нормированная функция направленности означает, что максимальное значение функции $F(\theta, \varphi)$ равно единице. Из (2.2) видно, что в дальней зоне функция $F(\theta, \varphi)$ не зависит от расстояния.

Для симметричного полуволнового вибратора функции $F(\theta, \varphi)$ в свободном пространстве описывается выражением [1]

$$F_1(\theta, \varphi) = \frac{\cos(90^0 \cos \theta)}{\sin \theta} \approx \sin \theta$$
(2.3)

и будучи построенной, называется диаграммой направленности, которая имеет вид, показанный на рисунке 2.2 в полярных и прямоугольных координатах.

а) - полярные координаты,
б) - прямоугольные координаты
Рис 2.2 Диаграмма направленности симметричного вибратора
в свободном пространстве

Симметричный вибратор изображен в виде двух одинаковых проводников, называемых плечами вибратора. В сферических координатах угол θ (при φ =const) отсчитывается от оси Z (можно считать это изображение ДН представленным в полярных координатах), величина F₁(θ) откладывается вдоль радиуса в направлении угла θ . В прямоугольных координатах аргумент θ откладывается вдоль горизонтальной оси абсцисс, а функция F₁(θ)откладывается вдоль вертикальной оси - ординат. Полярная форма изображения ДН более наглядна, так рисунок 2.2а позволяет представить и сам вибратор, и распределение амплитуды поля в пространстве, как тела вращения "восьмерки" вокруг оси Z. Прямоугольная форма представления ДН более проста, т.к. не требует транспортира при построении, более удобна при измерении ширины главного лепестка, уровня боковых лепестков и др. параметров ДН.

2.2 Влияние земли на ДН вибраторов

Поскольку земля предполагается идеально проводящей, то её влияние на параметры излучателей можно оценить по методу зеркальных отображений [3]. Известно, что если заряд расположен над проводником, то на поверхности проводника индуцируются распределенные заряды противоположного знака. В случае точечного заряда и идеально проводящей плоской земли действие индуктированных зарядов можно учесть введением фиктивного (воображаемого) заряда противоположного знака, расположенного симметрично (зеркально) реальному заряду относительно плоскости земли. Если на горизонтальном и вертикальном вибраторах произвольно задаться направлением тока и соответствующим распределением зарядов, то после введения фиктивных зарядов получается следующая картина зеркальных отображений (рис.2.3). Из рисунка следует важный вывод: в случае вертикального вибратора направление (рис.2.36) токов в вибраторе и его зеркальном изображении совпадают, а для горизонтального (рис.2.3а) направление токов – противоположны.

Рис. 2.3. Токи в вибраторах и их зеркальных отображениях

Рассмотрим образование ДН вибратора, расположенного над идеально проводящей землей (рис. 2.4). М (г,θ,φ)

Рис.2.4. Ход лучей от вибратора и его зеркального изображения

В точке А расположен вибратор, в точке A_1 – его зеркальное изображение. Точка наблюдения М находится в дальней зоне по отношению к антенне и её зеркальному изображению, так что отрезки АМ и A_1 М можно считать параллельными (на рис. 2.4 части этих отрезков большой длины условно показаны пунктиром). В точку наблюдения приходят две волны: прямая по пути АМ и отраженная от земли по пути АСМ. Положение точки отражения С определяется из условия равенства углов падения и отражения. Поскольку отрезки АС и A_1 С равны, то можно считать, что отраженная волна исходит из зеркального изображения вибратора в точке A_1 .

Таким образом, поле в точке М является результатом сложения (интерференции) двух волн – прямой и отраженной от земли. Амплитуда отраженной волны в точке М ($\frac{A}{r_2}$ F(θ, φ)), будет всегда несколько меньше амплитуды пада-ющей ($\frac{A}{r_1}$ F(θ, φ)), поскольку r₂ > r₁, однако при больших r это отличие можно считать несущественным. Как известно, результат интерференции двух волн с примерно одинаковыми амплитудами в основном определяется соотношением фаз этих волн. Если фазы совпадают (или отличаются на целое число 2π), то амплитуда в точке М будет равна сумме амплитуд падающей и отраженной волн и максимальна; если же разность фаз составит π , 3π и т.п., то поле в точке М будет близко к нулю. Как видно из рисунка 2.4, разность фаз прямой и отраженной волн возникает за счет прохождения отраженной волной большего расстояния ($r_2 > r_1$). Эта разность хода равна отрезку $A_1B = 2hCos\theta$, который зависит от угла θ . Таким образом, при изменении угла θ будет меняться разность фаз прямой и отраженной волн в точке наблюдения, а, следовательно, при изменении угла в будет наблюдаться чередование максимумов и минимумов поля, т.е. ДН в вертикальной плоскости $0 \le \theta \le 90^{\circ}$ приобретает лепестковый характер.

а) – вертикальный вибратор, б) – горизонтальный вибратор

На ДН вертикального вибратора в горизонтальной плоскости земля влияния не оказывает, поскольку разность хода A_1B зависит лишь от угла θ и не зависит от угла φ . Поэтому в горизонтальной плоскости разность фаз прямой и отраженной волн остается постоянной.

Формулы для ДН в вертикальной плоскости для случая вертикального и горизонтального вибраторов можно получить. Чем будут отличаться эти случаи вибраторов?

Во-первых, разными направлениями токов в зеркальных изображениях вибраторов и, во-вторых, диаграммой направленности самого вибратора в вертикальной плоскости F₁(θ) (рис.2.5).

В случае вертикального вибратора ДН имеет вид восьмёрки и описывается соотношением (2.3), в случае горизонтального – является окружностью с радиусом равным единице.

$$F_{1B}(\theta) \approx \sin \theta$$
, $F_{1\Gamma}(\theta) = 1$ (2.5)

Представим поля прямой и отраженной волн в виде (2.2) и сложим их в точке M с учетом сделанных выше замечаний о примерном равенстве амплитуд. В результате получим

$$E(M) = \frac{AF_{1\hat{A},\tilde{A}}(\theta)}{r} \left[e^{-jkr_1} \pm e^{jkr_2} \right], \qquad (2.6)$$

где знак "плюс" соответствует вертикальному вибратору, а знак "минус" – горизонтальному, согласно направлению токов в зеркальных изображениях. Получим выражения для расстояний (рис. 2.4) r_1 и r_2

$$r_1 = r - h\cos\theta$$
, $r_2 = r + h\cos\theta$.

Подставляя эти значения в (2.6), вынося e^{-jkr} за скобку и учитывая, что согласно формулам Эйлера

$$e^{jkh\cos\theta} + e^{-jkh\cos\theta} = 2\cos(kh\cos\theta), \quad e^{jkh\cos\theta} - e^{-jkh\cos\theta} = 2j\sin(kh\cos\theta)$$

получим

$$E(M) = 2A \cdot F_{1\hat{A},\tilde{A}}(\theta) \frac{e^{-jkr}}{r} \cdot \begin{bmatrix} \cos(kh\cos\theta) \\ j\sin(kh\cos\theta) \end{bmatrix}$$
(2.7)

Выделим в этом выражении зависимость величины |E(M)| лишь от угла θ и, учитывая (2.5), запишем выражение для функции направленности в вертикальной плоскости с учетом влияния земли для вертикального вибратора

$$F_B(\theta) = \sin\theta \cdot \left| \cos(kh\cos\theta) \right| , \qquad (2.8)$$

и для горизонтального вибратора

$$F_{\tilde{A}}(\theta) = \left| \sin(kh\cos\theta) \right| \quad . \tag{2.9}$$

Анализ формул (2.8) и (2.9) показывает, что если $kh = \frac{2\pi}{\lambda}h >>1$, то при изменении θ от 0⁰ до 90⁰ функции $|\cos(kh\cos\theta)|$ и $|\sin(kh\cos\theta)|$ будут иметь несколько максимумов, равных 1 и минимумов, равных нулю. Таким образом, зависимость ДН в вертикальной плоскости в результате интерференции прямой и отраженной от земли волн приобретает лепестковый характер. Примеры ДН, расчеты сделаны по формулам (2.8) и (2.9), приведены на рисунке 2.6.

а) – горизонтальный вибратор, б) – вертикальный вибратор

Рис. 2.6 ДН горизонтального и вертикального вибраторов для $h = 2.5 \lambda$

На рисунке показаны углы максимумов и минимумов диаграмм направленности. Видно, что максимумам ДН горизонтального вибратора соответствуют минимумы ДН вертикального и наоборот.

3. ОПИСАНИЕ ЭКСПЕРИМЕНТАЛЬНОЙ УСТАНОВКИ

Функциональная схема экспериментальной установки приведена на рис.3.1

Рис. 3.1 Функциональная схема установки

А₁ – излучающий вибратор,

А₂ – приемная антенна с детектором Д,

П1, П2 - приводы для управления движением антенн,

УУ - устройство, управляющее движением антенн,

ПК – компьютер для снятия характеристик и управления устройством УУ,

Р2М-04 измеритель модуля коэффициента передачи и отражения.

Сигнал заданной частоты поступает с источника P2M-04 через коаксиальный кабель с волновым сопротивлением 75 Ом на антенну A₁. Антенна A₁ представляет собой вибратор, выполненный на полосковой линии. Антенну A₁ можно поворачивать вокруг горизонтальной оси, задавая ей вертикальное или горизонтальное положение. Для поворота антенны A₁ следует *осторожно* специальным ключом расслабить гайку, фиксирующую положение антенны, повернуть рукой гайку с антенной и снова зажать гайку ключом.

Саму антенну А₁руками не трогать!

Антенна A₂ – приемный вибратор, нагруженный на детектор, сигнал с которого подается на P2M-04 и на ПК. По пластмассовому транспортиру приемную антенну A₂ можно автоматически передвигать с помощью управляющей кнопки на ПК, задавая ей положения, соответствующее различным значениям угла θ . Шкала транспортира проградуирована в углах θ . Показания индикатора (ПК), включенного в цепь антенны A₂ пропорциональны $|E(\theta)|^2$, поскольку характеристика детектора в диапазоне СВЧ квадратичная $I_{aad} = k \cdot |E(\theta)|^2$. Антенну A₂ нужно также аккуратно поворачивать, держась за гайку, на ± 90⁰ для исследования полей с вертикальной или горизонтальной поляризацией.

Поляризации антенн А₁, А₂ должны быть одинаковы.

Для уменьшения отражения радиоволн от стен и окружающих предметов в установке используются поглотители радиоволн, выполненные в виде коробок из пенопласта, внутри которых находятся нити из поглощающего материала. Несмотря на это, избежать полностью влияния местных предметов не удается. Поэтому, при проведении эксперимента следует избегать перемещений вблизи антенн.

4. ПОРЯДОК ВЫПОЛНЕНИЯ РАБОТЫ

4.1. Изучить описание работы и выполнить домашнее задание, ответить на некоторые контрольные вопросы и получить от преподавателя допуск на выполнение работы.

4.2. Включить кнопку питания на приборе P2M-04, управляющем устройстве нажать красную кнопку и на компьютере. Набрать пароль и логин (узнать у преподавателя) и войти в систему.

Запустите программу Graphit по управлению прибором P2M-04. Последовательность включений:

Пуск - Все Программы – Приборы – Микран - Graphit2.3b1- Graphit P2M.

В появившемся на ПК окне, выберите прибор P2M-04 с IP-адресом 169.254.02.54. Во вкладке «Профиль» загрузите профиль «ground affection» [Pa-бочий стол- ground affection, gpr].

Установить в окне справа параметры частоты :

- «центральная частота» - 1,7 ГГц, «количество точек»: 1.

- в окне «усреднение» выбрать степень усреднения такой, чтобы изображение на экране ПК было стабильным.

-в окне «параметры мощности» выставить 16 дБм. (Р_{вых})

Запустите режим измерения, нажав кнопку на ПК 🛄.

4.3. Для управления антеннами открыть программу (S:\328_ОПИС_ЛАБ\ЭДиРРВ\test.exe).

open . Движение антеннами осу-Запустить программу, нажав кнопку ществляется с помощью кнопок (слева): «вверх» или «вниз» для передающей антенны; (справа) - движение «по окружности» - для приемной антенны.

4.4. Измерить на ПК сигнал в точке приема (в дБм) для случаев;

- для вертикальных антенн для двух значений высот передающей антенны - h.;

- для горизонтальных антенн для двух значений высот передающей антенны - h:

Одну высоту h взять из расчетного задания, другую – по указанию преподавателя. Измерения производить через 5[°].

4.5. Переведите мощность из дБм в мВт с помощью онлайн калькулятора (http://profi-radio.ru/online-raschet.html).

Нормировать результаты перевода (из дБм в мВт) и построить экспериментальные ДН. Сравнить экспериментальные и расчетные ДН.

Для экспериментально снятых ДН, в случае отсутствия соответствующих теоретических, следует рассчитать направления максимумов и минимумов ДН по формулам (2.8) и (2.9), и нанести их на экспериментальные ДН.

4.6. Сделать выводы: о соответствии эксперимента и теории; о влиянии высоты подвеса h антенны A₁ на число лепестков ДН ; на форму первого от земли лепестка ДН в зависимости от поляризации поля излучения.

4.7. Завершение эксперимента.

Остановить программу, нажав кнопку 💻. Закрыть программу и выключить прибор Р2М-04. Выключить кнопки питания компьютера и УУ.

5. РАСЧЕТНОЕ ДОМАШНЕЕ ЗАДАНИЕ

5.1. Рассчитать ДН для вертикального и горизонтального вибраторов для высот подвеса h передающих антенн, указанных в таблице согласно номеру подгруппы, или по заданию преподавателя. Внести данные в созданную Вами таблицу. В расчетах предусмотреть шаг по углу $(2 - 3)^0$.

Гаолица для домашних расчетных задании				
Номер подгруппы	1	2	3	4
Вертикальный вибратор h	0.5 λ	1 λ	1,5 λ	2λ
Горизонтальный вибратор h	2λ	1,5 λ	0,5 λ	1λ

Tar

5.2. Рассчитанные ДН постройте в декартовой системе координат, и одну из диаграмм (по вашему выбору) постройте в полярной системе координат.

5.3. Рассчитать направления максимумов и минимумов, используя формулы (2.8) и (2.9) и рекомендации п.4.5, и нанести их на графики экспериментальных ДН (п.4.5).

5.4. Определить ширину «лепестков» ДН по уровню 0,5 $F_p(\theta)$ для одной высоты поднятия передающей антенны над землей и одной поляризации антенны.

6. СОДЕРЖАНИЕ ОТЧЕТА

6.1. Цель работы, схема установки, описать применение в работе явления интерференции волн.

- 6.2. Измеренные и рассчитанные ДН, их сравнение. Анализ возможных причин погрешностей эксперимента. Выводы о влиянии земли на количество лепестков и на форму первого к земле лепестка ДН в зависимости от высоты подвеса и ориентации вибратора. Объяснение этих закономерностей, как результата интерференции волн.
- 6.3. Отметить на диаграммах ширину лепестков по уровню 0,5F_p(*θ*) для случая одной высоты подвеса передающей антенны экспериментальной и расчетной диаграмм.

7. КОНТРОЛЬНЫЕ ВОПРОСЫ

- 7.1. В чем заключается явление интерференции электромагнитных волн?
- 7.2. Что такое ДН антенны и как она измеряется в данной работе?
- 7.3. В чем суть метода зеркальных изображений? Постройте зеркальное изображение для вибратора наклоненного к поверхности земли.
- 7.4. Почему ДН вибраторов в присутствии земли приобретают лепестковый характер?
- 7.5. Почему и как отличаются ДН вертикального и горизонтального вибраторов, поднятых над землей на одну и ту же высоту?
- 7.6. Как зависит число лепестков в ДН вибратора над землей от высоты h и длины волны λ?
- 7.7. Как по виду ДН антенны над идеально проводящей землей определить поляризацию антенны?
- 7.8. Укажите возможные источники погрешностей при измерении ДН на данной установке.
- 7.9. Как нормировать функцию направленности? Как учитывается квадратичность характеристики детектора?
- 7.10. Как строятся ДН в полярной и прямоугольной системах координат? В каких случаях следует использовать ту или другую формы изображения ДН?

7.11. Как из (2.8), (2.9) получить формулы для определения направлений максимумов и минимумов ДН.

8. СПИСОК ЛИТЕРАТУРЫ

1. Электродинамика и распространение радиоволн: учеб. пособие/ Боков Л.А., Замотринский В.А., Мандель А.Е. – Томск: Томск. гос. ун-т систем упр. и радиоэлектроники, 2013.- 410с.

2. Б.М. Петров. Электродинамика и распространение радиоволн: Учебник для вузов. - М.: Горячая линия - Телеком, 2007.-558 с. (100)

3. Замотринский В.А., Падусова Е.В., Соколова Ж.М., Шангина Л.И. Электромагнитные поля и волны: Уч.пособие. –Томск: Том. гос. ун-т систем управления и радиоэлектроники, 2007.-175с. (**40**)