

КАФЕДРА СВЕРХВЫСОКОЧАСТОТНОЙ И КВАНТОВОЙ РАДИОТЕХНИКИ (СВЧиКР)

Е.В. Падусова, С.Н. Шарангович

РАСЧЁТ ДИЭЛЕКТРИЧЕСКИХ ВОЛНОВОДОВ И ОБЪЁМНЫХ РЕЗОНАТОРОВ

Федеральное агентство по образованию

Томский Государственный Университет Систем Управления и Радиоэлектроники

Е.В. Падусова, С.Н. Шарангович

РАСЧЁТ ДИЭЛЕКТРИЧЕСКИХ ВОЛНОВОДОВ И ОБЪЁМНЫХ РЕЗОНАТОРОВ.

Учебное пособие

Рекомендовано Сибирским региональным отделением учебно-методического объединения высших учебных заведений РФ по образованию в области радиотехники, электроники, биомедицинской техники и автоматизации для межвузовского использования в качестве учебного пособия для студентов, обучающихся по направлениям подготовки 210300 «Радиотехника», 210400 «Телекоммуникации»

УДК 537.8(075.8) + 621.371(075.8)

Рецензенты:

Гошин Г.Г., д-р физ.-мат наук, проф. ТУСУРа; Тихомиров А.А., д-р техн. наук, проф. Института мониторинга климатических и экологических систем СО РАН; Саломатов Ю.П., доц., к-т техн. наук, зав.каф. «Радиофизика» Института ИФ и РЭ Сибирского федерального университета

Расчёт диэлектрических волноводов и объёмных резонаторов: учеб. пособие // Падусова Е.В., Шарангович С.Н. / Под ред. С.Н. Шаранговича – Томск: Томск. гос. ун-т систем упр. и радиоэлектроники, 2009. -116 с.

В учебном пособии приведены основные теоретические материалы по расчету объемных и планарных диэлектрических волноводов и объёмных резонаторов сантиметрового, миллиметрового и оптического диапазонов. Представлены методики и примеры расчетов конкретных волноводных и резонаторных структур.

Даны рекомендации по выполнению курсовых работ по дисциплинам "Электромагнитные поля и волны" и «Электродинамика и распространение радиоволн» для студентов специальностей: 210401 «Физика и техника оптической связи», 210302 «Радиотехника», обучающихся по дневной, очнозаочной и вечерней формах обучения.

© Падусова Е.В., Шарангович С.Н., 2009

© Томский гос. ун-т систем управления и радиоэлектроники, 2009.

ОГЛАВЛЕНИЕ

Введение	5
Глава 1 Основные теоретические предпосылки	8
1.1 Уравнения Максвелла в обобщённой системе координат	8
1.2 Волновые уравнения	12
1.3 Анализ уравнений	13
1.4 Инвариантная форма уравнений	14
1.5 Типы диэлектрических волноводов	15
Глава 2 Расчёт диэлектрических волноводов	18
2.1 Прямоугольный симметричный диэлектрический волновод	18
2.2 Планарный диэлектрический волновод	35
2.3 Несимметричный диэлектрический волновод	37
2.4 Цилиндрический диэлектрический волновод	49
Глава 3 Расчёт объёмных резонаторов	59
3.1 Диэлектрический Н-образный резонатор	
3.2 Планарные диэлектрические резонаторы	62
3.2.1 Круглый планарный резонатор	62
3.2.2 Прямоугольный планарный резонатор	67
Глава 4 Примеры расчетов	71
4.1 Расчёт симметричного диэлектрического волновода	71
4.2 Расчёт несимметричного диэлектрического волновода	80
4.3 Расчёт круглого диэлектрического волновода	
4.4 Расчёт Н- образного диэлектрического резонатора	95
4.5 Расчёт круглого планарного резонатора	97
4.6 Расчёт прямоугольного планарного резонатора	104
Литература	110
Приложение А Типовое задание на курсовую работу	112
Приложение Б Варианты заданий	113
Список основных обозначений	114

ВВЕДЕНИЕ

Широкое применение диэлектрических волноводов и объёмных резонаторов в сантиметровом, миллиметровом и оптическом диапазонах определяет целесообразность применения их расчётов в качестве тем курсовых работ по курсам "Электродинамика и распространение радиоволн" и "Электромагнитные поля и волны".

В данном учебном пособии приведены основные теоретические материалы, которые используются при выполнении курсовых работ по расчёту диэлектрических волноводов и объемных резонаторов, даны методические рекомендации и примеры расчета некоторых конкретных структур.

Пособие состоит из четырех разделов. Первый раздел посвящен описанию волновых уравнений в различных системах координат. Во втором разделе представлены методики расчета диэлектрических волноводов, в третьем – объемных резонаторов. В четвертом разделе даны примеры расчета объемных и планарных диэлектрических волноводов и резонаторов. В приложениях представлены типовое задание на курсовую работу и исходные данные для ее выполнения для различных типов рассчитываемых электродинамических структур. Список литературы [1-11] включает источники, рекомендуемые для самостоятельного и более углубленного изучения вопросов, выносимых на курсовое проектирование.

Тематика курсовых работ охватывает следующие направления :

1. Диэлектрические прямоугольные волноводы.

2. Планарные волноводы на металлической подложке.

3. Планарные волноводы интегральных оптических систем.

4. Диэлектрические круглые волноводы.

5. Диэлектрические Н-образные прямоугольные резонаторы.

6. Диэлектрические цилиндрические резонаторы

7. Планарные прямоугольные резонаторы.

8. Планарные круглые резонаторы.

В ходе выполнения курсовых работ рекомендуется придерживаться следующего плана:

1. Записать уравнения Максвелла в дифференциальной форме в выбранной системе координат, воспользовавшись обобщённой формой их записи.

2. Записать уравнения, определяющие структуру поля для конкретного диэлектрического волновода или резонатора, заданного в задании.

3. Записать волновое уравнение и решить его для продольной составляющей поля с применением граничных условий.

4. Вывести дисперсионное уравнение и решить его численным или графическим методом.

5. Определить необходимые геометрические размеры.

6. Определить продольные и поперечные постоянные распространения.

7. Построить графики зависимости поперечных и продольной постоянных распространения от частоты в заданном диапазоне.

8. Определить критическую частоту и критическую длину волны для

заданного типа колебаний.

9. Построить структуру поля в волноводе.

10. Определить волновое сопротивление волновода.

11. Записать формулу для мощности, канализируемой по волноводу и рассчитать её для заданного волновода.

12. Определить потери в волноводе.

13. При расчёте резонаторов определить его продольный размер и построить структуру поля в резонаторе.

При оформлении курсовой работы следует придерживаться общих требований и правил Образовательного стандарта ТУСУРа [12,13]. Учебное пособие предназначено для студентов всех форм обучения направления подготовки «Радиотехника» и «Телекоммуникации» по специальностям 210302 «Радиотехника» и 210401 «Физика и техника оптической связи».

ГЛАВА 1 ОСНОВНЫЕ ТЕОРЕТИЧЕСКИЕ ПРЕДПОСЫЛКИ

1.1 Уравнения Максвелла в обобщённой системе координат.

Записываются для обобщённой криволинейной системы координат и используются при решении задач в различных конкретных системах координат.

$$\operatorname{rot} \overline{H} = j \omega \varepsilon_{a} \overline{E}, \qquad (1.1)$$
$$\operatorname{rot} \overline{E} = -j \omega \mu_{a} \overline{H},$$
$$\overline{E} = \overline{E}_{0} (q_{1}, q_{2}, q_{3}) \cdot e^{j \omega t}, \quad \overline{H} = \overline{H}_{0} (q_{1}, q_{2}, q_{3}) \cdot e^{j \omega t}$$

где

Векторы *E* и *H* в обобщённой системе координат могут быть представлены в виде суммы проекций

$$\overline{E} = \left(\overline{e_1}E_{q_1} + \overline{e_2}E_{q_2} + \overline{e_3}E_{q_3}\right)\exp\left(j\omega t\right),$$
(1.2)

$$\overline{H} = \left(\overline{e_1}H_{q_1} + \overline{e_2}H_{q_2} + \overline{e_3}H_{q_3}\right)\exp\left(j\omega t\right),$$
(1.3)

где e_1 , e_2 , e_3 - единичные векторы соответствующие координатам q_1 , q_2 , q_3 ; E_{q_1} , E_{q_2} , E_{q_3} и H_{q_1} , H_{q_2} , H_{q_3} - проекции ортов E и H на эти направления.

Для нахождения векторов \overline{E} и \overline{H} уравнения Максвелла (1.1) нужно спроектировать на оси координат, используя известную формулу [1]. В обобщённой системе координат выражения для rot \overline{H} и rot \overline{E} имеют вид

$$\operatorname{rot} \overline{H} = \frac{1}{h_1 h_2 h_3} \cdot \begin{vmatrix} \overline{h_1 e_1} & \overline{h_2 e_2} & \overline{h_3 e_3} \\ \overline{\partial}_{q_1} & \overline{\partial}_{q_2} & \overline{\partial}_{q_3} \\ \overline{\partial}_{q_1} & \overline{h_2 H_{q_2}} & h_3 H_{q_3} \end{vmatrix}, \quad \operatorname{rot} \overline{E} = \frac{1}{h_1 h_2 h_3} \cdot \begin{vmatrix} \overline{h_1 e_1} & \overline{h_2 e_2} & \overline{h_3 e_3} \\ \overline{\partial}_{q_1} & \overline{\partial}_{q_2} & \overline{\partial}_{q_3} \\ \overline{\partial}_{q_1} & \overline{\partial}_{q_2} & \overline{\partial}_{q_3} \\ \overline{h_1 E_{q_1}} & \overline{h_2 E_{q_2}} & \overline{h_3 E_{q_3}} \end{vmatrix}.$$

Используя данные выражения, систему (1.1) представим в виде

$$\frac{1}{h_{1}h_{2}h_{3}} \cdot \begin{vmatrix} \bar{h_{1}e_{1}} & \bar{h_{2}e_{2}} & \bar{h_{3}e_{3}} \\ \frac{\partial}{\partial q_{1}} & \frac{\partial}{\partial q_{2}} & \frac{\partial}{\partial q_{3}} \\ h_{1}H_{q_{1}} & h_{2}H_{q_{2}} & h_{3}H_{q_{3}} \end{vmatrix} = j\omega\varepsilon_{a}(\bar{e}_{1}E_{q_{1}} + \bar{e}_{2}E_{q_{2}} + \bar{e}_{3}E_{q_{3}}), \quad (1.4a)$$

$$\frac{1}{h_{1}h_{2}h_{3}} \cdot \begin{vmatrix} \bar{h_{1}e_{1}} & \bar{h_{2}e_{2}} & \bar{h_{3}e_{3}} \\ \frac{\partial}{\partial q_{1}} & \frac{\partial}{\partial q_{2}} & \frac{\partial}{\partial q_{3}} \\ h_{1}E_{q_{1}} & h_{2}E_{q_{2}} & h_{3}E_{q_{3}} \end{vmatrix} = -j\omega\mu_{a}(\bar{e}_{1}H_{q_{1}} + \bar{e}_{2}H_{q_{2}} + \bar{e}_{3}H_{q_{3}}). \quad (1.46)$$

В уравнениях (1.4а) и (1.4b) h_1, h_2, h_3 - коэффициенты Ламе, позволяющие записать уравнения в любой системе координат. Раскрыв определители, получим систему уравнений, определяющих проекции векторов \overline{E} и \overline{H} на оси q_1 и q_2 обобщённой системы координат:

$$j\omega\varepsilon_{a}E_{q_{1}} = \frac{1}{h_{2}h_{3}} \cdot \left(\frac{\partial(h_{3}H_{q_{3}})}{\partial q_{2}} - \frac{\partial(h_{2}H_{q_{2}})}{\partial q_{3}}\right),$$

$$j\omega\varepsilon_{a}E_{q_{2}} = \frac{1}{h_{1}h_{3}} \cdot \left(\frac{\partial(h_{1}H_{q_{1}})}{\partial q_{3}} - \frac{\partial(h_{3}H_{q_{3}})}{\partial q_{1}}\right),$$

$$(1.5)$$

$$- j\omega\mu_{a}H_{q_{1}} = \frac{1}{h_{2}h_{3}} \cdot \left(\frac{\partial(h_{3}E_{q_{3}})}{\partial q_{2}} - \frac{\partial(h_{2}E_{q_{2}})}{\partial q_{3}}\right),$$

$$- j\omega\mu_{a}H_{q_{2}} = \frac{1}{h_{1}h_{3}} \cdot \left(\frac{\partial(h_{1}E_{q_{1}})}{\partial q_{3}} - \frac{\partial(h_{3}E_{q_{3}})}{\partial q_{1}}\right).$$

Диэлектрические волноводы предназначены для передачи

электромагнитной энергии, поэтому при их расчёте нужно исходить из предположения о волновом характере поля и, в дальнейшем, векторы \overline{E} и \overline{H} представлять в виде:

$$\overline{E} = \overline{E}(q_1, q_2) \exp j(\omega t - \beta q_3) , \qquad (1.6)$$

$$\overline{H} = \overline{H}(q_1, q_2) \exp j(\omega t - \beta q_3).$$
(1.7)

При этом нужно иметь в виду, что ось *q*₃ является продольной осью, вдоль которой идёт распространение волны.

После подстановки (1.6) и (1.7) в (1.5) и взятия соответствующих производных (т.е. замены $\frac{\partial}{\partial q_3} = j\beta$), можно определить поперечные составляющие полей, выразив их через продольные составляющие - E_{q_3} и H_{q_3} . В результате будет получена основная система уравнений, с помощью которой, в дальнейшем, можно записать выражения определяющие структуру полей в любом волноводе:

$$-\chi^{2}E_{q_{1}} = j\frac{\beta}{h_{1}} \cdot \frac{\partial E_{q_{3}}}{\partial q_{1}} + j\frac{\omega\mu_{a}}{h_{2}} \cdot \frac{\partial H_{q_{3}}}{\partial q_{2}},$$

$$-\chi^{2}E_{q_{2}} = j\frac{\beta}{h_{2}} \cdot \frac{\partial E_{q_{3}}}{\partial q_{2}} - j\frac{\omega\mu_{a}}{h_{1}} \cdot \frac{\partial H_{q_{3}}}{\partial q_{1}},$$

$$-\chi^{2}H_{q_{1}} = j\frac{\beta}{h_{1}} \cdot \frac{\partial H_{q_{3}}}{\partial q_{1}} - j\frac{\omega\varepsilon_{a}}{h_{2}} \cdot \frac{\partial E_{q_{3}}}{\partial q_{2}},$$

$$-\chi^{2}H_{q_{2}} = j\frac{\beta}{h_{2}} \cdot \frac{\partial H_{q_{3}}}{\partial q_{2}} + j\frac{\omega\varepsilon_{a}}{h_{1}} \cdot \frac{\partial E_{q_{3}}}{\partial q_{1}}.$$
(1.8)

Диэлектрический волновод будем рассматривать состоящим из двух

частей: собственно волновода (диэлектрический стержень или пластина) и окружающего, чаще всего, воздушного пространства. Поэтому поле существует в двух областях, как внутри диэлектрического стержня или пластины, так и во внешнем пространстве. Следовательно, и уравнения (1.8) должны быть записаны для двух областей : область I (\overline{E}^{I} , \overline{H}^{I}) и область II (\overline{E}^{II} , \overline{H}^{III}).

В уравнениях (1.8) $\chi^2 = k^2 - \beta^2$ - квадрат поперечной постоянной распространения. Эта постоянная, тоже должна иметь два значения:

 $\chi_1 = \sqrt{k^2 - \beta^2}$ для области I,

 $\chi_{2} = \sqrt{k_{0}^{2} - \beta^{2}}$ для области II, если окружающая среда- воздух.

Соответственно: $k = \omega \sqrt{\mu_0 \varepsilon_a} = \frac{\omega \sqrt{\varepsilon_r}}{c}$ - постоянная распространения волны в

свободном пространстве с параметрами ε_a и μ_0 , $k_0 = \omega \sqrt{\mu_0 \varepsilon_0} = \frac{2\pi}{\lambda}$ -постоянная распространения волны в свободном пространстве с параметрами ε_0 и μ_0 , $\beta = 2\pi / \Lambda$ - постоянная распространения волны в волноводе.

Постоянные распространения k_0 и β выражаются через длины волн : λ и Λ .

 $\lambda = \frac{c_0}{f}$ - длина волны свободного пространства,

 $c_{0} = 3 \times 10^{8} \frac{M}{c}$ – скорость света в воздушном пространстве, f – заданная частота,

л-длина волны в волноводе. Она неизвестна и должна быть определена в ходе расчёта.

Из уравнений системы (1.8) следует, что поперечные составляющие

поля E_{q_1} , E_{q_2} и H_{q_1} , H_{q_2} можно определить, если будут известны продольные составляющие E_{q_3} и H_{q_3} . Для их нахождения необходимо вывести ещё одно уравнение, которое называется волновым или мембранным.

1.2. Волновые уравнения

Волновое уравнение выводится из уравнений Максвелла (1.1), путём проведения операции гоt над их обеими частями. Для изотропных сред получим

rotrot
$$H = j\omega\varepsilon_a$$
 rot E .

Так как rot $\overline{E} = -j\omega\mu_0 \overline{H}$, то можно это уравнение записать в виде

rotrot
$$\overline{H} = k^2 \overline{H}$$
.

Применяя известное из векторной алгебры тождество rotrot=graddiv- \triangle , а также положив div \overline{H} =0, можно окончательно записать:

$$\Delta H = -k^2 H . \tag{1.9}$$

Это уравнение и является волновым. Аналогичным образом можно вывести уравнение

$$\Delta \overline{E} = -k^2 \overline{E} . \tag{1.10}$$

Таким образом, из (1.9) и (1.10) видно, что все векторы, распространяющегося вдоль волновода электромагнитного поля, а следовательно, и продольные составляющие E_{q_3} и H_{q_3} , удовлетворяют волновым уравнениям.

Именно эти уравнения используются для их определения.

Дифференциальный оператор △, входящий в волновые уравнения, является оператором "Лапласа " и в обобщённой системе координат имеет вид:

$$\Delta = \frac{1}{h_1 h_2 h_3} \left(\frac{\partial}{\partial q_1} \cdot \left(\frac{h_2 h_3}{h_1} \frac{\partial}{\partial q_1} \right) + \frac{\partial}{\partial q_2} \left(\frac{h_1 h_3}{h_2} \frac{\partial}{\partial q_2} \right) + \frac{\partial}{\partial q_3} \left(\frac{h_1 h_2}{h_3} \frac{\partial}{\partial q_3} \right) \right) .$$
(1.11)

Внеся в уравнение (1.11) под знак производных E_{q_3} и H_{q_3} , получим волновые уравнения для продольных составляющих E_{q_3} и H_{q_3} , которые в окончательном виде выглядят следующим образом:

$$\frac{1}{h_1h_2h_3}\left(\frac{\partial}{\partial q_1}\left(\frac{h_2h_3}{h_1}\left(\frac{\partial E_{q_3}}{\partial q_1}\right)\right) + \frac{\partial}{\partial q_2}\left(\frac{h_1h_3}{h_2}\left(\frac{\partial E_{q_3}}{\partial q_2}\right)\right) + \frac{\partial}{\partial q_3}\left(\frac{h_1h_2}{h_3}\left(\frac{\partial E_{q_3}}{\partial q_3}\right)\right)\right) = -k_2E_{q_3}, (1.12a)$$

$$\frac{1}{h_1h_2h_3}\left(\frac{\partial}{\partial q_1}\left(\frac{h_2h_3}{h_1}\left(\frac{\partial H_{q_3}}{\partial q_1}\right)\right) + \frac{\partial}{\partial q_2}\left(\frac{h_1h_3}{h_2}\left(\frac{\partial H_{q_3}}{\partial q_2}\right)\right) + \frac{\partial}{\partial q_3}\left(\frac{h_1h_2}{h_3}\left(\frac{\partial H_{q_3}}{\partial q_3}\right)\right)\right) = -k^2H_{q_3}.(1.126)$$

Подставляя в (1.8), (1.12) значения коэффициентов Ламе: (h_1 =1, h_2 =1, h_3 =1) для прямоугольной системы координат и (h_1 =1, h_2 = ρ , h_3 =1) для цилиндрической, заменяя q_1 , q_2 , q_3 через соответствующие координаты (x,y,z) или (ρ , α , z), можно записать выражения для поперечных составляющих поля и волновые уравнения в соответствующих системах координат.

1.3 Анализ системы уравнений

Если внимательно рассмотреть систему уравнений (1.8), то легко заметить, что она представляет сумму двух частных и независимых решений, одно из которых выражается через продольную составляющую электрического поля E_{q_3} , другое через продольную составляющую магнитного поля H_{q_3} .

решений Каждое соответствует ИЗ этих самостоятельной электромагнитной которая может независимо распространяться по волне, волноводу и имеет собственное название. Так волна содержащая продольную электрическую составляющую E_{q_3} ($H_{q_3}=0$) называется волной типа E или поперечной магнитной волной. Волна содержащая продольную магнитную *H*_{*q*₃} (*E*_{*q*₃}=0) является волной типа Н или поперечной составляющую электрической волной. Существуют также волны гибридного типа ЕН, у них не равны нулю как E_{q_3} , так и H_{q_3} , но о них мы будем говорить позднее.

Если в задании указана волна типа *E*, положите в уравнениях (1.8) *H*_{q₃}=0 и добавьте к системе уравнений волновое уравнение (1.12а.)

Если же в задании указана волна типа *H*, положите в уравнениях (1.8) $E_{q_2} = 0$ и добавьте к системе уравнений волновое уравнение (1.126).

Таким образом, получите необходимые для решения уравнения в заданной системе координат.

1.4 Инвариантная форма

Для определения поперечных компонент поля можно также воспользоваться инвариантной по отношению к системе координат формой:

$$-\chi^{2}E_{\perp} = j\beta \text{ grad } \perp E_{q_{3}} + j\omega\mu_{a} \left[\text{grad } \perp H_{q_{3}}\overline{e}_{3} \right], \qquad (1.14)$$

$$-\chi^{2}H_{\perp} = j\beta \text{ grad } \mu_{q_{3}} - j\omega\varepsilon_{a} [\text{grad } \mu_{q_{3}}\overline{e_{3}}],$$

ГДе $H_{\perp} = iH_x + jH_y$, $E_{\perp} = iE_x + jE_y$, - В прямоугольной системе координат; $H_{\perp} = \overline{\rho_0}H_{q_1} + \overline{\alpha_0}H_{q_2}$, $E_{\perp} = \overline{\rho_0}E_{q_1} + \overline{\alpha_0}E_{\alpha}$, grad $\perp = \overline{\rho_0}\frac{\partial}{\partial\rho} + \overline{\alpha_0}\frac{1}{\rho}\frac{\partial}{\partial\alpha} - B$

цилиндрической системе координат.

Положив в (1.14) $H_{q_3} = 0$, получают выражения, определяющие поперечные составляющие для волн типа *E*. Для получения выражений, определяющих поперечные составляющие поля *H*, в уравнениях (1.14) положите $E_{q_3} = 0$.

1.5 Типы диэлектрических волноводов.

На рис.1 и рис.2 представлены симметричный прямоугольный диэлектрический волновод и планарный волновод, а на рис.3 несимметричный диэлектрический волновод.

 Рис.1
 Схема
 симметричного
 Рис.2
 Схема планарного
 волновода

 прямоугольного
 диэлектрического
 волновода
 волновода

Рис. 3 Схема несимметричного диэлектрического волновода.

На рис.4 и рис.5 представлены диэлектрический круглый волновод и диэлектрический круглый волновод с центральным металлическим стержнем.

 Рис.4
 Схема
 диэлектрического
 Рис.5
 Схема диэлектрического круглого

 круглого
 волновода
 волновода
 с
 центральным

 металлическим стержнем
 металлическим стержнем
 с
 с

Некоторые из этих структур нашли применение в оптическом диапазоне частот. Так круглый диэлектрический волновод является моделью оптического волновода – световода.

Наиболее простыми моделями являются прямоугольные диэлектрические и планарные волноводы, неограниченные по одному из поперечных направлений. В этом случае получены простые дисперсионные уравнения, которые имеют достаточно простые решения и физические трактовки.

В случае ограниченных по обеим поперечным осям прямоугольных

волноводов, дисперсионные уравнения имеют более сложный вид, которые, однако, можно решить с помощью ЭВМ. В таких волноводах распространяются гибридные волны *EH*. Они имеют более сложную структуру поля. Круглому волноводу свойственны гибридные волны и справедливо всё, что было сказано выше об этих волнах.

Однако в них могут существовать и симметричные волны, не зависящие от координаты *а* , для которых получены более простые решения.

Ниже будут приведены примеры решений для некоторых прямоугольных, планарных, круглых волноводов и планарных объёмных резонаторов.

ГЛАВА 2 РАСЧЁТ ДИЭЛЕКТРИЧЕСКИХ ВОЛНОВОДОВ.

2.1 Прямоугольный симметричный диэлектрический волновод

Плоская диэлектрическая пластина с параметрами μ_0 , ε_a толщиной 2d в направлении координаты *y*, бесконечно протяженная вдоль координаты x и неограниченная по оси *z* находится в воздухе (рис. 6).

Рис. 6 Схема возбуждения прямоугольного диэлектрического волновода

При z=0 пластина обрывается и входит в рупор, также бесконечно протяженный вдоль оси X и создающий электромагнитное поле излучения, максимум которого совпадает с осью Z. Часть энергии этого поля проникает в пластину и распространяется вдоль неё. Это объясняется тем, что в рупоре, вектор Пойнтинга возбуждающего поля может иметь различное направление относительно нормали к пластине, совпадающей с осью Y. Если угол, составленный вектором Пойнтинга и осью Y, меньше угла полного внутреннего отражения, то в соответствии с анализом подобных процессов, волна, попавшая изнутри диэлектрика на границу раздела диэлектрик-воздух, преломится на границе и выйдет в воздух. Если угол, составленный вектором Пойнтинга и осью Y, равен или больше угла полного внутреннего отражения, то такая волна отразится от границы раздела с воздухом и, попав под тем же углом на другую границу раздела, вновь отразится от неё. Этот процесс будет продолжаться по мере продвижения волны вдоль оси *Z*.

В результате в диэлектрической пластине возникает волна волноводного типа, распространяющаяся в пластине с фазовой скоростью, превышающей скорость поперечной волны в диэлектрике $v_{\phi} > \frac{1}{\sqrt{\mu_0 \varepsilon_a}}$. Другими словами в пластине будет распространяться быстрая волна. В соответствии с явлением полного внутреннего отражения в воздухе, у поверхностей пластины образуется медленная волна, распространяющаяся вдоль оси Z, с фазовой скоростью, меньшей скорости света в воздухе c_0 . Обе волны (внутренняя и внешняя) образуют единое электромагнитное поле с одной и той же фазовой скоростью v_{ϕ} ,

удовлетворяющей неравенству:
$$c = \frac{1}{\sqrt{\mu_0 \varepsilon_a}} < \upsilon_{\phi} < c_0 = \frac{1}{\sqrt{\mu_0 \varepsilon_0}}$$

Таким образом, волна, обладающая фазовой скоростью v_{ϕ} внутри и вне диэлектрика, по отношению к скорости поперечной волны в диэлектрике может считаться быстрой, а по отношению к скорости света в воздухе – медленной.

Разумеется, бесконечно протяжённая вдоль поперечной координаты X (или Y) пластина не представляет собой реальную волноводную систему, ограниченную по этой оси. Однако, это предположение существенно упрощает анализ и не влияет на представление процесса распространения волн в диэлектрических волноводах.

ПОРЯДОК ВЫПОЛНЕНИЯ РАСЧЁТА.

Предполагая известными параметры диэлектрика (ε_a , μ_0) и окружающей среды (ε_0 , μ_0), которой чаще всего бывает воздух,, а также тип волны, которая должна распространяться по волноводу (например E_{mn} , или H_{mn} где m -количество вариаций поля вдоль оси x, а n количество вариаций поля вдоль оси y), обозначив через 2d толщину слоя диэлектрика, приступаем к расчёту:

1. Выбираем прямоугольную правовинтовую симметричную относительно плоскости *XZ* систему координат.

2. Располагаем диэлектрик согласно рис.7, начало координат совмещаем с центром волновода.

Рис. 7 Геометрия волноводной структуры

Записываем волновые уравнения согласно (1.12а) для составляющей $E_z^{I,II}$,

полагая $\frac{\partial}{\partial x} = 0$, т.е. предполагая поле однородным вдоль оси X (m=0):

$$\frac{\partial^2 E_z^I}{\partial y^2} + \frac{\partial^2 E_z^I}{\partial z^2} = -k^2 E_z^I \quad , \qquad k = \omega \sqrt{\mu_0 \varepsilon_a} \quad , \qquad (2.1.1a)$$

$$\frac{\partial^2 E_z^{II}}{\partial y^2} + \frac{\partial^2 E_z^{II}}{\partial z^2} = -k_0^2 E_z^{II} , \qquad k_0 = \omega \sqrt{\mu_0 \varepsilon_0} . \qquad (2.1.16)$$

3. Так как $E_z \sim e^{j(\omega t - \beta z)}$, перепишем волновые уравнения, заменив

$$\frac{\partial^{2}}{\partial z^{2}} = -\beta^{2}, \qquad \frac{\partial^{2} E_{z}^{I}}{\partial y^{2}} = -(k^{2} - \beta^{2})E_{z}^{I} = -\chi_{1}^{2}E_{z}^{I}, \qquad (2.1.2a)$$

$$\frac{\partial^2 E_z^{II}}{\partial y^2} = -\left(k_0^2 - \beta^2\right) E_z^{II} = \chi_2^2 E_z^{II} . \qquad (2.1.26)$$

Здесь
$$\chi_1^2 = k_0^2 \varepsilon_r - \beta^2 = \left(\frac{2\pi}{\lambda}\right)^2 \left(\varepsilon_r - \left(\frac{\lambda}{\Lambda}\right)^2\right),$$
 (2.1.3a)

$$\chi_{2}^{2} = k_{0}^{2} - \beta^{2} = \left(\frac{2\pi}{\lambda}\right)^{2} \left(1 - \left(\frac{\lambda}{\lambda}\right)^{2}\right)$$
(2.1.36)

- квадраты поперечных волновых чисел для области І и области ІІ.

Для выполнения условия
$$c = \frac{1}{\sqrt{\mu_0 \varepsilon_a}} < \upsilon_{\phi} < c_0 = \frac{1}{\sqrt{\mu_0 \varepsilon_0}}$$
 постоянная распространения β должна быть действительным числом, причём должны выполняться неравенство $k_0 \varepsilon_r > \beta > k_0$, из которого следуют равенства:

$$\chi_1 = \sqrt{k_0 \varepsilon_r - \beta^2}$$
 и $\chi_2 = -j\sqrt{\beta^2 - k_0^2}$, причём χ_1 – действительное число, а χ_2 -
мнимое. Вследствие этого, волновое уравнение для первой области не изменится,

т.е. будет иметь прежний вид

$$\frac{\partial^2 E_z^{I}}{\partial y^2} = -\chi_1^2 E_z^{I}.$$
 (2.1.4a)

Для второй области

21

$$\frac{\partial^2 E_z^{II}}{\partial y^2} = \left(\beta^2 - k_0^2\right) E_z^{II} = \chi_2^2 E_z^{II}. \qquad (2.1.46)$$

Продольная постоянная распространения одновременно равна

$$\beta = \sqrt{k_0^2 \varepsilon_r - \chi_1^2} \quad \mathbf{M} \quad \beta = \sqrt{k_0^2 + \chi_2^2} \quad . \tag{2.1.5}$$

4. Запишем в соответствии с (1.8) выражения для поперечных составляющих поля в первой и второй областях:

$$E_{y}^{I} = -\frac{j\beta}{\chi_{1}^{2}} \frac{\partial E_{z}^{I}}{\partial y} e^{-j\beta Z} , \qquad H_{x}^{I} = j\frac{\omega\varepsilon_{a}}{\chi_{1}^{2}} \frac{\partial E_{z}^{I}}{\partial y} e^{-j\beta Z} ,$$
$$E_{y}^{II} = -\frac{j\beta}{\chi_{2}^{2}} \frac{\partial E_{z}^{II}}{\partial y} e^{-j\beta Z} , \qquad H_{x}^{II} = j\frac{\omega\varepsilon_{0}}{\chi_{2}^{2}} \frac{\partial E_{z}^{II}}{\partial y} e^{-j\beta Z} ,$$

- 5. Решения волнового уравнения для области I и II хорошо известны и имеют вид:
 - для области I $E_{z}^{I} = A \sin \chi_{1} y + B \cos \chi_{1} y$, (2.1.6a)

для области II
$$E_z^{II} = Ce^{-\chi_2 y} + De^{\chi_2 y}$$
. (2.1.66)

6. Решение (2.1.6а) состоит из суммы двух частных, независимых решений:

$$E_{z}^{I} = A \sin \chi_{1} y$$
, (2.1.7a)

$$E_z^{I} = B \cos \chi_1 y$$
 . (2.1.76)

Каждое из этих решений соответствует самостоятельной электромагнитной волне, распространяющейся вдоль пластины: (а) соответствует электрической четной волне, (б) - электрической нечетной волне. Название этих волн связано с тем, что в первом случае составляющим поля E_y^I и H_x^I , определяющим вектор Пойнтинга, направленный вдоль оси *Z*, соответствует закон $\cos_{\chi_1} y$, т.е. четный относительно y = 0, а во втором нечетный - $\sin \chi_1 y$.

7. Решение $E_z^{II} = Ce^{-\chi_2 y} + De^{\chi_2 y}$ нужно подчинить требованиям теоремы единственности, для чего из него необходимо исключить второе слагаемое, положив константу D = 0, так как функция $e^{\chi_2 y}$ при $y = \infty$ равна бесконечности. Следовательно, в решении остаётся только одно слагаемое - $E_z^{II} = Ce^{-\chi_2 y}$. 8. Пользуясь формулами (2.1.6), записываем выражение для составляющих поля волны E_{0n} в первой и второй средах для четных и нечетных волн: - для четных волн.

$$E_{z}^{I} = A \sin \chi_{1} y , \qquad E_{z}^{II} = Ce^{-\chi_{2} y} ,$$

$$E_{y}^{I} = -j \frac{A\beta}{\chi_{1}} \cos \chi_{1} y , \qquad E_{y}^{II} = -j \frac{C\beta}{\chi_{2}} e^{-\chi_{2} y} , \qquad (2.1.8a)$$

$$H_{x}^{I} = j \frac{A\omega\varepsilon_{a}}{\chi_{1}} \cos \chi_{1} y , \qquad H_{x}^{II} = j \frac{C\omega\varepsilon_{0}}{\chi_{2}} e^{-\chi_{2} y} ,$$

- для нечетных волн

$$E_{z}^{I} = A \cos \chi_{1} y , \qquad E_{z}^{II} = C e^{-\chi_{2} y} ,$$

$$E_{y}^{I} = j \frac{A\beta}{\chi_{1}} \sin \chi_{1} y , \qquad E_{y}^{II} = j \frac{C\beta}{\chi_{2}} e^{-\chi_{2} y} , \qquad (2.1.86)$$

$$H_{x}^{I} = -j \frac{A \omega \varepsilon_{a}}{\chi_{1}} \sin \chi_{1} y$$
, $H_{x}^{II} = -j \frac{C \omega \varepsilon_{0}}{\chi_{2}} e^{-\chi_{2} y}$

Эти уравнения в дальнейшем будем использовать для построения структуры поля, но прежде нужно определить поперечные постоянные распространения χ_1 и χ_2 .

9. Вывод уравнений, предназначенных для определения поперечных волновых чисел χ_1 и χ_2 .

Для вывода этих уравнений используются граничные условия на границе диэлектрик-диэлектрик: $E_{\tau 1} = E_{\tau 2}$ и $H_{\tau 1} = H_{\tau 2}$ при y = d.

Для случая электрических четных волн граничные условия записываем

$$E_{z}^{I} = E_{z}^{II} \qquad II \qquad H_{x}^{I} = H_{x}^{II},$$

ИЛИ
$$A \sin \chi_1 d = C e^{-\chi_2 d}$$
 И $j \frac{A \omega \varepsilon_a}{\chi_1} \cos \chi_1 d = j \frac{C \omega \varepsilon_0}{\chi_2} e^{-\chi_2 d}$

Разделив почленно первое уравнение на второе, произведя необходимые сокращения и домножив левую и правую части на *d*, получим:

для четных волн
$$\chi_1 d \frac{1}{\varepsilon_r} \operatorname{tg} \chi_1 d = \chi_2 d$$
, (2.1.9*a*)

для нечетных волн
$$\chi_1 d \frac{1}{\varepsilon_r} \operatorname{ctg} \chi_1 d = -\chi_2 d$$
. (2.1.96)

10. Волны магнитного типа Н оп

Как и в случае электрических волн запишем выражения для продольных составляющих магнитного поля.

для области I
$$H_z^I = A \sin \chi_1 y$$
, (четные волны) (2.1.10a)

$$H_{z}^{I} = B \cos \chi_{1} y$$
, (нечетные волны) (2.1.106)

для области II $H_z^{II} = Ce^{-\chi_2 y}$, для чётных и нечётных волн. (2.1.11)

Переход от продольных составляющих к поперечным осуществляется с помощью формул:

$$H_{y}^{I} = -j \frac{\beta}{\chi_{1}^{2}} \frac{\partial H_{z}^{I}}{\partial y} , \qquad E_{x}^{I} = -j \frac{\omega \mu_{0}}{\chi_{1}^{2}} \frac{\partial H_{z}^{I}}{\partial y} , \qquad (2.1.12a)$$

$$H_{y}^{II} = -j \frac{\beta}{\chi_{2}^{2}} \frac{\partial H_{z}^{II}}{\partial y} , \qquad E_{x}^{II} = -j \frac{\omega \mu_{0}}{\chi_{2}^{2}} \frac{\partial H_{z}^{II}}{\partial y} . \qquad (2.1.126)$$

После подстановки H_z^I и H_z^{II} получаем выражения, определяющие структуру электромагнитных полей магнитного типа.

Для четных волн: $H_{z}^{I} = A \sin \chi_{1} y$, $H_{z}^{II} = Ce^{-\chi_{2} y}$,

$$H_{y}^{I} = -j \frac{\beta}{\chi_{1}} A \cos \chi_{1} y$$
, $H_{y}^{II} = -j \frac{\beta}{\chi_{2}} C e^{-\chi_{2} y}$, (2.1.13a)

$$E_{x}^{I} = -j \frac{\omega \mu_{0}}{\chi_{1}} A \cos \chi_{1} y$$
, $E_{x}^{I} = -j \frac{\omega \mu_{0}}{\chi_{2}} C e^{-\chi_{2} y}$

Для нечетных волн: $H_z^I = B \cos \chi_1 y$, $H_z^{II} = Ce^{-\chi_2 y}$,

$$H_{y}^{I} = j \frac{\beta}{\chi_{1}} B \sin \chi_{1} y$$
, $H_{y}^{II} = j \frac{\beta}{\chi_{2}} C e^{-\chi_{2} y}$, (2.1.136)

$$E_{x}^{I} = j \frac{\omega \mu_{0}}{\chi_{1}} B \sin \chi_{1} y$$
, $E_{x}^{II} = j \frac{\omega \mu_{0}}{\chi_{2}} C e^{-\chi_{2} y}$.

Уравнения для определений поперечных постоянных распространения *x*₁ и *x*₂ и толщины диэлектрической пластины *d* имеют вид:

для четных волн
$$\chi_1 d \cdot tg(\chi_1 d) = \chi_2 d$$
, (2.1.14a)

для нечетных волн $\chi_1 d \cdot \text{ctg}(\chi_1 d) = -\chi_2 d$. (2.1.14б)

11. Решение трансцендентных уравнений.

Трансцендентные уравнения для волн типа E, в которые входят неизвестные поперечные волновые числа χ_1 и χ_2 , удобнее всего решать

графическим методом.

Но прежде чем преступить к построению графиков следует вывести еще одно уравнение, так как число уравнений должно быть равно числу неизвестных.

Исходя из того, что продольная постоянная распространения *в* для I и II сред одинакова, мы можем записать равенство:

$$\beta = \sqrt{k_2^2 + \chi_2^2} = \sqrt{k_1^2 - \chi_1^2}, \quad 3 \text{Десь} \quad k_1 = \omega \sqrt{\mu_0 \varepsilon_a}, \quad k_2 = \omega \sqrt{\mu_0 \varepsilon_0},$$

ОТКУДА $\chi_1^2 + \chi_2^2 = k_1^2 - k_2^2$.

Помножив левую или правую часть уравнения на *d*² получим:

$$(\chi_1 d)^2 + (\chi_2 d)^2 = d^2 (k_1^2 - k_2^2) = R^2.$$
(2.1.15)

Это уравнение является уравнением окружности в координатах $\chi_2 d$ и $\chi_1 d$, радиус которой:

$$R = d \cdot \sqrt{k_1^2 - k_2^2} = d \cdot k_0 \sqrt{\varepsilon_r - 1}.$$
 (2.1.16)

В координатах $\chi_1 d$ и $\chi_2 d$ могут быть построены и графики функций, входящих в трансцендентные уравнения (2.14а), (2.14б). Точки пересечения окружности и соответствующих трансцендентных функций позволяют определить $\chi_1 d$ и $\chi_2 d$.

12. Рассмотрим построение графиков для четных электрических волн, для которых дисперсионное уравнение - $(\chi_1 d) \operatorname{tg}(\chi_1 d) = \varepsilon_r \chi_2 d$.

Отложим по оси абсцисс $\chi_1 d$ в радианах, а по оси ординат $\chi_2 d = \frac{1}{\varepsilon_r} \operatorname{tg}(\chi_1 d)$.

Рис. 8 Графическое решение дисперсионного уравнения для волн четного типа.

Необходимо помнить, что $\chi_1 d$ и $\chi_2 d$ должны быть положительными, так как в противном случае могут быть нарушены требования теоремы единственности. После построения графиков функций (рис.8), проведём в этих же координатах окружность радиуса *R*.

Точки пересечения окружности с кривыми определяют решение трансцендентного уравнения и, следовательно, определяют рабочие точки.

Опустив из этих точек перпендикуляры на оси $\chi_1 d$ и $\chi_2 d$, определим их значения, а следовательно, при известной толщине d и значения χ_1 , χ_2 . Индекс nопределяет тип волны распространяющейся по волноводу. От него зависит количество вариации поля по оси y.

Пересечение окружности с первой тангенсоидой соответствует n=0, т.е. волне E_{00} , со второй n=2 волне E_{02} , с третьей n=4 волне E_{04} и т.д.. Таким образом, для чётных волн могут существовать волны: $E_{00} E_{02} E_{04}$ и так далее.

На рис.9 изображены графики для нечётных волн, соответствующие

дисперсионному уравнению $\chi_1 d \frac{1}{\varepsilon_r} \operatorname{ctg} \chi_1 d = -\chi_2 d$.

Рис. 9 Графическое решение дисперсионного уравнения для волн нечетного типа

Так как согласно формуле (2.16) радиус окружности $R = d \frac{2\pi}{\lambda} \sqrt{\varepsilon_r - 1} = d \frac{2\pi f}{c_0} \sqrt{\varepsilon_r - 1}$, то условием существования волн чётного типа E_{0n} будет $R > n \frac{\pi}{2}$ (где

n=0,2,4,..) c

$$f_{\kappa p} = \frac{c_0 n}{4 d} \frac{1}{\sqrt{\varepsilon_r - 1}} \quad \mathrm{M} \quad \lambda_{\kappa p} = \frac{4 d}{n} \sqrt{\varepsilon_r - 1} \,.$$

Так для волны типа E_{02} $\lambda_{\kappa p} = 2 d \sqrt{\varepsilon_r - 1}$, для E_{04} $\lambda_{\kappa p} = d \sqrt{\varepsilon_r - 1}$ и так далее. Из диаграммы типов колебаний (рис.9) следует, что условием существования волн E_{0n} нечётного типа является $R > n \frac{\pi}{2}$, где n=1,3,5...

Следовательно, критическая длина волны для волн чётного и нечётного типов определяется общей формулой:

$$\lambda_{\kappa p} = \frac{4 d \sqrt{\varepsilon_r - 1}}{n}$$
, при этом *n*=1,2,3,4,5.... (2.1.17)

Откуда следует, что волна типа E_{01} имеет самую большую критическую длину волны для рассматриваемого волновода равную $\lambda^{E_{01}}_{\kappa p} = 4 d \sqrt{\varepsilon_r - 1}$. Следом за ней идёт $\lambda^{E_{02}}_{\kappa p} = 2 d \sqrt{\varepsilon_r - 1}$ и так далее.

Рис. 10 Диаграмма типов колебаний

Диапазон длин волн $\Delta\lambda$ может быть рассчитан по аналогии с металлическими волноводами: $\lambda_{\text{max}} = 0.8 \lambda^{E_{01}} \kappa_p$, $\lambda_{\text{min}} = 1.2 \lambda^{E_{02}} \kappa_p$ (рис.10).

Из графиков (рис.8) видно, что волна четного типа E_{00} может существовать при любом значении R, так как для неё имеются точки пересечения в интервале от $\chi_1 d = 0$ до $\chi_1 d = \infty$.

Но если потребовать, чтобы в волноводе распространялась только волна E_{00} , то $\chi_1 d$ должна лежать в пределах $0 \div \frac{\pi}{2}$. Как видно из графиков рис.8, $\chi_2 d$ при этом тоже мало.

При малом χ_2 функция $e^{-\chi_2 y}$ убывает медленно. Это означает, что значительная часть мощности в этом случае распространяется в воздухе. При $\chi_1=0$ и $\chi_2=0$, поле вырождается: $E_z^I = B$, $E_x^I = E_y^{II} = 0$.

Для волны E_{00} , $\lambda_{\kappa p} = \infty$, при этом волновод теряет свои направляющие

свойства и поле приобретает характер поперечной волны, излученной возбуждающей системой в свободное пространство.

В диэлектрическом волноводе, также как и в металлических волноводах, существует дисперсия, т.е. частотная зависимость основных параметров волновода, в том числе длины волны в волноводе, от частоты.

13. Фазовая скорость и коэффициент замедления поверхностных волн

Фазовая скорость определяется известным соотношением - $v_{\phi} = \frac{\omega}{\beta}$.

Откуда, с учётом $\beta = \sqrt{k_0^2 + \chi_2^2}$,

$$v_{\phi} = \frac{\omega}{\beta} = \frac{\omega}{\sqrt{\omega^{2} \mu_{0} \varepsilon_{0} + \chi_{2}}} = \frac{c_{0}}{\sqrt{1 + \frac{\chi_{2}^{2}}{k_{0}^{2}}}}.$$
 (2.1.18)

Из этого соотношения следует, что волна в диэлектрическом волноводе распространяется со скоростью меньше скорости света c_0 .

При $\chi_2 = 0$ фазовая скорость равна скорости света, при $\chi_2 = \infty$ $v_{\phi} = 0$.

Знаменатель (2.1.18) представляют в виде $\sqrt{1 + \frac{\chi_2^2}{k_0^2}} = K_3$, при этом K_3 называют

коэффициентом замедления.

14. Длина волны в волноводе.

Длина волны в волноводе определяется формулой $\Lambda = \frac{v_{\phi}}{f}$, или с учетом (2.1.18)

$$\Lambda = \frac{c_0}{f \sqrt{1 + \frac{\chi_2^2}{k_0^2}}} = \frac{\lambda_0}{K_3}.$$
 (2.1.19)

Длина волны в волноводе изменяется от $\Lambda = \lambda_0$ при $\chi_2 = 0$ до $\Lambda = 0$ при $\chi_2 = \infty$.

В первом случае волна должна рассматриваться как поперечная. Во втором прекращается её распространение, так как коэффициент замедления становится равным бесконечности.

15. Групповая скорость.

Групповая скорость может быть определена из соотношения

$$v_{zp} = \frac{d\omega}{d\beta} = \frac{1}{\frac{d\beta}{d\omega}}$$
 при: $\omega = \omega_0$; $\beta = \beta_0$. Откуда получим

$$\frac{d\beta}{d\omega} = \frac{d\sqrt{\omega^{2}\mu_{0}\varepsilon_{0} + \chi_{2}^{2}(\omega)}}{d\omega} = \frac{2\omega\mu_{0}\varepsilon_{0} + 2\chi_{2}\frac{d\chi_{2}}{d\omega}}{2\sqrt{\omega^{2}\mu_{0}\varepsilon_{0} + \chi_{2}^{2}}} = \frac{\omega\mu_{0}\varepsilon_{0} + \chi_{2}\frac{d\chi_{2}}{d\omega}}{\sqrt{\omega^{2}\mu_{0}\varepsilon_{0} + \chi_{2}^{2}}},$$

$$v_{zp} = \frac{\omega \sqrt{\mu_0 \varepsilon_0} \sqrt{1 + \frac{\chi_2^2}{\omega^2 \mu_0 \varepsilon_0}}}{\omega \mu_0 \varepsilon_0 \left(1 + \frac{\chi_2}{\omega \mu_0 \varepsilon_0} \frac{d\chi_2}{d\omega}\right)} = \frac{cK_{y}}{1 + \frac{\chi_2}{\omega \mu_0 \varepsilon_0} \frac{d\chi_2}{d\omega}} .$$
(2.1.20)

16. Мощность, канализируемая по волноводу.

В диэлектрическом волноводе мощность канализируется по двум областям: І- внутри диэлектрического стержня, ІІ- вне стержня.

Исходной формулой для расчета является среднее значение вектора Пойнтинга

$$\overline{\Pi}_{cp} = \frac{1}{2} \operatorname{Re} \left[\overline{E} \times \overline{H}^* \right].$$

Например, для чётной волны электрического типа поперечные составляющие записываются

$$E_{y}^{I} = -j \frac{A\beta}{\chi_{1}} \cos \chi_{1} y , \qquad E_{y}^{II} = -j \frac{C\beta}{\chi_{2}} e^{-\chi_{2} y},$$
$$H_{x}^{I} = j \frac{A\omega\varepsilon_{a}}{\chi_{1}} \cos \chi_{1} y , \qquad H_{x}^{II} = j \frac{C\omega\varepsilon_{0}}{\chi_{2}} e^{-\chi_{2} y}.$$

Для области I отношение $\frac{E_y^I}{H_x^I} = -\frac{\beta}{\omega \varepsilon_a}$. Для области II отношение $\frac{E_y^{II}}{H_x^{II}} = -\frac{\beta}{\omega \varepsilon_0}$.

$$\overline{\Pi_{cp}^{I}} = \overline{k_0} \frac{A^2}{2\chi_1^2} \beta \omega \varepsilon_a \cos^2 \chi_1 y, \quad \overline{\Pi_{cp}^{II}} = \overline{k_0} \frac{A^2 \varepsilon_r}{2\chi_1^2} \beta \omega \varepsilon_a \cos^2 (\chi_1 d) e^{-2\chi_2 y}.$$

Средние мощности, канализируемые по областям равны:

$$P_{cp}^{I} = 2 \int_{0}^{d} \prod_{cp}^{I} dy \quad \mathbf{M} \qquad P_{cp}^{II} = 2 \int_{d}^{\infty} \prod_{cp}^{II} dy \quad .$$
(2.1.21)

Общая мощность, канализируемая по волноводу равна :

$$P_{cp} = P_{cp}^{I} + P_{cp}^{II} = P_{cp}^{I} \left(1 + \frac{P_{cp}^{II}}{P_{cp}^{I}} \right)$$

Отношение P_{cp}^{II} / P_{cp}^{I} показывает отношение мощностей, канализируемых по областям.

17. Затухание волн в диэлектрическом волноводе.

Затухание волн в волноводе происходит только в области I, так как во внешней области II диэлектриком является воздух.

Для первой области ε_a является комплексной величиной

$$\varepsilon_a = \varepsilon_a (1 - j \operatorname{tg} \Delta) = \varepsilon_a \sqrt{1 + \operatorname{tg}^2 \Delta} e^{-j\Delta},$$

где tg $\Delta = \frac{\sigma_{\partial}}{\omega \varepsilon_a}$ - тангенс угла потерь диэлектрика. В этом случае постоянная

распространения тоже комплексная величина $\gamma^{I} = \beta^{I} - j\alpha$. Здесь β^{I} - фазовая постоянная, α - постоянная затухания.

В общем случае определение α и β осуществляется в соответствии с теорией распространения волн в неограниченных средах с потерями. Векторы \overline{E} и \overline{H} пропорциональны $e^{-\alpha z}e^{j(\omega t - \beta z)}$.

Для первой среды выражение для α и β^{I} имеют вид

$$\alpha = \omega \sqrt{\frac{\varepsilon_a \mu_0}{2} \left(\sqrt{1 + \operatorname{tg}^2 \Delta} - 1 \right)}, \qquad \beta^I = \sqrt{\omega^2 \frac{\varepsilon_a \mu_0}{2} \left(\sqrt{1 + \operatorname{tg}^2 \Delta} + 1 \right) - \chi_1^2}.$$

Исходя из равенства постоянных распространения в первой и второй средах и (2.1.5), необходимо считать постоянную распространения во второй среде тоже комплексной величиной $\gamma^{II} = \beta^{II} - j\alpha$, для которой

$$\alpha = \omega \sqrt{\frac{\varepsilon_a \mu_0}{2} \left(\sqrt{1 + \operatorname{tg}^2 \Delta} - 1 \right)} , \quad \beta^{II} = \sqrt{\omega^2 \frac{\varepsilon_0 \mu_0}{2} \left(\sqrt{1 + \operatorname{tg}^2 \Delta} + 1 \right) + \chi_2^2} .$$

18. Волновое сопротивление диэлектрического волновода.

Волновым сопротивлением является отношение поперечных составляющих электромагнитного поля. В первой среде для чётных волн это будет отношение:

$$\dot{Z}_{W}^{I} = \frac{E_{y}^{I}}{H_{x}^{I}} = -\frac{\beta^{I}}{\omega \dot{\varepsilon}_{a}} = \frac{\sqrt{\omega^{2} \frac{\varepsilon_{a} \mu_{0}}{2} \left(\sqrt{1 + tg^{2} \Delta} + 1\right) - \chi_{1}^{2}}}{\omega \dot{\varepsilon}_{a}} = \left| \dot{Z}_{W}^{I} \right| e^{j\Delta} .$$
(2.1.22)

Здесь реальная часть комплексного волнового сопротивления равна Re $\dot{Z}_{W}^{I} = \left| \dot{Z}_{W}^{I} \right| \cos \Delta$, где Δ - сдвиг фаз между поперечными составляющими электромагнитного поля и

$$\left| \dot{Z}_{W}^{I} \right| = \frac{120 \ \pi}{\sqrt{\varepsilon_{r}}} \frac{\sqrt{\frac{1}{2} \left(\sqrt{1 + tg^{2} \ \Delta} + 1 \right) - \frac{\chi_{1}^{2}}{k_{1}^{2}}}}{\sqrt{1 + tg^{2} \ \Delta}}.$$

Во второй среде для определения волнового сопротивления $\dot{z}_{W}^{"}$ воспользуемся выражениями для поперечных составляющих (2.1.8a), где константу *C* необходимо выразить через константу *A*, используя граничные условия $E_{z}^{I} = E_{z}^{"}$, $H_{x}^{I} = H_{x}^{"}$ при *y*=*d*. Выражая $C = A \sin(\chi_{1} d) e^{\chi_{2} d}$ из первых уравнений системы (2.1.8a) и подставляя его в $E_{y}^{"}$, а также из третьих уравнений -

$$C = A \frac{\chi_2 \varepsilon_a}{\chi_1 \varepsilon_0} \cos(\chi_1 d) e^{\chi_2 d}$$
 И ПОДСТАВЛЯЯ В H_x^{II} , ПОЛУЧИМ

$$E_y^{II} = -jA \frac{\beta}{\chi_2} \sin(\chi_1 d) e^{-\alpha z} e^{\chi_y y}, \quad H_x^{II} = -jA \frac{\omega \dot{\varepsilon}_a}{\chi_1} \cos(\chi_1 d) e^{-\alpha z} e^{\chi_2 y}.$$

Используя полученные выражения, определим волновое второй среды сопротивление:

$$\dot{Z}_{W}^{II} = \frac{E_{y}^{II}}{H_{x}^{II}} = -\frac{\beta}{\omega \dot{\varepsilon}_{a}} \frac{\chi_{1}}{\chi_{2}} \operatorname{tg} \chi_{1} d = -\left| \dot{Z}_{W}^{I} \right| \frac{\chi_{1}}{\chi_{2}} \operatorname{tg}(\chi_{1} d) e^{j\Delta} \quad .$$
(2.1.23)

Суммарное волновое сопротивление диэлектрического волновода определим как

$$\dot{Z}_{W}^{\Sigma} = rac{\dot{Z}_{W}^{I} \dot{Z}_{W}^{II}}{\dot{Z}_{W}^{I} + \dot{Z}_{W}^{II}}.$$

2.2 Планарный диэлектрический волновод.

Планарным диэлектрическим волноводом может служить металлическая плоскость, покрытая слоем диэлектрика с относительной диэлектрической проницаемостью $\varepsilon_r > 1$ (рис.11). Толщина слоя по оси *Y* равна *d*.

Рис. 11 Геометрия планарного диэлектрического волновода

В большинстве случаев окружающей средой является воздух. Под областью І понимают область $0 \le y \le d$, под областью II область $d \le y \le \infty$.

Волновые уравнения для продольных составляющих электромагнитных полей в первой среде в соответствии с (2.1.12) будут иметь обычный вид:

$$\frac{d^{2}E_{z}^{I}}{dy^{2}} = -\chi_{1}^{2}E_{z}^{I}, \qquad \frac{d^{2}H_{z}^{I}}{dy^{2}} = -\chi_{1}^{2}H_{z}^{I}.$$

Решением этих уравнений являются:

$$E_{z}^{T} = A \sin \chi_{1} y + B \cos \chi_{1} y$$
, (2.2.1a)

$$H_{z}^{I} = C \sin \chi_{1} y + D \cos \chi_{1} y$$
. (2.2.16)

В планарных волноводах должны удовлетворятся граничные условия при у=0 на

металлической поверхности: $E_z^I = 0$ и $H_z^I = \max$.

Из рассмотрения этих уравнений следует, что для волн типа E необходимо оставить $E_z^I = A \sin \chi_1 y$, так как при этом выполняется граничное условие для $E_z^I = 0$, а для волн типа H необходимо оставить $H_z^I = D \cos \chi y$, так как при этом выполняется граничное условие - $H_z^I = \max$ при y=0.

Во второй среде волны, как и в п.2.1, носят поверхностный характер. Поэтому в дальнейшем будем использовать выражения (2.1.8).

Если по заданию требуется рассчитать волновод, вдоль которого должна распространяться волна тип *E*, то для расчёта таких волноводов используются формулы для чётных электрических волн:

$$E_{z}^{I} = A \sin \chi_{1} y , \qquad E_{z}^{II} = Ce^{-\chi_{2} y} ,$$

$$E_{y}^{I} = -j \frac{A\beta}{\chi_{1}} \cos \chi_{1} y , \qquad E_{y}^{II} = -j \frac{C\beta}{\chi_{2}} e^{-\chi_{2} y} , \qquad (2.2.2)$$

$$H_{x}^{I} = j \frac{A\omega\varepsilon_{a}}{\chi_{1}} \cos \chi_{1} y , \qquad H_{x}^{II} = j \frac{C\omega\varepsilon_{0}}{\chi_{2}} e^{-\chi_{2} y} .$$

Если по волноводу должна распространяться волна типа *H*, то следует использовать формулы для нечётных магнитных волн:

$$H_{z}^{I} = D \cos \chi_{1} y , \qquad H_{z}^{II} = Ce^{-\chi_{2} y} ,$$

$$H_{y}^{I} = j \frac{\beta D}{\chi_{1}} \sin \chi_{1} y , \qquad H_{y}^{II} = j \frac{\beta C}{\chi_{2}} e^{-\chi_{2} y} , \qquad (2.2.3)$$

$$E_{x}^{I} = j \frac{\omega \mu_{0} D}{\chi_{1}} \sin \chi_{1} y , \qquad E_{x}^{II} = j \frac{\omega \mu_{0} C}{\chi_{2}} e^{-\chi_{2} y} .$$
Таким образом, по такому волноводу могут распространяться только чётные электрические и нечётные магнитные волны.

Трансцендентные уравнения, предназначенные для определения поперечных волновых чисел и размера волновода имеют следующий вид:

$$\frac{\varepsilon_0}{\varepsilon_a}(\chi_1 d) \operatorname{tg}(\chi_1 d) = \chi_2 d$$
 - для волн чётного электрического типа, (2.2.4a)

 $(\chi_1 d) \operatorname{ctg}(\chi_1 d) = \chi_2 d$ - для волн нечётного магнитного типа. (2.2.4б)

Дальнейшие расчёты нужно проводить в соответствии аналогичными расчётами, проводимыми в предыдущих параграфах.

2.3 Несимметричный диэлектрический волновод

Несимметричный диэлектрический волновод представляет из себя диэлектрическую пластину, имеющую размер d в направлении одной из поперечных осей, в данном случае y, и обладающую абсолютной диэлектрической проницаемостью ε_{a2} (рис.12).

При *y*=0 она граничит с диэлектриком, простирающимся до *y*= ∞ и обладающим абсолютной диэлектрической проницаемостью ε_{a1} . При *y* = -d пластина граничит с диэлектриком, обладающим абсолютной диэлектрической проницаемостью ε_{a3} и простирающимся до *y*= $-\infty$.

Предполагается, что $\varepsilon_{a2} > \varepsilon_{a1}$ И $\varepsilon_{a2} > \varepsilon_{a3}$.

Таким образом всё пространство делится на три области:

I. $0 \le y \le \infty$, имеющей абсолютной диэлектрическую проницаемостью ε_{a1} ,

II. $0 \ge y \ge -d$, имеющей абсолютной диэлектрическую проницаемостью ε_{a2} ,

Ш. $-d \ge y \ge -\infty$, имеющей абсолютной диэлектрическую проницаемостью ε_{a3} . Следовательно, показатели преломления диэлектриков данной структуры зависят только от направления *y* и равны: $n_1 = \sqrt{\varepsilon_{r1}}$, $n_2 = \sqrt{\varepsilon_{r2}}$, $n_3 = \sqrt{\varepsilon_{r3}}$.

Рис. 12 Геометрия несимметричного диэлектрического волновода

Так как несимметричный диэлектрический волновод имеет три области с различными диэлектрическими проницаемостями, необходимо решать три волновых уравнения для продольных составляющих E_z и H_z , соответствующих областям: I,II,III. Если ввести $\psi = \left\{ \frac{E_z}{H_z} (y) \right\}$, то

$$\frac{d^2 \psi_1}{dy^2} + \chi_1^2 \psi_1 = 0 \qquad \text{в области I, где} \qquad \chi_1^2 = k_0^2 n_1^2 - \beta^2 , \qquad (2.3.1a)$$

$$\frac{d^2 \psi_2}{dy^2} + \chi_2^2 \psi_2 = 0 \quad \text{в области II}, \quad \text{где} \quad \chi_2^2 = k_0^2 n_2^2 - \beta^2 \quad , \qquad (2.3.16)$$

$$\frac{d^2\psi_3}{dy^2} + \chi_3^2\psi_3 = 0 \quad \text{в области III}, \quad \text{где} \quad \chi_3^2 = k_0^2 n_3^2 - \beta^2 \quad . \tag{2.3.1B}$$

В данных формулах $k_0 = \omega \sqrt{\mu_0 \varepsilon_0}$ - постоянная распространения свободного воздушного пространства, β – постоянная распространения волны в волноводе, а χ_1, χ_2, χ_3 -поперечные постоянные распространения для первой, второй и третьей областей соответственно.

Согласно изложенной выше методики расчёта диэлектрических волноводов, следует искать выражения для E_z и H_z в каждой отдельной области, затем выразить через них поперечные составляющие и используя граничные условия (приравнивая тангенциальные составляющие на границе раздела), определять неизвестные константы и записать дисперсионные уравнения. Общее решение волнового уравнения для волны, бегущей вдоль оси *z*, имеет вид

$$\psi_{1,2,3} = \left\{ \frac{E_z(y)}{H_z(y)} \right\} = \exp\left(\pm j\chi y\right).$$

Так как для первой и третьей областей $k_0^2 n_1^2 - \beta^2$ и $k_0^2 n_3^2 - \beta^2$ отрицательны, то $\chi_1 = \pm j \sqrt{\beta^2 - k_0^2 n_1^2}$ и $\chi_3 = \pm j \sqrt{\beta^2 - k_0^2 n_3^2}$, и решение для этих областей будет представлено в виде затухающих экспонент: $\exp(-\chi_1 y)$ при $0 \le y \le \infty$ и $\exp(\chi_3 y)$ при $-\infty \le y \le -d$.

Для второй области разность $k_0^2 n_2^2 - \beta^2$ положительна и решение будет иметь вид $\exp(\pm j\chi_2 y)$ ИЛИ $\psi = A_2 \cos \chi_2 y + B_2 \sin \chi_2 y$.

Следовательно:

$$\psi_{1,2,3} = \left\{ \frac{E_z(y)}{H_z(y)} \right\} = \begin{cases} A_1 \exp(-\chi_1 y), & \text{при} \quad 0 \le y \le \infty, \quad (2.3.2a) \\ A_2 \cos \chi_2 y + B_2 \sin \chi_2 y, & \text{при} \quad -d \le y \le 0, \quad (2.3.26) \\ A_3 \exp(\chi_3 (d+y)), & \text{при} \quad -\infty \le y \le -d. \quad (2.3.2B) \end{cases}$$

Поперечные составляющие для волн типа E_{mn} и H_{mn} найдём из системы

уравнений (1.8):

$$\begin{cases} -\chi^{2}H_{x} = -j\omega\varepsilon_{a}\frac{\partial E_{z}}{\partial y}, & -\chi^{2}E_{y} = j\beta\frac{\partial E_{z}}{\partial y}, \\ -\chi^{2}E_{x} = j\omega\mu_{0}\frac{\partial H_{z}}{\partial y}, & -\chi^{2}H_{y} = j\beta\frac{\partial H_{z}}{\partial y}. \end{cases}$$
(2.3.3)

Волны типа *H*_{0m}. Поперечные составляющие поля находятся из системы (2.3.3)

$$\begin{cases} -\chi^{2} E_{x} = j \omega \mu_{0} \frac{\partial H_{z}}{\partial y} \\ -\chi^{2} H_{y} = j \beta \frac{\partial H_{z}}{\partial y} \end{cases}$$
(2.3.4)

$$\begin{cases} H_{y_{1}}=j\frac{\beta}{\chi_{1}}A_{1}e^{-\chi_{1}y}, \\ E_{x_{1}}=j\frac{\omega\mu_{0}}{\chi_{1}}A_{1}e^{-\chi_{1}y}, & \text{область I} \quad 0 \le y \le \infty \end{cases}$$
(2.3.5a)
$$H_{z_{1}}=A_{1}e^{-\chi_{1}y} . \\ \begin{cases} H_{y_{2}}=j\frac{\beta}{\chi_{2}}(A_{2}\sin\chi_{2}y-B_{2}\cos\chi_{2}y), \\ E_{x_{2}}=\frac{j\omega\mu_{0}}{\chi_{2}}(A_{2}\sin\chi_{2}y-B_{2}\cos\chi_{2}y), & \text{область II} \quad -d \le y \le 0 \end{cases}$$
(2.3.56)
$$H_{z_{2}}=A_{2}\cos\chi_{2}y+B_{2}\sin\chi_{2}y. \end{cases}$$
$$\begin{cases} H_{y_{3}}=-jA_{3}\frac{\beta}{\chi_{3}}e^{\chi_{3}(d+y)}, \\ E_{x_{3}}=-j\frac{\omega\mu_{0}}{\chi_{3}}A_{3}e^{\chi_{3}(d+y)}, & \text{область III} \quad -\infty \le y \le 0 \end{cases}$$
(2.3.5B)
$$H_{z_{3}}=A_{3}e^{\chi_{3}(d+y)}. \end{cases}$$

Определение констант.

Для определения констант и вывода дисперсионных уравнений используем граничные условия на границе диэлектрик-диэлектрик:

$$H_{\tau 1} = H_{\tau 2}, E_{\tau 1} = E_{\tau 2}$$
 при *y*=0, или $H_{z1} = H_{z2}$, $E_{x1} = E_{x2}$,

$$H_{\tau 2} = H_{\tau 3}, E_{\tau 2} = E_{\tau 3}$$
 при *y*=-*d*, или $H_{z2} = H_{z3}, E_{x2} = E_{x3}$.

Для волн типа *H*_{0n} составим систему 4-х уравнений:

1.
$$H_{z1}=H_{z2}$$
 при y=0, откуда $A_1=A_2=C$, (2.3.6)

2.
$$E_{x1} = E_{x2}$$
 при y=0, откуда $\frac{\chi_2}{\chi_1} C = B_2$, (2.3.7)

3.
$$H_{z2}=H_{z3}$$
 при $y=-d$, откуда $A_3 = C (\cos \chi_2 d + \frac{\chi_2}{\chi_1} \sin \chi_2 d)$, (2.3.8)

4.
$$E_{x2} = E_{x3}$$
 при y=-d, откуда $A_3 = C\left(\frac{\chi_3}{\chi_2}\sin \chi_2 d - \frac{\chi_3}{\chi_1}\cos \chi_2 d\right)$. (2.3.9)

Окончательные уравнения, определяющие структуру поля волн типа H_{0n} , запишутся в виде:

$$\begin{cases}
H_{y1}=j\frac{\beta}{\chi_{1}}Ce^{-\chi_{1}y},\\
E_{x1}=j\frac{\omega\mu_{0}}{\chi_{1}}Ce^{-\chi_{1}y},\quad \text{область I} \quad 0 \le y \le \infty, \quad (2.3.10a)\\
H_{z1}=Ce^{-\chi_{1}y}.
\end{cases}$$

$$\begin{cases}
H_{y2} = j \frac{C\beta}{\chi_{2}} (\sin \chi_{2}y + \frac{\chi_{2}}{\chi_{1}} \cos \chi_{2}y), \\
E_{x2} = \frac{jC \omega\mu_{0}}{\chi_{2}} (\sin \chi_{2}y + \frac{\chi_{2}}{\chi_{1}} \cos \chi_{2}y), \text{ область II} \quad -d \le y \le 0, (2.3.106) \\
H_{z2} = C (\cos \chi_{2}y - \frac{\chi_{2}}{\chi_{1}} \sin \chi_{2}y).
\end{cases}$$

$$\begin{cases}
H_{y3} = -jA_3 \frac{\beta}{\chi_3} e^{\chi_3(d+y)}, \\
E_{x3} = -j \frac{\omega \mu_a}{\chi_3} A_3 e^{\chi_3(d+y)}, & \text{область III} -\infty \le y \le d \\
H_{z3} = A_3 e^{\chi_3(d+y)},
\end{cases}$$

где A_3 в H_{z3} и E_{x3} дается соответственно выражениями (2.3.8) и (2.3.9).

Для вывода дисперсионного уравнения приравняем (2.3.8) и (2.3.9):

$$\cos \chi_2 d + \frac{\chi_2}{\chi_1} \sin \chi_2 d = \frac{\chi_3}{\chi_2} \sin \chi_2 d - \frac{\chi_3}{\chi_1} \cos \chi_2 d , \qquad (2.3.11)$$

ИЛИ
$$(\frac{\chi_3}{\chi_2} - \frac{\chi_2}{\chi_1}) \sin \chi_2 d = (\frac{\chi_3}{\chi_1} + 1) \cos \chi_2 d$$
.

Разделим левую и правую части этого уравнения на $\cos \chi_2 d$ и проведя простые преобразования получим окончательное выражение дисперсионного уравнения для волн типа H_{0n}

$$tg(\chi_2 d) = -\frac{1}{\chi_2} \frac{(\chi_1 + \chi_3)}{(1 - \frac{\chi_1 \chi_3}{\chi_2^2})} .$$
(2.3.12)

Уравнения, определяющие структуру поля волн *H*_{0n}, можно также записать и в следующем виде:

$$H_{z}(y,z) = \begin{cases} Ce^{-\chi_{1}y}e^{-j\beta z}, & \text{при} \quad (0 \le y \le \infty) \\ C(\cos(\chi_{2}y) - \frac{\chi_{2}}{\chi_{1}}\sin(\chi_{2}y))e^{-j\beta z}, & \text{при} \quad (-d \le y \le 0) \\ C(\cos(\chi_{2}d) + \frac{\chi_{2}}{\chi_{1}}\sin(\chi_{2}d))e^{\chi_{3}(d+y)}e^{-j\beta z}, & \text{при} \quad (-\infty \le y \le -d) \end{cases}$$
(2.3.13a)

$$E_{x}(y,z) = \begin{cases} j \frac{\omega \mu_{0}}{\chi_{1}} Ce^{-\chi_{1}y} e^{-j\beta z} , & \text{при} \quad (0 \le y \le \infty) \end{cases}$$

$$E_{x}(y,z) = \begin{cases} j \frac{\omega \mu_{0}}{\chi_{2}} C(\sin \chi_{2}y - \frac{\chi_{2}}{\chi_{1}} \cos \chi_{2}y) e^{-j\beta z} , & \text{при} \quad (-d \le y \le 0) \end{cases} , \quad (2.3.136)$$

$$\begin{bmatrix} -j \frac{\omega \mu_{0}}{\chi_{3}} C(\frac{\chi_{3}}{\chi_{2}} \sin(\chi_{2}d) - \frac{\chi_{3}}{\chi_{1}} \cos(\chi_{2}d)) e^{\chi_{3}(d+y)} e^{-j\beta z} , & \text{при} \quad (-\infty \le y \le -d) \end{cases}$$

$$H_{y}(y,z) = \begin{cases} j \frac{\beta}{\chi_{1}} Ce^{-\chi_{1}y} e^{-j\beta z}, & \text{при } (0 \le y \le \infty) \end{cases}$$

$$H_{y}(y,z) = \begin{cases} j\beta C \frac{1}{\chi_{2}} (\sin(\chi_{2}y) + \frac{\chi_{2}}{\chi_{1}} \cos(\chi_{2}y)) e^{-j\beta z}, & \text{при } (-d \le y \le 0) \end{cases}$$

$$\left[-j\beta C \frac{1}{\chi_{3}} (\frac{\chi_{3}}{\chi_{2}} \sin(\chi_{2}d) - \frac{\chi_{3}}{\chi_{1}} \cos(\chi_{2}d)) e^{\chi_{3}(d+y)} e^{-j\beta z}, & \text{при } (-\infty \le y \le -d) \end{cases}$$

$$(2.3.13B)$$

причем $E_z = E_y = H_x = 0.$

Преобразование дисперсионного уравнения.

Преобразуем дисперсионное уравнение (2.3.12)

$$tg(\chi_2 d) = \frac{1}{\chi_2} \frac{\chi_1 + \chi_3}{1 - \frac{\chi_1 \chi_3}{\chi_2^2}}, \quad 3a \Pi H CaB \quad \chi_1 = \sqrt{\beta^2 - k_0^2 n_1^2}, \quad \chi_2 = \sqrt{k_0^2 n_2^2 - \beta^2}, \quad \chi_3 = \sqrt{\beta^2 - k_0^2 n_3^2},$$

$$tg(\sqrt{k_0^2 n_2^2 - \beta^2} d) = \frac{1}{\sqrt{k_0^2 n_1^2 - \beta^2}} \frac{\sqrt{\beta^2 - k_0^2 n_1^2 + \sqrt{\beta^2 - k_0^2 n_3^2}}}{(1 - \frac{\sqrt{\beta^2 - k_0^2 n_1^2} \cdot \sqrt{\beta^2 - k_0^2 n_3^2}}{k_0^2 n_2^2 - \beta^2})}$$

Вынесем из под корня $k_0 = \frac{2\pi}{\lambda}$,

$$tg(\frac{2\pi}{\lambda}d\sqrt{n_{2}^{2}-\frac{\beta^{2}}{k_{0}^{2}}}) = \frac{1}{\sqrt{n_{2}^{2}-\frac{\beta^{2}}{k_{0}^{2}}}} \cdot \frac{\sqrt{\frac{\beta^{2}}{k_{0}^{2}}-n_{1}^{2}}+\sqrt{\frac{\beta^{2}}{k_{0}^{2}}-n_{3}^{2}}}{1-\frac{\sqrt{\frac{\beta^{2}}{k_{0}^{2}}-n_{1}^{2}}}{1-\frac{\sqrt{\frac{\beta^{2}}{k_{0}^{2}}-n_{1}^{2}}}{n_{2}^{2}-\frac{\beta^{2}}{k_{0}^{2}}}}$$

Обозначим
$$\frac{\beta}{k_0} = \frac{\lambda_0}{\Lambda} = \xi$$
. Тогда отношение $\frac{d}{\lambda_0}$ станет

$$\frac{d}{\lambda_0} = \frac{1}{2\pi \sqrt{n_2^2 - \xi^2}} \operatorname{arctg} \quad \frac{1}{\sqrt{n_2^2 - \xi^2}} \cdot \frac{\sqrt{\xi^2 - n_1^2} + \sqrt{\xi^2 - n_3^2}}{1 - \frac{\sqrt{\xi^2 - n_1^2} \cdot \sqrt{\xi^2 - n_3^2}}{n_2^2 - \xi^2}}.$$

Отметим, что *n*-ая мода должна удовлетворять условию: $n\pi < \chi_2 d < (n+1)\pi$, где *n*=0,1,2... Согласно этому условию отношение $\frac{d}{\lambda_0}$ для

волны *H*_{0n} определяется выражением:

$$\frac{d}{\lambda_0} = \frac{1}{2\pi\sqrt{n_2^2 - \xi^2}} (n\pi + \arctan \frac{1}{\sqrt{n_2^2 - \xi^2}} \cdot \frac{\sqrt{\xi^2 - n_1^2} + \sqrt{\xi^2 - n_3^2}}{\sqrt{n_2^2 - \xi^2} (1 - \frac{\sqrt{\xi^2 - n_1^2} \cdot \sqrt{\xi^2 - n_3^2}}{n_2^2 - \xi^2}), \quad (2.3.14)$$

где *n*=0,1,2.... соответствует локализованной ТЕ моде.

Волны типа Еол

Для волн продольного электрического типа поперечные составляющие поля находятся из системы (2.3.3):

$$\begin{cases} \chi^{2} H_{x} = j \omega \varepsilon_{a} \frac{\partial E_{z}}{\partial y} \\ -\chi^{2} E_{y} = j \beta \frac{\partial E_{z}}{\partial y} \end{cases}, \qquad (2.3.15)$$

где $E_z = A_2 \cos \chi_2 y + B_2 \sin \chi_2 y$.

С учётом найденных продольных составляющих (2.3.2) уравнения, определяющие структуру поля, записываются ниже:

$$\begin{cases}
H_{x1} = -j \frac{\omega \varepsilon_{a1}}{\chi_{1}} A_{1} e^{-\chi_{1}y}, \\
E_{y1} = j \frac{\beta}{\chi_{1}} A_{1} e^{-\chi_{1}y}, \\
E_{z1} = A_{1} e^{-\chi_{1}y}. \end{cases} \quad 0 \le y \le \infty \qquad (2.3.16a)$$

$$E_{z1} = A_{1} e^{-\chi_{1}y}. \\
\begin{cases}
H_{x2} = -j \frac{\omega \varepsilon_{a2}}{\chi_{2}} (-A_{2} \sin \chi_{2}y + B_{2} \cos \chi_{2}y), \\
E_{y2} = \frac{j\beta}{\chi_{2}} (A_{2} \sin \chi_{2}y - B_{2} \cos \chi_{2}y), \\
E_{z2} = A_{2} \cos \chi_{2}y + B_{2} \sin \chi_{2}y. \end{cases}$$

$$\begin{cases}
H_{x3}=j\frac{\omega\varepsilon_{a3}}{\chi_{3}}A_{3}e^{\chi_{3}(d+y)}, \\
E_{y3}=-j\frac{\beta}{\chi_{3}}A_{3}e^{\chi_{3}(d+y)}, & -d \leq y \leq 0
\end{cases}$$
(2.3.16B)

$$E_{z3} = A_3 e^{\chi_3 (d+y)}$$

На основании граничных условий производим определение констант: *A*₁, *A*₂, *B*₂, *A*₃. Граничные условия имеют следующий вид:

$$E_{z1}=E_{z2}$$
 и $H_{x1}=H_{x2}$ при $y=0$, $E_{z2}=E_{z3}$ и $H_{x2}=H_{x3}$ при $y=-d$.

Откуда

1.
$$A_1 = A_2 = C$$
 . (2.3.17a)

2.
$$\frac{\varepsilon_{a1}}{\chi_1} A_1 = -\frac{\varepsilon_{a2}}{\chi_2} B_2 \quad \text{M} \quad B_2 = -\frac{\varepsilon_{a1} \chi_2}{\varepsilon_{a2} \chi_1} C . \qquad (2.3.176)$$

3.
$$C(\cos \chi_2 d + \frac{\varepsilon_{a1}\chi_2}{\varepsilon_{a2}\chi_1}\sin \chi_2 d) = A_3.$$
 (2.3.17B)

4.
$$C \frac{\varepsilon_{a2}\chi_3}{\varepsilon_{a3}\chi_2} (\sin \chi_2 d - \frac{\varepsilon_{a1}\chi_2}{\varepsilon_{a2}\chi_1} \cos \chi_2 d) = A_3.$$
 (2.3.17r)

Дисперсионное уравнение получим, приравняв уравнения (2.3.17в) и (2.3.17г),

$$\cos \chi_2 d + \frac{\varepsilon_{a1} \chi_2}{\varepsilon_{a2} \chi_1} \sin \chi_2 d = \frac{\varepsilon_{a2} \chi_3}{\varepsilon_{a3} \chi_2} (\sin \chi_2 d - \frac{\varepsilon_{a1} \chi_2}{\varepsilon_{a2} \chi_1} \cos \chi_2 d).$$

Откуда:
$$\mathbf{tg}(\chi_2 d) = \frac{1}{\chi_2} \frac{(\chi_1 + \frac{\varepsilon_{a1}\chi_3}{\varepsilon_{a3}})}{(\frac{\varepsilon_{a2}\chi_3\chi_1}{\varepsilon_{a3}\chi_2^2} - \frac{\varepsilon_{a1}}{\varepsilon_{a2}})}$$

Записав $\chi_1 = (\beta^2 - k_0^2 n_1^2)^{\frac{1}{2}}, \ \chi_2 = (k_0^2 n_2^2 - \beta^2)^{\frac{1}{2}}, \ \chi_3 = (\beta^2 - k_0^2 n_3^2)^{\frac{1}{2}}, \ и$ обозначив

 $\frac{\beta}{k_0} = \frac{\lambda_0}{\Lambda} = \xi$, получим отношение толщины пластины d к длине волны генератора

 λ_0 :

$$\frac{d}{\lambda_0} = \frac{1}{2\pi\sqrt{n_2^2 - \xi^2}} (n\pi + \arctan \frac{1}{\sqrt{n_2^2 - \xi^2}} \cdot \frac{\sqrt{\xi^2 - n_1^2 + \frac{\varepsilon_{a1}}{\varepsilon_{a3}}} \sqrt{\xi^2 - n_3^2}}{\frac{\varepsilon_{a2}}{\varepsilon_{a3}} \frac{\sqrt{\xi^2 - n_1^2} \cdot \sqrt{\xi^2 - n_3^2}}{n_2^2 - \xi^2} - \frac{\varepsilon_{a1}}{\varepsilon_{a2}}}) \quad . \quad (2.3.18)$$

Мощность, переносимая по волноводу.

Данный оптический волновод предназначен для передачи мощности, которая неравномерно распределена между тремя областями: I,II,III. В расчёте предусмотрено сосредоточение основной части мощности в пленке (область II), что подтверждается распределением поперечных составляющих электрического и магнитного полей E_x и H_y вдоль координаты y.

Исходными соотношениями являются: формула, определяющая среднее значение вектора Пойнтинга $\Pi_{cp} = \frac{1}{2} \operatorname{Re} \left[\stackrel{\bullet}{E} \stackrel{*}{H} \right]$, и выражение для расчета среднего

значения мощности $P_{cp} = \int_{s} \overline{\Pi}_{cp} \cdot \overline{ds}$.

Так как волновод не ограничен по оси *X*, мощность можно рассчитать на единицу длины по этому направлению. Тогда:

$$P_{cp}^{I} = \int_{0}^{\infty} \prod_{cp}^{I} dy , \qquad P_{cp}^{II} = \int_{-d}^{0} \prod_{cp}^{II} dy , \qquad P_{cp}^{III} = \int_{-\infty}^{-d} \prod_{cp}^{III} dy .$$

Общая мощность, канализируемая по волноводу равна :

$$P_{cp} = P_{cp}^{I} + P_{cp}^{II} + P_{cp}^{III} = P_{cp}^{I} \left(1 + \frac{P_{cp}^{II}}{P_{cp}^{I}} + \frac{P_{cp}^{III}}{P_{cp}^{I}} \right).$$
(2.3.19)

Отношение $\frac{P_{cp}^{II}}{P_{cp}^{I}}$ и $\frac{P_{cp}^{III}}{P_{cp}^{I}}$ показывает, как канализируемая мощность делится

между областями.

Для вычисления мощностей P_{cp}^{I} , P_{cp}^{II} , P_{cp}^{III} необходимо записать соответствующие

значения векторов Пойнтинга:

$$\Pi_{cp} = \begin{cases} \Pi_{cp}^{I} = \frac{C^{2} \beta \omega \mu_{0}}{2 \chi_{1}^{2}} e^{2 \chi_{1} y}, & \text{при} \quad (0 \le y \le \infty) \end{cases}$$
$$\Pi_{cp} = \begin{cases} \Pi_{cp}^{II} = \frac{C^{2} \beta \omega \mu_{0}}{2 \chi_{2}^{2}} (\sin \chi_{2} y - \frac{\chi_{2}}{\chi_{1}} \cos \chi_{2} y)^{2}, & \text{при} \quad (-d \le y \le 0) \end{cases}$$
$$\Pi_{cp}^{III} = \frac{C^{2} \beta \omega \mu_{0}}{2 \chi_{3}^{2}} (\frac{\chi_{3}}{\chi_{2}} \sin \chi_{2} d - \frac{\chi_{3}}{\chi_{1}} \cos \chi_{2} d)^{2} e^{2 \chi_{3} (d+y)}, & \text{при} \quad (-\infty \le y \le -d) \end{cases}$$

Определим мощность, переносимую волной $H_{0m.}$

Мощность, канализируемая в области I

$$P_{cp}^{I} = \frac{C^{2}\beta\omega\mu_{a}}{2\chi_{1}^{2}} \int_{0}^{\infty} e^{2\chi_{1}y} dy = \frac{C^{2}\beta\omega\mu_{a}}{4\chi_{1}^{3}}.$$
 (2.3.20)

Мощность, канализируемая в области II.

Проведя расчет, получим

$$P_{cp}^{H} = \int_{-d}^{0} \prod_{cp}^{H} dy = \frac{C^{2} \beta \omega \mu_{a}}{2 \chi_{2}^{2}} \int_{-d}^{0} (\sin \chi_{2} y - \frac{\chi_{2}}{\chi_{1}} \cos \chi_{2} y)^{2} dy =$$
$$= \frac{C^{2} \beta \omega \mu_{0}}{4 \chi_{2}^{3}} \left((1 + \frac{\chi_{2}^{2}}{\chi_{1}^{2}}) \chi_{2} d + \frac{1}{2} (1 - \frac{\chi_{2}^{2}}{\chi_{1}^{2}}) \sin 2 \chi_{2} d - \frac{\chi_{2}}{\chi_{1}} (1 + \cos 2 \chi_{2} d) \right). \quad (2.3.21)$$

Мощность, канализируемая в области III.

$$P_{cp}^{III} = \frac{C^2 \beta \omega \mu_0}{4 \chi_3^2} (\frac{\chi_3}{\chi_2} \sin \chi_2 d - \frac{\chi_3}{\chi_1} \cos \chi_2 d) \int_{-d}^{-\infty} e^{\chi_3 (d+y)} dy =$$

•

$$= \frac{C^{2} \beta \omega \mu_{0}}{4 \chi_{3}^{3}} \left(\frac{\chi_{3}}{\chi_{2}} \sin \chi_{2} d - \frac{\chi_{3}}{\chi_{1}} \cos \chi_{2} d \right)^{2} . \qquad (2.3.22)$$

2.4 Цилиндрический диэлектрический волновод

Круглый диэлектрический волновод (волоконный световод), показанный на рис.13, представляет из себя диэлектрический стержень радиуса *a* с диэлектрической проницаемостью ε_a и магнитной проницаемостью μ_0 . Обычно он окружен воздухом.

Целью расчёта является; решение дисперсионного уравнения, определение структуры поля и канализируемой по волноводу мощности, геометрических размеров (радиуса волновода) при заданном типе и длине волны, диэлектрической проницаемости волновода.

Рис. 13 Геометрия круглого диэлектрического волновода

Исходными данными для расчета являются частота f и тип поля: E_{mn} или H_{mn} , где индекс m=0, а n задается. Рассмотрим решение для волн H_{0n} и E_{0n} .

Порядок расчёта:

1. На основании изложенной выше теории, при учёте независимости полей

от координаты α $(\frac{\partial}{\partial \alpha} = 0)$, записываются две частных и независимых системы:

$$E_{\alpha} = j \frac{\omega \mu_0}{\chi^2} \frac{\partial H_z}{\partial \rho}$$
, $H_{\rho} = -j \frac{\beta}{\chi^2} \frac{\partial H_z}{\partial \rho}$ Для волн типа H_{0n} , (2.4.1)

$$H_{\alpha} = -\frac{\omega \varepsilon_{a}}{\chi^{2}} \frac{dE_{z}}{d\rho}$$
, $E_{\rho} = j \frac{\beta}{\chi^{2}} \frac{\partial E_{z}}{\partial \rho}$ Для волн типа E_{0n} . (2.4.2)

2. Поперечные составляющие поля E_α и H_ρ находим через продольную составляющую поля H_z, для которой решаем волновое уравнение в цилиндрической системе координат:

$$\frac{\partial^2 H_z}{\partial \rho^2} + \frac{1}{\rho} \frac{\partial H_z}{\partial \rho} + \chi^2 H_z = 0 \quad . \tag{2.4.3}$$

Это уравнение Бесселя и его общим решением является сумма двух функций: функции Бесселя первого рода $J_0(\chi \rho)$ и функции Бесселя второго рода - функции Неймана $N_0(\chi \rho)$: $H_z=AJ_0(\chi \rho)+BN_0(\chi \rho)$.

3. Первым частным решением являются решения для области I ($0 \le \rho \le a$) в котором удерживается только функция Бесселя первого рода $H_z^1 = AJ_0(\chi_1 \rho)$. Функция второго рода (Неймана) исключается, так как при $\rho = 0$ она равна $N_0(0) = -\infty$ и решение при $\rho = 0$ принимает бесконечное значение, что не удовлетворяет требованиям теоремы единственности. Аргумент функции Бесселя действителен, так как $\chi_1 = \pm \sqrt{k_0^2 n_1^2 - \beta^2}$ - действительная величина.

4. Вторым частным решением является решение для области II (*a* ≤ ρ ≤ ∞).
В этой области поле должно иметь поверхностный характер, так как аргумент

функций Бесселя для поверхностных волн становится мнимым, $\chi_2 = \pm j \sqrt{\beta^2 - \omega^2 \varepsilon_0 \mu_0}$.

Поэтому общее решение волнового уравнения в этой области является суммой двух частных решений, которое при мнимых аргументах является суммой цилиндрических функций третьего рода $I_0(\chi_2\rho)$ и четвёртого рода $K_0(\chi_2\rho)$: $H_z^{II} = C I_0(\chi_2\rho) + D K_0(\chi_2\rho)$. Они называются функциями Макдональда и носят не колебательный, а монотонно изменяющийся характер: $I_0(\chi_2\rho)$ стремится к бесконечности при $\rho \to \infty$, а функцией $K_0(\chi_2\rho)$ стремится к нулю при $\rho \to \infty$.

В соответствии с требованием теоремы единственности нужно исключить $I_0(\chi_2 \rho)$, положив *C*=0, и удержав функцию $K_0(\chi_2 \rho)$ записать $H_z^{II} = DK_0(\chi_2 \rho)$. В результате решение волнового уравнения для круглого волновода окончательно запишется:

$$H_{z}^{I} = AJ_{0}(\chi_{1}\rho),$$
 область I $0 \le \rho \le a$, (2.4.4)

$$H_{z}^{II} = DK_{0}(\chi_{2}\rho), \text{ область II} \qquad a \le \rho \le \infty,$$
 (2.4.5)

здесь $A = H_{z0}^{I}$, $D = H_{z0}^{II}$ - амплитуды продольных составляющих магнитного поля для первой и второй областей соответственно.

Воспользовавшись формулами (2.4.1), для волн типа *H*_{0n} найдём:

$$\begin{vmatrix} E_{\alpha}^{I} &= j \frac{\omega \mu_{0}}{\chi_{1}} H_{z0}^{I} J_{1}(\chi_{1}\rho) \\ H_{\rho}^{I} &= -j \frac{\beta}{\chi_{1}} H_{z0}^{I} J_{1}(\chi_{1}\rho), \qquad \text{для области I,} \qquad (2.4.6) \\ H_{z}^{I} &= H_{z0}^{I} J_{0}(\chi_{1}\rho) \end{vmatrix}$$

$$\begin{cases} E_{\alpha}^{II} = j \frac{\omega \mu_{0}}{\chi_{2}} H_{z0}^{II} K_{1}(\chi_{2}\rho) \\ H_{\rho}^{II} = -j \frac{\beta}{\chi_{2}} H_{z0}^{II} K_{1}(\chi_{2}\rho), \qquad \text{Для области II.} \end{cases}$$
(2.4.7)
$$H_{z}^{II} = H_{z0}^{II} \cdot K_{0}(\chi_{2}\rho)$$

Из граничного условия $H_{z}^{I} = H_{z}^{II}$ при $\rho = a$, найдём $H_{z0}^{II} = H_{z0}^{I} \frac{J_{0}(\chi_{1}a)}{K_{0}(\chi_{2}a)}$.

Для вывода дисперсионного уравнения приравняем тангенциальные составляющие $E_{\alpha}^{II} = E_{\alpha}^{II}$ и $H_{z}^{II} = H_{z}^{II}$ на границе диэлектриков при $\rho = a$,

$$\frac{\omega \mu_{0}}{\chi^{1}} H_{z0}^{I} J_{1}(\chi_{1}a) = \frac{\omega \mu_{0}}{\chi_{2}} H_{z0}^{II} K_{1}(\chi_{2}a)$$
$$H_{z0}^{I} J_{0}(\chi_{1}a) = H_{z0}^{II} K_{0}(\chi_{2}a)$$

Поделив второе уравнение на первое, получим дисперсионное уравнение

$$\chi_1 a \frac{J_0(\chi_1 a)}{J_1(\chi_1 a)} = \chi_2 a \frac{K_0(\chi_2 a)}{K_1(\chi_2 a)}.$$
 (2.4.8)

Это трансцендентное дисперсионное уравнение можно решать на ЭВМ или графически. Графическое решение является менее точным, но более наглядным. Поэтому оно будет рассмотрено в примере ниже

5. Так как фазовая скорость едина для первой и второй областей, то и

волновое число β одинаково для быстрых и медленных волн и равно

 $\beta = \sqrt{\omega^2 \mu_0 \varepsilon_0 - \chi_2^2}$ И $\beta = \sqrt{\omega^2 \mu_0 \varepsilon_a + \chi_1^2}$. Следовательно справедливо равенство $\sqrt{\omega^2 \mu_0 \varepsilon_0 - \chi_2^2} = \sqrt{\omega^2 \mu_0 \varepsilon_a + \chi_1^2}$, из которого вытекает уравнение, связывающее неизвестные χ_1 И χ_2 : $(\chi_1 a)^2 + (\chi_2 a)^2 = (\omega a)^2 (\mu_0 \varepsilon_a - \mu_0 \varepsilon_0) = R^2$.

Как и в случае прямоугольных диэлектрических волноводов, получилось уравнение окружности радиуса $R = \omega \sqrt{\mu_0 \varepsilon_0} \cdot a \sqrt{\varepsilon_r - 1} = \frac{2\pi a}{\lambda} \sqrt{\varepsilon_r - 1}$ в координатах $\chi_1 a$ и $\chi_2 a$.

Совмещение окружности и графического изображения дисперсионного уравнения позволяет найти радиус волновода для заданного типа волны, что и является конечной целью задачи.

Заметим, что $\chi_2 = \sqrt{\omega^2 \mu_0 \varepsilon_0 - \beta^2} = -j\sqrt{\beta^2 - \omega^2 \mu_0 \varepsilon_0}$ отрицательна и поэтому решение будет находиться в отрицательной части дисперсионного уравнения. При большом χ_2 волна будет иметь ярко выраженный поверхностный

характер, при этом
$$\beta > \chi_2$$
, но одновременно $\beta < \chi_1$, $\chi_1 = \sqrt{\omega^2 \mu_0 \varepsilon_a - \beta^2}$.

Проанализируем дисперсионное уравнение с точки зрения определения поперечных чисел. Правая часть дисперсионного уравнения (2.4.8) является функцией $\chi_2 a$, а левая $\chi_1 a$. Отношение $\frac{K_0(\chi_2 a)}{K_1(\chi_2 a)}$ можно положить равным 1.

Тогда $\chi_1 a \frac{J_0(\chi_1 a)}{J_1(\chi_1 a)} = \chi_2 a$. Левая часть дисперсионного уравнения - функция

 $F_{1}(x) = x \frac{J_{0}(x)}{J_{1}(x)}$, где $x = \chi_{1}a$. Построим график зависимости этой функции (рис.14)

от аргумента $x = \chi_1 a$, который откладываем по оси абсцисс. Правая часть дисперсионного уравнения - функция $F_2(y) = y$, где $y = \chi_2 a$. Построим уравнение окружности $x^2 + y^2 = R^2$, где $R = \omega \sqrt{\mu_0 \varepsilon_0} \cdot a \sqrt{\varepsilon_r - 1} = \frac{2\pi a}{\lambda} \sqrt{\varepsilon_r - 1}$ на

рис.14. Найдем точки пересечение окружности с кривой $F_1(x)$.

Рис. 14 Графическое решение дисперсионного уравнения

Они определяют рабочие точки и количество типов колебаний, которые могут распространяться по волноводу. Из рис.14 видно, что при *R*<2,405, на самой низкой частоте пересечений нет, а следовательно нет корней дисперсионного уравнения. С увеличением радиуса окружности сначала появляется один корень, затем два и так далее. Как видно, все они лежат между нулями и полюсами функции $\chi_{1a} \frac{J_0(\chi_{1a})}{J_1(\chi_{1a})}$, то есть между нулями $J_0(\chi_{1a})$ (функция $\chi_{1a} \frac{J_0(\chi_{1a})}{J_1(\chi_{1a})}$ равна

нулю) и нулями $J_1(\chi_1 a)$ (функция $\chi_1 a \frac{J_0(\chi_1 a)}{J_1(\chi_1 a)}$ обращается в бесконечность), а это

корни v_{0m} и v_{1m} функций $J_0(\chi_1 a)$ и $J_1(\chi_1 a)$, соответственно.

При критической частоте $f=f_{\kappa p}$, для которой $\chi_2 = 0$, поле утрачивает продольную составляющую ($E_z=0$, $H_z=0$) и становится *T*-волной. В случае $f < f_{\kappa p}$ волна распространяется во второй среде, то есть во внешнем пространстве.

При этом постоянная распространения $\beta = \omega \sqrt{\varepsilon_2 \mu_2} = \chi_2$. При $\chi_2 = 0$ $J_0(\chi_1 a) = 0$, $\chi_1 a = v_{0n}$ И

$$\omega_{\kappa p} = \frac{v_{0n}}{a} \frac{c}{\sqrt{\varepsilon_{r1} - 1}} \quad \text{ИЛИ} \quad \lambda_{\kappa p} = \frac{a}{v_{0n}} 2\pi \sqrt{\varepsilon_{r1} - 1} \quad . \tag{2.4.9}$$

Так как условия распространения волн в волноводе выполняются тогда, когда $\omega > \omega_{\kappa p}$ или $\lambda < \lambda_{\kappa p}$, то, как обычно, можно λ взять равной $0.8\lambda_{\kappa p}$ и из формулы (2.4.9) определить радиус волновода для заданного типа колебания

$$a = \frac{v_{0n}}{0.8\omega} \frac{c}{\sqrt{\varepsilon_{r1} - 1}} = \frac{v_{0n}}{1.6\pi} \frac{\lambda}{\sqrt{\varepsilon_{r1} - 1}} . \qquad (2.4.10)$$

Мощность, канализируемая по круглому волноводу.

Волны типа H_{0n} .

Как и в случае прямоугольного диэлектрического волновода, мощность канализируется по двум областям: в области I ($0 \le \rho \le a$) - P_{cp}^{I} и в области II ($a \le \rho \le \infty$) - P_{cp}^{II} .

Для определения средней мощности используем формулу $P_{cp} = \int_{S} \overline{\Pi_{cp}} \, dS$,

 $ds = \rho \partial \rho \partial \alpha$. Запишем выражения для средней мощности:

через H_z для волн типа H - $P_{cp}^{IH} = \frac{1}{2} \frac{\beta^2 Z_W^I}{\chi_1^2} \int_{s} \left| H_z^I \right|^2 ds$, $P_{cp}^{IIH} = \frac{1}{2} \frac{\beta^2 Z_W^{II}}{\chi_2^2} \int_{s} \left| H_z^{II} \right|^2 ds$,

где
$$Z_{W}^{I} = Z_{W}^{II} = \frac{\omega \mu_{0}}{\beta}$$
,

и через E_z для волн типа $E - P_{cp}^{IE} = \frac{1}{2} \frac{\beta^2}{\chi_1^2 Z_W^I} \int_{S} \left| E_z^I \right|^2 ds$, $P_{cp}^{IIE} = \frac{1}{2} \frac{\beta^2}{\chi_2^2 Z_W^{II}} \int_{S} \left| E_z^{II} \right|^2 ds$,

ГДе
$$Z_W^I = \frac{\beta}{\omega \varepsilon_a}, \quad Z_W^{II} = \frac{\beta}{\omega \varepsilon_0}.$$

Используя выражение $\int_{0}^{a} J_{m}^{2}(\chi \rho) \rho d\rho = \frac{a^{2}}{2} J_{m}^{\prime 2}(\chi \rho) + \frac{1}{2} (a^{2} - \frac{m^{2}}{\chi^{2}}) J_{m}^{2}(\chi \rho),$

получим для поля не зависящего от α :

$$P_{cp}^{IH} = \frac{1}{2} \frac{2\pi\beta^{2} Z_{W}^{I}}{\chi_{1}^{2}} (H_{z0}^{I})^{2} \int_{0}^{a} J_{0}^{2} (\chi_{1}\rho) \rho d\rho = \frac{1}{2} \frac{\beta^{2} Z_{W}^{I} a^{2} \pi}{\chi_{1}^{2}} (H_{z0}^{I})^{2} (J_{0}^{\prime}(\chi_{1}a) + J_{0}^{2}(\chi_{1}a) + J_{0}^{2}(\chi_{1}a)) =$$

$$= \frac{1}{2} \frac{\beta^{2} Z_{W}^{I} a^{2} \pi}{\chi_{1}^{2}} (H_{z0}^{I})^{2} (J_{0}^{2}(\chi_{1}a) + J_{0}^{2}(\chi_{1}a)), \qquad (2.4.11)$$

$$P_{cp}^{IH} = \frac{1}{2} \frac{\beta^{2} Z_{W}^{II} a^{2} \pi}{\chi_{1}^{2}} (H_{z0}^{II})^{2} (J_{0}^{\prime}(\chi_{2}a) + K_{0}^{2}(\chi_{2}a)) \rho d\rho =$$

$$= \frac{1}{2} \frac{\beta^{2} Z_{W}^{II} a^{2} \pi}{\chi_{1}^{2}} (H_{z0}^{II})^{2} (K_{0}^{\prime 2}(\chi_{2}a) + K_{0}^{2}(\chi_{2}a)), \qquad (2.4.12)$$

$$P_{cp} = P_{cp}^{I} + P_{cp}^{II} = \frac{\beta\omega\mu_{0}a^{2}\pi}{2} \left\{ \frac{1}{\chi_{1}^{2}} (H_{z0}^{II})^{2} (J_{0}^{\prime 2}(\chi_{1}a) + J_{0}^{2}(\chi_{1}a)) + J_{0}^{2}(\chi_{1}a)) + J_{0}^{2}(\chi_{1}a) + J_$$

$$+\frac{1}{\chi_{2}^{2}}(H_{z0}^{H})^{2}(K_{0}^{\prime 2}(\chi_{2}a)+K_{0}^{2}(\chi_{2}a))\right\}, \qquad (2.4.13)$$

где в (2.4.13) использовано соотношение $Z_{W}^{I} = Z_{W}^{II} = \frac{\omega \mu_{0}}{\beta}$.

Волны типа E_{0n} .

1. Структура волн типа Е_{0n}. Уравнения, определяющие структуру поля

2. Дисперсионное уравнение.

$$\frac{\varepsilon_{r1}}{\varepsilon_{r2}} \chi_1 a \frac{J_0(\chi_1 a)}{J_1(\chi_1 a)} = \chi_2 a \frac{K_0(\chi_2 a)}{K_1(\chi_2 a)} .$$
(2.4.15)

3. Определение поперечных χ_1 и χ_2 и продольной β постоянных распространения производится аналогично рассмотренному ранее для магнитных волн.

4. Мощность канализируемая по волноводу

$$P_{cp}^{IE} = \frac{1}{2} \frac{\beta^2}{\chi_1^2 Z_W^I} \int_{S} \left| E_z^I \right|^2 ds , \quad P_{cp}^{IIE} = \frac{1}{2} \frac{\beta^2}{\chi_2^2 Z_W^{II}} \int_{S} \left| E_z^I \right|^2 ds .$$

Откуда:

$$P_{cp}^{IE} = \frac{1}{2} \frac{2\pi\beta^{2}}{\chi_{1}^{2} Z_{W}^{I}} (E_{z0}^{I})^{2} \int_{0}^{a} J_{0}^{2} (\chi_{1}\rho) \rho d\rho = \frac{1}{2} \frac{\beta^{2} a^{2} \pi}{\chi_{1}^{2} Z_{W}^{I}} (E_{z0}^{I})^{2} (J_{0}^{'2} (\chi_{1}a) + J_{0}^{2} (\chi_{1}a)) , \quad (2.4.16)$$

$$P_{cp}^{IE} = \frac{1}{2} \frac{\beta^{2} 2\pi}{\chi_{2}^{2} Z_{W}^{II}} (E_{z0}^{II})^{2} \int_{0}^{a} K_{0}^{2} (\chi_{2}\rho) \rho d\rho = \frac{1}{2} \frac{\beta^{2} a^{2} \pi}{\chi_{1}^{2} Z_{W}^{II}} (E_{z0}^{II})^{2} (K_{0}^{'2} (\chi_{1}a) + K_{0}^{2} (\chi_{1}a)) , \quad (2.4.17)$$

$$\Gamma \mu e Z_{W}^{II} = \frac{\beta}{\omega \varepsilon_{a1}} \quad \mu \quad Z_{W}^{II} = \frac{\beta}{\omega \varepsilon_{0}}.$$

В качестве примера на рис.15 представлена структура полей волны *E*₀₁.

Рис. 15 Структура полей волны Е01

ГЛАВА 3 РАСЧЕТ ОБЪЁМНЫХ РЕЗОНАТОРОВ

3.1 Диэлектрический Н-образный резонатор

На базе рассмотренных выше волноводов можно создать резонатор, который называют *H* - образным диэлектрическим резонатором. Для этого необходимо волновод ограничить металлическими торцевыми стенками. Если расстояние между торцевыми стенками взять кратным половине длины волны в волноводе, то в резонаторе возникнет резонанс. При расчёте резонатора необходимо после расчёта волновода произвести:

1. Определение продольного размера объёмного резонатора. Он равен количеству полуволн *l*, укладывающихся при резонансе вдоль резонатора:

$$h = l \frac{\lambda s}{2}. \tag{3.1.1}$$

2. Определение собственной добротности резонатора.

Добротность резонатора определяется из формулы: $Q = \frac{\omega W}{P}$. Здесь ω угловая резонансная частота резонатора, W - энергия, запасённая в резонаторе, P - мощность потерь в резонаторе в единицу времени. В рассматриваемом резонаторе потери возникают в диэлектрике за счёт протекающих в нем токов проводимости - $\delta_d = \sigma_d E$, а также в торцевых металлических пластинах, за счёт протекающих по ним токов проводимости - $\delta_M = H_{\tau}$.

Собственная добротность резонатора Q_0 при учёте потерь в диэлектрике и в торцевых стенках может быть определена из известной формулы:

$$\frac{1}{Q_0} = \frac{1}{Q_{0d}} + \frac{1}{Q_{0M}}.$$
(3.1.2)

Добротность $Q_{0d} = \frac{\omega \varepsilon_a \int E^2 dv}{\sigma_d \int E^2 dv} = \frac{1}{\operatorname{tg} \Delta}$ может быть определена при

известном tg *Д* диэлектрика.

Добротность, обусловленная потерями в торцевых стенках, может быть определена из интеграла: $Q_{0,M} = \frac{\omega \mu_0 \int_v H^2 dv}{2\sigma_M \int H_\tau^2 ds} = \frac{\lambda_e}{16 \pi \delta}.$

Здесь λ_{e} -длина волны в волноводе, δ -глубина проникновения поля в металл, которая равна $\delta = 1/\sqrt{\frac{\omega \mu_{0} \sigma_{M}}{2}}$. Так как проводимость металла очень высока (например, для меди она равна 5,8 · 10⁷ См/м), то потери в резонаторе практически определяются только потерями в диэлектрике. Так при tg $\Delta = 10^{-3}$, добротность резонатора $Q_{0} = 1000$.

3. Структура поля строится на основании уравнений, определяющих структуру поля в резонаторе. Для получения этих уравнений необходимо уравнения, определяющие структуру поля в соответствующем волноводе, подчинить граничным условиям на торцевых стенках резонатора, т.е. потребовать выполнения граничных условий на границе диэлектрик-металл: $E_{\tau} = 0$, $H_{\tau} = \max$.

Например, в случае волн электрического типа уравнения, определяющие структуру поля, будут иметь вид

$$\begin{cases} E_{zp} = A \sin(\chi_1 y) \cos \frac{l\pi}{h} z \\ B_{xp} = \frac{\beta}{\chi_1} A \cos(\chi_1 y) \sin \frac{l\pi}{h} z , \quad \text{область I,} \\ H_{yp} = \frac{j\omega\mu_0}{\chi_1} A \cos(\chi_1 y) \frac{l\pi}{h} z \end{cases}$$
(3.13)

$$\begin{cases} E_{zp} = B e^{-\chi_2 y} \cos \frac{l\pi}{h} z \\ E_{xp} = \frac{\beta}{\chi_2} B e^{-\chi_2 y} \sin \frac{l\pi}{h} z , \quad \text{область II} . \end{cases}$$
(3.1.4)
$$\begin{cases} H_{yp} = -\frac{j\omega\mu_0}{\chi_2} B e^{-\chi_2 y} \cos \frac{l\pi}{h} z \end{cases}$$

В этих уравнениях *l* определяет количество полуволн, укладывающихся вдоль резонатора, *h* –продольный размер резонатора. Структура поля колебания *E*₀₂₁ показана на рис.16.

Рис.16 Структура поля колебания Е₀₂₁

3.2 Планарные диэлектрические резонаторы.

Под планарным резонатором подразумевается резонатор, образованный двумя параллельными металлическими пластинами, расположенными на расстоянии *h* значительно меньшем длины волны в диэлектрике λ_d (*h* << λ_d). По существу это может быть, плёнка на которую с двух сторон напылён металл. Так как *h* << λ_d , в этом направлении поле может быть только однородным. Если с ним совместить ось *Z*, то в уравнениях Максвелла необходимо положить $\frac{\partial}{\partial z} = 0$. По этой же причине в резонаторе будет отсутствовать продольная магнитная составляющая поля *H*_z.

Конфигурация резонатора может быть разнообразной. Резонаторы могут быть прямоугольными, круглыми, эллиптическими, кольцевыми. В данном пособии рассмотрены первые два типа - прямоугольный и круглый.

3.2.1 Круглый планарный диэлектрический резонатор.

1. Вывод уравнений, определяющих структуру поля в резонаторе. Расчет параметров резонатора.

Уравнения Максвелла, описывающие электромагнитное поле в резонаторе имеют вид:

$$\operatorname{rot}\overline{E} = -j\omega\mu_0\left(\overline{\rho_0}H_{\rho} + \overline{\alpha_0}H_{\alpha} + \overline{k_0}H_z\right), \quad \operatorname{rot}\overline{H} = j\omega\varepsilon_0\left(\overline{\rho_0}E_{\rho} + \overline{\alpha_0}E_{\alpha} + \overline{k_0}E_z\right),$$

$$\operatorname{rot} \overline{E} = \frac{1}{\rho} \cdot \begin{vmatrix} \overline{\rho_0} & \overline{\alpha_0} & \overline{k_0} \\ \frac{\partial}{\partial \rho} & \frac{\partial}{\partial \alpha} & 0 \\ E_{\rho} & \rho E_{\alpha} & E_{z} \end{vmatrix} = -j \omega \mu_0 \overline{H}, \quad \operatorname{rot} \overline{H} = \frac{1}{\rho} \cdot \begin{vmatrix} \overline{\rho_0} & \overline{\alpha_0} & \overline{k_0} \\ \frac{\partial}{\partial \rho} & \frac{\partial}{\partial \alpha} & 0 \\ H_{\rho} & \rho H_{\alpha} & H_{z} \end{vmatrix} = j \omega \varepsilon_a \overline{E}. \quad (3.2.1)$$

Откуда

$$H_{\rho} = -j \frac{1}{\omega \mu_{0}} \frac{1}{\rho} \frac{\partial E_{z}}{\partial \alpha} , \qquad (3.2.2)$$

$$H_{\alpha} = j \frac{1}{\omega \mu_0} \frac{1}{\rho} \frac{\partial E_z}{\partial \rho}.$$
 (3.2.3)

Так как в резонаторе могут существовать только продольные электрические поля, для решения уравнений Максвелла достаточно найти составляющую E_z , решив волновое уравнение:

$$\frac{\partial^2 E_z}{\partial \rho^2} + \frac{1}{\rho} \frac{\partial^2 E_z}{\partial \rho^2} + \frac{1}{\rho^2} \frac{\partial^2 E_z}{\partial \alpha^2} = -\chi^2 E_z.$$
(3.2.4)

Решением этого уравнения является выражение

$$E_{z} = (A J_{m} (\chi \rho) + N_{m} (\chi \rho)) \cos m \alpha ,$$

в котором для удовлетворения требований теоремы единственности нужно положить N _m =0.

Так как в данном резонаторе при $\rho = a$ проходит граница диэлектрикдиэлектрик, для определения неизвестных констант необходимо применить граничные условия Олинера: $\frac{\partial E_z}{\partial \rho} = 0$. В результате получим выражение для E_z :

$$E_{z} = E_{z0} \mathbf{J}_{m} \left(\frac{\mu_{mn}}{a} \rho\right) \cos(m\alpha), \qquad (3.2.5)$$

где $\chi = \frac{\mu_{mn}}{a}$, а μ_{mn} - корень производной функции Бесселя.

Подставляя (3.2.5) в (3.2.2), (3.2.3), получим выражения для составляющих векторов поля колебаний типа *E*_{mn0}:

$$E_{z} = E_{z0} J_{m} \left(\frac{\mu_{mn}}{a}\rho\right) \cos(m\alpha),$$

$$H_{\rho} = jH_{\rho 0} \frac{1}{\rho} J_{m} \left(\frac{\mu_{mn}}{a}\rho\right) \sin(m\alpha),$$
(3.2.6)

$$H_{\alpha} = -jH_{\alpha 0} \frac{1}{\rho} J_m \left(\frac{\mu_{mn}}{a}\rho\right) \cos(m\alpha),$$

ГДЕ $H_{\rho 0} = E_{z0} \frac{m}{\omega \mu_0}, \quad H_{\alpha 0} = E_{z0} \frac{a}{\mu_{mn} \omega \mu_0}.$

2. Расчёт геометрических размеров резонатора

Основным отличием рассматриваемого резонатора от обычного замкнутого резонатора является отсутствие боковых металлических поверхностей. Диэлектрик, находящийся между металлическими пластинами, с относительной диэлектрической проницаемостью ε_r при $\rho = a$ граничит с воздухом. В результате чего электромагнитное поле выходит за пределы резонатора и частично находится в воздухе (рис.17).

Рис. 17 Геометрия круглого планарного резонатора

Поэтому целесообразно резонатор с неоднородным заполнением заменить эквивалентным ему резонатором с однородным диэлектриком, относительная диэлектрическая проницаемость которого равна $\varepsilon_{r \ 3\phi}$ (рис.18).

Рис. 18 Геометрия эквивалентного резонатора

Эквивалентный резонатор будет обладать «эффективными» размерами, отличными от тех, которые были бы у резонатора закрытого металлическими боковыми поверхностями. Резонансная длина волны при этом будет определяться формулой

$$\lambda_0 = \frac{2\pi a_{j\phi} \sqrt{\varepsilon_{r_{j\phi}}}}{\mu_{mn}}, \qquad (3.2.7)$$

ГДе
$$a_{3\phi} = a \sqrt{1 + \frac{2h}{a} \left[\ln \frac{\pi a}{2h} + 1,773 \right]}$$
 (3.2.8)

Для определения $\varepsilon_{r \to \phi}$ пользуются соотношением [1]:

$$\varepsilon_{r_{9}\phi} = \frac{C_{9\phi}^{\varepsilon}}{C_{9\phi}^{1}}, \qquad (3.2.9)$$

где

$$C_{s\phi}^{\varepsilon} = C_{0s\phi}^{\varepsilon} + C_{ks\phi}^{\varepsilon}, \quad C_{s\phi}^{1} = C_{0s\phi}^{1} + C_{ks\phi}^{1}, \quad (3.2.10)$$

$$C_{0\,_{3}\phi}^{\varepsilon} = \frac{\varepsilon_{r}\pi a^{2}}{\delta_{0}h} \left[1 - \frac{J_{m-1}(\mu_{mn}) \cdot J_{m+1}(\mu_{mn})}{J_{m}^{'2}(\mu_{mn})} \right], \qquad (3.2.11)$$

$$C_{k \circ \phi}^{\varepsilon} = \frac{\pi a}{\delta_0} \left\{ \frac{120 \ \pi Z_W (2a, h, 1)}{Z_W (a, h, \varepsilon_r)} - \frac{2\varepsilon_r a}{h} \right\}, \qquad (3.2.12)$$

$$\boldsymbol{\delta}_0 = \begin{cases} 1, & \text{при } m = 0 \\ 2, & \text{при } m \neq 0 \end{cases}.$$

 $Z_{W}(2a,h,1)$ - волновое сопротивление НПЛ с шириной полоски 2a с воздушным заполнением, $Z_{W}(2a,h,\varepsilon_{r})$ - волновое сопротивление НПЛ с шириной полоски 2a с диэлектрическим заполнением:

$$Z_{W}(2a,h,\varepsilon_{r}) = \frac{120 \pi}{\sqrt{\varepsilon_{r}}} \left[\frac{2a}{h} + \frac{2}{\pi} (\ln(17 (a/h + 0.92))) \right]^{-1}.$$
 (3.2.13)

При расчёте $Z_w(2a,h,1)$ в формулу (3.2.13) вместо ε_r нужно подставлять 1:

$$Z_{W}(2a,h,1) = 120 \pi \left[\frac{2a}{h} + \frac{2}{\pi}(\ln(17(a/h+0.92)))\right]^{-1}$$

3. Расчёт добротности резонатора

В резонаторе существует два вида потерь: потери в диэлектрике и потери в металле. В результате чего полная добротность резонатора определяется по известной формуле:

$$\frac{1}{Q_n} = \frac{1}{Q_M} + \frac{1}{Q_d}.$$
 (3.2.14)

Здесь $\frac{1}{Q_d}$ = tg Δ , где tg Δ - тангенс угла потерь диэлектрика, который обычно

известен.

Полагая, что пластины резонатора выполнены из высокопроводящего металла с проводимостью $\sigma_{_{\mathcal{M}}}$, находим

$$Q_{M} = \frac{h}{\delta}, \qquad (3.2.15)$$

где $\delta = 1 / \sqrt{\frac{\omega \mu_0 \sigma_{M}}{2}}$ - глубина проникновения поля в металл.

Полная добротность резонатора равна:

$$Q_{n} = \frac{Q_{d}Q_{M}}{Q_{d} + Q_{M}}.$$
 (3.2.16)

3.2.2 Прямоугольный планарный резонатор

В качестве исходных данных задаются: тип колебаний E_{mnp} (например: E_{110} , т.е. m=1, n=1, p=0), рабочая частота f_0 , толщина диэлектрика h, относительная диэлектрическая проницаемость ε_r , окружающая среда - воздух.

1. Уравнения, определяющие структуру поля

Для вывода уравнений, определяющих структуру поля, можно воспользоваться инвариантной формой

$$-\chi^{2}\overline{E}_{\perp} = j\beta \text{ grad } \perp E_{q_{3}} + j\omega\mu_{a} [\text{grad } \perp H_{q_{3}}\overline{e}_{3}], \qquad (3.2.17a)$$

$$-\chi^{2}\overline{H}_{\perp} = j\beta \text{ grad } \mu_{q_{3}} - j\omega\varepsilon_{a} [\text{grad } \mu_{q_{3}}\overline{e}_{3}], \qquad (3.2.176)$$

$$\Gamma \mathcal{A} \mathbf{e} \quad \overline{H}_{\perp} = \overline{e_1} H_{q_1} + \overline{e_2} H_{q_2}; \quad \overline{E}_{\perp} = \overline{e_1} E_{q_1} + \overline{e_2} E_{q_2}; \quad \text{grad}_{\perp} = \overline{e_1} \frac{\partial}{\partial q_1} + \overline{e_2} \frac{\partial}{\partial q_2}.$$

Так как в резонаторе отсутствует продольная составляющая магнитного поля H_z и поле не распространяющееся ($\beta = 0$), находим составляющие поперечного магнитного поля из уравнения (3.2.176):

$$\chi^{2} \overline{H}_{\perp} = j \omega \varepsilon_{a} \left[\text{grad}_{\perp} E_{z} \overline{k}_{0} \right], \qquad (3.2.18)$$

$$\Gamma \Box \mathbf{e} \quad \overline{H}_{\perp} = \overline{i} H_x + \overline{j} H_y; \quad H_x = \frac{j \omega \varepsilon_a}{\chi^2} \frac{\partial \varepsilon_z}{\partial y}; \quad H_y = -j \frac{\omega \varepsilon_a}{\chi^2} \frac{\partial \varepsilon_z}{\partial x}; \quad \text{grad} \quad \mathbf{h}_{\perp} = \overline{i} \frac{\partial}{\partial x} + \overline{j} \frac{\partial}{\partial y}.$$

Они выражены через составляющую E_z , которую определим из волнового уравнения

$$\frac{\partial^2 E_z}{\partial x^2} + \frac{\partial^2 E_z}{\partial y^2} = -\chi^2 E_z$$

и его общего решения

$$E_z = (A\cos k_x x + B\sin k_x x)(C\cos k_y y + D\sin k_y y).$$

Применив граничные условия Олинера: $\frac{\partial E_z}{\partial x} = 0$ при *x*=0, *x*=*a* и $\frac{\partial E_z}{\partial y} = 0$

при *y*=0, *y*=*b*, получим выражение для E_z :

$$E_z = E_{z0} \cos k_x x \cos k_y y, \qquad (3.2.19)$$

ГДе $\chi^2 = k_x^2 + k_y^2, \quad k_x = \frac{m\pi}{a}, \quad k_y = \frac{n\pi}{b}.$ (3.2.20)

2. Структура поля

Используя (3.2.18), найдем выражения, определяющие структуру поля:

$$E_{z} = E_{z0} \cos \frac{m\pi}{a} x \cos \frac{n\pi}{b} y,$$
$$H_{x} = -jH_{x0} \cos \frac{m\pi}{a} x \sin \frac{n\pi}{b} y,$$
$$H_{y} = -jH_{y0} \sin \frac{m\pi}{a} x \cos \frac{n\pi}{b} y,$$

где $H_{x0} = E_{z0} \frac{\omega \varepsilon_a b}{n \pi}$, $H_{y0} = E_{z0} \frac{\omega \varepsilon_a a}{m \pi}$,

3. Резонансная длина волны

Для волны типа E_{mn} она определяется выражением

$$\lambda_{pes} = \frac{2\sqrt{\varepsilon_{r_{s\phi}}}}{\sqrt{\left(\frac{m}{a_{s\phi}}\right)^2 + \left(\frac{n}{b_{s\phi}}\right)^2}},$$
(3.2.21)

где *m* - количество вариаций поля по оси *X*, *n* -количество вариаций поля по оси *Z*, $\varepsilon_{r_{3\phi}}$ -эффективная относительная диэлектрическая проницаемость диэлектрика $a_{3\phi}$, $b_{3\phi}$ - эффективные размеры пластины. Вдоль оси *Y* поле однородно.

4. Эффективная диэлектрическая проницаемость

Эффективная диэлектрическая проницаемость находится как

$$\varepsilon_{r_{\vartheta\phi}} = \frac{C_{\vartheta\phi}^{\varepsilon}}{C_{\vartheta\phi}^{1}}, \qquad (3.2.22)$$

где $C_{s\phi}^{\varepsilon}$ -эффективная ёмкость резонатора прямоугольного сечения с диэлектрической относительной проницаемостью диэлектрика ε_r ; $C_{s\phi}^1$ - эффективная ёмкость резонатора прямоугольного сечения с диэлектрической относительной проницаемостью диэлектрика $\varepsilon_r = 1$.

В общем случае эффективная ёмкость $C_{3\phi}^{\varepsilon}$ определяется выражением

$$C_{\mathfrak{s}\phi}^{\mathfrak{s}} = C_{\mathfrak{s}\phi}^{\mathfrak{s}} + 2C_{k_{1}\mathfrak{s}\phi}^{\mathfrak{s}} + 2C_{k_{2}\mathfrak{s}\phi}^{\mathfrak{s}}, \qquad (3.2.23)$$

где $C_{0,s\phi}^{\varepsilon} = \frac{\varepsilon_r \cdot \omega \cdot \ell}{\delta \cdot \gamma \cdot h}$ -эффективная ёмкость плоского конденсатора,

$$C_{k1s\phi}^{\varepsilon} = \frac{\ell}{2\delta} \left\{ \frac{120 \ \pi Z_{W}(a,h,1)}{Z_{W}^{2}(a,h,\varepsilon_{r})} - \frac{\varepsilon_{r}a}{h} \right\}, \qquad (3.2.24)$$

$$C_{k\,2\,9\phi}^{\varepsilon} = \frac{\omega}{2\gamma} \left\{ \frac{120 \ \pi Z_{W}(b,h,1)}{Z_{W}^{2}(b,h,\varepsilon_{r})} - \frac{\varepsilon_{r}a}{h} \right\}, \qquad (3.2.25)$$

 $C_{k_{1}_{2}_{9}\phi}^{s}$, $C_{k_{2}_{9}\phi}^{s}$ - эффективные краевые ёмкости.

Ёмкость $C_{s\phi}^{1}$ вычисляется по этим же формулам, но вместо ε_{r} в них надо подставить 1.

В вышеприведенных формулах $\delta = 1$ при n = 0, $\delta = 2$ при $n \neq 0$; $\gamma = 1$ при m = 0, $\gamma = 2$ при $m \neq 0$; $Z_w(a, h, \varepsilon_r)$ - волновое сопротивлении несимметричной полосковой линии, у которой a -ширина полоски; h, ε_r -толщина и относительная диэлектрическая проницаемость подложки.

При вычислении $C_{k^{2} \rightarrow \phi}^{\varepsilon}$ $Z_{W}(b,h,\varepsilon_{r})$ - волновое сопротивлении несимметричной полосковой линии, у которой *b* - ширина полоски, *h*, ε_{r} - толщина и относительная диэлектрическая проницаемость подложки :

$$Z_{W}(a,h,\varepsilon_{r}) = \frac{120 \pi}{\sqrt{\varepsilon_{r}}} \left[\frac{a}{h} + \frac{2}{\pi} (\ln(17 (a/2h + 0.92))) \right]^{-1}, \qquad (3.2.26)$$

$$Z_{W}(b,h,\varepsilon_{r}) = \frac{120 \pi}{\sqrt{\varepsilon_{r}}} \left[\frac{b}{h} + \frac{2}{\pi} (\ln(17 (b/2h + 0.92))) \right]^{-1}.$$
 (3.2.27)

Значения $a_{3\phi}$ и $b_{3\phi}$, входящих в формулу (3.2.21), определяющую λ_{pe3} равны:

$$a_{\mathfrak{s}\phi} = \left[\frac{120 \pi a^{3}h}{Z_{W}(a,h,\varepsilon_{r})\sqrt{\varepsilon_{\mathfrak{s}\phi}}}\right]^{\frac{1}{4}}, \qquad (3.2.28)$$

$$b_{\mathfrak{s}\phi} = \left[\frac{120 \ \pi b^{3} h}{Z_{W}(b,h,\varepsilon_{r})\sqrt{\varepsilon_{\mathfrak{s}\phi}}}\right]^{\frac{1}{4}}.$$
(3.2.29)

5. Добротность

Добротность планарного прямоугольного резонатора рассчитывается в соответствии с пунктом 3 предыдущего параграфа.

ГЛАВА 4 ПРИМЕРЫ РАСЧЕТОВ

4.1 Расчет симметричного диэлектрического волновода.

Исходные данные:

Рассчитать прямоугольный диэлектрический волновод, предназначенный для канализации волны электрического чётного типа E_{20} на частоте f=10 ГГц. Относительная диэлектрическая проницаемость диэлектрика $\varepsilon_r = 4$, $\mu_r = 1$, tg $\Delta = 10^{-4}$. Окружающая среда - воздух. При расчете считать диэлектрическую пластину неограниченной по оси *Y*.

В курсовую работу входит расчет следующих параметров волновода:

поперечных волновых чисел, толщины слоя диэлектрика 2*d*, коэффициента распространения β , длины волны волновода Λ , фазовой и групповой скоростей волны, коэффициента дисперсии κ_{∂} , канализируемой мощности P_{np} , волнового сопротивления Z_w , постоянной затухания α . В итоге нужно построить структуру поля волны в волноводе.

Расчёт волновода

1. Система уравнений.

По волноводу должна распространяться волна типа *E*₂₀, поэтому полагаем *H*_z=0, *E*_z≠0. Система (1.8) примет вид
$$\begin{cases} E_x = -j \frac{\beta}{\chi^2} \frac{\partial E_z}{\partial x} \\ H_y = -\frac{j \omega \varepsilon_a}{\chi^2} \frac{\partial E_z}{\partial x} \end{cases}.$$
(4.1.1)

2. Решение волнового уравнения

$$\frac{\partial^2 E_z^{I,II}}{\partial x^2} + \frac{\partial^2 E_z^{I,II}}{\partial z^2} = -\chi^{I,II} E_z^{I,II} . \qquad (4.1.2)$$

Для первой области решение уравнения (4.1.2) для чётной волны будет:

$$E_{z}^{I} = A \sin(\chi_{1}x).$$
 (4.1.3)

Здесь $\chi_1^2 = k_0^2 \varepsilon_r - \beta^2$ - квадрат поперечной постоянной распространения. Откуда $\chi_1 = \sqrt{k_0^2 \varepsilon_r - \beta^2}$.

Для второй области решение волнового уравнения (4.1.2) будет иметь вид:

$$E_{z}^{II} = B e^{-\chi_{2}x}, \qquad (4.1.4)$$

а квадрат поперечной постоянной распространения $\chi_2^2 = k_0^2 - \beta^2$, или $|\chi_2| = \sqrt{\beta^2 - k_0^2}$

Как следует из (4.1.4) амплитуда волны во второй среде убывает по мере удаления от диэлектрика по закону экспоненты, т.е. волна имеет поверхностный характер.

Подставив в систему уравнений (4.1.1) E_z для первой среды из (4.1.3) и для второй из (4.1.4), запишем уравнения, определяющие структуру поля диэлектрического волновода, по которому должна распространяться волна электрического типа E_{20} ,

$$\begin{cases} E_z = A \sin(\chi_1 x) e^{-j\beta z} \\ E_x = -\frac{j\beta}{\chi_1} A \cos(\chi_1 x) e^{-j\beta z} \\ H_y = -\frac{j\omega\varepsilon_a}{\chi_1} A \cos(\chi_1 x) e^{-j\beta z} \end{cases}$$
- Диэлектрик (область I), (4.1.5a)

$$\begin{cases} E_{z_{\theta}} = B e^{-\chi_{2}x} e^{-j\beta z} \\ E_{x_{\theta}} = \frac{j\beta}{\chi_{2}} B e^{-\chi_{2}x} e^{-j\beta z} \\ H_{y_{\theta}} = \frac{j\omega\varepsilon_{0}}{\chi_{2}} B e^{-\chi_{2}x} e^{-j\beta z} \end{cases}$$
- воздух (область II). (4.1.56)

Выделим из этих уравнений составляющие тангенциальные к границе раздела воздух-диэлектрик:

$$\begin{cases} E_{z}^{I} = A \sin \left(\chi_{1} x \right) \\ H_{y}^{I} = jA \frac{\omega \varepsilon_{a}}{\chi_{1}} \cos \left(\chi_{1} x \right) \end{cases}, \qquad (4.1.6)$$

$$\begin{cases} E_{ze}^{II} = B e^{-\chi_2 x} \\ H_{ye}^{II} = \frac{j \omega \varepsilon_0}{\chi_2} B e^{-\chi_2 x} \end{cases}$$
(4.1.7)

•

Применяя граничные условия $H_{y}^{I} = H_{y}^{II}$ и $E_{z}^{I} = E_{z}^{II}$ при *x*=*d* получим систему уравнений:

$$\begin{cases} \frac{j\omega\varepsilon_a}{\chi_1} A \cos(\chi_1 d) = \frac{j\omega\varepsilon_0}{\chi_2} B e^{-\chi_2 d} \\ A\sin(\chi_1 d) = B e^{-\chi_2 d} \end{cases}$$

Разделив второе уравнение системы на первое, получим:

$$\frac{\chi_1}{\varepsilon_a} \operatorname{tg} \left(\chi_1 d \right) = \frac{\chi_2}{\varepsilon_0} \,.$$

Умножив обе части уравнения на $\varepsilon_0 d$, получаем трансцендентное уравнение, связывающее поперечные волновые числа χ_1 и χ_2 в случае четных волн:

$$\frac{1}{\varepsilon_r} \chi_1 d \cdot \operatorname{tg}(\chi_1 d) = \chi_2 d . \qquad (4.1.8)$$

Как уже отмечалось раньше, фазовые скорости быстрой и медленной волн должны быть одинаковыми. Поэтому должны быть одинаковыми и продольные волновые числа β, а следовательно,

$$\omega^{2} \mu_{0} \varepsilon_{a} - \chi_{1}^{2} = \omega^{2} \mu_{0} \varepsilon_{0} + \chi_{2}^{2} \quad \text{ИЛИ} \quad \omega^{2} (\mu_{0} \varepsilon_{a} - \mu_{0} \varepsilon_{0}) d^{2} = (\chi_{1}^{2} + \chi_{2}^{2}) d^{2},$$

из которых получаем:

$$R = \omega d \sqrt{\mu_0 \varepsilon_a - \mu_0 \varepsilon_0} = k_0 d \sqrt{\varepsilon_r - 1}.$$
(4.1.9)

3. Графическое решение

В соответствии с формулой (4.1.8) построим графики зависимостей

$$y_1(x) = \frac{\varepsilon_0}{\varepsilon_a} \chi_1 d \cdot \operatorname{tg}(\chi_1 d) = \chi_2 d$$
 и $y_2(x) = R$, где $x = \chi_1 d$,

Рис. 19 Графическое решение дисперсионного уравнения

Из рис. 19 следует, что условием существования волн типа E_{20} будет $R > \pi$. Отсюда находим рабочую точку $\chi_1 d = 1,146~$ и $\chi_2 d = 0,42~\pi$, что соответствует

$$R = \sqrt{(\chi_1 d)^2 + (\chi_2 d)^2} = 1,24 \pi .$$

По известному *R*, использую формулу (4.1.9), определяем толщину пластины

$$d = \frac{R\lambda}{2\pi\sqrt{\varepsilon_r - 1}} = 0.35 \lambda . \qquad (4.1.10)$$

Пользуясь формулой (2.1.17), определим критическую частоту и критическую длину волны :

$$f_{\kappa p} = \frac{n \pi}{4 d \sqrt{\varepsilon_r - 1}} = 8,26 \quad \Gamma \Gamma \Pi, \quad \lambda_{\kappa p} = \frac{c}{f_{\kappa p}} = 3,63 \quad \text{cm.}$$
 (4.1.11)

При этом $f / f_{\kappa p} = 1,28$,

$$\chi_2 d = 0,42 \pi = 1,31$$
, $\chi_1 d = 1,146 \pi = 3,59$. (4.1.12)

Определим фазовую постоянную β, характеризующую распространение волн вдоль волновода. Она определяется из формулы:

$$\beta = \sqrt{k_0^2 + \chi_2^2}, \qquad k_0 = \omega \sqrt{\mu_0 \varepsilon_0},$$

$$\beta = \sqrt{\omega^2 \varepsilon_0 \mu_0 + \chi_2^2} = \frac{2\pi}{\lambda} \sqrt{1 + 0.59^2} = \frac{2\pi}{\lambda} 1.16.$$

Так как $\beta = \frac{2\pi}{\lambda_s}$, то $\lambda_s = \frac{\lambda}{1,17} = 2,57$ см и коэффициент дисперсии $K_{\partial} = \frac{\lambda}{\lambda_s} = 1,16$.

В итоге найдем фазовую скорость

$$v_{\phi} = \frac{\omega}{\beta} = 2,57 \cdot 10^{-8} \text{ M/c}$$
 (4.1.13)

Для определения групповой скорости необходимо воспользоваться формулой (2.1.20).

4. Расчет мощности, канализируемой по волноводу

Рассчитаем величину средней мощности, канализируемой по волноводу волной четного электрического типа *E*₂₀. Определим среднее значение вектора Пойнтинга для I и II областей, пользуясь формулой:

$$\overline{\Pi}_{cp} = \frac{1}{2} \operatorname{Re}\left[\overline{E} \times \overline{H}^*\right].$$

В результате получим:

$$\Pi_{cp}^{I} = \frac{1}{2} A^{2} \frac{\beta \omega \varepsilon_{a}}{\chi_{1}^{2}} \cos^{2}(\chi_{1}x) , \qquad (4.1.14)$$

$$\Pi_{cp}^{\ II} = \frac{1}{2} B^2 \frac{\omega \varepsilon_0}{\chi_2^2} e^{-\chi_2 x} . \qquad (4.1.15)$$

Так как из граничных условий следует, что

$$B = A \sin(\chi_1 d) e^{\chi_2 d},$$

то

$$\Pi_{cp}^{\Pi} = \frac{1}{2} \frac{\omega \varepsilon_0}{\chi_2^2} \sin^2(\chi_1 d) e^{2\chi_2 d} e^{-2\chi_2 x}.$$
(4.1.16)

Для определения мощности необходимо воспользоваться соотношением:

$$P_{cp} = \int_{S} \overline{\Pi}_{cp} \, \overline{dS} \,, \qquad (4.1.17)$$

где ds=dydx. Так как поле не зависит от *у*, можно интегрировать от 0 до любого заданного значения *y*=*a*. Мы положим *a*=1.

Поток мощности в области I определится следующим образом:

$$P_{cp}^{I} = P_{cp\,0} \frac{\varepsilon_{r}}{\chi_{1}^{3}} \left(\frac{1}{4} \sin\left(2\,\chi_{1}d\right) + \frac{1}{2}\,\chi_{1}d \right) = 5,27 P_{cp\,0}, \qquad (4.1.18)$$

а в области II:

$$P_{cp}^{II} = P_{cp\,0} \frac{1}{\chi_2^3} \cdot \sin^{-2}(\chi_1 d) = 0,08 P_{cp\,0}, \qquad (4.1.19)$$

ГДе $P_{cp\,0} = \frac{A^2 \omega \varepsilon_0 d^3}{\pi^3}.$

Общая мощность, канализируемая вдоль волновода, равна сумме:

$$P_{cp} = P_{cp}^{I} + P_{cp}^{II} = P_{cp}^{I} \left(I + \frac{P_{cp}^{II}}{P_{cp}^{I}} \right).$$
(4.1.20)

Отношение P_{cp}^{II} / P_{cp}^{I} показывает, какая часть мощности распространяется за пределами диэлектрического стержня

$$P_{cp} = P_{cp 0} (5,27 + 0,08) = P_{cp 0} 5,27 (1 + 0,015)$$
 BT.

Таким образом, в нашем случае во внешней области распространяется 1,5 % от канализируемой внутри волновода мощности.

5. Расчет волнового сопротивления

Воспользуемся соотношением (2.1.22) и учтем, что tg $^2 \Delta << 1$ и $\psi \approx 0$. В результате получим

$$\begin{vmatrix} \dot{Z}_{W}^{I} \end{vmatrix} = \frac{120 \ \pi}{\sqrt{\varepsilon_{r}}} \sqrt{1 - \frac{\chi_{1}^{2}}{k_{1}^{2}}} = 60 \ \pi \sqrt{1 - 0.025} = 186 \quad \text{OM},$$
$$\begin{vmatrix} \dot{Z}_{W}^{II} \end{vmatrix} = \begin{vmatrix} \dot{Z}_{W}^{I} \end{vmatrix} \frac{\chi_{1}}{\chi_{2}} \operatorname{tg}(\chi_{1}d) = 78 \quad \text{OM},$$

$$\dot{Z}_{W}^{\Sigma} \mid = \frac{\left| \dot{Z}_{W}^{I} \right| \left| \dot{Z}_{W}^{I} \right|}{\left| \dot{Z}_{W}^{I} \right| + \left| \dot{Z}_{W}^{II} \right|} = 55 \text{ Om}.$$

6. Расчет постоянной затухания

$$\alpha = \omega \sqrt{\frac{\varepsilon_a \mu_0}{2} \left(\sqrt{1 + \operatorname{tg}^2 \Delta} - 1 \right)} \cong 0 ,$$

$$\beta^I = \sqrt{\omega^2 \frac{\varepsilon_a \mu_0}{2} \left(\sqrt{1 + \operatorname{tg}^2 \Delta} + 1 \right) - \chi_1^2} = \frac{2\pi}{\lambda} 1,16 .$$

Структура поля волны E_{20} , рассчитанная по формулам (4.1.6), (4.1.7), представлена на рис.20.

Рис.20 Структура поля волны E_{20}

4.2 Расчет несимметричного диэлектрического волновода

Исходные данные:

Планарный волновод (рис.21) должен быть выполнен из пленки GaAs на подложке AlGaAs. Покровный слой - воздух. Вдоль волновода должна распространяться волна H_{01} . Длина волны генератора $\lambda = 1$ мкм. Толщина плёнки d.

Рис.21 Геометрия несимметричного диэлектрического волновода

Показатели преломления:

- 1. плёнки $n_2 = \sqrt{\varepsilon_{r2}} = 3,5$, $\varepsilon_{a2} = \varepsilon_{r2}\varepsilon_0$,
- 2. подложки $n_3 = \sqrt{\varepsilon_{r3}} = 3,2$, $\varepsilon_{a3} = \varepsilon_{r3}\varepsilon_0$,
- 3. воздуха $n_1=1$, $\varepsilon_{a1}=0$.

Система координат выбрана так, что волна распространяется вдоль оси *z*, а показатели преломления в соответствии с рис.21 :

$$n(y) = \begin{cases} n_1 & \Pi p \mathbf{U} \qquad 0 \le y \le \infty, \\ n_2 & \Pi p \mathbf{U} \qquad -d \le y \le 0, \\ n_3 & \Pi p \mathbf{U} \qquad -\infty \le y \le -d. \end{cases}$$

Расчёт будем производить из тех предположений, что основная часть мощности

будет распространяться в плёнке.

Расчёт волновода

1. Система уравнений Максвелла для электромагнитных полей запишется

следующим образом :

$$\operatorname{rot} \overline{H} = \begin{vmatrix} \overline{i} & \overline{j} & \overline{k_0} \\ 0 & \frac{\partial}{\partial y} & -j\beta \\ H_x & H_y & h_3H_z \end{vmatrix} = j\omega\varepsilon_a (\overline{i}E_{q_1} + \overline{j}E_{q_2} + \overline{k_0}E_{q_3}).$$
(4.2.1)

Аналогичное выражение можно записать и для второго уравнения

$$\operatorname{rot} \overline{E} = \begin{vmatrix} \overline{i} & \overline{j} & \overline{k_0} \\ 0 & \frac{\partial}{\partial y} & -j\beta \\ E_x & E_y & E_z \end{vmatrix} = -j\omega\mu_a(\overline{i}H_x + \overline{j}H_y + \overline{k_0}H_z).$$
(4.2.2)

2. Уравнения, определяющие компоненты поля в волноводе для волны типа

 H_{01}

$$-\chi^{2}E_{x} = j\omega\mu_{0} \cdot \frac{\partial H_{z}}{\partial y}, \qquad (4.2.3)$$

$$-\chi^{2}H_{y} = j\beta \cdot \frac{\partial H_{z}}{\partial y}. \qquad (4.2.4)$$

3. Решение волнового уравнения для трёх областей:

$$\psi_{1,2,3} = \left\{ \frac{E_{z}(y)}{H_{z}(y)} \right\} = \begin{cases} A_{1} \exp(-\chi_{1}y) & 0 \le y \le \infty \\ A_{2} \cos \chi_{2}y + B_{2} \sin \chi_{2}y & -d \le y \le 0 \\ A_{3} \exp(\chi_{3}(d+y)) & -\infty \le y \le -d \end{cases}, \quad (4.2.5)$$

4. Выражение констант A_1, A_2, A_3, B_2 через константу *C*:

1.
$$H_{z1}=H_{z2}$$
 при y=0, откуда $A_I=A_2=C$.
2. $E_{x1}=E_{x2}$ при y=0, откуда $-\frac{\chi_2}{\chi_1}C=B_2$. (4.2.6)

3.
$$H_{z2} = H_{z3}$$
 при $y = -d$, откуда $C(\cos \chi_2 d + \frac{\chi_2}{\chi_1} \sin \chi_2 d) = A_3.$ (4.2.7)

4.
$$E_{x2} = E_{x3}$$
 при y=-d, откуда $C(\frac{\chi_3}{\chi_2} \sin \chi_2 d - \frac{\chi_3}{\chi_1} \cos \chi_2 d) = A_3.$ (4.2.8)

Следовательно:
$$H_{z}(y) = \begin{cases} Ce^{-\chi_{1}y}, & \text{при } (0 \le y \le \infty) \\ C(\cos(\chi_{2}y) + \frac{\chi_{2}}{\chi_{3}}\sin(\chi_{2}y)), & \text{при } (-d \le y \le 0) \\ C(\cos(\chi_{2}d) + \frac{\chi_{2}}{\chi_{1}}\sin(\chi_{2}d))e^{\chi_{3}y}, & \text{при } (-\infty \le y \le -d) \end{cases}$$

5. Выражения составляющих поля для трёх областей:

$$H_{z}(y,z) = \begin{cases} Ce^{-\chi_{1}y}e^{-j\beta z}, & \text{при } (0 \le y \le \infty) \\ C(\cos \chi_{2}y) - \frac{\chi_{2}}{\chi_{1}}\sin \chi_{2}y)e^{-j\beta z}, & \text{при } (-d \le y \le 0) \\ C(\cos \chi_{2}d + \frac{\chi_{2}}{\chi_{1}}\sin \chi_{2}d)e^{\chi_{3}(d+y)}e^{-j\beta z}, & \text{при } (-\infty \le y \le -d) \end{cases}$$

$$(4.2.9)$$

$$E_{x}(y,z) = \begin{cases} j \frac{\omega \mu_{0}}{\chi_{1}} Ce^{-\chi_{1}y} e^{-j\beta z} , & \text{при } (0 \le y \le \infty) \end{cases}$$

$$E_{x}(y,z) = \begin{cases} j \frac{\omega \mu_{0}}{\chi_{1}} C(\sin \chi_{2}y + \frac{\chi_{2}}{\chi_{1}} \cos \chi_{2}y) e^{-j\beta z} , & \text{при } (-d \le y \le 0) \end{cases} , (4.2.10)$$

$$-j \frac{\omega \mu_{0}}{\chi_{3}} C(\frac{\chi_{3}}{\chi_{2}} \sin \chi_{2}d - \frac{\chi_{3}}{\chi_{1}} \cos \chi_{2}d) e^{\chi_{3}(d+y)} e^{-j\beta z} , & \text{при } (-\infty \le y \le -d) \end{cases}$$

$$H_{y}(y,z) = \begin{cases} j \frac{\beta}{\chi_{1}} Ce^{-\chi_{1}y} e^{-j\beta z}, & \text{при } (0 \le y \le \infty) \\ j \frac{\beta}{\chi_{2}} C(\sin \chi_{2}y + \frac{\chi_{2}}{\chi_{1}} \cos \chi_{2}y) e^{-j\beta z}, & \text{при } (-d \le y \le 0) \\ - j \frac{\beta}{\chi_{3}} C(\frac{\chi_{3}}{\chi_{2}} \sin \chi_{2}d - \frac{\chi_{3}}{\chi_{1}} \cos \chi_{2}d) e^{\chi_{3}(d+y)} e^{-j\beta z}, & \text{при } (-\infty \le y \le -d) \end{cases}$$

Здесь
$$\chi_1^2 = k_0^2 n_1^2 - \beta^2$$
, $\chi_2^2 = k_0^2 n_2^2 - \beta^2$, $\chi_3^2 = k_0^2 n_3^2 - \beta^2$.

6. Дисперсионное уравнение для волны H_{0n}

записывается в виде формулы:

$$\frac{d}{\lambda_0} = \frac{1}{2\pi\sqrt{n_2^2 - \xi^2}} (n\pi + \arctan \frac{1}{\sqrt{n_2^2 - \xi^2}} \cdot \frac{\sqrt{\xi^2 - n_1^2} + \sqrt{\xi^2 - n_3^2}}{\sqrt{n_2^2 - \xi^2}} \cdot \frac{\sqrt{\xi^2 - n_1^2} + \sqrt{\xi^2 - n_3^2}}{\sqrt{n_2^2 - \xi^2}}) \cdot (4.2.12)$$

Здесь $\frac{\beta}{k_0} = \frac{\lambda_0}{\Lambda} = \xi$, $n_3 < n_2$, $n_1 < n_2$, а структура поля во всём пространстве

определяется формулами (4.2.9)-(4.2.11).

Дисперсионное уравнение удовлетворяет модовому условию: $n\pi < \chi_2 d < (n+1)\pi$, где n=0,1,2... определяет порядок моды.

Например, волна *H*₀, является волной магнитного типа, не имеющей вариаций по оси *x* и содержащей *n* вариаций по оси *y*.

7. Вычислим значения функции $\frac{d}{\lambda}(\xi)_{H_{0_n}^{\circ}}$ для трёх нижних мод : $H_{0_1}^{\circ}$, $H_{0_2}^{\circ}$, $H_{0_3}^{\circ}$.

(4.2.11)

	1		1
ξ	$H^{_{01}}_{_{01}}$, $\frac{d}{\lambda}(\xi)_{_{H^{^{0}}_{_{01}}}}$	$H^{0}_{02}, \ \frac{d}{\lambda}(\xi)_{H^{0}_{02}}$	$H^{0}_{_{03}}, \frac{d}{\lambda}(\xi)_{_{H^{0}_{_{03}}}}$
3.20	0.127	0.480	0.833
3.21	0.151	0.509	0.867
3.22	0.163	0.527	0.892
3.23	0.174	0.545	0.915
3.24	0.184	0.561	0.939
3.25	0.194	0.579	0.964
3.26	0.204	0.597	0.989
3.27	0.215	0.615	1.016
3.28	0.225	0.635	1.044
3.29	0.237	0.655	1.074
3.30	0.248	0.677	1.106
3.31	0.261	0.700	1.139
3.32	0.274	0.725	1.176
3.33	0.288	0.752	1.216
3.34	0.303	0.781	1.259
3.35	0.319	0.813	1.306
3.36	0.338	0.848	1.358
3.37	0.358	0.887	1.416
3.38	0.380	0.930	1.480
3.39	0.405	0.979	1.554
3.40	0.434	1.036	1.637
3.41	0.467	1.101	1.735
3.42	0.505	1.178	1.849
3.43	0.553	1.271	1.988
3.44	0.610	1.385	2.160
3.45	0.684	1.533	2.381
3.46	0.785	1.732	2.680
3.47	0.931	2.025	3.118
3.48	1.177	2.515	3.853
3.49	1.730	3.622	5.513

Таблица 1. Значения функции $\frac{d}{\lambda}(\xi)_{H_{0,n}^{\circ}}$

8. Построим дисперсионные кривые для этих локализованных мод (рис.22).

Рис. 22 Дисперсионные характеристики для локализованных мод

9. Расчёт толщины плёнки, соответствующей одномодовому режиму.

Для одномодового режима работы согласно дисперсионному уравнению необходимо, чтобы выбранному значению $\beta = \frac{2\pi}{\Lambda}$ соответствовала определенная толщина плёнки *d* или наоборот.

Рассчитываем толщину плёнки таким образом, чтобы по волноводу распространялся один тип колебаний H_{01}^0 . Выбираем $\xi = 3,3$. Этому значению ξ соответствует отношение $\frac{d}{\lambda} = 0,248$. Откуда, при $\lambda = 1$ мкм получим d=0,248 мкм и

$$\chi_{1} = \frac{2\pi}{\lambda} \sqrt{\xi^{2} - n_{1}^{2}} = \frac{2\pi}{\lambda} 3,14; \ \chi_{2} = \frac{2\pi}{\lambda} \sqrt{n_{2}^{2} - \xi^{2}} = \frac{2\pi}{\lambda} 1,166; \ \chi_{3} = \frac{2\pi}{\lambda} \sqrt{\xi^{2} - n_{3}^{2}} = \frac{2\pi}{\lambda} 0,8$$

или
$$\chi_1 = \frac{1,55 \pi}{d}, \quad \chi_2 = \frac{0,57 \pi}{d}, \quad \chi_3 = \frac{0,39 \pi}{d}.$$
 (4.2.13)

10. Постоянная распространения $\frac{\beta}{k_0} = \xi$, поэтому $\beta = \xi \frac{2\pi}{\lambda} = 2,07 \cdot 10^{-7}$ см⁻¹.

Таким же образом могут быть рассчитаны *в* и *d* для всех других типов волн.

11. Расчет распределения компоненты $E_x(y)$ для волны H_{01}^0 .

Из формул (4.2.10) получим расчетные формулы:

$$E_{x}(y,z) = \begin{cases} jC \frac{\omega\mu_{0}\lambda}{6,28\pi}e^{-\frac{2\pi}{\lambda}3,14\cdot y}, & \text{при} \quad (0 \le y \le \infty) \end{cases}$$
$$E_{x}(y,z) = \begin{cases} jC \frac{\omega\mu_{0}\lambda}{2,34\pi}[\sin(\frac{0,57\pi}{d}y) + 0,36\cos(\frac{0,57\pi}{d}y)], & \text{при} \quad (-d \le y \le 0) \end{cases}$$
$$- jC \frac{\omega\mu_{0}\lambda}{1,6\pi}[0,68\sin(0,57\pi) - 0,25\cos(0,57\pi)e^{\chi_{3}(y+d)}], & \text{при} \quad (-\infty \le y \le -d) \end{cases}$$

Для выбранной рабочей точки ($\xi = 3,3$, d=0,32 мкм, $\mu_0 = 4\pi 10^{-7}$ Гн/м), изменяя у в указанных ниже пределах, рассчитаем распределение составляющей поля $E_x(y, z = 0)$ для всех трёх областей. Результаты расчета сведены в табл.2.

y/d	0,3	0,2	0,1	0	-0.05	-0,1	0,2	0,4
$E_x(y)$	0,08	0,19	0,22	0.36	0,27	0,18	0	-0,36
$H_z(y)$				0,95			1	0,93
y/d	-0,6	-0,8	1	-1,1	-1,2	-1,3	-1,4	-1,5
$E_x(y)$	-0,57	-0,88	-1	-0,99	-0,78	-0,69	-0,61	-0,54
$H_z(y)$	0,88	0,45	0,12					

Графики зависимостей $E_x(y, z = 0)$ и $H_z(y, z = 0)$ представлены на рис.23.

Рис.23 Графики зависимостей $E_x(y)$ и $H_z(y)$

Структура поля волны *H*₀₁ показа на рис.24.

Рис.24 Структура поля волны H_{01} в несимметричном волноводе.

Из табл.2 и графика рис.23 следует, что составляющая *E_x* имеет один максимум в плёнке. За пределами плёнки поле убывает по экспоненциальному закону, т.е. носит поверхностный характер.

12. Мощность, переносимая по волноводу

Эта мощность неравномерно распределена между тремя областями: I,II,III.

В данном расчёте предусмотрено сосредоточение основной части мощности в пленке (в области II), что подтверждается распределением поперечной составляющей электрического поля *E_x* вдоль координаты *y*.

Исходными формулами являются: среднее значение вектора Пойнтинга $\overline{\Pi}_{cp} = \frac{1}{2} \operatorname{Re} \left[\overrightarrow{E} \times \overrightarrow{H}^* \right]$ и средняя мощность $P_{cp} = \int_{s} \overline{\Pi}_{cp} d\overline{s}$.

Общая мощность, распространяющая вдоль волновода, определяется суммой мощностей, канализируемых по отдельным областям:

$$P_{cp}^{I} = \int_{0}^{\infty} \prod_{cp}^{I} dy , \quad P_{cp}^{II} = \int_{-d}^{0} \prod_{cp}^{II} dy , \quad P_{cp}^{III} = \int_{-\infty}^{-d} \prod_{cp}^{III} dy , \quad (4.2.14)$$

и равна :
$$P_{cp} = P_{cp}^{I} + P_{cp}^{II} + P_{cp}^{III} = P_{cp}^{I} \left(1 + \frac{P_{cp}^{II}}{P_{cp}^{I}} + \frac{P_{cp}^{III}}{P_{cp}^{I}} \right).$$
(4.2.15)

Отношения $\frac{P_{cp}^{II}}{P_{cp}^{I}}$ и $\frac{P_{cp}^{III}}{P_{cp}^{I}}$ показывают, как канализируемая мощность делится между

областями.

Вводя обозначение $P_{cp\,0} = 0.25 C^2 \beta \omega \mu_0$ и используя для расчета мощности формулы (2.3.20)-(2.3.22), получим

$$P_{cp}^{I} = P_{cp\,0} \,0.268 \, \frac{d^{3}}{\pi^{3}}, \quad P_{cp}^{II} = P_{cp\,0} \,11.43 \, \frac{d^{3}}{\pi^{3}}, \quad P_{cp}^{III} = P_{cp\,0} \,10.77 \, \frac{d^{3}}{\pi^{3}},$$
$$P_{cp} = P_{cp\,0} \,11.43 \, \frac{d^{3}}{\pi^{3}} (1+0.94 + 0.0234 \,).$$

Из расчета следует, что вся мощность распространяется преимущественно в областях II и III. Это объясняется тем, что они имеют близкие коэффициенты преломления: $n_2 = 3,5$, $n_3 = 3,2$.

4.3. Расчет круглого диэлектрического волновода

Круглый диэлектрический волновод (волоконный световод) представлен на рис .25.

Исходные данные:

Рассчитать волоконный оптический световод: определить радиус волокна *a*, если относительная диэлектрическая проницаемость стекла ε_{r1} =3,2, окружающей среды ε_{r2} =1. Длина волны генератора λ = 0,63 мкм. Структура поля волны H_{01} .

Расчёт волновода

1. На основании изложенной выше теории, учитывая независимость полей от координаты α ($\frac{\partial}{\partial \alpha} = 0$) и используя (1.4), запишем первое и второе уравнения

Максвелла в виде

$$\frac{1}{\rho} \begin{vmatrix} \overline{\rho_0} & \rho \overline{\alpha_0} & \overline{\kappa_0} \\ \frac{\partial}{\partial \rho} & 0 & -j\beta \\ H_{\rho} & \rho H_{\alpha} & H_z \end{vmatrix} = j \omega \varepsilon_a \left(\overline{\rho_0} E_{\rho} + \overline{\alpha_0} E_{\alpha} + \overline{\kappa_0} E_z \right), \quad (4.3.1a)$$

$$\frac{1}{\rho} \begin{vmatrix} \overline{\rho_0} & \overline{\rho \alpha_0} & \overline{\kappa_0} \\ \frac{\partial}{\partial \rho} & 0 & -j\beta \\ E_{\rho} & \rho E_{\alpha} & E_z \end{vmatrix} = -j\omega\mu_0 \left(\overline{\rho_0}H_{\rho} + \overline{\alpha_0}H_{\alpha} + \overline{\kappa_0}H_z\right).$$
(4.3.16)

Откуда для волны магнитного типа H_{0n} получим :

$$E_{\alpha} = -j \frac{\omega \mu_{0}}{\chi^{2}} \frac{\partial H_{z}}{\partial \rho} , \quad H_{\rho} = -j \frac{\beta}{\chi^{2}} \frac{\partial H_{z}}{\partial \rho}. \quad (4.3.2)$$

2. Решение волнового уравнения для области I

$$H_{z}^{I} = H_{z0}^{I} J_{0}(\chi_{1}\rho), \qquad 0 \le \rho \le a .$$
(4.3.3)

Для области II

$$H_{z}^{II} = H_{z0}^{II} K_{0}(\chi_{2}\rho), \qquad a \le \rho \le \infty .$$
(4.3.4)

3. Выражения, определяющие структуру поля волны $H_{_{01}}$:

$$\begin{cases} E_{\alpha}^{I} = -j \frac{\omega \mu_{0}}{\chi_{1}} H_{z0}^{I} J_{1}(\chi_{1}\rho) \\ H_{\rho}^{I} = j \frac{\beta}{\chi_{1}} H_{z0}^{I} J_{1}(\chi_{1}\rho) \\ H_{z}^{I} = H_{z0}^{I} J_{0}(\chi_{1}\rho) \end{cases}$$
Для области I, (4.3.5)

$$\begin{cases} E_{\alpha}^{II} = -j \frac{\omega \mu_{0}}{\chi_{2}} H_{z0}^{II} \mathbf{K}_{1}(\chi_{2}\rho) \\ H_{\rho}^{II} = j \frac{\beta}{\chi_{2}} H_{z0}^{II} \mathbf{K}_{1}(\chi_{2}\rho) \\ H_{z}^{II} = H_{z0}^{II} \cdot \mathbf{K}_{0}(\chi_{2}\rho) \end{cases}$$
Для области II. (4.3.6)

4. Дисперсионное уравнение для волны $H_{_{01}}$ согласно (2.4.8) имеет вид

$$\chi_1 a \frac{J_0(\chi_1 a)}{J_1(\chi_1 a)} = \chi_2 a \frac{K_0(\chi_2 a)}{K_1(\chi_2 a)} .$$
(4.3.7)

5. Графическое решение дисперсионного уравнения, построение графиков.

Левая часть дисперсионного уравнения - функция $y_1(x) = x \frac{J_0(x)}{J_1(x)}$, где $x = \chi_1 a$. Построим график зависимости этой функции (рис.26) от аргумента $x = \chi_1 a$, который откладываем по оси абсцисс, и график функции $y_2(x) = R$.

Рис. 26 Графическое решение дисперсионного уравнения

Точки пересечения функций $y_1(x)$ и $y_2(x)$ определяют рабочую точку для заданного типа колебаний.

6. Определение поперечных волновых чисел

Для определения поперечных волновых чисел χ_1, χ_2 на графике проведём окружность радиуса R (больше $v_{01} = 2,405$ и меньше 3,832) с центром в начале координат, например, $R = \frac{2\pi \cdot a}{\lambda} \sqrt{\varepsilon_r - 1} = 3$. Из точки пересечения проводим перпендикуляры на оси $\chi_1 a$ и $\chi_2 a$. Получим $\chi_1 a = 2,6$, $\chi_2 a = 1,66$.

Откуда $\chi_1 = \frac{2.6}{a}, \ \chi_2 = -\frac{1.66}{a}.$

7. Определение радиуса диэлектрического стержня.

Используя соотношение (2.4.9), получим

$$a = \frac{v_{0n}}{0.8\omega} \frac{c}{\sqrt{\varepsilon_{r1} - 1}} = \frac{v_{0n}}{1.6\pi} \frac{\lambda}{\sqrt{\varepsilon_{r1} - 1}}.$$

В нашем примере заданы: $\lambda = 0.63$ мкм , $\varepsilon_{r1} = 2.25$, волна H_{01} . Поэтому

 $v_{01} = 2,405$ И

$$a = \frac{2.05}{1.6\pi} \frac{0.63}{\sqrt{2.25 - 1}} = 0.268$$
 MKM.

На практике рекомендуется выбирать *а* несколько больше рассчитанного, при этом удовлетворяя условию существования выбранного типа колебаний.

9. Уравнения, определяющие структуру поля.

$$\begin{cases} E^{\mathrm{I}}_{\alpha} = -j \frac{\omega \mu_{0} a}{2.6} H^{\mathrm{I}}_{z0} J_{1}(\frac{2.6}{a} \rho) \\ H^{\mathrm{I}}_{\rho} = j \frac{\beta a}{2.6} H^{\mathrm{I}}_{z0} J_{1}(\frac{2.6}{a} \rho) \\ H^{\mathrm{I}}_{z} = H^{\mathrm{I}}_{z0} J_{0}(\frac{2.6}{a} \rho) \end{cases}$$
Для обл.І.
$$\begin{cases} E^{\mathrm{II}}_{\alpha} = -\frac{\omega \mu_{0} a}{1.66} H^{\mathrm{II}}_{z0} K_{1}(\frac{1.66}{a} \rho) \\ H^{\mathrm{II}}_{\rho} = j \frac{\beta a}{1.66} H^{\mathrm{II}}_{z0} K_{1}(\frac{1.66}{a} \rho) \\ H^{\mathrm{II}}_{z} = H^{\mathrm{II}}_{z0} K_{0}(\frac{1.66}{a} \rho) \end{cases}$$
Для обл.ІІ.

10. Проверка граничных условий:

Граничные условия: $H_{z}^{II} = H_{z}^{I}$ при $\rho = a$ выполняется при $H_{z0}^{II} = H_{z0}^{II} \frac{J_{0}(\chi_{1}a)}{K_{0}(\chi_{2}a)}$, а равенство $E_{\alpha}^{II} = E_{\alpha}^{II}$ при $\rho = a$ требует равенства

$$\chi_{1}a \frac{J_{0}(\chi_{1}a)}{J_{1}(\chi_{1}a)} = \chi_{2}a \frac{K_{0}(\chi_{2}a)}{K_{1}(\chi_{2}a)}$$

При $\rho = a$ $J_0(2,6) = -0,23$, $J_1(2,6) = 0,46$, $K_0(1,66) = 0,17$, $K_1(1,66) = 0,22$,

следовательно:
$$\chi_1 a \frac{J_0(\chi_1 a)}{J_1(\chi_1 a)} = 1,3 \approx \chi_2 a \frac{K_0(\chi_2 a)}{K_1(\chi_2 a)} = 1,28.$$

11. Проверка равенства постоянных распространения для І и ІІ областей.

$$\beta = \sqrt{\omega^2 \mu_0 \varepsilon_0 + \chi_2^2} \quad \text{ИЛИ} \qquad \beta = \sqrt{\omega^2 \mu_0 \varepsilon_a - |\chi_1|^2} .$$
$$\beta = \frac{2\pi}{\lambda} \sqrt{1 + (\frac{\chi_2 \lambda}{2\pi a})^2} = \frac{2\pi}{\lambda} \sqrt{1 + \frac{(2.6 \cdot 0.63)^2}{(2\pi \cdot 0.268)^2}} = \frac{2\pi}{\lambda} 1.39 ,$$
$$\beta = \frac{2\pi}{\lambda} \sqrt{2.25 - (\frac{1.66 \cdot 0.63}{2\pi \cdot 0.268})^2} = \frac{2\pi}{\lambda} 1.38 .$$

Так как граничные условия выполняются и постоянная распространения одинакова для обеих областей, математические вычисления проведены правильно.

12. Мощность, канализируемая по круглому волноводу.

Как и в случае прямоугольного диэлектрического волновода, мощность канализируется по двум областям: в области I ($0 \le \rho \le a$) - P_{cp}^{I} и в области II ($a \le \rho \le \infty$) - P_{cp}^{II} .

Для определения средней мощности используем формулу $P_{cp} = \int_{S} \overline{\Pi_{cp}} \, dS$, $dS = \rho \partial \rho \partial \alpha$. Запишем выражения для средней мощности через H_z для волн типа H

$$P_{cp}^{IH} = \frac{1}{2} \frac{\beta^2 Z_W^I}{\chi_1^2} \int_{S} \left| H_z^I \right|^2 ds , \qquad P_{cp}^{IIH} = \frac{1}{2} \frac{\beta^2 Z_W^{II}}{\chi_2^2} \int_{S} \left| H_z^{II} \right|^2 ds ,$$

Учитывая выражение для интеграла $\int_{0}^{a} J_{m}^{2}(\chi \rho) \rho d\rho = \frac{a^{2}}{2} J_{m}^{\prime 2}(\chi \rho) + \frac{1}{2} (a^{2} - \frac{m^{2}}{\chi^{2}}) J_{m}^{2}(\chi \rho)$

[2], для поля, не зависящего от α , получим:

$$P_{cp}^{IH} = \frac{1}{2} \frac{2\pi\beta^{2} Z_{W}^{I}}{\chi_{1}^{2}} (H_{z0}^{I})^{2} \int_{0}^{a} J_{0}^{2} (\chi_{1}\rho) \rho d\rho = \frac{1}{2} \frac{\beta^{2} Z_{W}^{I} a^{2} \pi}{\chi_{1}^{2}} (H_{z0}^{I})^{2} (J_{0}^{\prime 2} (\chi_{1}a) + J_{0}^{2} (\chi_{1}a)) =$$
$$= \frac{1}{2} \frac{\beta^{2} Z_{W}^{I} a^{2} \pi}{\chi_{1}^{2}} (H_{z0}^{I})^{2} (J_{1}^{2} (\chi_{1}a) + J_{0}^{2} (\chi_{1}a)) ,$$

$$P_{cp}^{IIH} = \frac{1}{2} \frac{\beta^2 Z_W^{II} 2\pi}{\chi_2^2} (H_{z0}^{II})^2 \int_0^a K_0^2(\chi_2 \rho) \rho d\rho = \frac{1}{2} \frac{\beta^2 Z_W^{II} a^2 \pi}{\chi_2^2} (H_{z0}^{II})^2 (K_0^{II}(\chi_2 a) + K_0^2(\chi_2 a)),$$

ГДе $Z_{W}^{I} = Z_{W}^{II} = \frac{\omega \mu_{0}}{\beta}$.

Подставляя численные значения, получим

$$P_{cp} = P_{cp}^{IH} + P_{cp}^{IIH} = P_{cp}^{0} ((0,445^{2} + 0,24^{2})/2,6^{2} + \frac{0,24}{0,445 \cdot 1,66^{2}} (0,22^{2} + 0,17^{2})) = 0,192 P_{cp}^{0},$$

Где $P_{cp}^{0} = \frac{\beta^2 Z_W^{II} a^4 \pi}{2} (H_{Z0}^{I})^2.$

На рис.27 представлена рассчитанная структура поля волны $H_{01.}$

Рис. 27 Структура поля волны *H*₀₁

4.4 Расчет Н- образного диэлектрического резонатора

На базе волновода рассмотренного в параграфе 4.1 можно создать *Н*-образный объемный диэлектрический резонатор.

Для этого необходимо данный волновод ограничить металлическими торцевыми стенками. Если расстояние между торцевыми стенками взять кратным половине длины волны в волноводе, то в резонаторе возникнет резонанс.

Задание:

Рассчитать *H*-образный объемный диэлектрический резонатор для волны электрического чётного типа E_{201} на частоте f=10 ГГц. Относительная диэлектрическая проницаемость диэлектрика $\varepsilon_r = 4$, $\mu_r = 1$, tg $\Delta = 10^{-4}$. Окружающая среда - воздух. При расчете считать диэлектрическую пластину неограниченной по оси *у*.

В курсовую работу входит расчет следующих параметров резонатора:

поперечных волновых чисел, толщины слоя диэлектрика 2*d*, коэффициента распространения β , длины волны волновода Λ , определение его добротности. Необходимо также записать уравнения, определяющие структуру поля в резонаторе, и на основании этих уравнений построить структуру поля волны E_{201} .

Расчёт резонатора

1. В параграфе 4.1 проведён расчёт волновода для заданных параметров и заданного типа волны E_{20} . Поэтому в данном примере мы можем воспользоваться результатами данного расчёта (d=1см, $\lambda_e = 2,57$ см) и определить его геометрические размеры: длину резонатора - она равна количеству полуволн, укладывающихся при резонансе вдоль резонатора: $h=l\frac{\lambda_e}{2}=1,285$ см и толщину диэлектрика равную 2d=2 см.

2. Уравнения, определяющих структуру поля в резонаторе в случае волн электрического чётного типа, имеют вид:

$$\begin{cases} E_{zp} = A \sin(\chi_1 x) \cos \frac{l\pi}{h} z \\ \begin{cases} E_{xp} = \frac{\beta}{\chi_1} A \cos(\chi_1 x) \sin \frac{l\pi}{h} z \\ \end{cases} - диэлектрик (область I), \quad (4.4.1) \end{cases}$$
$$\begin{cases} H_{yp} = -\frac{j\omega\varepsilon_a}{\chi_1} A \cos(\chi_1 x) \cos \frac{l\pi}{h} z \end{cases}$$

$$\begin{vmatrix} E_{zp} &= Be^{-\chi_{2}x}\cos\frac{l\pi}{h}z \\ E_{xp} &= \frac{\beta}{\chi_{2}}Be^{-\chi_{2}x}\sin\frac{l\pi}{h}z \\ H_{yp} &= -\frac{j\omega\varepsilon_{0}}{\chi_{2}}Be^{-\chi_{2}x}\cos\frac{l\pi}{h}z \end{vmatrix}$$
ВОЗДУХ (область II). (4.4.2)

3. Определение собственной добротности резонатора.

$$\frac{1}{Q_0} = \frac{1}{Q_{0d}} + \frac{1}{Q_{0M}}.$$

Добротность $Q_{0d} = \frac{\omega \varepsilon_a \int E^2 dv}{\sigma_o \int E^2 dv} = \frac{1}{\operatorname{tg} \Delta}$ может быть определена при известном

 $tg\varDelta$.

Добротность, обусловленная потерями в торцевых стенках, может быть определена из интеграла: $Q_{0,M} = \frac{\omega \mu_0 \int_{-\infty}^{\infty} H^2 dv}{2\sigma_M \int H_{\tau}^2 ds} = \frac{\lambda_e}{16 \pi \delta}$. Здесь λ_e - длина волны в волноводе, а δ -глубина проникновения поля в металл, которая равна $\delta = 1/\sqrt{\frac{\omega \mu_0 \sigma_M}{2}}$. Так как проводимость металла очень высока, например, для меди она равна 5,8-10⁷ См/м, то потери в резонаторе, практически определяются только потерями в диэлектрике. Так при tg $\Delta = 10^{-3}$, добротность резонатора $Q_0 = 1000$.

4. Структура поля строится на основании выражений (4.4.1), (4.4.2).

4.5 Расчет круглого планарного резонатора

Исходные данные:

Тип резонатора: Круглый планарный диэлектрический. Тип колебаний: E_{110} , т.е. *m*=1, *n*=1, *l*=0. Рабочая частота f_0 = 3,3 ГГц. Толщина диэлектрика: *h* =0,2 см. Относительная диэлектрическая проницаемость: ε_r = 2,8. Волна E_{110} .

Расчет структуры поля резонатора

Так как данный тип колебаний не имеет вариаций поля вдоль оси z $(\frac{\partial}{\partial z}=0)$ и не имеет продольной составляющей магнитного поля $(H_z = 0)$, то для определения проекций векторов поля на оси координат уравнения (1.4а) и (1.4б) нужно записать в следующем виде:

$$\frac{1}{\rho} \begin{vmatrix} \overline{\rho_0} & \rho \overline{\alpha_0} & \overline{\kappa_0} \\ \frac{\partial}{\partial \rho} & \frac{\partial}{\partial \alpha} & 0 \\ H_{\rho} & \rho H_{\alpha} & 0 \end{vmatrix} = j \omega \varepsilon_a \left(\overline{\rho_0} E_{\rho} + \overline{\alpha_0} E_{\alpha} + \overline{\kappa_0} E_{z} \right),$$
$$\frac{1}{\rho} \begin{vmatrix} \overline{\rho_0} & \rho \overline{\alpha_0} & \overline{\kappa_0} \\ \frac{\partial}{\partial \rho} & \frac{\partial}{\partial \alpha} & 0 \\ E_{\rho} & \rho E_{\alpha} & E_{z} \end{vmatrix} = -j \omega \mu_0 \left(\overline{\rho_0} H_{\rho} + \overline{\alpha_0} H_{\alpha} + \overline{\kappa_0} H_{z} \right) .$$

Откуда
$$H_{\rho} = -j \frac{1}{\omega \mu_{0} \rho} \frac{\partial E_{Z}}{\partial \alpha}, \quad H_{\alpha} = j \frac{1}{\omega \mu_{0}} \frac{\partial E_{Z}}{\partial \rho}, \quad E_{\rho} = E_{\alpha} = 0.$$
 (4.5.1)

Используя решение волнового уравнения $\frac{\partial^2 E_Z}{\partial \rho^2} + \frac{1}{\rho} \frac{\partial^2 E_Z}{\partial \rho^2} + \frac{1}{\rho^2} \frac{\partial^2 E_Z}{\partial \alpha^2} = -\chi^2 E_Z$ В

виде $E_z = (AJ_m(\chi \rho) + BN_m(\chi \rho))(C \cos m\alpha + D \sin \chi \alpha)$ и исключая из решения функцию Неймана в соответствии с требованием теоремы единственности, с учетом граничных условий Олинера: $\frac{\partial E_z}{\partial \rho} = 0$ при $\rho = a$, запишем выражение для

E_z:

$$E_{z} = E_{z0} \cdot \mathbf{J}_{m}(\frac{\mu_{mn}}{a}\rho) \cdot \cos(m\alpha) . \qquad (4.5.2)$$

Здесь $\chi = \frac{\mu_{mn}}{a}$, а μ_{mn} - корень производной функции Бесселя первого рода *m*-го

порядка, а - радиус резонатора.

Используя выражение для E_z (4.5.2) и систему (4.5.1), получим уравнения для составляющих векторов поля колебаний типа E_{mn0} . Для заданного поля (m=1, n=1, $\mu_{11} = 1.84$) решения данных уравнений, определяющие структуру поля запишутся:

$$E_{z} = E_{z0} J_{1} \left(\frac{1.84}{a} \rho\right) \cos(\alpha),$$

$$H_{\rho} = j H_{\rho 0} J_{1} \left(\frac{1.84}{a} \rho\right) \sin(\alpha),$$

$$H_{\alpha} = -j H_{\alpha 0} J_{1} \left(\frac{1.84}{a} \rho\right) \cos(\alpha),$$
(4.5.3)

ГДе $H_{\rho 0} = E_{z0} \frac{\chi}{\omega \mu_0}$, $H_{\alpha 0} = E_{z0} \frac{\chi}{\omega \mu_0}$.

Структура поля типа E_{110} , построенная в соответствии с выражениями (4.53), показана на рис.28.

Рис. 28 Структура поля типа *E*₁₁₀

Расчёт геометрических размеров резонатора

В плоских резонаторах существует неоднородное заполнение. Между металлическими пластинами находится диэлектрик с относительной диэлектрической проницаемостью є_г. Резонатор окружен воздухом. Электрическое поле выходит за пределы диэлектрика и частично находится в воздухе (рис.29).

Рис. 29 Геометрия резонатора

Поэтому необходимо резонатор с неоднородным заполнением заменить эквивалентным ему резонатором с однородным диэлектриком (рис.30), проницаемость которого равна $\varepsilon_0 \varepsilon_{r \ 3\phi}$.

Рис. 30 Геометрия эквивалентного резонатора

Эквивалентный резонатор будет обладать «эффективными» размерами,

отличными от размеров, которые он бы имел без учёта краевого эффекта, и эффективной диэлектрической проницаемостью $\varepsilon_{_{3\phi}}$. Расчёт геометрических размеров резонатора производится в соответствии с методикой, изложенной в [5]. 1. Резонансная длина волны определяется выражением:

$$\lambda_0 = \frac{2\pi a_{\vartheta\phi} \sqrt{\varepsilon_{r,\vartheta\phi}}}{\mu_{mn}} = \frac{2\pi a_{\vartheta\phi} \sqrt{\varepsilon_{r,\vartheta\phi}}}{1.841}.$$
(4.5.4)

Из формулы (4.5.4) следует, что для определения резонансной длины волны необходимо знать $\varepsilon_{r, s\phi}$. и $a_{s\phi}$. Однако, определить их непосредственным расчётом достаточно трудно. Поэтому, для расчёта удобно использовать результаты расчётов изложенных в [5], которые позволяют определить радиус резонатора по заданным λ_0 , ε_r и *h*.

Для определения радиуса резонатора *а* используем табл.3.6 из [5]. В табл.3 приведены резонансные длины волн λ_0 [см] плоского круглого резонатора для разных типов колебаний при ε_r =2,7, *h*=0,2 см.

a/h	E_{110}	E_{110}	E_{210}	E_{210}
2,5	1,63	3,32	1,98	1,42
5,0	3,03	6,18	3,67	2,64
7,5	4,41	9,00	5,36	3,85
10,0	5,77	11,8	7,03	5,06
12,5	7,14	14,6	8,21	6,28
15,0	8,50	17,14	10,4	7,49

Таблица 3 Резонансные длины волн

Из неё находим, что резонансной длине волны $\lambda_0 = 9$ см при волне типа E_{110}

соответствует отношение a/h = 7,5, откуда a = 7,5 h = 1,5 см.

По известному радиусу резонатора можно определить $\varepsilon_{r, j\phi}$. И $a_{j\phi}$. и проверить правильность определения λ_0 .

1.
$$a_{y\phi} = a \cdot \sqrt{1 + \frac{2h}{a} \left[\ln \frac{\pi a}{2h} + 1,77 \right]} = 1,45 \ a = 1,73 \ \text{CM.}$$
 (4.5.5)

2.
$$\varepsilon_{r_{3\phi}} = \frac{C_{3\phi}^{(\varepsilon)}}{C_{3\phi}^{(1)}},$$
 (4.5.6)

ГДе
$$C_{9\phi}^{(\varepsilon)} = C_{09\phi}^{(\varepsilon)} + C_{\kappa9\phi}^{(\varepsilon)}, \quad C_{9\phi}^{(1)} = C_{09\phi}^{(1)} + C_{\kappa9\phi}^{(1)},$$

$$C_{0\,9\phi}^{\varepsilon} = \frac{\varepsilon_{r}\pi a^{2}}{\delta h} \left[1 - \frac{J_{m-1}(\mu_{mn})J_{m+1}(\mu_{mn})}{J_{m}^{2}(\mu_{mn})} \right], \quad C_{0\,9\phi}^{1} = \frac{\pi a^{2}}{\delta h} \left[1 - \frac{J_{m-1}(\mu_{mn})J_{m+1}(\mu_{mn})}{J_{m}^{2}(\mu_{mn})} \right], \quad (4.5.7)$$

$$C_{\kappa,\vartheta\phi}^{\varepsilon} = \frac{\pi a}{\delta} \left[\frac{120 \ \pi Z_{w}(2a,h,1)}{Z_{w}^{2}(2a,h,\varepsilon_{r})} - \frac{2\varepsilon_{r}a}{h} \right], \quad C_{\kappa,\vartheta\phi}^{1} = \frac{\pi a}{\delta} \left[\frac{120 \ \pi}{Z_{w}(2a,h,1)} - \frac{2a}{h} \right], \quad (4.5.8)$$

$$\delta = \begin{cases} 1, \, \Pi \, p \, \mu \, m = 0 \\ 2, \, \Pi \, p \, \mu \, m \neq 0 \end{cases} \implies \delta = 2 \; .$$

$$Z_{w}(2a,h,\varepsilon_{r}) = \frac{120 \pi}{\sqrt{\varepsilon_{r}}} \left[\frac{2a}{h} + \frac{2}{\pi} \ln(17 (a/2h + 0.92)) \right]^{-1} = 73 \pi \left[15 + 4.3 \right]^{-1} = 3.78 \pi ,$$

$$Z_{w}(2a,h,1) = Z_{w}(2a,h,\varepsilon_{r})\sqrt{\varepsilon_{r}} = 6,19\pi ,$$

$$C_{0\,\phi}^{1} = C_{0\,\phi}^{\varepsilon} \frac{1}{\varepsilon_{r}} = 12,36 \cdot 10^{-2}.$$

$$C_{\kappa,9\phi}^{\varepsilon} = \frac{1.5\pi}{2} \left[\frac{120\pi 6.19\pi}{3.78\pi^2} - \frac{2\cdot 2.7\cdot 1.5}{0.2} \right] = 27\cdot 10^{-2},$$

$$C_{\kappa,9\phi}^{1} = \frac{1.5\pi}{2} \left[\frac{120 \pi}{6,19\pi} - \frac{2 \cdot 1.5}{0,2} \right] = 10,3 \cdot 10^{-2},$$

$$C_{3\phi}^{(\varepsilon)} = C_{03\phi}^{(\varepsilon)} + C_{\kappa3\phi}^{(\varepsilon)} = 0,33 + 0,26 = 0,59,$$

$$C_{3\phi}^{(1)} = C_{03\phi}^{(1)} + C_{\kappa3\phi}^{(1)} = 0,123 + 0,1 = 0,223,$$

$$\varepsilon_{r3\phi} = \frac{C_{3\phi}^{(\varepsilon)}}{C_{3\phi}^{(1)}} = \frac{0,59}{0,223} = 2,67, \quad a_{3\phi} = 1,73 \text{ CM}.$$

$$\lambda_{0} = \frac{2\pi a_{3\phi}\sqrt{\varepsilon_{r,3\phi}}}{C_{3\phi}^{(1)}} = \frac{2\pi a_{3\phi}\sqrt{\varepsilon_{r,3\phi}}}{1.841} = \frac{2\pi \cdot \sqrt{2,67} \cdot 1,73}{1.841} = 9,7 \text{ CM}.$$

1,841

Расчет показал достаточно хорошее совпадение заданной и расчетной длин волн.

1,841

Расчёт добротности резонатора

 μ_{mn}

Используем выражение для полной добротности резонатора Q_{non}

$$\frac{1}{Q_n} = \frac{1}{Q_0} + \operatorname{tg} \,\delta_{\varepsilon} \,,$$

где $Q_0 = \frac{Q_M Q_d}{Q_M + Q_d}$, Q_0 - собственная добротность резонатора,

tg $\delta_{\varepsilon} = 10^{-3} \div 10^{-4}$ - тангенс угла потерь в диэлектрике.

Полагая, что пластины резонатора выполнены из меди, имеющей проводимость

 σ = 5,8 · 10 ⁷ См/м , tg δ_{ε} = 10 ⁻³ ÷ 10 ⁻⁴ И μ_0 = 4 π · 10 ⁻⁷ , далее получаем:

$$\delta = 1 / \sqrt{\frac{\omega \mu_0 \sigma_M}{2}} = 1,207 \cdot 10^{-6} \text{ M},$$

$$Q_M = \frac{h}{\delta} = 4,973 \cdot 10^{-3}, \qquad Q_d = \frac{1}{\text{tg } \delta_{\varepsilon}} = 909 \quad . \tag{4.5.9}$$

В результате $Q_n = \left[\frac{1}{Q_0} + \operatorname{tg} \delta_{\varepsilon}\right]^{-1} = 416$,5.

4.6 Расчет прямоугольного планарного резонатора

Исходные данные:

Тип резонатора: прямоугольный планарный диэлектрический. Тип колебаний: E_{110} , т.е. m=1, n=1, p=0. Рабочая частота $f_0=3$ ГГц. Толщина диэлектрика h=2мм. Относительная диэлектрическая проницаемость $\varepsilon_r = 6$, окружающая среда- воздух.

Расчет структуры поля и параметров резонатора

1. Структура электромагнитного поля в резонаторе.

Уравнения Максвелла, описывающие электромагнитное поле rot $\overline{E} = -j\omega\mu_a \overline{H}$, rot $\overline{H} = j\omega\varepsilon_a \overline{E}$, можно преобразовать в инвариантную форму (см. (1.14)):

$$-\chi^{2}E_{\perp} = j\beta \text{ grad } \perp E_{q_{3}} + j\omega\mu_{a} [\text{grad } \perp H_{q_{3}}\overline{e_{3}}], \qquad (4.6.1a)$$

$$-\chi^{2}H_{\perp} = j\beta \text{ grad } \mu_{q_{3}} - j\omega\varepsilon_{a} [\text{grad } E_{q_{3}}\overline{e_{3}}], \qquad (4.6.16)$$

$$\Gamma \square \mathbf{e} \ H_{\perp} = \overline{e_1} H_{q_1} + \overline{e_2} H_{q_2}; \ E_{\perp} = \overline{e_1} E_{q_1} + \overline{e_2} E_{q_2}; \ E_{\perp} = \overline{e_1} E_{q_1} + \overline{e_2} E_{q_2}; \ \text{grad} \ \perp = \overline{e_1} \frac{\partial}{\partial q_1} + \overline{e_2} \frac{\partial}{\partial q_2}.$$

Так как в резонаторе отсутствует продольная составляющая магнитного поля H_z и поле не распространяющееся ($\beta = 0$), находим составляющие поперечного магнитного поля из уравнения (4.6.16) :

$$\chi^{2} \overline{H}_{\perp} = j \omega \varepsilon_{a} \left[\text{grad}_{\perp} E_{z} \overline{k}_{0} \right], \qquad (4.6.2)$$

$$\overline{H}_{\perp} = \overline{i} H_{x} + \overline{j} H_{y}, \qquad \text{grad}_{\perp} = \overline{i} \frac{\partial}{\partial x} + \overline{j} \frac{\partial}{\partial y}, \qquad (4.6.2)$$

$$H_{x} = \frac{j \omega \varepsilon_{a}}{\chi^{2}} \frac{\partial E_{z}}{\partial y}, \qquad H_{y} = -j \frac{\omega \varepsilon_{a}}{\chi^{2}} \frac{\partial E_{z}}{\partial x}.$$

Они выражены через составляющую E_z, которую определим из волнового

уравнения
$$\frac{\partial^2 E_z}{\partial x^2} + \frac{\partial^2 E_z}{\partial y^2} = -\chi^2 E_z$$
 и его общего решения:

 $E_z = (A\cos k_x x + B\sin k_x x)(C\cos k_y y + D\sin k_y y).$

Применив граничные условия Олинера: $\frac{\partial E_z}{\partial x} = 0$ при *x*=0, *x*=*a* и $\frac{\partial E_z}{\partial y} = 0$ при *y*=0, *y*=*b*, получим выражение для $E_z = E_{z0} \cos k_x x \cos k_y y$, где $\chi^2 = k_x^2 + k_y^2$,

 $k_x = \frac{m \pi}{a}, \quad k_y = \frac{n \pi}{b}.$

Используя (4.6.2) найдем выражения, определяющие структуру поля:

$$E_z = E_{z0} \cos \frac{m\pi}{a} x \cos \frac{n\pi}{b} y,$$

$$H_x = -jH_{x0} \cos \frac{m\pi}{a} x \sin \frac{n\pi}{b} y,$$

$$H_y = -jH_{y0} \sin \frac{m\pi}{a} x \cos \frac{n\pi}{b} y,$$

где $H_{x0} = E_{z0} \frac{\omega \varepsilon_a k_x}{\chi^2}$. $H_{y0} = E_{z0} \frac{\omega \varepsilon_a k_y}{\chi^2}$.

3. Резонансная длина волны типа *E_{mn0}* определяется выражением (3.2.21)

$$\lambda_{pe3} = \frac{2\sqrt{\varepsilon_{3\phi}}}{\sqrt{\left(\frac{m}{a_{3\phi}}\right)^2 + \left(\frac{n}{s_{3\phi}}\right)^2}},$$

где *m* - количество вариаций поля по оси *X*, *n* -количество вариаций поля по оси *Z*, $\varepsilon_{r_{3\phi}}$, $a_{_{3\phi}}$, $e_{_{3\phi}}$ - эффективная относительная диэлектрическая проницаемость диэлектрика и эффективные размеры пластины.

4. Эффективная диэлектрическая проницаемость $\varepsilon_{3\phi}$ находится по формуле

$$\varepsilon_{\mathfrak{s}\phi} = \frac{C_{\mathfrak{s}\phi}^{\varepsilon}}{C_{\mathfrak{s}\phi}^{1}},$$

где $C_{_{3\phi}}^{\varepsilon}$ - эффективная ёмкость резонатора прямоугольного сечения с диэлектрической относительной проницаемостью подложки диэлектрика ε_r ,

 $C_{s\phi}^{1}$ - эффективная ёмкость резонатора прямоугольного сечения с диэлектрической относительной проницаемостью диэлектрика $\varepsilon_{r} = 1$.

В общем случае эффективная ёмкость равна $C_{3\phi}^{\varepsilon} = C_{0,3\phi}^{\varepsilon} + 2C_{k_{1,3\phi}}^{\varepsilon} + C_{k_{2,3\phi}}^{\varepsilon}$. Здесь $C_{0,3\phi}^{\varepsilon} = \frac{\varepsilon_r \cdot a \cdot e}{\delta \cdot \gamma \cdot h}$ - эффективная ёмкость плоского конденсатора,

 $C_{k_{1}_{2}\phi}^{s}$, $C_{k_{2}_{2}\phi}^{s}$ - эффективные краевые ёмкости, определяемые формулами:

$$C_{k1s\phi}^{\varepsilon} = \frac{\varepsilon}{2\delta} \left\{ \frac{120 \ \pi Z_{W}(a,h,1)}{Z_{W}^{2}(a,h,\varepsilon_{r})} - \frac{\varepsilon_{r}a}{h} \right\}, \ C_{k2s\phi}^{\varepsilon} = \frac{a}{2\gamma} \left\{ \frac{120 \ \pi Z_{W}(\varepsilon,h,1)}{Z_{W}^{2}(\varepsilon,h,\varepsilon_{r})} - \frac{\varepsilon_{r}\varepsilon}{h} \right\}.$$

Ёмкость $C_{3\phi}^{1}$ вычисляется по этим же формулам, но вместо ε_{r} в них надо подставить 1; δ и γ - символы Кроникера, причем $\delta = 1$ при n=0, $\delta = 2$ при $n \neq 0$; $\gamma = 1$ при m=0, $\gamma = 2$ при $m \neq 0$; $Z_{w}(a,h,\varepsilon_{r})$ - волновое сопротивлении НПЛ, у которой a - ширина полоски; h, ε_{r} - толщина и относительная диэлектрическая проницаемость подложки.

При вычислении $C_{k23\phi}^{\varepsilon}$ $Z_w(s,h,\varepsilon_r)$ - волновое сопротивлении НПЛ, у которой *в* -ширина полоски, h,ε_r - толщина и относительная диэлектрическая

проницаемость подложки. При отношении $\frac{a}{h} > 2$:

$$Z_{w}(a,h,\varepsilon_{r}) = \frac{120 \pi}{\sqrt{\varepsilon_{r}}} \left[\frac{a}{h} + \frac{2}{\pi} (\ln(17,08(a/2h+0.92)) \right]^{-1},$$

$$Z_{w}(\varepsilon,h,\varepsilon_{r}) = \frac{120 \pi}{\sqrt{\varepsilon_{r}}} \left[\frac{\varepsilon}{h} + \frac{2}{\pi} (\ln(17,08(\varepsilon/2h+0.92))\right]^{-1}.$$

Значения $a_{_{9\phi}}$ и $e_{_{9\phi}}$, входящих в формулу, определяющую $\lambda_{_{pes}}$, равны:

$$a_{3\phi} = \left[\frac{120 \ \pi \cdot a^{3}h}{Z_{W}(a,h,\varepsilon_{r})\sqrt{\varepsilon_{3\phi}}}\right]^{\frac{1}{4}}, \quad s_{3\phi} = \left[\frac{120 \ \pi \cdot s^{3}h}{Z_{W}(s,h,\varepsilon_{r})\sqrt{\varepsilon_{3\phi}}}\right]^{\frac{1}{4}}.$$

Пример расчёта:

Как и в случае круглого планарного резонатора, для оценки резонансной длины волны λ_0 при заданном отношении $\frac{a}{s}$, ε_r и h, рекомендуем воспользоваться табл.3.4 из [5]. В табл.3.4 резонансные длины волны λ_0 даны для колебаний E_{110} и E_{100} при различных ε_r , $\frac{a}{s}$ и ε_r .

Для нахождения резонансной длины волны λ_0 возьмём отношение $\frac{a}{s} = 1$. Тогда для подложки из ФАФ-4 ($\varepsilon_r = 2,3$) при s = 4 см оценка резонансной длины волны колебания E_{110} согласно [5] дает $\lambda_0 = 9,142$ см.

Расчетное значение λ_{pes} получим, подставляя численные значения $\frac{a}{s}$, ε_r , *h*, в выше приведенные соотношения. В результате получим:

$$1. Z_{w}(a, h, s_{\gamma}) = \frac{120 \pi}{\sqrt{s_{\gamma}}} \left[\frac{a}{h} + \frac{2}{\pi} (\ln(17 (a/2h + 0.92)) \right]^{-1} = \frac{120 \pi}{1.51} \left[20 + \frac{2}{\pi} (\ln(17, 08 (10 + 0.92)) \right]^{-1} = 3.43 \pi = 10.7 \text{ OM.}$$

$$2. Z_{w}(a, h, 1) = Z_{w}(a, h, s_{\gamma})\sqrt{s_{\gamma}} = 5.15 \pi \text{ OM.}$$

$$3. Z_{w}(a, h, 1) = Z_{w}(a, h, s_{\gamma})\sqrt{s_{\gamma}} = 5.15 \pi \text{ OM.}$$

$$4. Z_{w}(a, h, 1) = Z_{w}(a, h, s_{\gamma})\sqrt{s_{\gamma}} = 5.15 \pi \text{ OM.}$$

$$5. c_{0.9\phi}^{s} = \frac{s_{\gamma} \cdot a \cdot a}{\delta \cdot \gamma \cdot h} = \frac{2.3 \cdot 16 \cdot 10^{-4}}{4 \cdot 0.2 \cdot 10^{-2}} = 0.46 \text{ .}$$

$$6. c_{0.9\phi}^{1} = \frac{a \cdot a}{\delta \cdot \gamma \cdot h} = 0.2.$$

$$7. c_{k1.9\phi}^{s} = \frac{a}{2\delta} \left\{ \frac{120 \pi \cdot Z_{w}(a, h, 1)}{Z_{w}^{2}(a, h, s_{\gamma})} - \frac{s_{\gamma} a}{h} \right\} = \left\{ \frac{120 \pi \cdot 5.15 \pi}{3.43^{2} \cdot \pi^{2}} - 46 \right\} = 6.52 \text{ .}$$

$$8. c_{k2.9\phi}^{s} = c_{k1.9\phi}^{s} = 6.52.$$

$$9. c_{k1.9\phi}^{1} = \frac{a}{2\delta} \left\{ \frac{120 \pi}{Z_{w}(a, h, 1)} - \frac{a}{h} \right\} = \left\{ \frac{120 \pi}{5.15 \pi} - 20 \right\} = 3.5.$$

$$10. c_{k2.9\phi}^{1} = 3.5.$$

$$11. c_{s\phi}^{s} = c_{0.9\phi}^{s} + 2c_{k1.9\phi}^{s} + 2c_{k2.9\phi}^{s} = 0.46 + 4 \cdot 6.52 = 26.54 \text{ .}$$

$$12. c_{s\phi}^{1} = c_{0.9\phi}^{1} + 2c_{k1.9\phi}^{1} + 2c_{k2.9\phi}^{1} = 0.2 + 4 \cdot 3.5 = 14.2.$$

$$13. c_{s\phi} = \frac{c_{s\phi}^{s}}{2} = \frac{26.54}{2} = 1.87 \text{ .}$$

$$S_{\varphi}^{\phi} = C_{\varphi\phi}^{1} = 14,2$$
14.
$$a_{s\phi} = \left[\frac{120 \pi a^3 h}{Z_w(a,h,\varepsilon_r)\sqrt{\varepsilon_{s\phi}}}\right]^{\frac{1}{4}} = \left[\frac{120 \pi \cdot 4^3 \cdot 0,2}{3,43 \pi \sqrt{2},3}\right]^{\frac{1}{4}} = 4,7 \text{ CM}.$$

15. в "ф =4,7 см.

16.
$$\lambda_{pe3} = \frac{2\sqrt{\varepsilon_{g\phi}}}{\sqrt{\left(\frac{m}{a_{g\phi}}\right)^2 + \left(\frac{n}{a_{g\phi}}\right)^2}} = \frac{2 \cdot 1,37 \cdot 4,7}{1,41} = 9,13$$
 CM.

Вывод: результаты расчёта λ_{pes} дают хорошее совпадение с оценочным значением λ_0 .

Добротность планарного прямоугольного резонатора рассчитывается аналогично приведенному расчету в п.4.5. Структура поля показана на рис.31.

Рис.31 Структура поля колебания Е110.

Литература

- Вольман В.И., Пименов Ю. В. Техническая электродинамика. М.: Связь, 1971. -486 с.
- 2. Федоров Н.Н. Основы электродинамики. М.: Высшая школа, 1980. 399 с.
- Никольский В.В., Никольская Т.И. Электродинамика и распространение радиоволн. М.: Наука, 1989. 540 с.
- 4. Взятышев В.Ф. Диэлектрические волноводы.–М.: Советское радио, 1970.-216 с.
- Справочник по расчёту и конструированию СВЧ полосковых устройств. Под редакцией Вольмана В.И.. - М.: Радио и связь, 1982. - 328 с.
- 6. Ярив А., Юх П. Оптические волны в кристаллах. М.: Мир, 1987. 616 с.
- Гончаренко А.М. Редько В.П. Введение в интегральную оптику. Минск: Наука и техника, 1975. - 147 с.
- Гончаренко А. М., Карпенко В. А.Основы теории оптических волноводов. -М.: Едиториал УРСС, 2004. - 236 с.
- Петров Б.М. Электродинамика и распространение радиоволн.- М.: Горячая линия- Телеком, 2007.-558 с.
- Пименов Ю.В., Вольман В.И., Муравцов А.Д. Техническая электродинамика: Учебное пособие для вузов. - М.: Радио и связь, 2002. - 536 с.
- Гильденбург В.Б., Миллер М.А. Сборник задач по электродинамике: Учебное пособие для вузов. - М.: Физматлит, 2001. - 164 с.
- 12. Чернышев А.А. Кирпиченко Л. И. Работы студенческие учебные и выпускные

квалификационные. ОС ТУСУР 6.1-97: Общие требования и правила оформления: Система образовательных стандартов. -Томск: ТУСУР, 2003.-35с.

 Кураков В.А., Шарангович С.Н. Информатика. Методические указания по выполнению курсовой работы. – Томск: ТУСУР, 2006. -35с.

ТОМСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ СИСТЕМ УПРАВЛЕНИЯ И РАДИОЭЛЕКТРОНИКИ

Кафедра сверхвысокочастотной и квантовой радиотехники

Утверждаю: Зав. каф. СВЧ и КР _____Шарангович С.Н. «10» февраля 2007 г.

ЗАДАНИЕ № 1

на курсовую работу по дисциплине «Электродинамика и распространение радиоволн»

- Студенту гр.156 РТФ Сустретовой Анне Сергеевне
- 1. <u>Тема работы</u>: *Н-образный диэлектрический резонатор*
- 2. <u>Срок сдачи работы</u>: <u>30 мая 2007 г.</u>

3. <u>Технические требования к заданию</u>:

- 3.1. Резонансная длина волны $\lambda_{pes.} = 3 \cdot 10^{-2} M.$
- 3.2. Относительная диэлектрическая проницаемость материала. *ε*_r = 2.4.
- 3.3. Тангенс угла диэлектрических потерь $.tg \Delta = 10^{-3}$.
- 3.4. Удельная проводимость металла $\sigma = 5.7 \cdot 10^{-7} C_M / M$.
- 3.5. *Тип колебания H*₁₀₁

4. Содержание пояснительной записки:

4.1. Вывод уравнений, определяющих структуру электромагнитного поля в резонаторе, и их решение.

4.2. Расчёт геометрических размеров резонатора

4.3. Расчёт продольного и поперечных волновых чисел.

4.4. Расчет собственной добротности резонатора.

5. Графический материал:

5.1.Графическое изображение объёмного резонатора

5.2.Эпюры для составляющих поля и структура электромагнитного поля колебания H101

6. Рекомендуемая литература:

6.1 Никольский В.В., Никольская Электродинамика и распространение радиоволн. - М: Высшая школа, 1989, 540 с..

6.2 Федоров Н.Н. Основы электродинамики. – М.: Высшая школа, 1980, 399 с.

6. Дата выдачи зания: 10 февраля 2007 г.

Руководитель:	ЕВ. Падусрва
Задание принял	
к исполнению:	А.С. Сустретова

Приложение Б

Тема	N⁰	Диапазон,	Отн. диэл.	Тип
	вариа	ГГц	прон-ть	колеб-я
	нта	$f_{\min} - f_{\max}$	\mathcal{E}_{r}	
	1	2.8-3.2	6	$H_{\rm 01~ \rm y \ddot{\rm e} \rm T}$
	2	3.2-4.8	4	$E_{\rm 01 HEY \ddot{E}T}$
	3	4.8-5.2	3	$E_{\rm 02\ Heyët}$
2. волновод металлической подложке	4	5.2-5.8	5	$E_{\rm 01Hey \ddot{e}t}$
	5	3.4- 4.4	3	$H_{014\ddot{\text{ET}}}$
	6	6-7.5	4	$E_{\rm 02HE 4 ET}$
3. Круглый волновод	7	29-30	2.4	E ₀₁
	8	10-12	4	H_{01}
	9	3.2-3.8	6	E_{02}
4. Диэлектрический Н-образный прямоугольный резонатор	10	3	1.6	$H_{_{011\rm H\ddot{\rm E}T}}$
	11	10	3	$E_{\rm 011 \rm y \ddot{\rm e} \rm T}$
	12	8	2.4	$E_{\rm 021 \rm Y \ddot{\rm E} T}$
5. Диэлектрический Н-образный цилиндрический резонатор	13	3	1.6	$H_{\scriptscriptstyle 011}$
	14	10	3	E ₀₁₁
6. Планарный прямоугольный резонатор	15	10	4	$E_{_{110}}$
	16	3	2.5	E ₂₁₀
	17	5	7	$E_{_{120}}$
7. Планарный круглый резонатор	18	4	4	$E_{_{110}}$
	19	2.5	2.5	$E_{_{210}}$
	20	7	7	$E_{_{120}}$
 8. Несимметричный диэлектрический волновод (Планарный интегрально- оптический волновод) 			$\varepsilon_{r1} = 1$	
	21	$\lambda = 0,63$ мкм	$\varepsilon_{r2} = 3,5$	H_{o1}
			$\varepsilon_{r3} = 3$	
			$\mathcal{E}_{r1} = 1$	
	21	$\lambda = 0,63$ мкм	$\varepsilon_{r_2} = 3,5$	E_{01}
			$\varepsilon_{r3} = 3$	

Таблица Б.1 Задания для курсовых работ

Список основных обозначений

- *Е* вектор напряженности электрического поля [B/м].
- \overline{H} вектор напряженности магнитного поля [A/м].
- (q1, q2, q3) координаты в обобщённой системе координат.

 $\vec{e}_1, \vec{e}_2, \vec{e}_3$ - единичные векторы соответствующие координатам $q_1, q_2, q_3, E_{q1}, E_{q2}, E_{q3}$ и H_{q1}, H_{q2}, H_{q3} - проекции векторов \vec{E} и \vec{H} на $q_1, q_2, q_{3,.}$ h_1, h_2, h_3 - коэффициенты Ламе.

 $\lambda = c_0 / f$ - длина волны свободного пространства [м].

 $c_{0} = 3 \times 10^{8}$ м/с – скорость света в воздушном пространстве.

- л длина волны в волноводе [м].
- *f* заданная частота [Гц].
- *k*₀ постоянная распространения в воздухе.
- *k* постоянная распространения в диэлектрике.
- β постоянная распространения волновода.
- *χ* поперечная постоянная распространения.

$$\varepsilon_{0} = \frac{1}{36 \pi 10^{-9}} \frac{\Phi}{M}$$
 - диэлектрическая проницаемость воздуха.
 $\mu_{0} = 4 \pi \cdot 10^{-7} \frac{\Gamma_{H}}{M}$ - магнитная проницаемость воздуха.

μ_r – относительная магнитная проницаемость диэлектрика.

- *є*_{*r*} относительная диэлектрическая проницаемость диэлектрика.
- *µ*_{*a*} абсолютная магнитная проницаемость диэлектрика.
- *є*_{*a*} абсолютная диэлектрическая проницаемость диэлектрика.
- *v*_{*d*} фазовая скорость [м/с].
- *v*_{гр} групповая скорость [м/с]..
- $\overline{\Pi}$ вектор Пойнтинга [Bт/м²].
- *Р* мощность, канализируемая по волноводу [Вт].
- *Q* добротность, безразмерная величина.

- σ удельная проводимость [См/м].
- δ_{d} плотность тока проводимости в диэлектрике [A/м²].
- $\delta_{_{M}}$ плотность тока проводимости в металле [A/м²].
- δ глубина проникновения поля в металл [м].

Учебное издание

Е.В. Падусова, С.Н. Шарангович

РАСЧЁТ ДИЭЛЕКТРИЧЕСКИХ ВОЛНОВОДОВ И ОБЪЁМНЫХ РЕЗОНАТОРОВ.

Учебное пособие по дисциплинам "Электромагнитные поля и волны" и «Электродинамика и распространение радиоволн».

Формат 60х84 1/16. Усл. печ. л. 5,35. Тираж 30 экз. Заказ 1330 Отпечатано в Томском государственном университете систем управления и радиоэлектроники. 634050, Томск, пр. Ленина, 40. Тел. (3822) 533018.