Томский государственный университет систем управления и радиоэлектроники (ТУСУР)

Факультет вычислительных систем (ФВС) Кафедра Моделирования и системного анализа (МиСА)

В.М. Дмитриев, А.В. Шутенков, В.И. Хатников, Т.В. Ганджа

СБОРНИК ЗАДАЧ ПО ТЕОРЕТИЧЕСКИМ ОСНОВАМ ЭЛЕКТРОТЕХНИКИ

Часть 1 Установившиеся режимы в линейных электрических цепях

Сборник задач для проведения практических занятий по дисциплинам «Теоретические основы электротехники», «Анализ динамических систем», «Теория цепей и сигналов»

Рецензенты: д-р техн. наук, проф. Ю.А. Шурыгин, канд. техн. наук, доцент В.Г. Баранник

В.М. Дмитриев, А.В. Шутенков, В.И. Хатников, Т.В. Ганджа. Сборник задач по теоретическим основам электротехники: Ч. 1: Установившиеся режимы в линейных электрических цепях. Сборник задач. — Томск: Томский государственный университет систем управления и радиоэлектроники. Факультет вычислительных систем. Кафедра моделирования и системного анализа, 2015. — 96 с.

Рассмотрены установившиеся режимы в линейных электрических цепях постоянного и переменного тока с сосредоточенными и распределенными параметрами.

Книга подготовлена на кафедре моделирования и системного анализа ТУСУРа и предназначена проведения практических занятий по дисциплинам «Теоретические основы электротехники и электроники», «Анализ динамических систем» или «Теория цепей и сигналов».

[©] В.М. Дмитриев, А.В. Шутенков, В.И. Хатников, Т.В. Ганджа 2015.

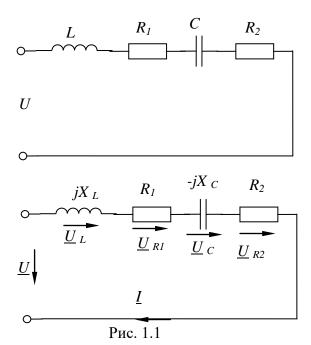
[©] Факультет вычислительных систем, кафедра моделирования и системного анализа, 2015.

СОДЕРЖАНИЕ

ВВЕДЕНИЕ4
ТЕМА 1. ОСНОВНЫЕ ПОНЯТИЯ И ЗАКОНЫ ЭЛЕКТРИЧЕСКИХ ЦЕПЕЙ. АНАЛИЗ ПРОСТЫХ ЛИНЕЙНЫХ ЦЕПЕЙ ПРИ ГАРМОНИЧЕСКОМ ВОЗДЕЙСТВИИ5
ТЕМА 2. ЧАСТОТНЫЕ ХАРАКТЕРИСТИКИ ЭЛЕКТРИЧЕСКОЙ ЦЕПИ. РЕЗОНАНС В ЭЛЕКТРИЧЕСКИХ ЦЕПЯХ16
ТЕМА 3. ПРИНЦИПЫ И ТЕОРЕМЫ ТЕОРИИ ЦЕПЕЙ23
ТЕМА 4. АНАЛИЗ РАЗВЕТВЛЕННЫХ ЭЛЕКТРИЧЕСКИХ ЦЕПЕЙ28
ТЕМА 5. ЧЕТЫРЕХПОЛЮСНИКИ36
ТЕМА 6. РАСЧЕТ ЭЛЕКТРИЧЕСКИХ ЦЕПЕЙ ПРИ ПЕРИОДИЧЕСКИХ НЕСИНУСОИДАЛЬНЫХ ВОЗДЕЙСТВИЯХ40
ТЕМА 7. ТРЕХФАЗНЫЕ ЦЕПИ47
ТЕМА 8. УСТАНОВИВШИЕСЯ РЕЖИМЫ В ЭЛЕКТРИЧЕСКИХ ЦЕПЯХ С РАСПРЕДЕЛЕННЫМИ ПАРАМЕТРАМИ59
ЗАДАЧИ ПОВЫШЕННОЙ ТРУДНОСТИ64
ОТВЕТЫ87
ЛИТЕРАТУРА94

ВВЕДЕНИЕ

Сборник задач предназначен для самостоятельной работы студентов всех форм обучения. Содержание данного пособия соответствует объему курсов «Теоретические основы электротехники» и «Основы теории электрических цепей» и отвечает требованиям ГОСа по названным дисциплинам учебного плана подготовки инженеров радиоэлектронных специальностей.


Сборник представляет собой твердую копию компьютерного задачника, который в свою очередь является частью компьютерного учебного пособия.

ТЕМА 1. ОСНОВНЫЕ ПОНЯТИЯ И ЗАКОНЫ ЭЛЕКТРИЧЕСКИХ ЦЕПЕЙ. АНАЛИЗ ПРОСТЫХ ЛИНЕЙНЫХ ЦЕПЕЙ ПРИ ГАРМОНИЧЕСКОМ ВОЗДЕЙСТВИИ

Пример 1.1. Дано: в цепи переменного тока частотой $f = 50 \ \Gamma \mu$ известны $U_C = 15 \ B$, $L = 100 \ \text{м}\Gamma \text{H}$, $C = 500 \ \text{м}\kappa \Phi$, $R_1 = 15 \ O$ м, $R_2 = 20 \ O$ м.

Рассчитать напряжение на каждом элементе схемы, ток и об- щее напряжение.

Решение

Угловая частота $\omega = 2\pi f = 2\pi 50 = 314 \ c^{-1}.$ Сопротивления элементов цепи

$$X_L = \omega L = 314 \cdot 0.1 = 31.4 O_M;$$

$$X_C = \frac{I}{\mathbf{\omega} C} = \frac{I}{314 \cdot 500 \cdot 10^{-6}} =$$

 $= 6.37 \, O_{\rm M}$

Входное сопротивление

$$\underline{Z} = R_1 + R_2 + jX_L - jX_C = 15 + 20 + j31.4 - j6.37 =$$

$$=35+j25=43e^{j35.6^{\circ}}M".$$

Общее напряжение

$$\underline{U} = \underline{I}(R_1 + R_2 + jX_L) + \underline{U}_C = \frac{\underline{U}}{Z}(R_1 + R_2 + jX_L) + \underline{U}_C;$$

$$\underline{U} = \frac{\underline{U}_C}{1 - \frac{R_1 + R_2 + jX_L}{\underline{Z}}} = \frac{-j15}{1 - \frac{15 + 20 + j31.4}{43e^{j35.6^{\circ}}}} =$$

$$= 82.4 + j58.9 = 101e^{j35.6^{\circ}} B.$$

Входной ток

$$\underline{I} = \frac{101e^{j35.6^{\circ}}}{43e^{j35.6^{\circ}}} = 2.35 A.$$

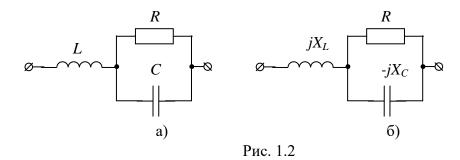
Напряжения на элементах цепи

$$U_{PI} = IR_{I} = 2.35 \cdot 15 = 35.3 B;$$

$$U_{P}$$
, = IR , = $2.35 \cdot 20 = 41.7 B$;

$$U_L = IjX_L = 2.35 \cdot j31.4 = j73.9 B.$$

Ombem: $\underline{U}_{R1} = 35.3 \ B$; $\underline{U}_{R2} = 47.1 \ B$; $\underline{U}_{L} = j73.9 \ B$;


$$\underline{I} = 2.35 \ A; \underline{U} = 101 e^{j35.6^{\circ}} B.$$

Пример 1.2. Комплексная амплитуда гармонического тока $i=5\sin\left[10^3t+\frac{\pi}{3}\right]$ равна $\underline{I}_m=5e^{j\frac{\pi}{3}}$, а комплексная амплитуда гармонического напряжения $u = 50 \sin 10^5 t$ — $\underline{U}_m = 50 e^{j0} = 50$.

Пример 1.3. Определить эквивалентное комплексное сопротивление двухполюсника относительно входных зажимов (рис. 1.2,а).

Решение. Комплексное сопротивление схемы замещения электрической цепи (рис. 1.2, б):

$$\underline{Z} = jX_L + \frac{R\left(-jX_C\right)}{R - jX_C}.$$

Пример 1.4. Составить основные системы уравнений в комплексной форме для схемы (рис. 1.3).

Решение. Токи \underline{I}_1 и \underline{I}_2 , протекающие через индуктивности, различны, и напряжения на элементах связи в разных контурах также различны.

Уравнения по законам Кирхгофа:

$$\underline{I}_{1} - \underline{I}_{2} - \underline{I}_{3} = 0;$$

$$\underline{U}_{L1} + \underline{U}_{R} + \underline{U}_{C} = \underline{E};$$

$$\underline{U}_{L2} - \underline{U}_{R} = 0.$$

Компонентные уравнения:

$$\begin{split} \underline{U}_{L1} &= j \omega L_1 \underline{I}_1 + j \omega M \underline{I}_2 \,; \\ \underline{U}_R &= R \underline{I}_3; \end{split}$$

$$\begin{split} \underline{U}_C &= -\frac{j}{\omega C} \underline{I}_1; \\ \underline{U}_{L2} &= j\omega L_2 \underline{I}_2 + j\omega M \underline{I}_1. \end{split}$$

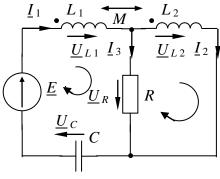


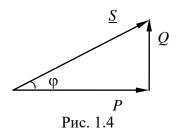
Рис. 1.3

Пример 1.5. К сети переменного тока подсоединены параллельно три приемника энергии с активной мощностью $P_1 = 6 \ \kappa B m, \ P_2 = 4 \ \kappa B m,$

 $P_3 = 12 \ \kappa Bm$ и коэффициентами мощности $\cos \varphi_1 = 0.2, \cos \varphi_2 = 0.8,$

 $\cos \varphi_3 = 0.6$. Первый и третий приемники имеют активноиндуктивный характер, а второй — активно-емкостный. *Pacсчитать* активную, реактивную и полную мощности сети, а также общий коэффициент мощности.

Решение


Активная мощность сети

$$P = P_1 + P_2 + P_3 = 6 + 4 + 12 = 22 \kappa Bm$$
.

Углы нагрузки приемников

$$\varphi_{1} = \arccos 0.2 = 78.5^{\circ}$$
; $\varphi_{2} = \arccos 0.8 = 36.9^{\circ}$; $\varphi_{3} = \arccos 0.6 = 53.1^{\circ}$.

Реактивные мощности приемников (рис. 1)

$$Q_1 = P_1 tg \mathbf{\Phi}_1 = 6 \cdot tg78.5^{\circ} = 29.4 \ \kappa \epsilon ap;$$

$$Q_2 = -P_2 t g \mathbf{\varphi}_2 = -4 \cdot t g 36.9^\circ = -3 \kappa \epsilon a p;$$

$$Q_3 = P_3 t g \mathbf{\phi}_3 = 12 \cdot t g 53.1^\circ = 16$$
 квар.

Реактивная мощность сети

$$Q = Q_1 + Q_2 + Q_3 = 29.4 - 3 + 16 = 42.4$$
 квар.

Полная мощность сети

$$\underline{S} = P + jQ = 22 + j42.4 = 47.8 e^{j62.6^{\circ}} \kappa B \cdot A.$$

Общий коэффициент мощности

$$\cos \mathbf{\varphi} = \frac{P}{S} = \frac{22}{47.8} = 0.461.$$

Ответ: $P = 22 \kappa Bm$; $Q = 42.4 \kappa вар$;

$$\underline{S} = 22 + j42.4 = 47.8 e^{j62.6^{\circ}} \kappa B \cdot A; \cos \varphi = 0.461.$$

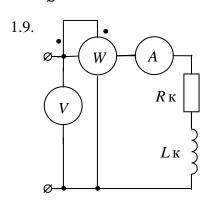
Задачи

- 1.1. Угловая частота переменного тока $\omega = 500 \text{ c}^{-1}$. Определить период T.
- 1.2. Две реальные катушки индуктивности с параметрами $R_1=10\,\mathrm{Om},\ L_1=0.3\,\mathrm{\Gamma h},\ R_2=20\,\mathrm{Om},\ L_2=0.6\,\mathrm{\Gamma h}$ соединены последовательно. Определить параметры R_3 и L_3 эквивалентной схемы замещения.

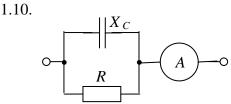
- 1.3. Два конденсатора C_1 и C_2 соединены последовательно и включены в сеть с напряжением U = const. Как распределятся напряжения на конденсаторах, если $C_1 = 2C_2$?
- 1.4.

Три конденсатора соединены, как

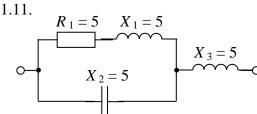
- 1.5. Для цепи синусоидального тока с параметрами $R = 32 \,\mathrm{Om}$ и $X_I = 24 \,\mathrm{Om}$ определить мгновенное значение входного напряжения u(t), если $i(t) = 4\sin(\omega t - 120^{\circ})A$.
- В цепи синусоидального тока с параметрами 1.6. $R = 40 \,\mathrm{Om}$ и $X_C = 40 \,\mathrm{Om}$ мгновенное напряжение на конденсаторе $u_c(t) = 240 \sin(\omega t + 150^\circ)$ В. Определить u(t) на входе цепи.
- 1.7.


цепи с параметрами $R = 16 \,\text{OM}$ и $X_C = 12 \,\text{OM}$ включены два вольтметра электромагнитной системы. Напряжение $U_{V1} = 24 \,\mathrm{B}$. Определить U_{v_2} .

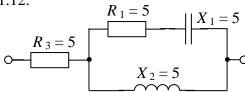
1.8. V_1


 X_C =

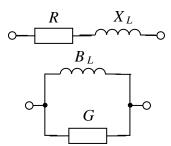
 V_2

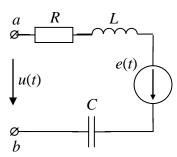

Чему равно показание вольтметра V, включенного на входе схемы, если $U_{V1}=48\,\mathrm{B},\ U_{V2}=64\,\mathrm{B}\,\mathrm{?}$ Все вольтметры — электромагнитной системы.

В цепи переменного тока показания приборов на частоте f=50 Гц: $P_{W}=40$ Вт; $U_{V}=80$ В; $I_{A}=2$ А. Определить параметры катушки $R_{_{\rm K}}$ и $L_{_{\rm K}}$.

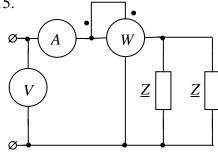


В цепи переменного тока $R = X_C = 10 \,\mathrm{Om},$ $U = 20 \,\mathrm{B}.$ Определить показание амперметра электромагнитной системы.

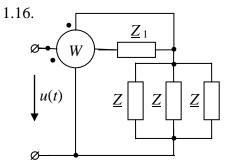

Определить эквивалентные активное R и реактивное X сопротивления схемы. На рисунке сопротивления даны в омах.


Определить комплекс полного сопротивления схемы. На рисунке сопротивления даны в омах.

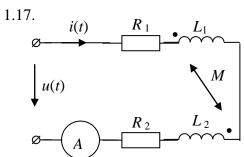
1.13.

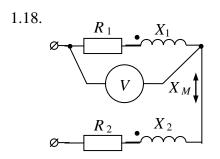

Определить параметры (g, b_L) параллельной схемы замещения реальной катушки индуктивности с параметрами $R = X_L = 20 \, \mathrm{Om}$.

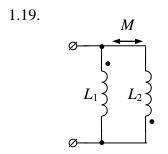
1.14.



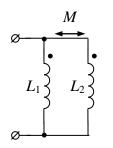
Определить амплитуду входного напряжения \underline{U}_{mab} , если ток $i(t) = 1\sin \omega t$ A, $R = X_L = X_C = 10 \, \mathrm{Om}$, $e(t) = 10 \sin \left(\omega t + 90^\circ\right) \, \mathrm{B}$.


1.15.

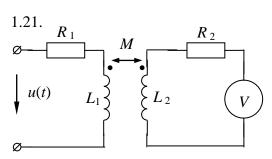

В схеме $I_A = 10$ А, $U_V = 141$ В. Эквивалентное сопротивление схемы $\underline{Z}_{\ni} = R_{\ni} + j \, X_{\ni}$, где $R_{\ni} = X_{\ni}$. Определить показание ваттметра.


Определить показание ваттметра, если $\underline{U} = 200$ В, $\underline{Z} = 30e^{j60^{\circ}}$ Ом, $\underline{Z}_1 = 10e^{j60^{\circ}}$ Ом.

Определить I_A и мгновенное значение тока i(t), если $\underline{U} = 250$ В, $X_{L1} = 5$ Ом, $X_{L2} = 7$ Ом, $R_1 = R_2 = 7.5$ Ом, $X_M = 4$ Ом.

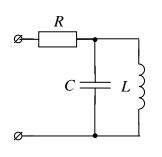


Определить напряжение U_{R1} , если показание вольтметра электромагнитной системы $U_V=120~{\rm B},~{\rm a}$ а $X_1=X_M$.

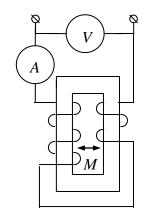


Определить эквивалентную индуктивность, если $k_{CB} = 1$, а L_1 , L_2 , M — известны.

1.20.



Определить эквивалентную индуктивность двух параллельно соединенных катушек, если известны L_1 , L_2 , M.


Определить показание вольтметра электромагнитной системы U_V , если $u(t) = 20\sqrt{2} \sin \omega t$ B, $R_1 = X_1 = X_M = 10 \, \mathrm{Om}$.

1.22.

Входное сопротивление цепи постоянному току равно 40 Ом. Как изменится это сопротивление на частоте 100 с⁻¹, если L=0.2 Гн, C=250 мк Φ ?

1.23.

Две одинаковые катушки индуктивности с $R_1 = R_2 = 3$ Ом соединены последовательно и надеты на общий каркас. Амперметр электродинамической системы показывает ток $I_A = 7.5\,$ A; $X_M = 8\,$ Ом. Что показывает вольтметр электродинамической системы? $k_{CB} = 1.$

- 1.24. Как изменится коэффициент M двух катушек, если ток в одной из них увеличить в n раз?
- 1.25. Две последовательно соединенные катушки включены встречно, причем $X_1 = X_2 = 2X_M$. Как изменится напряжение на зажимах цепи, если при неизменном токе уменьшить до нуля $k_{\rm CB}$? Активным сопротивлением катушек можно пренебречь.

ТЕМА 2. ЧАСТОТНЫЕ ХАРАКТЕРИСТИКИ ЭЛЕКТРИЧЕСКОЙ ЦЕПИ. РЕЗОНАНС В ЭЛЕКТРИЧЕСКИХ ЦЕПЯХ

Пример 2.1. Заданы резонансная частота последовательного контура $f_0 = 2$ МГц, ширина полосы пропускания $\Pi_f = 16$ кГц и сопротивление R = 12 Ом. Рассчитать параметры реактивных элементов контура.

Решение. Запишем систему уравнений

$$f_0 = \frac{1}{2\pi\sqrt{LC}}, \ \Pi_f = \frac{f_0 R}{\sqrt{L/C}},$$

откуда индуктивность $L = \frac{R}{2\pi\Pi_f} = 119\,\mathrm{mk}\Gamma\mathrm{h}$,

емкость
$$C = \frac{\Pi_f}{2\pi f_0^2 R} = 53 \, \Pi \Phi$$
.

Пример 2.2. Определить резонансную частоту f_0 , характеристическое сопротивление ρ , добротность Q и полосу пропускания Π_f контура (рис. 2.1). Параметры цепи: $L=0.2~{\rm MFH}$; $R=12~{\rm OM}$; $C=360~{\rm n\Phi}$.

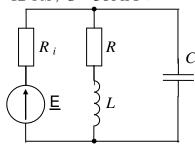


Рис. 2.1

Решение. В случае малых потерь ($R << \rho$) резонансная частота, характеристическое сопротивление и полоса про-

пускания контуров с последовательным и с параллельным соединениями элементов совпадают.

$$f_0 = \frac{1}{2\pi\sqrt{LC}} = 593 \text{ к}\Gamma\text{ц; } \rho = \sqrt{\frac{L}{C}} = 745 \text{ Om;}$$

$$Q = \frac{\rho}{R} = 62,\!1; \; \Pi_f = \frac{f_0}{Q} = 95,\!6 \text{ к}\Gamma\text{ц.}$$

Пример 2.3. Определить реактивное сопротивление катушки X_L и ток амперметра I схемы (рис. 2.2, а) в режиме резонанса токов, если параметры цепи имеют следующие значения: коэффициент связи $k_{\rm CB}=0.5$; сопротивление емкости на резонансной частоте $X_C=1$ кОм; действующее значение входного напряжения $U=1~{\rm B}$.

Решение. При развязке индуктивной связи катушек добавляем в ветви с индуктивностями L — сопротивления X_{M} , а в ветвь с емкостью — сопротивление $\left(-X_{M}\right)$ (рис. 2.2, б).

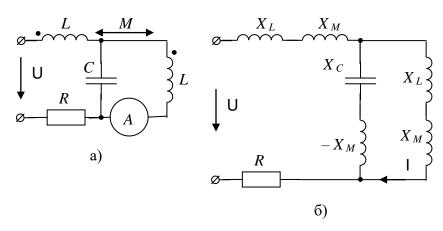


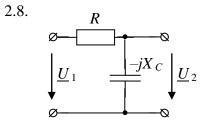
Рис. 2.2

$$X_{M} = k_{CB} \omega \sqrt{LL} = 0.5\omega L = 0.5X_{L}.$$

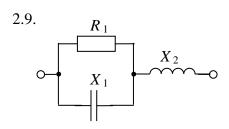
По условию резонанса токов $b_L = b_C$. С учетом того, что

$$X_{\scriptscriptstyle M} = 0.5 X_{\scriptscriptstyle L}$$
 запишем: $\frac{1}{X_{\scriptscriptstyle L} + 0.5 X_{\scriptscriptstyle L}} = \frac{1}{X_{\scriptscriptstyle C} + 0.5 X_{\scriptscriptstyle L}}$.

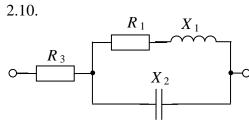
Подставив числовые значения, найдем $X_L = X_C = 1$ кОм.

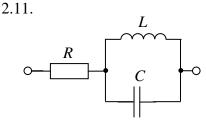

Так как входное сопротивление равно бесконечности, то входной ток равен нулю, а напряжение параллельных ветвей равно входному. Отсюда

$$I = \frac{U}{1.5 \cdot X_L} = \frac{1}{1.5 \cdot 10^3} = 0,66 \text{ MA}.$$

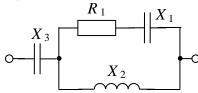

Задачи

- 2.1. Функция входного сопротивления ЭЦ $\underline{Z}_{\rm BX}(j\,\omega) = \frac{R\,j\,\omega L}{R+j\,\omega L} \,. \ \ \mbox{Записать выражения АЧХ и} \label{eq:ZBX}$ ФЧХ.
- 2.2. Для схемы записать выражение коэффициента передачи по току $\underline{k}_i(j\,\omega) = \frac{\underline{I}_2}{\underline{I}_1}$.
- 2.3. Для схемы задания 3.2 записать выражения АЧХ и Φ ЧХ передаточной функции $\underline{k}_i(j\omega)$.
- 2.4. Записать выражение коэффициента передачи по $\underbrace{\frac{R_1}{U_1}}_{R_2} = \underbrace{\frac{R_2}{U_2}}_{R_2} + \underbrace{\frac{U_2}{U_2}}_{R_2} = \underbrace{\frac{U_2}{U_1}}_{R_2} .$
- 2.5. Для схемы задания 3.4 записать выражения АЧХ и ФЧХ передаточной функции $\underline{k}_u(j\omega)$.


- 2.6. Построить АЧХ и ФЧХ функции входного сопротивления $\underline{Z}_{\rm BX}(j\,\omega) = R j\,\frac{1}{\omega C}$.
- 2.7. Построить АЧХ и ФЧХ функции входного сопротивления последовательной *RLC*-цепи.

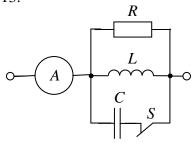

Построить АЧХ и ФЧХ $\phi(\omega)$ для коэффициента передачи по напряжению $k_u(j\omega)$.

Определить значение сопротивления X_1 , при котором в цепи будет резонанс. $R_1 = 10$ Ом; $X_2 = 5$ Ом.



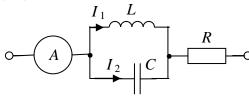
Определить значение сопротивления X_2 , при котором в цепи будет резонанс токов. $R_1 = X_1 = 5$ Ом; $R_3 = 10$ Ом.

Определить частоту f , при которой в цепи будет резонанс токов, если L=0,1 Гн, R=5 Ом, C=25,4 мк Φ .


2.12.

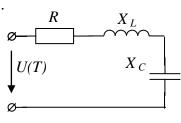
Определить комплекс полного сопротивления, если V = V = 20 Ом

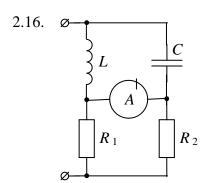
$$X_3 = X_2 = 20$$
 Om,
 $R_1 = X_1 = 10$ Om.


2.13.

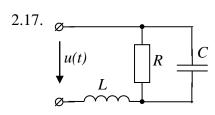
Как изменится показание амперметра после размыкания ключа S, если

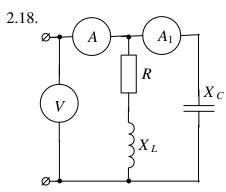
$$R = \omega L = \frac{1}{\omega C}.$$


2.14.

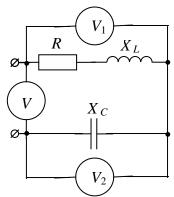

Определить показание амперметра электромагнитной системы.

$$I_1 = I_2 = 10 \text{ A}.$$

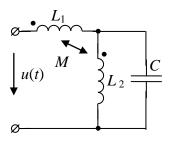

2.15.


Каким должно быть соотношение между параметрами цепи (R, X_L, X_C) при резонансе, чтобы входное напряжение было больше напряжения на конденсаторе?

Определить частоту ω_0 и показание амперметра при резонансе. U=200 B, C=2 мк Φ , L=20 м Γ н, $R_1=R_2=100$ Ом.



При каком значении сопротивления R на частоте $\omega_0 = 10^4~{\rm c}^{-1}$ наступит резонанс? $L=2~{\rm M}\Gamma$ н, $C=5~{\rm M}$ к Φ .


Показания приборов в схеме: $I_A = 5$ A; $I_{A1} = 8,67$ A; $U_V = 100$ В. Определить сопротивление R при резонансе токов.

2.19.

Показания приборов в схеме при резонансе: $U_{V1} = 20\,$ В; $U_{V2} = 10\,$ В. Определить U_V и добротность контура.

2.20.

При каком значении емкости C в цепи на частоте $\omega_0 = 10^3$ с $^{-1}$ наступит резонанс напряжений? $k_{\rm CB} = 0.5$; $L_1 = L_2 = 20$ м Γ н.

ТЕМА 3. ПРИНЦИПЫ И ТЕОРЕМЫ ТЕОРИИ ЦЕПЕЙ

Пример 3.1. Определить ток \underline{I}_3 цепи (рис. 3.1), используя метод эквивалентного генератора. Параметры цепи:

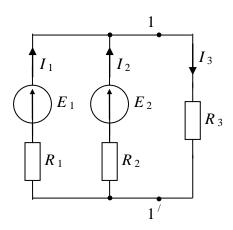


Рис. 3.1

$$R_1 = 6 \,\mathrm{OM}$$
; $R_2 = 4 \,\mathrm{OM}$; $R_3 = 12 \,\mathrm{OM}$; $E_1 = 120 \,\mathrm{B}$; $E_2 = 100 \,\mathrm{B}$.

Решение. Заменим часть цепи слева от зажимов $1-1^{-1}$ источником ЭДС *E* с внутренним сопротивлением R_{\ni} (рис. 3.2, а).

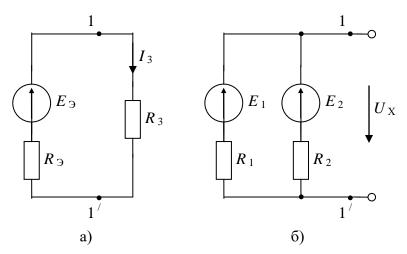
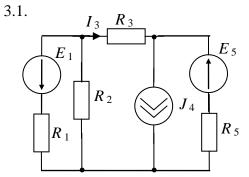
ЭДС E равна напряжению на зажимах $1-1^{-1}$ цепи при отключеенной ветви R_3 (рис. 3.2, б):

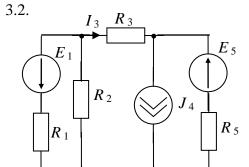
$$E_{9} = U_{X} = E_{2} + \frac{E_{1} - E_{2}}{R_{1} + R_{2}} R_{2} = 108 \,\mathrm{B} .$$

Внутреннее сопротивление R_{\ni} равно входному сопротивлению цепи при отключенных источниках E_{1} и E_{2} :

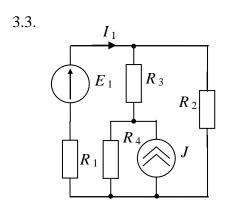
$$R_{\ni} = \frac{R_1 R_2}{R_1 + R_2} = 2,4 \,\text{Om}.$$

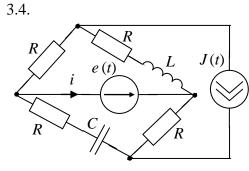
В соответствии со схемой (рис. 3.2, а)

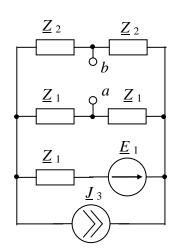

Рис. 3.2

$$I_3 = \frac{E_9}{R_9 + R_3} = 7.5 \,\mathrm{A} \;.$$


Задачи

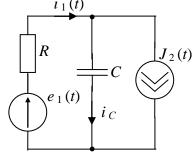

Методом эквивалентного генератора определить E_5 ток I_3 . Параметры схемы: $E_1 = E_5 = 15\,\mathrm{B};$ $J_4 = 0,3\,$ A; $R_1 = 10\,$ Ом; R_5 $R_2 = R_5 = 40\,$ Ом; $R_3 = 12\,$ Ом.

Определить параметры эквивалентного генератора для определения тока I_3 в схеме с параметрами: $E_1 = 10\,\mathrm{B}$; $J = 0.015\,\mathrm{A}$; $R_1 = R_2 = 200\,\mathrm{Om}$. $R_3 = ?\,R_5 = ?$



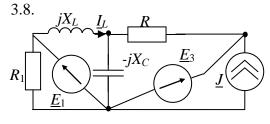
Методом наложения определить ток I_1 в схеме с параметрами: $E_1 = 30\,\mathrm{B}$; $J = 8\,\mathrm{A}$; $R_1 = R_3 = R_4 = 15\,\mathrm{Om}$; $R_2 = 30\,\mathrm{Om}$.

Определить ток в цепи источника ЭДС i(t), если параметры схемы: R = 20 Ом; $\frac{1}{\omega}C = 40$ Ом; $\omega L = 80$ Ом; $e(t) = 40\sqrt{2}\sin(\omega t + 45^{\circ})$ В; $J(t) = 1\sin\omega t$ А.


3.5.

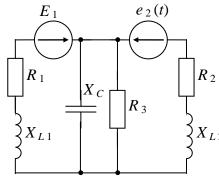
Определить $\underline{Z}_{\Gamma} = \underline{Z}_{ab}$ ДЛЯ схемы с параметрами:

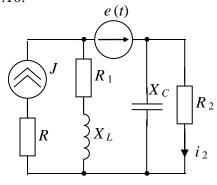
$$\underline{Z}_1 = 30e^{j60^{\circ}}$$
 Om;
 $\underline{Z}_2 = 10e^{j60^{\circ}}$ Om.


3.6.

Методом наложения опре $i_{C}(t)$, делить ток если:

$$J_2(t)$$
 $R = 20 \text{ Om; } C = 500 \text{ MK}\Phi;$ $e_1(t) = 20\sqrt{2} \sin(100t + 45^\circ)\text{B};$ $J_2(t) = 1\sin(100t + 90^\circ)\text{A}.$


В схеме задания 3.6 определить ток $i_1(t)$ методом эк-3.7. вивалентного генератора.


Методом эквивалентного генератора определить ток $i_L(t)$.

$$\underline{E}_1 = 10 \text{ B};$$

 $\underline{E}_3 = j10 \text{ B};$
 $R = X_L = 10 \text{ Om};$
 $R_1 = X_C = 5 \text{ Om}.$

3.9.

3.10.

Определить ток $i_L(t)$ методом наложения. Параметры схемы:

$$\begin{bmatrix} R_1 = X_{L1} = 20 \text{ Om}; \\ R_2 = R_2 = 10 \text{ Om}; & X_{L2} = 30 \text{ Om}; \\ R_3 = X_C = 40 \text{ Om}; \\ X_{L2} & E_1 = 56 \text{ B} = \text{const}; \\ e_2(t) = 30\sqrt{2} \sin(\omega t + 30^\circ) \text{B}. \end{bmatrix}$$

Методом наложения рассчитать ток $i_2(t)$ в схеме с параметрами:

$$R = R_1 = 20 \,\text{Om};$$

 $R_2 = X_C = 60 \,\text{Om};$
 $X_L = 30 \,\text{Om};$
 $J = 2 \,\text{A} = \text{const};$
 $i_2 \qquad e(t) = 40\sqrt{2} \sin \omega t \,\text{B}.$

ТЕМА 4. АНАЛИЗ РАЗВЕТВЛЕННЫХ ЭЛЕКТРИЧЕСКИХ ЦЕПЕЙ

Пример 4.1. Для цепи (рис. 4.1, а) составить систему контурных уравнений.

Решение. В данной цепи m=6 ветвей, k=4 узлов, $m_{\rm ut}=1$ ветвей с источниками тока, m-k+1=3 независимых контуров, $m-m_{\rm ut}-k+1=2$ неизвестных контурных токов.

Система контурных уравнений (рис. 4.1, б):

$$\begin{split} \underline{Z}_{11}\underline{I}_{11} + \underline{Z}_{12}\underline{I}_{22} + \underline{Z}_{13}\underline{I}_{33} &= \underline{E}_{11}; \\ \underline{Z}_{21}\underline{I}_{11} + \underline{Z}_{22}\underline{I}_{22} + \underline{Z}_{23}\underline{I}_{33} &= \underline{E}_{22}, \end{split}$$

где $\underline{I}_{11} = \underline{I}_2$, $\underline{I}_{22} = \underline{I}_4$ — неизвестные контурные токи; $\underline{I}_{33} = \underline{J}$ — известный контурный ток; $\underline{Z}_{11} = \underline{Z}_2 + \underline{Z}_3$ и $\underline{Z}_{22} = \underline{Z}_3 + \underline{Z}_4 + \underline{Z}_6$ — собственные сопротивления первого и второго контуров, $\underline{Z}_{12} = -\underline{Z}_3$, $\underline{Z}_{23} = -\underline{Z}_6$ и $\underline{Z}_{13} = 0$ — взаимные сопротивления контуров; $\underline{E}_{11} = \underline{E}$ и $\underline{E}_{22} = 0$ — контурные ЭДС первого и второго контуров.

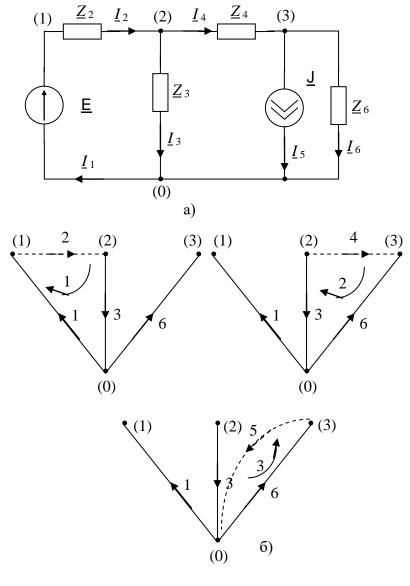
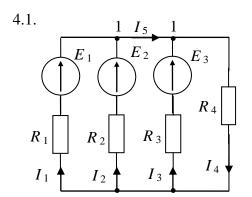
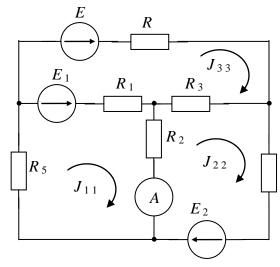



Рис. 4.1

Подставив в систему контурных уравнений выражения сопротивлений и перенеся в правую часть уравнения контурный ток, получим:

$$\begin{aligned} & \left(\underline{Z}_1 + \underline{Z}_2\right)\underline{I}_{11} - \underline{Z}_3\underline{I}_{22} = \underline{E}; \\ & -\underline{Z}_3\underline{I}_{11} + \left(\underline{Z}_3 + \underline{Z}_4 + \underline{Z}_6\right)\underline{I}_{22} = \underline{Z}_6\underline{J}. \end{aligned}$$


Задачи

Методом узловых потенциалов определить токи в схеме; записать значение потенциала ϕ_1 .

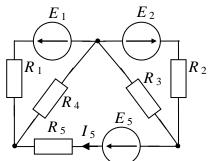
$$E_1 = E_2 = E_3 = 40 \,\mathrm{B};$$
 $R_1 = R_2 = R_3 = R_4 = 2 \,\mathrm{Om}.$

Методом контурных токов определить показание амперметра и контурные токи. Параметры цепи:

$$E = 90 \,\mathrm{B};$$

 $E_1 = 110 \,\mathrm{B};$

$$E_2 = 15 \,\mathrm{B};$$


$$R_4 R = R_1 = 5 \,\mathrm{Om};$$

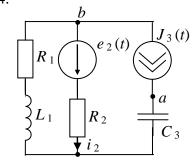
 $R_2 = 2 \,\mathrm{Om};$

$$R_3 = 10 \,\mathrm{Om};$$

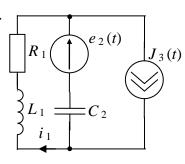
$$R_4 = 3 \,\mathrm{Om};$$

$$R_5 = 7 \,\mathrm{OM}$$
.

4.3.



Определить ток I_5 в схеме с параметрами:


$$E_1 = E_3 = 20 \,\mathrm{B}\;;\; E_2 = 10 \,\mathrm{B}\;;$$
 $R_1 = R_2 = 20 \,\mathrm{Om}\;;$ $R_3 = R_4 = 10 \,\mathrm{Om}\;;$

 $R_5 = 20 \,\mathrm{Om}; \; E_5 = 20 \,\mathrm{B}.$

4.4.

4.5.

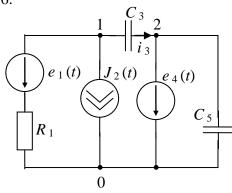
Методом законов Кирхгофа определить ток $i_2(t)$ и напряжение $u_{ab}(t)$ на зажимах источника тока. Параметры цепи: $e_2(t) = 10\sqrt{2}\sin(\omega t + 90^\circ)$ В;

$$e_2(t) = 10\sqrt{2} \sin(\omega t + 90^\circ) \text{B};$$

 $J_3(t) = 2\sqrt{2} \sin \omega t \text{ A};$

$$R_1 = R_2 = X_{L1} = X_{C3} = 10 \,\text{Om}$$
.

Методом контурных токов определить ток $i_1(t)$. Параметры цепи:


$$e_2(t) = 20\sin \omega t$$
 B;

$$J_3(t) = 1\cos\omega t A;$$

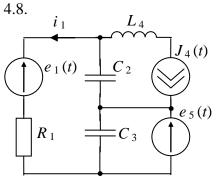
$$R_1 = X_{L1} = 20 \,\mathrm{Om};$$

$$X_{C2} = 40 \,\mathrm{OM}$$
.

4.6.

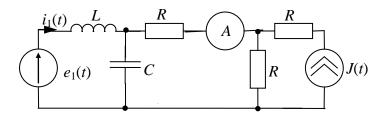
Методом узловых потенциалов рассчитать $i_3(t)$ и записать в комплексной форме потенциалы точек 1 и 2. Параметры цепи: $C_{\underline{5}}$ $e_1(t) = 10\sqrt{2} \sin \omega t B;$

$$e_1(t) = 10\sqrt{2} \sin \omega t B$$

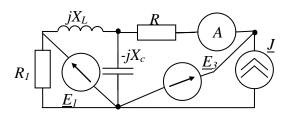

$$e_4(t) = 10\sqrt{2}\cos\omega t$$
 B;

$$J_2(t) = \sqrt{2}\sin(\omega t + 90^\circ)A;$$

$$R_1 = X_{C3} = X_{C5} = 10 \,\text{Om}.$$

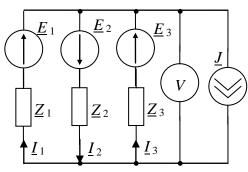

4.7. \underline{Z}_1 Z_5 J_5 Z_6 Z_4

Укажите наиболее рациональный способ расчета тока I_6 в комплексной схеме замещения.


Определить ток $i_1(t)$ наиболее рациональным методом. Параметры цепи: $R_1 = X_{L1} = X_{C2} = X_{C3} = 10 \,\text{Om};$ $e_1(t) = 10\sqrt{2}\cos\omega t$ B; $e_5(t) = 10\sqrt{2} \sin \omega t B$; $J_A(t) = 2\sin(\omega t + 45^\circ)A$.

4.9.

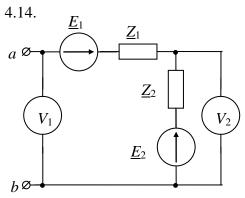
Определить показание амперметра электромагнитной системы. Параметры цепи: $R = X_L = X_C = 10 \, \mathrm{Om}$; $e_1(t) = 10\sqrt{2} \sin \omega t \, \mathrm{B}$; $J(t) = \sqrt{2} \cos \omega t \, \mathrm{A}$.


- 4.10. В схеме задания 4.9 определить ток $i_1(t)$ методом контурных токов.
- 4.11.

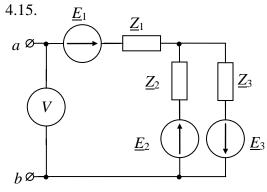
Определить показание амперметра электромагнитной системы. Параметры схемы замещения: $\underline{E}_1 = 10\,\mathrm{B}$;

$$\underline{E}_3 = j10\,\mathrm{B}\,;\;\underline{J} = 5\,\mathrm{A}\,;\; R = X_L = 10\,\mathrm{Om}\,;$$

$$R_1 = X_C = 5\,\mathrm{Om}\,.$$


4.12.

Определить показание вольтметра электромагнитной системы методом узловых потенциалов. Параметры схемы замещения:


$$\begin{split} \underline{E}_1 &= \underline{E}_2 = j10\,\mathrm{B}\,;\\ \underline{E}_3 &= -j10\,\mathrm{B}\,; \quad \underline{J} = 10\,\mathrm{A}\,;\\ \underline{Z}_1 &= 1\,\mathrm{Om}\,; \quad \underline{Z}_2 = j\,\mathrm{Om}\,;\\ Z_3 &= -j\,\mathrm{Om}\,. \end{split}$$

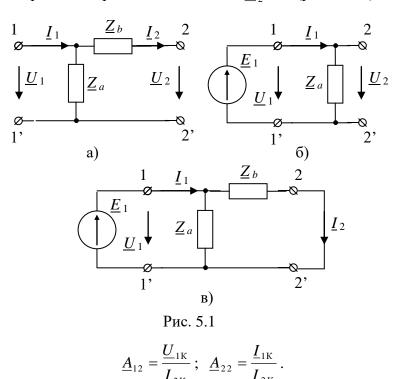
4.13. В схеме задания 4.12 рассчитать комплексы токов ветвей \underline{I}_1 , \underline{I}_2 , \underline{I}_3 .

Определить показание вольтметров электромагнитной системы. Параметры схемы замещения:

противления схемы \underline{Z}_{ab} .

Определить Z_{ab} и показание вольтметра электромагнитной системы. Параметры схемы замещения: $\underline{E}_1 = 10\,\mathrm{B}$; $\underline{E}_2 = j\,10\,\mathrm{B}$ $\underline{E}_3 = j\,5\,\mathrm{B}$; $\underline{Z}_1 = 1\,\mathrm{Om}$; $\underline{Z}_2 = 1 - j\,\mathrm{Om}$; $\underline{Z}_3 = 1 + j\,\mathrm{Om}$.

ТЕМА 5. ЧЕТЫРЕХПОЛЮСНИКИ


Пример 5.1. Определить A-параметры Γ -образного четырехполюсника (рис. 5.1, а) методом холостого хода и короткого замыкания.

Решение. Воспользуемся основными уравнениями четырехполюсника в *A*-форме.

Параметры четырехполюсника в режиме холостого хода, $I_2 = 0$ (рис. 5.1, б):

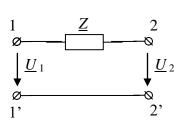
$$\underline{A}_{11} = \frac{\underline{U}_{1X}}{\underline{U}_{2X}}; \ \underline{A}_{21} = \frac{\underline{I}_{1X}}{\underline{U}_{2X}}.$$

В режиме короткого замыкания, $U_2 = 0$ (рис. 5.1, в):

Из схем (рис. 5.1, б, в) видно, что в режиме холостого хода $\underline{U}_2 = \underline{U}_1 = \underline{E}_1$, $\underline{I}_1 = \underline{\underline{E}}_1$, а в режиме короткого замыкания

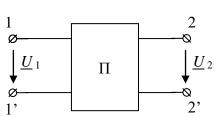
$$\underline{I}_2 = \frac{\underline{U}_1}{\underline{Z}_b} = \frac{\underline{E}_1}{\underline{Z}_b} \; , \; \underline{I}_1 = \underline{E}_1 \, \frac{\underline{Z}_a \underline{Z}_b}{\underline{Z}_a + \underline{Z}_b} \; .$$

Используя полученные соотношения, находим:

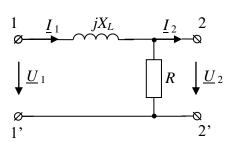

$$\underline{A}_{11} = 1; \quad \underline{A}_{12} = \frac{\underline{E}_1 \underline{Z}_b}{\underline{E}_1} = \underline{Z}_b; \quad \underline{A}_{21} = \frac{\underline{E}_1}{\underline{E}_1 \underline{Z}_a} = \frac{1}{\underline{Z}_a};$$

$$\underline{A}_{22} = \frac{\underline{E}_1 \underline{Z}_b (\underline{Z}_a + \underline{Z}_b)}{\underline{E}_1 \underline{Z}_a \underline{Z}_b} = 1 + \frac{\underline{Z}_b}{\underline{Z}_a};$$

$$\mathbf{A} = \begin{bmatrix} 1 & \underline{Z}_b \\ \frac{1}{Z_a} & 1 + \frac{\underline{Z}_b}{Z_a} \end{bmatrix}.$$

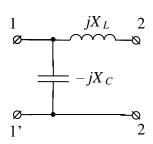

Задачи

5.1.

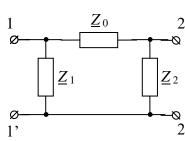

Определить A-параметры пассивного четырехполюсника, если комплекс \underline{Z} заци.

5.2.

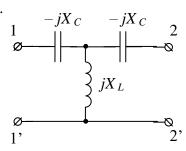
Определить *A*-параметры пассивного симметричного четырехполюсника, \underline{U}_2 если известно, что $\underline{Z}_{1X} = (6 - j2)$ Ом; $\underline{Z}_{1K} = (5 - j5)$ Ом.


5.3.

Записать уравнения несимметричного четырехполюсника через Z-параметры.

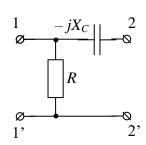

- 5.4. Для четырехполюсника задания 6.3 рассчитать A-параметры, если $R = X_L = 10$ Ом.
- 5.5. Симметричный четырехполюсник с параметрами $\underline{A} = 1 j$, $\underline{B} = -10 j \, 20$, $\underline{C} = 0,1$ заменить эквивалентной схемой Т-образного четырехполюсника и определить значения сопротивлений \underline{Z}_1 , \underline{Z}_2 и \underline{Z}_0 .

5.6.


Записать уравнения несимметричного Γ -образного четырехполюсника через Y-параметры, если $X_L = X_C = 10$ Ом. Составить матрицу Y-параметров.

5.7.

Определить A-параметры \underline{Z}_C и $\underline{\Gamma}$ симметричного четырехполюсника, если $\underline{Z}_1 = \underline{Z}_2 = j10$ Ом; $\underline{Z}_0 = j3$ Ом.


5.8.

Определить характеристическое сопротивление \underline{Z}_{C} и коэффициент передачи симметричного четырехполюсника с параметрами:

$$X_L = 10 \text{ Om}; \ X_C = 20 \text{ Om}.$$

5.9.

Рассчитать коэффициент затухания и фазовый коэффициент Г-образного четырехполюсника с постоянными:

$$\begin{split} &\underline{A}_{11}=1\,;\;\underline{A}_{12}=-j\,5\;\;\mathrm{Om};\\ &\underline{A}_{21}=0,2\;\;\mathrm{Cm};\;\underline{A}_{22}=\sqrt{2}\,e^{-j\,45}\;\;. \end{split}$$

5.10. Рассчитать характеристические параметры симметричного четырехполюсника задания 5.9.

ТЕМА 6. РАСЧЕТ ЭЛЕКТРИЧЕСКИХ ЦЕПЕЙ ПРИ ПЕРИОДИЧЕСКИХ НЕСИНУСОИДАЛЬНЫХ ВОЗДЕЙСТВИЯХ

Пример 6.1. Определить ток в простейшей неразветвленной *RLC*-цепи в установившемся режиме, если напряжение на входных зажимах является периодической несинусоидальной функцией.

Решение. Представим входное напряжение в виде ряда

$$u = u_0 + u_1 + u_2 + \dots + u_k + \dots,$$

где u_0 — постоянная составляющая напряжения;

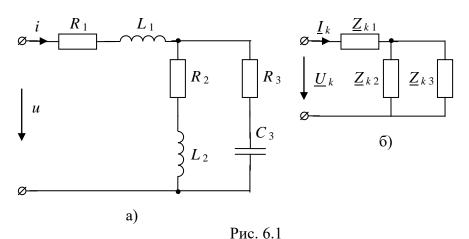
 $u_k = U_{km} \sin(k \omega t + \psi_{uk})$ — высшая (*k*-я) гармоника напряжения.

Так как $\omega=0$, то $\underline{Z}=\infty$ и постоянная составляющая $i_0=0$. Мгновенное значение k-й гармоники тока

$$i_k = I_{km} \sin(k \omega t + \psi_{uk} - \varphi_k),$$

где
$$I_{km} = \frac{U_{km}}{\sqrt{R^2 + \left(k \, \omega L - \frac{1}{k \, \omega C}\right)^2}}; \quad \phi_k = \operatorname{arctg} \frac{k \, \omega L - \frac{1}{k \, \omega C}}{R}.$$

Искомый ток определяется суммой


$$i = 0 + i_1 + i_2 + \cdots + i_k + \cdots$$

Пример 6.2. Определить комплексную амплитуду входного тока в разветвленной цепи (рис. 6.1, а).

Решение. Воспользуемся методом комплексных амплитуд, для чего преобразуем схему (рис. 6.1, a) к эквивалентной схеме (рис. 6.1, b).

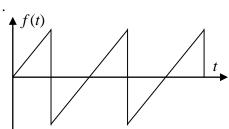
Комплексная амплитуда напряжения к-й гармоники

$$\underline{U}_{km} = U_{km} e^{j \Psi_{uk}}.$$

Комплексное сопротивление цепи

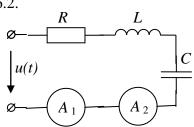
$$\underline{Z}_{k} = Z_{k1} + \frac{\underline{Z}_{k2} \underline{Z}_{k3}}{Z_{k2} + Z_{k3}} = Z_{k} e^{j\varphi_{k}},$$

где
$$\underline{Z}_{k1}=R_1+j\,\omega k\,L_1\,;\;\underline{Z}_{k2}=R_2+j\,\omega k\,L_2\,;$$

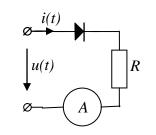

$$\underline{Z}_{k3} = R_3 - j \frac{1}{\omega k C_3}.$$

Комплексная амплитуда тока

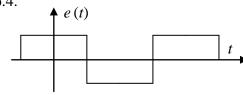
$$\underline{I}_{km} = \frac{\underline{U}_{km}}{\underline{Z}_{k}} = \frac{U_{km} e^{j\psi_{uk}}}{Z_{k} e^{j\phi_{k}}} = \frac{U_{km}}{Z_{k}} e^{j(\psi_{uk} - \phi_{k})} = I_{km} e^{j\psi_{ik}}.$$


Задачи

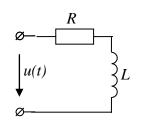
6.1.


Какие гармоники входят в состав функции f(t)?

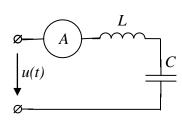
6.2.


Ток в цепи изменяется по закону: $i t = 10\sqrt{2}\sin\omega t + 5\sqrt{2}\sin3\omega t$ А. Что покажут амперметры магнито-электрической (A_1) и электромагнитной (A_2) систем?

6.3.

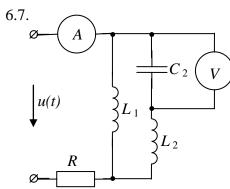

Определить показание амперметра магнитоэлектрической системы, если $u(t) = 100 \sin \omega t$ B, R = 10 Ом.

6.4.



Запишите в общем виде разложение в ряд Фурье функции e(t), учитывая симметрию кривой.

6.5.

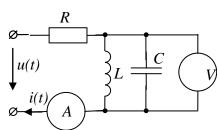


6.6.


Сопротивление катушки индуктивности для второй гармоники $\underline{Z}^{(2)} = 20\sqrt{2}\,e^{j45^\circ}$ Ом. Определить сопротивление этой катушки для третьей гармоники.

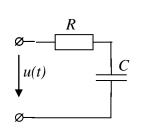
Найдите показание электромагнитного амперметра, если $u\left(t\right) = \left(100\sqrt{2} \sin \omega t - 100\sqrt{2} \sin \left(3\omega t + 60^{\circ}\right)\right) \text{B},$ $\omega L = 10 \text{ Om; } \frac{1}{\omega C} = 30 \text{ Om.}$

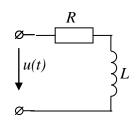
Определить показания приборов электродинамической системы I_A и U_V , если $u(t) = 9 + 12\cos 3\omega t$ В, R = 3 Ом, $X_{L1} = 2$ Ом, $X_{L2} = 5$ Ом, $X_{C2} = 45$ Ом.


6.8.

Определить показания приборов электромагнитной системы $I_{\scriptscriptstyle A}$ и $U_{\scriptscriptstyle V}$, если

$$u(t) = 18 + 24\cos 3\omega t$$
 B,
 $R = 6$ Om, $X_L = 5$ Om,
 $X_C = 45$ Om.

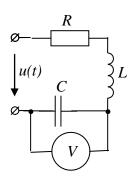

6.9.


 $u(t) = (20 + 100\sqrt{2} \sin(\omega t + 90^{\circ}) + 20\sqrt{2} \sin(\omega t + 45^{\circ})) B;$ $R = 10 \text{ Om}; \ L = 0,1 \text{ } \Gamma_{\text{H}};$

C=1 мФ. Определить ток i(t), показания вольтметра электромагнитной и амперметра — магнитоэлектрической системы.

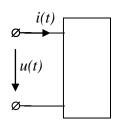
6.10.

6.11.


$$u(t) = (100\sqrt{2} \sin \omega t + + 20\sqrt{2} \sin 3\omega t) \text{ B};$$

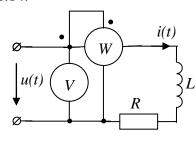
$$R = 10 \text{ Om}; \frac{1}{\omega C} = 30 \text{ Om}.$$

Определить активную мощность, выделяемую в цепь.


$$u(t) = (80 + 100\sqrt{2} \sin 2\omega t) \text{ B};$$

 $R = 20 \text{ Om}; \ \omega L = 10 \text{ Om}.$

Определить активную и полную мощности в цепи.

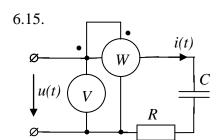

6.12.

6.13.

6.14.

$$u(t) = (100 + 50\sqrt{2} \sin \omega t) \text{ B};$$
$$2\omega L = \frac{1}{\omega C} = R = 10 \text{ Om}.$$

Как изменится показание вольтметра магнитоэлектрической системы, если индуктивность увеличить в два раза?


Для пассивного двухполюсника определить мощности P, Q, S и мощность искажения T, если дано:

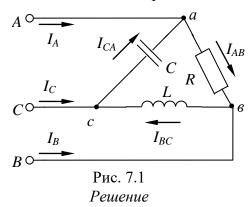
$$u(t) = (20 + 15\sqrt{2} \sin \omega t + 5\sqrt{2} \sin 3\omega t) B;$$

$$i(t) = (2 + 2\sqrt{2} \sin (\omega t + 60^{\circ}) + \sqrt{2} \sin (3\omega t + 30^{\circ})) A.$$

Показания вольтметра и ваттметра электродинамической системы $P_W=116$ Вт и $U_V=50$ В. Ток $i(t)=(4+8\sin\omega t+4\sin2\omega t+2\sin3\omega t)$ А; $\omega=50\,\mathrm{c}^{-1}$. Определить параметры ка-

Определить параметры катушки индуктивности R и L.

Дано: $P_W = 50$ Вт; $U_V = 50$ В; $\omega = 314 \,\mathrm{c}^{-1}$; $i(t) = (2\sin \omega t + \sin 3\omega t)$ А. Определить R и C.



Определить значения L_1 и L_2 , если $u_1(t) = U_{1m} \sin \omega t + U_{2m} \sin 2\omega t$; $u_2(t)$ u_2 t u_2 u_3 u_4 u_5 u_5 u_6 u_7 u_8 u_8

ТЕМА 7. ТРЕХФАЗНЫЕ ЦЕПИ

Пример 7.1. Дано: несимметричная нагрузка включена по схеме треугольника. Линейное напряжение U=80~B, сопротивления фаз нагрузки R=10~Oм, $X_L=16~O$ м, $X_C=8~O$ м.

Рассчитать токи в линейных проводах А, В и С.

Фазные напряжения нагрузки

$$U_{AB} = U_{BC} = U_{CA} = U\sqrt{3} = 80\sqrt{3} = 139B.$$

Фазные токи

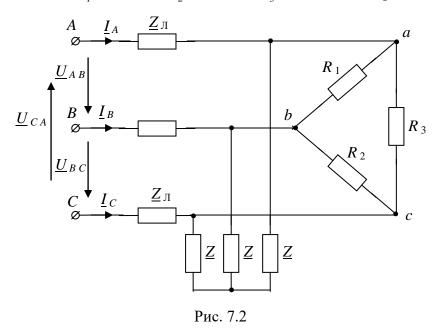
$$\underline{I}_{AB} = \frac{U_{AB}}{R} = \frac{139}{10} = 13.9 A; \underline{I}_{BC} = \frac{U_{BC}}{jX_L} = \frac{139}{j16} = -j8.66 A;$$

$$\underline{I}_{CA} = \frac{U_{CA}}{-jX_C} = \frac{139}{-j8} = j17.3A.$$

Линейные токи, согласно первому закону Кирхгофа,

$$\underline{I}_{A} = \underline{I}_{AB} - \underline{I}_{CA} = 13.9 - j17.3 = 22.2e^{-j51.3^{\circ}} A;$$

$$\underline{I}_{B} = \underline{I}_{BC} - \underline{I}_{AB} = -13.9 - j8.66 = 16.3e^{-j148^{\circ}} A;$$


$$\underline{I}_{C} = \underline{I}_{CA} - \underline{I}_{BC} = j17.3 + j8.66 = j26 = 26e^{j90^{\circ}} A.$$

$$\underline{I}_{A} + \underline{I}_{B} + \underline{I}_{C} = 0.$$

$$\underline{I}_{A} = 13.9 - j17.3 = 22.2e^{-j51.3^{\circ}} A;$$

$$\underline{I}_{B} = -13.9 - j8.66 = 16.3e^{-j148^{\circ}} A; \underline{I}_{C} = j26 = 26e^{j90^{\circ}} A.$$

Пример 7.2. В схеме цепи (рис. 7.2) с симметричной системой фазовых напряжений ($U_{\Phi}=220\,$ В) симметричная нагрузка соединена звездой сопротивлений $\underline{Z}=3+j4\,$ Ом, несимметричная нагрузка соединена треугольником сопротивлений $R_1=20\,$ Ом, $R_2=50\,$ Ом, $R_3=100\,$ Ом. Сопротив-

ление линейных проводов $\underline{Z}_{\Pi}=3+j3$ Ом. Определить линейные токи \underline{I}_A , \underline{I}_B , \underline{I}_C .

Решение. Преобразуем симметричную звезду нагрузки в треугольник сопротивлений

$$\underline{Z}_{\Delta} = 3\underline{Z} = 9 + j12 = 15e^{j53,1^{\circ}}$$
 Om.

Сопротивления параллельно включенных пар сторон треугольника3

$$\underline{Z}_{1} = \frac{R_{1}\underline{Z}_{\Delta}}{R_{1} + \underline{Z}_{\Delta}} = \frac{20 \cdot 15 e^{j53,1^{\circ}}}{20 + 9 + j12} = 9,56 e^{j30,6^{\circ}} \text{ Om};$$

$$\underline{Z}_{2} = \frac{R_{2}\underline{Z}_{\Delta}}{R_{2} + \underline{Z}_{\Delta}} = 12,4 e^{j41,6^{\circ}} \text{ Om}; \quad \underline{Z}_{3} = \frac{R_{3}\underline{Z}_{\Delta}}{R_{3} + \underline{Z}_{\Delta}} = 13,7 e^{j46,8^{\circ}} \text{ Om}.$$

Преобразуем получившийся треугольник в эквивалентную звезду с сопротивлениями

$$\underline{Z}_{a} = \frac{\underline{Z}_{1}\underline{Z}_{3}}{\underline{Z}_{1} + \underline{Z}_{2} + \underline{Z}_{3}} = 3,69 e^{j36,8^{\circ}} \text{ Om};$$

$$\underline{Z}_{b} = \frac{\underline{Z}_{1}\underline{Z}_{2}}{\underline{Z}_{1} + \underline{Z}_{2} + \underline{Z}_{3}} = 3,36 e^{j91,6^{\circ}} \text{ Om};$$

$$\underline{Z}_{c} = \frac{\underline{Z}_{2}\underline{Z}_{3}}{Z_{1} + Z_{2} + Z_{3}} = 4,8 e^{j47,8^{\circ}} \text{ Om}.$$

Эквивалентные сопротивления фаз

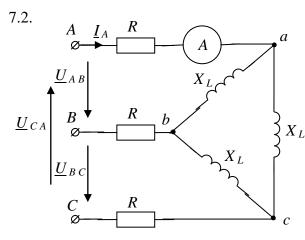
$$\underline{Z}_{A} = \underline{Z}_{\Pi} + \underline{Z}_{a} = 7.9e^{j41.2^{\circ}} \text{ Om}; \ \underline{Z}_{B} = \underline{Z}_{\Pi} + \underline{Z}_{b} = 7.55e^{j36.1^{\circ}} \text{ Om};$$

$$\underline{Z}_{C} = \underline{Z}_{\Pi} + \underline{Z}_{c} = 9.03e^{j46.5^{\circ}} \text{ Om}.$$

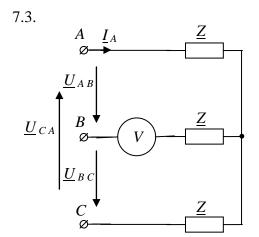
Линейные токи:

$$\underline{I}_{A} = \frac{\underline{E}_{A} - \underline{U}_{nN}}{\underline{Z}_{A}} = 27.8 e^{-j41.2^{\circ}} \text{ A};$$

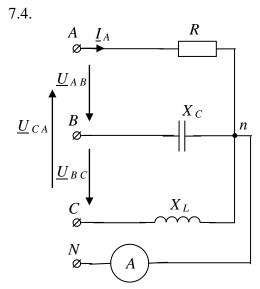
$$\underline{I}_{B} = \frac{\underline{E}_{B} - \underline{U}_{nN}}{\underline{Z}_{B}} = 29.1 e^{-j156^{\circ}} \text{ A};$$


$$\underline{I}_{C} = \frac{\underline{E}_{C} - \underline{U}_{nN}}{Z_{C}} = 24.4 e^{j73.5^{\circ}} \text{ A}.$$

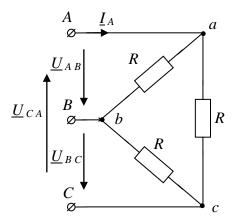
Задачи


7.1. Что го электро $\underline{\underline{E}}_{A}$ $\underline{\underline{E}}_{B}$ V

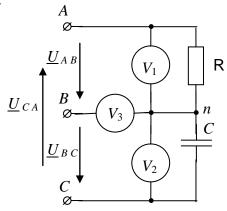
Что покажет вольтметр электродинамической


системы, включенный в разрыв обмотки трехфазного генератора, соединенного треугольником? В фазах генератора — симметричная система ЭДС.

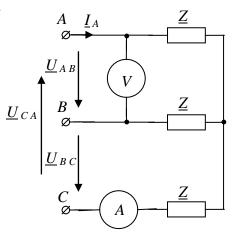
Определить линейный ток I_A , измеряемый электромагнитным амперметром, если линей- X_L ное напряжение $U_{\pi}=220$ В, $R=X_L=60$ Ом.



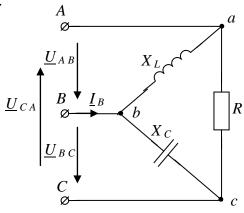
Что покажет вольтметр электромагнитной системы, если линейное напряжение генератора $U_{\Lambda} = U$?


Определить ток в нулевом проводе, если линейное напряжение генератора $U_{\rm J}=120~{\rm B},$ а сопротивления $R=X_{\rm L}=X_{\rm C}=10~{\rm kOm}.$

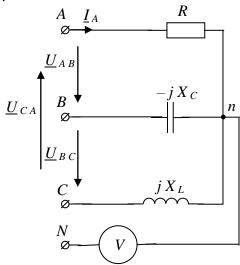
7.5.


Определить модуль тока I_A при обрыве линейного провода B, если известны значения фазного напряжения генератора $U_{\Phi}=100$ В и сопротивления R=100 Ом.

7.6.


Определить показание вольтметра V_3 , если $U_{V1} = 127 \, \mathrm{B},$ $U_{V2} = 220 \, \mathrm{B}.$

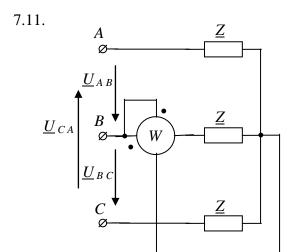
7.7.


В симметричной трехфазной цепи сопротивления нагрузки $\underline{Z} = (20 + j \, 20)$ Ом соединены в звезду, линейное напряжение $U_{AB} = U_V = 220$ В. Что покажет амперметр, включенный в фазу C?

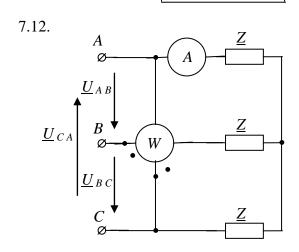
7.8.

Определить величину тока I_B , если модули токов в фазах треугольника $I_{\Phi} = 1 \, \mathrm{A}.$

7.9.

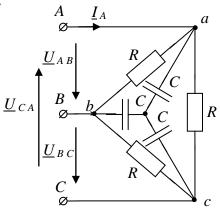


Определить показание вольтметра в несимметричной трехфазной цепи с соединением звезда — звезда с нулевым проводом, если фазное напряжение генератора $U_{\Phi}=120\,\mathrm{B},$ $R=X_L=X_C=10\,\mathrm{Om}.$

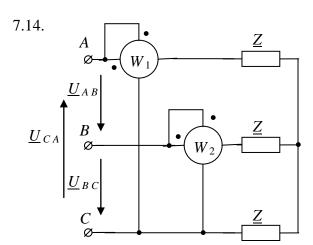

7.10. $\begin{array}{c|cccc}
A & R & R \\
\hline
 & & & & & \\
\hline
 & & & & & \\
\hline
 & &$

N

Трехфазная цепь с параметрами $R = X_L = X_C$ подключена к сети с фазным напряжением 220 В. Определить показание вольтметра.

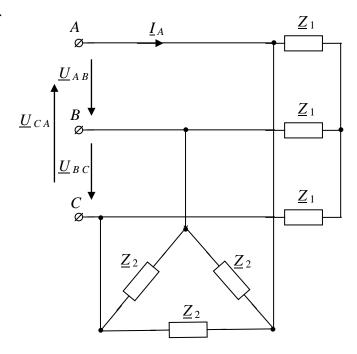


Определить мощность, которую по-кажет электродинамический ваттметр, включенный в трехфазную цепь с линейным напряжением $U_{\rm Л}=220\,{\rm B}$ и сопротивлениями $\underline{Z}=\left(20-j\,20\right){\rm Ом}.$

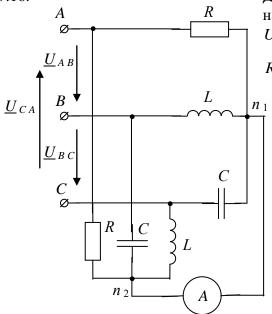


Определить показание ваттметра электродинамической системы и реактивную мощность трехфазной цепи, если $I_A = 4,4$ A, $\underline{Z} = 50 e^{-j80^\circ}$ Ом.

7.13.



Фазные токи в симметричной трехфазной цепи равны $I_R = I_C = 2 \text{ A.}$ Определить модули линейных токов.


Определить параметры симметричной трехфазной нагрузки X_L и R, если известны показания ваттметров:

 $P_{W1} = 400 \,\mathrm{BT};$ $P_{W2} = 200 \,\mathrm{BT}.$ 7.15.

Определить линейный ток \underline{I}_A , если мощность, потребляемая звездой сопротивлений нагрузки \underline{Z}_1 , $P_{Z1}=3,3$ кВт, а треугольником сопротивлений \underline{Z}_2 — $P_{Z2}=2,15$ кВт. Линейное напряжение $\underline{U}_{AB}=220$ В. Характер нагрузок Z_1 ($\cos \varphi_1=0,867$) и Z_2 ($\cos \varphi_2=0,707$) — активно-индуктивный.

Дано: линейное напряжение $U_{\rm J} = 100\,{\rm B};$

$$R = \omega L = \frac{1}{\omega C} = 10 \text{ Om}.$$

Что покажет амперметр, включенный между нулевыми точками двух звезд нагрузки?

ТЕМА 8. УСТАНОВИВШИЕСЯ РЕЖИМЫ В ЭЛЕКТРИЧЕСКИХ ЦЕПЯХ С РАСПРЕДЕЛЕННЫМИ ПАРАМЕТРАМИ

Pешение. Напряжение и ток в линии на расстоянии y от конца линии до рассматриваемой точки:

$$\underline{U} = \underline{U}_2 \operatorname{ch} \underline{\gamma} y + \underline{I}_2 \underline{Z}_B \operatorname{sh} \underline{\gamma} y; \ \underline{I} = \frac{\underline{U}_2}{\underline{Z}_B} \operatorname{sh} \underline{\gamma} y + \underline{I}_2 \operatorname{ch} \underline{\gamma} y.$$

Волновое сопротивление

$$\underline{Z}_{\rm B} = \sqrt{\frac{R_0 + j\omega L_0}{G_0 + j\omega C_0}} = (763.5 - j202.4) \text{ Om},$$

где угловая частота $\omega = 2\pi f = 3142 \,\mathrm{c}^{-1}$.

Коэффициент распространения

$$\underline{\gamma} = \alpha + j \beta = \sqrt{(R_0 + j \omega L_0)(G_0 + j \omega C_0)} =$$

$$= (7,059 \cdot 10^{-3} + j 0,023) \text{km}^{-1},$$

где $\alpha = 7,059 \cdot 10^{-3} \text{ км}^{-1}$ — коэффициент затухания; $\beta = 0,023 \text{ км}^{-1}$, — коэффициент фазы.

Напряжение и ток в начале линии (гиперболические функции вычислим с помощью Mathcad):

$$\underline{U}_{1} = \underline{U}_{2} \operatorname{ch} \underline{\gamma} l + \underline{I}_{2} \underline{Z}_{B} \operatorname{sh} \underline{\gamma} l = \left(-5,557 \cdot 10^{4} - j1,318 \cdot 10^{5}\right) B;$$

$$\underline{I}_{1} = \frac{\underline{U}_{2}}{\underline{Z}_{B}} \operatorname{sh} \underline{\gamma} l + \underline{I}_{2} \operatorname{ch} \underline{\gamma} l = \left(-28,42 - j159,3\right) A.$$

Пример 8.2. Считая линию (рис. 8.1) линией без потерь $(R_0 = G_0 = 0)$, определить напряжение \underline{U}_1 и ток \underline{I}_1 в начале линии и построить график распределения модуля напряжения вдоль линии в функции от координаты. Остальные данные взять из условия примера 8.1.

Решение. График распределения модуля напряжения вдоль линии в функции координаты $|\underline{U}(y)| = |\underline{U}_2 \operatorname{ch} j \beta l + \underline{I}_2 \underline{Z}_{\mathbb{C}} \operatorname{sh} j \beta l|$ представлен на рис. 8.2.

Для линии без потерь $(R_0 = G_0 = \alpha = 0)$: волновое сопротивление

$$\underline{Z}_{\rm C} = \sqrt{L_0/C_0} = 727.4 \text{ Om};$$

 $\gamma = j \omega \sqrt{L_0 C_0} = 0.022;$

$$\underline{U} = \underline{U}_2 \operatorname{ch} j \beta y + \underline{I}_2 \underline{Z}_C \operatorname{sh} j \beta y; \ \underline{I} = \underline{I}_2 \operatorname{ch} j \beta y + \frac{\underline{U}_2}{\underline{Z}_C} \operatorname{sh} j \beta y;$$

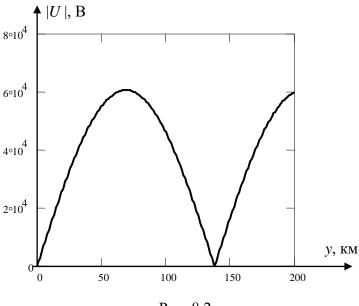
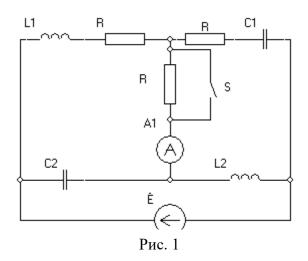


Рис. 8.2

$$\underline{U}_{1} = \underline{U}_{2} \operatorname{ch} j\beta l + \underline{I}_{2} \underline{Z}_{C} \operatorname{sh} j\beta l = (-15,69 - j5,993 \cdot 10^{4}) \operatorname{B};$$

$$\underline{I}_{1} = \underline{I}_{2} \operatorname{ch} j\beta l + \underline{\underline{U}_{2}} \operatorname{sh} j\beta l = (-13,09 - j0,113) \operatorname{A}.$$

Задачи


- 8.1. Определить длину волны, если известны параметры кабельной линии: $R_0=1$ Ом/км; $\omega C_0=4\cdot 10^{-4}$ См/км; $L_0=0$; $G_0=0$.
- 8.2. Параметры кабельной линии: $R_0=1$ Ом/км; $C_0=0,4\cdot 10^{-6}$ Ф/км; $L_0=0$; $G_0=0$. Определить фазовую скорость распространения волны вдоль линии при частоте $\omega=1000\,\mathrm{c}^{-1}$.

- 8.3. Длинная линия с первичными параметрами $R_0 = 22 \quad \text{Ом/км}; \quad C_0 = 7.8 \cdot 10^{-9} \quad \Phi/\text{м}; \quad L_0 = 8.4 \quad \text{мГн/км};$ $G_0 = 0.5 \cdot 10^{-5} \quad \text{См/км} \quad \text{работает на частоте} \quad f = 600 \quad \Gamma \text{ц}.$ Определить вторичные параметры Z_C , γ , α , β .
- 8.4. Телефонная линия характеризуется параметрами: $R_0=5,5$ Ом/км; $C_0=6\cdot10^{-9}$ Ф/км; $L_0=2\cdot10^{-3}$ Гн/км; $G_0=0,5\cdot10^{-6}$ См/км. Какие индуктивности L_1 на каждый километр длины нужно включить, чтобы линия стала неискажающей?
- 8.5. Параметры двух линий: $\underline{Z}_{C1} = 100 \;\; \text{Ом}; \;\; \underline{Z}_{C2} = 200 \, e^{j30^\circ} \;\; \text{Ом}. \;\; \text{Напряжение падающей волны} \;\; \underline{U}_{\Pi 1} = 5 \, e^{j60^\circ} \;\; \text{кВ}. \;\; \text{Определить напряжение волны, отраженной от места стыка линий.}$
- 8.6. Линия без потерь работает в режиме короткого замыкания на конце линии на частоте $f=1000~\Gamma$ ц. Длина линии $l=\lambda/3$. Параметры: $L_0=0,2~\mathrm{m}\Gamma$ н/км; $C_0=10^{-8}~\Phi$ /км. Определить входное сопротивление $\underline{Z}_{\mathrm{BX\,K3}}$.
- 8.7. Для линии длиной l=5 км на частоте f=1000 Γ ц известны сопротивления $\underline{Z}_{\rm BXX}=500e^{-j60^{\circ}}$ Ом и $\underline{Z}_{\rm BXK}=460e^{-j20^{\circ}}$ Ом. Определить волновое сопротивление $\underline{Z}_{\rm B}$ и коэффициент распространения γ .
- 8.8. Длинная линия с параметрами $\underline{Z}_{\rm B} = 500 \, e^{-j37^{\circ}}$ Ом и $\underline{\gamma} = 0.2 \, e^{-j45^{\circ}}$ км $^{-1}$ короткозамкнута на конце и присоединена к источнику синусоидального напряжения с частотой f = 1000 Гц. Длина линии l = 5 км. Определить ток и напряжение в начале линии, если ток в конце линии $\underline{I}_2 = 2$ А.

- 8.9. Длинная линия замкнута на активное сопротивление $\underline{Z}_2 = 200$ Ом. Определить напряжение \underline{U}_1 на входе линии, если по нагрузке протекает ток $\underline{I}_2 = 1,5$ А, а f = 1000 Гц. Параметры линии: $\underline{Z}_{\rm B} = 500 e^{-j37^{\circ}}$ Ом; $\gamma = \left(0,1414 + j\,0,1414\right)$ км $^{-1}$. Длина линии l = 5 км.
- 8.10. Для линии задания 9.9 определить входной ток \underline{I}_1 , если линия нагружена на сопротивление $\underline{Z}_2 = 200\,$ Ом, а по нагрузке протекает ток $\underline{I}_2 = 2\,$ А при частоте $f = 1000\,$ Гц.

ЗАДАЧИ ПОВЫШЕННОЙ ТРУДНОСТИ

Пример 1.Как изменится показания амперметра в схеме рис.1 после замыкания переключателя, если $\dot{E} = 100\,B$, $\omega L_2 = 1/\omega C_2$.

Решение. Применим теорему об активном источнике. Пир включенном R показание амперметра равно $\dot{I}_A = \dot{U}_X/(\underline{Z}_{\mathcal{Z}} + R) \,, \, \text{а при закороченном R: } \dot{I'}_A = \dot{U}_X/\underline{Z}_{\mathcal{Z}} \,.$

Определим

$$\underline{Z}_{\mathcal{Z}} = \frac{j\omega L_{2}(-j\frac{1}{\omega C_{2}})}{j(\omega L_{2} - \frac{1}{\omega C_{L}})} + \frac{(R + j\omega L_{1})(R - j\frac{1}{\omega C_{1}})}{2R + j\omega L_{1} - \frac{1}{\omega C_{1}}} = \infty, \quad \text{t.k.}$$

 $\omega L_2 = \frac{1}{\omega C_2}$. Следовательно, показание амперметра не изме-

нится.

Пример 2.Определить показание амперметра и мгновенное значение приложенного напряжения в цепи (рис. 2), если показание вольтметра равно 120 В, $R_3 = R_4 = 60\,Om$; $X_3 = X_2 = X_m = 20\,Om$; $X_1 = 40\,Om$; $X_c = 80\,Om$; $U_{12} = 120B$.

Решение. В схеме складываем параллельно включенные ак-

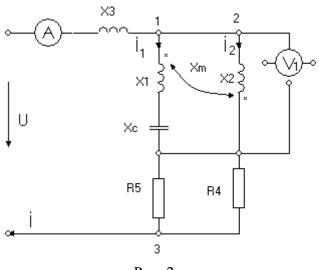


Рис. 2.

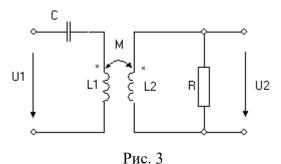
тивные сопротивления $R_{34} = \frac{R_3 R_4}{R_3 + R_4} = 30 \, O\!M$ и составляем

уравнения состояния цепи (законы Кирхгофа): $\vec{I} = \vec{I}_1 + \vec{I}_2$;

$$\begin{split} \dot{U}_1 &= \dot{U}_{12} + \dot{I}(R_{34} + jX_3); \quad \dot{U}_{12} &= \dot{I}_1 \ j(X_1 - X_c) - \dot{I}_2 \ jX_m; \\ \dot{U}_{12} &= -\dot{I}_1 \ jX_m + \dot{I}_2 \ jX_2; \end{split}$$

Из решения системы двух последних уравнений:

$$\dot{I}_{1}(-j40) + \dot{I}_{2}(-j20) = 120; \quad \dot{I}_{1}(-j20) + \dot{I}_{2}(j20) = 120$$


$$\dot{I}_1 = j4A\,; \quad \dot{I}_2 = -j2A\,; \quad \text{Тогда} \quad \dot{I} = \dot{I}_1 + \dot{I}_2 = j2A\,; \quad \text{получаем}$$

токи
$$\dot{U} = 120 + j2 (30 + j20) = 100 \exp 86^{\circ} 50' B$$
.

Мгновенное значение приложенного напряжения:

 $u(t)=100\sqrt{2}\sin(\omega t+36^{\circ}50')\ B$, а показание амперметра $I_{A}=I=2\ A$.

Пример 3. Дано (рис.3): $R = 5 \, O_M$, $L_1 = 10^{-4} \, \Gamma_H$, $L_2 = 0.25 * 10^{-4} \, \Gamma_H$, $M = 0.3 * 10^{-4} \, \Gamma_H$.

Пир резонансе входное сопротивление схемы со стороны первичных зажимов равно 6,48 Ом. Определить передаточную функцию цепи по напряжению. Записать выражение для АЧХ и ФЧХ передаточной функции и вычислить их значения на резонансной частоте.

Решение.

Входное сопротивление воздушного трансформатора

$$\underline{Z}_{ex1} = \underline{Z}_{11} - \frac{\underline{Z}^2 M}{\underline{Z}_{22}} = R_{ex} + jX_{ex},$$
 при резонансе

 $R_{\mathcal{E} x}(\omega_0)$ = 6.48, а $X_{\mathcal{E} x}(\omega_0)$ = 0. Определим резонансную ча-

стоту из
$$\frac{{\omega_0}^2 M^2 R}{{R^2} + {\omega_0}^2 {L_2}^2} = 6.48\,, \qquad \text{отсюда}$$

$$\omega_0 = \sqrt{\frac{6.48 \ R^2}{M^2 \ R - 6.48 L_2^2}} = 6*10^5 \ 1/c \ .$$
 Из условия

$$X_{ex}(\omega_0) = 0$$
 имеем $C = \frac{1}{\omega(\omega L_1 - \frac{\omega^2 M^2 L_2}{R_2^2 + \omega^2 L_2^2})} = 4.1 \, \Phi$.

При замене $j\omega=p$ запишем уравнения

$$I_1(pL_1 + \frac{1}{Cp}) + I_2pM = U_1;$$
 $I_1pM + I_2(R + pL_2) = 0$

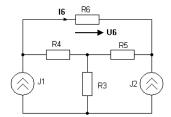
 $U_2 = I_2 p$, отсюда передаточная функция цепи по напряжению равна

$$T(p) = \frac{U_2(p)}{U_1(p)} = \frac{p^2 MCR}{p^3 C(L_1 L_2 - M^2) + p^2 L_1 L_2 R + pL_2 + R}, \quad \text{a}$$

АЧХ и ФЧХ есть

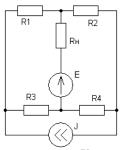
$$T(\omega) = \frac{\omega^2 CMR}{\sqrt{R^2 (1 - \omega^2 C L_1)^2 + \omega^2 (L_2 - \omega^2 C (L_1 L_2 - M^2))^2}},$$

$$\Psi_T(\omega) = \pi - arctg \, \frac{\omega(L_2 - \omega^2 C (L_1 L_2 - M^2))}{R(1 - \omega^2 C L_1)}.$$
 При резонанс-

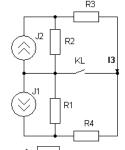

ной частоте $T(\omega_0) = 0.848$, $\Psi_T(\omega_0) = 18.4^\circ$.

Otbet:
$$T(\omega_0) = 0.848$$
, $\Psi_T(\omega_0) = 18.4^{\circ}$.

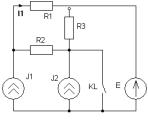
9.1. Электрические цепи постоянного тока


Задачи

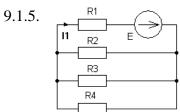
9.1.1.


В цепи с параметрами R_3 =1 кОм, R_4 =4 кОм, R_5 =2 кОм, U_6 =8 В, J_I =12 мА, J_2 =8 мА определить R_6 .

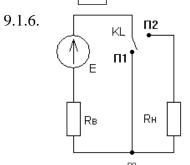
9.1.2.


В цепи с параметрами R_1 = R_2 =6 Ом, R_3 = R_4 =2 Ом, E=4 В, J=1 А определить $R_{_{\it H}}$, если в $R_{_{\it H}}$ выделяется максимальная мощность $P_{\rm max}$, и эту мощность.

9.1.3.



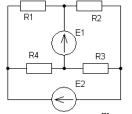
В цепи с параметрами $R_1=R_2$, $R_3=R_4$, $J_2=2J_1$, определить I_3 при разомкнутом ключе KL, если при замкнутом ключе $I_3=3$ A.


9.1.4.

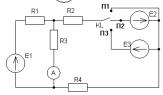
В цепи с параметрами R_3 =3 Ом, J_I =3 А, J_2 =4 А, E=6 В, определить R_I , R_2 , если при замкнутом ключе KL I_I =-1 A, а при разомкнутом – I_I =4 А.

Известно, что в цепи I_I =3 A, I_3 + I_4 =2,5 A, I_4 =1,5 A, U_{RI} = U_{R2} . Найти все токи при увеличении R_4 в три раза.

При коротком замыкании (ключ KL в положении $\Pi1$) реальный источник ЭДС развивает мощность P_E =400 Вт. Какую мощность может отдать этот источник в нагрузку (ключ KL в положении $\Pi2$) при КПД η =0,5?

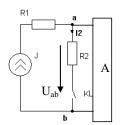

9.1.7. U6 R3 E2

В цепи с постоянными источниками ЭДС E_1 и E_2 известно два значения суммарной потребляемой мощности:


 P_1 =60 Вт при R_0 = R , и P_2 =80 Вт Вт при R_0 =0,5 R,. Найти значение этой мощности при R_0 =2 R В цепи с параметрами R_1 =2 Ом, R_2 = R_4 =1 Ом, E_1 = E_2 =5 В определить R_3 и

мошность источников.

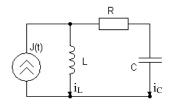
9.1.8.



9.1.9.

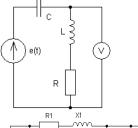
 E_2 =4 В, E_3 =6 В. Ток через амперметр в положении ключа КL П1 равен I_A =40 мА, в положении П2 – I_A =-60 мА. Найти показание амперметра в положении ключа П3.

9.1.10.

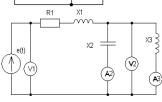


 R_1 =4 Ом, R_2 =3 Ом, J=4 А. При замкнутом ключе KL I_2 =3 А, а при разомкнутом – U_{ab} =12 В. Найти I_2 при изменении полярности источника J.

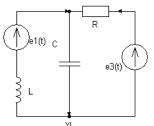
9.2. Электрические цепи при синусоидальном воздействии


Задачи

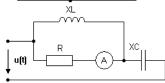
9.2.1.


Известно, что в цепи J=10 A, $\omega=1000$ с⁻¹, L=2 мГн, P=200 Вт. Напряжение на зажимах источника опережает J(t) по фазе на45°. Найти I_L , R, C.

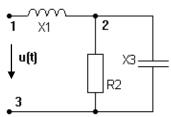
9.2.2.


 $e(t)=E_m$ sin ωt . Определить, при каком соотношении X_L и X_C показание вольтметра не будет зависеть от R.

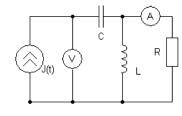
9.2.3.


 $e(t)=E_m \sin (\omega t+\varphi), V_I=100 B, V_2=50 B, A_2=10 A, A_3=5 A, R_I=16 Ом. Определить сопротивление <math>X_I$.

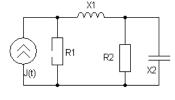
9.2.4.


Полные мощности, развиваемые источниками \underline{S}_{I} =500+j500 BA, \underline{S}_{2} =500-j500 BA. i(t)=10 sin $(\omega t+45^{\circ})$ A, X_{L} =10 Ом. Найти \underline{E}_{I} , \underline{E}_{2} , \underline{I}_{2} , \underline{I}_{3} , R, X_{C} .

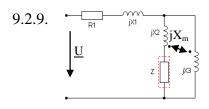
9.2.5.


U=40 $\sqrt{2}$ В, I_A =10 А, X_C =4 Ом. В цепи резонанс. Найти R, X_L .

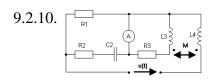
9.2.6.


В цепи резонанс. U_{12} =60 В, U_{13} =80 В, I_C =2 А. Найти параметры цепи X_1 . R_2 , X_3 .

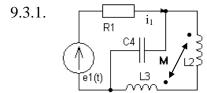
9.2.7.

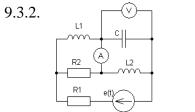


 $J(t)=2\sqrt{2}$ sin ωt A, R=100 Ом. Показания приборов электромагнитной системы $U_V=100$ B, $I_A=1,41$ A. Найти X_L, X_C .

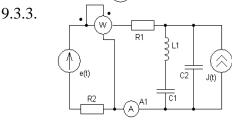

9.2.8.

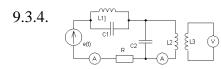
В цепи переменного тока J= 4 A, U_{RI} =4 B, P_{RI} = P_{R2} =8 Вт, X_{I} =2 Ом. Найти R_{I} , R_{2} , X_{2}

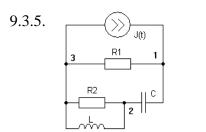

 I_3 =5 A, X_1 = X_2 =R=5 Ом, X_3 =4 Ом, X_M =2 Ом. Какое Z следует включить последовательно с X_2 , чтобы напряжение на X_2 равнялось нулю? Найти u(t).

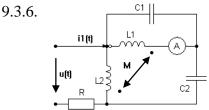

u(t)=100 sin (1000t-30°) B, R_1 = R_2 = 20 Ом, , R_3 = 50 Ом, , C_2 =100 мкФ, L_4 =0,3 Гн, I_A =0 А. Найти L_3 , M.

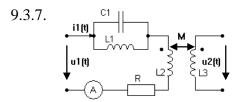
9.3. Периодические несинусоидальные токи

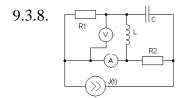

Задачи


 $e_I(t)$ =60+160 $\sqrt{2}$ sin (1000 t+30°) B, C=250 мкФ, L_2 =0,4 Гн, R_I = R_2 =20 Ом. Найти X_M .


e(t)=64+60 $\sqrt{2}$ cos (t-37°) B, R_I =8 Ом, L_2 =12 Гн, L_3 =8 Гн, C_4 =0,2 Ф, I_I =10 А. Найти показания приборов электромагнитной системы.

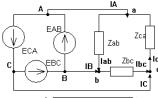

e(t)=100+180 $\sqrt{2}$ sin (100t) В, J(t)=4 $\sqrt{2}$ cos (200t) А, I_A =5 А (электромагнитной системы), R_I = R_2 =30 Ом, L_I =1 Гн, C_I =100 мкФ, I_I =10 А. Найти показание ваттметра.


 $e(t)=120+240\sqrt{2}$ sin (100t) $+100\sqrt{2}$ sin (200t) B, $R_1=20$ Ом, L_2 =0,3 Гн, M=0,15 Гн. Показания $I_{A1}=6$ A, $I_{A2}=10$ A. Найти показание вольтметра. $J(t)=I_0+I\sqrt{2}\cos \omega t$ A, $\omega=1$ c⁻¹, $C=1 \, \Phi$, $L=1 \, \Gamma$ н, $R_1=R_2=1 \, \Theta$ м,

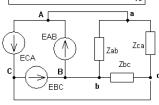

 $U_{13}=2\sqrt{2}$ В, $U_{23}=2$ В. Найти I_0 , I.

 $u(t)=30+60\sqrt{2} \sin \omega t B$, $R=X_{C1}=X_{C2}=30 \text{ Om},$ $X_{L1}=X_{L2}=20 \text{ Om}, I_A=0 \text{ A}.$ Найти $i_1(t)$, X_M и активную мощность цепи P.

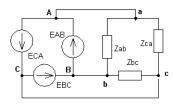
 $u_1(t)=50+42,2 \sin 1000t +$ 14,1 sin 3000t B, $u_2(t)=28,3 \sin 1000t B$, $L_1=0.1 \Gamma_{\rm H}, M=0.05 \Gamma_{\rm H},$ I_A =0,5 А. Найти $i_I(t)$, C_I , R

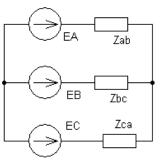


 $J(t)=10+5\sqrt{2} \sin (1000 t-45^{\circ})$ A, $R_1 = 50$ OM, $R_2 = 25$ OM, C = 4мкФ. В цепи резонанс. Найти показания приборов.


9.4. Трехфазные электрические цепи

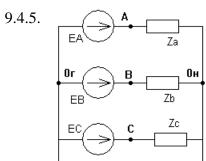
Задачи


9.4.1.


9.4.2.

9.4.3.

9.4.4.


Трехфазная цепь с симметричным источником имеет параметры: U_{Π} =20 В,

 $\underline{Z}_{ab} = \underline{Z}_{bc} = R$, $I_{ab} = I_{bc} = I_{ca} = 1$ A, I_C = 2 А. Найти I_A , I_B , Z_{ca} , P. Трехфазная цепь с симметричным источником имеет параметры: $\underline{Z}_{ab} = 5e^{j37^{\circ}}$ Ом, $\underline{Z}_{bc} = 5e^{-j37^{\circ}}$ Ом, $\underline{Z}_{ca} = 5$ Ом. Активная мощность цепи Р=52 Вт. Найти P при обрыве линейного провода Вb.

Трехфазная цепь с симметричным источником имеет параметры: $U_{\pi}=10 \text{ B}, Z_{ca}=$ $\underline{Z}_{ab}^*, P_{ab} = P_{bc} = 10 \text{ BT}, Q_{3\phi} = 0$ Вар. При обрыве линейного провода Аа $P_{3\phi}$ =60 Вт. Найти Z_{ab} , Z_{bc} .

Трехфазная цепь с симметричным источником соединена звездой без нулевого провода и имеет параметры: $Z_{ab} = Z_{bc} = Z_{ca} = Z$, $P_{3\phi} = 48$ BT, $Q_{3\phi}$ =36 Вар. Найти P и Q цепи при:

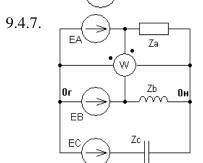
- 1) коротком замыкании фазы «А»;
- 2) обрыве фазы «А».

Трехфазная цепь с симметричным источником соединена звездой с нулевым проводом и имеет параметры: \underline{Z}_a =4 $e^{\mathrm{j}60^\circ}$ Ом, \underline{Z}_b =4 $e^{\mathrm{-j}60^\circ}$ Ом, \underline{Z}_c =R, I_A = I_C , $P_{3\phi}$ =128 Вт. Найти P, если фаза «С» и нулевой провод оборваны.

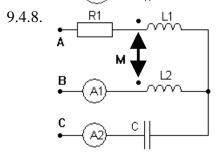
9.4.6.

B

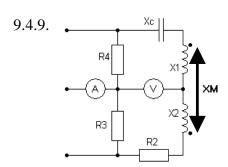
Za

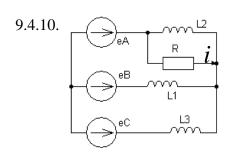

B

Zb


EC

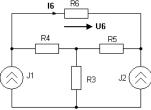
C


Трехфазная цепь с симметричным источником соединена звездой без нулевого провода и имеет параметры: $U_{\mathcal{N}}=100$ В, $Z_b=10$ Ом, $I_C=0$ А. Найти Z_a .

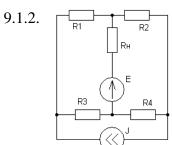

Трехфазная цепь с симметричным источником имеет параметры: $X_L = X_C = 10$ Ом, $U_{\Phi} = 100$ В. Найти \underline{Z}_a , при котором показание ваттметра равно нулю.

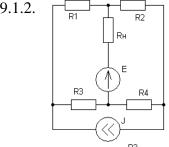
Система фазных напряжений генератора симметрична. Трехфазная цепь имеет параметры: R=10 Ом, $X_I=10$ Ом, $X_2=40$ Ом, $X_C=10$ Ом, K=0.5, $U_{\phi}=100$ В. Найти показания амперметров электромагнитной системы.

Система фазных ЭДС генератора симметрична. Трехфазная цепь имеет параметры: $R_2 = R_3 = R_4 = X_1 = 20$ Ом, $X_M = X_C = 10 \text{ OM}, X_2 = 30 \text{ OM},$ U_{Φ} =220 В. Найти показания приборов электромагнитной системы.

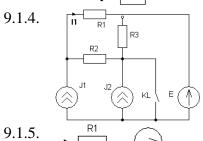


В трехфазной цепи с симметричным источником ток iнаходится в противофазе с ЭДС e_C . Найти соотношение X и R.


9.1. Электрические цепи постоянного тока


Задачи

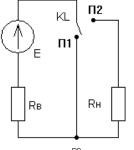
В цепи с параметрами $R_3 = 1$ кОм, $R_4 = 4$ кОм, R_5 =2 кОм, U_6 =8 В, J_1 =12 мА, J_2 =8 мА определить R_6 .



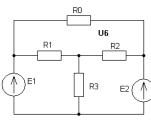
R3 9.1.3. R2 ΚL 13 R4

В цепи с параметрами $R_1 = R_2 = 6 \text{ OM}, R_3 = R_4 = 2 \text{ OM},$ E=4 В, J=1 А определить $R_{_{^{\prime\prime}}}$., если в $R_{_{\scriptscriptstyle H}}$ выделяется максимальная мощность P_{\max} , и эту мощность.

В цепи с параметрами $R_1=R_2$, $R_3=R_4$, $J_2=2J_1$, определить I_3 при разомкнутом ключе KL, если при замкнутом ключе $I_3=3$ А.

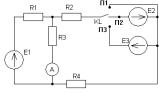


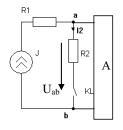
В цепи с параметрами $R_3=3$ OM, $J_1=3$ A, $J_2=4$ A, E=6 B, определить R_1 , R_2 , если при замкнутом ключе KL I_1 =-1 A, а при разомкнутом – I_I =4 A.


11 R2 R3 R4

Известно, что в цепи I_1 =3 A, $I_3+I_4=2.5 \text{ A}, I_4=1.5 \text{ A}, U_{R1}=U_{R2}.$ Найти все токи при увеличении R_4 в три раза.




9.1.7.


9.1.8.

9.1.9.

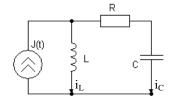
9.1.10.

При коротком замыкании (ключ KL в положении П1) реальный источник ЭДС развивает мощность P_E =400 Вт. Какую мощность может отдать этот источник в нагрузку (ключ KL в положении П2) при КПД η =0,5?

В цепи с постоянными источниками ЭДС E_1 и E_2 известно два значения суммарной потребляемой мощности: $P_1 = 60$ Вт при $R_0 = R$, и

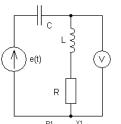
 P_2 =80 Вт Вт при R_0 =0,5 R,. Найти значение этой мощности при R_0 =2 R В цепи с параметрами

 R_1 =2 Ом, R_2 = R_4 =1 Ом, E_1 = E_2 = 5 В определить R_3 и мощность источников.

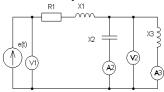

 E_2 =4 В, E_3 =6 В. Ток через амперметр в положении ключа КL П1 равен I_A =40 мА, в положении $\Pi 2 - I_A$ =-60 мА. Найти показание амперметра в положении ключа $\Pi 3$.

 R_I =4 Ом, R_2 =3 Ом, J=4 А. При замкнутом ключе КL I_2 =3 А, а при разомкнутом – U_{ab} =12 В. Найти I_2 при изменении полярности источника J.

9.2. Электрические цепи при синусоидальном воздействии


Задачи

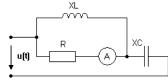
9.2.1.


Известно, что в цепи J=10 A, $\omega=1000$ с⁻¹, L=2 мГн, P=200 Вт. Напряжение на зажимах источника опережает J(t) по фазе на 45° . Найти I_L , R, C.

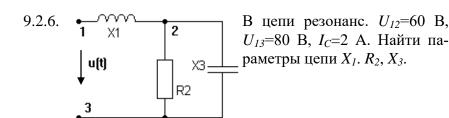
9.2.2.

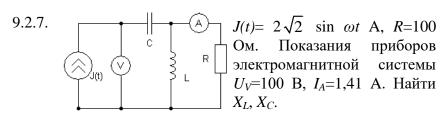
 $e(t)=E_{m}$ sin ωt . Определить, при каком соотношении X_{L} и X_{C} показание вольтметра не будет зависеть от R.

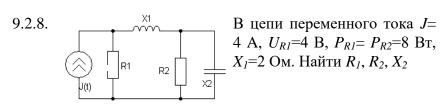
9.2.3.

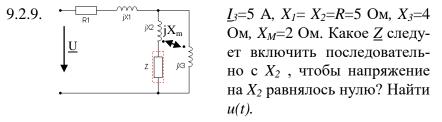

 $e(t)=E_m \sin (\omega t+\varphi), V_I=100 B, V_2=50 B, A_2=10 A, A_3=5 A, R_I=16 Ом. Определить сопротивление <math>X_I$.

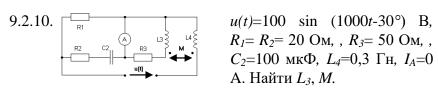
9.2.4.

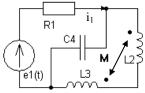



Полные мощности, развиваемые источниками \underline{S}_{I} =500+j500 BA, \underline{S}_{2} =500-j500 BA. i(t)=10 sin (ωt +45°) A, X_{L} =10 Ом. Найти \underline{E}_{I} , \underline{E}_{2} , \underline{I}_{2} , \underline{I}_{3} , R, X_{C} .

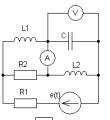

9.2.5.



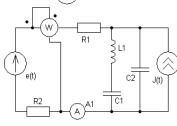

 $U=40\sqrt{2}$ В, $I_A=10$ А, $X_C=4$ Ом. В цепи резонанс. Найти R, X_L .



9.3. Периодические несинусоидальные токи


Задачи

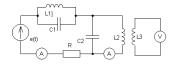
9.3.1.


 $e_I(t)$ =60+160 $\sqrt{2}$ sin (1000 t+30°) B, C=250 мк Φ , L_2 =0,4 Γ H, R_I = R_2 =20 Ом. Найти X_M .

9.3.2.

e(t)=64+60 $\sqrt{2}$ cos (t-37°) B, R_I =8 Ом, L_2 =12 Гн, L_3 =8 Гн, C_4 =0,2 Ф, I_I =10 А. Найти по-казания приборов электромагнитной системы.

9.3.3.

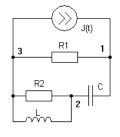


e(t)=100+180 $\sqrt{2}$ sin (100t) В, J(t)=4 $\sqrt{2}$ cos (200t) А, I_A =5 А (электромагнитной системы), R_I = R_2 =30 Ом, L_I =1 Гн, C_I =100 мкФ, I_I =10 А. Найти показание ваттметра.

sin

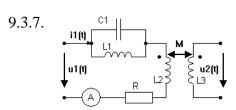
(100t)

9.3.4.

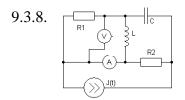


Ом, L_2 =0,3 Гн, M=0,15 Гн. Показания I_{AI} =6 A, I_{A2} =10 A. Найти показание вольтметра. J(t)= I_0 + $I\sqrt{2}$ cos ωt A, ω =1 c⁻¹,

 $+100\sqrt{2}$ sin (200*t*) B, $R_1=20$

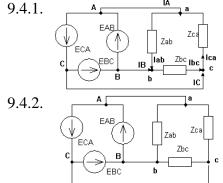

 $e(t)=120+240\sqrt{2}$

9.3.5.

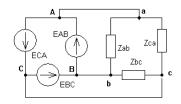


C=1 Ф, L=1 Гн, $R_1=R_2=1$ Ом, $U_{13}=2\sqrt{2}$ В, $U_{23}=2$ В. Найти I_0 , I.

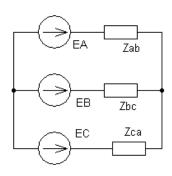
u(t)=30+60 $\sqrt{2}$ sin ωt B, R= X_{C1} = X_{C2} =30 Ом, X_{L1} = X_{L2} =20 Ом, I_A =0 А. Найти $i_I(t)$, X_M и активную мощность цепи P.


 $u_I(t)$ =50+42,2 sin 1000t + 14,1 sin 3000t B, $u_2(t)$ =28,3 sin 1000t B, L_I =0,1 Гн, M=0,05 Гн, I_A =0,5 A. Найти $i_I(t)$, C_I , R

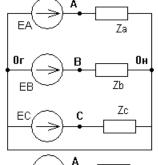
J(t)=10+5 $\sqrt{2}$ sin (1000 t-45°) A, R_1 =50 Ом, R_2 =25 Ом, C=4 мк Φ . В цепи резонанс. Найти показания приборов.

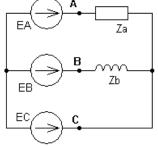

9.4. Трехфазные электрические цепи

Задачи



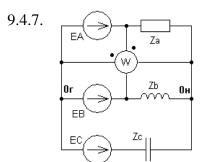
Трехфазная цепь с симметричным источником имеет параметры: $U_{\it Л}$ =20 B, \underline{Z}_{ab} = \underline{Z}_{bc} =R, I_{ab} = I_{bc} = I_{ca} =1 A, $I_{\it C}$ =2 A. Найти $\underline{I}_{\it A}$, $\underline{I}_{\it B}$, $\underline{Z}_{\it ca}$, P. Трехфазная цепь с симметричным источником имеет параметры: \underline{Z}_{ab} = $5e^{{\rm j}37^{\circ}}$ Ом, \underline{Z}_{bc} = $5e^{{\rm j}37^{\circ}}$ Ом, \underline{Z}_{ca} =5 Ом. Активная мощность цепи P=52 Вт. Найти P при обрыве линейного провода Вb.



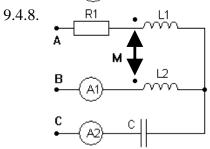

9.4.4.

9.4.5.

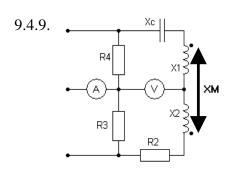
9.4.6.

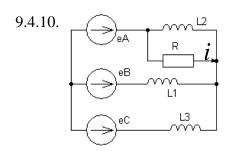


Трехфазная цепь с симметричным источником имеет параметры: U_{\varPi} =10 B, \underline{Z}_{ca} = \underline{Z}_{ab}^{*} , P_{ab} = P_{bc} =10 BT, $Q_{3\phi}$ =0 Вар. При обрыве линейного провода Аа $P_{3\phi}$ =60 ВТ. Найти Z_{ab} , Z_{bc} .


Трехфазная цепь с симметричным источником соединена звездой без нулевого провода и имеет параметры: $\underline{Z}_{ab} = \underline{Z}_{bc} = \underline{Z}_{ca} = \underline{Z}, \ P_{3\phi} = 48 \ \mathrm{Br}, \\ Q_{3\phi} = 36 \ \mathrm{Bap}. \ \mathrm{Haйти} \ P \ \mathrm{u} \ Q \ \mathrm{цепи}$ при:

- 3) коротком замыкании фазы «А»;
- 4) обрыве фазы «А». Трехфазная цепь с симметричным источником соединена звездой с нулевым проводом и имеет параметры: $\underline{Z}_a = 4e^{\mathrm{j}60^\circ}$ Ом, $\underline{Z}_b = 4e^{\mathrm{j}60^\circ}$ Ом, $\underline{Z}_c = R$, $I_A = I_C$, $P_{3\phi} = 128$ Вт. Найти P, если фаза «С» и нулевой провод оборваны.


Трехфазная цепь с симметричным источником соединена звездой без нулевого провода и имеет параметры: $U_{\mathcal{I}}=100 \text{ B}, \underline{Z}_b=10 \text{ Om}, I_{\mathcal{C}}=0 \text{ A}.$ Найти Z_a .


Трехфазная цепь с симметричным источником имеет параметры: $X_L = X_C = 10$ Ом, $U_{\phi} = 100$ В. Найти \underline{Z}_a , при котором показание ваттметра равно нулю.

Система фазных напряжений генератора симметрична. Трехфазная цепь имеет параметры: R=10 Ом, $X_I=10$ Ом, $X_2=40$ Ом, $X_C=10$ Ом, K=0,5, $U_{\phi}=100$ В. Найти показания амперметров электромагнитной системы.

Система фазных ЭДС генератора симметрична. Трехфазная цепь имеет параметры: $R_2=R_3=R_4=X_1=20$ Ом, $X_M=X_C=10$ Ом, $X_2=30$ Ом, $U_{\phi}=220$ В. Найти показания приборов электромагнитной системы.

В трехфазной цепи с симметричным источником ток i находится в противофазе с ЭДС e_C . Найти соотношение X и R.

ОТВЕТЫ

Тема 1

1.1.
$$T = 0.0125$$
 c.

1.2.
$$R_9 = 30 \text{ Om};$$

$$L_{3} = 0,9 \, \Gamma$$
н.

1.3.
$$U_{C2} = 2U_{C1}$$
.

1.4.
$$C_9 = \frac{C_1(C_2 + C_3)}{C_1 + C_2 + C_3}$$
.

$$u(t) = 160 \sin(\omega t - 83.1^{\circ}) \text{ B}.$$

1.6.

$$u(t) = 240\sqrt{2}\sin(\omega t + 195^{\circ})B.$$

1.7.
$$U_{v2} = 40 \,\mathrm{B}$$
.

1.8.
$$U_V = 80 \,\mathrm{B}$$
.

1.9.
$$R_{\kappa} = 10 \text{ Om};$$

$$L_{\rm k} = 123,5 \,$$
 мГн.

1.10.
$$I_A = 2\sqrt{2}$$
 A.

1.11.
$$R = 5$$
 Om; $X = 0$.

1.12.
$$Z = 10 + i5 =$$

$$=11.2e^{j63.5^{\circ}}$$
 Om.

1.13.
$$g = b_L = 0.025$$
 Cm.

1.14.
$$\underline{U}_{mab} = 10\sqrt{2} e^{-j45^{\circ}}$$
 B.

1.15.
$$P_W = 1000$$
 Bt.

1.16.
$$P_w = 500$$
 Bt.

1.17.
$$I_{A} = 10 \text{ A};$$

$$i(t) = 10\sqrt{2}\sin(\omega t - 53^{\circ}) \text{ A}.$$

1.18.
$$U_{R1} = 120$$
 B.

1.19.
$$L_9 = 0$$
.

1.20.
$$L_9 = \frac{L_1 L_2 - M^2}{L_1 + L_2 - 2M}$$
.

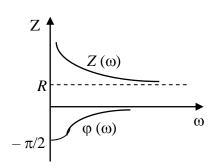
1.21.
$$U_V = 10\sqrt{2}$$
 B.

1.22. Увеличится в
$$\sqrt{2}$$
 раз.

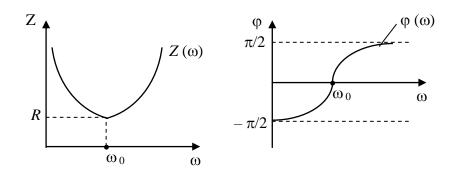
1.23.
$$U_V = 45$$
 B.

Тема 2

2.1.
$$\underline{Z}(\omega) = \frac{R \omega L}{\sqrt{R^2 + (\omega L)^2}}$$

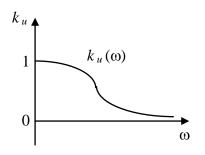

2.2.
$$\underline{k}_i(j\omega) = \frac{R\omega C}{R\omega C - j}$$
.

$$\varphi(\omega) = 90^{\circ} - \operatorname{arctg} \frac{\omega L}{R} \qquad -$$


$$\Phi 4X.$$

2.3.
$$\underline{k}_{i}(\omega) = \frac{R \omega C}{\sqrt{(R \omega C)^{2} + 1}}$$
 2.5. $\underline{k}_{u} \omega = \frac{-\text{A}^{4}\text{X}}{\varphi(\omega) = 90^{\circ} - \arctan \frac{1}{R \omega C}}$
$$= \frac{\omega L R_{2}}{\sqrt{R_{1} R_{2}^{2} + \left[\omega L R_{1} + R_{2}\right]^{2}}}$$

$$\Phi^{4}\text{X}.$$
2.4.
$$-\text{A}^{4}\text{X};$$


$$\underline{k}_{u}(j\omega) = \frac{j \omega L R_{2}}{R_{1} R_{2} + j \omega L (R_{1} + R_{2})}$$

$$\varphi(\omega) = 90^{\circ} - \arctan \frac{\omega L (R_{1} + R_{2})}{R_{1} R_{2}}$$

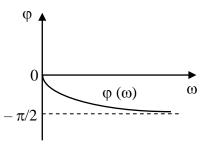
$$-\Phi^{4}\text{X}.$$
2.6.

2.7.

2.8.

2.9.
$$X_1 = 10 \text{ Om. } (20 \text{ Om})$$

2.10.
$$X_2 = 10$$
 Om.


$$2.11. f_0 = 100 \Gamma$$
ц.

2.12.

$$\underline{Z}_{\mathrm{BX}} = 20\sqrt{2} \, e^{-j \, 45^{\circ}} \, \mathrm{Om}.$$

2.13. Увеличится в $\sqrt{2}$ раз.

2.14.
$$I_A = 0$$
.

2.15.
$$R > X_L$$
; $R > X_C$.

2.16.
$$\omega_0 = 5000 \text{ c}^{-1}$$
;

$$I_A = 2 \text{ A}.$$

2.17.
$$R = \infty$$
.

$$2.18. R = 5 \text{ Om}.$$

2.19.
$$U_V = 10\sqrt{3}$$
 B;

$$Q=1/\sqrt{3}$$
.

$$2.20. C = 200 \text{ мк}\Phi.$$

Тема 3

$$3.1. I_3 = -0.25 A.$$

$$_{3.2.}$$
 $E_{\Gamma} = -3.5$ $_{\rm B}$;

$$R_{\Gamma} = 100$$
 OM.

3.3.
$$I_1 = -1$$
 A.

$$i(t) = 2,25 \sin(\omega t + 20,9^{\circ}) A.$$

3.5.
$$\underline{Z}_{\Gamma} = 20e^{j60^{\circ}}$$
 Om.

3.6.

$$i_C(t) = 1.6 \sin(100t + 108.5^{\circ}) A.$$

3.7.

$$i_C(t) = 1,59 \sin(100t + 108,5^\circ) A.$$

3.8.
 $i_L(t) = \sqrt{2} \sin(\omega t - 90^\circ) A.$
3.9.
 $i_2(t) = 1,6 + 1\cos(\omega t - 15^\circ) A.$
3.10.

 $i_2(t) = 0.5 + 0.8 \sin(\omega t - 45^{\circ}) A.$

Тема 4

4.1.
$$I_1 = I_2 = I_3 = 5 \text{ A};$$
 $I_4 = 15 \text{ A};$
 $I_5 = 10 \text{ A}; \ \phi_1 = 30 \text{ B}.$
4.2. $J_{11} = 10 \text{ A}; \ J_{22} = 5 \text{ A};$
 $J_{33} = 4 \text{ A}; \ I_A = 5 \text{ A}.$
4.3. $I_5 = 0.5 \text{ A}.$
4.4. $i_2(t) = \sqrt{2} \sin(\omega t - 180^\circ) \text{A};$
 $u_{ab}(t) = 20 \sin(\omega t - 45^\circ) \text{B}.$
4.5. $i_1(t) = 0.5\sqrt{2} \sin(\omega t + 45^\circ) \text{A}.$
4.6. $i_C \ t = 1.59\sqrt{2} \sin(\omega t - 18.5^\circ) \text{A}.$
4.7. Метод узловых потен-

$$4.8. \ i_{L} = 0.$$

$$4.9. \ I_{A} = 1 \text{ A}.$$

$$4.10.$$

$$i_{1}(t) = 2 \sin \left(\omega t - 45^{\circ}\right) \text{A}.$$

$$4.11. \ I_{A} = 1 \text{ A}.$$

$$4.12. \ U_{V} = 10\sqrt{2} \text{ B}.$$

$$4.13. \ \underline{I}_{1} = -10 \text{ A};$$

$$\underline{I}_{2} = \underline{I}_{3} = 22,4e^{-j26,5^{\circ}} \text{ A}.$$

$$4.14. \ U_{V1} = 59 \text{ B};$$

$$U_{V2} = 50 \text{ B};$$

$$\underline{Z}_{ab} = 11,2e^{j26,5^{\circ}} \text{ Om}.$$

$$4.15. \ U_{V} = 17,6 \text{ B};$$

$$Z_{ab} = 2 \text{ Om}.$$

Тема 5

5.1.
$$\underline{A}_{11} = \underline{A}_{22} = 1$$
; $\underline{A}_{12} = j10 \text{ OM}$;
 $\underline{A}_{12} = \underline{Z}$; $\underline{A}_{21} = 0$. $\underline{A}_{21} = 0,1 \text{ CM}$.
5.2. $\underline{A}_{11} = \underline{A}_{22} = \sqrt{2} e^{-j45^{\circ}}$; $5.5. \ \underline{Z}_{1} = \underline{Z}_{2} = -j10 \text{ OM}$; $\underline{Z}_{0} = 10 \text{ OM}$.
 $\underline{A}_{21} = (0,2 - j0,1) \text{ CM}$. $5.6. \ \mathbf{Y} = \begin{bmatrix} 0 & j0,1 \\ -j0,1 & j0,1 \end{bmatrix}$.
5.3. $\mathbf{Z} = \begin{bmatrix} R + j X_{L} & -R \\ R & -R \end{bmatrix}$. $5.7.$ $\underline{A}_{11} = \underline{A}_{22} = 1,3$; $\underline{A}_{11} = \underline{A}_{22} = 1,3$;

циалов.

$$\underline{A}_{12} = j3 \,\mathrm{Om}\,;$$
 5.9. $\alpha = 0,599 \,\mathrm{H\pi}\,;$ $\underline{A}_{21} = -j0,23 \,\mathrm{Cm}\,.$ $\beta = 0,135\,.$ 5.8. $\underline{Z}_C = 0; \ \underline{\Gamma} = 0 + j\pi\,;$ $\alpha = 0; \ \beta = \pi\,.$ 5.10. $\underline{Z}_C = 3,6 \,\mathrm{Om}\,;$ $\alpha = 0,756 \,\mathrm{H\pi}\,; \ \beta = 0\,.$

Тема 6

6.1. Четные и нечетные синусные составляющие.

6.2.
$$I_{A1} = 5$$
 A;

$$I_{A2} = 12,25$$
 A.

6.3.
$$I_A = 18,5$$
 A.

6.4.
$$e(t) = \sum_{k=1,3,5}^{\infty} E_{km} \cos k \omega t$$
.

6.5.
$$\underline{Z}^{(3)} = 36e^{j56,3^{\circ}}$$
 Om.

6.6.
$$I_A = 5\sqrt{2}$$
 A.

6.7.
$$I_A = 4,12$$
 A;

$$U_{v} = 42,6$$
 B.

6.8.
$$I_A = 3.2$$
 A; $U_V = 17$ B.

6.9.
$$i(t) = [2 + 1,67\sqrt{2} \sin(200t - 78,6^{\circ})]$$
 A; $I_A = 2$ A; $U_V = 100,6$ B. 6.10. $P = 120$ Вт. 6.11. $S = 604$ В·А; $P = 570$ Вт. 6.12. Не изменится. 6.13. $P = 60$ Вт; $Q = 28,5$ вар; $S = 76,5$ В·А; $S = 37,6$ В·А. 6.14. $R = 2$ Ом; $L = 0,106$ Гн. 6.15. $R = 20$ Ом; $C = 118$ мкФ. 6.16. $L_1 = 0,5$ Гн;

 $L_2 = 0.17 \, \Gamma_{\rm H}$.

Тема 7

7.1.
$$U_V = 0$$
.

7.2.
$$I_{\Lambda} = 2 \text{ A}$$
.

7.3.
$$U_V = \frac{\sqrt{3}}{2}U$$
.

7.4.
$$I_A = 32.8 \text{ mA}$$
.

7.5.
$$I_A = 2.6 \,\mathrm{A}$$
.

7.6.
$$U_{V3} = 127 \,\mathrm{B}$$
.

7.7.
$$I_A = 4.5 \text{ A}.$$

7.8.
$$I_B = 1,73 \text{ A}.$$

7.9.
$$U_V = 330 \,\mathrm{B}$$
.

7.10.
$$U_v = 213 \,\mathrm{B}$$
.

7.11.
$$P_w = 405 \,\mathrm{Br}$$
.

7.12.
$$P_W = -1280 \,\mathrm{BT}$$
.

$$Q = -2220$$
 вар.

7.13.
$$I_{\pi} = 4 \text{ A}$$
.

7.14.
$$R = 60 \,\mathrm{Om}$$
;

$$X_{T} = 35 \,\mathrm{Om}.$$

7.15.
$$\underline{I}_A = 17.8e^{-j66.5^{\circ}}$$
 A.

7.16.
$$I_{A} = 10 \,\mathrm{A}$$
.

8.1.
$$\lambda = 443 \text{ km}$$
.

8.2.
$$v_{\Phi} = 70700 \frac{\text{KM}}{c}$$
.

8.3.
$$\underline{Z}_C = 1140e^{-j12.5^{\circ}}$$
 Om.

8.4.
$$L_1 = 64 \cdot 10^{-3} \frac{\Gamma_{\rm H}}{\rm rms}$$
.

8.5.
$$\underline{U}_{\text{OTP1}} = 2,12 e^{j93,1^{\circ}} \text{ kB}.$$

8.6.
$$\underline{Z}_{BXK3} = -j245 \,\text{Om}.$$

Тема 8

8.7.
$$\underline{Z}_{\text{B}} = 480e^{-j40^{\circ}}$$
$$\underline{\gamma} = 0,224e^{j40,2^{\circ}}$$

$$\underline{U_1} = 1000e^{j17,3^{\circ}}$$
 B;

$$_{8.8.} \frac{I_{1}}{I_{1}} = 2,14e^{j27,3^{\circ}} \text{ A};$$
 $\alpha = 0.0128 \text{ км}^{-1};$
 $\beta = 0.032 \text{ км}^{-1}.$

8.9.
$$U_1 = 1065e^{j20^{\circ}}$$
 B.

8.10.
$$\underline{I_1} = 1,6\sqrt{2}e^{j45^{\circ}} \text{ A.}$$

ЛИТЕРАТУРА

- 1. Дмитриев В.М., Зайченко Т.Н., Зюзьков В.М., Шурыгин Ю.А., Шутенков А.В. Система автоматизации моделирования управляемого электропривода.— Томск: Изд-во Том. ун-та, 1997.— 92 с.
- 2. Попов В.П. Основы теории цепей.— М.: Высшая школа, 1985.— 496 с.
- 3. Купцов А.М. Линейные электрические цепи. Основы теории для самостоятельного изучения.— Томск: Изд-во ТГУ,1998.— 222 с.
- 4. Бессонов Л.А. Теоретические основы электротехники.— М.: Высшая школа, 1984.— 559 с.
- 5. Нейман А.Р., Демирчян К.С. Теоретические основы электротехники. Т. 1.— Л.: Энергоиздат, 1981.— 533 с.
- 6. Основы теории цепей/ Зевеке Г.В., Ионкин П.А., Нетушил А.В., Страхов С.В.— М.: Энергоатомиздат, 1989.— 528 с.
- 7. Атабеков Г.И., Тимофеев А.Б., Хухриков С.С. Нелинейные цепи.— М.: Энергия, 1970.— 232 с.
- 8. Компьютерный лабораторный практикум по курсу «Теория электрических цепей»/ Дмитриев В.М., Шутенков А.В., Кобрина Н.В., Зайченко Т.Н., Вахитова Х.З.— Томск: Томс. гос. ун-т систем управления и радиоэлектроники, 1997.— 110 с.
- 9. Ушаков В.Н. Электротехника и электроника: Учебное пособие для вузов.— М.: Радио и связь, 1997.— 328 с.

Учебное издание

Дмитриев Вячеслав Михайлович Шутенков Александр Васильевич Хатников Валентин Иванович Ганджа Тарас Викторович

Теоретические основы электротехники

Сборник задач

Томский государственный университет систем управления и радиоэлектроники

634050, г Томск, пр. Ленина, 40,