Министерство образования и науки Российской Федерации Федеральное государственное бюджетное образовательное учреждение

высшего профессионального образования «Томский государственный университет систем управления и радиоэлектроники»

Кафедра электронных приборов

НЕЛИНЕЙНАЯ ОПТИКА

Методические указания к практическим занятиям и по самостоятельной работе для студентов направления 210100 «Электроника и наноэлектроника»

Шандаров, Станислав Михайлович

Нелинейная оптика: методические указания к практическим занятиям и по самостоятельной работе для студентов направления «Электроника и наноэлектроника» / С.М. Шандаров; Министерство образования и науки Российской Федерации, Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования Томский государственный университет систем управления и радиоэлектроники, Кафедра электронных приборов. — Томск: ТУСУР, 2014. — 33 с.

Целью преподавания дисциплины «Нелинейная оптика» является формирование у бакалавров понимания теоретических и физических основ современной нелинейной оптики для последующего использования этих знаний при разработке, эксплуатации, исследовании физических свойств и технических характеристик элементов и устройств когерентной и нелинейной оптики, квантовой и оптической электроники.

В ходе выполнения работы у студентов направления 210100 формируются:

- способность представлять адекватную современному уровню знаний научную картину мира на основе знания основных положений, законов и методов естественных наук и математики (ПК-1);
- готовность учитывать современные тенденции развития электроники, измерительной и вычислительной техники, информационных технологий в своей профессиональной деятельности (ПК-3);
- способностью собирать, анализировать и систематизировать отечественную и зарубежную научно-техническую информацию по тематике исследования в области электроники и наноэлектроники (ПК-18);
- способность строить простейшие физические и математические модели приборов, схем, устройств и установок электроники и наноэлектроники различного функционального назначения, а также использовать стандартные программные средства их компьютерного моделирования (ПК-19).

Предназначено для студентов очной, очно-заочной и заочной форм, обучающихся по направлению «Электроника и наноэлектроника», по курсу «Нелинейная оптика».

Министерство образования и науки Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования «Томский государственный университет систем управления и радиоэлектроники»

Кафедра электронных приборов

УΊ	TBEP	ЖДАЮ
3a	в.каф	едрой ЭП
		С.М. Шандаров
~ _	>>	2014 г.

НЕЛИНЕЙНАЯ ОПТИКА

Методические указания к практическим занятиям и по самостоятельной работе для студентов направления 210100 «Электроника и наноэлектроника »

Разр	работ	гчик
док	г. фи	змат. наук, проф.
каф	. ЭΠ	
		С.М. Шандаров
~	>>>	2014 г.

Содержание

Введение	6
Раздел 1 Введение	6
1.1 Содержание раздела	6
1.2 Методические указания по изучению раздела	6
Раздел 2 Общие вопросы нелинейной оптики	6
2.1 Содержание раздела	6
2.2 Методические указания по изучению раздела	6
2.3 Вопросы для самопроверки	7
Раздел 3 Преобразование частоты лазерного излучения при	
взаимодействии волн в однородных нелинейных средах	7
3.1 Содержание раздела	7
3.2 Методические указания по изучению раздела	
3.3 Вопросы для самопроверки	8
Раздел 4 Преобразование частоты при квазисинхронном взаимодействии	9
4.1 Содержание раздела	9
4.2 Методические указания по изучению раздела	9
4.3 Вопросы для самопроверки	9
Раздел 5 Вынужденное рассеяние света	. 10
5.1 Содержание раздела	. 10
5.2 Методические указания по изучению раздела	
5.3 Вопросы для самопроверки	. 10
Раздел 6 Нелинейные явления в оптических волноводах	. 11
6.1 Содержание раздела	. 11
6.2 Методические указания по изучению раздела	
6.3 Вопросы для самопроверки	. 11
Раздел 7 Самофокусировка и самодефокусировка световых пучков	. 12
7.1 Содержание раздела	. 12
7.2 Методические указания по изучению раздела	. 12
7.3 Вопросы для самопроверки	. 12
Раздел 8 Обращение волнового фронта и другие нелинейные явления	. 13
8.1 Содержание раздела	. 13
8.2 Методические указания по изучению раздела	
8.3 Вопросы для самопроверки	. 13
9 Лабораторные работы	. 14
10 Темы для самостоятельного изучения	. 15

11 Темы практических занятий	. 15
12.1 Нелинейная поляризация среды при мгновенном отклике	. 16
12.1.2 Варианты задач для самоподготовки	
Преобразование частоты при квазисинхронном взаимодействии	. 18
12.3 Распространение световых пучков в нелинейной среде. Самофокусировка и самодефокусировка световых пучков.	
Пространственные оптические солитоны	. 21
13 Подготовка к контрольной работе	
13.1 Теоретические вопросы для письменной контрольной работы по теме «Общие вопросы нелинейной оптики»	. 23
13.2 Теоретические вопросы для письменной контрольной работы по темам «Преобразование частоты лазерного излучения при взаимодействии волн в однородных нелинейных средах.	
Преобразование частоты при квазисинхронном взаимодействии»	. 25
световых пучков»	. 26
Заключение	. 28
Рекомендуемая литература	. 30

Введение

Целью преподавания дисциплины «Нелинейная оптика» является формирование у бакалавров понимания теоретических и физических основ современной нелинейной оптики для последующего использования этих знаний при разработке, эксплуатации, исследовании физических свойств и технических характеристик элементов и устройств когерентной и нелинейной оптики, квантовой и оптической электроники.

Задачей дисциплины «Нелинейная оптика» является развитие у студентов навыков анализа математических моделей и проведения научных экспериментов с применением элементов и устройств нелинейной оптики, квантовой и оптической электроники и наноэлектроники.

Изучение данной дисциплины базируется на знаниях, полученных студентами по дисциплинам:

- 1. «Физика» (электричество и магнетизм, колебания и волны, оптика, квантовая физика).
- 2. «Физика конденсированного состояния» (зонная теория твердых тел, колебания решетки, фононы).
- 3. «Материалы электронной техники» (физические процессы в диэлектриках, активные диэлектрики).

Раздел 1 Введение

1.1 Содержание раздела

Цели и задачи, предмет и содержание курса. Современное состояние и научная проблематика нелинейной оптики.

1.2 Методические указания по изучению раздела

При изучении раздела «Введение» следует обратить внимание на основные понятия и определения, на особенности нелинейной и волноводной оптики, квантовой и оптической электроники.

Раздел 2 Общие вопросы нелинейной оптики 2.1 Содержание раздела

Нелинейная поляризация среды при мгновенном отклике. Общий подход к описанию нелинейных эффектов второго порядка. Электромагнитная теория нелинейных эффектов второго порядка.

2.2 Методические указания по изучению раздела

При изучении раздела «Общие вопросы нелинейной оптики» следует обратить внимание на подходы к описанию нелинейной поляризации

среды и нелинейных эффектов второго порядка и на условия синхронизма.

2.3 Вопросы для самопроверки

- 1. Запишите разложение электрической поляризации среды по степеням напряженности электрического поля. Поясните все обозначения.
- 2. Как найти нелинейную электрическую поляризацию среды при воздействии на неё двух монохроматических полей с различными частотами? На каких частотах она будет проявляться при учете нелинейных явлений второго порядка?
- 3. Запишите матрицу коэффициентов нелинейной оптической восприимчивости второго порядка для кристаллов симметрии 3m.
- 4. Запишите волновое уравнение для среды с учетом наводимой в ней световыми волнами нелинейной электрической поляризации. Поясните все обозначения.
- 5. Запишите математическое выражение для нелинейной электрической поляризации в среде с квадратичной нелинейностью, при взаимодействии в ней двух плоских монохроматических волн с разными частотами. Поясните все обозначения.
- 6. Запишите математическое выражение для нелинейной электрической поляризации в среде с квадратичной нелинейностью, при взаимодействии в ней двух плоских монохроматических волн с одинаковыми частотами. Поясните все обозначения.
- 7. Запишите условия синхронизма для генерации волны суммарной частоты в нелинейной среде. Поясните их физический смысл; расшифруйте все обозначения.
- 8. Запишите условия синхронизма для генерации волны на разностной частоте в нелинейной среде. Как называется эффект, соответствующий такому квадратичному взаимодействию при одинаковых частотах взаимодействующих волн?

Раздел 3 Преобразование частоты лазерного излучения при взаимодействии волн в однородных нелинейных средах

3.1 Содержание раздела

Генерация суммарной коллинеарном волны частоты при взаимодействии в ниобате лития. Генерация второй гармоники. Фазовый синхронизм при генерации второй гармоники. Генерация второй гармоники при наличии обратного воздействия. Параметрическое усиление. Параметрическая генерация.

3.2 Методические указания по изучению раздела

При изучении раздела «Преобразование частоты лазерного излучения при взаимодействии волн в однородных нелинейных средах» следует обратить внимание на подход к анализу генерации волны суммарной частоты в ниобате лития и вывод уравнений связанных волн для этого случая, на эксперимент по первому наблюдению генерации второй гармоники и роль фазового синхронизма, на подход к учету обратного воздействия при трехволновых взаимодействиях.

- 1. Опишите постановку задачи при анализе генерации волн суммарной частоты в ниобате лития.
- 2. Опишите методику вывода укороченных уравнений при анализе генерации волн суммарной частоты в ниобате лития.
- 3. Запишите систему уравнений связанных волн, описывающую генерацию волн суммарной частоты в ниобате лития. Поясните все обозначения.
- 4. Опишите эксперимент по первому наблюдению генерации второй гармоники в кристалле кварца.
- 5. Запишите систему уравнений связанных волн, описывающую генерацию второй гармоники в ниобате лития. Поясните все обозначения.
- 6. Поясните суть приближения неистощаемой накачки и выведите выражение для амплитуды светового поля при генерации второй гармоники в в ниобате лития. Поясните все обозначения.
- 7. Запишите выражение для интенсивности волны второй гармоники в ниобате лития в приближении неистощаемой накачки. Поясните все обозначения.
- 8. Поясните, как можно реализовать фазовый синхронизм при генерации второй гармоники в оптически отрицательном одноосном кристалле.
- 9. Каков физический смысл длины когерентности при генерации второй оптической гармоники? Как она выражается математически при реализации генерации второй гармоники в оптически отрицательном одноосном кристалле?
- 10. Поясните подход к выводу первого интеграла уравнений связанных волн, описывающих генерацию второй гармоники в условиях точного фазового синхронизма.
- 11. Запишите выражение для интенсивности второй гармоники через входную интенсивность волны накачки, с учетом её истощения, в условиях точного фазового синхронизма. Поясните все обозначения.
- 12. Запишите выражение для комплексных амплитуд сигнальной и холостой волн при параметрическом усилении в кристалле ниобата лития в приближении неистощаемой накачки. Поясните все обозначения.

- 13. Запишите математические выражения для первых интегралов уравнений связанных волн, описывающих параметрическое усиление в кристалле ниобата лития, в условиях точного фазового синхронизма. Поясните все обозначения.
- 14. Запишите соотношения Мэнли-Роу для процесса параметрического взаимодействия трех световых волн. Дайте физическую трактовку этим соотношениям.
- 15. Нарисуйте схему параметрического генератора света и поясните физические явления, которые в нем используются.
- 16. Опишите подход к выводу пороговой амплитуды световой волны для случая её параметрической генерации в кристалле ниобата лития.

Раздел 4 Преобразование частоты при квазисинхронном взаимодействии

4.1 Содержание раздела

Квазисинхронное взаимодействие в периодических нелинейных структурах. Периодические доменные структуры в сегнетоэлектриках. Методы формирования индуцированных доменов и регулярных доменных структур.

4.2 Методические указания по изучению раздела

«Преобразование При изучении раздела частоты при квазисинхронном взаимодействии» следует обратить внимание особенности генерации второй гармоники и других нелинейных явлений в условиях фазового квазисинхронизма, на использование доменных структур в сегнетоэлектриках для реализации фазового квазисинхронизма и на методы формирования доменных структур с необходимыми характеристиками.

- 1. Как можно реализовать фазовый квазисинхронизм?
- 2. Каковы преимущества фазового квазисинхронизма перед обычным фазовым синхронизмом?
- 3. Что из себя представляют периодические доменные структуры в сегнетоэлектрических кристаллах? Какие физические свойства кристаллов «модулируются» в таких структурах?
- 4. Какие технологические методы используются для формирования доменных структур в сегнетоэлектрических кристаллах?
- 5. Нарисуйте зависимость для модуля амплитуды второй гармоники и для её интенсивности от длины взаимодействия, в случае точного выполнения условия фазового синхронизма во всем нелинейном

кристалле.

- 6. Нарисуйте зависимость для модуля амплитуды второй гармоники и для её интенсивности от длины взаимодействия, в случае длины когерентности, значительно меньшей, чем толщина нелинейного кристалла.
- 7. Нарисуйте зависимость для модуля амплитуды второй гармоники и для её интенсивности от длины взаимодействия, в случае реализации условий фазового квазисинхронизма.

Раздел 5 Вынужденное рассеяние света **5.1** Содержание раздела

Вынужденное комбинационное рассеяние. Вынужденное рассеяние Мандельштама-Бриллюэна.

5.2 Методические указания по изучению раздела

При изучении раздела «Вынужденное рассеяние света» следует обратить внимание на физические явления, вызывающие вынужденное рассеяние, и на спектральные характеристики рассеянного излучения.

- 1. Какие законы сохранения имеют место при вынужденном комбинационном рассеянии света?
- 2. Каков спектр выходного излучения при вынужденном комбинационном рассеянии света? Чем стоксовы спектральные компоненты отличаются от антистоксовых?
- 3. Запишите математическое выражение для нелинейной электрической поляризации среды при вынужденном комбинационном рассеянии света. Поясните все обозначения.
- 4. Запишите уравнение, описывающее изменение амплитуды напряженности светового поля стоксовой волны, с учетом приближений неистощаемой накачки и слабой эффективности спонтанного комбинационного рассеяния. Поясните все обозначения.
- 5. Как можно интерпретировать комбинационное рассеяние высших порядков?
- 6. Каковы применения вынужденного комбинационного рассеяния света?
- 7. С возбуждением каких волновых процессов связано вынужденное рассеяние Мандельштама-Бриллюэна?
- 8. Запишите математическое выражение для нелинейной электрической поляризации среды при вынужденном рассеянии Мандельштама-Бриллюэна. Поясните все обозначения.

- 9. Запишите систему уравнений связанных волн, описывающую вынужденное рассеяние Мандельштама-Бриллюэна. Поясните все обозначения.
- 10. Опишите подход к получению пороговых условий для вынужденного рассеяния Мандельштама-Бриллюэна из соответствующей системы уравнений связанных волн.

Раздел 6 Нелинейные явления в оптических волноводах 6.1 Содержание раздела

Волноводная генерация второй гармоники. Генерация гармоник на периодических доменных структурах в оптических волноводах.

6.2 Методические указания по изучению раздела

При изучении раздела «Нелинейные явления В оптических волноводах» следует обратить внимание на богатый модовый спектр волноводов, обеспечивающий разнообразие оптических достижения фазового синхронизма; на неоднородность световых полей которую ОНЖОМ учесть при описании нелинейных ЭТИХ взаимодействий с помощью интегралов перекрытия.

- 1. Какие волноводные структуры могут быть использованы для реализации эффективного преобразования спектра лазерного излучения?
- 2. Опишите подходы к выводу уравнений связанных волн, описывающих волноводную генерацию волн с суммарной или разностной частотой.
 - 3. Что такое интеграл перекрытия, каков его физический смысл?
- 4. Как записать условия фазового синхронизма для волноводного трехволнового взаимодействия?
- 5. Какие ориентации подложки из ниобата лития можно использовать для волноводной квазисинхронной генерации оптических гармоник?
- 6. Как определить пространственный период доменных структур, необходимый для реализации фазового синхронизма при нелинейных взаимодействиях в оптических волноводах?
- 7. Как реализуется генерация второй гармоники волноводным пучком накачки по механизму Вавилова-Черенкова?

Раздел 7 Самофокусировка и самодефокусировка световых пучков 7.1 Содержание раздела

Распространение световых пучков и световых импульсов в нелинейной среде. Самофокусировка и самодефокусировка световых пучков. Фазовая самомодуляция и компрессия световых импульсов. Временные оптические солитоны. Пространственные оптические солитоны. Пространственных кристаллах и их взаимодействие.

7.2 Методические указания по изучению раздела

При изучении раздела «Самофокусировка и самодефокусировка световых пучков» следует обратить внимание на физические механизмы, приводящие к явлениям самовоздействия световых пучков и световых импульсов и на подходы к математическому описанию эффектов самовоздействия.

- 1. Опишите подход, позволяющий вывести (2+1)-мерное нелинейное уравнение Шрёдингера.
- 2. Запишите (1+1)-мерное нелинейное уравнение Шрёдингера, описывающее светлые пространственные солитоны.
- 3. Опишите подход, позволяющий получить решение (1+1)-мерного нелинейного уравнения Шрёдингера в виде светлого пространственного солитона.
- 4. Как связана требуемая пиковая интенсивность светлого (1+1)-мерного пространственного солитона с его шириной? Дайте физическую трактовку наблюдаемой связи.
- 5. Запишите (1+1)-мерное нелинейное уравнение Шрёдингера, описывающее распространение световых импульсов в волоконных световодах. Поясните физический смысл каждого члена, входящего в данное уравнение.
- 6. Запишите (3+1)-мерное обобщенное нелинейное уравнение Шрёдингера. Какие явления могут быть с помощью него описаны?
- 7. Запишите солитонное уравнение для среды с керровской нелинейностью, описывающее распространение светового пучка, испытывающего дифракцию вдоль одной поперечной координаты. В каком случае это уравнение будет описывать светлые пространственные солитоны?
- 8. Запишите решение солитонного уравнения для керровской среды в виде одномерного в поперечном направлении темного пространственного солитона.

- 9. Поясните физическую суть эффектов фазовой самомодуляции и компрессии световых импульсов.
- 10. Запишите нелинейное уравнение Шрёдингера, описывающее распространение светового пучка, испытывающего дифракцию вдоль одной поперечной координаты, для фоторефрактивной среды с дрейфовым механизмом нелинейного отклика. Каким образом можно в этом случае задавать нелинейность и изменять её вид, с фокусирующей на дефокусирующую?

Раздел 8 Обращение волнового фронта и другие нелинейные явления

8.1 Содержание раздела

Динамическая голография и обращение волнового фронта. Способы обращения волнового фронта и применения. Оптическая бистабильность. Нелинейный интерферометр Фабри-Перо.

8.2 Методические указания по изучению раздела

При изучении раздела «Обращение волнового фронта и другие нелинейные явления» следует обратить внимание на физическую суть явлений, обеспечивающих обращение волнового фронта световых пучков, а также реализацию оптической бистабильности.

- 1. Чем явление обращения волнового фронта светового пучка отличается от его обычного отражения?
- 2. Нарисуйте схему взаимодействия пучков на динамической голограмме, используемой для обращения волнового фронта световых пучков.
- 3. Нарисуйте схему, позволяющее реализовать самообращение волнового фронта световых пучков, на основе использования динамических голограмм в фоторефрактивных кристаллах.
- 4. Почему для обращения волнового фронта световых пучков на основе четырехволнового взаимодействия не требуется использование специальных мер по выполнению условий фазового синхронизма?
- 5. Какие условия необходимы для реализации бистабильности в оптической системе?
- 6. Какие физические явления приводят к оптической бистабильности в нелинейном интерферометре Фабри-Перо?
 - 7. Что такое гибридная бистабильность в оптической системе?

9 Лабораторные работы

В процессе выполнения лабораторных занятий студент не только закрепляет теоретические знания, но и пополняет их. Вся работа при выполнении лабораторной работы разбивается на следующие этапы: вступительный, проведение эксперимента и (или) численных расчетов и обработка результатов.

В процессе домашней подготовки студент проверяет качество усвоения проработанного материала по вопросам для самоконтроля, относящимся к изучаемой теме. Без проведения такой предварительной подготовки к лабораторной работе студент не допускается к выполнению эксперимента.

Помимо домашней работы, студенты готовятся к выполнению эксперимента также на рабочем месте: они знакомятся с установкой, уточняют порядок выполнения работы, распределяют рабочие функции между членами бригады. В ходе аудиторной подготовки преподаватель путем собеседования выявляет и оценивает степень готовности каждого студента к проведению эксперимента и (или) численных расчетов, как и знание им теоретического материала. Студенты, не подготовленные к выполнению работы или не представившие отчеты по предыдущей работе, к выполнению новой работы могут быть не допущены и все отведенное время для лабораторной работы должны находиться в лаборатории, изучать по рекомендованной литературе тот материал, с которым они не познакомились дома. К выполнению работы они могут быть допущены только после собеседования и в часы сверх расписания, по договоренности Bce пропущенные лабораторные преподавателем. работы уважительным или неуважительным причинам могут быть выполнены в конце семестра на дополнительных занятиях.

Второй этап работы – проведение эксперимента и (или) численных расчетов в лаборатории. На этом этапе очень важно, чтобы студент выполнил самостоятельно и грамотно необходимые измерения и наблюдения, а также, если это определено заданием, численные расчеты, укладываясь в отведенное для этого время. При организации своей работы для проведения эксперимента и (или) численных расчетов целесообразно исходить из рекомендаций, изложенных в руководствах для выполняемой лабораторной работы.

На последнем этапе работы студент производит обработку данных измерений и расчетов и анализ полученных результатов.

Отчет студента по работе должен быть индивидуальным. Анализ результатов является важной частью отчета.

Ниже приведено название двух лабораторных работ, одна из которых состоит из двух частей.

- 1. Амплитудная электрооптическая модуляция лазерного излучения.
- 2. Фазовый синхронизм при генерации второй гармоники лазерного излучения в одноосных кристаллах.

- 2 а. Часть 1. Исследование кривых углового синхронизма.
- 2 б. Часть 2. Исследование кривых температурного синхронизма.

10 Темы для самостоятельного изучения

Темы для самостоятельного изучения обобщают приобретенные знания и позволяют студенту самостоятельно решать задачи. Тематика самостоятельных работ предполагает углубленное изучение ниже предложенных тем.

- 1. Методы формирования индуцированных доменов
- 2. Вынужденное рассеяние Мандельштама-Бриллюэна
- 3. Генерация гармоник на периодических доменных структурах в оптических волноводах
 - 4. Распространение световых импульсов в нелинейной среде
 - 5. Компрессия световых импульсов
 - 6. Временные оптические солитоны
- 7. Взаимодействие пространственных солитонов в фоторефрактивных кристаллах
 - 8. Применения обращения волнового фронта
 - 9. Нелинейный интерферометр Фабри-Перо

Студент защищает реферат по одной выбранной им теме.

11 Темы практических занятий

На практических занятиях студенты рассматривают варианты задач. Целью занятий является углубление понимания процессов, происходящих в системах и устройствах когерентной и нелинейной оптики. Уделяется внимание таким вопросам, как нелинейная поляризация среды, преобразование частоты лазерного излучения, распространение световых пучков в нелинейной среде, оптические пространственные солитоны.

Перед практическими занятиями студент должен повторить лекционный материал, ответив на вопросы для самоконтроля по необходимой теме, а также просмотреть рекомендации по решению типичных задач этой темы. Темы практических занятий приведены ниже:

- 1. Нелинейная поляризация среды при мгновенном отклике.
- 2. Преобразование частоты лазерного излучения при взаимодействии волн в однородных нелинейных средах. Преобразование частоты при квазисинхронном взаимодействии.
- 3. Распространение световых пучков в нелинейной среде. Самофокусировка и самодефокусировка световых пучков. Пространственные оптические солитоны.

12.1 Нелинейная поляризация среды при мгновенном отклике

12.1.1 Примеры решения задач

Задача 1. Для волны накачки с частотой ω , имеющей обыкновенную поляризацию и распространяющейся под углом θ к оси z в плоскости XZ кристалла ниобата лития, найдите все компоненты вектора наведенной электрической поляризации на частоте 2ω .

Решение. Напряженность электрического поля световой волны накачки с обыкновенной поляризацией в этом случае имеет вид

$$E_y^{\omega}(x,z,t) = \frac{1}{2} \dot{L}_{my} - \frac{1}{2} \left[\omega t - k_0 n_o^{\omega} \left(x \sin \theta + z \cos \theta \right) \right] + \text{k.c.},$$

а вклад в наведенную электрическую поляризацию на частоте 2ω в ниобате лития дают только компоненты тензора нелинейной оптической восприимчивости $d_{yyy}=d_{22}$ и $d_{zyy}=d_{31}$. Подставляя $E_y^{\omega}(x,z,t)$ в общее выражение для наведенной электрической поляризации

$$P_i = \varepsilon_0 \left(\chi_{ij} E_j + 2d_{ijk} E_j E_k + 4\chi_{ijkl} E_j E_k E_l + \ldots \right),$$

в результате получаем

$$\begin{split} &P_{x}^{2\omega} = 0\,, \\ &P_{y}^{2\omega} = \varepsilon_{0}d_{22}\left\{\frac{1}{2}\left(\dot{L}_{my}\right) - c_{r}\left(i\left[2\omega t - 2k_{0}n_{o}^{\omega}\left(x\sin\theta + z\cos\theta\right)\right]\right\} + \text{K.c.}\right\}, \\ &P_{z}^{2\omega} = \varepsilon_{0}d_{31}\left\{\frac{1}{2}\left(\dot{L}_{my}\right) - c_{r}\left(i\left[2\omega t - 2k_{0}n_{o}^{\omega}\left(x\sin\theta + z\cos\theta\right)\right]\right\} + \text{K.c.}\right\}. \end{split}$$

Ответ:

$$\begin{split} &P_{x}^{2\omega} = 0\,, \\ &P_{y}^{2\omega} = \varepsilon_{0}d_{22}\left\{\frac{1}{2}\left(\dot{L}_{my}\right) - ... \left[i\left[2\omega t - 2k_{0}n_{o}^{\omega}\left(x\sin\theta + z\cos\theta\right)\right]\right\} + \text{K.c.}\right\}, \\ &P_{z}^{2\omega} = \varepsilon_{0}d_{31}\left\{\frac{1}{2}\left(\dot{L}_{my}\right) - ... \left[i\left[2\omega t - 2k_{0}n_{o}^{\omega}\left(x\sin\theta + z\cos\theta\right)\right]\right\} + \text{K.c.}\right\}. \end{split}$$

12.1.2 Варианты задач для самоподготовки

- 1. Для волны накачки с частотой ω , имеющей обыкновенную поляризацию и распространяющейся под углом θ к оси z в плоскости YZ кристалла ниобата лития, найдите все компоненты вектора наведенной электрической поляризации на частоте 2ω .
- **2.** Для волны накачки с частотой ω , имеющей обыкновенную поляризацию и распространяющейся вдоль оси x кристалла ниобата лития, найдите все компоненты вектора наведенной электрической поляризации на частоте 2ω .

- 3. Для волны накачки с частотой ω , имеющей обыкновенную поляризацию и распространяющейся вдоль оси y кристалла ниобата лития, найдите все компоненты вектора наведенной электрической поляризации на частоте 2ω .
- **4.** Для волны накачки с частотой ω , имеющей необыкновенную поляризацию и распространяющейся вдоль оси x кристалла ниобата лития, найдите все компоненты вектора наведенной электрической поляризации на частоте 2ω .
- 5. Для волны накачки с частотой ω , имеющей необыкновенную поляризацию и распространяющейся вдоль оси y кристалла ниобата лития, найдите все компоненты вектора наведенной электрической поляризации на частоте 2ω .
- **6.** Для волны накачки с частотой ω , имеющей обыкновенную поляризацию и распространяющейся вдоль оси *у* кристалла нитрида галлия (класс симметрии 6*mm*), найдите все компоненты вектора наведенной электрической поляризации на частоте 2ω .
- 7. Для волны накачки с частотой ω , имеющей необыкновенную поляризацию и распространяющейся вдоль оси x кристалла нитрида галлия (класс симметрии 6mm), найдите все компоненты вектора наведенной электрической поляризации на частоте 2ω .
- **8.** Для волн с частотами ω_1 и ω_2 , имеющих необыкновенную поляризацию и распространяющихся вдоль оси x кристалла ниобата лития, найдите все компоненты вектора наведенной электрической поляризации на суммарной частоте.
- **9.** Для волн с частотами ω_1 и ω_2 , имеющих обыкновенную поляризацию и распространяющихся вдоль оси *у* кристалла ниобата лития, найдите все компоненты вектора наведенной электрической поляризации на разностной частоте.
- **10.** Для волны накачки с частотой ω , имеющей обыкновенную поляризацию и распространяющейся под углом 45° к оси x кристалла дигидрофосфата калия (класс симметрии $\overline{42m}$), найдите все компоненты вектора наведенной электрической поляризации на частоте 2ω .

12.2 Преобразование частоты лазерного излучения при взаимодействии волн в однородных нелинейных средах. Преобразование частоты при квазисинхронном взаимодействии

12.2.1 Примеры решения задач

Задача 1. Выведите уравнение для эволюции амплитуды светового поля волны второй гармоники, имеющей необыкновенную поляризацию, при её генерации обыкновенно поляризованной волной накачки с частотой ω , распространяющейся вдоль оси x в кристалле ниобата лития, с использованием метода медленно меняющихся амплитуд.

Решение. Запишем выражения для полей взаимодействующих волн:

$$E_{y}^{\omega}(x,t) = \frac{1}{2} \dot{L}_{my}, \dots, \dots, \left[i \left(\omega t - k_{0} n_{o}^{\omega} x \right) \right] + \text{K.c.},$$

$$E_{z}^{2\omega}(x,t) = \frac{1}{2} \dot{L}_{mz}, \dots, \dots, \left[i \left(2\omega t - 2k_{0} n_{e}^{2\omega} x \right) \right] + \text{K.c.},$$

где $k_0 = \omega/c$. Далее находим компоненту наведенной электрической поляризации $P_z^{2\omega}$, которая дает вклад в генерацию второй гармоники в рассматриваемом случае, как

$$P_z^{2\omega}(x,t) = \varepsilon_0 d_{31} \left\{ \frac{1}{2} \left[\dot{L}_{my} \dots, \dot{L} \right] \exp \left[i \left(2\omega t - 2k_0 n_o^{\omega} x \right) \right] + \text{K.c.} \right\}.$$

Подставляя далее $E_z^{2\omega}(x,t)$ и $P_z^{2\omega}(x,t)$ в волновое уравнение

$$\nabla^2 \mathbf{E} - \mu_0 \frac{\partial^2 (\mathbf{\epsilon} \cdot \mathbf{E})}{\partial t^2} = \mu_0 \frac{\partial^2 \mathbf{P}_{nl}}{\partial t^2},$$

получаем

$$\left\{ \frac{d^{2}\dot{L}_{mz}}{dx^{2}} - 4ik_{0}n_{e}^{\omega} \frac{\dot{R}_{mz}}{dx} - \left[4k_{0}^{2} \left(n_{e}^{2\omega} \right)^{2} - \mu_{0}\varepsilon_{0} \left(n_{e}^{2\omega} \right)^{2} (2\omega)^{2} \right] \dot{L}_{mz} \right\} \\
\times \exp\left[i \left(2\omega t - 2k_{0}n_{e}^{2\omega}x \right) \right] = -\mu_{0}(2\omega)^{2}\varepsilon_{0}d_{31} \left(\dot{L}_{my,l} - \frac{1}{2} i \left(2\omega t - 2k_{0}n_{o}^{\omega}x \right) \right) \right].$$

Используя далее приближение медленно меняющихся амплитуд

$$\frac{d^2\dot{L}_{mz}}{dx^2}\Box \qquad \frac{\dot{-}_{mz}}{dx},$$

окончательно получаем:

$$\frac{d\dot{L}_m}{dx} = -i\frac{\omega}{cn_e^{2\omega}}(\dot{L}_{my}, \dots, p\left[i2k_0\left(n_e^{2\omega} - n_o^{\omega}\right)x\right].$$

Ответ:

$$\frac{dL_m}{dx} = -i\frac{\omega}{cn_e^{2\omega}}(\dot{L}_{my}, \dots, p\left[i2k_0\left(n_e^{2\omega} - n_o^{\omega}\right)x\right].$$

Задача 2. Для кристалла ниобата лития, выращенного из расплава стехиометрического состава и имеющего при температуре 20 $^{\circ}$ C значения

необыкновенного показателя преломления $n_e = 2,15577$ на длине волны накачки $\lambda_1 = 1053$ нм и $n_e = 2,23509$ на длине волны второй гармоники $\lambda_2 = 526,5$ нм, определите пространственный период доменной структуры, обеспечивающей генерацию второй гармоники в режиме фазового квазисинхронизма первого порядка.

Решение. Воспользуемся соотношением для необходимого пространственного периода $\Lambda = 2(2m-1)L_c$, где необходимо выбрать порядок синхронизма m=1 и найти длину когерентности из соотношения $L_c = \pi/\Delta k$, где в рассматриваемом случае $\Delta k = 2k_0\left(n_e^{2\omega} - n_e^{\omega}\right)$ и $k_0 = 2\pi/\lambda_1$.

Используя условия задачи, находим: $\Lambda = 6,638$ мкм.

Ответ: Пространственный период доменной структуры, обеспечивающей генерацию второй гармоники в режиме фазового квазисинхронизма первого порядка, равен 6,638 мкм.

12.2.2 Варианты задач для самоподготовки

- 1. Выведите уравнение для эволюции амплитуды светового поля волны второй гармоники, имеющей необыкновенную поляризацию, при её генерации необыкновенно поляризованной волной накачки с частотой ω , распространяющейся вдоль оси y в кристалле ниобата лития, с использованием метода медленно меняющихся амплитуд.
- **2.** Выведите уравнение для эволюции амплитуды светового поля волны второй гармоники, имеющей необыкновенную поляризацию, при её генерации обыкновенно поляризованной волной накачки с частотой ω , распространяющейся вдоль оси x в кристалле нитрида галлия (класс симметрии 6mm), с использованием метода медленно меняющихся амплитуд.
- **3.** Выведите уравнение для эволюции амплитуды светового поля волны второй гармоники, имеющей необыкновенную поляризацию, при её генерации обыкновенно поляризованной волной накачки с частотой ω , распространяющейся под углом 45° к оси x кристалла дигидрофосфата калия (класс симметрии $\overline{42}m$), с использованием метода медленно меняющихся амплитуд.
- 4. Для генерации второй гармоники в ниобате лития конгруэнтного состава излучением накачки с обыкновенной поляризацией и длиной волны 1064 нм найдите ориентацию кристалла относительно его кристаллографических осей, при которой для распространяющихся вдоль нормали к входной грани световых волн условия синхронизма будут выполняться точно.

Показатели преломления ниобата лития: $n_o = 2.24614$ и $n_e = 2.16256$ на длине волны 1064 нм; $n_o = 2.32802$ и $n_e = 2.23148$ на длине волны 532 нм.

- **5.** Для генерации второй гармоники волной накачки, имеющей необыкновенную поляризацию и длину волны 1064 нм, в кристалле ниобата лития с показателями преломления, приведенными в Задаче 4, и со значениями компонент тензора нелинейной оптической восприимчивости $d_{22} = 3,07$ пм/B; $d_{31} = d_{15} = 5,82$ пм/B; $d_{33} = 40,68$ пм/B найдите:
 - 1. Направления распространения взаимодействующих волн, при которых нелинейная поляризация будет максимальной.
 - 2. Нелинейную поляризацию на частоте второй гармоники для этого случая.
 - 3. Длину когерентности для этого же случая.
 - 4. Уравнение, описывающее эволюцию комплексной амплитуды световой волны на частоте второй гармоники для этого случая.
 - 5. Решение этого уравнения для кристалла, содержащего 2 пластины найденной ориентации с одинаковой толщиной, равной длине когерентности, но с противоположно ориентированными оптическими осями **С**.
- **6.** Для конгруэнтного ниобата лития, имеющего значения необыкновенного показателя преломления $n_e = 2,16256$ на длине волны накачки $\lambda_1 = 1064$ нм и $n_e = 2,23148$ на длине волны второй гармоники $\lambda_2 = 532$ нм, определите пространственный период доменной структуры, обеспечивающей генерацию второй гармоники в режиме фазового квазисинхронизма первого и второго порядков.
- 7. В параметрическом генераторе света используется квазисинхронное взаимодействие на периодической доменной структуре необыкновенно поляризованных волн, распространяющихся вдоль оси x в кристалле ниобата лития, выращенном из расплава стехиометрического состава. Значения необыкновенного показателя преломления кристалла определяются уравнением Селлмейера

$$n_e^2 = 4,5567 + 2,605 \cdot 10^{-7} T^2 + \frac{0,097 + 2,7 \cdot 10^{-8} T^2}{\lambda^2 - \left(0,201 + 5,4 \cdot 10^{-8} T^2\right)^2} - 2,24 \cdot 10^{-2} \lambda^2,$$

где длина волны λ задается в микрометрах, и T – в градусах Кельвина. Найдите:

- 1. Длину волны излучения для холостой волны при длинах волн накачки 532 нм и сигнала 1300 нм.
- 2. Пространственный период периодической доменной структуры, обеспечивающей квазисинхронную параметрическую генерацию сигнала с

длиной волны 1300 нм при накачке на длине волны 532 нм, для температуры кристалла 20 °C.

12.3 Распространение световых пучков в нелинейной среде. Самофокусировка и самодефокусировка световых пучков. Пространственные оптические солитоны

12.3.1 Примеры решения задач

Задача 1. Из скалярного волнового уравнения

$$\nabla^2 E - \mu \varepsilon \frac{\partial^2 E}{\partial t^2} = 0$$

для нелинейной немагнитной среды получите волновое уравнение в параксиальном приближении, которому должна удовлетворять амплитуда A(y,z) распространяющегося вдоль оси z монохроматического одномерного светового пучка

$$\frac{\partial A}{\partial z} - \frac{i}{2nk_0} \frac{\partial^2 A}{\partial y^2} = ik_0 \Delta n_{nl} A,$$

где n — показатель преломления среды в линейном режиме, Δn_{nl} — нелинейная добавка к показателю преломления и $k_0 = \omega/c$.

Решение. Представим решение для электрического поля светового пучка в виде

$$E(y,z,t) = A(y,z) \exp(ink_0z - i\omega t),$$

и выразим параметры среды, как $\mu = \mu_0$, $\varepsilon = \varepsilon_0 \left(n + \Delta n_{nl} \right)^2 \square$ $2n\Delta n_{nl}$, поскольку $\Delta n_{nl} << n$. Подставляя полученные результаты в скалярное волновое уравнение и учитывая выполнение в параксиальном приближении условия медленного изменения амплитуды пучка $\partial^2 A / \partial z^2 << k_0 n \left(\partial A / \partial z \right)$, получаем необходимое уравнение.

Ответ: Амплитуда A(y,z) распространяющегося вдоль оси z монохроматического одномерного светового пучка будет удовлетворять волновому уравнению в параксиальном приближении при представлении светового поля в виде $E(y,z,t) = A(y,z) \exp(ink_0z - i\omega t)$, при выполнении неравенств $\Delta n_{nl} << n$ и $\partial^2 A/\partial z^2 << k_0 n (\partial A/\partial z)$.

12.3.2 Варианты задач для самоподготовки

1. Из скалярного волнового уравнения

$$\nabla^2 E - \mu \varepsilon \frac{\partial^2 E}{\partial t^2} = 0$$

для нелинейной немагнитной среды получите волновое уравнение в параксиальном приближении, которому должна удовлетворять амплитуда A(x,y,z) распространяющегося вдоль оси z монохроматического светового пучка

$$\frac{\partial A}{\partial z} - \frac{i}{2k} \left(\frac{\partial^2 A}{\partial x^2} + \frac{\partial^2 A}{\partial y^2} \right) = \frac{ik\Delta n_{nl}}{n} A,$$

где n — показатель преломления среды в линейном режиме, Δn_{nl} — нелинейная добавка к показателю преломления и k — волновое число для плоской волны, распространяющейся в рассматриваемой среде вдоль оси z.

2. Из волнового уравнения в параксиальном приближении,

$$\frac{\partial A}{\partial z} - \frac{i}{2k} \frac{\partial^2 A}{\partial x^2} = \frac{ik\Delta n_{nl}}{n} A,$$

используя решение для амплитуды светового пучка в виде функции с разделяющимися переменными, получите нелинейное уравнение Шрёдингера:

$$U'' + \left(\frac{2k^2 \Delta n_{_{HJ}}}{n} - 2k\gamma\right)U = 0,$$

где $U'' = \partial^2 U / \partial x^2$.

3. Для среды с кубичной нелинейностью Керра, в которой $\Delta n_{nl}^{(\kappa)} = n_{(2)} I(x,z)$, где $n_{(2)}$ — нелинейный показатель преломления, из полученного в Задаче 2 нелинейного уравнения Шрёдингера выведите уравнение

$$U - \frac{1}{2k\gamma}U'' = \frac{\alpha}{\gamma}U^3,$$

решение которого приводит к светлым и темным пространственным солитонам.

- **4.** Покажите, что при $\alpha > 0$ полученное в Задаче 3 нелинейное уравнение имеет решение в виде светлого пространственного солитона, $U(\xi) = \left(2\gamma/\alpha\right)^{1/2} \mathrm{sch}(\xi)$, где $\xi = \sqrt{2k\gamma}x$ нормированная поперечная координата.
- 5. Покажите, что при $\alpha < 0$ полученное в Задаче 3 нелинейное уравнение имеет решение в виде тёмного пространственного солитона, $U(\xi) = \left(\gamma/\alpha\right)^{1/2} \operatorname{th}(\xi/\sqrt{2})$, где $\xi = \sqrt{-2k\gamma}x$ нормированная поперечная координата.
- **6.** Покажите, что в случае фотовольтаического механизма оптической нелинейности, при

$$\Delta n_{nl}^{(phv)} = A I_d^{-1} \frac{I(x,z)/I_d}{1 + I(x,z)/I_d},$$

где I_d — темновая интенсивность, полученное в Задаче 2 нелинейное уравнения Шрёдингера приводится к уравнению

$$U - \frac{1}{2k\gamma}U'' = \frac{\beta}{\gamma} \frac{U^3}{\left(1 + U^2\right)},$$

описывающему фотовольтаические солитоны.

7. Покажите, что в случае дрейфового механизма фоторефрактивной нелинейности, при

$$\Delta n_{nl}^{(drift)} = B \frac{I_{bg}}{I_{bg} + I(x,z)} E_{ext},$$

где I_{bg} — интенсивность фоновой подсветки среды и E_{ext} — напряженность внешнего электрического поля, приложенного к кристаллу, полученное в Задаче 2 нелинейное уравнения Шрёдингера приводится к уравнению

$$U - \frac{1}{2k\gamma}U'' = \frac{F}{\gamma} \frac{U}{\left(1 + U^2\right)},$$

описывающему, в зависимости от полярности прикладываемого напряжения, светлые и темные фоторефрактивные пространственные солитоны.

13 Подготовка к контрольной работе

Студенты выполняют три письменные контрольных работы. Контрольные работы проводятся по следующим темам:

- 1. Общие вопросы нелинейной оптики.
- 2. Преобразование частоты лазерного излучения при взаимодействии волн в однородных нелинейных средах. Преобразование частоты при квазисинхронном взаимодействии.
- 3. Вынужденное рассеяние света. Нелинейные явления в оптических волноводах. Самофокусировка и самодефокусировка световых пучков.

При выполнении контрольной работы каждому студенту выдается билет с вопросом по теоретической части и с одной задачей, выбранной из предложенных задач для самостоятельного решения (задачи представлены выше в разделе 12).

13.1 Теоретические вопросы для письменной контрольной работы по теме «Общие вопросы нелинейной оптики»

1. Запишите разложение электрической поляризации среды по степеням напряженности электрического поля. Поясните все обозначения.

- 2. Как найти нелинейную электрическую поляризацию среды при воздействии на неё двух монохроматических полей с различными частотами?
- 3. На каких частотах будет наблюдаться электрическая поляризация среды при учете нелинейных явлений второго порядка?
- 4. Запишите матрицу коэффициентов нелинейной оптической восприимчивости второго порядка для кристаллов симметрии 3m.
- 5. Запишите волновое уравнение для среды с учетом наводимой в ней световыми волнами нелинейной электрической поляризации. Поясните все обозначения.
- 6. Запишите математическое выражение для нелинейной электрической поляризации в среде с квадратичной нелинейностью, при взаимодействии в ней двух плоских монохроматических волн с разными частотами. Поясните все обозначения.
- 7. Запишите математическое выражение для нелинейной электрической поляризации в среде с квадратичной нелинейностью, при взаимодействии в ней двух плоских монохроматических волн с одинаковыми частотами. Поясните все обозначения.
- 8. Запишите условия синхронизма для генерации волны суммарной частоты в нелинейной среде. Поясните их физический смысл; расшифруйте все обозначения.
- 9. Запишите условия синхронизма для генерации волны на разностной частоте в нелинейной среде. Как называется эффект, соответствующий такому квадратичному взаимодействию при одинаковых частотах взаимодействующих волн?
- 10. Перечислите основные нелинейные явления, которые могут быть описаны с использованием нелинейного члена третьего порядка в разложении электрической поляризации среды по степеням напряженности электрического поля.
- 11. Запишите общее выражение для компонент вектора электрической поляризации на частоте второй гармоники через компоненты вектора напряженности светового поля волны на основной частоте. Поясните все обозначения.
- 12. Запишите матрицу коэффициентов нелинейной оптической восприимчивости второго порядка для кубических кристаллов симметрии $23 \, \mu \, \overline{43} m$.
- 13. Запишите матрицу коэффициентов нелинейной оптической восприимчивости второго порядка для тетрагональных кристаллов симметрии $\overline{4}2m$.
- 14. Запишите выражение для компонент вектора электрической поляризации на суммарной частоте, наводимой при нелинейном взаимодействии двух световых волн, с учетом эффектов второго порядка. Поясните все обозначения.
- 15. Запишите выражение для компонент вектора электрической поляризации на разностной частоте, наводимой при нелинейном

взаимодействии двух световых волн, с учетом эффектов второго порядка. Поясните все обозначения.

- 16. Какое нелинейное взаимодействие световых волн называют коллинеарным?
- 13.2 Теоретические вопросы для письменной контрольной работы по темам «Преобразование частоты лазерного излучения при взаимодействии волн в однородных нелинейных средах. Преобразование частоты при квазисинхронном взаимодействии»
- 1. Опишите постановку задачи при анализе генерации волн суммарной частоты в ниобате лития.
- 2. Запишите систему уравнений связанных волн, описывающую генерацию волн суммарной частоты в ниобате лития. Поясните все обозначения.
- 3. Опишите эксперимент по первому наблюдению генерации второй гармоники в кристалле кварца.
- 4. Запишите систему уравнений связанных волн, описывающую генерацию второй гармоники в ниобате лития. Поясните все обозначения.
- 5. Поясните суть приближения неистощаемой накачки и выведите выражение для амплитуды светового поля при генерации второй гармоники в ниобате лития. Поясните все обозначения.
- 6. Запишите выражение для интенсивности волны второй гармоники в ниобате лития в приближении неистощаемой накачки. Поясните все обозначения.
- 7. Поясните, как можно реализовать фазовый синхронизм при генерации второй гармоники в оптически отрицательном одноосном кристалле.
- 8. Каков физический смысл длины когерентности при генерации второй оптической гармоники? Как она выражается математически при реализации генерации второй гармоники в оптически отрицательном одноосном кристалле?
- 9. Поясните подход к выводу первого интеграла уравнений связанных волн, описывающих генерацию второй гармоники в условиях точного фазового синхронизма.
- 10. Запишите выражение для интенсивности второй гармоники через входную интенсивность волны накачки, с учетом её истощения, в условиях точного фазового синхронизма. Поясните все обозначения.
- 11. Запишите выражение для комплексных амплитуд сигнальной и холостой волн при параметрическом усилении в кристалле ниобата лития в приближении неистощаемой накачки. Поясните все обозначения.
- 12. Запишите математические выражения для первых интегралов уравнений связанных волн, описывающих параметрическое усиление в

кристалле ниобата лития, в условиях точного фазового синхронизма. Поясните все обозначения.

- 13. Запишите соотношения Мэнли-Роу для процесса параметрического взаимодействия трех световых волн. Дайте физическую трактовку этим соотношениям.
- 14. Нарисуйте схему параметрического генератора света и поясните физические явления, которые в нем используются.
- 15. Опишите подход к выводу пороговой амплитуды световой волны для случая её параметрической генерации в кристалле ниобата лития.
 - 16. Опишите, как можно реализовать фазовый квазисинхронизм.
- 17. Опишите периодические доменные структуры в сегнетоэлектрических кристаллах. Поясните, какие физические свойства кристаллов «модулируются» в таких структурах.
- 18. Кратко опишите технологические методы, которые используются для формирования доменных структур в сегнетоэлектрических кристаллах.
- 19. Нарисуйте зависимость для модуля амплитуды второй гармоники и для её интенсивности от длины взаимодействия, в случае точного выполнения условия фазового синхронизма во всем нелинейном кристалле.
- 20. Нарисуйте зависимость для модуля амплитуды второй гармоники и для её интенсивности от длины взаимодействия, в случае длины когерентности, значительно меньшей, чем толщина нелинейного кристалла.
- 21. Нарисуйте зависимость для модуля амплитуды второй гармоники и для её интенсивности от длины взаимодействия, в случае реализации условий фазового квазисинхронизма.
- 13.3 Теоретические вопросы для письменной контрольной работы по темам «Вынужденное рассеяние света. Нелинейные явления в оптических волноводах. Самофокусировка и самодефокусировка световых пучков»
- 1. Опишите законы сохранения, которые имеют место при вынужденном комбинационном рассеянии света.
- 2. Опишите спектр выходного излучения при вынужденном комбинационном рассеянии света. Поясните, чем стоксовы спектральные компоненты отличаются от антистоксовых.
- 3. Запишите математическое выражение для нелинейной электрической поляризации среды при вынужденном комбинационном рассеянии света. Поясните все обозначения.
- 4. Запишите уравнение, описывающее изменение амплитуды напряженности светового поля стоксовой волны, с учетом приближений неистощаемой накачки и слабой эффективности спонтанного комбинационного рассеяния. Поясните все обозначения.

- 5. Поясните, как можно интерпретировать комбинационное рассеяние высших порядков.
- 6. Опишите основные применения вынужденного комбинационного рассеяния света.
- 7. Поясните, с возбуждением каких волновых процессов связано вынужденное рассеяние Мандельштама-Бриллюэна.
- 8. Запишите математическое выражение для нелинейной электрической поляризации среды при вынужденном рассеянии Мандельштама-Бриллюэна. Поясните все обозначения.
- 9. Запишите систему уравнений связанных волн, описывающую вынужденное рассеяние Мандельштама-Бриллюэна. Поясните все обозначения.
- 10. Опишите подход к получению пороговых условий для вынужденного рассеяния Мандельштама-Бриллюэна из соответствующей системы уравнений связанных волн.
- 11. Приведите примеры волноводных структур, которые могут быть использованы для реализации эффективного преобразования спектра лазерного излучения.
- 12. Опишите подходы к выводу уравнений связанных волн, описывающих волноводную генерацию волн с суммарной или разностной частотой.
- 13. Поясните, что такое *интеграл перекрытия*, и каков его физический смысл.
- 14. Запишите условия фазового синхронизма для волноводного трехволнового взаимодействия. Поясните все обозначения.
- 15. Приведите примеры ориентаций подложек волноводных структур из ниобата лития, которые можно использовать для волноводной квазисинхронной генерации оптических гармоник.
- 16. Поясните, как следует определить пространственный период доменных структур, необходимый для реализации фазового синхронизма при нелинейных взаимодействиях в оптических волноводах.
- 17. Поясните, как реализуется генерация второй гармоники волноводным пучком накачки по механизму Вавилова-Черенкова.
- 18. Запишите (1+1)-мерное нелинейное уравнение Шрёдингера, описывающее светлые пространственные солитоны. Поясните все обозначения.
- 19. Поясните, как связана требуемая пиковая интенсивность светлого (1+1)-мерного пространственного солитона с его шириной. Дайте физическую трактовку наблюдаемой связи.
- 20. Запишите (1+1)-мерное нелинейное уравнение Шрёдингера, описывающее распространение световых импульсов в волоконных световодах. Поясните физический смысл каждого члена, входящего в данное уравнение.
- 21. Запишите солитонное уравнение для среды с керровской нелинейностью, описывающее распространение светового пучка,

испытывающего дифракцию вдоль одной поперечной координаты. Поясните, в каком случае это уравнение будет описывать светлые пространственные солитоны.

- 22. Запишите решение солитонного уравнения для керровской среды в виде одномерного в поперечном направлении темного пространственного солитона. Поясните все обозначения.
- 23. Поясните физическую суть эффектов фазовой самомодуляции и компрессии световых импульсов.
- 24. Запишите нелинейное уравнение Шрёдингера, описывающее распространение светового пучка, испытывающего дифракцию вдоль одной поперечной координаты, для фоторефрактивной среды с дрейфовым механизмом нелинейного отклика. Поясните, каким образом можно в этом случае задавать нелинейность и изменять её вид, с фокусирующей на дефокусирующую.

Заключение

В итоге изучения тем студент должен твердо знать ответы, как минимум, на следующие вопросы.

- 1. Запишите разложение электрической поляризации среды по степеням напряженности электрического поля. Поясните все обозначения.
- 2. Запишите волновое уравнение для среды с учетом наводимой в ней световыми волнами нелинейной электрической поляризации. Поясните все обозначения.
- 3. Запишите условия синхронизма для генерации волны суммарной частоты в нелинейной среде. Поясните их физический смысл; расшифруйте все обозначения.
- 4. Запишите условия синхронизма для генерации волны на разностной частоте в нелинейной среде. Как называется эффект, соответствующий такому квадратичному взаимодействию при одинаковых частотах взаимодействующих волн?
- 5. Опишите постановку задачи при анализе генерации волн суммарной частоты в ниобате лития.
- 6. Запишите выражение для интенсивности волны второй гармоники в ниобате лития в приближении неистощаемой накачки. Поясните все обозначения.
- 7. Поясните, как можно реализовать фазовый синхронизм при генерации второй гармоники в оптически отрицательном одноосном кристалле.
- 8. Каков физический смысл длины когерентности при генерации второй оптической гармоники? Как она выражается математически при реализации генерации второй гармоники в оптически отрицательном одноосном кристалле?

- 9. Запишите математические выражения для первых интегралов уравнений связанных волн, описывающих параметрическое усиление в кристалле ниобата лития, в условиях точного фазового синхронизма. Поясните все обозначения.
- 10. Запишите соотношения Мэнли-Роу для процесса параметрического взаимодействия трех световых волн. Дайте физическую трактовку этим соотношениям.
- 11. Нарисуйте схему параметрического генератора света и поясните физические явления, которые в нем используются.
 - 12. Опишите, как можно реализовать фазовый квазисинхронизм.
- 13. Опишите периодические доменные структуры в сегнетоэлектрических кристаллах. Поясните, какие физические свойства кристаллов «модулируются» в таких структурах.
- 14. Кратко опишите технологические методы, которые используются для формирования доменных структур в сегнетоэлектрических кристаллах.
- 15. Нарисуйте зависимость для модуля амплитуды второй гармоники и для её интенсивности от длины взаимодействия, в случае точного выполнения условия фазового синхронизма во всем нелинейном кристалле.
- 16. Нарисуйте зависимость для модуля амплитуды второй гармоники и для её интенсивности от длины взаимодействия, в случае длины когерентности, значительно меньшей, чем толщина нелинейного кристалла.
- 17. Нарисуйте зависимость для модуля амплитуды второй гармоники и для её интенсивности от длины взаимодействия, в случае реализации условий фазового квазисинхронизма.
- 18. Опишите законы сохранения, которые имеют место при вынужденном комбинационном рассеянии света.
- 19. Опишите спектр выходного излучения при вынужденном комбинационном рассеянии света. Поясните, чем стоксовы спектральные компоненты отличаются от антистоксовых.
- 20. Поясните, с возбуждением каких волновых процессов связано вынужденное рассеяние Мандельштама-Бриллюэна.
- 21. Приведите примеры волноводных структур, которые могут быть использованы для реализации эффективного преобразования спектра лазерного излучения.
- 22. Поясните, что такое интеграл перекрытия, и каков его физический смысл.
- 23. Запишите условия фазового синхронизма для волноводного трехволнового взаимодействия. Поясните все обозначения.
- 24. Приведите примеры ориентаций подложек волноводных структур из ниобата лития, которые можно использовать для волноводной квазисинхронной генерации оптических гармоник.

- 25. Поясните, как связана требуемая пиковая интенсивность светлого (1+1)-мерного пространственного солитона с его шириной. Дайте физическую трактовку наблюдаемой связи.
- 26. Поясните физическую суть эффектов фазовой самомодуляции и компрессии световых импульсов.
- 27. Поясните физическую суть эффекта самофокусировки и формирования светлого пространственного солитона.
- 28. Поясните физическую суть эффекта самодефокусировки и формирования темного пространственного солитона.

Рекомендуемая литература

- 1. Киселев Г. Л. Квантовая электроника И оптическая Учебное пособие. 2 e СПб.: изд., испр. доп. – И Издательство «Лань», 2011. – 320 с.: ил. ISBN 9785811411146, http://e.lanbook.com/books/element.php?pl1 cid=25&pl1 id=627.
- 2. Шандаров В.М. Основы физической и квантовой оптики: учеб. пособие / В.М. Шандаров; Томск. гос. ун-т систем упр. и радиоэлектроники, 2012. 197 с. http://edu.tusur.ru/training/publications/750.
- 3. Информационная оптика / Под ред. Н.Н. Евтихеева. Учебное пособие М., Издательство МЭИ, 2000. 516 с.
- 4. Шандаров С.М. Введение в нелинейную оптику: учебное пособие для студентов направлений подготовки «Фотоника и оптоинформатика», «Электроника и наноэлектроника», «Электроника и микроэлектроника» / С.М. Шандаров. Томск: Томск. гос. ун-т систем упр. и радиоэлектроники, 2012. 41 с., http://edu.tusur.ru/training/publications/2059
- 5. Пихтин А.Н. Оптическая и квантовая электроника. Учебник для ВУЗов.- М.: Высшая школа, 2001. 574 с.
- 6. Ярив А. Оптические волны в кристаллах / А. Ярив, П. Юх. М.: Мир, 1987.-616 с.
- 7. Звелто О. Принципы лазеров / О. Звелто. СП-б. : Лань, 2008. 720 с.
- 8. Никоноров Н.В., Шандаров С.М. Волноводная фотоника: Учебное пособие. СПб.: Издательство СПбГУ ИТМО, 2008 142 с.
- 9. Фоторефрактивные эффекты в электрооптических кристаллах : монография / С.М. Шандаров, В.М. Шандаров, А.Е. Мандель, Н.И. Буримов. Томск : Томск. гос. ун-т систем упр. и радиоэлектроники, 2012. 242 с., http://edu.tusur.ru/training/publications/1553.
- 10. Дмитриев В.Г., Тарасов Л.В. Прикладная нелинейная оптика. М.: ФИЗМАТЛИТ, 2004. 512 с.
 - 11. Шен И.Р. Принципы нелинейной оптики. М.: Мир, 1989. 557 с.
- 12. Прикладная нелинейная оптика: учебное пособие / П. П. Гейко. Томск: ТУСУР, 2007. 109 с.

- 13. Блистанов А.А. Кристаллы квантовой и нелинейной оптики. Учебное пособие для студентов. М.: МИСИС, 2000. 232 с.
- 14. Справочник по лазерам. / Под ред. акад. А.М. Прохорова. В 2-х томах. Т. II. М.: Сов. радио, 1978. 400 с.
- 15. Dmitriev V.G., Gurzadyan G.G., Nikogosyan D.N. Handbook of Nonlinear Optical Crystals. N.Y.; B.: Springer-Verlag. 3-rd Revised Edition, 1999. 413 p.
- 16. Fejer M.M., Magel G.A., Jundt D.H., Byer R.L. Quasi-phase-matched second harmonic generation: tuning and tolerances // IEEE J. Quantum Electron. 1992. V. 28, No 11. P. 2631-2654.
- 17. Голенищев-Кутузов А.В., Голенищев-Кутузов В.А., Калимуллин Р.И. Индуцированные домены и периодические доменные структуры в электро- и магнитоупорядоченных веществах // УФН. 2000. Т. 170, № 7. С. 697-712.
- 18. Коханчик Л.С., Бородин М.В., Шандаров С.М., Буримов Н.И., Волк Т.Р., Щербина В.В. Периодические доменные структуры, сформированные электронным лучом в пластинах LiNbO₃ и планарных волноводах Ti:LiNbO₃ Y-ориентации // ФТТ. 2010. Т. 52, вып. 8. С. 1602-1609.
- 19. Volk T., Wöhlecke M. Lithium Niobate: Defects, Photorefraction and Ferroelectric Switching. Berlin; Heidalberg: Springer-Verlag, 2008. 247 p.
- 20. Soergel E. Visualization of ferroelectric domains in bulk single crystals // Appl. Phys. B. -2005.-V.81.-P.729-752.
- 21. Магурин В.Г., Тарлыков В.А. Когерентная оптика. СПб.: СПбГУ ИТМО, 2006. 122 с.
- 22. Ахманов С.А., Никитин С.Ю. Физическая оптика. М.: Изд-во МГУ, 1998. 626 с.
- 23. Гудмен Дж. Статистическая оптика: Пер. с англ. М.: Мир, 1988. –528 с.
 - 24. Франсон М. Оптика спеклов: Пер. с англ. М.: Мир, 1980. 171 с.
- 25. Теория когерентных изображений / П.А. Бакут, В.И. Мандросов, И.Н. Матвеев и др.; Под ред. Н.Д. Устинова. М.: Радио и связь, 1987. 264 с.
- 26. Кившарь Ю.С., Агравал Г.П. Оптические солитоны: От волоконных световодов до фотонных кристаллов. М.: ФИЗМАТЛИТ, 2005. 648 с.
- 27. Дмитриев В.Г. Нелинейная оптика и обращение волнового фронта. М: Физматлит, 2003. 256 с.
- 28. Розеншер Э. Оптоэлектроника : Пер. с фр. / Э. Розеншер, Б. Винтер ; ред. пер. О. Н. Ермаков. М. : Техносфера, 2006. 588 с.
- 29. Фролова М.Н., Бородин М.В., Шандаров С.М., Шандаров В.М., Ларионов Ю.М. Темные пространственные оптические солитоны в планарных волноводах на Z-срезе кристаллов симметрии 3m // Квантовая электроника. 2003. Т. 33, №11. С. 1001-1006.

- 30. Сороко Л.М. Основы голографии и когерентной оптики. М.: Наука, 1971.-616 с.
- 31. Stegeman G.I., Seaton C.T. Nonlinear integrated optics // J. Appl. Phys. 1985. V. 58. P. R57-R77.
- 32. Шандаров С.М., Бородин М.В. Фазовый синхронизм при второй гармоники генерации лазерного излучения В одноосных кристаллах: методические указания к лабораторной работе по курсам «Когерентная нелинейная оптика», «Нелинейная И оптика», «Фоторефрактивная и нелинейная оптика» для студентов направлений «Фотоника и оптоинформатика», «Электроника и наноэлектроника» / С.М. Шандаров, М.В. Бородин. – Томск: Томск. гос. ун-т систем упр. и радиоэлектроники, 2012. – 21 с., http://edu.tusur.ru/training/publications/1893
- 33. Шандаров С.М., Буримов Н.И. Амплитудная электрооптическая модуляция лазерного излучения: Методические указания к лабораторной работе по курсам "Нелинейная оптика" и "Когерентная оптика и голография" для студентов направлений 200700 "Фотоника и оптоинформатика" и 210100 "Электроника и наноэлектроника" / Шандаров С. М., Буримов Н. И. 2014. 19 с.,

http://edu.tusur.ru/training/publications/4103

Учебное пособие

Шандаров С.М.

Нелинейная оптика

Методические указания к практическим занятиям и по самостоятельной работе

Усл. печ. л. Препринт Томский государственный университет систем управления и радиоэлектроники 634050, г.Томск, пр.Ленина, 40