Министерство образования и науки Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования «Томский государственный университет систем управления и радиоэлектроники» (ТУСУР)

Утверждаю:
Зав. Кафедрой РЭТЭМ д. т. н.
_______В.И.Туев
« » 2011г

Гидравлика

Методические указания по лабораторным работам для студентов, обучающихся по направлению 20.03.01 «Техносферная безопасность»

Разработчик: к.т.н. Апкарьян А.С.

Содержание

	Введение	Стр.
1		
1		
2	Инструкция по технике безопасности	4
3	Лабораторная работа №1	
	Измерение давлений	6
4	Лабораторная работа №2	
	Закон Паскаля. Гидравлический пресс	10
5	Лабораторная работа №3	
	Определение силы давления жидкости на плоскую	
	стенку	19
6	Лабораторная работа №4	
	Исследование режимов течения жидкости в круглой	
	трубе	25
7	Список литературы	27

Введение

При выполнении лабораторных работ по курсу "Гидравлика и гидравлические машины" студенты знакомятся с основными измерительными приборами, применяемыми в гидравлическом эксперименте, методикой измерения гидравлических параметров, получают практические навыки при выполнении гидравлических расчетов и некоторые сведения о методах статистической обработки экспериментальных данных.

До начала лабораторного занятия студент обязан проработать соответствующий раздел настоящего руководства.

Необходимо найти ответы на контрольные вопросы и заранее заготовить бланк отчета по работе, содержащий:

- 1 Название работы;
- 2 Цель работы;
- 3 Вывод необходимых расчетных соотношений;
- 4 Схему лабораторной установки;
- 5 Краткое описание и последовательность выполнения работы;
- 6 Протокол наблюдения.

В лабораторию студент обязан являться, имея при себе:

- а) методические указания по лабораторному практикуму;
- б)отчет по лабораторной работе;
- в) калькулятор;
- г) конспект лекций.

При обработке результатов некоторых лабораторных работ использованы элементы статистического анализа и формализация экспериментальных данных.

1 Правила

выполнения лабораторных работ в лаборатории теплофизики, теплотехники и гидравлики

- 1 Каждая лабораторная работа выполняется бригадой в составе 3-4 студентов.
- 2 Прежде чем приступить к лабораторной работе, каждый студент должен изучить ее описание, подготовить бланк отчета и сдать преподавателю коллоквиум по теоретическим вопросам, относящийся к данной работе.
- 3 Студент, не имеющий бланк отчета или не сдавший коллоквиум, к проведению лабораторной работы не допускается. Он обязан отработать ее в указанное преподавателем время.
- 4 После окончания лабораторных занятий результаты измерений и расчетов каждый студент предъявляет преподавателю для визирования.
- 5 К началу следующего лабораторного занятия студент должен сдать законченный отчет по выполненной работе, без данного отчета он не допускается к дальнейшим лабораторным работам.
- 6 Отчет по работе выполняется на листах белой бумаги (формат А4) в соответствии с ГОСТ 2.105-95. На титульном листе указывается наименование работы, кто выполнил, кто проверил, указывается год выполнения работы. На листах отчета должны быть: цель работы, схема опытного устройства, таблицы результатов измерений и таблицы результатов расчетов, и расчеты. Особое внимание при проведении расчетов необходимо обращать на соблюдение единства систем единиц измерения. Все величины, участвующие в расчетах, выражать в единицах СИ. Графики строятся на бумаге формата А4 и прилагаются к отчету.

2 Инструкция

по технике безопасности при работе в лаборатории теплофизики, теплотехники и гидромеханики

- 1 К практическим занятиям в лаборатории допускаются студенты, получившие инструктаж по технике безопасности с соответствующим оформлением его в журнале.
- 2 Студентам запрещается без разрешения преподавателя включать электрооборудование, открывать и закрывать задвижки и вентили трубопроводов, включать измерительные приборы и установки.
- 3 Перед началом работы необходимо ознакомиться с заданием, с правилами безопасности проведения работ, проверить исправность ограждений и предохранительных устройств.
- 4 При работе в лабораториях выполняется только та лабораторная работа, которая предусмотрена планом. Категорически воспрещается выполнять другие лабораторные работы.
- 5 Во время выполнения лабораторной работы ходить без дела по лаборатории запрещается, т.к. этим отвлекается внимание других студентов и остается без наблюдения лабораторная установка, что может повлечь за собой несчастный случай.
- 6 Оборудование лаборатории относится к разряду опасных в связи с возможностью поражения электрическим током, поэтому студенты обязаны строго соблюдать правила безопасности. В случае прекращения подачи электроэнергии необходимо отключить установку и оставаться у рабочего места.
- 7 Если произошел несчастный случай, то необходимо немедленно оказать первую помощь и сообщить об этом преподавателю.
- 8 Бережное отношение к приборам и оборудованию лаборатории создает условия вашей безопасности.
- 9 Запрещается в лабораторию приносить верхнюю одежду.
- 10 По окончании работы приведите в порядок рабочее место.

3 Лабораторная работа №1 Измерение давлений

Количество аудиторных часов — 4 часа. Количество часов на самостоятельную работу студента - 2 часа.

Цель работы

- 1 Закрепление знаний по разделу «Гидростатика».
- 2 Ознакомление с приборами для измерения давлений (пьезометрами, манометрами, вакуумметрами, дифференциальными манометрами).
- 3 Определение избыточного давления, вакуума (разрежения) и абсолютного давления воздуха на поверхности жидкости по показаниям U-образного пьезометра;
- 4 Освоить единицы измерения давления в различных системах (СИ, СГС, МКГСС) и их взаимосвязь.
- 5 Освоить методику расчет абсолютного гидростатического давления в любой точке покоящейся жидкости.

Необходимое оборудование и материалы

Для измерения избыточного давления и разрежения в лабораторной установке (рис. 3.1) предусмотрен небольшой замкнутый резервуар 1 с краном К, заполненный воздухом и соединенный резиновым шлангом с подвижным резервуаром 2, частично заполненным водой. Таким образом, резервуары 1 и 2 являются сообщающимися сосудами.

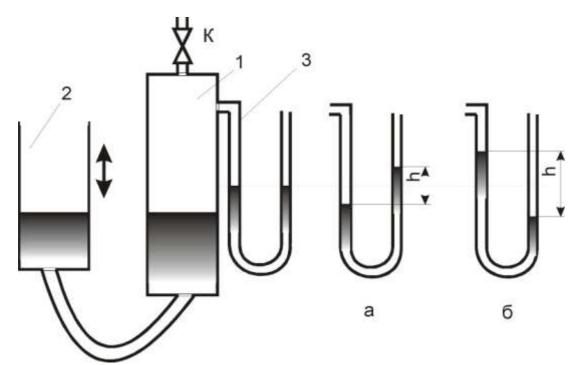


Рис.3.1 Схема лабораторной установки для измерения избыточного давления и разрежения

Если кран К на резервуаре открыт, то в резервуаре атмосферное давление и положение уровней жидкости в U-образном пьезометре 3 в правом и левом колене одинаковы.

После закрытия крана и перемещения резервуара 2 вверх, над жидкостью в резервуаре 1 создается избыточное давление за счет перелива жидкости из резервуара 2 в резервуар 1. Это избыточное давление измеряется разностью уровней жидкости в правом и левом колене U-образного пьезометра (рис. 3.2a).

При перемещении резервуара 2 вниз и закрытом кране на резервуаре 1 изза перелива части жидкости из резервуара 1 в резервуар 2 в замкнутом пространстве резервуара 1 создается вакуум. Величина вакуума измеряется также U-образным пьезометром (рис. 3.2.6).

Теоретические основы метода

Полное или абсолютное гидростатическое давление в любой точке покоящейся жидкости определяется по основному уравнению гидростатики:

$$p = p_0 + \rho g h$$
 или $p = p_0 + v h$, (3.1)

где p - абсолютное (полное) гидростатическое давление;

 p_0 - абсолютное давление на свободной поверхности жидкости;

v - удельный (объемный) вес жидкости;

 ρ - плотность жидкости;

g - ускорение свободного падения;

h - глубина погружения точки под уровень жидкости.

Исходя из формулы (3.1), можно сказать, что расчет абсолютного гидростатического давления сводится к определению абсолютного давления на поверхности жидкости p_0 в соответствующих единицах измерения (удельный вес v или плотность ρ , а также глубина погружения точки h задаются исходными данными).

Абсолютное давление - это давление, отсчитанное от абсолютного нуля (полного вакуума), подобно тому, как отсчитывается температура по шкале Кельвина. В технике промышленных измерений давления отсчет ведут от относительного нуля - атмосферного давления. Давление, выше атмосферного измеряют манометрами, и называют избыточным или манометрическим. Давление, ниже атмосферного (вакуум), измеряют вакуумметрами.

На рис.3.2 можно проследить пределы изменения и взаимосвязь абсолютного давления $p_{aбc}$, избыточного p_{us6} и вакуума $p_{вак}$. Абсолютное давление при наличии вакуума (формула 3.2) называют также остаточным давлением.

В открытых сосудах абсолютное давление на поверхности жидкости равно атмосферному давлению.

$$P_0 = P_{amm} + P_{u36}$$
. $P_0 = P_{amm} - P_{eak}$. (3.2)

Применяемые в гидротехнической практике единицы измерения давления и их взаимосвязь следующие:

1 атм. = 760 мм.рт.ст. = $101325 \, \Pi a = 101,325 \, \kappa \Pi a$ - физическая атмосфера;

1 ат = 98066, $\Pi a = 98,066$ к $\Pi a = 0,1$ М Πa - техническая атмосфера;

 $1 \text{ мм.вод.ст.} = 9,806 \Pi a$;

 $1_{\text{MM.pt.ct.}} = 133,322 \, \Pi a;$

1бар = 100 кПа = 0,1 МПа;

1бар = 100 кПа = 0,1 МПа.

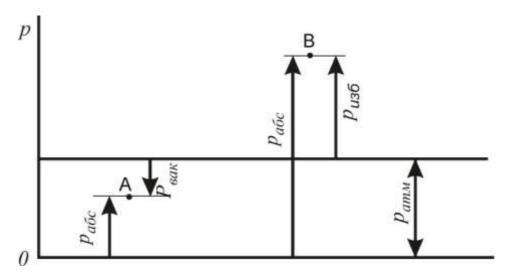


Рис.3.2. Взаимосвязь давлений избыточного, абсолютного и давления вакуума

Абсолютное и избыточное давления, выраженные в атмосферах, обозначаются, соответственно, "ата" или "ати" (например, p=2 ата, p=3 ати и т.п.).

Давление может быть выражено высотой столба жидкости над рассматриваемой точкой. Высота столба жидкости определяется по зависимости:

$$h = P/v = P/\rho g. \tag{3.3}$$

Из формулы (1.3) следует, что одно и то же давление в зависимости от плотности жидкости может быть создано столбом различной высоты. Так, техническая атмосфера (1 ат) соответствует 10 м. вод. ст. (при удельном весе воды $y = 1000 \, \mathrm{krc/m}^3) = 735,5 \, \mathrm{mm}$. рт.ст. (при удельном весе ртути 13600 кгс/м³).

Задание

Рассчитать абсолютное давление p_0 в замкнутой воздушной области внутри резервуара 1 для всех опытов по формулам и занести в таблицы 3.1 и 3.2. Атмосферное давление принять равным технической атмосфере.

Проведение опыта

1 При открытом кране К установить положение резервуара 1 и 2 в соответствии с рис. 3.1.

- 2 Долить воды в U-образный пьезометр до нулевой отметки в обеих трубках. При переливе избыток удалить фильтровальной бумагой.
- 3 Закрыть кран К и создать избыточное давление в замкнутом пространстве резервуара.
- 4 Записать в журнал наблюдений величину h (рис.3.1a), характеризующую избыточное давление. Следует провести 2 -3 опыта, меняя избыточное давление. Опытные данные занести в таблицу 3.1.
- 5 Перемещая резервуар 2, создать вакуум в замкнутой воздушной области резервуара 1; замерить его величину по пьезометру 3 (рис.3.1,б). Так же, как и в предыдущем случае, следует провести 2 3 опыта, меняя величину вакуума. Опытные данные занести в таблицу 3. 2.

Обработка результатов

Рассчитать абсолютное давление p_0 в замкнутой воздушной области внутри резервуара 1 для всех опытов по формулам и занести в таблицы 3.1 и 3.2. Атмосферное давление принять равным технической атмосфере.

Таблица 3.1 Расчёт абсолютного давления воздуха по избыточному давлению

Атмосф	ерное дан	зление	Избытс	Абсолютное			
				давление			
м.вод.ст	и.вод.ст $\kappa \Gamma c/m^2$ H/m^2		мм.вод.ст	кгс/м2	H/M^2	кгс/м2	H/M^2

Таблица 3.2 Расчёт абсолютного давления воздуха при наличии вакуума

_	Tuosinga 5.2 Tuo tet uotosiiotiioto gabsieliini bosgyna iipii iiasiii iiiii bakyyma									
Атмосферное давление			Избыточное давление			Абсолютное				
					давление					
1	м.вод.ст $\kappa \Gamma c/m^2$ H/m^2		мм.вод.ст	кгс/м ²	H/M^2	кгс/м2	H/M^2			

Отчет по работе

Отчет по работе должен включать следующие пункты:

- 1 Титульный лист.
- 2 Наименование и цель работы.
- 3 Схему опытной установки.
- 4 Таблицу наблюдений.
- 5 Обработку результатов опыта.
- 6 Выводы.

Контрольные вопросы

1 Цель лабораторного исследования.

- 2 Гидростатическое давление и его свойства.
- 3 Основное уравнение гидростатики.
- 4 Единицы измерения давления и их взаимосвязь.
- 5 Понятие абсолютного, избыточного давлений, вакуума.

Подписи исполнителей

Подписи руководителя

4 Лабораторная работа №2. Закон Паскаля. Гидравлический пресс.

Количество аудиторных часов — 4 часа. Количество часов на самостоятельную работу студент - 2 часа.

Цель работы

- 1 Закрепление знаний по разделу «Гидростатика».
- 2 Изучение закона Паскаля.
- 3 Изучение принципа действия гидравлического пресса.

Описание экспериментальной установки

Гидравлический пресс (рис.4.1) имеет две цилиндрические камеры А и Б, которые соединены между собой общей гидросистемой. В цилиндре А установлен плунжер 1 диаметром d, а в цилиндре Б - плунжер 2 диаметром D. Плунжер 1 имеет сальниковое уплотнение, сила трения в котором зависит от усилия затяжки накидной гайки (при нормальной затяжке давление прижатия сальниковой набивки к движущемуся поршню должно быть примерно в 1,3 раза больше максимально возможного давления в гидросистеме). Плунжер 2 уплотнен манжетой. Сила трения при манжетном уплотнении пропорциональна величине давления в гидросистеме, т.к. манжета тем плотнее будет прижиматься к плунжеру 2, чем больше будет давление в гидросистеме пресса.

Цилиндр А вместе с плунжером 1 и клапанной коробкой 3 образуют поршневой насос, имеющий ручной привод посредством рычага 4. С его помощью за счет всасывающего и нагнетательного клапанов, установленных в клапанной коробке, ОНЖОМ перекачивать рабочую жидкость (масло индустриальное) из ванны 5 в полость гидроцилиндра Б. Манометром 6 замеряется давление в гидросистеме пресса. Предохранительный клапан 7 откроется в том случае, если по каким-либо причинам давление в гидросистеме превысит максимальное допустимое значение давления для данного пресса $(p_{max} = 150 \text{ кгс/см}^2)$. При этом произойдет слив рабочей жидкости в ванну 5, давление понизится, и разрушения конструкции пресса не произойдет.

После проведения опыта переливной вентиль 8 открывают, рабочую жидкость из камеры Б вручную выдавливают плунжером 2 в ванну 5.

Кран-воздушник 9 служит для удаления воздуха из гидросистемы пресса. Пресс оснащен просечным штампом 10 с пуансоном 1.

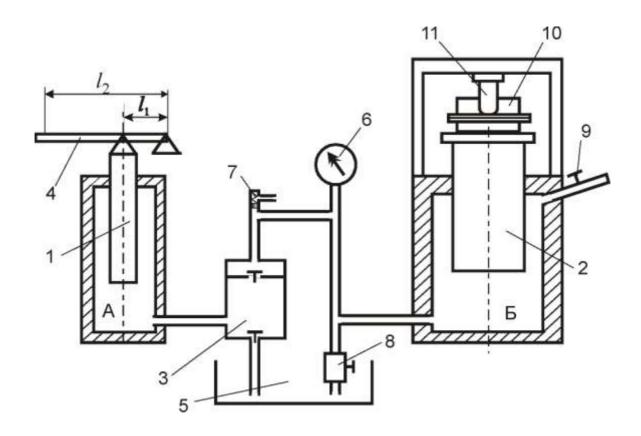


Рис. 4.1. Схема лабораторной установки

Теоретические основы метода

Для того чтобы определить давление в произвольной точке покоящейся жидкости, достаточно знать величину давления в какой либо другой точке, принадлежащей тому же объёму, а так же глубину погружения одной точки относительно другой.

Пусть в открытом сосуде (рис.4.2) находится однородная жидкость в состоянии покоя. На её поверхность, а следовательно и на точку 1, лежащую на поверхности, действует давление находящегося над жидкостью газа, которое обозначим p_0 . Если окружающий газ свободно сообщается с атмосферой, то внешнее давление равно атмосферному: $p_0 = p_{amm}$.

Определим абсолютное (полное) давление p_2 , действующее на точку 2 внутри жидкости. Очевидно в этой точке жидкость испытывает давление p_0 находящегося над жидкостью газа (действующее одновременно и в точке 1) и. кроме того, давление оказываемое столбом жидкости, расположенным над ней:

$$p_2 = p_0 + \rho g(h_1 - h_2), \tag{4.1}$$

где ρ - плотность жидкости (кг/м³),

g – ускорение свободного падения (M/c^2),

 h_1 и h_2 — высоты, отсчитанные вверх от одной и той же условной горизонтальной плоскости (в данном случае от дна сосуда) (м).

В общем случае уравнение (4.1) может быть записано в виде

$$p = p_0 + \rho g h, \tag{4.2}$$

где h высота столба жидкости над рассматриваемой точкой. Это равенство называется основным уравнением гидростатики. Из этого уравнения следует, что в одном и том же объёме покоящейся однородной жидкости все частицы, расположенные в одной и той же горизонтальной плоскости, находятся под одним и тем же гидростатическим давлением.

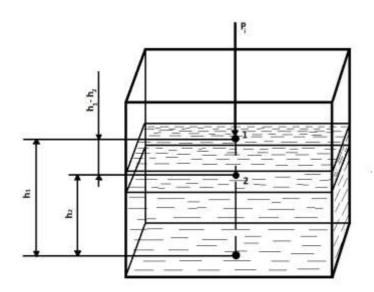


Рис. 4.2. К определению основного уравнения гидростатики

Поверхность, все точки которой испытывают одинаковое давление, называют поверхностью равного давления. Из уравнения (4.2) видно, что величина гидростатического давления однородной покоящейся жидкости в каждой точке зависит только от высоты столба жидкости над ней. Поэтому ясно, что поверхностями равного давления в покоящейся жидкости являются горизонтальные плоскости.

Пусть на поверхность жидкости (рис.4.2) кроме внешнего газового давления p_0 действует дополнительное давление $p^{'}$ от приложенных внешних сил.

Общее давление на свободную поверхность жидкости составляет сумму давлений $p_0 + p'$. По уравнению (4.2) полное давление в точке 2 с учётом дополнительного давления p' равно

$$p_{2}' = p_{0} + p' + \rho g(h_{1} - h_{2}).$$
 (4.3)

Докажем, что в любой точке рассматриваемого объёма давление возрастает на ту же величину, на которую увеличилось давление на поверхность жидкости. Вычитая уравнение (4.1) из (4.3) получим

$$p_2' - p_2 = p'. (4.4)$$

Уравнение (4.4) показывает, что давление на поверхности жидкости увеличилось на ту же величину, на какую оно возросло в произвольно взятой точке 2, а, следовательно, и в любой другой точке этого объёма жидкости.

Это свойство жидкости отражает сущность закона Паскаля, который формулируется так: давление, создаваемое в любой точке жидкости, находящейся в покое передаётся одинаково всем точкам внутри жидкости. Закон Паскаля применяют при конструировании различных гидростатических машин и установок, действие которых основано на равномерном распределении давления внутри неподвижной жидкости.

Схема работы гидравлического пресса. В современных гидравлических прессах развиваются очень большие усилия (до 150 Мн). Их используют при ковке, прессовании, испытании материалов и др. Особенность гидравлического пресса заключается в возможности получать большие усилия при затрате сравнительно небольшой исходной силы.

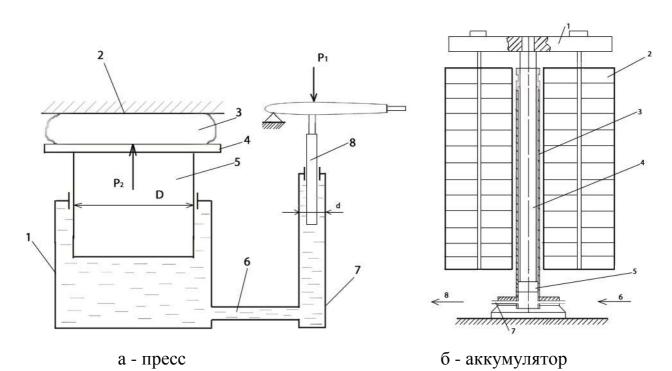


Рис. 4.3. Схема работы гидравлического пресса и гидравлического аккумулятора

На рис. 4.3,а приведена схема гидравлического пресса. На столе 4 пресса находится прессуемый материал 3, прижатый неподвижной траверсой 2, являющейся упором. Цилиндр 1 пресса, цилиндр 7 насоса и трубопровод 6 заполнены жидкостью. К поршню 8 насоса, имеющему площадь A_I , приложена сила P_I , под действием которой он передвигается сверху вниз и оказывает давление на поверхность жидкости, находящуюся под ним. Величина этого давления

$$p = P_I/A_I.$$

По закону Паскаля давление передаётся на поршень 5 пресса создавая полезную силу P_2 под действием которой прессуется материал. Откуда

$$p=P_2/A_2,$$

где A_2 - площадь поршня пресса.

Выразив площади поршней через их диаметры и сделав ряд преобразований, получаем

$$P_2/P_1 = D^2/d^2, (4.5.)$$

где d — диаметр малого поршня, D — диаметр большого поршня.

Так, например, если диаметр большого поршня в десять раз больше диаметра малого, то полезное усилие на большом поршне будет в сто раз больше чем на малом.

Схема работы гидравлического аккумулятора. Насосы, питающие рабочей жидкостью гидравлические пресса, относятся к непрерывно действующим машинам. Останавливать работу насоса при каждой периодической остановке пресса нецелесообразно по техническим и экономическим причинам. Поэтому нагнетаемая насосом техническая жидкость при каждой регулярной периодической остановке должна непременно отводиться в некую ёмкость, способную накапливать (аккумулировать) рабочую жидкость под большим давлением. Такие ёмкости называют гидравлическими аккумуляторами, они являются дополнительными агрегатами насоса.

Рассмотрим схему работы и устройство гидравлического аккумулятора с грузовым нагружением (4.3,б). Такой аккумулятор состоит из неподвижно установленного на фундаменте вертикального цилиндра 3, нижний торец которого герметически закрыт крышкой. В цилиндре установлен шток 4 с поршнем 5, перемещающимся вверх при заполнении нижней полости цилиндра рабочей жидкостью, поступающей в него из насоса (см. стрелку 6).

Во время работы пресса из аккумулятора в пресс по выходной трубе 7 (см. стрелку8) подаётся рабочая жидкость. В конце трубы находится запорный клапан, которым при очередной остановке пресса перекрывают подачу рабочей жидкости в пресс. После чего движение стола и прессование прекращается. В это время насос продолжает работу и нагнетает рабочую жидкость не в цилиндр пресса, а в цилиндр гидравлического аккумулятора. По мере его заполнения шток 4 с поршнем 5 поднимается вверх вдоль оси цилиндра и вместе с ним поднимается траверса 1. На концах траверсы по обе стороны оси плунжера симметрично подвешены грузы 2, общая масса которых подбирается такой, чтобы давление в цилиндре аккумулятора было равно давлению жидкости, нагнетаемом в него насосом.

Когда вспомогательные работы на прессе закончены и должна начаться его основная работа, открывают запорный клапан, ранее отделявший гидропресс от аккумулятора. В гидропресс начинает поступать двойной поток рабочей жидкости: поток, подаваемый насосом, и дополнительный поток из аккумулятора, вытесняемый из него опускающимся плунжером с грузами. Этот более мощный поток рабочей жидкости ускоряет процесс прессования, что повышает производительность пресса.

Достоинством данного аккумулятора является постоянство давления накопленной жидкости обусловленное тем, что масса груза и площадь сечения плунжера постоянны.

Недостатком таких аккумуляторов является сравнительно малая ёмкость и большие габариты.

Для накопления больших количеств жидкости применяют газогидравлический аккумулятор. Он состоит из цилиндрической ёмкости, изготовленного из стальных листов. Ёмкость предварительно заполняют сжатым газом с некоторым начальным давлением. При накачивании в него рабочей жидкости заданного объёма, объём газовой части аккумулятора уменьшается, а давление газа повышается до максимальных значений.

К недостаткам газогидравлических аккумуляторов следует отнести: нестабильность давления рабочей жидкости, и наличие растворённого газа в сжатой рабочей жидкости.

Задание

- 1 Рассчитать силу F нагрузки на алюминиевую пластинку в момент ее разрушения (просечки).
- 2 Рассчитать усилие f, приложенной к плунжеру, в момент просечки образца.
- 3 Рассчитать коэффициент полезного действия гидравлического пресса.

Проведение опыта

- 1 Подготовить пресс к работе. Плунжер 2 должен находиться в крайнем нижнем положении. Переливной вентиль 8 должен быть закрыт. Приоткрыв на пол-оборота кран воздушник 9, сделать прокачку гидросистемы (5 6 колебательных движений рычага 4). Закрыть кран-воздушник 9.
- 2 В просечной штамп заложить алюминиевую полоску, предварительно замерив ее толщину 8. Замерить диаметр пуансона d_n и вставить его в верхнюю часть штампа. Замерить плечи рычага l_1 и l_2 , диаметр плунжеров 1 и 2 (соответственно d и D) (рис.4.1), результаты занести в табл. 4.1.
- 3 Плавно работая рычагом 4, создать нагрузку на алюминиевую полоску в просечном штампе. Следить за отклонением стрелки манометра от нулевой отметки. В момент разрушения образца зафиксировать давление *p* по показанию стрелки манометра. Испытание повторить 3 4 раза.

Обработка результатов

1 Все основные конструктивные размеры гидравлического пресса внести в таблицу 4.1.

Таблица 4.1. Результаты замеров

Наименование	Обозначение, размерность	Величина
Диаметр малого плунжера	<i>d,</i> м	
Диаметр большого плунжера	Д, м	
Длина плеча	l_1, M	
Длина рукоятки	<i>l</i> ₂ , м	
Диаметр пуансона	d_n , M	
Толщина образцов	<i>S</i> , м	

2 Рассчитать силу F нагрузки на алюминиевую пластинку в момент ее разрушения (просечки) с учетом потерь силы давления гидросистемы на преодоление сил трения плунжера 2 о манжетное уплотнение:

$$F = p\pi D^2/4 - \mu p\pi dB,$$

где p - давление в гидросистеме пресса в момент просечки пластины, Πa ;

D - диаметр большого плунжера, м;

B = 0.015 м - ширина уплотнения манжеты;

 μ = 0,08 - коэффициент трения стали по материалу манжеты;

d - диаметр плунжера, м.

3 Рассчитать усилие f, приложенной к плунжеру 1, в момент просечки образца:

$$f = p \pi d^2/4 + 1,3 \mu p_{max} \pi db$$
,

где: d – диаметр малого плунжера, м;

b = 0,008 м - высота (ширина) сальниковой набивки;

 p_{max} - максимально возможное давление (150 кгс/см²) в гидросистеме пресса, на которое рассчитана сила затяжки сальниковой набивки, Па.

4 Рассчитать коэффициент полезного действия гидравлического пресса:

$$\eta = F/F_T \cdot 100\%.$$

Прессующее усилие без учета сил трения (теоретическое прессующее усилие):

$$F_T = p\pi D^2/4.$$

5. Рассчитать разрушающее напряжение на срез для алюминиевой пластины:

$$\sigma = F/\pi d_n \delta ,$$

где d_n - диаметр пуансона просечного штампа, м; δ - толщина алюминиевой пластины, м.

6 Рассчитать усилие, приложенное к рукоятке рычага:

$$f_p = f l_1 / l_2$$
,

где: l_I - длина плеча, м;

 l_2 - длина рукоятки, м.

Результаты замеров занести в табл.4.2.

Таблица 4.2. Опытные и расчетные данные по изучению работы гидравлического пресса

Показания		Прессующ.	Усилие на	К.П.Д.	Усилие на	Разрушающ.
манометра,		усилие,	плунжере 1,	η	рукоятке,	напряжение,
P		F	f		fp	σ
кгс/см ² Па		Н	Н	%	Н	Па

Отчет по работе

Отчет по работе должен включать следующие пункты:

- 5 Титульный лист.
- 6 Наименование и цель работы.
- 7 Схему опытной установки.
- 8 Таблицу наблюдений.
- 9 Обработку результатов опыта.
- 10 Выводы.

Контрольные вопросы

- 1 Цель лабораторной работы.
- 2 Закон Паскаля, его формулировка.
- 3 Практическое применение закона Паскаля на примере гидравлического пресса.
- 4 Устройство и принцип действия гидравлического пресса.
- 5 На примере лабораторных исследований покажите, какое преимущество получается при использовании гидравлического пресса? Рычага?
- 6 Коэффициент полезного действия гидравлического пресса.

Подписи исполнителей

Подписи руководителя

5 Лабораторная работа 3.

Определение силы давления жидкости на плоскую стенку

Количество аудиторных часов – 4 часа.

Количество часов на самостоятельную работу студента - 2 часа.

Цель работы

- 1 Закрепление знаний по разделу «Гидростатика».
- 2 Опытное определение величины силы давления жидкости на плоские наклонные стенки.
- 3 Определение координаты точки приложения этой силы (центра давления).

Теоретические основы метода

Расчет силы давления жидкости на плоскую стенку является одной из наиболее часто встречающихся задач инженерной практики. Определить ее можно аналитическим и графоаналитическим методами. При аналитическом методе силу давления выражают формулой:

$$F = p_c \cdot S, \tag{5.1}$$

где p_c - гидростатическое давление в центре тяжести плоской фигуры;

S - площадь стенки, т.е. полная сила давления жидкости на плоскую стенку равна произведению гидростатического давления в центре тяжести плоской стенки на площадь этой стенки.

По основному уравнению гидростатики:

$$p_{c} = p_{0} + \rho g h_{c} = p_{0} + \gamma h_{c}, \qquad (5.2)$$

где p_0 - абсолютное давление на поверхности жидкости;

 ρ - плотность жидкости;

g - ускорение свободного падения, $g = 9.81 \text{ м/c}^2$;

γ - удельный вес жидкости;

 h_c - глубина погружения центра тяжести плоской поверхности под уровень жидкости.

В общем случае:

$$F = (p_0 + \rho g h_c) \cdot S = p_0 S + \rho g h_c S , \qquad (5.3)$$

т.е. полная сила давления жидкости на стенку складывается из двух сил: F_0 от внешнего давления ($F_0 = p_0 S$) и силы F_{∞} от веса жидкости ($F_{\infty} = \rho g h_c S$):

$$F = F_0 + F_{\mathcal{H}} \tag{5.4}$$

Как правило, вместо p_0 в уравнении (5.3) оперируют избыточным (манометрическим) давлением или вакуумом, т.к. атмосферное давление действует на расчетную конструкцию со всех сторон и поэтому его можно не принимать во внимание:

а) при
$$p_0 > p_{am_M}$$
 $F = (p_{us6} + \rho g h_c) S$
б) при $p_0 < p_{am_M}$ $F = (\rho g h_c - p_{eak}) S$
в) при $p_0 = p_{am_M}$ $F = \rho g h_c S$ (5.5)

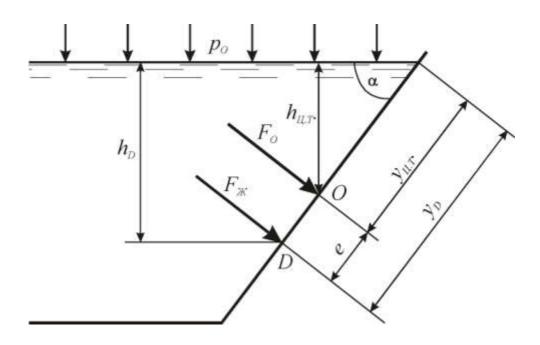


Рис. 5.1. Точки приложения силы внешнего давления F_0 и силы давления жидкости $F_{\rm ж}$

Внешнее давление p_0 передается всем точкам плоской стенки одинаково. Следовательно, его равнодействующая F_0 будет приложена в центре тяжести площади S. Координату y_D точки приложения силы давления жидкости (см. рис. 5.1) находят по формуле:

$$y_c = y_c + l_0 / y_c S ag{5.6}$$

где y_c - координата центра тяжести стенки;

 l_0 - момент инерции площади S относительно центральной оси, проходящей в плоской стенке параллельно свободной поверхности.

 $l_0/y_c S =$ е, - характеризует расстояние между координатами точек приложения сил F_0 и F_{∞} , называют эксцентриситетом.

Эти условные точки называют также центрами давления (внешнего и гидростатического).

При графоаналитическом методе строят эпюры давления, выражающие закон распределения давления на контур тела, погруженного в жидкость. Сила давления равняется объему пространственного эпюра, выражающего вес жидкости в объеме этого эпюра (с учетом масштаба построения эпюра). Вектор этой силы проходит через центр тяжести этого эпюра.

Описание лабораторной установки

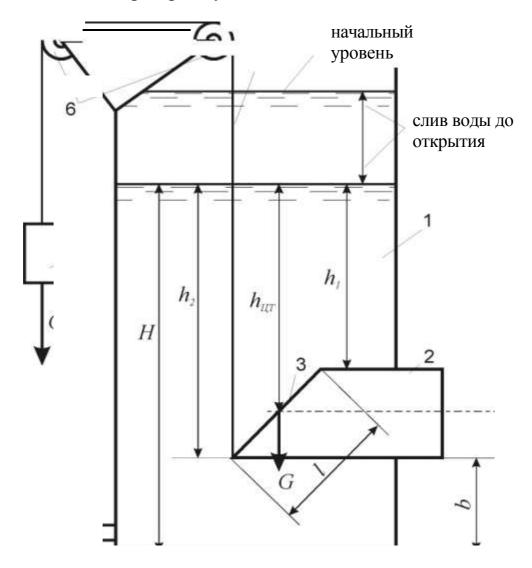


Рис. 5.2. Схема лабораторной установки

Труба 2 квадратного сечения со стороной a=10 см закрыта плоской наклонной крышкой со сторонами a и $l=a/sin\alpha$; угол наклона $\alpha=45^\circ$. Расстояние от дна сосуда до нижней стенки трубы b=8 см.

Резервуар 1 заливают водой, уровень которой контролируется по водомерной стеклянной трубке (на рис. 5.2 не показана). Наклонная крышка прижимается к

трубе силой гидростатического давления жидкости F_{m} и собственной силой тяжести G.

Незакреплённый кран крышки в точке В соединён с тросиком 5, который пропущен через блоки 6 и другим концом присоединён к грузу 4 (G_1). В ходе лабораторного исследования уровень жидкости в резервуаре 1 понижают сливом ее из резервуара через кран 7 и фиксируют уровень, при котором сила давления жидкости на наклонную стенку становится равной силе натяжения тросика и крышка 3 открывается под действием груза G_1 .

Задание

- 1 Определить глубину погружения центра тяжести h_c .
- 2 Рассчитать силу давления жидкости на крышку 3 (F_{κ}).
- 3 Рассчитать гидростатическое давление на глубине погружения h₁ верхней стенки и на глубине погружения h₂ нижней стенки трубы 2.

Проведение опыта

- 1 В резервуар 1 наливают воду до некоторого уровня, при котором груз 4 не способен открыть крышку 3. Вес груза G_I известен.
- 2 Открывают сливной кран 7, добиваясь медленного понижения уровня воды в резервуаре.
- 3 Фиксируют уровень жидкости H, при котором крышка 3 резко откроется и вода потечет по трубе 2.

Обработка опытных данных

1 Определить глубину погружения центра тяжести,

$$h_c = H - b - a/2 \tag{5.7}$$

2 Рассчитать силу давления жидкости на крышку 3,

$$F_{\mathcal{H}} = \rho g h_c a l \tag{5.8}$$

3 Рассчитать гидростатическое давление на глубине погружения h_1 верхней стенки и на глубине погружения h_2 нижней стенки трубы 2.

$$p_1 = \rho g h_1; \ p_2 = \rho g h_2$$
 (5.9)

- 4 Построить эпюр гидростатического давления.
- 5 Вычислить объем пространственного эпюра (см. рис. 5.3).

$$V = (p_1 + p_2) \cdot S/2$$

6 Определить точку приложения силы давления жидкости по формуле (5.6). При этом

$$y_c = h_c / \sin \alpha$$
; $l_0 = a \cdot l^3 / 12$

На эпюре гидростатического давления показать эксцентриситет и центр давления y_D .

Рассчитать глубину погружения силы гидростатического давления (условного центра гидростатического давления).

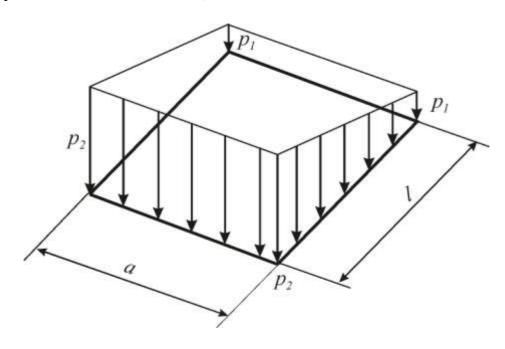


Рис. 5.3. Пространственный эпюр гидростатического давления на плоскую наклонную стенку

Опыты повторяют 3 раза с различными весами грузов G_1 Расчетные данные заносят в таблицу 5.1.

Таблица 5.1. Результаты опытных данных

Вес груза	<i>Н</i> , м	h_c ,	$F_{\mathcal{H}}$	P_{I} , Πa	P ₂ , Па	V, м ³	е, м	h_c ,

Контрольные вопросы

- 1 Цель лабораторного исследования.
- 2 Как можно рассчитать силу гидростатического давления жидкости на плоскую стенку
- 3 Где находится условная точка приложения силы поверхностного, гидростатического и полного гидростатического давлений?

- 4 Построение эпюр гидростатического давления.
- 5 Почему объем пространственного эпюра гидростатического давления равен силе давления жидкости на стенку?

Подписи исполнителей

Подписи руководителя

6 Лабораторная работа 4

Исследование режимов течения жидкости в круглой трубе

Количество аудиторных часов – 6 часов.

Количество часов на самостоятельную работу студент - 2 часа.

Цель работы

- 1 Закрепление знаний по разделу «Гидродинамика».
- 2 Ознакомиться с различными режимами течения жидкости в круглой трубе.
- 3 Освоить методику определения режимов течения жидкости по критерию Рейнольдса.

Теоретические основы метода

В 1883 году английский физик О. Рейнольдс опубликовал результаты своих экспериментальных исследований, наглядно иллюстрирующих существование двух режимов течения жидкости - ламинарного (слоистого) и турбулентного (вихревого). В практике в качестве характеристики режима движения жидкости используют число Рейнольдса, которое обозначают символом Re. Число Рейнольдса представляет собой безразмерный комплекс (критерий), являющийся мерой отношения сил инерции и сил трения в потоке жидкости (физический смысл):

$$Re = vl/v, (6.1)$$

где у- средняя (по течению русла) скорость потока жидкости;

l- характерный (определяющий) геометрический размер поперечного сечения русла;

v - кинематический коэффициент вязкости.

Для напорного движения в круглых трубах определяющим размером является диаметр трубы (l=d):

$$Re = vd/v. (6.2)$$

Для открытых потоков (безнапорное течение), а также для некруглого сечения, характерным размером является эквивалентный диаметр $l=d_{\scriptscriptstyle {
m JKG}}$):

$$Re = v d_{3\kappa\theta}/v. ag{6.3}$$

При этом эквивалентный диаметр равен так называемому учетверенному гидравлическому радиусу R_2 , характеризующему соотношение площади живого сечения потока S и смоченного периметра Π :

$$d_{\mathcal{H}} = 4R_{\mathcal{E}} = 4S/\Pi. \tag{6.4}$$

В результате исследований движения жидкости в круглых гладких трубах на участках, достаточно удаленных от входа, и при отсутствии различных источников возмущения (вибрация и т.п.) установлено, что если число Рейнольдса меньше значения Re = 2320, режим движения будет устойчиво ламинарным, а если число Рейнольдса больше значения Re = 10000, режим движения будет устойчиво турбулентным. При числах Рейнольдса 2320 < Re < 10000 может наблюдаться неустойчиво ламинарный режим или неустойчиво турбулентный режим и взаимный переход от одного вида течения в другой. Этот интервал чисел Реинольдса (2320 -10000) называют переходной областью.

Значение числа Реинольдса, соответствующее переходу от устойчивого ламинарного режима к неустойчивому турбулетному при последовательном увеличении скорости, принято называть нижним критическим числом Реинольдса (Re=2320) и скорость, при которой достигнуто это число - нижней критической скоростью. Из формулы (6.5) можно определить нижнюю критическую скорость для любой жидкости в конкретной гладкой круглой трубе:

$$v_{\text{KD.H}} = 2320 \text{ v/d.}$$
 (6.5)

Соответственно, число Рейнольдса Re = 10000, характеризующее переход к устойчивому турбулентному течению при постепенном увеличении скорости течения жидкости в круглой гладкой трубе, называют верхним критическим числом Реинольдса, а соответствующую скорость - верхней критической скоростью:

$$v_{KD,B} = 10000 \ v / d.$$
 (6.6)

Ламинарный режим наблюдается преимущественно при движении жидкости повышенной вязкости (битума, мазута, смазочных масел; из пищевых продуктов - сиропа, расплава карамельной массы и т.п.), а также при движении жидкости в трубах малого диаметра (капиллярах).

В большинстве случаев при движении воды или других жидкостей примерно той же вязкости (близкой к $v=10^{-6}~{\rm m}^2/{\rm c}$) имеет место турбулентный режим движения.

Описание опытной установки

Опытная установка (рис.6.1) состоит из напорного бака 1 с сетчатой перегородкой 2, служащей для успокоения потока жидкости, поступающей по питательному трубопроводу 3; стеклянной трубки 4 внутренним диаметром d = 35 мм; бачка 5 с подкрашенным раствором той же плотности, что и исследуемая жидкость, из которой выходит трубочка 6 с вентилем 7; крана 8, регулирующего скорость движения жидкости по трубе 4; мерного бачка 9 с водомерной трубкой 10 и сливной трубой с краном 12. Установка в напорном баке сливной перегородки 11 позволяет поддерживать постоянный уровень жидкости Н.

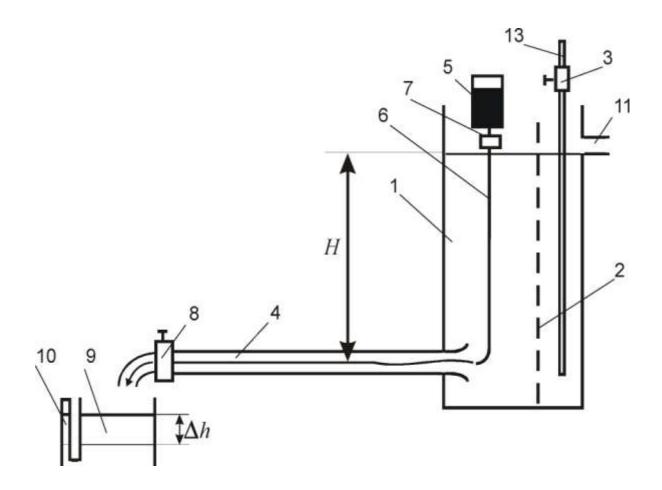


Рис. 6.1. Схема лабораторной установки

Задание

- 1 По замеренной температуре воды в баке определить коэффициент кинематической вязкости либо по справочнику, либо по эмпирической формуле Пуазейля.
- 2 По замеренному объему воды V, поступившей в мерный бачок 9, и времени наполнения τ бачка водой на величину объема V подсчитать для каждого опыта расход воды в трубе по формуле.
- 3 По найденному расходу воды в трубе Q и площади поперечного сечения трубы S_{TP} определить среднюю скорость.
- 4 Для каждого опыта подсчитать критерий (число) Рейнольдса Re.
- 5 Рассчитать по формулам критические скорости нижнюю и верхнюю, сравнить со средней скоростью и сделать выводы.

Последовательность проведения работы

- 1 Открыть вентиль 3 на трубопроводе 13 и наполнить напорный бак 1 водой. При этом уровень воды в баке поддерживается все время постоянным, т.е. непрерывно работает слив.
- 2 Приоткрыть кран 8. При этом вода начинает поступать из напорного бака 1 в трубу 4, в результате в трубе устанавливается небольшая скорость движения воды.
- 3 Открывая краник 7 на трубке 6, регулируют поступление краски в стеклянную трубу 4 так, чтобы она вытекала в виде тонкой струйки. Струйчатое движение краски будет свидетельствовать о наличии ламинарного режима в трубе.
- 4 Объемным способом определить расход воды в трубе 4. Для этого зафиксировать положение уровня жидкости в мерном бачке 9 и одновременно включить секундомер. При изменении уровня жидкости в баке на 3 4 см, зафиксировать изменение уровня Δh и время τ , за которое это изменение достигнуто. Таким образом, можно определить объем, поступившей в мерный бачок воды:

$$V = \Delta h \cdot S , \qquad (6.7)$$

где: S - площадь сечения мерного бачка, а отсюда объемный расход (Q) воды по трубе 4:

$$Q = V/\tau = \Delta h \cdot S/\tau . \tag{6.8}$$

- 5 Одновременно с измерением расхода воды по трубе измерить температуру воды t° .
- 6 Медленно открывая кран 8, установить новый несколько больший расход воды в трубе 4. Все измерения повторить, наблюдая за состоянием подкрашенной струйки. Таким образом, проводят 4 6 опытов до полного открытия крана 8.

Обработка опытных данных

1 По замеренной температуре воды в баке определить коэффициент кинематической вязкости либо по справочнику, либо по эмпирической формуле Пуазейля:

$$v = 0.0178/(1 + 0.0337 \cdot t^{\circ} + 0.000221(t^{\circ})^{2}, \text{ Ct.}$$

- 2 По замеренному объему воды V, поступившей в мерный бачок 9, и времени наполнения τ бачка водой на величину объема V подсчитать для каждого опыта расход воды в трубе по формуле (6.8).
- 3 По найденному расходу воды в трубе Q и площади поперечного сечения трубы $S_{\tau p}$ определить среднюю скорость:

$$v = Q/S_{TD} = 4Q/\pi d^2$$
.

4. По формуле (6.2) для каждого опыта подсчитать критерий (число) Рейнольдса Re.

5. Рассчитать по формулам (6.5) и (6.6) критические скорости - нижнюю и верхнюю, сравнить со средней скоростью и сделать выводы.

Все данные измерений и результаты вычислений занести в соответствующие графы таблицы (6.1).

Температура воды t = ...°C

Кинематический коэффициент вязкости $v = ... \text{m}^2/\text{c}$

Таблица 6.1. Определение режимов течения жидкости

Номера	Состоя-	Объем	Время на-	Расход	Средняя	Число	Режим
ОПЫТОВ			полнения	воды	скорость	Реи-	движения
	крашен-	ступившей	сосуда	Q,	V.	нольдса	жидкости
	ной	в мерный	τ,C	м ³ /сек	м/сек	Re	
	струйки	сосуд		W / CCR	WI/ CCR		
	1.5	V, M^3					
		,					
1.							
2							

Контрольные вопросы

- 1 Цель лабораторного исследования.
- 2 Режимы движения жидкости.
- 3 Физический смысл критерия Реинольдса.
- 4 Кинематический и динамический коэффициенты вязкости; их физический смысл и взаимосвяь.
- 5 Понятие средней скорости истечения жидкости.
- 6 Критические значения критерия Реинольдса; понятие критической скорости.
- 6 Понятие эквивалентного диаметра потока; расчет эквивалентного диаметра для различных русел (пример).

Основная литература

- 1 Плужников С, Брюханов О. Основы гидравлики и теплотехники.Изд. Академия, ISBN 978-5-7695-7778-9, 2011, 240 с. Кол. в библиотеке12 штук
- 2 Брюханов О. Н, Коробко В.И, Мелик Аракелян А. Т. Основы гидравлики и теплотехники. Изд. Академия, 2008, 240 с. Кол. в библиотеке 17 штук.
- 3 Лапшев Н.Н. Гидравлика. 2008 г. Учебник для ВУЗов. 272 с. Кол. Кол. в библиотеке 12 штук.