Томский государ	оственный у	ниверси	итет сист	ем
управления и р	радиоэлект	роники ((ТУСУР))

Кафедра моделирования и системного анализа (МиСА)

Баранник В.Г., Истигечева Е.В.

Пакеты прикладных программ MathCad

Методические указания по самостоятельной работе

Баранник В.Г., Истигечева Е.В.

Пакеты прикладных программ MathCad / Методические указания по самостоятельной работе — Томск: Томский государственный университет систем управления и радиоэлектроники. Кафедра MuCA, 2014. — 9 с.

[©] Баранник В.Г., Истигечева Е.В., 2014.

[©] ТУСУР, кафедра МиСА, 2014.

Содержание

Введение	4
Раздел 1. Знакомство с MathCad	5
1.2. Методические указания по изучению раздела	5
1.3. Вопросы для самопроверки	5
Раздел 2. Построение графиков	6
2.1. Содержание раздела	6
2.2. Методические указания по изучению раздела	6
2.3. Вопросы для самопроверки	6
Раздел 3. Матрицы и действия над ними	7
3.1. Содержание раздела	7
3.2. Методические указания по изучению раздела	7
3.3. Вопросы для самопроверки	7
Раздел 4. Решение алгебраических уравнений	8
4.1. Содержание раздела	8
4.2. Методические указания по изучению раздела	8
4.3. Вопросы для самопроверки	8

Введение

Целью дисциплины - создать у студентов теоретическую и практическую основу в области прикладного программного обеспечения, применяемого для решения широкого круга математических расчетов, сформировать навыки работы со средствами автоматизации решения прикладных задач.

Основными задачами курса пакетов прикладных программ в вузах являются:

- освоение интерфейса программы Mathcad;
- освоение типов данных, переменных, операторов и имена стандартных функций;
 - построение графиков функций на плоскости и в пространстве;
- освоение способов решения уравнения и систем уравнений средствами MathCad.

Раздел 1. Знакомство с MathCad.

1.1. Содержание раздела

Математические возможности ЭВМ. Особенности системы компьютерной математики *MathCad*. Диалог с системой. Входной язык. Документы системы. Наборы встроенных математических операторов и функций.

1.2. Методические указания по изучению раздела

При изучении раздела «Знакомство с MathCad» следует обратить внимание на синтаксис программы *MathCad*.

- 1. Каковы основные вычислительные возможности ЭВМ?
- 2. Как происходит диалог с системой *MathCad*?
- 3. Какие основные встроенные математические операторы и функции?

Раздел 2. Построение графиков

2.1. Содержание раздела

Построение двумерных, трехмерных графиков в среде Mathcad с помощью функции plot.

2.2. Методические указания по изучению раздела

При изучении раздела «Построение графиков» следует обратить особое внимание на синтаксис встроенных функций.

- 1. Как построить график функции, заданной аналитически?
- 2. Как построить график функции, заданной таблично?

Раздел 3. Матрицы и действия над ними.

3.1. Содержание раздела

Задание матрицы в Mathcad. Преобразование матриц. Алгебраические действия над матрицами.

3.2. Методические указания по изучению раздела

При изучении раздела «Матрицы и действия над ними» следует уделить особое внимание изучению преобразованию матриц.

- 1. Как задать матрицу в среде Mathcad?
- 2. Какие существуют преобразования матриц?
- 3. Какие алгебраические операции можно выполнить над матрицами в среде Mathcad?

Раздел 4. Решение алгебраических уравнений

4.1. Содержание раздела

Решение линейных алгебраических уравнений различными методами (Крамера, Гаусса). Решение нелинейных алгебраических уравнений различными методами.

4.2. Методические указания по изучению раздела

При изучении раздела «Решение алгебраических уравнений» следует обратить внимание на определение погрешностей различных методов.

- 1. Какие существуют методы решения линейных алгебраических уравнений?
- 2. Какие существуют методы решения нелинейных алгебраических уравнений?

Рекомендуемая литература:

- 1. Зариковская Н. В. Информатика: учебное пособие; Федеральное агентство по образованию, Томский государственный университет систем управления и радиоэлектроники. Томск: ТУСУР, 2007. 194 с.
- 2. Сычев А. Н. Информатика: лабораторный практикум: Учебное пособие.-Томск: ТУСУР, 2005. – 48 с.
- 3. Поршнев С. В. Компьютерное моделирование физических систем с использованием пакета MathCAD: Учебное пособие для вузов. М., 2004. 319 с.