Министерство образования и науки Российской Федерации

Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования

«ТОМСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ СИСТЕМ УПРАВЛЕНИЯ И РАДИОЭЛЕКТРОНИКИ» (ТУСУР)

Факультет вычислительных систем (ФВС) Кафедра Моделирования и системного анализа (МиСА)

Дмитриев Вячеслав Михайлович

МОДЕЛИРОВАНИЕ СИСТЕМ

Методические указания по самостоятельной работе

В.М. Дмитриев. Моделирование систем / Методические указания по самостоятельной работе — Томск: Томский государственный университет систем управления и радиоэлектроники. Факультет вычислительных систем, кафедра моделирования и системного анализа, 2015. — 17 с.

[©] Дмитриев В.М., 2015

[©] Факультет вычислительных систем, кафедра моделирования и системного анализа, 2015.

Оглавление

Введение	4
Раздел 1 Основные понятия и определения	5
Раздел 2 Математические методы моделирования	6
Раздел 3 Автоматизированное моделирование технических устройств и	
систем	8
Раздел 4 Статистическое и имитационное моделирование систем	9
Раздел 5 Методы моделирования социально-экономических систем	11
Раздел 6. Анализ чувствительности и параметрическая оптимизация	
систем	12
Раздел 7. Инструментальные средства моделирования систем управления	
Рекомендуемая литература	16

Введение

В результате изучения дисциплины «Моделирование систем» студенты должны получить такую совокупность знаний и умений в области современных методов и средств моделирования систем, которые необходимы им для успешного решения задач разработки, исследования и эксплуатации систем автоматизированного управления техническими объектами, технологическими линиями и социально-экономическими системами.

Успешно изучивший дисциплину «Моделирование систем» студент должен:

иметь представление:

- о принципах математического и имитационного моделирования автоматизированных систем управления;
- о методах получения и исследования математических моделей объектов различной физической природы;

знать и уметь:

- ставить задачу моделирования, выбирать структуру, а также алгоритмическую и программную реализацию имитационной модели сложного динамического объекта управления;
- получать математические модели динамики объектов с элементами различной физической природы и оценивать их адекватность;

иметь опыт:

- использования систем автоматизированного моделирования и исследования технических систем на ЭВМ.

Раздел 1 Основные понятия и определения

1.1 Содержание раздела

Основные понятия теории моделирования. Классификация, задачи и цели моделирования. Математические модели систем и принципы их построения. Агрегативные модели. Формы представления математических моделей. Примеры математических моделей систем.

1.2. Методические указания по изучению раздела

При изучении раздела «Основные понятия и определения» следует обратить внимание на многообразие определения понятия «система», что такое сложная система и чем она отличается от большой системы. Следует разобраться в критериях классификации типов моделирования, какие задачи решаются с помощью моделирования и в чем их принципиальное отличие.

Особое внимание следует уделить математическим моделям систем, принципам их классификации и построения. Исследуя различные формы представления математических моделей, обратить внимание на разделение их на модели элементов и агрегативные (блочные) модели систем.

1.3. Вопросы для самопроверки

- 1. Может ли какой-нибудь объект или явление быть несистемным. Обоснуйте ответ.
 - 2. Что такое проблемная ситуация?
 - 3. Что заставляет нас пользоваться моделями?
 - 4. Какие функции выполняют модели в различных видах деятельности?
 - 5. Какие современные средства имеет человек для построения модели?
 - 6. Чем объясняется существование различных определений системы?
 - 7. Чем большая система отличается от сложной системы?
 - 8. Какими признаками должна обладать часть системы, чтобы ее можно

было считать компонентом (блоком)?

10. Чем отличаются модели элементарных компонентов от агрегативных моделей?

Раздел 2 Математические методы моделирования

2.1. Содержание раздела

Этапы математического моделирования. Принципы построения и основные требования к математическим моделям систем. Цели и задачи исследования математических моделей систем. Методы анализа моделей. Решение линейных алгебраических уравнений. Решение уравнений в частных производных и метод конечных элементов. Решение нелинейных уравнений и систем. Методы Эйлера и Рунге - Кугга решения задачи Коши для обыкновенных дифференциальных уравнений и систем. Метод переменных состояния.

2.2. Методические указания по изучению раздела

При изучении раздела «Математические методы моделирования» необходимо усвоить этапы математического моделирования, из которых слагается основной алгоритм моделирования. Следует разобрать принципы построения математических моделей систем с учетом основных требований к ним. Четко понимать цели и задачи исследования математических моделей систем, из которых следует выбор методов их анализа.

Привлекая знания из таких разделов математики как «Линейная алгебра» и «Дифференциальное исчисление» детально изучить методы Гаусса, Эйлера и Рунге-Кутта, Ньютона для понимания технологии анализа линейных и нелинейных моделей систем.

2.3 Вопросы для самопроверки:

- 1. Дайте классификацию математических моделей СС.
- 2. Назовите этапы математического моделирования систем.
- 3. Приведите основные принципы построения математических моделей систем.
 - 4. Какие важные требования к моделям систем можно назвать?
 - 5. Какими уравнениями описываются модели линейных статических

систем?

- 6. Какими уравнениями описываются модели нелинейных статических систем?
- 7. Какими уравнениями описываются модели нелинейных динамических систем?
- 8. Когда приходится применять уравнения в частных производных для описания моделей?
 - 9. Для анализа каких объектов эффективен метод конечных элементов?
- 10. Чем удобен метод переменных состояния для моделирования динамики систем?

Раздел 3 Автоматизированное моделирование технических устройств и систем

3.1 Содержание раздела

Подходы и методы автоматизированного моделирования.

Обобщенная модель процесса автоматизированного моделирования систем.

Метод графов связей. Операторно-структурные схемы и графы систем.

Метод компонентных цепей и общая схема разработки математических моделей. Компонентные уравнения различных подсистем СТУС. Компьютерные модели физико-информационных цепей. Общая характеристика инструментальных средств, применяющихся при моделировании СТУС.

Примеры моделирования СТУС из области аналоговой и дискретной электроники, автоматики и САУ.

3.2 Методические указания по изучению раздела

При изучении раздела Автоматизированное моделирование технических устройств и систем студентам необходимо, прежде всего, усвоить подходы и методы автоматизированного моделирования и его основные отличия от ручного моделирования. Для анализа технических объектов полезно ознакомиться с такими традиционными методами как Метод графов связей и Операторно-структурные схемы и графы систем. Из современных методов необходимо детально изучить Метод компонентных цепей и общую схему разработки математических моделей в формате данного метода. Понимать что СТУС это обобщенный класс СС для технических областей. Уметь адекватно оценивать инструментальные средства, применяющиеся при моделировании СТУС с учетом входящих туда подсистем.

3.3 Вопросы для самопроверки

1. В чем принципиальные отличия автоматизированного моделирования

от ручного?

- 2. Что такое СТУС и из каких блоков он состоит?
- 3. Дайте основные понятия Метода графов связей.
- 4. Дайте основные понятия Метода операторно-структурных схем.
- 5. Дайте определение компонентной цепи.
- 6. Определите компонент цепи и его модель.
- 7. Что такое компонентные уравнения модели системы?
- 8. Что характеризуют топологические уравнения модели?
- 9. Какие приемы используются для связывания моделей отдельных блоков СТУС в общую модель?
 - 10. Какими методами желательно анализировать модели СТУС?

Раздел 4 Статистическое и имитационное моделирование систем

4.1 Содержание раздела

Методы имитации на ЭВМ случайных величин.

Принципы моделирования случайных величин. Моделирование случайных процессов. Метод Монте-Карло.

Принципы имитационного моделирования. Имитационное моделирование и условия его применения. Способы имитации.

Этапы имитационного моделирования. Планирование имитационных экспериментов. Оценка точности и достоверности имитационных экспериментов.

4.2 Методические указания по изучению раздела

При изучении раздела **Статистическое и имитационное моделирование систем** студентам необходимо, прежде всего, понимание того, какие параметры и характеристики систем имеют детерминированный, а какие носят стохастический характер. В этой связи для стохастических систем нужно разобрать методы имитации на ЭВМ случайных величин и моделирование случайных процессов, которое в основном базируется на методе Монте-Карло.

Непосредственно на базе этих понятий формируются знания принципов имитационного моделирования и условий его применения. Важными элементами в практическом освоении методов имитационного моделирования является понимание его этапов, а также методика планирования имитационных экспериментов и оценка их точности и достоверности.

4.3 Вопросы для самопроверки:

- 1. Какие системы называются стохастическими?
- 2. Приведите алгоритм метода Монте-Карло.
- 3. Нарисуйте кривую распределения Гаусса и проведите ее анализ.

- 4. Какие еще законы распределения характеризуют параметры систем?
- 5. Чем имитационный подход отличается от математического?
- 6. Каковы условия применения имитационного подхода?
- 7. Назовите и определите этапы имитационного моделирования.
- 8. Поясните суть методики планирования имитационных экспериментов.
 - 9. Характеризуйте понятия события, сообщения, состояния.
- 10. Какими критериями обычно пользуются для оценки точности и достоверности имитационных экспериментов.

Раздел 5 Методы моделирования социально-экономических систем

5.1 Содержание раздела

Модели системной динамики. Модели *нейронных сетей*: однослойный и многослойный *персептрон*.

5.2 Методические указания по изучению раздела

При изучении раздела Методы моделирования социальноэкономических систем студентам, прежде всего, необходимо понимание термина социально-экономическая система и связанная с ним классификация подобных систем. Нужно обратить внимание на то, что моделирование сошиальноэкономических систем относится К имитационному моделированию. В соответствии с классом исследуемых систем и поставленных перед ним задачами необходим обоснованный выбор метода анализа. Важным методическим инструментом здесь являются из традиционных системной динамики и из современных модели нейронных сетей, алгоритмы работы которых требуется детально разобрать и усвоить на примерах.

5.3 Вопросы для самопроверки

- 1. Что такое эколого-экономическая система?
- 2. Поясните суть «метода системной динамики».
- 3. Что характеризуют понятия потоков и уровней?
- 4. Определите понятия «сеть потоков», «информационная сеть.
- 5. Каково назначение «блока интегрирования»?
- 6. Определите функции «топологических узлов» в общей схеме модели.
- 7. Дайте основные определения метода нейронных сетей.
- 8. Назовите основные области применения нейронных сетей.
- 9. Определите элементы нейронных сетей.
- 10. Назовите критерии обучения нейронных сетей.

Раздел 6. Анализ чувствительности и параметрическая оптимизация систем

6.1 Содержание раздела

Определение функций чувствительности. Методы поисковой оптимизации многоэкстремальных функций.

6.2 Методические указания по изучению раздел

При изучении раздела **Анализ чувствительности и параметрическая оптимизация систем** студентам необходимо понимать определение функций чувствительности. Значение теории чувствительности при проектировании частотно-избирательных систем. Разобраться в таких методах как Анализ чувствительности методами малых приращений и методом присоединенных схем. Определить какой из методов является машинно-ориентированным.

При изучении методов оптимизации необходимо четко понимать целевую функцию и определять ее характер.

Классифицировать методы оптимизации по таким признакам как одно экстремальные и многоэкстремальные методы, с ограничениями и без ограничений, детерминированные и стохастические.

6.3 Вопросы для самопроверки:

- 1. Дайте определение понятия чувствительности.
- 2. Назовите задачи, где нужно определять чувствительность.
- 3. Характеризуйте суть метода малых приращений.
- 4. Дайте алгоритм работы метода присоединенных схем.
- 5. Определите принципы построения блока оптимизации.
- 6. В чем отличие алгоритмов поиска экстремума функций одной и нескольких переменных.
- 7. Сформулируйте задачу линейного программирования.
- 8. Сформулируйте задачу нелинейного программирования.

- 9. Дайте алгоритм решения транспортной задачи.
- 10. Назовите критерии поисковой оптимизации.

Раздел 7. Инструментальные средства моделирования систем управления

7.1 Содержание раздела

Специализированные пакеты для математических расчетов (MathCAD, Макрокалькулятор).

Универсальные системы моделирования (MatLAB, MAPC).

7.2 Методические указания по изучению раздела

При изучении раздела **Инструментальные средства моделирования систем управления** студенты четко должны отличать системы аналитического и визуального моделирования.

Классифицировать задачи моделирования и подбирать для них соответствующие инструментальные средства моделирования.

Отличать однородные по физической структуре объекты от мультифизических систем и уметь правильно использовать универсальные системы моделирования.

7.3 Вопросы для самопроверки

- 1. Что такое аналитическое и визуальное моделирование?
- 2. Чем однородные системы отличаются от мультифизических с точки зрения моделирования?
- 3. Определите назначение такой системы как MathCAD.
- 4. Определите назначение таких систем как MatLAB, MAPC.
- 5. Назовите функции редактора в системе MathCAD.
- 6. Назовите основные редакторы в системе МАРС.
- 7. В каких системах существуют библиотеки моделей компонентов.
- 9. Назовите некоторые задачи математического анализа в системе MathCAD и Макрокалькулятор.
- 10. Каково назначение интерактивной математической панели в системе МАРС?
- 11. Какие задачи решает система Симулинк в MatLAB?

Рекомендуемая литература

- 1. Черепанов О.И. Моделирование систем: учебное пособие / О. И. Черепанов; Министерство образования и науки Российской Федерации, Томский государственный университет систем управления и радиоэлектроники (Томск). Томск: ТУСУР, 2010. 148 с. (25 экз.)
- 2. Решетникова Г.Н. Моделирование систем: Учебное пособие / Г. Н. Решетникова; Федеральное агентство по образованию, Томский государственный университет систем управления и радиоэлектроники. 2-е изд., перераб. и доп. Томск: ТУСУР, 2007. 440 с. (70 экз.)
- 3. Моделирование систем. Динамические и гибридные системы: Учебное пособие для вузов / Ю. Б. Колесов, Ю. Б. Сениченков. СПб.: БХВ-Петербург, 2006. 224 с. (20 экз.)
- 4. Моделирование систем: Учебное пособие для вузов / Г. Н. Решетникова: Федеральное образованию, Томский агентство ПО государственный университет систем управления и радиоэлектроники. - Томск: Томский государственный университет систем управления И радиоэлектроники, 2005. - 260 с. (50 экз.)
- 5. Яворский В.В. Оптимизация и математические методы принятия решений: Учебное пособие для вузов / В.В. Яворский, Федеральное агентство по образованию, Томский государственный университет систем управления и радиоэлектроники. Томск: ТУСУР, 2006. 215 с.