ГОЛОГРАФИЧЕСКИЕ ФОТОННЫЕ СТРУКТУРЫ В ФОТОПОЛИМЕРНЫХ МАТЕРИАЛАХ

С.Н. Шарангович

Министерство образования и науки Российской Федерации ТОМСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ СИСТЕМ УПРАВЛЕНИЯ И РАДИОЭЛЕКТРОНИКИ

Кафедра сверхвысокочастотной и квантовой радиотехники (СВЧиКР)

С.Н. Шарангович

ГОЛОГРАФИЧЕСКИЕ ФОТОННЫЕ СТРУКТУРЫ В ФОТОПОЛИМЕРНЫХ МАТЕРИАЛАХ

Учебное пособие

Томск 2015 Рецензент: Коханенко А.П., д-р физ.-мат. наук, проф. каф. квантовой электроники и оптоинформатики Том. гос. ун-та.

С.Н. Шарангович

Голографические фотонные структуры в фотополимерных материалах. Учебное пособие / С.Н. Шарангович. – Томск: Томск. гос. ун-т систем упр. и радиоэлектроники, 2015. – 191 с.

В учебном пособии рассмотрены голографические методы и физические механизмы формирования фотонных структур в наноструктурированных Представленны фотополимерных материалах. математические модели формирования одно-, дву- и трехмерных фотонных структур пропускающего и типов. Рассмотрены отражательного влияние нелинейности процессов формирования и эффектов двухпучковых взаимодействий на формирование высших пространственных гармоник фотонных структур с учетом эффектов светоиндуцированных изменения оптического поглощения. Рассмотрены основы волновой оптики квазипериодических фотонных структур и приведены результаты моделирования и ээкспериментальных исследований их дифракционных характеристик.

Учебное пособие предназначено для подготовки магистров по программе «Оптические системы связи и обработки информации» направления 11.04.02 «Инфокоммуникационные технологии и системы связи» по дисциплине «Голографические фотонные структуры в наноструктурированных материалах».

(с) Томск. гос. ун-т систем упр. и радиоэлектроники 2015(с) С.Н. Шарангович 2015

Содержание

B	ведение						
1	1 Голографические дифракционные структуры в фотополимерных средах9						
	1.1 М. 1.2 Го 1.3 Го 1.4 Го ж	Іатериалы для голографической записи					
2	Пропу фотопо материа	искающие голографические дифракционных решеток (ПГДР) в лимеризующихся жидкокристаллических композиционных алах (ФПМ-ЖК)					
	2.1 Φ	ормирование ПГЛР					
	2.1.1 2.1.1 2.1.2 2.1.3	Кинетические уравнения голографической записи в ФПМ-ЖК 45 Запись ПГДР с учетом постоянного оптического поглощения ФПМ- ЖК					
	2.1.4	амплитудами с учетом самодифракции					
	2.1.5 2.1.6	Запись ПГДР с учетом высших пространственных гармоник 69 Многоволновое смешение на высших пространственных гармониках ПГДР					
	2.2 Д 2.2.1 2.2.2	ифракционные свойства пространственно неоднородных ПГДР 86 Дифракционная эффективность и селективные свойства					
	2.2.3	Дифракционные свойства ПГДР в поглощающем ФПМ с учетом					
	2.2.4	высших пространственных гармоник					
	2.2.5	Дифракционные свойства ПГДР, записанных пучками с амплитудно- фазовым неоднородным распределением					
3	3 Отражающие голографические дифракционных решеток (ОГДР) в фото полимеризующихся жидкокристаллических композиционных материалах (ФПМ-ЖК)						
	3.1 Φ	ормирование ОГДР99					
	3.1.1	Запись ОГДР с учетом постоянного оптического поглощения ФПМЖК					
	3.1.2	Запись ОГДР световыми волнами с существенно-различными амплитулами с учетом самолифракции					
	3.1.3	Запись ОГДР с учетом высших пространственных гармоник 108					

3.1.4 Многоволновое смешение на высших пространственных гармониках							
 3.2 Дифракционные свойства пространственно неоднородных ОГДР 118 3.2.1 Дифракционная эффективность и селективные свойства							
 3.2.3 Дифракционные свойства ОГДР с учетом самодифракции при малом контрасте							
высших пространственных гармоник129							
4 Голографическое формирование наложенных голографических дифракционных структур в ФПМ							
 4.1 Последовательная запись наложенных голографических дифракционных структур в ФПМ с учетом взаимодействия пространственных гармоник и эффектов самодифракции							
4.1.1.1Аналитическая модель процесса формирования НГДР							
4.1.2 Формирование высших пространственных гармоник НГДС в поглощающих ФПМ при нелинейных взаимодействиях гармоник							
4.1.2.1 Математическое модель процесса формирования НГДС							
 4.1.2.2 Гезультаты численного моделирования формирования при 4.1.3 Формирования дополнительных пространственных гармоник при двухпучковых взаимодействиях записывающих волн при записи НГДР							
 4.1.3.1 Математическая модель процесса формирования дополнительных пространственных гармоник НГДС							
4.2 Параллельная многопучковая запись наложенных голографических дифракционных структур в ФПМ с учетом взаимодействия пространственных гармоник							
4.2.1 Геометрия формирования НГДС различной симметрии							
4.2.2 Аналитическая модель процессов формирования НГДС 155							
4.2.3 Результаты моделирования процесса формирования НГДС							
4.2.3.2 Гибридная геометрия165							
Список использованных источников							

Введение

Хотя оптическая память и системы оптической обработки информации уже нашли самые широкие применения в видеоэлектронике, вычислительной технике, связи и других областях техники, проблема их совершенствования и актуальной. Также одним из основных развития остается по прежнему направлений современного научно-технического прогресса является развитие волоконно-оптических систем связи, обеспечивающих возможность доставки на значительные расстояния чрезвычайно большого объема информации с наивысшей скоростью. Возможность передача такого большого количества информации по ВОЛС связана с использованием технологии WDM/DWDM, использующей селективные свойства оптических дифракционных структур (ДС). Поиск новых материалов, обеспечивающих высокую плотность записи ДС, долговременную стабильность, низкий уровень шумов и высокую фоточувствительность, в последние годы существенно активизировался. Особенно большое внимание уделяется средам для голографической записи информации, таким как, фоторефрактивные кристаллы, фоторефрактивные полимеры, жидкокристаллические среды.

В последнее время широко исследуются голографические дифракционные решетки (ДР) в фотополимерных материалах (ФПМ) с жидкокристаллической (ЖК) компонентой (ФПМ-ЖК), на основе которых можно создать динамически управляемые селективные по длине волны оптические коммутаторы для оптических систем связи и обработки информации.

Голографический метод создания дифракционных решеток в указанных материалах является наиболее удобным. В настоящее время исследования голографической записи в фотополимерных материалах все больше переходят в плоскость применения, благодаря возможности создания в композиционных материалах с жидко кристаллической компонентой нано - размерных матриц, фотонных кристаллов и управляемых периодических дифракционных структур, которые находят обширные применения в области оптической связи и обработки информации.

указанной обусловливается Перспективность среды ИХ высокой разрешающей способностью, высокой дифракционной эффективностью, стабильностью возможностью записи. управления селективными И основным дифракционными свойствами. Так же преимуществом фотополимеров является то, что голограммы в них формируются в процессе записи и не нуждаются в дополнительной химической обработке.

Целенаправленный поиск фоточувствительныхх сред требует построения теоретических моделей оптической записи. В случае голографической записи эти построения связаны с решением задач о многоволновых взаимодействиях световых пучков в нелинейной фоторефрактивной среде. Для стационарных взаимодействий эти задачи уже рассмотрены в литературе в различных приближениях. Динамические модели записи построены лишь для простейших случаев.

Создание теоретических моделей записи И считывания В композиционном материале с ЖК компонентой периодических дифракционных структур голографическим методом, позволит моделировать и оптимизировать характеристики данных структур и методики их получения. На данный момент именно голографический способ создания жидкокристаллических матриц с наноразмерами и фотонных кристаллов является перспективным и наиболее часто интенсивно исследуемым. Рассматриваемые вопросы носят фундаментальный характер и являются важным этапом в создании оптических динамически управляемых структур.

Основной целью данного учебного пособия является рассмотрение вопросов формирования наноразмерных динамически управляемых дифракционных квазипериодических структур в фотополимерных и фотополимеризующихся жидкокристаллических композиционных материалах и вопросов динамического управления ими.

В рамках поставленной цели расматриваются следующие задачи :

- исследование динамической записи пропускающих и отражающих фазовых голографических решеток в ФПМ-ЖК с учетом оптического поглощения, полимеризационно-диффузионного механизма записи, произвольной степени нелинейности фотополимеризации,

- разработка математических моделей формирования неоднородных дифракционных структур в фотополимерах и динамических жидкокристаллических дифракционных решеток в композиционных материалах,

- изучение нестационарных многоволновых взаимодействий при записи и усилении голографических решеток в фотополимерных средах, приводящих к образованию дополнительных дифракционных структур,

 исследование кинетики формирования гармоник пространственного профиля решетки показателя преломления и определение количества гармоник, которые необходимо принимать во внимание в зависимости от параметров материала и процесса записи;

- решение самосогласованной дифракционной задачи и определение селективных свойств пространственно неоднородных решеток для произвольного количества пространственных гармоник;

 исследование явления двухволнового смешения, приводящего к формированию дополнительных решеток в материалах с произвольной степенью нелинейности фотополимеризации.

- построение теоретических моделей записи и считывания наложенных голографических решеток с учетом их взаимовлияния,

В первом разделе учебного пособия проводится аналитический обзор исследуемых вопросов, второй и третий разделы посвящены развитию теоретических моделей динамического формирования пропускающих и отражающих дифракционных структур в фотополимерных и фотополимеризующихся жидкокристаллических материалах и изучению их дифракционных характеристик. В четвертом разделе рассмотрены вопросы формирования наложенных голографических дифракционных структур.

1 Голографические дифракционные структуры в фотополимерных средах

Голографические методы создания дифракционных структур [1,2] находят применение во многих областях от изготовления голографических оптических элементов до оптической обработки информации. Достоинство голографических методов обработки информации состоит в том, что в голографии исходная информация обрабатывается сразу же целиком и практически одновременно по всей области. Возможность фиксирования и амплитуды и фазы в голограмме возникает благодаря преобразованию фазы в амплитудное распределение интерференционной картины когерентных волн. Столь необходимые в электронных системах операции, как сканирование и развертка изображений по строкам либо разнесение действительной и мнимой частей комплексной функции по отдельным каналам полностью устраняются в когерентной оптике.

Голография основывается на двух физических явлениях - дифракции и интерференции световых волн. Голограммы делят, как правило, по физическому параметру модуляции на амплитудные (модуляция коэффициента поглощения) и фазовые (модуляция коэффициента преломления); по геометрии записи на пропускающие (в попутных пучках, схема на прохождение) и отражающие (во встречных пучках и схема на отражение); по области дифракции на плоские (тонкие) для области Рамана-Ната, когда наблюдаются несколько дифракционных порядков и объемные (толстые) для области Брэгга, когда остается только один порядок дифракции, который наблюдается строго под углом Брэгга. В области дифракции Рамана-Ната амплитудные голограммы имеют эффективность первого порядка дифракции не более 4.8% и фазовые не более 33.8%, а в области Брэгга 3.7% и 100% соответственно. Далее будем рассматривать фазовые объемные голограммы.

1.1 Материалы для голографической записи

Будущее голографии во многом зависит от регистрирующих сред.

Большинство ограничений, связываемых с применением голографии, можно объяснить неоптимальными регистрирующими средами. В таблице 1 приведена классификация основных голографических материалов [3-10,13-15].

Первые голограммы были записаны на галоидосеребряных фотографических слоях. В голографической записи галогенидосеребряные эмульсии получили большое признание по сравнению с другими материалами. Это объясняется несколькими причинами. В частности, фотографические эмульсии характеризуются очень высокой экспозиционной чувствительностью и сравнительно высокой разрешающей способностью, а также широким диапазоном спектральной чувствительности. Кроме того, их можно применять для получения как плоских, так и объемных голограмм с амплитудной или фазовой записью. Однако, после химической обработки и фиксирования перезапись или реверсивная запись в данном материале невозможна.

Другой материал, получивший широкое распространение в голографии -В бихромированная ЭТОМ материале В противоположность желатина. галоидосеребряным слоям высокая дифракционная эффективность сочетается с Ha пластинках задубленной бихромированной уровнем шума. низким желатины получаются голограммы с эффективностью до 90% и отношения сигнал/шум 27дБ.

Данный материал, как известно, обладает двумя исключительными свойствами, первое - разрешение, по некоторым данным достигающее 15000 мм⁻¹, является одним из самых высоких среди голографических материалов, а второе – низкая чувствительность бихромированной желатины около 100 мДж/см², что существенно снижает конкурентоспособность материала.

Из-за малого срока хранения пластины с бихромированной желатиной необходимо приготавливать непосредственно перед работой с ними. После длительной процедуры приготовления пластинка задубленной бихромированной желатины экспонируется, затем промывается для удаления бихромата и других растворенных компонентов из слоя и обезвоживается в нескольких ваннах с изопропиловым спиртом.

Голограммы и голографические оптические элементы, записанные на задубленной бихромированной желатине, создают восстановленные изображения, характеризуемые исключительно большой яркостью и высоким разрешением. Однако недодержка при экспонировании и недостаточное задубливание приводят к появлению в голограмме молочной дымки, которая разрушает восстановленное изображение.

Еще одним часто используемым материалом в голографии является фоторезист, который используется для создания рельефных картин. Во время экспозиции в материале происходят химические реакции, приводящие к изменению растворимости материала в проявителе с соответствующим растворителем в зависимости от экспозиции. После проявления и сушки на полученных решетках методом вакуумного испарения можно получить алюминиевое покрытие с высоким отражением. С другой стороны, проявленный фоторезист применять без покрытия можно как высококачественную тонкую фазовую решетку.

Недостатком материалов является сравнительно низкое предельное разрешение 250—1500 мм⁻¹, для достижения которой необходима экспозиция около 10² Дж/см² и длительная процедура получения голограммы.

Следует отметить, что все выше описанные материалы объединяет один существенный недостаток - сложная химическая обработка после экспозиции.

К другому классу фоточувствительных материалов, используемых для записи фазовых голограмм, относятся фотопластики. Эти материалы имеют многослойную структуру с подложкой из стекла; нижняя их сторона покрывается проводящим слоем осажденных окислов олова или индия, напыленного золота или серебра. На подложку осаждается фотопроводник. Термопластик наносится в качестве верхнего слоя. Метод записи состоит из ряда операций, начинающегося с создания однородного электростатического заряда на поверхности термопластика.

При последующем экспонировании освещенные участки фотопроводника оказываются проводящими, что приводит к изменению

напряжения на поверхности слоя в соответствии с изображением. После экспонирования фотопластик нагревается до температуры размягчения термопластического слоя,что позволяет электростатическим силам деформировать Образующийся поверхность термопластика. рельеф закрепляется охлаждением материала. Повторный поверхности нагрев термопластика до более высокой температуры возвращает фотопластическую пленку в исходное состояние. Таким образом, на фотопластике можно проводить многократные циклы запись — стирание.

Дифракционная эффективность в данных материалах составляет примерно 34%, т. е. теоретическое значение дифракционной эффективности тонкой фазовой дифракционной решетки. Чувствительность фотопластических пластинок и пленок такая же, как и у некоторых фотоэмульсий. То, что разрешающая способность фотопластиков превышает 4100 мм⁻¹, делает фотопластические процессы формирования изображения наиболее перспективными для электростатических методов формирования изображений с целью записи голограмм.

Все вышеперечисленные материалы объединяет сложность работы с ними и большая длительность процедур получения голограммы. Использование двух следующих классов материалов позволяет упростить этот процесс.

Первыми можно упомянуть фотохромные материалы, которые под действием света и тепла в общем случае испытывают обратимое изменение цвета, показателя преломления или электро-оптических эффектов. Они не обладает зернистостью, а разрешающая способность ограничивается только длиной волны используемого света. При получении голограммы не требуется никакого проявления. Голограмму, записанную на фотохромном материале, можно стереть оптическим или тепловым способом, и материал можно использовать для повторной записи.

К сожалению, из-за химических реакций, происходящих на молекулярном уровне, фоточувствительность фотохромных материалов на три порядка ниже чувствительности галоидосеребряных фотографических слоев и фотохромный материал, на котором записана голограмма, остается чувствительным к любому свету, длина волны которого, лежит в его полосе поглощения. При хранении происходит стирание записи вследствие тепловой релаксации (темновых реакций) [6]. Реверсивность материала обуславливает его использование в динамической голографии [7].

В последние 30 лет интенсивно развиваются работы в области голографических фотополимерных материалов (ФПМ), представляющих собой многокомпонентную смесь органических веществ, нанесенную в виде аморфной пленки толщиной 10 - 100 мкм на стеклянную или пленочную подложку.

Регистрирующий слой фотополимера содержит полимерный носитель, фотополимеризующиеся мономеры, систему фотоинициирования, пластификаторы, поверхностно-активные вещества и ряд других ингредиентов. Наличие в нем красителя-сенсибилизатора обеспечивает чувствительность материала в области излучения записывающего лазера. По действием актиничного излучения в материале происходит процесс фотополимеризации, приводящий к необратимым изменениям плотности материала с периодом порядка длины световой волны. [3] Соответствующая модуляция коэффициента преломления вещества, образует фазовые голограммы, что позволяет получать высокую дифракционную эффективность до 100%. Фоточувствительность ФПМ больше чувствительности фоторезистов и фотохромных материалов, но чувствительности галогенидосеребряных эмульсий. меньше Голограммы высокого разрешения можно получить при использовании материала с толщиной, соответствующей длине волны излучения, применяемого при регистрации [14].

Основное преимущество фотополимеров заключается в совершенно сухой и быстрой их обработке. Такие материалы имеют продолжительный жизненный цикл (в плане хранения записанной на них информации) и устойчивы к воздействию температур [15], а также являются потенциально дешевым материалом для однократной голографической записи [16]. Следует

упомянуть о времени создания голограммы, составляющем также OT нескольких секунд до нескольких минут в зависимости от интенсивности используемого света и параметров материала. Однако в отличии от многих выше рассмотренных материалов во время создания голограммы или непосредственно после экспозиции можно оценить ее дифракционные характеристики. Записанные голограммы, как правило, закрепляются путем УФ засветки либо нагревом в течение нескольких минут [13,16-19]. Данную обработку следует проводить в течении двух-трех дней после экспозиции [13]. Закрепленные голограммы становятся устойчивы к посторонней засветке и воздействию тепла. вследствие истощения мономера И красителя В обработанном образце.

Таким образом, как следует из приведенных основных характеристик материалов для голографии, ФПМ являются перспективными для создания голографических элементов и обладают рядом преимуществ по сравнению с остальными материалами, однако на настоящий момент голографическая запись в ФПМ изучена недостаточно.

В последующих подразделах проведен аналитический обзор литературы посвященной фотополимерным материалам, как сред для голографической записи дифракционных структур. На основе обзора определен круг вопросов для рассмотрения в данной работе.

Класс	Процесс регистрации/	Диф.	Модулируемы	реве	Время	Разреш	Толщи	Диапаз	Чувств
материалов	стирания / обработки	эф., /	й параметр	рси	хране	способно	на,	он рег.	ии-
		с/ш		вно	ния /	сть, мм ⁻¹	МКМ	длин	тельно
				сть	Время			волн,	сть,
					стиран			МКМ	Дж/см ²
					ия				
Галоидо-	Восстановление	3% -	Оптическая	Нет	Посто	3000-	3-7		10 ⁻⁷ –
серебряные	металлического серебра / - /	ам	плотность		ян-ное	5000			10 ⁻⁴
пленки	Мокрая химическая	20%-			/ -				
(фотоматери		фм							
ал)									
Задубленная	Поперечное фотосшивание	90%	Показатель		Посто	до	0.5 -	0.25-	$3 \cdot 10^{-3}$
бихромирова	/ - / Мокрая химическая	/	преломления		янное	15000	3	0.52	
нная		27дБ			/ -				
желатина									
Фоторезисты	Образование органических		поверхностны		/-	<1000	~1		10 ⁻²
	кислот, поперечное		й рельеф			(500)			
	фотосшивание или								
	фотополимеризация /								
	Мокрая химическая или								
	подогретый воздух								

Фотопластик	Образование		поверхностны	Ест	/	>4100	1-4		$10^{-4} - 10^{-5}$
И	электростатического		й рельеф	Ь	~1c.				
	скрытого изображения,								
	причем электрическое поле								
	вызывает деформацию								
	нагретого пластика /								
	нагревание / Коронный								
	разряд и нагревание								
фотохромны	Обычно новые	<10	Оптическая		Минут		100-		0.1-80
е материалы	фотоиндуцированные	%	плот-ность		ы –		6000		
	полосы поглощения /		или показа-		месяц				
	актиничный свет ли		тель		ы /				
	нагревание / Без обработки		преломления		<нс.				
фотополимер	Фотополимеризация / Без	<100	коэффициент		/ -	3000	3-150	0.35-	(4-5)10
Ы	обработки или с		пре-ломления				5-15	0.55	3
	последующим		или по-					0.63,	(2-3)10 ⁻
	равномерным		верхностный					0.53,	2
	экспонированием и		рельеф					0.52,	
	нагреванием							0.49	

Таблица 1 Классификация основных голографических материалов

1.2 Голографические фотополимерные материалы (ФПМ)

ФПМ впервые были использованы в качестве голографического материала Клосом и др. в 1969 [20]. С тех пор огромное количество ФПМ было разработано и опробовано, но только несколько из них стали коммерческими продуктами. Эти материалы имели несколько преимуществ. Вследствие того что ФПМ может иметь толщину до сотен микрон, голограммы в них имеют существенную ДЭ и узкую угловую селективность. Основное большинство ФПМ не требуют химической обработки, а только равномерную засветку или нагрев. Однако разрешающая способность материалов обычно не высока, а увеличение толщины слоя приводить к увеличению рассеяния, которое снижает отношение сигнал/шум.

Как говорилось выше, ФПМ в общем случае состоит из мономера, фоточувствительного красителя, и инициатора в жидком или сухом растворе. Сухие фотополимеры обычно содержат полимерную матрицу, в которой растворены остальные компоненты. Так как материалы на основе акриламида являются наиболее распространенными и широко исследуются, то в дальнейшем будем их рассматривать более подробно. Сводка основных материалов приведена в Таблице 2. [9,13,20-37]

Оригинальная система на основе акриламида, представленная Клосом и др. [20], содержала жидкую смесь мономеров акриламида и металкрилата, а в качестве фотокатализатора метилен голубой и р–толуол натрия соли. Дифракционная эффективность достигала 45% при экспозиции 300 мДж/см². Разрешение материала составляло порядка 3000 мм⁻¹. Главным недостатком являлось очень короткое время жизни. Дженни [21] улучшил чувствительность исходной композиции до 0.6 мДж/см² используя barium acrylate с акриламидом в качестве мономера.

Вторая жидкая система была разработана Сугавара и Сугегава [22] и содержала мономер – акриламид, сшивающий мономер - N,N метилен

бисакриламид, сенсибилизатор метилен голубой и либо триэтаноламин или ацетилацетон в качестве инициатора. Дифракционная эффективность в данных растворах достигала 65 % при экспозиции 50 мДж/см² и разрешение 550 мм⁻¹. Материал основанный на том же мономере и сшивающем мономере ,но с ferric ammonium citrate в качестве сенсибилизатора и t-butyl hydrogen peroxide также рассматривалась в [23]. Данная система обеспечивала ДЭ до 80% при экспозиции 20 мДж/см² и разрешение 1500 мм⁻¹.

Таблица 2

Close 1969 [20]	Jenney 1970 [21]						
М. : Acrylamide/metal acrylates, П.м.:	M.: Acrylamide/lead or barium acrylates,						
None	П.м.: None						
H.c.: Methylene Blue/p-toluene sodium	H.c. : Methylene Blue/p-toluene sodium						
salt ДЭ=45%, Р=3000, Ч=300мДж/см ²	salt						
	ДЭ =45%, Р =3000, Ч =0.6 мДж/см ²						
Sugawara 1975 [22]	Sukegawa 1975 [23]						
М. : Acrylamide/ bisacrylamide, П.м.:	М. : Acrylamide/ bisacrylamide, П.м.:						
None	None						
H.c. : Methylene Blue/Triethanolamine	H.c. : Ferric ammoinium citrate/t-butyl						
or acetylacetone	hydrogen peroxide						
ДЭ = 65%, P = 550, Ч = 50 мДж/см ²	ДЭ =80%, Р =1500, Ч =20 мДж/см ²						
Sadlej 1975 [24]	Jeudy 1975 [25]						
М. : Acrylamide/ bisacrylamide, П.м.:	М. : Acrylamide/Bisacrylamide, П.м.:						
PVA	PVA						
H.c. : Methylene Blue/p-toluene sodium	H.c. : Indolino-spiropyran						
salt	ДЭ =90%, Р =3000, Ч =100 мДж/см ²						
ДЭ = 4%, P = 4700, Ч = 10 мДж/см ²							
Calixto 1987 [26]	Смирнова 1987 [27]						
М. : Acrylamide/Bisacrylamide, П.м.:	М.: , П.м. : нет						
PVA	H.c. : (Eritrozine)						
H.c. : Methylene Blue/Triethanolamine	ДЭ =95% при Р <6000, Ч =20 мДж/см ²						

$\square \exists = 10\%$, P =Not specified, H =94						
мДж/см ²						
Fimia 1993 [28]	Шелковников 1993 [29]					
Added second dye to reduce O ₂	М. : Acrylamide/Bisacrylamide, П.м. :					
inhibition	PVA					
ДЭ =40%, Р =1000, Ч =3 мДж/см ²	H.c. : Methylene Blue (Eritrozine)					
	/Triethanolamine					
	Crosslinker hexamethylenbis acrylamide					
	ДЭ =90%, Р >2000, Ч =20 мДж/см ²					
Martin 1995 [30]	Weiss 1996 [31]					
М. : Acrylamide/Bisacrylamide, П.м.:	Added diphenyl iodoium chloride as					
PVA	sensitiser					
H.c. : Xanthene Dye/Triethanolamine	Added glutaraldehyde as crosslinker					
ДЭ =>80%, Р =2750, Ч =80 мДж/см ²	ДЭ =>90%, P =2000, Ч =12 мДж/см ²					
Blaya 1998 [32]	Zhao 1998 [33]					
Added N,N-	M.: acrylomide & acrylic acid П.м.:					
dihydroethylenebisacrylamide as	желатин					
crosslinker	H.c. : Methylene Blue (Eritrozine)					
ДЭ =70%, Р =1000, Ч =5 мДж/см ²	/Triethanolamine p-toluenesulfonic acid					
	ДЭ > 80%, P< 4000 мм ⁻¹ , Ч=2 мДж/см ²					
\mathbf{M} - мономер Π м – полимерная ма	трина $\mathbf{M}_{\mathbf{c}}$ – инициирующая система					

М. - мономер, П.м. – полимерная матрица, **И.с.** – инициирующая система, ДЭ – дифракционная эффективность, Р - разрешение, Ч – чувствительность.

Садледж и Смолинска [24] улучшили оригинальную композицию предложенную Клосом и Дженни включив поливиниловый спирт в качестве полимерной матрицы, что позволило сделать сухие образцы, которые намного проще в обращении и имеют на порядки больше время жизни, чем жидкие системы. Это позволило улучшить стабильность записанной голограммы. Чувствительность системы была 10 мДж/см², а разрешение до 4700 мм⁻¹. Основным недостатком являлась низкая ДЭ=4%.

Джюжи и Робилард [25] представили интересную версию жидкой

композиции Sugawara, которая включала обратимый фотохром (indolinospiropyran) в качестве сенсибилизатора и поливиниловый спирт в качестве полимерной матрицы. Фотохром, который не чувствителен к видимому свету, может быть активирован ультрафиолетовым светом, который смещает его полосу поглощения в область 633нм. Когда запись ДР заканчивается ультрафиолет выключается и фотохром снова становится нечувствительным к видимому свету. Таким образом получаются стабильные голограммы с ДЭ=90% и пренебрежимо малым поглощением, при экспозиции 100мДж/см² и с разрешением 3000 мм⁻¹.

Фимиа [28] разработали И др. метод ДЛЯ повышения чувствительности ФПМ за счет уменьшения индукционного периода обусловленного кислородом. Материал содержащий два красителя метилен голубой (633нм) и бенгальский розовый (546нм). Предэкспозиция материала проводилась светом с длиной волны 546 нм до начала записи. Краситель бенгальский розовый взаимодействуя со светом приводил к образованию радикалов, которые в свою очередь вступали в реакцию с кислородом в материале. Когда начиналась запись на длине волны 633нм, меньшее количество кислорода взаимодействовало радикалами с красителя метиленового голубого, которые приводили в полимеризации мономера. Использование данной системы позволяло достигать ДЭ в 40% при пространственной частоте 1000 мм⁻¹ при экспозиции 3 мДж/см².

Вэйс и др. [31] улучшили чувствительность системы Close и Sugawara при длине волны 514 нм путем добавления дифенил iodonium chloride в качестве вместе с TEA. Добавление glutaraldehyde в качестве второго сшивающего мономера привело к увеличению модуляции коэффициента преломления. Дифракционная эффективность данных систем была выше 90% при 2000 мм⁻¹ и экспозиции 12 мДж/см².

Новый гибридный материал, содержащий акриламид и acrylic acid в качестве мономеров, был разработан Жао в 1998 [33]. Материал использовал метилен голубой как краситель, TEA и p-toluenesulfonic acid

как сенсибилизатор и желатин как матрицу. Данный материал способен записывать ДР с пространственно частотой до 4000 мм⁻¹ и ДЭ более 80% при необходимой экспозиции 2 мДж/см².

Наиболее широко распространенным фотополимерным материалом является линейка материалов на основе акрилата, разработанная Е.І. DuPont Nemours and Co. Оригинальный материал состоял из мономеров семейства акрилатов, инициирующей системы и целлюлозной матрицы [34,35]. Точный состав материалов не известен в связи с коммерческой тайной. Данные системы имели ДЭ до 90% при экспозиции 30 мДж/см² и мм⁻¹. ДЭ может разрешении 3000 быть улучшена засветкой флуоресцентной лампой. Для записи отражающих голограмм DuPont разработали фотополимеры серии Omnidex [36,37] с разрешением около 6000 мм⁻¹ и ДЭ до 99% при экспозиции 50–100 мДж/см². Материал относится к классу сухих ФПМ на основе акрилового мономера, красителя сенсибилизатора, инициатора, пластификатора, полимерной матрицы. Данный материал характеризуется очень большим значением модуляции коэффициента преломления ($n_1 = 0.07$) по сравнению со всеми известными системами, что объясняется большой разностью между коэффициентами преломления ароматического полимерной матрицы и алифатическим мономером [37]. Благодаря высокой дифракционной эффективности, чувствительности и разрешения, данные ФПМ являются лучшими коммерчески доступными фотополимерными материалами на данный момент.

1.3 Голографические дифракционные решетки в фотополимерных материалах

Исследованием ФПМ занимаются коллективы из разных стран на протяжении последних 30 лет. Многие авторы независимо в одно и тоже время разрабатывают, как сами материалы, так и модели для описания процессов наблюдаемых при изучении формирования и считывания голографических решеток. Очень многие работы посвящены только экспериментальным исследованиям [16,18,27,29,38-46] в первую очередь записи голографических решеток [29,38,41,42] и дифракционных свойств, дифракционная эффективность, таких как угловая И частотная селективность [16,18,27,29,38-41] записанных решеток, а также их постэкспозиционного (темнового) усиления [18,42,43], динамического (оптического) самоусиления, наблюдаемого во время считывания решеток в материале с неизрасходованным мономером [44-46], записи наложенных решеток [29].

Исследование дифракционных решеток в ФПМ в общем виде имеет выяснения влияния параметров ФПМ и цель внешних условий формирования решетки на ее дифракционные свойства - дифракционную эффективность, угловую и частотную селективность. Условно данная общая задача может быть разделена на две части. Первая - это формирование или запись ДР в материале при котором падающее излучение приводит за счет изменений параметров среды к формированию фазовой голографической дифракционной решетки с определенным амплитудно-фазовым распределением показателя преломления материала. Основной задачей исследования формирования является выяснение влияния внутренних параметров материала, внешних условий, механизмов формирования и возникающих эффектов обратного влияния записываемой решетки на записывающее поле на пространственное амплитудно-фазовое распределением показателя преломления. Во второй части - реконструкции ДP считывании записанной определяются дифракционные или характеристики решетки в зависимости от пространственного амплитуднофазового распределения записанной ДР. Две части могут быть объединены при использовании неактиничного излучения для мониторинга ДЭ во время записи. На рис.1 приведена диаграмма, показывающая основные внутренние и внешние параметры и механизмы формирования ДР в ФПМ.

Все теоретические работы исходят из постановочной части для

задачи записи в виде кинетических уравнений для концентрации мономера и полимера, полученных из теории радикальной фотополимеризации с учетом диффузионного массопереноса. Впервые полимеризационнодиффузионный механизм записи использован в [47,48]. Для показателя преломления среды *n*, кинетическое уравнение получают с помощью Лорентц-Лоренца концентраций уравнения исходя ИЗ компонент материала - мономер, полимер и инертная компонента - и поляризуемости их молекул. Данный переход от концентраций компонент ФПМ к п осуществляют либо на стадии кинетических уравнений, либо получают решения для концентраций мономера M и полимера N, а затем переходят к модуляции показателя преломления *n*. Решение кинетических уравнений представляется в виде суммы пространственных гармоник, в большинстве случаев ограничиваясь рассмотрением только нулевой и первой.

Для задачи считывания ДР и оценки дифракционных свойств, как правило, используется формула Когельника [49] или выражение, получаемое из уравнений связанных волн в кинематическом приближении, когда влиянием дифрагированного пучка на падающий пренебрегается вследствие малости эффективности дифракции решетки.

Первой была представлена модель голографической записи в ФПМ Смирновой и др. с учетом нейтральной компоненты в [50], которая была модифицирована в работе [51] и затем в [52]. Рассмотрим подробнее работу [52], где представлена модель «количественной теории голографической записи», разработанная для фотополимеризующихся материалов с полимеризационно-диффузионным механизмом записи. Модель записана в виде общей системы дифференциальных уравнений, динамику неоднородной полимеризации описывающих в сложных композитах с нейтральной компонентой с учетом диффузионного Модель на предположении массопереноса. записи основана об израсходовании мономера и вытеснении нейтральной компоненты из области полимера, образующейся в более освещенных участках, что

приводит к градиенту концентраций нейтральной компоненты и мономера.

Потоки являются обратнонаправленными И происходит ИХ взаимодиффузия – диффузионный механизм записи. Для такой системы получено аналитическое решение, которое качественно согласовалось с экспериментальными результатами [50,51] только для области малых времен, когда еще не проявляется обрыв полимерной цепи. В работе приняты h=1/2 и линейная зависимость скорости полимеризации от K_h ОТ интенсивности света *k*=1, а также зависимость степени полимеризации, что аналогично изменению коэффициента диффузии от степени полимеризации. Причем коэффициент бимолекулярного обрыва цепи уменьшается по экспонециальной зависимости от концентрации мономолекулярного увеличивается полимера, а пропорционально концентрации полимера. Сам коэффициент диффузии принимается величиной постоянной. Также данная работа является единственной, в которой получена система с учетом и теплового механизма записи, однако данный механизм является существенным либо в отсутствии светового излучения, либо при слабой интенсивности и высокой температуре материала. При комнатной температуре в процессе записи световой энергией, тепловой механизм можно не рассматривать в силу малости по полимеризационно-диффузионным, сравнению С a температурная зависимость коэффициента диффузии в масштабе времени записи пренебрежимо мала.

Анализ данной системы уравнений проведен в [53], где установлена взаимосвязь голографических характеристик среды с параметрами полимеризационного и диффузионного процессов, ответственных за формирования решетки показателя преломления. Из анализа модели и экспериментальных результатов приводится критерий эффективности записи, выполнение которого, по мнению авторов, является необходимым условием достижения максимально возможных значений амплитуды модуляции показателя преломления и скорости записи:

$$D_{ef} = (D_0 / \Lambda^2) (u_{p} / I_0^{1/2}) > 1, \qquad (1.1)$$

где величина безразмерного коэффициента D_{ef} зависит от свойств полимеризационно-способной составляющей носителя (u_p) , коэффициента взаимодиффузии подвижных компонент (D_0) , интенсивности записывающих пучков (I_0) и периода записываемой голографической решетки (Λ).

Следует заметить, что данный критерий эффективности будет получен независимо многими авторами в их моделях голографической записи в ФПМ [54-56] и в экспериментальных работах, например в [18,43,70]. Фактически данный критерий устанавливает оптимальное соотношение скоростей диффузионных и полимеризационного процессов записи.

 M_n – начальная концентрация мономера, τ_0 – время релаксации возбужденной молекулы красителя K_g , K_b – параметры роста и обрыва полимерной цепи, α_0 - поглощение ФПМ обусловленное красителем, β - параметр фотоинициирования

Также в данной работе определен диапазон оптимальных концентраций основных компонент материала ФПК-488, обеспечивающий максимальную эффективность записи. В случае среды с нейтральной компонентой содержание последней рекомендуется порядка 35-45%. Для материала ФПК-488 определен коэффициент взаимодиффузии мономера и нейтральной компоненты $D_0 = 1.5$ 10^{-9} см²/с. Показано, что для каждого материала существует область оптимальных значений интенсивности записывающих пучков, при которых скорость записи и амплитуда модуляции показателя преломления достигают максимально возможной величины, причем последняя в данной области практически не зависит от интенсивности света. Для сред с диффузионным разделением компонент предсказано уменьшение эффективности записи с решетки, пространственной частоты уменьшением что подтверждено литературными данными для различных регистрирующих сред данного типа (следует из 1.1).

Авторы предлагают использовать данную теорию для описания других эффектов, имеющих место при записи голограмм на фотоформерах, например, постполимеризационного самоусиления голограмм [42] И определять параметры процессов полимеризации и диффузии голографическими методами. Идея использования топографических измерений для исследования динамики процесса полимеризации представляет несомненный практический интерес. Трудность, однако, заключается в том, что на результаты оптических измерений одновременно оказывают влияние многие параметры фотополимеров. Расшифровка результатов измерений возможна только на теоретического моделирования процесса записи голограмм основе В конкретных типах регистрирующих сред, что и продемонстрировано авторами в работе [53].

Следует отметить, что главной трудностью использования данной TO, что модель записана только В виде модели является системы дифференциальных уравнений для концентраций компонент, а аналитическое решение найдено. Таким образом, расчета дифракционных не для

характеристик необходимо решить данную систему дифференциальных уравнений, затем полученные концентрации компонентов материала подставить в соотношение Лорентц-Лоренца и определить амплитуду решетки показателя преломления, на основе которой с помощью формулы Когельника рассчитать дифракционные характеристики записанной решетки.

Идеально было бы получить аналитическую модель, которая бы путем недолгих вычислений показала, как изменять химический состав материала и процедуру записи, чтобы получить лучшие дифракционные характеристики. Хорошим примером является работа Когельника [49] в области дифракции, представляет простое аналитическое решение для области с которая соблюденными нарушенными условиями Брэгга произвольной И для поляризации для объемных амплитудных и фазовых решеток в пропускающей и отражающей геометриях. Также известно, что данная модель работает только некоторой области параметров [57], И что есть более обшие В электромагнитные модели [58], однако модель Когельника пригодна для многих важных областей голографических параметров и является простой и физически наглядной.

Следующей была представлена работа Жао и Моуроулиса [55], в которой получено выражение для первой гармоники показателя преломления на основе полимеризационно-диффузионных кинетических уравнений для низких пространственных частот при h=1 и k=1 и показано, как отношение скоростей полимеризации и диффузии контролирует процесс формирования решетки, что аналогично с выводами работы [53]. Следует отметить, что Жао и Моуроулис представляли И модифицированную модель при h=1И произвольном k [59] в которой показали, что в силу k≠1, следует учитывать вторую пространственную гармонику показателя преломления. Однако, данное утверждение необоснованно ограничено случаем $k \neq 1$, т.к. из вида кинетических уравнений следует, что даже при k=1 высшие пространственные гармоники решетки не исчезают, более того при слабо выраженной диффузионном механизме записи высшие гармоники превосходят по амплитуде первую при

k=1.

работа [59] Ланная стала основополагающей ДЛЯ описания голографической записи в ФПМ и использовалась другими авторами для описания экспериментально наблюдаемых процессов, например в [43] и обобщалась в работах [54,60,61]. Широко известной стала нелокальная диффузионная модель (NPDD) записи ДР в ФПМ [54], разработанная Шериданом и др. на основе результатов из [59]. Главным отличием NPDD от работы [59] является математическое описание эффекта уменьшения эффективности дифракции ДР с увеличение пространственной частоты, т.е. ограниченности разрешающей способности материала.

Шеридан и др. объясняют спад ЭД на высоких частотах тем, что период решетки становится сравним с длиной полимерных цепей, что снижает контраст записанного полимерного распределения. Т.е. рост цепи от светлой к темной области позволяет описать процесс замывания решетки, который приводит к уменьшению эффективной толщины решетки, как функции параметров записи. Данная причина является основой нелокальности материала и названо авторами нелокальным откликом ФПМ, для математического описания которой принята функция Гаусса. Первые выражения для данной модели получены при h=1, k=1 для четырех пространственных гармоник показателя преломления, как функции поляризуемости молекул полимера и гармоник его концентрации, выражения для которых также представлены с учетом влияния двух ближайших гармоник.

Следует отметить, что во всех работах данного коллектива авторов приводятся системы связанных дифференциальных уравнений для концентраций мономера и полимера без решения. Также в «нелокальных диффузионных» моделях не учтена нейтральная компонента, но учтена произвольная степень нелинейности процесса фотополимеризации и четыре пространственные гармоники, в отличии от модели в [52].

В [54] на основе численного моделирования показано, что амплитуды пространственных гармоник показателя преломления существенно возрастают

с уменьшением скорости полимеризации, зависящей от интенсивности записывающего излучения, что согласуется с результатами работ [53,55,59]. С уменьшением периода формируемой решетки, по предсказанию данной модели, амплитуды гармоник существенно уменьшаются, причем с ростом номера гармоники данный эффект усиливается. Однако данные эффекты имеют место только, когда период решетки становится меньше разрешающей способности материала, зависящей от длины формируемых полимерных цепей, и только в данном случае использование нелокальной модели становится целесообразным.

Таким образом, учет высших пространственных гармоник в модели записи является целесообразным, когда вклад полимеризационного механизма записи в амплитуду записываемой ДР много больше чем вклад диффузии компонентов материала. Такое заключение делается и в работе [56], где граничных случая, когда диффузия рассматриваются два материала отсутствует, и когда она является определяющей в формировании решетки. Приведенные результаты моделирования обозначили, четко что при слабовыраженной диффузии необходимо учитывать высшие пространственные гармоники профиля записываемой решетки, а в случае слабой диффузии можно ограничиться рассмотрением первой и нулевой гармониками решетки, и погрешность при этом будет меньше погрешности эксперимента, которым будет проверяться адекватность модели.

послужили отправной точкой разработки Данные выводы для аналитической модели, представленной в 1996 г. в работе [62], для k=0.5 и h=1.5. Выбор h=1.5 может говорить о рассмотрении двух различных ситуаций. Либо h=1+k, т.е. экспозиция проводится УФ светом и взаимодействует напрямую с мономером и тогда роль красителя в модели сводится к ослаблению интенсивности излучения по глубине материала, и формируемая решетка становится неоднородной по глубине материала. Либо *h*=1.5, что промежуточным между h=1наиболее является случаем, _ часто рассматриваемым случаем и подтвержденным многими экспериментальными результатами [75], и h=2, когда процесс обрыва полимерной цепи происходит в результате мономолекулярного механизма. Установлено, что различные механизмы записи дают разную кинетику вкладов в процесс записи. На этой основе предложен экспериментальный способ разделения вкладов отдельных механизмов и оценки параметров, характеризующих процесс записи. [63]

Данная модель затем была обобщена на случай формирования решетки одним импульсом в поглощающем ФПМ [63], что позволило получить аналитические решения, описывающие пространственно-временное преобразование поля пропускающей голографической решетки, как при записи, так и при ПЭУ, с учетом оптического поглощения и диффузионных процессов. В задачи записи принято фотоиндуцированное изменение коэффициента диффузии среды из [47,48], а на стадии ПЭУ коэффициент диффузии принимается независящим от координаты. Показано, что затухание оптических пучков в процессе записи приводит к пространственной неоднородности профиля решетки показателя преломления и кинетики ее роста. В основе процесса ПЭУ лежит диффузия мономера и инертной компоненты, как результата градиента концентрации мономера вдоль вектора решетки, который возникает в результате неравномерного израсходования мономера под действием локальной засветки.

Результаты исследования ПЭУ также было представлено в работе [43], где получена эмпирическая формула для описания постэкспозиционного усиления голографической решетки принимающая во внимание два процесса: диффузия мономера из темных областей в светлые и взаимодействия и диффузии свободных радикалов, которых находится в избытке в светлых областях, для завершения полимеризации (обрыва полимерных цепей). Время для второго процесса обратно пропорционально коэффициенту обрыва цепи и более чем на порядок превосходит время диффузии, а вклад в рост амплитуды коэффициента преломления в разы меньше, чем вклад диффузии мономера. С помощью полученного эмпирического соотношения и экспериментальных данных можно получить время завершения процесса полимеризации, зная коэффициент диффузии, время записи и амплитуду решетки на момент окончания записи.

Наиболее полное экспериментальное исследование постэкспозиционного усиления (ПЭУ) проведено в [42], где показано, что при использовании ПЭУ отношение сигнал/шум может быть улучшено на порядок за счет устранения динамического усиления шумовых решеток, которое имеет место при непрерывном экспонировании. Зависимость скорости эффекта постполимеризации и конечной глубины превращения полимера от исходной глубины превращения композита в момент прекращения облучения позволяет путем дозированной предполимеризации слоя некогерентным излучением сократить время экспонирования исходной голограммы интерференционным полем и тем самым дополнительно повысить отношение сигнал/шум. При использовании режима ПЭУ с предполимеризацией слоя отношение сигнал/шум для элементарных голограмм увеличивается примерно на порядок.

Интерес также представляют приведенные зависимости коэффициента усиления от выбора рабочей точки – времени записи до начала ПЭУ, исследованного также и в [18], и периода решетки. Показано, что с 0.7мкм, периода решетки ДО коэффициент уменьшением усиления увеличивается, что объясняется уменьшением длины диффузионного пробега инертного модуляции компонента следовательно, увеличением И, ee концентрации по слою, а дальнейшее уменьшение периода приводит к обратному эффекту за счет уменьшения диффузии инертного компонента в необлученные области из-за их полимеризации за счет эффекта передачи цепи и роста макрорадикалов из облученных областей в необлученные, т.е. уже сказывается разрешающая способность материала. В данной работе также подтверждается, что диффузия инертной компоненты является определяющим фактором в ПЭУ. Данные по величине максимального коэффициента ПЭУ 13 раз в зависимости от выбора рабочей точки ДЭ=1% находятся в хорошем согласии с другими источниками в которых исследовалось ПЭУ [42,43].

Другим интересным режимом усиления является динамическое (оптическое) самоусиление ДСУ. Единственная работа по теоретическому изучению данного эффекта была представлена в [64] и модифицирована в [65]. В данных работах приводится аналитическая модель дифракции света на наклонных голографических решетках в фотополимерных материалах в нестационарном режиме считывания описывающая динамический процесс оптического усиления голограмм с учетом фотополимеризационного и диффузионного механизмов записи при h=1.5, k=0.5 и m=1. В основе описания ДСУ принято, что во время считывания формируется неоднородная по глубине материала интерференционная картина, образованная считывающей волной и дифрагированной волной на записанной решетке. В случае неполного израсходования мономера процессе записи решетки, В данная интерференционная картина приводит к записи дополнительной решетки, которая может быть рассогласованна с основной, что приводит к повороту эффективного вектора решетки и изменению пространственного профиля результирующей решетки, что согласуется с основными выводами В экспериментальных работах [44-46]. Решение задачи дифракции проведено в кинематическом приближении. Ha ee основе проведено численное моделирование динамики дифракционной эффективности и селективных свойств голограмм. Также на основе моделирования показано, что дифракционные характеристики наклонных голограмм являются пространственно неинвариантными по отношению К направлению считывающего пучка. Результаты данных теоретических работ находятся в очень хорошем согласии экспериментальными результатами, С представленными в работах [18,44-46].

Все исследования ДСУ [44-46,64,65] показали следующие. Коэффициент усиления всегда больше единицы, и ДЭ стабилизируется на достигнутом уровне по завершении процесса полимеризации вне зависимости от материала и выбора рабочей точки. А величина ДЭ решетки, сформировавшейся в результате ДСУ, зависит от начальной дифракционной эффективности (рабочей точки) и пространственного периода решетки, уменьшаясь с уменьшением последних. Наклон решетки, сформировавшейся при ДСУ, определяется дифракцией записывающих пучков на смещенной решетке.

Кроме того практическая значимость ДСУ [45] является возможность создания стабильных решеток с ДЭ до 90% при сниженных требованиях к виброустойчивости схемы записи, в связи с тем, что интерференционная картина образуется в результате дифракции считывающего пучка на слабой записанной решетке.

В более поздних работах [66] получены параметры исследованных фотополимерных материалов, которые находятся в согласии с результатами других коллективов, а также представлялись аналитические модели записи ДР с учетом как оптического поглощения материала, так и его фотоиндуцированного изменения [67], что позволило уточнить параметры материала с учетом данного эффекта [68].

Следует заметить, что модели [56,62-68] разработаны без учета контраста интерференционной картины и фотоиндуцированного изменения поглощения, только для нулевой и первой гармоник концентрации мономера и показателя преломления при h=1.5, k=0.5 и с учетом нейтральной компоненты, а дифракционная задача решена в кинематическом приближении, однако в отличии от всех представленных ранее моделей с учетом неоднородности пространственного профиля решетки показателя преломления, и что особенно важно в аналитическом виде.

В данных работах, как и во всех известных автору теоретических исследованиях пренебрегается как усадкой материала, по крайней мере в задаче формирования решетки, так и диффузией полимера. В работах [43,69-74] проведено экспериментальное исследование эффекта усадки, а в работе [43] получено эмпирическое выражение для оценки величины усадки:

$$\Delta d(t) = \Delta d_{\max} \left\{ 1 - \exp\{k_0 I_0^{1/2} \left[1 - \exp(-\sigma \cdot t) \right] \cdot t \} \right\}$$
(1.3)

где I_0 – интенсивность экспозиции, $\sigma \approx 0.5k_0I_0^{1/2}$, k_0 – коэффициент пропорциональности, зависящий от внутренних параметров материала, Δd_{max} – максимальная величина усадки, уменьшающаяся с уменьшении I_0 . Выражение показывает, что временная эволюция толщины материала совпадает с изменением среднего показателя преломления, т.е. общей плотности материала. В целом, усадка материала составляет порядка (1.5-2)% от толщины слоя, а максимальная величина не превышает 3.5%, что находится в согласии с другими работами [69-74]. Эффект усадки может быть устранен при использовании закрепленных жестких ограничивающих плоскостей, между которыми находится ФПМ, как это сделано например в [72].

Вопрос, связанный с диффузией полимера, решен, например, в работе [73], где приводятся результаты исследований изменения дифракционной эффективности пропускающих решеток, записанных в ФПМ на основе акриламида, при хранении. Там же приводится качественная теория рассасывания решетки, и определяются коэффициенты диффузии полимера, которые оказываются на четыре порядка меньше коэффициентов диффузии мономера, что находится в согласии с качественной оценкой в [52]. На основе чего делается заключение о приемлемости пренебрежения диффузией полимера, как на стадии записи и ДСУ, так и на стадии ПЭУ.

1.4 Голографические дифракционные решетки в фотополимризующихся жидкокристаллических материалах в

В настоящее время все больший интерес к себе привлекают фотополимерные композитные материалы с включением жидкокристаллической компоненты . Это связано с возможностью применения таких материалов для создания элементов управления оптическим излучением , устройств отображения и передачи информации [81,82].

Существует несколько типов композитных материалов: фотополимерный жидкокристаллический композитный материал- ФПМ-ЖК, в зарубежной литературе называемый «polymer dispersed liquid crystals»- PDLC [83,84] «polymer-liquid-polymer slides»-POLCRYPS или [85, 86],И азосодержащие ЖК полимеры- АПЖК [87,88]. В обоих случаях для создания периодической структуры используется голографический метод.

На данный момент известно несколько методов приготовления

композитных материалов: эмульгирование, фазовое разделение [89].

Согласно методу эмульгирования раствор полимера смешивается с каплями ЖК. При испарении растворителя пленка полимера отвердевает, при этом образуются капли, внутри которых находится жидкий кристалл [89].

В процессе фазового разделения однородный раствор ЖК и матрицы разделяется при отвердевании полимерной составляющей с вытеснением молекул жидкого кристалла в капли. В зависимости от способа отвердения принято различать фазовое разделение в результате: охлаждения расплава, испарения растворителя и полимеризации.

Формирование капсулированных структур в ФПМ-ЖК

С помощью указанных способов отвердения в ФПМ-ЖК материале возможно создать структуру, в которой в результате фазового разделения молекулы ЖК капсулируются. Плотность и размер капсул в композите зависит от исходного состава композита [82, 90, 91]. Их размер варьируется от единиц *мкм* до структуры, в которой ЖУ «переплетен полимерной сетью» [92, 93]. Например, 2% полимера в композите формирует капсулы диаметром 80 *мкм*, 5% полимера- 20 *мкм*, для 50% полимера- 10 *мкм* [82].

В настоящее время, при изготовлении ПРМ-ЖК материалов используют жидкий кристалл в нематической фазе [91]. Существует возможность применения холестерического жидкого кристалла [92].

Управление таких материалов основано на переориентировании молекул жидкого кристалла под действием внешнего электрического поля. Переориентация молекул приводит к изменению показателя преломления последнего [86]. Прикладываемое напряжение зависит от состава композита. Например, для 2% полимера управляющее напряжение составляет 20 *B*, для 50% полимера- 120 *B* [91].

Коллективом из Красноярска (институт физики им. Л.В. Киренского СО РАН) были представлены осциллограммы светопропускания оптического отклика КПНЖК для различных размеров капель ЖК при различных управляющих напряжениях [94]. Согласно которых, для малых размеров капель
нематика (диаметр- 1,4 *мкм*) характерны монотонно убывающие, близкие к экспонентациальным, релаксационные зависимости. При этом светопропускание составило 0,5. Существенно отличающийся вид имеют релаксационные кривые при крупных размерах капель (диаметр- 5 *мкм*). Светопропускание сначала уменьшается, достигает минимума, потом увеличивается, достигает локального максимума, и лишь затем уменьшается

Такие структуры возможно применять в качестве модуляторов, устройств отображения информации [95], а так же в качестве поляризационноселективных и не селективных дифракционных оптически элементов [96].

Формирование ДС в ФПМ-ЖК

Голографический метод формирования ДС в ФПМ-ЖК материале является наиболее предпочтительным.

В соответствии с пространственным распределением интерференционной картины в фотополимере с ЖК компонентой, под действием двух механизмов фотополимеризационного и диффузионного, происходит фазовое разделение молекул полимера и ЖК: молекулы ЖК локализуются в капсулы [82, 88, 91, 94, 97]. В результате, в фотополимерной композиции формируется упорядоченная структура характеризующаяся модуляцией показателя преломления в его объеме. Период такой структуры составляет единицы микрометров.

Плотность и размер капсул в композите зависит от исходного состава композита, от спектрального состава источника облучения, его мощности, времени экспозиции [91, 81]. В работе [91] установлено, что при увеличении плотности излучения от 1 до 200 *мВт/см²* диаметр ЖК капсул уменьшается с 5,5 до 2,5 *мкм*, а при энергиях облучения 150-200 *мДж/см²* формируются капсулы с размерами 0,5-1 *мкм*; увеличение концентрации полимера ведет к уменьшению рассеяния света и увеличению управляющего напряжения, а также, к увеличению параметра порядка [91].

Таким образом, сформированный композитный материал можно рассматривать как дифракционную решетку, обладающей дифракционной

эффективностью и угловой селективностью [91]. Согласно [93], для пленки толщиной 10 *мкм* дифракционная эффективность может достигать 32%, *Δn* ≈0,009±0,001, для пленки толщиной 50 *мкм*- 70%, *Δn* ≈0,0077; предел пространственной частоты порядка 1100 *лн/мм*.

В работах [97, 98] представлены математические модели, описывающие процесс формирования решетки, основой которых являются диффузионные уравнения для концентрации мономера в ФПМ-ЖК, учитывающее только полимеризационно - диффузионный механизм для мономера.

Модель, представленная в работе [97], позволяет рассчитать кинетику профиля показателя преломления с учетом высших гармоник.

Модель, представленная в работе [99], учитывает полимеризационно диффузионный механизма для концентрации мономера, диффузионный механизм для концентрации жидкого кристалла, интенсивность записывающих пучков и время записи. Предложенная модель записи решетки состоит из двух этапов: «быстрый» и «медленный». Соотношение между этапами регулируется временем записи, интенсивностью- длина полимерной цепочки. Управляя интенсивность и временем записи возможно получить ДР с требуемыми параметрами. Согласно [99], необходима интенсивность записывающих пучков при которой в неосвещенных областях будут формироваться более длинные полимерные цепочки, чем в освещенной, что позволит повысить модуляцию концентрации ЖК.

Все представленные модели подтверждают, что профиль показателя преломления записанной решетки не синусоидальный.

Прекращение роста полимерной цепи объясняется наличием кислорода или других примесей, которые сдерживают распад мономера на свободные радикалы [98]. При предположении, что модуляция концентрации жидкого кристалла пропорциональна модуляции концентрации полимера, аналитически получена первая гармоника показателя преломления композитного материала, из которой видно, что профили решеток ЖК и полимера одинаковые.

Дифракционные свойства и управление ДС в ФПМ-ЖК

Научная группа из Италии представила экспериментальные работы на тему исследования отклика POLCRYPS, в которой показана возможность управления такими структурами [89,84].

Управление таких материалов основано на переориентировании молекул жидкого кристалла под действием внешнего электрического поля. В исходном преломления полимера состоянии показатель отличен ОТ показателя преломления ЖК. Переориентация молекул приводит к изменению показателя преломления последнего. При сравнивании показателей преломления полимера ЖК структура становится И оптически однородной В направлении распространения света [86].

В работе [89] представлены экспериментальные исследования дифракционных свойств материалов HCD-5 и HCB-31, содержащих 30% нематического ЖК 5CB, толщиной 7,8 *мкм* и 8,8 *мкм* соответственно, с период решетки 1,34 *мкм*.

Для указанных образцов представлены зависимости времени включения и выключения дифрагированного пучка от напряженности приложенного электрического поля для различной частоты (100 $\Gamma \mu$ и 1 $\Gamma \mu$), длины волны света (632,8 *нм* и 1550,5 *нм*). Результаты были идентичны для обоих образцов: время включения дифрагированного пучка составляет 1 *мс*, а время выключения- 0,1 *мс*. Причем для λ = 632,8 *нм* была достигнута дифракционная эффективность в 90% при напряжении 55 *B*, для λ = 1550,5 *нм*- менее 20% при напряжении 45 *B*. Полученный результат объясняется тем, что образцы были оптимизированы для красного света.

Зависимость дифракционной эффективности от приложенного поля имеет не монотонную зависимость [101].

Работа [84] посвящена исследованию оптического отклика композита в тонких пленках. В работе исследовалось два образца толщиной 8,8 *мкм*, 12 *мкм* и периодом 1,34 *мкм* и 0,6 *мкм*, соответственно. Материал содержал 30% нематического ЖК. Считывание производилось на длине волны 633 *нм*. Было установлено, что время возрастания оптического отклика меньше у образца с

большей толщиной, и составляет величину порядка 100 *мкс*, а время спадабольше у образца с меньшей толщиной. Оно составляет величину порядка 10 *мкс* [84]. При напряженности поля порядка 16 *В/мкм* время оптического отклика составляет 150-200 *мкс*, а время релаксации- 4 *мс* [91].

В рассмотренных работах не представлено моделей, описывающих ориентацию директора жидкого кристалла в капсуле ФПМ-ЖК. В работе [100] в аналитическом виде представлено решение задачи ориентации молекул ЖК в сферическом объеме.

Ориентация жидкого кристалла сильно подвержена ориентирующему действию поверхностей. В POLCRYPS материалах этот эффект так же присутствует. В таком материале молекулы ЖК, в основном, сосредоточены между слоями полимера. В [102] исследуется ориентационные свойства ЖК между слоями N-винил карбозола при приложении внешнего электрического поля, из которой видно, что ориентационный эффект при приложении переменного или постоянного электрического поля одинаковый, разница лишь в том, что при постоянном токе напряжение переориентации больше (критическое напряжение).

В работе [103] предложена кусочно-линейная аппроксимация зависимости угла наклона директора ЖК от пространственной координаты при приложенном электрическом a поле, так же проведено сравнение представленной модели с результатами экспериментальных исследований.

Зависимость дифракционной эффективности от поляризации показала, что в капсуле директор ориентирован аксиально [104], и изменяет свою ориентацию только в одной плоскости [105].

На основе ДР, образованных в ФПМ-ЖК материалов, возможно создать динамически управляемые устройства для передачи информации, принципом работы которых являются электрически управляемые решетки Брэгга [83]. Применение, которых возможно в качестве управляемого демультиплексора для многоволновых систем оптической передачи информации [106, 107, 108].

Рисунок 1.1- Принцип работы демультиплексора на основе $\Phi \Pi M$ -ЖК: а) $n_p \neq n_{lc}$, б) $n_p = n_{lc}$. [83]

Рисунок 1.2- Применение ФПМ-ЖК в качестве демультиплексора [83]

На рисунке 1.1 представлен принцип работы демультиплексора, на рисунке 1.2 описана планарная схема применения ФПМ-ЖК материала в качестве управляемого демультиплексора для многоволновых систем оптической информации. передачи Быстродействие таких систем

порядка 100 мкс [82-83].

Таким образом в рассмотренных работах не представлено моделей в полной мере описывающих формирование ДР в ФПМ-ЖК материалах: профили показателя преломления ЖК и полимера полностью не определены, не определена глубина фазового разделения.

Нет моделей позволяющих рассчитать дифракционные свойства таких структур, нет моделей описывающих управление дифракционными структурами, не определено процентное соотношение компонент материала и ориентация директора ЖК в образце в зависимости от процентного соотношения составляющих композитного материала и граничных эффектов. Проведенный анализ показывает недостаточную степень изученности вопросов голографического формирования ДР в ФПМ-ЖК материалах, вопросов дифракции света на указанных структурах и методов динамического управления их дифракционными свойствами внешними электрическими полями.

Выводы по разделу

Приведенный аналитический обзор литературы показал, что недостаточно исследованы следующие вопросы:

- Отсутствуют модели формирования отражательных решеток в ФПМ в какой либо форме.
- Модели для пропускающих решеток в ФПМ, полученные в аналитическом виде, не описывают следующие явления:
 - Высшие пространственные гармоники
 - Произвольную степень нелинейности процесса фотополимеризации
 - Явления двух волнового смешения
 - Влияние контраста интерференционной картины на свойства решеток
 - Формирование решеток с изменяющимся периодом
- Модели для пропускающих решеток в ФПМ в приближении нескольких пространственных гармоник и произвольной степени фотополимеризации не получены в аналитическом виде.
- Не представлено моделей в полной мере описывающих формирование ДР в ФПМ-ЖК материалах: профили показателя преломления ЖК и полимера полностью не определены, не определена глубина фазового разделения.
- Нет моделей позволяющих рассчитать дифракционные свойства ДР в ФПМ-ЖК, нет моделей описывающих управление дифракционными структурами, не определено процентное соотношение компонент материала и ориентация директора ЖК в образце в зависимости от процентного соотношения составляющих композитного материала.

Постановка задачи

На основании анализа источников можно считать, что для достижения цели работы необходимо решить следующие основные задачи :

а) исследование пропускающих записи И отражающих фазовых голографических решеток В ФПМ-ЖК с учетом поглощения, полимеризационно-диффузионного механизма записи, произвольной степени нелинейности фотополимеризации фотоиндуцированного изменения поглощения и коэффициента диффузии;

б) исследование кинетики формирования гармоник пространственного профиля решетки показателя преломления и определение количества гармоник, которые необходимо принимать во внимание в зависимости от параметров материала и процесса записи;

в) решение самосогласованной дифракционной задачи и определение селективных свойств пространственно неоднородных решеток для произвольного количества пространственных гармоник;

г) исследование решеток с линейно изменяющимся периодом для пропускающей и отражающей геометрий записи;

 д) исследование явления двухволнового смешения, приводящего к формированию дополнительных решеток в материалах с произвольной степенью нелинейности фотополимеризации.

е) исследование записи пропускающих и отражающих фазовых голографических решеток в ФПМ-ЖК с учетом поглощения, полимеризационно-диффузионного механизма записи, произвольной степени нелинейности фотополимеризации фотоиндуцированного изменения поглощения и коэффициента диффузии

ж) построение теоретических моделей кинетик записи и считывания наложенных голографических решеток и их интегральных дифракционных характеристики с учетом их взаимовлияния,

ж) построение теоретических моделей электрически управляемых ФПМ-ЖК дифракционных структур, д) разработка программного обеспечения, основанного на полученных моделях, проведение численного моделирования кинетик записи и дифракционных характеристик исследуемых периодических дифракционных структур.,

Решение указанных задач позволяет сформировать аналитические методы описания процессов динамического формирования дифракционных структур в фотополимеризующихся жидкокристаллических композиционных материалах.

2 Исследования пропускающих голографических дифракционных решеток (ПГДР) в фотополимризующихся жидкокристаллических композиционных материалах (ФПМ-ЖК)

В данном разделе представлены теоретические модели кинетики голографической ПГДР записи И считывания В композиционных фотополимеризующихся материалах и их интегральных дифракционных характеристик с учетом самодифракции формирующих пучков, амплитудных распределений записывающих И считывающих пучков, высших пространственных гармоник решеток на стадии записи и считывания [115-118, 120-126, 130, 133, 136-143]. В подразделе 2.1 получены аналитические выражения, описывающие кинетику пространственно _ временных распределений решетки показателя преломления для ПГДР при различных условиях записи и на основе численного моделирования исследовано изменение пространственных профилей решеток в поглощающих ФПМ и при двухпучковых взаимодействиях на гармониках.

В подразделе 2.2 получены решения самосогласованной дифракционной задачи, на основе которой проводится исследование дифракционных характеристик пространственно-неоднородных ПГДР путем численного моделирования.

2.1 Формирование ПГДР

2.1.1 Кинетические уравнения голографической записи в ФПМ-ЖК

Пусть две когерентные монохроматические световые волны с амплитудами $E_0(\mathbf{r})$, $E_1(\mathbf{r})$ и волновыми векторами $\mathbf{k}_0'(\mathbf{r})$ и $\mathbf{k}_1'(\mathbf{r})$ на границе раздела сред распространяются под углами θ_0 и θ_1 внутри плоского слоя поглощающего ФПЖКМ ($0 \le y \le d$). Также будем считать, что \mathbf{k}_0' и \mathbf{k}_1' лежат в плоскости ХҮ. Пространственная геометрия процесса записи представлена на рис.2.1.

Запись ДР в ФПЖКМ проводится с помощью лазеров, что позволяет в теоретическом рассмотрении ограничиться монохроматическим полем в геометро-оптическом приближении. Тогда оптическое поле внутри ФПМ толщиной *d* (рис.2.1) запишем в виде:

$$E(t,\boldsymbol{r}) = \sum_{j=0,1} \boldsymbol{e}_j \cdot E_j(\boldsymbol{r}) \cdot \exp\left[-\alpha(t) \left(\boldsymbol{N}_j \cdot \boldsymbol{r}\right)\right] \cdot \exp\left[i \cdot \left(\boldsymbol{\omega} \cdot \boldsymbol{t} - \boldsymbol{\varphi}_j(\boldsymbol{r})\right)\right] + \hat{e}.\tilde{n}., \qquad (2.1)$$

где e_j -вектор поляризации, $\alpha(t)$ – коэффициент оптического поглощения ФПМ с учетом его фотоиндуцированного изменения, r – радиус-вектор, центральный волновой вектор $k'_j = kN_j$,=-grad($\varphi_j(r)$), $k = n_j \omega/c$ – волновое число и N_j – волновая нормаль, n_j – показатель преломления.

Под воздействием светового излучения в ФПЖКМ в результате процессов радикальной фотополимеризации и диффузии происходят локальные изменения показателя преломления, что приводит к формированию фазовой голографической решетки.

На записываемой решетке во время записи происходит дифракция записывающих волн, которая является существенной только при контрасте не равном единице и при существенно несимметричной геометрии.

Рисунок 2.1 - Пространственная геометрия процесса записи

Поэтому вопросы самодифракции рассмотрены отдельно. На практике считывание записываемой решетки производится либо после остановки записи, либо во время записи неактиничным излучением под соответствующим длине волны считывания углом. Поэтому вопросы считывания ДР (задача дифракции) рассматривается отдельно от задачи записи

Рассмотрим более подробно процесс радикальной фотополимеризации приводящий к формированию решетки в ФПЖКМ.

Фотохимические реакции, протекающие в процессе радикальной фотополимеризации, приводят К локальным изменениям показателя преломления среды $n(\mathbf{r},t)$. B упрощенном виде схема радикальной полимеризации в ФПМ с красителем-сенсибилизатором включает в себя несколько этапов [11,56].

На первом этапе молекула красителя K поглощает квант светового излучения ($h\omega$) и взаимодействует в возбужденном состоянии K^* с инициатором

$$K+h\omega \rightarrow K^*, \qquad K^*+In \rightarrow K^*+In^*$$

с образованием радикала красителя и первичного радикала инициатора In^* . Радикал красителя в дальнейших реакциях не участвует, в связи с рассредотачиванием радикального центра по всей молекуле и потерей активности и переходит в прозрачную лейко-форму. Радикал инициатора взаимодействует с молекулой мономера M, что приводит к образованию нового радикала (N_0^+), состоящего из инициатора и мономера, причем радикальный центр перемещается на мономер

$$K^* + M \rightarrow N_0^+$$

Новый радикал в свою очередь взаимодействует с другой молекулой мономера, присоединяя ее, обуславливая процесс роста полимерной цепи, скорость которого характеризуется параметром роста цепи K_g

$$N_{s}^{+} + m \rightarrow N_{i+1}^{+}, \quad i=0,1,...$$

Затухание реакции полимеризации происходит, во-первых, за счет рекомбинации радикалов обусловленного мономолекулярным механизмом, то есть радикальная цепочка взаимодействует с первичным радикалом, или бимолекулярным механизмом, когда две радикальные цепочки взаимодействуют друг с другом, образуя димер, и во-вторых, за счет взаимодействия двух радикалов, причем один теряет свой радикальный центр, а второй присоединяет к себе атом водорода (диспропорционирование) [11]. Скорость обрыва полимерной цепи характеризуется параметром обрыва K_b .

При математическом описании процессов в описанной схеме за основу

примем теорию радикальной полимеризации, изложенную в [11]. Существенные упрощения в описании получаются в случае, когда характерное время изменения концентрации красителя и мономера является большим по сравнению со временем релаксации возбужденных состояний красителя τ_0 и временем установления равновесия в ансамбле радикалов [56].

В соответствии с теорией радикальной полимеризации [11] скорость полимеризации (изменения концентрации мономера) записывается в следующем виде:

$$-\frac{dM(t)}{dt} = K_g \left(\frac{\beta I_{abs}}{K_b}\right)^k M(t), \qquad (2.2)$$

где I_{abs} - интенсивность поглощенного света, M(t) - концентрация мономера, β - параметр реакции фотоинициирования, k – степень нелинейности процесса фотополимеризации, 0.3 < k < 1 в общем случае, зависит от соотношения механизмов роста, распространения и обрыва полимерной цепи в процессе радикальной полимеризации [11,52,75].

Когда в состав ФПЖКМ входит краситель сенсибилизатор и экспозиция производится излучением с интенсивностью I_0 и длиной волны из спектра поглощения красителя, то выражение для интенсивности, потраченной на фотополимеризацию, имеет вид [11]:

$$I_{abs} = I_0 \left(1 - 10^{-\alpha_0 \cdot \langle K \rangle \cdot d} \right) \approx I_0 \alpha_0 \langle K \rangle d , \qquad (2.3)$$

где K – концентрация красителя, участвующего в фотополимеризации, d – толщина материала, α_0 - эффективный коэффициент поглощения молекулы красителя на длине волны экспозиции.

Таким образом, из сопоставления (2.2) и (2.3) видно, что в ФПМ с красителем сенсибилизатором скорость фотополимеризации пропорциональна первой степени мономера и зависит от эффективного коэффициента поглощения красителя.

Когда экспозиция материала производится ультрафиолетовым светом и

излучение поглощает непосредственно мономер, выражение для интенсивности, потраченной на фотополимеризацию, принимает вид:

$$I_{abs} = I_0 \left(1 - 10^{-\varepsilon Md} \right) \approx I_0 \varepsilon Md .$$
(2.4)

В данном случае I_{abs} пропорциональна концентрации мономера M, и тогда при подстановке в (2.2) получим, что скорость фотополимеризации пропорциональна M^{1+k} .

Выражение для скорости изменения концентрации мономера в общем случае может быть записано в виде:

$$-\frac{dM}{dt} = K_g \left(\frac{\beta \cdot I_{abs}}{K_b}\right)^k \cdot M^h, \qquad (2.5)$$

где h = 1 + k - для взаимодействия излучения непосредственно с мономером, $h = 1 - для \Phi \Pi M$ с красителем сенсибилизатором, взаимодействующим с излучением.

Следует отметить, для ФПМ с красителем сенсибилизатором h может быть равно двум, когда обрыв полимерной цепи происходит только вследствие мономолекулярного механизма [75], который начинает превалировать только при глубоких степенях конверсии мономера в полимер и пренебрежимо малой диффузии [52]. Экспериментальные исследования [75] подтверждают, что в подавляющем большинстве случаев h=1, поэтому в дальнейшем рассмотрении ФПМ с красителем сенсибилизатором ограничимся h=1.

Для неоднородной засветки I(r) скорость изменения M является пространственно-неоднородной функцией, что приводит к возникновению градиента концентрации мономера и соответственно диффузии мономера из менее освещенных областей в более освещенные. Объединяя обе причины изменения концентрации мономера, запишем уравнение для скорости изменения M в виде:

$$\frac{\partial M(t,\boldsymbol{r})}{\partial t} = \operatorname{div} \left(D(t,\boldsymbol{r}) \operatorname{grad} M(t,\boldsymbol{r}) \right) - K_g \left[\frac{\alpha_0 \beta \langle K \rangle \tau_0 I(\boldsymbol{r})}{K_b} \right]^k M^h(t,\boldsymbol{r}), \qquad (2.6)$$

где $I(\mathbf{r})$ – пространственное распределение интенсивности засветки, \mathbf{r} – радиусвектор пространственной точки, $D(t,\mathbf{r})$ – коэффициент диффузии мономера; параметры вещества, взаимодействующего с излучением: α_0 – коэффициент поглощения одной молекулы, $\langle K \rangle$ - концентрация молекул, τ_0 – время жизни возбужденного состояния молекулы.

Для описания процесса диффузии мономера примем во внимание временное изменение *D* и используем выражение [48], полученное на основе феноменологического подхода и показавшее хорошее согласие с экспериментальными результатами [43,56]:

$$D(t, \mathbf{r}) = D_m \exp\left[-s\left(1 - \frac{M(t, \mathbf{r})}{M_n}\right)\right],$$
(2.7)

где M_n – начальная концентрация мономера, D_m – начальное значение коэффициента диффузии, *s* – параметр, описывающий скорость изменения *D*.

Дальнейшее изложение перехода от концентрации мономера к показателю преломления приведено в работе [56] для k=0.5 h=1+k=1.5. Изменение во времени M в некоторой точке приводит за счет процесса полимеризации к изменению во времени плотности полимерных молекул в этой точке. За счет процессов диффузии мономера происходит также вытеснение компоненты материала, которая не участвует в процессе полимеризации, однако имеет отличный от мономера и полимера показатель преломления (ЖК компонента). Т.о. все эти процессы ведут к изменению показателя преломления n, которое на основе формулы Лорентц-Лоренца можно записать в виде:

$$\frac{\partial n}{\partial t} = \frac{4\pi}{3} \frac{\left(n^2 + 2\right)^2}{6n} \left(\alpha_m \frac{\partial N_m}{\partial t} + \alpha_p \frac{\partial N_p}{\partial t} + \alpha_{lc} \frac{\partial N_{lc}}{\partial t}\right), \tag{2.8}$$

где N_m , N_p , N_{lc} и α_m , α_p , α_{lc} число молекул в единице объема и поляризуемость молекул мономера, полимера и ЖК компоненты, соответственно [56]. Здесь под α_{lc} - понимается эффективное значение поляризуемости.

Изменение N_m , N_p и N_{lc} в некоторой точке при неоднородной засветке происходит за счет двух процессов: фотополимеризации мономера и процессов

взаимодиффузии мономерной и ЖК компонент.

Принимая среднюю длину полимерной цепи равной l, из закона сохранения числа частиц следует $N_m + lN_p = \text{const.}$ Тогда изменение n за счет реакции полимеризации будет

$$\left(\frac{\partial n(t,\boldsymbol{r})}{\partial t}\right)_{p} = \delta n_{p} \left(\frac{\partial M(t,\boldsymbol{r})}{\partial t}\right)_{p} = \delta n_{p} K_{g} \left[\frac{\alpha_{0}\beta \langle K \rangle \tau_{0} I(\boldsymbol{r})}{K_{b}}\right]^{k} \frac{M^{h}(t,\boldsymbol{r})}{M_{n}}$$

где $\delta n_p = \frac{4\pi}{3} \cdot \frac{(n^2 + 2)^2}{6n} \left(\alpha_m - \frac{\alpha_p}{l} \right) \cdot \frac{M_n}{W_m}, W_m$ -молекулярный вес мономера [56].

Считая диффузионные потоки мономера и ЖК компоненты равными, изменение показателя преломления вследствие вытеснения мономером ЖК компоненты в неосвещенную область запишем в виде:

$$\left(\frac{\partial n}{\partial t}\right)_{lc} = \delta n_{lc} \operatorname{div}(D_{lc} \operatorname{grad} M),$$

где $\delta n_{lc} = \frac{4\pi}{3} \frac{(n^2 + 2)^2}{6n} \alpha_{lc} \frac{M_{lc}}{W_{lc}}, \quad M_{lc}$ – концентрация инертной компоненты, W_{lc} – молекулярный вес ЖК компоненты. Отметим, что вследствие анизотропии ФПЖКМ параметр δn_{lc} в общем случае зависит от поляризации световых волн. В результате, учитывая оба процесса, изменяющих *n*, получим [56]:

$$\frac{\partial n(t,\boldsymbol{r})}{\partial t}\Big|_{p} = \delta n_{p} K_{g} K_{b}^{-k} \left(\alpha_{0} \beta \langle K \rangle \tau_{0} I(\boldsymbol{r})\right)^{k} \frac{M^{h}(t,\boldsymbol{r})}{M_{n}}, \qquad \frac{\partial n(t,\boldsymbol{r})}{\partial t}\Big|_{lc} = \delta n_{lc} \operatorname{div} \left[D_{lc} \operatorname{grad} \frac{M(t,\boldsymbol{r})}{M_{n}}\right].$$
(2.9)

Система уравнений (2.6), (2.9) является базовой для описания процесса записи голограмм в ФПЖКМ и будет использована для разработки всех математических моделей в данной работе. Данная система уравнений в отличии от представленной в [56] получена в более общем виде, т.к. учтены произвольная степень нелинейности процесса фотополимеризации k, а h=1.

Как показывает анализ выражений (2.6), (2.7) и (2.9), учет в задаче записи дифракционной решетки амплитудного профиля записывающих пучков с плоским фазовым фронтом приводит к зависимости контраста и интенсивности записывающего поля от координат *x* и *y*, что приводит к неравномерности скорости полимеризации и контраста в каждой локальной точке записываемой голографической решетки. Таким образом, определив степень влияния контраста и скорости полимеризации на кинетику и вид профиля дифракционной решетки в приближении плоских волн, результаты можно обобщить на случай записи пространственно-неоднородными световыми пучками.

2.1.2 Запись ПГДР с учетом постоянного оптического поглощения ФПМ-ЖК

В данном разделе рассмотрим запись ПГДР плоскими волнами. Решение задачи получено в приближении нулевой и первой гармоник концентрации мономера и показателя преломления с учетом постоянного оптического поглощения, контраста интерференционной картины, произвольной степени нелинейности процесса фотополимеризации и зависимости коэффициента диффузии от степени полимеризации.

Пусть две плоские когерентные монохроматические световые волны с амплитудами E_0 , E_1 и волновыми векторами k_0' , k_1' на границе раздела сред распространяются под углами θ_0 и θ_1 внутри плоского поглощающего фотополимерного слоя ($0 \le y \le d$). Также будем считать, что k_0' и k_1' лежат в плоскости XY. Пространственная геометрия и векторная диаграмма процесса записи представлены на рис.2.2.

Распределение интенсивности интерференционной картины светового поля (рис.2.2) в случае постоянного оптического поглощения примет вид:

$$I(\mathbf{r}) = I_0(y) \cdot \left[1 + m(y) \cdot \cos(\mathbf{K}_1 \mathbf{r})\right], \qquad (2.10)$$

где $m(y) = 2\sqrt{I^0(y)I^1(y)} \cdot (e_1 \cdot e_0)/(I^0(y) + I^1(y))$ - локальный контраст интерференционной картины, $I_0(y) = I^0(y) + I^1(y)$, $I^j(y) = I_j \exp[-\alpha y / \cos \theta_j]$; $I_j = |E_j|^2$; *j*=0,1; $K_1 = k_0' - k_1'$, *r* – радиус вектор.

Рисунок 2.2 – Пространственная геометрия (а) и векторная диаграмма (б) процесса записи

С учетом (2.10) запишем уравнения описывающие процесс формирования фазовой решетки в ЖК фотополимерном материале с красителем сенсибилизатором в результате радикальной фотополимеризации (2.6)- (2.9):

$$\frac{\partial M(t,\boldsymbol{r})}{\partial t} = \operatorname{div}(D_m(t,\boldsymbol{r})\operatorname{grad} M(t,\boldsymbol{r})) - K_g \left[\frac{\alpha_0\beta\langle K\rangle\tau_0I(t,\boldsymbol{r})}{K_b}\right]^k M(t,\boldsymbol{r}), \qquad (2.11)$$

$$\frac{\partial n(t,\boldsymbol{r})}{\partial t} = \delta n_p K_g \left[\frac{\alpha_0 \beta \langle K \rangle \tau_0 I(t,\boldsymbol{r})}{K_b} \right]^k \frac{M(t,\boldsymbol{r})}{M_n} + \delta n_{lc} \operatorname{div} \left(D_{lc}(t,\boldsymbol{r}) \operatorname{grad} \frac{M(t,\boldsymbol{r})}{M_n} \right), \quad (2.12)$$

$$D_{m,lc}(t,\boldsymbol{r}) = D_{m,lc} \exp\left[-s\left(1 - \frac{M(t,\boldsymbol{r})}{M_n}\right)\right],$$
(2.13)

где K_g , K_b - коэффициенты роста и обрыва полимерной цепи, α_0 - коэффициент поглощения красителя, β - параметр реакции фотоинициирования, $\langle K \rangle$ средняя по пространству концентрация красителя, τ_0 - время жизни возбужденного состояния молекулы красителя, D_m , D_{lc} – начальные значения коэффициентов диффузии мономера и ЖК, M_n – начальная концентрация мономера, δn_p , δn_{lc} – параметры модели, описывающие изменение *n* вследствие полимеризации и диффузии компонент материала, соответственно; k – параметр, характеризующий степень нелинейности и скорость процесса радикальной фотолимеризации; *s* – скорость изменения коэффициента диффузии.

Решение системы уравнений (2.11) - (2.13) будем искать в виде:

$$M(t, \mathbf{r}) = M_0(t, y) + M_1(t, y)\cos(\mathbf{K}_1 \mathbf{r})$$
(2.14)

$$n(t, \mathbf{r}) = n_0(t, y) + n_1(t, y) \cos(\mathbf{K}_1 \mathbf{r}), \qquad (2.15)$$

где $M_{j}(t, y) = \frac{1}{2\pi} \int_{-\pi}^{\pi} M(t, \mathbf{r}) \cos(j\mathbf{K}_{1}\mathbf{r}) d(\mathbf{K}_{1}\mathbf{r}), \quad n_{j}(t, y) = \frac{1}{2\pi} \int_{-\pi}^{\pi} n(t, \mathbf{r}) \cos(j\mathbf{K}_{1}\mathbf{r}) d(\mathbf{K}_{1}\mathbf{r}), \quad j=0,1$ –

нулевые и первые гармоники решеток концентрации мономера и показателя преломления, соответственно.

Для получения кинетических уравнений для гармоник M_j , n_j в уравнениях (2.11) и (2.12) воспользуемся разложением нелинейной функции $I^k(\mathbf{r})$ в ряд Тейлора, ограничившись тремя членами:

$$I^{k}(\mathbf{r}) \approx I_{0}^{k}(y) \cdot \left[1 + k \, m(y) \cos(\mathbf{K}_{1} \, \mathbf{r}) + \frac{k(k-1)}{2} m^{2}(y) \cos^{2}(\mathbf{K}_{1} \, \mathbf{r})\right].$$
(2.16)

Погрешность аппроксимации (2.16) в области параметров 0.75<*m*(*y*)<1 0.1<*k*<0.75 составляет (1.5 – 3)%, и менее 1.5% в области *m*(*y*)<0.75 и 0.75<*k*<1.

При подстановке (2.10), (2.13) - (2.16) в уравнение (2.11), проведя операцию усреднения по периоду решетки вдоль K_1r , найдем уравнения для амплитуд нулевых

$$\begin{cases} -\frac{\partial M_0}{\partial \tau} = \frac{2^k}{b_y} \left(1 + L_y \right) \cdot M_0 + \frac{2^k km_y}{2b_y} \cdot M_1 \\ \frac{\partial n_0}{\partial \tau} = \delta n_p \left[\frac{2^k}{b_y} \left(1 + L_y \right) \cdot M_0 + \frac{2^k km_y}{2b_y} \cdot M_1 \right] \end{cases}$$
(2.17)

и первых гармоник концентрации мономера и показателя преломления ФПМ

$$\begin{cases} -\frac{\partial M_1}{\partial \tau} = b_m(\tau, y) \cdot M_1 + \frac{2^k km_y}{b_y} M_0 + \frac{2^k}{b_y} (1 + 1.5L_y) M_1 \\ \frac{\partial n_1}{\partial \tau} = -\delta n_i b_m(\tau, y) \cdot \frac{M_1}{M_n} + \delta n_p \frac{2^k}{b_y} \left[km_y \frac{M_0}{M_n} + (1 + 1.5L_y) M_1 \right], \end{cases}$$
(2.18)

где $M_j = M_j(\tau, y), n_j = n_j(\tau, y), j = 0,1; \tau = t/T_m$ – относительное время, $T_m = 1/(K_1^2 D_m)$ – время диффузии мономера, K_1 – волновое число первой гармоники основной решетки $K_1 = |\mathbf{K}_1|, b_y = b(y) = T_p(y)/T_m, m_y = m(y), T_p(y) = (2K_b / (\alpha\beta\tau_0\langle K\rangle I_0(y)))^k / K_g$ – время полимеризации, $L_y = L(y) = k(k-1)m_y^2 / 4,$

 $b_m(\tau, y) = \exp[-s(1-(M_0(\tau, y) + M_1(\tau, y))/M_n)], \ \delta n_i = \delta n_{lc} D_{lc}/D_m.$

Допуская, что $M_1(\tau,y) << M_0(\tau,y)$ и $n_1(\tau,y) << n_0(\tau,y)$, в системе (2.17) можно пренебречь влиянием первой гармоники на нулевую, и используя начальные условия

$$M_0(\tau=0, y)=M_n,$$
 $n_0(\tau=0, y)=n_{st},$

получим решение для нулевых гармоник в следующем виде:

$$M_{0}(\tau, y) = M_{n} \cdot p(\tau, y), \qquad n_{0}(\tau, y) = n_{0} + \delta n_{p} \{1 - p(\tau, y)\}, \qquad (2.19)$$

где $p(\tau, y) = \exp\left[-\frac{2^k}{b_y}(1+L_y)\cdot\tau\right].$

Подставляя полученное выражение для $M_0(\tau,y)$ из (2.19) в первое уравнение из (2.18), интегрируя его и используя нулевые начальные условия для $M_1(\tau,y)$, получим решение для первой гармоники концентрации мономера:

$$M_1(\tau, y) = -M_n \cdot f(\tau, y),$$
 (2.20)

ГДе $f(\tau, y) = \frac{2^k km_y}{b_y} e^{-\frac{2^k}{b_y}(1+1.5L_y)\tau} \cdot \int_0^{\tau} p(\tau', y) \cdot e^{\frac{2^k}{b_y}(1+1.5L_y)\tau' - \int_{\tau'}^{\tau} b_m(\tau'', y) d\tau''} d\tau',$

$$b_m(\tau, y) = \exp[-s(1-M_0(\tau, y)/M_n)].$$

Конечное выражение, описывающее пространственно-временное распределение первой гармоники решетки показателя преломления, получим при подстановке (2.19) и (2.20) во второе уравнение системы (2.18):

$$n_1(\tau, y) = n_{1,p}(\tau, y) + n_{1,i}(\tau, y), \qquad (2.21)$$

56

где
$$n_{1i}(\tau, y) = \delta n_i \int_0^{\tau} f(\tau', y) \cdot b_m(\tau', y) d\tau',$$

$$n_{1p}(\tau, y) = \delta n_p \frac{2^k}{b_s} \int_0^{\tau} \left[p(\tau', y) \cdot km_y - f(\tau', y) \cdot (1 + 1.5L_y) \right] d\tau'.$$

Решение (2.21) записано как функция от пространственной и временной координат *у*, τ . Таким образом, в процессе записи амплитудный профиль записываемой решетки является неоднородным и трансформируется во времени. Также видно, что решение состоит из двух составляющих, каждая из которых описывает определенный механизм записи. Другими словами, кинетика изменения амплитуды решетки в каждой пространственной точке является различной и определяется вкладами в амплитуду голографической решетки процессов полимеризации и диффузии компонент материала, которые пропорциональны δn_p и δn_i , соответственно.

Рассмотрим степень влияния затухания на процесс записи голографических решеток. На рис.2.3 приведены пространственно-временные профили решеток, рассчитанные при $C_n = \delta n_i / \delta n_p = 2$, s=1, $\alpha d=4$ Неп для двух областей параметра $b=T_p/T_m$: b=0.25 и b=5.

Рисунок 2.3

Как видно из рис.2.3 (а,б), вследствие поглощения пространственные

профили решеток становятся неоднородными по глубине и трансформируются во времени. В области малых времен записи пространственный профиль Это повторяет распределение светового поля вдоль v. обусловлено уменьшением скорости полимеризации вдоль координаты у вследствие уменьшения интенсивности записывающих пучков, вызванного оптическим поглощением (см. (2.10). Таким образом, с увеличением *y*, процесс полимеризации протекает все медленнее и, соответственно, амплитуда ДС все меньше по сравнению с амплитудой ДС при у≈0.

Для параметра $b \le 1$ (рис.2.3 а) пространственный профиль по глубине ДС трансформируется от спадающего к возрастающему за время записи. Это связано с изменением соотношения между временем полимеризации и временем диффузии мономера по глубине ДС. В результате диффузионные процессы мономера в областях ДС с наименьшей интенсивностью (0.5<v/d<1) процессе записи к увеличению амплитуды ДС приводят В за счет диффундировавшего полимеризации мономера, ИЗ темных полос интерференционной картины в светлые. А в области (0<y/d<0.5) мономер в светлых областях быстро полимеризуется и истощается, т.к. из темных областей мономер не успевает диффундировать. Вместе с тем в темных областях интерференционной картины мономер постепенно начинает полимеризоваться, и как следствие амплитуда первой гармоники ЛC уменьшается. В результате при выходе на стационарный участок записи профиль становится возрастающим по глубине ДС и по амплитуде достигает большей величины, чем в случае без затухания. Следует отметить, что данный эффект имеет место только в данной области параметра b, когда диффузионные процессы не дают вклада в полимеризационные процессы записи.

В случае $b=T_p/T_m>1$ (рис.2.4,б) происходит уменьшение вклада самого полимеризационного процесса в результате уменьшения скорости полимеризации в области (0.5 < y/d < 1) вызванного уменьшением интенсивностей записывающих пучков вследствие затухания. Таким образом, затухание записывающих пучков приводит к затягиванию формирования профиля в указанной пространственной области. Однако исходное соотношение времени полимеризации и времени диффузии ($T_p>T_m$) приводит к тому, что в области (0 < y/d < 0.5) мономер не истощается в светлых полосах интерференционной картины и не полимеризуется в темных, т.к. мономер успевает диффундировать. Соответственно амплитуда ДС в указанных областях при стационарном значении имеет много большую амплитуду, в отличии от случая с b < 1.

Из сравнения с результатами, представленными в промежуточном отчете, видно, что, наличие ЖК в композиционном материале приводит к тому, что амплитуда первой гармоники *n*₁ увеличивается без изменения формы профиля ДС вдоль *y*.

2.1.3 Запись ПГДР световыми волнами с существенно-различными амплитудами с учетом самодифракции

Выше рассмотренные модели записи были получены в приближении заданного поля. Однако в процессе записи дифракция записывающих волн на формируемой ПГДР приводит к изменению распределения интенсивности записывающего внутри материала, И формирование решетки поля продолжается в соответствии с измененным распределением светового поля. В каждый момент времени два взаимосвязанных процесса - формирование решетки и самодифракция записывающих волн, протекая одновременно, приводят к формированию фазовой ПГДР со сложным пространственным амплитудно-фазовым распределением. При равных интенсивностях И симметричной пропускающей геометрии записи самодифракция не приводит к каким-либо изменениям светового поля [7], но при нарушении одного из данных условий происходит обмен энергией между пучками.

В данном подразделе рассмотрим случай записи плоскими монохроматическими световыми волнами с существенно-неравными амплитудами $E_0 >> E_1$ и волновыми векторами k_0' и k_1' в ФПМ с пренебрежимо малым поглощением. Решение кинетических уравнений записи будем, как и

раньше, искать в виде суммы нулевой и первой гармоник концентрации мономера и показателя преломления (см. (2.14)-(2.15)). Учет самодифракции во время записи, в рассматриваемом случае ($E_0 >> E_1$) можно ограничить дифракцией только сильной волны на ПГДР, и решение уравнений связанных волн () получить в приближении заданной интенсивности (E_0 =const). Тогда изменение слабой волны запишем в следующем виде:

$$E^{1}(t, y) = E_{1} - iG_{0}E_{0}\int_{0}^{y} n_{1}(t, y') \, dy', \qquad (2.22)$$

где n_1 - первая гармоника решетки показателя преломления, $G_0 = \pi/(\lambda \cos \theta_0)$, λ - длина волны света в материале, θ_0 – угол записи в материале для волны E_0 .

Распределение интенсивности интерференционной картины светового поля в рассматриваемом случае примет вид:

$$I(\mathbf{r}) = I_0 + E_0 E_1^* e^{-i\mathbf{K}_1 \mathbf{r}} + \kappa.c., \qquad (2.23)$$

где $I_0 = I^0 + I^1$, $I^j = |E_j|^2$; j = 0, 1; $K_1 = k_0' - k_1'$, r – радиус вектор.

Далее будем использовать методику из [64,65], где кинетические уравнения записи для концентрации мономера *M* и показателя преломления *n* дополняются дифракционным уравнением в приближении заданного поля.

Используя разложение в ряд Тейлора для $I^{k}(\mathbf{r})$ $I(\mathbf{r})^{k} = \left[I_{0} + E_{0}E_{1}^{*}e^{-iK_{1}\mathbf{r}}\right]^{k} \approx I_{0}^{k}\left[1 + (E_{0}E_{1}^{*}/I_{0}) \cdot e^{-iK_{1}\mathbf{r}}\right]^{k}$ и полагая, как и ранее, $M_{0} >> M_{1}$, запишем интегро-дифференциальные кинетические уравнения записи для нулевых

$$\frac{\partial}{\partial \tau} M_0 = -\frac{2^k}{b} M_0, \qquad \qquad \frac{\partial}{\partial \tau} n_0 = \delta n_p \frac{2^k}{b} \frac{M_0}{M_n}$$

и первых гармоник М и п:

$$\begin{cases} \frac{\partial}{\partial \tau} M_{1} = -M_{1} b_{m}(\tau) - \frac{2^{k}}{b} \left[\frac{2k}{1+m_{0}} M_{0} \left\{ \left(\sqrt{m_{0}} + iG_{0}^{y} n_{1}(y')dy' \right) \right\} + M_{1} \right] \\ \frac{\partial}{\partial \tau} n_{1} = \delta n_{p} \frac{2^{k}}{b} \left[\frac{2k}{1+m_{0}} \frac{M_{0}}{M_{n}} \left\{ \left(\sqrt{m_{0}} + iG_{0}^{y} n_{1}(y')dy' \right) \right\} + \frac{M_{1}}{M_{n}} \right] - \delta n_{i} \frac{M_{1}}{M_{n}} b_{m}(\tau) \end{cases}, \quad (2.24)$$

где $n_0 = n_0(\tau)$, $M_0 = M_0(\tau)$ и $n_1 = n_1(\tau, y)$, $M_1 = M_1(\tau, y)$ – нулевые и первые гармоники Mи n, соответственно, $\tau = t/T_m$ – относительное время, $T_m = 1/(K_1^2 D_m)$ – время диффузии, D_m - коэффициент диффузии, K_1 – волновое число первой гармоники основной решетки $K_1 = |\mathbf{K}_1|$; $G = \pi/(\lambda \cos \theta_B)$, θ_B -угол Брэгга в ФПМ, $b = T_p/T_m$, $T_p = (2K_b/(\alpha\beta\tau_0\langle K\rangle I_0))^k/K_g$ – время полимеризации, $m_0 = I^1/I^0$ – соотношение интенсивностей записывающих волн, $b_m(\tau) = \exp[-s \cdot (1 - M_0(\tau)/M_n)]$.

Для решения уравнений для нулевых гармоник используем методику из подраздела 2.1.3. Тогда решения совпадают с (2.19) с учетом того, что поглощение пренебрежимо мало $\alpha d \approx 0$ и выражения являются функциями только временной координаты.

Далее для решения (2.24) используем интегральное преобразование Лапласа по пространственной координате *у*. В результате получим

$$\begin{cases} \frac{\partial}{\partial \tau} M_1^{\ p} = -M_1^{\ p} b_m(\tau) - \frac{2^k}{b} \left[\frac{2k}{1+m_0} M_0^{\ p} \left\{ \sqrt{m_0} + iG \frac{n_1^{\ p}}{p} \right\} + M_1^{\ p} \right] \\ \frac{\partial}{\partial \tau} n_1^{\ p} = \delta n_p \frac{2^k}{b} \left[\frac{2k}{1+m_0} \frac{M_0^{\ p}}{M_n} \left\{ \sqrt{m_0} + iG \frac{n_1^{\ p}}{p} \right\} + \frac{M_1^{\ p}}{M_n} \right] - \delta n_i b_m(\tau) \frac{M_1^{\ p}}{M_n} \end{cases}$$
(2.25)

Учитывая, что функция $n_1(\tau, y)$ является медленно меняющейся по сравнению с $M_0(\tau) \cdot \exp(F_1(\tau) \cdot \tau)$ [64,65], где $F_1(\tau) = b_m(\tau) + 2^k/b$, и используя начальное условие $M_1(\tau=0)=0$ и теорему о среднем для определенного интеграла $\int_a^b \varphi(x) f(x) dx = \varphi(\xi) \int_a^b f(x) dx$, где $a \le \xi \le b$, получим следующее выражение для первой

гармоники концентрации мономера:

$$M_{1}(\tau, p) = -\frac{2^{k}}{b} \frac{2k}{1+m_{0}} \left[\sqrt{m_{0}} + iG \frac{n_{1}(\tau, p)}{p} \right] \cdot \int_{0}^{\tau} M_{0}(\tau') \cdot e^{-\int_{\tau'}^{t} F_{1}(\tau')d\tau''} d\tau'.$$

С учетом полученного выражения для $M_1(\tau,p)$ решение для $n_1(\tau,p)$ запишем в виде:

$$n_1(\tau, p) = -\delta n_p F_2 \sqrt{m_0} \cdot \int_0^{\tau} R(\tau') e^{-\frac{\delta n_p F_2 i G}{p} \int_{\tau'}^{\tau} R(\tau'') d\tau''} d\tau',$$

где
$$F_2 = \frac{2^k}{b} \frac{2k}{1+m_0}, \ R(\tau) = \frac{M_0(\tau)}{M_n} - \left(\frac{2^k}{b} - C_n\right) \cdot \int_0^{\tau} \frac{M_0(\tau')}{M_n} \cdot e^{-\int_{\tau'}^{\tau} F_1(\tau'') d\tau''} d\tau'.$$

Для получения конечного выражения для первой гармоники показателя преломления используем обратное преобразование Лапласа по пространственной координате *у*. В результате получим

$$n_{1}(\tau, y) = \delta n_{p} F_{2} \sqrt{m_{0}} \cdot \int_{0}^{\tau} R(\tau') H_{0}(\tau', \tau, y) d\tau', \qquad (2.26)$$

где
$$H_0(\tau',\tau,y) = 1 + \sqrt{\frac{i \cdot F_2 \cdot \Gamma}{y}} \int_{\tau'}^{\tau} R(\tau'') d\tau'' \cdot J_1 \left[2\sqrt{i \cdot F_2 \cdot \Gamma \cdot y} \int_{\tau'}^{\tau} R(\tau'') d\tau'' \right], \quad J_1(x) \quad - \quad функция$$

Бесселя, $C_n = \delta n_i / \delta n_p$, $\Gamma = \delta n_p G d$ - коэффициент связи, определяющий эффективность взаимодействия записывающих волн с ПДР, d – толщина ФПМ.

Выражение (2.26) определяет временную динамику пространственного распределения амплитуды ПДР с учетом эффекта самодифракции. Из решения видно, что пространственная неоднородность распределения амплитуды и фазы вдоль решетки обусловлена только эффектом самодифракции. Для перехода к случаю без учета самодифракции достаточно положить нулю коэффициент связи, характеризующий эффект самодифракции, тогда выражение (2.26) переходит в полученное ранее (2.21) с учетом $\alpha d \approx 0$ и $L_y=0$.

На рис.2.4 приведены модуль (а) и аргумент (б) нормированного пространственного профиля ДС, рассчитанные по полученным выражениям для $C_n=2, b=5, \delta n_p=0.014, k=0.5, m_0=0.01, d=20$ мкм, $\theta_0=\theta_1=10^0$.

Рисунок 2.4

Видно, что (рис.2.4 а,б) амплитудный и фазовый профили ДС являются пространственно неоднородными. Неоднородность фазового профиля приведет к поворот у эффективного вектора решетки ДС, и как следствие, к смещение угла Брэгга при считывании.

Увеличение δn_p , *k* и *d* приводит к увеличению эффекта самодифракции и, соответственно пространственной неоднородности амплитудно фазового профиля ДС.

2.1.4 Запись ПГДР световыми пучками с неоднородным амплитуднофазовыми распределением

Пусть две когерентные монохроматические световые волны с пространственными распределениями амплитуды и фазы $E_j(\mathbf{r})$ и $\varphi_j(\mathbf{r})$ на границе раздела сред распространяются под углами θ_0 и θ_1 внутри плоского поглощающего фотополимерного слоя ($0 \le y \le d$). Также будем считать, что k_0' и k_1' лежат в плоскости ХОҮ. Пространственная геометрия процесса записи представлена на рис.2.5.

Рисунок 2.5 – Пространственная геометрия (а) и векторная диаграмма (б) процесса записи

Оптическое поле внутри ФПМ толщиной *d* (рис.2.5) запишем в следующем виде:

$$E(t,\boldsymbol{r}) = \sum_{j=0,1} \boldsymbol{e}_j \cdot E_j(\boldsymbol{r}) \cdot \exp\left[-\alpha(t) \left(\boldsymbol{N}_j \cdot \boldsymbol{r}\right)\right] \cdot \exp\left[i \cdot \left(\boldsymbol{\omega} \cdot \boldsymbol{t} - \boldsymbol{\varphi}_j(\boldsymbol{r})\right)\right] + \hat{\boldsymbol{e}}.\tilde{\boldsymbol{n}}.$$
(2.27)

где e_j -вектор поляризации, $\alpha(t)$ – коэффициент оптического поглощения ФПМ с учетом его фотоиндуцированного изменения [67], r – радиус-вектор, центральный волновой вектор $k'_j = kN_j$, $k = n\omega/c$ – волновое число и N_j – волновая нормаль, n – показатель преломления.

Распределение интенсивности интерференционной картины светового поля (рис. 2.5) запишем в виде:

$$I(t,\mathbf{r}) = I_0(t,\mathbf{r}) \left[1 + m(\mathbf{r}) \cos \varphi(\mathbf{r}) \right], \qquad (2.28)$$

где $\varphi(\mathbf{r}) = \varphi_0(\mathbf{r}) - \varphi_1(\mathbf{r}), \quad \mathbf{k}_j = \nabla \varphi_j$ - волновой вектор *j*-го пучка, *j*=0,1; $m(\mathbf{r}) = 2\sqrt{I^0(\mathbf{r})I^1(\mathbf{r})} \cdot (\mathbf{e}_1 \cdot \mathbf{e}_0) / (I^0(\mathbf{r}) + I^1(\mathbf{r})), \quad I_0(t,\mathbf{r}) = (I^0(\mathbf{r}) + I^1(\mathbf{r})) e^{-\alpha(t)(N_j \cdot \mathbf{r})}, \quad I^j(\mathbf{r}) = |E_j(\mathbf{r})|^2.$

Для пучков с малой угловой расходимостью функциональную зависимость $\varphi(\mathbf{r})$ можно представить в виде разложения в ряд Тейлора, ограниченного квадратичным членом: $\varphi = \varphi(\mathbf{r}) = \varphi_0 + \nabla \varphi \mathbf{r} + 0.5 \nabla^2 \varphi \mathbf{r}^2$. Введем обозначения $\varphi' = \nabla \varphi$, $\varphi'' = 0.5 \nabla^2 \varphi$.

Аналогично подразделу 2.1.3 решение кинетических уравнений (2.11) - (2.13) будем искать в виде суммы нулевой и первой гармоник решеток концентрации мономера и показателя преломления:

$$M(t, \mathbf{r}) = M_0(t, \mathbf{r}) + M_1(t, \mathbf{r}) \cos\varphi(\mathbf{r}), \qquad (2.29)$$

$$n(t, \mathbf{r}) = n_{st} + n_0(t, \mathbf{r}) + n_1(t, \mathbf{r}) \cos \varphi(\mathbf{r}), \qquad (2.30)$$

ГДЕ
$$M_{j}(t,\mathbf{r}) = \frac{1}{2\pi} \int_{-\pi}^{\pi} M(t,\mathbf{r}) \cos(j\varphi(\mathbf{r})) d(\mathbf{K}_{1}\mathbf{r}), \qquad n_{j}(t,\mathbf{r}) = \frac{1}{2\pi} \int_{-\pi}^{\pi} n(t,\mathbf{r}) \cos(j\varphi(\mathbf{r})) d(K_{1}\mathbf{r}) \qquad -$$

нулевые и первые гармоники решеток концентрации мономера и показателя преломления, соответственно, $K_1 = k_0 - k_1 = \varphi'$, j = 0,1, n_{st} - значение показателя преломления ФПМ при t=0.

Подставим (2.28), (2.29) и (2.13) в уравнение (2.11):

$$\frac{\partial}{\partial t} \left\{ \sum_{j=0}^{1} M_{j}(t, \boldsymbol{r}) \cos(j\varphi(\boldsymbol{r})) \right\} = \operatorname{div} \left(D(t, \boldsymbol{r}) \operatorname{grad} \left(\sum_{j=0}^{1} M_{j}(t, \boldsymbol{r}) \cos(j\varphi(\boldsymbol{r})) \right) \right) - K_{g} K_{b}^{-k} \left(\alpha_{0} \beta \langle K \rangle \tau_{0} I_{0}(t, \boldsymbol{r}) \right)^{k} \left(1 + m(t, \boldsymbol{r}) \cdot \cos \varphi(\boldsymbol{r}) \right)^{k} \cdot \sum_{j=0}^{1} M_{j}(t, \boldsymbol{r}) \cos(j\varphi(\boldsymbol{r})) \right)$$

$$(2.31)$$

Полагая, что функции $M(t,\mathbf{r})$, $n(t,\mathbf{r})$, $D(t,\mathbf{r})$ и $\phi(\mathbf{r})$ являются медленно меняющимися функциями координаты по сравнению с $\cos(\phi(\mathbf{r}))$ и $\phi' >> \Lambda \phi''$, а $M_1(t,\mathbf{r}) << M_0(t,\mathbf{r})$, рассмотрим отдельно диффузионный член из (2.31)

$$\operatorname{div}(D(t,\boldsymbol{r})\operatorname{grad}(M_0(t,\boldsymbol{r}) + M_1(t,\boldsymbol{r})\cos\varphi(\boldsymbol{r}))) =$$

= $D(t,\boldsymbol{r})M_1(t,\boldsymbol{r})\left[-\cos\varphi(\boldsymbol{r})\cdot(\varphi'+\varphi''\boldsymbol{r})^2 - \sin\varphi(\boldsymbol{r})\cdot\varphi''\right] \approx .$ (2.32)
 $\approx -D(t,\boldsymbol{r})\cdot\varphi'^2\cdot M_1(t,\boldsymbol{r})\cos\varphi(\boldsymbol{r})\cdot(1+\varphi''\boldsymbol{r}/\varphi')^2$

Имея (2.32) и учитывая принятые допущения, применим операцию усреднения для (2.31) и перейдем к относительному времени:

$$\frac{1}{2\pi} \int_{-\pi}^{\pi} \frac{d}{d\tau} \left\{ \sum_{l=0}^{1} M_{l}(\tau, \mathbf{r}) \cos(l\varphi(\mathbf{r})) \right\} \cos(j\mathbf{K}_{1}\mathbf{r}) d(\mathbf{K}_{1}\mathbf{r}) = \\
= \frac{1}{-2\pi} \int_{-\pi}^{\pi} \frac{D(\tau, \mathbf{r}) \cdot \varphi'^{2} \cdot M_{1}(\tau, \mathbf{r}) \cos\varphi(\mathbf{r})}{(1 + \varphi''\mathbf{r}/\varphi')^{-2}} \cos(j\mathbf{K}_{1}\mathbf{r}) d(\mathbf{K}_{1}\mathbf{r}) - \\
- \frac{1}{2\pi} \int_{-\pi}^{\pi} \left[\frac{2^{k}}{b_{r}} \frac{(1 + m_{r} \cdot \cos\varphi(\mathbf{r}))^{k}}{\exp[\alpha_{1}(N_{j} \cdot \mathbf{r})\ln(\tau r_{t} + 1)]} \sum_{l=0}^{1} M_{l}(\tau, \mathbf{r}) \cos(l\varphi(\mathbf{r})) \right] \cos(j\mathbf{K}_{1}\mathbf{r}) d(\mathbf{K}_{1}\mathbf{r}) ,$$
(2.33)

где $\tau = t/T_m$ - относительное время; $\tau = t/T_m$ - относительное время; $T_m = 1/(D_m K_1^2) -$ характерное время диффузии, $D_m -$ коэффициент диффузии, $K_1 = |\nabla \phi| = \phi'$, $b_r = T_p(\mathbf{r})/T_m$, $T_p(\mathbf{r}) = e^{\alpha_2(N_j \mathbf{r})} (2K_b / (\alpha \beta \tau_0 \langle K \rangle I_0(\mathbf{r})))^k / K_g$ - локальное время полимеризации, j = 0, 1., α_1, α_2, r_t – даны в [67].

Из (2.33) с учетом (2.16) получим уравнения для нулевой и первой гармоник концентрации мономера *М*(*τ*,*r*):

$$\begin{cases} -\frac{\partial M_{0}}{\partial \tau} = \frac{2^{k}}{b_{r}} (r_{t}\tau + 1)^{\alpha_{10}y} (1 + L_{r}) \cdot M_{0} \\ -\frac{\partial M_{1}}{\partial \tau} = b_{m} (\tau, \mathbf{r}) M_{1} + \frac{2^{k}}{b_{r}} (r_{t}\tau + 1)^{\alpha_{10}y} \{km_{r}M_{0} + (1 + 1.5L_{r})M_{1}\} \end{cases}, \qquad (2.34)$$

где $M_j = M_j(\tau, \mathbf{r}),$ $n_j = n_j(\tau, \mathbf{r}),$ j = 0,1; $r_t = T_m/T_{\alpha},$ $\alpha_{10} = 2k/(\cos\theta_0 + \cos\theta_1),$ $b_m(\tau, \mathbf{r}) = (1 + \varphi'' \mathbf{r} / \varphi')^2 \exp[-s(1 - M_0(\tau, \mathbf{r}) / M_n)],$ остальные обозначения как в (2.18). Аналогично можно получить из (2.30) уравнения для гармоник показателя преломления $n(\tau, \mathbf{r})$:

$$\left\{ \begin{aligned} \frac{\partial n_0}{\partial \tau} &= \delta n_p \cdot \frac{2^k}{b_y} (r_t \tau + 1)^{\alpha_{10} y} (1 + L_r) \cdot M_0 \\ \frac{\partial n_1}{\partial \tau} &= -\delta n_i b_m (\tau, y) \frac{M_1}{M_n} + \delta n_p \frac{2^k}{b_r} (r_t \tau + 1)^{\alpha_{10} y} \left[km_r \frac{M_0}{M_n} + (1 + 1.5L_r) M_1 \right]. \end{aligned} \right\}$$
(2.35)

Как видно, уравнения (2.34) и (2.35) имеют зависимость от второй пространственной координаты x ($r = r_x x_0 + r_y y_0$). Так как данные уравнения представляют собой дифференциальные уравнения по времени, то добавление такого вида пространственной зависимости не изменяет процедуру нахождения решений (см. пункт 2.1.4). В связи с этим вывод решений опустим и приведем только сами решения:

$$\begin{cases} M_0(\tau, \boldsymbol{r}) = M_n \cdot p(\tau, \boldsymbol{r}) \\ M_1(\tau, \boldsymbol{r}) = -M_n \cdot f(\tau, \boldsymbol{r}) \end{cases}, \qquad \begin{cases} n_0(\tau, \boldsymbol{r}) = n_{st} + \delta n_p (1 - p(\tau, \boldsymbol{r})) \\ n_1(\tau, \boldsymbol{r}) = n_{1p}(\tau, \boldsymbol{r}) + n_{1i}(\tau, \boldsymbol{r}) \end{cases}, \qquad (2.36)$$

ГДС
$$p(\tau, \mathbf{r}) = \exp\left[\frac{2^{k}}{b_{r}r_{t}}(1+L_{r})\frac{(r_{t}\tau+1)^{1+\alpha_{10}y}-1}{(1+\alpha_{10}y)}\right],$$

 $f(\tau, \mathbf{r}) = \frac{2^{k}}{b_{r}}km_{r}\gamma(\tau, \mathbf{r}) \cdot e^{-\int_{0}^{\tau}b_{m}(\tau', \mathbf{r})\,d\tau'} \cdot \int_{0}^{\tau}\frac{M_{0}(\tau', \mathbf{r})}{\gamma(\tau', \mathbf{r})}(r_{t}\tau'+1)^{\alpha_{10}y} \cdot e^{\int_{0}^{\tau}b_{m}(\tau', \mathbf{r})\,d\tau'}\,d\tau',$
 $\gamma(\tau, \mathbf{r}) = \exp\left[-\frac{2^{k}}{b_{r}r_{t}}(1+1.5L_{r})\frac{(r_{t}\tau+1)^{1+\alpha_{10}y}}{(1+\alpha_{10}y)}\right], \quad b_{m}(\tau, \mathbf{r}) = (1+\varphi''\mathbf{r}/\varphi')^{2} \cdot e^{-s(1-p(\tau, \mathbf{r}))},$
 $n_{1p}(\tau, \mathbf{r}) = \delta n_{p}\frac{2^{k}}{b_{r}}\int_{0}^{\tau}[p(\tau', \mathbf{r})km_{r} - f(\tau', \mathbf{r})(1+1.5L_{r})]\cdot(r_{t}\tau'+1)^{\alpha_{10}y}\,d\tau',$
 $n_{1i}(\tau, \mathbf{r}) = \delta n_{i}\int_{0}^{\tau}f(\tau', \mathbf{r}) \cdot b_{m}(\tau', \mathbf{r})\,d\tau'.$

Выражения (2.36) представляют собой решение задачи записи ПГДР пучками с неоднородными пространственными амплитудно-фазовыми профилями. Видно, что в отличии от записи плоскими волнами появляется

зависимость от поперечной координаты вдоль вектора решетки. Из структуры решения видно, что амплитудная неоднородность записывающих пучков по поперечной пространственной координате приводит к соответствующей зависимости времени полимеризации, что дает неоднородность и амплитудного профиля решетки. В тоже время неоднородность фазового фронта по х изменению периода решетки В направлении, приводит к данном a соответственно времени диффузии, обуславливает И что также пространственную зависимость вдоль вектора решетки амплитуды записываемой ПГДР.

Поглощение, как и ранее, приводит к пространственной зависимости вдоль продольной координаты *у*. Таким образом, при использовании амплитудно- или фазово-модулированных пучков можно сформировать ПГДР с двумерно неоднородным пространственным профилем.

Решения (2.36) при $\varphi''=0$ (плоский фазовый фронт) и $E_j(r)=E_j$ (равномерное амплитудное распределение) решения переходят в полученные. Также если еще и $\alpha_1=0$, $r_t=1$ (постоянное поглощение), выражения (2.36) переходят в (2.19) - (2.21), полученные для непрерывной записи ПГДР при постоянном поглощении.

Использование записывающих световых пучков с фазовой модуляцией позволяет создавать ДС с переменным периодом. Однако в виду квадратичной зависимости скорости диффузии от периода ДС ($T_m \sim \Lambda^2$), происходит запись ПГДС с существенной пространственной неоднородностью вдоль вектора ДС, что приводит к уменьшению эффективности ДС. Возможным решением для использование амплитудной данного случая является модуляции записывающих пучков, для исправления возникшей вследствии чирпирования неоднородности. Т.к. скорость записи и амлитуда ДС зависят от параметра $b(x)=T_p(x)/T_m(x)$, где $T_p(x)\sim I_0^k(x)$ и $T_m(x)\sim \Lambda^2(x)$ (Л-период ДС), то изменение I_0 (амплитудная модуляция пучков) позволяет компенсировать изменения b(x)вследствии $\Lambda^{2}(x)$ (фазовая модуляция пучков).

В качестве иллюстрации вышесказанного на рис.2.6 приведены

полученные на основе численного моделирования пространственно-временные зависимости $n_1(\tau,x)$ для следующих случаев: (а,б) - запись ДС пучками с плоским амплитудно-фазовым фронтом, (в,г) - запись ДС пучками с плоским амплитудным профилем и сферическим фазовым фронтом, приводящим к изменению периода ДС в 4 раза в пределах ширины пучка,

2

б)

2

2

e)

г)

Рисунок 2.6

(д,е) - запись ДС с тем же фазовым фронтом, но с гауссовым распределением амплитуды, показанным на рис.2.7 (кривые 2,3), (ж,з) - запись ДС с тем же фазовым фронтом, но с гауссовым распределением амплитуды, показанным на рис.2.7 (кривые 1 (b=0.25),4 (b=5)).

В отсутствие поглощения в композиционном материале, имеющем толщину много меньше размеров записывающих пучков, профиль вдоль продольной координаты *у* является практически равномерным, поэтому на рис.2.6 (а-е) приведены пространственно-временные профили ДС $n_1(\tau,x,y=d)$. При расчетах приняты следующие параметры: $C_n=2$, s=0, $2\theta=20^0$ в воздухе, b=0.25 (а,в,д,ж) и b=5 (б,г,е,з), d=20мкм, расположеном в центре интерференционной картины по *у*, w=0.5 мм.

Рисунок 2.7

Из рисунка 2.6 (в,г) видно, что при малом значении *b* фазовая неоднородность пучка приводит к увеличению скорости роста и, соответственно, амплитуды в области малых времен при *y*<0.5*d*, а при *y*>0.5*d* наоборот. При больших временах записи профиль ДС меняется до обратного. Причиной искажений профиля является изменение периода ДС, происходящего в результате фазовой неоднородности записывающего поля, что приводит к изменению времени диффузии, и, соответственно, параметра b от 0.25b при y=0 до 2.25b при y=d, а влияние соотношения времен полимеризации и диффузии были продемонстрировано ранее.

На рис. 2.6 (д,е) приведены профили ДС с оптимально выбранным амплитудным распределением гауссого пучка, позволившим получить максимальную эффективногсть ДС для считывания плоским пучком с шириной равной ширине ДС по х. А на рис. 2.6 (ж,з) приведены профили ДС с оптимально выбранным амплитудным распределением гауссого пучка, позволившим получить максимальную эффективногсть ДС для считывания гауссовым пучком, с параметрами соответствующими записывающему пучку.

2.1.5 Запись ПГДР с учетом высших пространственных гармоник

В данном разделе рассмотрим ситуацию записи ПГДР пучками с плоскими фазовыми фронтами. Решение задачи получено для (*N*+1) гармоники концентрации мономера и показателя преломления, с учетом постоянного оптического поглощения, контраста интерференционной картины, произвольной степени нелинейности процесса фотополимеризации и постоянного коэффициента диффузии.

Пусть две когерентные монохроматические световые волны с амплитудами E_0 , E_1 , плоскими фазовыми фронтами и волновыми векторами k_0' и k_1' на границе раздела сред распространяются под углами θ_0 и θ_1 внутри плоского поглощающего фотополимерного слоя ($0 \le y \le d$). Также будем считать, что k_0' и k_1' лежат в плоскости ХОҮ. Пространственная геометрия и векторная диаграмма процесса записи представлены на рис.2.7.

Рисунок 2.7 – Пространственная геометрия и векторная диаграмма процесса записи

Распределение интенсивности интерференционной картины светового поля (рис.2.7) в случае постоянного оптического поглощения примет вид:

$$I(\mathbf{r}) = I_0(y) \cdot \left[1 + m(y) \cdot \cos(\mathbf{K}_1 \mathbf{r})\right], \qquad (2.37)$$

где

 $m(y) = 2\sqrt{I^0(y)I^1(y)} \cdot (e_1 \cdot e_0)/(I^0(y) + I^1(y))$ - локальный контраст интерференционной

 $I_0(y) = I^0(y) + I^1(y),$ $I^j(y) = I_j \exp[-\alpha y / \cos \theta_j];$ $I_j = |E_j|^2;$ j=0,1;

картины, $K_1 = k_0' \cdot k_1'$, r – радиус вектор.

Решение задачи записи будем искать в виде:

$$M(\tau, \boldsymbol{r}) = \sum_{j=0}^{N} M_j(\tau, y) \cos(j\boldsymbol{K}_1 \boldsymbol{r}) , \qquad n(\tau, \boldsymbol{r}) = n_{st} + \sum_{j=0}^{N} n_j(\tau, y) \cos(j\boldsymbol{K}_1 \boldsymbol{r}) , \qquad (2.38)$$

где $M_j(\tau, y) = \frac{1}{2\pi} \int_{-\pi}^{\pi} M(\tau, \mathbf{r}) \cos(j\mathbf{K}_1\mathbf{r}) d(\mathbf{K}_1\mathbf{r}),$

 $n_{j}(\tau, y) = \frac{1}{2\pi} \int_{-\pi}^{\pi} n(\tau, \mathbf{r}) \cos(j\mathbf{K}_{1}\mathbf{r}) d(\mathbf{K}_{1}\mathbf{r})$ - амплитуды гармоник концентрации

мономера и показателя преломления, соответственно; n_{st} - значение показателя преломления ФПМ при $\tau=0$, $\tau=t/T_m$ - относительное время.

Подставляя (2.37), (2.38) в (2.11) и (2.12) и используя (2.16) и

свойство ортогональности пространственных гармоник в (2.38), получим систему связанных кинетических дифференциальных уравнений для амплитуд гармоник концентрации мономера

$$\begin{cases} \frac{\partial M_0(\tau, y)}{\partial \tau} = \sum_{l=0}^N a_{0,l}(y) M_l(\tau, y) \\ \frac{\partial M_1(\tau, y)}{\partial \tau} = -M_1(\tau, y) + \sum_{l=0}^N a_{1,l}(y) M_l(\tau, y) \\ \frac{\partial M_N(\tau, y)}{\partial \tau} = -N^2 M_N(\tau, y) + \sum_{l=0}^N a_{N,l}(y) M_l(\tau, y) \end{cases}$$
(2.39)

и систему дифференциальных уравнений для амплитуд гармоник показателя преломления

$$\begin{cases} \frac{\partial n_0(\tau, y)}{\partial \tau} M_n = -\delta n_p \sum_{l=0}^N a_{0,l}(y) M_l(\tau, y) \\ \frac{\partial n_1(\tau, y)}{\partial \tau} M_n = -\delta n_p \sum_{l=0}^N a_{1,l}(y) M_l(\tau, y) + \delta n_i \cdot M_1(\tau, y) \\ \frac{\partial n_N(\tau, y)}{\partial \tau} M_n = -\delta n_p \sum_{l=0}^N a_{m,l}(y) M_l(\tau, y) + \delta n_i N^2 \cdot M_N(\tau, y) \end{cases}$$
(2.40)

В системах (2.39) и (2.40) введена матрица коэффициентов

где
$$e_1 = \frac{2^k}{b_y} (1 + L_y), \quad e_{11} = \frac{2^k}{b_y} (1 + 3L_y/2), \quad e_2 = \frac{2^k km_y}{2b_y}, \quad e_3 = \frac{2^k}{b_y} L_y/2, \quad b_y = b(y) = \frac{T_p(y)}{T_m},$$

 $L_y = L(y) = k(k-1)m_y^2/4, \quad m_y = m(y).$

Коэффициенты матрицы $a_{j,l}(y)$ показывают вклад полимеризационнодиффузионного механизма записи. Однако для анализа систем уравнений (2.39) и (2.40) удобно ввести коэффициенты связи $c_{j,l}(y)=a_{j,l}(y)-j^2\delta_{j,l}$ ($\delta_{j,l}$ -символ Кронекера), характеризующие связь *j*-той гармоники с *l*-той. Отличие коэффициентов связи $c_{j,j}(y)$ от $a_{j,j}(y)$ характеризует вклад диффузии мономера в процесс записи и пропорционально квадрату номера гармоники. Возрастание диффузионного вклада с номером гармоники, отраженное членом $j^2\delta_{j,l}$, обусловлено уменьшением периода и, соответственно, времени диффузии для данной гармоники относительно характерного времени диффузии, принятого для первой гармоники.

Из анализа коэффициентов $c_{j,l}$ качественно можно отметить, что связь *j*той гармоники с (*j*±1)-ой определяется вторым членом ряда Тейлора (2.16), а с (*j*±2)-ой – третьим. Таким образом, количество взаимодействующих между собой гармоник определяется как 2(*i*-1), где *i* – количество членов ряда Тейлора в (2.16). Исключение, как видно из матрицы $a_{j,l}$, составляют только нулевая и первая гармоники, (*N*-1)-ая и *N*-тая. С ростом номера гармоники второе слагаемое в коэффициентах $c_{j,l}$ начинает превалировать, поэтому для *j*>3 формирование гармоники определяется полимеризацией в светлых областях интерференционной картины диффундирующего мономера из темных областей.

Из анализа коэффициентов связи следует, что уменьшение m_y приводит к снижению влияния гармоник друг на друга, т.е. к линеаризации процесса формирования решетки, но и к уменьшению амплитуд гармоник. А уменьшение k относительно k=0.5 (характерная точка) приводит к уменьшению связи j-той гармоники с соседними ($j\pm1$)-ой и увеличению связи с самой собой (j)-ой и с ($j\pm2$)-ой, а увеличение k к увеличению связи с j-той, ($j\pm1$)-ой и ($j\pm2$)ой. Но при k=1 пропадает связь гармоник с ($j\pm2$)-ми гармониками. То есть при линейной зависимости от интенсивности света процесс фотополимеризации остается нелинейным, ввиду нелинейной зависимости от концентрации мономера. Существенное снижение амплитуд высших пространственных
гармоник относительно первой гармоники, т.е. линеаризация процесса записи, наблюдается с увеличением параметра *b*, характеризующего отношение скоростей полимеризации и диффузии мономера.

Для решения системы связанных дифференциальных уравнений (2.39) с начальными условиями

$$M_0(\tau=0,y)=M_n, \quad M_1(\tau=0,y)=0, \dots \quad M_m(\tau=0,y)=0,$$
 (2.41)

воспользуемся операторным методом [78]. Общее решение для пространственных амплитудных профилей гармоник концентрации мономера $M_j(\tau, y)$ запишем в виде:

$$M_{j}(\tau, y) = M_{n} \sum_{l=0}^{N} A_{j,l}(y) \exp[\lambda_{l}(y) \cdot \tau], \qquad (2.42)$$

где функциональные зависимости коэффициентов $\lambda_l(y)$ определяются как корни характеристического уравнения $|c_{j,l}(y)-\lambda_l(y)|=0$. Анализ показывает, что $\lambda_l(y)$ являются вещественными, различными и отрицательными. $A_{j,l}(y)$ находятся из (2.39) и (2.42) с учетом начальных условий (2.41) как решения (*N*+1) систем линейных алгебраических уравнений

$$\begin{cases} 1 & 1 & 1 & 1 & 1 \\ \lambda_{0} & \lambda_{1} & \lambda_{2} & . & \lambda_{N} \\ \lambda_{0}^{2} & \lambda_{1}^{2} & \lambda_{2}^{2} & . & \lambda_{N}^{2} \\ \lambda_{0}^{3} & \lambda_{1}^{3} & \lambda_{2}^{3} & . & \lambda_{N}^{3} \\ \lambda_{0}^{4} & \lambda_{1}^{4} & \lambda_{2}^{4} & . & \lambda_{N}^{4} \\ . & . & . & . & . \\ \lambda_{0}^{N} & \lambda_{1}^{N} & \lambda_{2}^{N} & . & \lambda_{N}^{N} \end{cases} \times \begin{cases} A_{j,0} \\ A_{j,1} \\ A_{j,2} \\ A_{j,3} \\ A_{j,4} \\ ... \\ A_{j,N} \end{cases} = M_{n} \begin{cases} \delta_{j,0} \\ c_{j,0} \\ \sum_{i_{j}=0}^{N} c_{j,i_{0}} c_{i_{0},0} \\ \sum_{i_{j}=0}^{N} c_{i_{1},i} c_{i_{0}} \\ ... \\ \sum_{i_{j}=0}^{N} c_{i_{j},i_{1}} \sum_{i_{j}=0}^{N} c_{i_{j},i_{j}} \sum_{i_{j}=0}^{N} c_{i_{j},i_{0}} c_{i_{0},0} \\ \frac{N}{2} c_{j,i_{0}} c_{i_{0},0} \\ ... \\ \sum_{i_{j}=0}^{N} c_{j,i_{0}} c_{i_{0},0} \\ ... \\ \sum_{i_{j}=0}^{N} c_{j,i_{0}} c_{i_{0},0} \\ \frac{N}{2} c_{j,i_{0}} c_{i_{0},0} \\ \frac{N}{2} c_{i_{0},i_{0}} c_{i_{0},i_{0}} \\ \frac{N}{2} c_{i_{0},i_{0}} \\ \frac{N}{2} c_{i_{0},i_{0}} c_{i_{0},i_{0}} \\ \frac{N}{2} c_{i_{0},i_{0}} c_{i_{0},i_{0}} \\ \frac{N}{2} c_{i_{0},i_{0}} \\ \frac$$

где $\lambda_j = \lambda_j(y), A_{j,l} = A_{j,l}(y), c_{j,l} = c_{j,l}(y).$

Далее, подставив (2.42) в (2.40) и интегрируя полученные дифференциальные уравнения с начальными условиями

$$n_0(\tau=0,y)=0, \quad n_1(\tau=0,y)=0, \dots n_m(\tau=0,y)=0,$$

найдем общее решение для амплитуды *j*-ой гармоники решетки показателя

преломления в виде:

$$n_{j}(\tau, y) = n_{pj}(\tau, y) + n_{ij}(\tau, y),$$
 (2.44)

ГДе
$$n_{pj}(\tau, y) = \delta n_p \sum_{l=0}^{N} a_{j,l}(y) \sum_{p=0}^{N} A_{l,p}(y) \frac{1 - \exp[\lambda_p(y) \cdot \tau]}{\lambda_p(y)}$$

$$n_{ij}(\tau, y) = -\delta n_i \cdot j^2 \sum_{p=0}^m A_{j,p}(y) \frac{1 - \exp[\lambda_p(y) \cdot \tau]}{\lambda_p(y)}, \ j=0...m.$$

Таким образом, выражения (2.38), (2.42) - (2.44) представляют общее решение нелинейного диффузионно-полимеризационного процесса формирования голографических дифракционных решеток пропускающего типа в поглощающих фотополимерных средах и определяют кинетику двумерных пространственных профилей концентрации мономера $M(\tau,x,y)$ и показателя преломления $n(\tau,x,y)$.

При рассмотрении задачи записи дифракционных решеток в ФПМ с учетом первых трех пространственных гармоник можно получить следующие аналитические выражения для функциональных зависимостей коэффициентов $\lambda_j = \lambda_j(y)$ и $A_{j,l} = A_{j,l}(y)$ из представленных выше решений:

$$\begin{split} \lambda_{0}(y) &= -\frac{2}{3}\sqrt{3C_{1} - B_{1}^{2}}\cos\left(\frac{\varphi}{3}\right) - \frac{B_{1}}{3}, \qquad \lambda_{1,2}(y) = \frac{2}{3}\sqrt{3C_{1} - B_{1}^{2}}\cos\left(\frac{\pi \mp \varphi}{3}\right) - \frac{B_{1}}{3}, \\ A_{0,2} &= M_{n}\frac{c_{00}c_{00} + c_{01}c_{10} + c_{02}c_{20} - \lambda_{0}^{2} + (c_{00} + \lambda_{0})(\lambda_{1} + \lambda_{0})}{\lambda_{2}^{2} - \lambda_{0}^{2} - (\lambda_{2} - \lambda_{0})(\lambda_{1} + \lambda_{0})}, \qquad A_{0,1} = \frac{M_{n}(c_{00} + \lambda_{0}) + A_{02}(\lambda_{2} - \lambda_{0})}{\lambda_{0} - \lambda_{1}} ; \\ A_{j2} &= M_{n}\frac{c_{j0}c_{00} + c_{j1}c_{10} + c_{j2}c_{20} + c_{j0}(\lambda_{1} + \lambda_{0})}{\lambda_{2}^{2} - \lambda_{0}^{2} - (\lambda_{2} - \lambda_{0})(\lambda_{1} + \lambda_{0})}, \qquad A_{j,1} = \frac{M_{n}c_{j0} + A_{j2}(\lambda_{2} - \lambda_{0})}{\lambda_{0} - \lambda_{1}}, \\ A_{j,0} &= -A_{j,1} - A_{j,2}, \qquad (j=1,2); \qquad A_{0,0} = M_{n} - A_{1,0} - A_{2,0} \end{split}$$

$$\Gamma \mathcal{A}e = \arccos\left(\left(B_{1}^{3} - 4.5B_{1}C_{1} + 13.5D_{1}\right) \cdot \left|3C_{1} - B_{1}^{2}\right|^{-3/2}\right), \qquad \left[B_{1} = c_{00} + c_{11} + c_{22}\right]$$

 $\begin{cases} C_1 = (c_{00} + c_{11})c_{22} + c_{11}c_{00} - c_{02}c_{20} - c_{12}c_{21} - c_{10}c_{01} \\ D_1 = c_{11}(c_{00}c_{22} - c_{02}c_{20}) + c_{12}(c_{01}c_{20} - c_{00}c_{21}) + c_{10}(c_{21}c_{02} - c_{22}c_{01}) \end{cases}$

Для получения наиболее общих результатов численного моделирования удобно использовать обобщенные параметры $C_n = \delta n_i / \delta n_p$, $\alpha_d = \alpha d$, соотношение интенсивностей записывающих пучков $m_0 = I_1^2 / I_0^2$, при этом пространственные

зависимости контраста интерференционной картины *m_y* и отношения времени полимеризации ко времени диффузии *b_y* в (2.40) запишутся

$$m_{y} = \frac{2\sqrt{m_{0}} \exp[-0.5\alpha_{d}(y/(d\cos\theta_{0}) + y/(d\cos\theta_{1}))] \cdot (\boldsymbol{e}_{1} \cdot \boldsymbol{e}_{0})}{\exp[-\alpha_{d}y/(d\cos\theta_{0})] + m_{0} \exp[-\alpha_{d}y/(d\cos\theta_{1})]}, \qquad (2.45)$$

$$b_{y} = b \cdot \left(\frac{\exp[-\alpha_{d} y / (d \cos(\theta_{0}))] + m_{0} \exp[-\alpha_{d} y / (d \cos(\theta_{1}))]}{1 + m_{0}} \right)^{k}, \qquad (2.46)$$

где θ_j (*j*=0,1) – угол между нормалью к волновому фронту *j*–го пучка внутри ФПМ и нормалью к поверхности ФПМ.

Для моделирования использовались первые три пространственные гармоники показателя преломления. Как и ранее моделирование проведем для двух областей параметра *b*, когда вклад диффузии мономера в процесс фотополимеризации является незначительным (*b*<1) или существенным (*b*>1). Для данных двух крайних областей *b* получается существенно различные кинетики формирования решеток.

Зависимости амплитуд нормированных гармоник показателя преломления от времени записи $n_j(\tau)/\delta n_p$ для различных величин k показаны на рис.3 для двух значений параметра b, характеризующих ситуации, когда полимеризационный механизм записи преобладает над диффузионным b=0.25, и наоборот b=5. Расчеты проведены для следующих параметров: $C_n=2$, $\alpha_d=0$ Неп, $m_0=1$. На рис.2.8 использованы следующие обозначения: сплошная линия - k=0.5, штрих-линия - k=0.3, штрихпунктирная линия - k=0.8.

Рисунок 2.8- Нормированные амплитуды гармоник от времени записи.

Из рис.2.8 (а) видно, что время формирования второй гармоники при b < 1больше, чем для первой, т.к. b для второй гармоники в 2^2 раза больше чем для первой вследствие различия времен диффузии для этих гармоник. Из рис.2.8 (а) видно, что $n_1(\tau)$ имеет локальный максимум, а затем спадает до стационарного уровня, а $|n_2(\tau)|$ имеет максимум на стационарном уровне. Как отмечалось ранее, наличие локального максимума с последующим спадом ЛО стационарного значения наблюдается только для характерной области *b*<0.75 для первой гармоники. Но, так как, время диффузии для второй гармоники в 4 раза меньше, чем для первой, то для нее характерное отношение времени полимеризации ко времени диффузии $b_2=4b$, что обуславливает отсутствие локального максимума для второй гармоники при *b*=0.25.

Проведенный численный анализ показал, что уменьшение m_0 приводит к уменьшению абсолютных значений n_1 и n_2 без изменения общего вида кривых. Физической причиной является увеличение доли нулевой гармоники ДС вследствие уменьшения глубины модуляции интерференционной картины записывающего светового поля.

Соотношения амплитуд гармоник и их кинетики отражают самосогласованный характер задачи записи и находятся в качественном согласии с работой [Ошибка! Источник ссылки не найден.], где рассматривается данный вопрос для пространственно однородных решеток, т.е. без учета поглощения.

Из сравнения данных результатов с расчетами из промежуточного отчета видно, что наличие ЖК в композиционном материале приводит к увеличению амплитуд всех гармоник. Причем при b<1 гармоника n_2 увеличилась в 3 раза, а n_1 в 2, а для b>1 обе гармоники увеличились в три раза.

В качестве иллюстрации влияния поглощения на вид профиля ДС, на рис.2.9 приведены нормированные пространственные профили $n(x,y)/\delta n_p$ решеток в ФПМ в трех временных точках. Расчет проведен для k=0.5, b=1,

 $m_0=1, C_n=2, \alpha_d=2$ Неп.

Из рис.2.9 видно, что двумерно неоднородный профиль ДС существенно модифицируется во времени, переходя от спадающего вдоль у (рис.2.9 а) к возрастающему (рис.2.9 в), что согласуется с результатами моделирования и выводами из [67].

Рисунок 2.9

Трансформация распределения по *х* связана с изменением соотношению амплитуд пространственных гармоник профиля. Отметим, что синусоидальный вид профиля на начальной стадии формирования на рис.2.9 (а) говорит о том, что амплитуда первой гармоники много больше амплитуды второй гармоники, что связано с различием скоростей формирования первой и второй гармоник (рис.2.9 а). С течением времени амплитуда второй гармоники возрастает (рис.2.8 а), что приводит к отличию вида профиля от синусоидального рис.2.9 (б,в).

При увеличении y/d пространственный профиль ДС по x приближается к синусоидальному виду рис.2.9 (б,в), что связано с уменьшением амплитуды второй гармоники по абсолютному значению вдоль y. Это объясняется тем, что для рассматриваемого значения b=1, поглощение приводит к увеличению амплитуды первой гармоники за счет увеличения времени полимеризации и приближения локального b_y к оптимальному значению, характеризующему достижение максимальной амплитуды гармоники. Для второй гармоники ввиду меньшего времени диффузии значение b уже в начале ДС является близким к

оптимальному, поэтому увеличение времени полимеризации вследствие поглощения приводит только к затягиванию времени формирования, при сохранении спада амплитуды второй гармоники с ростом *у*. Таким образом, время формирования и амплитуды всех гармоник ДС в поглощающем ФПМ существенно неоднородны по глубине ДС (вдоль *у*) и зависят от степени затухания записывающих пучков.

Сравним представленные результаты с полученными с помощью упрощенных моделей. Нормированные амплитуды гармоник показателя преломления, рассчитанные для $C_n=2$, b=0.1, $\alpha_d=2$ Hen, $m_0=1$, k=0.5 представлены на рис.2.10, где приняты следующие обозначения: J=1 – модель с учетом нулевой и первой гармоник, причем влияние первой гармоники на нулевую не учитывается (см. подраздел 2.1.3), J=2 – модель с учетом нулевой и первой гармоник, причем второй гармоник и влияние нулевой и второй гармоник, причем связь первой и второй гармоник и влияние нулевой и второй на нулевую и вторую приняты во внимание, а влиянием первой и второй на нулевую гармоники пренебрегается, J=3-5 – самосогласованная модель, разработанная в данном разделе при N=1, N=2, N=4, соответственно.

Из рис.2.10 видно, что для данной области *b* учет взаимовлияния гармоник (особенно с нулевой) приводит к перераспределению амплитуд гармоник вдоль толщины материала *y*, однако не столь существенному как в ФПМ без ЖК.

2.1.6 Многоволновое смешение на высших пространственных гармониках ПГДР

В данном пункте разрабатывается модель формирования дополнительной дифракционной решетки (ДДР) в результате многоволнового смешения. В основу рассмотрения положены кинетические уравнения для концентрации мономера M и показателя преломления n (2.11) и (2.12).

Рассмотрим механизм формирования ДДР на второй пространственной гармонике, векторная диаграмма которого представлена на рис.2.12.

В процессе записи ПГДР в ФПМ вследствие нелинейности среды формируется основная решетка, состоящая из набора пространственных гармоник, аналитическое описание кинетики формирования которых найдено в подразделе (2.1.6). В это же время происходит процесс дифракции записывающих волн (E_0 , E_1) на гармониках ПГДР. Вопрос самодифракции записывающих пучков на первой пространственной гармонике решетки рассмотрен в подразделе (2.1.4) в данном подразделе не учитывается, т.к. принимается, что интенсивности записывающих волн близки по величине $I^0 \approx I^1$, так же как и углы записи $\theta_0 \approx \theta_1$.

Рисунок 2.12

Дифрагированные на второй гармонике волны результате В интерференции с записывающими волнами приводят к записи ДДР с векторами $K_{20}=k_0-k_2$, $K_{21}=k_1-k_2$, $K_{02}=k_0-k'_2$ $K_{12}=k_1-k'_2$ (нижний индекс в обозначениях характеризует, какие волны участвуют В формировании ДДР. а последовательность цифр в нем направление вектора формируемой решетки, см. рис.2.12). Рассмотренный механизм справедлив для описания ДДР, сформированных на всех высших пространственных гармониках ПГДР.

Принимая во внимание малость амплитуд ДДР, можно пренебречь их взаимовлиянием и влиянием на пространственные гармоники решетки. Интерференционная картина в поглощающем ФПМ может быть записана в виде:

$$I(\mathbf{r}) = I_0 \begin{pmatrix} 1 + me^{-i\cdot K_1 \mathbf{r}} + \frac{E_0 E_2^*}{I_0} e^{-iK_{20}\mathbf{r}} + \frac{E_1 E_2^*}{I_0} e^{-iK_{21}\mathbf{r}} + \\ + \frac{E_0 E_2^{\prime *}}{I_0} e^{-iK_{02}\mathbf{r}} + \frac{E_1 E_2^{\prime *}}{I_0} e^{-iK_{12}\mathbf{r}} + \dots + c.c. \end{pmatrix},$$
(2.47)

где $I_0 = I^0 + I^1$, $I^j = |E_j|^2$, j = 0,1; $m = 2\sqrt{I^0 I^1} \cdot (e_1 \cdot e_0)/(I^0 + I^1)$ - контраст интерференционной картины; $K_1 = |K_1|$, $K_1 = k_0 - k_1$ – вектор решетки, *r*-радиусвектор, E_j – амплитуды, k_j - волновые вектора и e_j – вектора поляризации падающих записывающих волн.

Общее решение задачи будем искать в виде:

$$M = 0.5 \begin{cases} \sum_{j=0}^{N} M_{j}(\mathbf{r},t)e^{-iK_{j}r} + M_{1}^{20}(\mathbf{r},t)e^{-iK_{20}r} + M_{1}^{21}(\mathbf{r},t)e^{-iK_{21}r} + \\ + M_{1}^{02}(\mathbf{r},t)e^{-iK_{02}r} + M_{1}^{12}(\mathbf{r},t)e^{-iK_{12}r} + c.c. \end{cases},$$

$$n = n_{st} + 0.5 \begin{cases} \sum_{j=0}^{N} n_{j}(\mathbf{r},t)e^{-iK_{j}r} + n_{1}^{20}(\mathbf{r},t)e^{-iK_{20}r} + n_{1}^{21}(\mathbf{r},t)e^{-iK_{21}r} + \\ + n_{1}^{02}(\mathbf{r},t)e^{-iK_{02}r} + n_{1}^{12}(\mathbf{r},t)e^{-iK_{12}r} + c.c. \end{cases}.$$

$$(2.48)$$

где M_j , n_j – амплитуды гармоник концентрации мономера и показателя преломления основной решетки, M_{20} , M_{21} , M_{02} , M_{12} , n_{20} , n_{21} , n_{02} , n_{12} – амплитуды первых гармоник концентрации мономера и показателя преломления ДДР.

Принимая во внимание малость амплитуд ДДР, можно пренебречь их

влиянием на гармоники основной решетки и разделить рассматриваемую задачу на две части. Это позволяет в первой части найти решение для пространственных гармоник основной решетки (2.44) и, используя его, решить задачу формирования ДДР.

формируются ДДР интерференции В результате падающих записывающих волн с волнами, дифрагированными на высших пространственных гармониках основной решетки. Принимая во внимание малость дифрагированных на гармониках волн в (2.49), можно не учитывать изменения падающих записывающих волн и ограничить рассмотрение дифрагированными волнами на рассматриваемой высшей пространственной гармонике E_l, E'_l

$$\begin{cases} \frac{\partial E_{l}}{\partial y} = -iG_{l} \left(E_{0} n_{l}(\tau) e^{-i\Delta K_{0l} y} + E_{1} n_{l-1}(\tau) e^{-i\Delta K_{0l} y} + E_{0} n_{1}^{l0}(\tau, y) + E_{1} n_{1}^{l1}(\tau, y) \right) \\ \frac{\partial E_{l}'}{\partial y} = -iG_{l} \left(E_{0} n_{l}(\tau) e^{-i\Delta K_{0l}' y} + E_{1} n_{l-1}(\tau) e^{-i\Delta K_{0l}' y} + E_{0} n_{1}^{0l}(\tau, y) + E_{1} n_{1}^{1l}(\tau, y) \right), \end{cases}$$
(2.50)

где $G_l = \pi/(\lambda \cos \theta_l)$, λ - длина волны света в ФПМ, $n_l(\tau)$ - l-тая гармоника n, определенная в решении для основной решетки (2.44) с учетом $\alpha d \approx 0$ (l > 1), $n_1^{j}(\tau, y)$ – первая гармоника j-той ДДР показателя преломления n, индекс j = l0, l1, 0l, 1l – соответствует рассматриваемой ДДР с волновым вектором K_j , формируемой одной из записывающих волн и волной, дифрагированной на l-той пространственной гармонике ПГДР, $\Delta K_{0l} = |\Delta K_{0l}|$ – модуль вектора фазовой расстройки (см. рис.2.12), $\tau = t/T_m$ – относительное время, $T_m = 1/(K_1^2 D_m)$ – время диффузии, D_m - коэффициент диффузии, $K_1 = |K_1|$.

Учитывая малость амплитуд ДДР, можно пренебречь их взаимовлиянием. Используя методику из подраздела 2.1.4 [64,65], где кинетические уравнения записи дополняются дифракционным уравнением в приближении заданного поля и без учета поглощения, запишем интегродифференциальные кинетические уравнения записи для ДДР с вектором K_{l1} :

$$\begin{cases} \frac{\partial}{\partial \tau} M_1^{i0}(\tau, y) = -r_{i0}^2 M_1^{i0}(\tau, y) - \frac{2^k}{b} \left[2k M_0(\tau) \frac{E_0 E_l^*(\tau, y)}{E_0^2 + E_1^2} + M_1^{i0}(\tau, y) \right] \\ \frac{\partial}{\partial \tau} n_1^{i0}(\tau, y) = \delta n_p \frac{2^k}{b} \left[2k \frac{M_0(\tau)}{M_n} \frac{E_0 E_l^*(\tau, y)}{E_0^2 + E_1^2} + \frac{M_1^{i0}(\tau, y)}{M_n} \right] - \delta n_i r_{i0}^2 \frac{M_1^{i0}(\tau, y)}{M_n} \end{cases},$$
(2.51)

где $E_l(\tau, y)$ - определяется решением системы (2.50) в приближении заданного поля и учетом $|n_1^{l_1}| < |n_{l-1}|$; $M_0(\tau)$ – нулевая гармоника M, определенная в решении для основной решетки выражениями (2.42) с учетом $\alpha d \approx 0$; $M_1^{l_0}(\tau, y)$, – первая гармоника дополнительной решетки концентрации мономера с вектором K_{l0} , $r_{l0} = K_{l0}/K_1$, $K_{l0} = |K_{l0}|$.

Для решения (2.51) используем интегральное преобразование Лапласа по пространственной координате *у*

$$\begin{cases} \frac{\partial}{\partial \tau} M_1^{i_0}(\tau, p) = -r_{i_0}^2 M_1^{i_0}(\tau, p) - \frac{2^k}{b} M_1^{i_0}(\tau, p) - 2i \frac{2^k}{b} M_0(\tau) \frac{k}{1+m_0} \left\{ G_l \frac{n_l^{i_0}(\tau, p)}{p} + H(\tau, p) \right\} \\\\ \frac{\partial}{\partial t} n_l^{i_0}(\tau, p) = -\delta n_i r_{l_0}^2 \frac{M_1^{i_0}(\tau, p)}{M_n} + \delta n_p \frac{2^k}{b} \frac{M_1^{i_0}(\mathbf{r}, \tau)}{M_n} + 2i \frac{2^k}{b} \frac{M_0(\tau)}{M_n} \frac{k}{1+m_0} \left\{ G_l \frac{n_l^{i_0}(\tau, p)}{p} + H(\tau, p) \right\} \end{cases}, (2.52)$$

где введены обозначения $H(\tau,p) = L\{H(\tau,y)\} = L\{H(\tau,y)\} = L\{M_0(\tau)\int_0^y \{n_l(\tau) + \sqrt{m_0}n_{l-1}(\tau)\}e^{-i\Delta K_{0l}y'}dy'\},$

$$F_1 = r_{l0}^2 + \frac{2^k}{b}, \ F_2 = \frac{2^k}{b} \frac{2iG_l k \delta n_p}{1 + m_0}, \ m_0 = E_1^2 / E_0^2.$$

Учитывая, что функция $n_1^{l0}(\tau, y)$ является медленно меняющейся по сравнению с $M_0 \cdot \exp(-F_1 \cdot \tau)$ [64,65], и используя начальное условие $M_1^{l0}(\tau=0)=0$ и теорему о среднем для определенного интеграла $\int_a^b \varphi(x) f(x) dx = \varphi(\xi) \int_a^b f(x) dx$, где $a \le \xi \le b$, получим следующее решение для первого уравнения из (2.52):

$$M_{1}^{l0}(\tau,p) = -\frac{F_{2}e^{F_{1}\tau}}{\delta n_{p}} \frac{n_{1}^{l0}(\tau,p)}{p} \int_{0}^{\tau} M_{0}(\tau')e^{-F_{1}\tau'} d\tau' - \frac{F_{2}e^{F_{1}\tau}}{\delta n_{p}} \int_{0}^{\tau} H(\tau',p)e^{-F_{1}\tau'} d\tau'.$$
(2.53)

Подставляя полученное решение (2.53) во второе уравнение из (2.52) и используя обратное интегральное преобразование Лапласа по пространственной координате *y*, решение для $n_1^{10}(\tau, y)$ запишем в виде:

$$n_{l0}(\tau, y) = F_2 \int_0^{\tau} \left\{ Q(\tau', y) + \int_0^y Q(\tau', y') \cdot H_0(\tau', \tau, y - y') \right\} d\tau', \qquad (2.54)$$

где
$$Q(\tau, y) = \left(C_n r_{l0}^2 - \frac{2^k}{b}\right) e^{F_l \tau} \int_0^{\tau} \frac{H(\tau', y)}{M_n} e^{-F_l \tau'} d\tau' - \frac{H(\tau, y)}{M_n}, \quad C_n = \delta n_l / \delta n_p,$$

 $H_0(\tau', \tau, y) = 1 + \sqrt{\frac{F_2}{y}} \int_{\tau'}^{\tau} R(\tau'') d\tau'' \cdot J_1 \left[2\sqrt{F_2 y} \int_{\tau'}^{\tau} R(\tau'') d\tau''\right],$
 $R(\tau) = \left(C_n r_{l0}^2 - \frac{2^k}{b}\right) \cdot e^{F_l \tau} \int_0^{\tau} \frac{M_0(\tau')}{M_n} e^{-F_l \tau'} d\tau' - \frac{M_0(\tau)}{M_n},$
 $H(\tau, y) = M_0(\tau) \int_0^{y} \left(n_l(\tau) + \sqrt{m_0} n_{l-1}(\tau)\right) e^{-i\Delta K_{0l} y'} dy', \quad J_1(x) - \phi y$ нкция Бесселя.

Таким образом, выражение (2.54) определяет временную динамику пространственного распределения амплитуды ДДР с вектором решетки K_{l0} , образованной записывающими волнами и дифрагированной на l-той пространственной гармонике ПГДР. Из решения видно, что ДДР в отличии от гармоник основной решетки имеет пространственно неоднородные распределения амплитуды и фазы вдоль глубины решетки даже в отсутствии поглощения.

Проведя аналогичную процедуру решения для ДДР с вектором решетки *К*₁₁ можно получить следующие решения:

$$n_1^{I1}(\tau, y) = F_2 \int_0^{\tau} \left\{ Q(\tau', y) + \int_0^y Q(\tau', y') \cdot H_0(\tau', \tau, y - y') \right\} d\tau', \qquad (2.55)$$

где
$$H_0(\tau', \tau, y) = 1 + \sqrt{\frac{F_2 \sqrt{m_0}}{y} \int_{\tau'}^{\tau} R(\tau'') d\tau''} J_1 \left[2 \sqrt{F_2 \sqrt{m_0} y \int_{\tau'}^{\tau} R(\tau'') d\tau''} \right], \quad H(\tau, y)$$
 полностью

совпадает с приведенным в (2.54), а $Q(\tau, y)$ и $R(\tau, y)$ совпадают с приведенными в (2.54) с точностью до замены r_{l0} на $r_{l1}=K_{l1}/K_1$.

Решения для ДДР с векторами K_{0l} совпадают с решениями (2.54) для ДДР с векторами K_{0l} с точностью до замены r_{l0} на $r_{0l}=K_{0l}/K_1$ и $H(\tau, y) = M_0(\tau) \int_0^y (n_{l-1}(\tau) + \sqrt{m_0} n_l(\tau)) e^{-i\Delta K'_{0l}y'} dy'$.

Аналогично, решения для ДДР с векторами **К**_{1l} совпадают с решениями

(2.55) для ДДР с векторами K_{1l} с точностью до замены r_{l1} на $r_{1l} = K_{1l}/K_1$ и $H(\tau, y) = M_0(\tau) \int_0^y \left(n_{l-1}(\tau) + \sqrt{m_0} n_l(\tau) \right) e^{-i\Delta K'_{0l}y'} dy'.$

На рис.2.13 представлены результаты расчета модуля и аргумента пространственного профиля ДС с волновым вектором K_{20} при $C_n=2$, $\delta n_p=0.01$, k=0.5, $m_0=1$ $\theta_0=\theta_1=10^0$ (в воздухе), $\theta_2=32^0$, d=85мкм, $\Delta K_{02}=74.3$ при стационарном режиме.

Из рис.2.13 (а,б) видно, что ДС $n_1^{20}(\tau, y)$ имеет неравномерный квазипериодический амплитудно-фазовый пространственный профиль. Наличие фазовой составляющей профиля ДДС приводит к образованию дополнительного максимума угловой селективности в угловом положении соответствующем порождающей гармонике ПГДС (рис.2в).

Амплитуда ДДС может быть сравнима с амплитудой порождающей гармоники при малых величинах угла записи (θ_0 , θ_1) и толщины материала (d). С увеличением *d* и θ_0 , θ_1 период осцилляции профиля ДДС вдоль *у* уменьшается, как и амплитуда ДДС. Необходимо отметить, что неоднородность фазового фронта приводит к пространственной неоднородности направления вектора ДС. Изменение ΔK_0 при неизменной толщине материала приводит к прямо пропорциональному изменению модуля амплитуды ДДС и количества его локальных максимумов вдоль глубины ДС. Практически тоже и при неизменным ΔK_0 . Изменение изменении толщины С толщины при

соответствующем изменении начальной расстройки приводит к небольшому изменению модуля амплитуды (изменение в 2 раза дает изменение на 10%, а в 10 раз на 25%)

Рисунок 2.14

Расчеты также показали, что для ДС с вектором K_{12} амплитуднофазовый профиль $n_1^{12}(\tau, y)$ совпадает с приведенными на рис.2.13 (а,б). Для ДДС с векторами K_{02} , K_{21} и амплитудно-фазовые профили ДДС являются подобными, показанным на рис.2.13 (а,б), до масштабных множителей.

Для иллюстрации на рис.2.14 приведем двумерные контурные графики пространственных профилей, как гармоник основной ДС, так и первых гармоник ДДС образованных второй пространственной на гармонике.Необходимо отметить основные особенности пространственных профилей ДДС. Во-первых, профили ДДС имеют двумерное квази

периодическое амплитудное распределение, а, во-вторых, неоднородность фазовой составляющей профиля ДДС приводит к повороту вектора ДС и искажению фазового фронта.

2.2 Дифракционные свойства пространственно неоднородных ПГДР

Рассмотрим процесс считывания ДР произвольно поляризованным монохроматическим световым пучком в пренебрежении остаточным поглощением ФПМ,

$$\boldsymbol{E}_{r}(t,\boldsymbol{r}) = \sum_{i=s,p} \int \boldsymbol{e}_{0}^{i} \boldsymbol{E}_{r}^{i}(\boldsymbol{k}_{0}) \cdot \exp[i \cdot (\boldsymbol{\omega} \cdot \boldsymbol{t} - \boldsymbol{k}_{0} \cdot \boldsymbol{r})] d\boldsymbol{k}_{\tau 0} + \hat{\boldsymbol{e}}.\tilde{\boldsymbol{n}}. \qquad (2.56)$$

где $E_r^i(k_0)$ - угловой спектр (УС), $k_{\Box 0} = k\Delta\theta_0$ – тангенсальная компонента волнового вектора k_0 , связанная с углом отклонения $\Delta\theta_0$ плосковолновой компоненты углового спектра от оси пучка k_0' .

Пространственная и векторная геометрия процесса считывания представлена на рис.2.15 для двух дифракционных порядков. Световое поле E в области ФПМ в силу дифракции считывающего пучка E_r (2.56) на пространственных гармониках решетки можно записать в виде суммы N+1 световых пучков E_i

$$\boldsymbol{E}(t,\boldsymbol{r}) = \sum_{j=0}^{N} \boldsymbol{E}_{j} = \frac{1}{2} \left\{ \sum_{i=s,p} \sum_{j=0}^{N} \int \boldsymbol{e}_{j}^{i} \boldsymbol{E}_{j}^{i}(\boldsymbol{r},\boldsymbol{k}_{j}) \cdot \exp\left[i \cdot (\boldsymbol{\omega} \cdot \boldsymbol{t} - \boldsymbol{k}_{j} \cdot \boldsymbol{r})\right] d\boldsymbol{k}_{ij} + \hat{\boldsymbol{e}}.\tilde{n} \right\},$$
(2.57)

каждый из которых представлен двумя составляющими вектора напряженности E_j в соответствующем ортогональном поляризационном базисе, заданном двумя ортами e_j^p и e_j^s , лежащими в плоскости, перпендикулярной оси пучка E_j . Здесь $E_j^i(\mathbf{r}, \mathbf{k}_j)$ – медленно меняющиеся амплитуды плосковолновых составляющих угловых спектров компонент $E_j e_j^i$, j=0 соответствует проходящему пучку, j=1..N – дифрагированному пучку на решетке с $K_j=j \cdot K_1$, причем e_j^p лежит в плоскости дифракции ХОҮ, а e_j^s - перпендикулярен ей (см. рис.2.15).

Рисунок 2.15

Напряженность электрического поля E(t,r) в области взаимодействия описывается векторным волновым уравнением, следующим из уравнений Максвелла

rot rot
$$\boldsymbol{E}(t,\boldsymbol{r}) = -\mu_0 \varepsilon_0 \frac{\partial^2}{\partial t^2} [\varepsilon(t,\boldsymbol{r}) \cdot \boldsymbol{E}(t,\boldsymbol{r})],$$
 (2.58)

где возмущение диэлектрической проницаемости є представляется в виде

$$\varepsilon(t,\boldsymbol{r}) = \varepsilon_0 + \Delta\varepsilon(t,\boldsymbol{r}) = \varepsilon_0 + 0.5n_{st} \left[n_0(t,\boldsymbol{r}) + \sum_{j=1}^N n_j(t,\boldsymbol{r}) e^{i\boldsymbol{K}_j \cdot \boldsymbol{r}} + \hat{e}.\tilde{n} \right],$$
(2.59)

где $\varepsilon_0 = n_{st}^2$, $n_j(y)$ – определяются полученными ранее решениями для процесса записи ДР.

Подставляя выражения (2.57) и (2.59) в (2.58) и следуя методу медленноменяющихся амплитуд (MMA), получим две независимых системы уравнений связанных волн для амплитуд плосковолновых составляющих УС перпендикулярных E^s и тангенсальных E^p компонент поля E, определяемых с точностью до $\Delta \varepsilon/\varepsilon_0$ [79]:

$$\begin{cases} \frac{d\mathring{A}_{0}^{i}(y,\Delta\theta_{0},\Delta\lambda)}{dy} = G_{0}^{i}\sum_{j=1}^{N}n_{j}(y)\cdot\mathring{A}_{j}^{i}(y,\Delta\theta_{j},\Delta\lambda)\cdot e^{i\cdot\Delta K_{j}(\Delta\theta_{j},\Delta\lambda)y} \\ \frac{d\mathring{A}_{1}^{i}(y,\Delta\theta_{1},\Delta\lambda)}{dy} = G_{1}^{i}n_{1}(y)\cdot\mathring{A}_{0}^{i}(y,\Delta\theta_{0},\Delta\lambda)\cdot e^{-i\cdot\Delta K_{1}(\Delta\theta_{1},\Delta\lambda)y} , \\ \frac{d\mathring{A}_{N}^{i}(y,\Delta\theta_{N},\Delta\lambda)}{dy} = G_{N}^{i}n_{N}(y)\cdot\mathring{A}_{0}^{i}(y,\Delta\theta_{0},\Delta\lambda)\cdot e^{-i\cdot\Delta K_{N}(\Delta\theta_{N},\Delta\lambda)y} \end{cases}$$
(2.60)

где индекс *i=s* соответствует взаимодействию *s*-компонент, *i=p - p*-компонент; $G_j^s = -i k / (2\cos(\theta_j)), \quad G_j^p = -i k / (2\cos^2(\theta_j)), \quad \Delta \theta_j = \Delta \theta_j (\Delta \theta_0, \Delta \lambda),$ отклонение длины волны считывания от условий Брэгга.

Принимая во внимание граничные условия $E_0^{s,p}(y=0,\Delta\theta_0,\Delta\lambda) = E_r^{s,p}(\Delta\theta_0,\Delta\lambda)$, $E_j^{s,p}(y=0,\Delta\theta_0,\Delta\lambda) = 0$ и учитывая малость амплитуд гармоник $n_j(y) \sim \delta n_p << n_{st}$, решение системы (2.60) запишем с помощью метода возмущений [80] в матричном виде:

$$\boldsymbol{E}_{j}(\boldsymbol{y},\Delta\boldsymbol{\theta}_{j},\Delta\boldsymbol{\lambda}) = \boldsymbol{T}_{j}(\boldsymbol{y},\Delta\boldsymbol{\theta}_{j},\Delta\boldsymbol{\lambda})\boldsymbol{E}_{r}(\Delta\boldsymbol{\theta}_{0},\Delta\boldsymbol{\lambda}), \qquad (2.61)$$

где

$$E_{j}(y,\Delta\theta_{j},\Delta\lambda) = \begin{pmatrix} E_{j}^{p}(y,\Delta\theta_{j},\Delta\lambda) \\ E_{j}^{s}(y,\Delta\theta_{j},\Delta\lambda) \end{pmatrix}, E_{r}(\Delta\theta_{0}) = \begin{pmatrix} E_{r}^{p}(\Delta\theta_{0},\Delta\lambda) \\ E_{r}^{s}(\Delta\theta_{0},\Delta\lambda) \end{pmatrix},$$
$$T_{j}(y,\Delta\theta_{j},\Delta\lambda) = \begin{pmatrix} T_{j}^{p}(y,\Delta\theta_{j},\Delta\lambda) & 0 \\ 0 & T_{j}^{s}(y,\Delta\theta_{j},\Delta\lambda) \end{pmatrix}, j=0..N; \text{ компоненты } T_{j}^{p} \text{ и } T_{j}^{s} \text{ являются}$$

когерентными передаточными функциями для *p* и *s* – компонент и задаются выражениями

$$T_{0}^{i}(y,\Delta\theta_{0},\Delta\lambda) = \sum_{k=0}^{\infty} T_{0,2k}^{i}(y,\Delta\theta_{0},\Delta\lambda) \left(\delta n_{p} / n_{st}\right)^{2k},$$

$$T_{j}^{i}(y,\Delta\theta_{j},\Delta\lambda) = \sum_{k=0}^{\infty} T_{j,2k+1}^{i}(y,\Delta\theta_{j},\Delta\lambda) \left(\delta n_{p} / n_{st}\right)^{2k+1},$$
(2.62)

а коэффициенты $T_{0,2k}^i$, $T_{j,2k+1}^i$ определяются рекуррентными соотношениями

$$T_{0,2k}^{i}(y,\Delta\theta_{0},\Delta\lambda) = G_{0}^{i} \int_{0}^{y} \sum_{j=1}^{N} n_{j}'(y') T_{j,2k-1}^{i}(y',\Delta\theta_{j},\Delta\lambda) e^{i\Delta K_{j}(\Delta\theta_{j},\Delta\lambda)y'} dy',$$

$$T_{j,2k+1}^{i}(y,\Delta\theta_{j},\Delta\lambda) = G_{j}^{i} \int_{0}^{y} n_{j}'(y') T_{0,2k}^{i}(y',\Delta\theta_{0},\Delta\lambda) e^{-i\Delta K_{j}(\Delta\theta_{j},\Delta\lambda)y'} dy',$$
(2.63)

 $T_{0,0}^{i}(y, \Delta \theta_{0}, \Delta \lambda) = 1, \ n_{i}'(y) = n_{i}(y) / \delta n_{p}.$

Таким образом, соотношения (2.61)-(2.63)являются решением самосогласованной дифракционной задачи И позволяют исследовать дифракционную эффективность селективные свойства ПГДР И при амплитудах произвольных гармоник пространственно-И количестве неоднородной решетки показателя преломления, а также при произвольных поляризации и амплитудно-фазовом распределении считывающего пучка.

2.2.1 Дифракционная эффективность и селективные свойства пространственно неоднородных ПГДР

Дифракционную эффективность в *j*-том порядке определим как отношение потока энергии *j*-го дифрагированного пучка к потоку энергии считывающего пучка в направлении нормали к границе раздела сред (вдоль оси *y*). Учитывая, что каждой монохроматической волне с комплексной векторной амплитудой E_j можно сопоставить вектор Пойтинга $S_j = c/(2\pi)N_j \int (E_j \cdot E_j^*) d(\Delta \theta_j)$, запишем выражение для дифракционной эффективности в виде: $\eta_{d j} = (S_j \cdot y_0)/(S_0 \cdot y_0)$.

где y_0 – единичный вектор вдоль оси *у*, N_j – нормаль вдоль оси *j*-го пучка (см. рис. 2.15б).

Для исследования зависимости дифракционной эффективности в *j*-том (j=1..N) дифракционном порядке от угла падения считывающего пучка и селективных свойств дифракционной решетки необходимо получить соотношения для модулей векторов фазовой расстройки $\Delta K_j = \Delta K_{0j} + \Delta K'_j$ в (2.60) от θ_0 и $\Delta \theta_0$ в явном виде. Для этого запишем векторные соотношения фазового синхронизма для центральной угловой компоненты УС ($\Delta \theta_0=0$) *j*-го дифрагированного пучка (см. рис.2.15, для *j*=1,2)

$$k'_{j} = k'_{0} + jK_{1} + \Delta K_{0j}, \qquad (2.64)$$

и текущей компоненты УС ($\Delta \theta_0 \neq 0$)

$$\boldsymbol{k}_{j} = \boldsymbol{k}_{0} + j\boldsymbol{K}_{1} + \Delta \boldsymbol{K}_{0j} + \Delta \boldsymbol{K}_{j}^{\prime}. \qquad (2.65)$$

Далее запишем (2.64) для проекций векторов на оси координат. Из уравнения для проекций на ось *x*, определим угловые положения центральных компонент УС

$$\theta_{j} = \pi/2 - \arccos\left[\frac{k_{0x} + K_{jx}}{k}\right], \qquad (2.66)$$

$$\theta_{j}(\theta_{0}, \gamma) = \pi/2 - \arccos\left[j\cos(\pi/2 - \theta_{0} + 2\gamma) - (j-1)\cos(\pi/2 + \theta_{0})\right]$$

Подставляя (2.66) в уравнение для проекций на ось *у*, найдем модули векторов начальной фазовой расстройки:

$$\Delta K_{0j} = k'_{jy} + jK_{1y} - k'_{0y},$$

$$\Delta K_{0j}(\theta_0, \gamma) = k'_0 \{ j \cos(\theta_0 - 2\gamma) - (j+1)\cos(\theta_0) + \cos(\theta_j) \}$$
(2.67)

Используя разложение векторов $k_j = k'_j + P_j \Delta \theta_j k'_j$ в ряд Тейлора вблизи направлений k'_j в (2.65) и учитывая (2.64) и (2.66), определим фазовые расстройки $\Delta K'_j$ и угловые положения $\Delta \theta_j$ текущих компонент УС дифракционных порядков, взаимодействующих с угловой компонентой считывающего пучка, отклоненной от его оси на угол $\Delta \theta_0$:

$$\Delta K'_{j}(\Delta \theta_{0}) = -\Delta \theta_{0} k'_{0} \frac{(\boldsymbol{P}_{0} \cdot \boldsymbol{N}_{j})}{(\boldsymbol{y}_{0} \cdot \boldsymbol{N}_{j})}, \quad \Delta K'_{j}(\Delta \theta_{0}) = -\Delta \theta_{0} k'_{0} \frac{\cos(\pi/2 - \theta_{0} - \theta_{j})}{\cos(\theta_{j})}, \quad (2.68)$$

$$\Delta \theta_{j}(\Delta \theta_{0}) = \Delta \theta_{0} \frac{P_{0x}}{P_{jx}}, \qquad \Delta \theta_{j}(\Delta \theta_{0}) = \Delta \theta_{0} \frac{\cos(\theta_{0})}{\cos(\theta_{j})}. \qquad (2.69)$$

где P_j – единичный вектор, указывающий направление смещения волнового вектора *j*-ой волны от начального направления k'_j (см. рис.2.15 б), $q = K_1/|K_1|$.

При отклонении длины волны считывания от условий Брэгга на $\Delta\lambda$ используем, как и ранее, разложение в ряд Тейлора вблизи начальных направлений k'_i

$$\boldsymbol{k}_{0} = \boldsymbol{k}_{0}' + 2\pi n \boldsymbol{N}_{0} \frac{\Delta \lambda}{\lambda^{2}}, \qquad \boldsymbol{k}_{j} = \boldsymbol{k}_{j}' + 2\pi n \boldsymbol{N}_{j} \frac{\Delta \lambda}{\lambda^{2}} + \boldsymbol{P}_{j} \Delta \boldsymbol{\theta}_{j} \boldsymbol{k}_{j}', \qquad (2.70)$$

где *j*=1..*N*.

Тогда, подставляя (2.70) в (2.65) и учитывая (2.64) и (2.66), можно получить следующие соотношения

$$\Delta \mathbf{K}_{j}'(\Delta \lambda) = k_{0}' \frac{\Delta \lambda}{\lambda} \mathbf{N}_{j} \left\{ 1 - (\mathbf{N}_{0} \cdot \mathbf{N}_{j}) \right\}, \quad \Delta \mathbf{K}_{j}'(\Delta \lambda) = -\frac{\Delta \lambda}{\lambda} k_{0}' \left(1 - \frac{\cos(\theta_{0} + \theta_{j})}{\cos(\theta_{j})} \right), \tag{2.71}$$

$$\Delta \theta_{j}(\Delta \lambda) = \frac{\Delta \lambda}{\lambda} \frac{N_{0x} - N_{jx}}{P_{jx}}, \qquad \Delta \theta_{j}(\Delta \lambda) = \frac{\Delta \lambda}{\lambda} \frac{\sin(\theta_{0}) + \sin(\theta_{j})}{\cos(\theta_{j})}. \qquad (2.72)$$

2.2.2 Дифракционные свойства ПГДР с учетом самодифракции при малом контрасте

На рис. 2.16 (а) приведены кривые дифракционной эффективности на стационарном уровне от соотношения интенсивностей записывающих пучков $\eta_d(m_0)$ с помощью модели без учета эффекта СЗВ $\eta_{dC3B}(m_0)$ и с учетом $\eta_{dC3B+}(m_0)$. Расчет проведен для параметров: $C_n=2$, $\alpha d=0$, k=0.5, $\delta n_p=0.004$, d=20мкм, при b=0.25 (1,3) и b=5 (2,4). На рис. 2.16 (б) приведены сравнительные кривые, $\Delta \eta_d(m_0) = \frac{\eta_{dC3B+}(m_0) - \eta_{dC3B-}(m_0)}{\eta_{dC3B+}(m_0)} 100\%$ для кривых на

рис. 2.16 (а).

Рисунок 2.16

Из рис.2.16(а) видно, что при малом *b* эффект СЗВ мало сказывается, т.к.

91

сама ДС является слабой, поэтому его учет для данной области b не является принципиально важным. Для области больших b добавка в эффективность дифракции за счет СЗВ становится существенной, особенно с уменьшением соотношения интенсивностей пучков. С увеличением параметров k, δn_p , b, d вклад в эффективность ДС за счет СЗВ увеличивается, что также объясняется увеличением эффективности самой ДС.

На рис.2.16 (в) представлены кривые нормированной угловой селективности ДС рассчитанные по полученным выражениям в п.2.1.3 для $C_n=2, b=5, \delta n_p=0.014, k=0.5, m_0=0.01, d=20$ мкм, $\theta_0=\theta_1=10^0$. Соответствующие кривые амплитудного и фазового профиля ДС показаны на рис. 2.4. являются пространственно неоднородными

. Из рис. 2.16 (в) видно, что смещение максимума ДЭ составило ~25% от полуширины основного максимума, связанно с что неоднородностью $arg(n_1(y))$ вызванного двухволновым смешением, т.к. эффект усадки ФПМ, как известно, приводит к смещению максимума более 1.5%. не ДC приводит к заплыванию

Неоднородность амплитудного профиля ДС приводит к заплыванию минимумов ДС, как видно из кривой в логарифмическом масштабе.

2.2.3 Дифракционные свойства ПГДР в поглощающем ФПМ с учетом высших пространственных гармоник

Исследуем динамику эффективности дифракции ПГДС в композиционном материале в первом и во втором дифракционных порядках

для считывания вертикально-поляризованной волной (*s*-поляризация). Результаты моделирования представлены на рис.2.17 для следующих параметров: *b*=0.25, *C_n*=2, δn_p =0.004, *d*=20µm, $\theta_1=\theta_0=6.67^0$ (10⁰ в воздухе). На рис.2.17 приняты обозначения: 1 - α_d =0 Неп, *k*=0.5, *m*₀=1; 2 - α_d =2 Неп, *k*=0.5, *m*₀=1; 3 - α_d =2 Неп, *k*=0.5, *m*₀=0.3; 4 - α_d =2 Неп, *k*=0.3, *m*₀=1.

Рисунок 2.17 – Дифракционная эффективность в первом (а) и во втором (б) порядках дифракции от времени записи.

Как видно из кривых 1 на рис.2.17 (а,б), в отсутствие поглощения дифракционные эффективности в первом (η_{d1}) и во втором (η_{d2}) порядках дифракции становятся соизмеримыми по величине на стационарном уровне (η_{d1} / $\eta_{d2} \approx 1.1$). Учет поглощения (кривые 2 на рис.2.17 (а,б)) приводит к существенному увеличению (в 2 раза) эффективности первой гармоники на стационарном уровне и к незначительному (~ 1.25 раза) второй. Проведенный дополнительный анализ показал, что для *b*=5 в отсутствие поглощения отношение η_{d1} / $\eta_{d2} \approx 10$. Учет поглощение (2 Неп) приводит к увеличению η_{d1} примерно в 1.1 раза и уменьшению η_{d2} в 1.25 раза, а также к возрастанию времен выхода на стационарные значения обоих гармоник

Из сравнения кривых 3,4 с кривыми 2 на рис.2.17 видно, что уменьшение k (кривые 3) и m_0 (кривые 4) приводят к снижению эффективности дифракции, как на первой (рис. 2.17 а), так и на второй (рис. 2.17 б) гармониках ДС, причем для второй гармоники спад является более

существенным.

Таким образом, уменьшение m_0 и увеличение $b=T_p/T_m$ позволяет уменьшить дифракционную эффективность на высших пространственных гармониках решеток в ФПМ с помощью внешних условий записи: интенсивностей записывающих пучков (T_p) и их соотношения (m_0) и угла схождения (T_m).

Далее рассмотрим зависимости $\eta_{d1}(b)$ (рис. 2.18 а) и $h(b)=\eta_{d1}(b)/\eta_{d2}(b)$ (рис. 2.18 б). Точками на рис.4 показаны кривые, при построении которых брались значения η_{d1} и η_{d2} во временной точке, соответствующей локальному максимуму эффективности дифракции в первом порядке, а сплошными линиями – значения η_{d1} и η_{d2} на стационарном уровне. Параметры расчета $C_n=2$, $\delta n_p=0.004$, $d=20\mu$ M, $\theta_1=\theta_0=6.67^0$ (10^0 в воздухе), $m_0=1$, $\alpha_d\approx 0$ Неп.

Рисунок 2.18

Переход кривых, обозначенных точками, в сплошные кривые на рис. 2.18 (а, б) характеризует значение параметра *b* (0.2<*b*<0.4), при котором пропадает локальный максимум $\eta_{d1}(\tau)$ (рис.2.17 а). Из рис. 2.18 (б) видно, что в диапазоне 2<*b*<3 изменение *k* практически не сказывается на *h*(*b*). Из кривых, показанных на рис. 2.18, можно определить оптимальные значения *b*, при которых записывается ДС с максимальной дифракционной эффективностью в первом порядке дифракции и, например, минимальными дифракционными эффективностями на высших пространственных гармониках. При изменении *b* от 0.01 до 100 отношение стационарных значений эффективностей дифракции *h*(*b*) (рис. 2.18 б) изменяется от 11 раз для *k*=0.1 до 600 раз для *k*=0.9. Таким образом, проведя эксперименты при существенно различных значениях b (варьируя интенсивности записывающих пучков и угол между ними) можно оценить значение параметра нелинейности полимеризации по интенсивности света k.

Сравнение с результатами из промежуточного отчета, показало, что наличие ЖК в композите приводит к смещению точки перехода максимума в область меньших *b* причем смещение тем больше, чем меньше *k*. Кроме того, наличие ЖК в композиционном материале приводит к увеличению отношения n_1/n_2 только при *b*>1, причем изменение увеличивается с увеличением *b* и *k*. Так для *k*=0.1 измения практически нет, а для *k*=0.9 при *b*=100 изменение составляет +50%.

Учет поглощения приводит только к изменению масштаба зависимости h(b) по оси b с коэффициентом примерно равным $2^k \exp(-\alpha_d \cdot k)$, так как поглощение приводит к ослаблению пучков по глубине материала, т.е. появлению пространственной зависимости b(y).

Таким образом, снижение контраста, увеличение b и увеличение k (для b>0.3 с ЖК, и b>6 без ЖК) приводит к снижению дифракционной эффективности на высших пространственных гармониках, причем первые два параметра могут варьироваться в эксперименте.

Результаты расчета угловой

Рисунок 2.19 Угловая селективность э гармоник

селективности $\eta_{d1}(\theta_1)$ и $\eta_{d2}(\theta_2)$ представлены на рис. 2.19 для $C_n=2$, $\delta n_p=0.004$, $d=20\mu$ m, b=5, $m_0=1$, k=0.5. Из рис2.19 видно, что уменьшение угла записи в 2 раза приводит к уширению углового отклика обоих дифракционных порядков в 2 раза и пропорциональному уменьшению углового расстояния между ними, а также уменьшению η_{d1} примерно в 2 раза и увеличению η_{d2} в 1.6 раза.

Причиной изменений является увеличение периода записываемой ДС примерно в 2 раза (для данных углов), что непосредственно увеличивает ширину углового отклика и угловое расстояние в 2 раза, а также приводит к увеличению времени диффузии $T_m=1/(D_mK_1^2)$ в 4 раза, и соответствующему уменьшению *b*. А как было показано ранее, изменение *b* дает в результате изменения эффективностей дифракции η_{d1} и η_{d2} .

2.2.4 Дифракционные свойства ПГДР с учетом многоволнового смешения на высших пространственных гармониках

Описанные в пункте 2.1.7 особенности амплитудно-фазового профиля ДДР определяют и дифракционные характеристики, в частности угловую селективность. Кривые угловой селективности ДДС с n_1^{20} , представленные на рис.2.20 а., рассчитаны для следующих параметров: $C_n=2$, $\delta n_p=0.004$, $d=85\mu$ m, b=5, $m_0=1$, k=0.5.

Видно, что кривая угловой селективности имеет два максимума, амплитуды которых могут быть соразмерны. Угловое положение первого максимума совпадает с направлением вектора K_{20} , а положение второго максимума с направлением K_1 , K_2 . Появление второго максимума обусловлено наличием неоднородной фазовой составляющей профиля ДДС. Второй максимум находится всегда в угловом положении, соответствующем положению второй гармоники и может приводить как к увеличению, так и уменьшению суммарной интенсивности в данном угловом положении. Характер ДДС с вектором K_{21} является аналогичным показанному на рис.2.20 а.

Отметим, что в отличие от ДДС пространственные гармоники основной ДС имеют только один максимум угловой селективности в направлении, соответствующем направлению вектора ДС.

Для сравнительного анализа, на рис.2.20 (б) приведены зависимости амплитуд максимумов угловой селективности (дифракционной эффективности) гармоник основной ДС и ДДС на стационарном уровне от соотношения времен полимеризации и диффузии. Как видно из рис.2.20 (б) в случае $T_p>T_m$ (*b*<1)

дифракционная эффективность (ДЭ) первой η_{d1} и второй η_{d2} гармоник основной ДС могут быть сравнимы, а ДЭ η_{d20} и η_{d21} имеют амплитуды одного порядка и на два порядка меньше, чем η_{d2} и η_{d1} . При $T_p < T_m$ (*b*>1) ДЭ η_{d2} снижается в 10 раз меньше, и ДЭ ДДС возрастают, что связанно с возрастающим вкладом первой гармоники и уменьшением вклада второй гармоники. т.

Рисунок 2.20

При возрастании *b* величины второго максимума ДЭ ДДС приближаются к величине первого максимума. И так, в условиях превалирования вклада диффузионного механизма (увеличение *b*) эффективности дифракции на гармониках высшего порядка (начиная со второй) основной ДС уменьшаются, а эффективности ДДС возрастаю

2.2.5 Дифракционные свойства ПГДР, записанных пучками с амплитудно-фазовым неоднородным распределением

Рассмотрим влияние фазовой неоднородности записывающих пучков на угловую селективность записываемой решетки на стадии считывания плоским Ha рис.2.21 пучком. a приведены кривые нормированной угловой селективность ПГДР записанной пучками с плоскими амплитудными профилями и угловой расходимостью одного из пучков не равной нулю. Расчет проведен для $C_n=0.02$, $\delta n_p=0.004$, $d=85\mu$ m, b=5, $m_0=1$, k=0.5, $\phi''=0.5\cdot10^6$, $\phi''=1.10^6$, $\phi''=2.10^6$. На рис.2.21 б 1- $\eta_d(\Delta\theta)$ для решетки записанной двумя

плоскими волнами, 2- $\eta_d(\Delta\theta)$ для решетки записанной пучками с равномерным амплитудным распределением, но один пучок имеет угловую расходимость, характеризующую $\phi''=2\cdot10^6$, 3- аналогично 2, но расходящийся пучок имеет гауссовый амплитудный профиль с w=0.5мм.

Рисунок 2.21

Из рис.2.21 а видно, что наличие фазовой неоднородности записывающего поля приводит к увеличению ширины полосы угловой селективности решетки, причем эффективность дифракции также существенно уменьшается. Наличие же амплитудной неоднородности записывающих пучков, снижает амплитуды боковых лепестков угловой селективности.

3. Отражающие голографические дифракционных решетки (ОГДР) в фотополимризующихся жидкокристаллических композиционных материалах (ФПМ-ЖК)

B данном разделе представлены теоретические модели кинетики ОГДР голографической считывания В записи И композиционных фотополимеризующихся материалах и их интегральных дифракционных характеристик с учетом самодифракции формирующих пучков, высших пространственных гармоник решеток на стадии записи и считывания [114,128,129,132,141]. В разделе 3.1 получены аналитические выражения, описывающие пространственно – временное распределение решетки показателя преломления для ПГДР с различными особенностями и на основе численного моделирования пространственные профили показаны решеток В рассматриваемых ситуациях.

В разделе 3.2 получены решения самосогласованной дифракционной задачи, на основе которой проводится исследование дифракционных характеристик пространственно-неоднородных ОГДР путем численного моделирования.

3.1 Формирование ОГДР

Пусть две когерентные монохроматические световые волны с амплитудами $E_0(\mathbf{r})$, $E_1(\mathbf{r})$ и волновыми векторами $\mathbf{k}_0'(\mathbf{r})$ и $\mathbf{k}_1'(\mathbf{r})$ на границе раздела сред распространяются под углами θ_0 и θ_1 внутри плоского поглощающего фотополимерного слоя ($0 \le y \le d$). Также будем считать, что \mathbf{k}_0' и \mathbf{k}_1' лежат в плоскости ХҮ. Пространственная геометрия процесса записи представлена на рис.3.1. а оптическое поле внутри ФПМ толщиной d (рис. 3.1) по методу суперпозиций в области ФПМ можно представить в виде суммы полей:

где e_i -вектор поляризации, $\alpha(t)$ – коэффициент оптического поглощения ФПМ

с учетом его фотоиндуцированного изменения, r – радиус-вектор, центральный волновой вектор $k'_{j}=kN_{j}$, $k=n\omega/c$ – волновое число и N_{j} – волновая нормаль, n – показатель преломления.

Под воздействием светового излучения в ФПМ в результате процесса радикальной E_{0 np} фотополимеризации происходят локальные изменения показателя преломления, Рисунок 3.1- Пространственная что геометрия процесса записи приводит к формированию фазовой голографической решетки. На записываемой решетке во время записи происходит дифракция записывающих волн, которая является существенной только при контрасте не равном единице и при сильно несимметричной геометрии. Поэтому вопросы самодифракции рассмотрены отдельно. На практике считывание записываемой решетки производится либо после остановки записи, либо во время записи неактиничным излучением под соответствующим длине волны считывания углом. Поэтому вопросы считывания ДР (задача дифракции) рассматривается отдельно от задачи записи.

Процесс радикальной фотополимеризации приводящий к формированию решетки в ФПМ был рассмотрен в п. 2.1.2.

3.1.1 Запись ОГДР с учетом постоянного оптического поглощения ФПМ

В данном разделе рассмотрим запись ПГДР плоскими волнами. Решение задачи получено в приближении нулевой и первой гармоник концентрации мономера и показателя преломления с учетом постоянного оптического поглощения, контраста интерференционной картины, произвольной степени нелинейности процесса фотополимеризации и зависимости коэффициента диффузии от степени полимеризации.

Пусть две плоские когерентные монохроматические световые волны с амплитудами E_0 , E_1 и волновыми векторами k_0' , k_1' на границе раздела сред распространяются под углами θ_0 и θ_1 внутри плоского поглощающего фотополимерного слоя ($0 \le y \le d$). Также будем считать, что k_0' и k_1' лежат в плоскости ХҮ. Пространственная геометрия и векторная диаграмма процесса записи представлены на рис.3.2.

Запишем выражение для интерференционной картины данного светового поля:

$$I(\mathbf{r}) = I_0(y) \cdot \{1 + m(y)\cos(\mathbf{K}_1 \mathbf{r})\}, \qquad (3.2)$$

где $I_0(y) = I^0(y) + I^1(y)$, $I^0(y) = I_0 \exp[-\alpha y/\cos \theta_0]$; $I^1(y) = I_1 \exp[-\alpha (d-y)/\cos \theta_1]$; $I_0 = |E_0|^2$; $I_1 = |E_1|^2$; $m(y) = 2\sqrt{I^0(y)I^1(y)} \cdot (e_1 \cdot e_0)/(I^0(y) + I^1(y))$ - локальный контраст интерференционной картины, $K_1 = K_1 q = k_0' - k_1'$ - вектор решетки, $K_1 = 2k \cdot \sin((\pi - \theta_0 - \Box \theta_1)/2)$, q – единичный вектор, r – радиус вектор

Рисунок 3.2 - Пространственная геометрия (а) и векторная диаграмма (б) записи голографической решетки в ФПМ

В процессе записи происходит увеличение среднего показателя преломления (менее 1%), что приводит к изменению вектора записываемой решетки в процессе записи по абсолютной величине и направлению (см. рис. 3.26, для

симметричной геометрии только по величине), но в силу малости (менее 1%), данный эффект в дальнейшем рассмотрении опущен.

Учитывая, что кинетические уравнения не зависят от геометрии записи, и, сопоставляя выражения для интерференционной картины записывающего поля (3.2) и (2.10), видно, что процедура решения и его вид будут полностью идентичны решению для ПГДР при постоянном поглощении (2.19)-(2.21), с отличием только в выражениях для $I_0(y)$ и m(y) (см. (3.2)). Ввиду чего, приводить решение не будем, а перейдем сразу к моделированию.

Для получения наиболее общих результатов численного моделирования используем обобщенные параметры: отношение времени полимеризации ко времени диффузии $b=T_p/T_m$, соотношение вкладов полимеризационного и диффузионного механизмов записи $C_n=\delta n_i/\delta n_p$, поглощения ФПМ $\alpha_d=\alpha d$, $m_0=I_1^2/I_0^2$ - соотношение интенсивностей записывающих пучков, где $T_p = (2K_b)^k / (K_g (\alpha_0 \beta \langle K \rangle \tau_0 (I_0 + I_1))^k)$. При этом пространственные зависимости контраста интерференционной картины m_y и b_y в решении запишутся в виде

$$m_{y} = \frac{2\sqrt{m_{0}} \exp[-0.5\alpha_{d} (y/(d\cos\theta_{0}) - (y-1)/(d\cos\theta_{1}))] \cdot (\boldsymbol{e}_{1} \cdot \boldsymbol{e}_{0})}{\exp[-\alpha_{d} y/(d\cos\theta_{0})] + m_{0} \exp[\alpha_{d} (y-1)/(d\cos\theta_{1})]}.$$
(3.3)

$$b_{y} = b \cdot \left(\frac{\exp[-\alpha_{d} y / (d\cos(\theta_{0}))] + m_{0} \exp[\alpha_{d} (y-1) / (d\cos(\theta_{1}))]}{1 + m_{0}} \right)^{k}.$$
 (3.4)

В данном разделе на основе численного моделирования исследовалось влияние поглощения α , соотношения интенсивностей записывающих пучков $m_0=E_1^{-2}/E_0^{-2}$ и параметра $b=T_p/T_m$ на кинетики показателя преломления $n_1(\Box,y)$ и дифракционных характеристик записанной дифракционной ДС при считывании неактиничным излучением. Как было показано в разделе 2, параметр *b* существенно влияет на кинетику профиля. В общем случае можно выделить две области значений *b*<1 и *b*>1, в пределах которых изменение *b* не приводит к изменению общего вида кривой, а сказывается только на временном масштабе. Поэтому в дальнейшем изложении, на основании расчетов в двух точках *b*=0.25 и *b*=5, результаты моделирования и выводы будут обобщаться на всю характерную область b < 1 и b > 1, соответственно.

На рис.3.3 приведены пространственно-временные профили решеток, рассчитанные при $C_n=1$, s=1, $m_0=1$, $\alpha_d=4$ Неп для b=0.25 (а) и b=5 (б). Параметр b в реальных условиях можно варьировать либо с помощью внутренних параметров ФПМ, либо внешних условий записи (I_0+I_1 , $\theta_0+\theta_1$), что более приемлемо на практике. Как видно из выражений для T_p и T_m , уменьшение интенсивности и увеличение угла схождения записывающих пучков приводят к увеличению параметра b и наоборот.

Рисунок 3.3

Как видно из рис.3.3 (а,б), вследствие поглощения пространственные профили решеток становятся резко неоднородными ПО глубине И области трансформируются BO времени. В времен малых записи пространственный профиль повторяет распределение локального контраста интерференционной картины вдоль у, который характеризует конкурентное поведение нулевой и первой гармоник в полимеризации мономера, т.е. с уменьшением локального контраста уменьшается доля мономера, участвующего в формировании первой гармоники, за счет нулевой и наоборот.

Для обеих областей значений b наибольший рост ДС наблюдается в центральной части 0.4 < y/d < 0.6, что обусловлено двумя факторами. Во-первых, контраст принимает максимальное значение близкое к единице, см. (3.3), и, вовторых, общая интенсивность записывающего поля является наименьшей, вследствие затухания пучков, а время полимеризации наибольшим, см. (3.4). За счет увеличения времени полимеризации мономер имеет дополнительное время для диффузии из темных областей в светлые, где полимеризуется, увеличивая тем самым амплитуду ДС, но за большее время, что видно из времени достижения максимума, увеличивающееся от y/d=0 к y/d=0.5 и затем спадающего к y/d=1.

Как было показано в пункте 2.1.3, увеличение соотношения времени полимеризации ко времени диффузии ($b=T_p/T_m$) приводит к увеличению доли мономера, который вместо полимеризации в темных областях интерференционной картины, приводящей к уменьшению амплитуды ДС, диффундирует в светлые области, где, полимеризуясь, напротив, увеличивает ее. Однако при начальном значении b > 1 поглощение будет приводить только к затягиванию кинетики (см. (3.4)) и уменьшению средней амплитуды ДС за счет изменения контраста по глубине (см. (3.3).

Наличие ЖК в композите приводит к увеличению амплитуды ДС, за счет увеличения вклада диффузионного механизма.

3.1.2 Запись ОГДР световыми волнами с существенно-различными амплитудами с учетом самодифракции

Выше рассмотренные модели записи были получены в приближении заданного поля. Однако в процессе записи дифракция записывающих волн на формируемой ОГДР приводит к изменению распределения интенсивности записывающего поля внутри материала, и формирование решетки продолжается в соответствии с измененным распределением светового поля. В каждый момент времени два взаимосвязанных процесса - формирование решетки и самодифракция записывающих волн, протекая одновременно, приводят к формированию фазовой ОГДР со сложным пространственным амплитудно-фазовым распределением.

В данном подразделе, как и для ПГДР, рассмотрим случай записи ОГДР с учетом самодифракции. Пусть запись ОГДР производится плоскими монохроматическими световыми волнами с существенно-неравными амплитудами $E_0 >> E_1$ и волновыми векторами k_0' и k_1' в ФПМ с пренебрежимо малым поглощением. Решение кинетических уравнений записи будем, как и раньше, искать в виде суммы нулевой и первой гармоник концентрации мономера и показателя преломления. Учет самодифракции во время записи, в рассматриваемом случае ($E_0 >> E_1$) можно ограничить дифракцией только сильной волны на ОГДР, и решение уравнений связанных волн получить в приближении заданной интенсивности (E_0 =const). Тогда изменение слабой волны запишем в следующем виде:

$$E^{1}(t, y) = E_{1} + iG_{0}E_{0}\int_{0}^{d-y} n_{1}(t, y') dy', \qquad (3.5)$$

где n_1 - первая гармоника решетки показателя преломления, $G_0 = \pi/(\lambda \cos \theta_0)$, λ - длина волны света в материале, θ_0 – угол записи в материале для волны E_0 .

Распределение интенсивности интерференционной картины светового поля в рассматриваемом случае примет вид:

$$I(\mathbf{r}) = I_0 + E_0 E_1^* e^{-iK_1 \mathbf{r}} + \hat{e}.\tilde{n}., \qquad (3.6)$$

где $I_0 = I^0 + I^1$, $I^j = |E_j|^2$; j = 0, 1; $K_1 = k_0' - k_1'$, r – радиус вектор.

Далее, полностью аналогично пункту 2.1.4, будем использовать методику из [64,65], где кинетические уравнения записи для концентрации мономера *M* и показателя преломления *n* дополняются дифракционным уравнением в приближении заданного поля.

Используя разложение в ряд Тейлора для $I^{k}(\mathbf{r})$ $I(\mathbf{r})^{k} = [I_{0} + E_{0}E_{1}^{*}e^{-iK_{1}\mathbf{r}}]^{k} \approx I_{0}^{k}[1 + (E_{0}E_{1}^{*}/I_{0}) \cdot e^{-iK_{1}\mathbf{r}}]^{k}$ и полагая, как и ранее, $M_{0} >> M_{1}$, запишем интегро-дифференциальные кинетические уравнения записи для нулевых

$$\frac{\partial}{\partial \tau}M_0 = -\frac{2^k}{b}M_0, \qquad \qquad \frac{\partial}{\partial \tau}n_0 = \delta n_p \frac{2^k}{b}\frac{M_0}{M_n}$$

и первых гармоник М и n:

$$\begin{cases} \frac{\partial}{\partial \tau} M_{1} = -M_{1} b_{m}(\tau) - \frac{2^{k}}{b} \left[\frac{2k}{1+m_{0}} M_{0} \left\{ \left(\sqrt{m_{0}} - iG \int_{0}^{d-y} n_{1}(y') dy' \right) \right\} + M_{1} \right] \\ \frac{\partial}{\partial \tau} n_{1} = \delta n_{p} \frac{2^{k}}{b} \left[\frac{2k}{1+m_{0}} \frac{M_{0}}{M_{n}} \left\{ \left(\sqrt{m_{0}} - iG \int_{0}^{d-y} n_{1}(y') dy' \right) \right\} + \frac{M_{1}}{M_{n}} \right] - \delta n_{i} \frac{M_{1}}{M_{n}} b_{m}(\tau) \end{cases}$$
(3.7)

где $n_0=n_0(\tau)$, $M_0=M_0(\tau)$ и $n_1=n_1(\tau,y)$, $M_1=M_1(\tau,y)$ – нулевые и первые гармоники Mи n, соответственно, $\tau=t/T_m$ – относительное время, $T_m=1/(K_1^2 D_m)$ – время диффузии, D_m - коэффициент диффузии, K_1 – волновое число первой гармоники основной решетки $K_1=|K_1|$; $G=\pi/(\lambda\cos\theta_B)$, θ_B -угол Брэгга в ФПМ, $b=T_p/T_m$, $T_p = (2K_b/(\alpha\beta\tau_0\langle K\rangle I_0))^k/K_g$ – время полимеризации, $m_0=I^1/I^0$ – соотношение интенсивностей записывающих волн, $b_m(\tau) = \exp[-s \cdot (1-M_0(\tau)/M_n)]$.

Для решения уравнений для нулевых гармоник используем методику из подраздела 3.1.2. Тогда решения совпадают с (2.19) с учетом того, что поглощение пренебрежимо мало $\alpha d \approx 0$ и выражения являются функциями только временной координаты.

Далее для решения (3.7) используем интегральное преобразование Лапласа по пространственной координате *у*

$$\begin{cases} \frac{\partial}{\partial \tau} M_{1}^{p} = -M_{1}^{p} b_{m}(\tau) - \frac{2^{k}}{b} \left[\frac{2k}{1+m_{0}} M_{0}^{p} \left\{ \sqrt{m_{0}} - iG \frac{n_{1}^{p}}{p} \right\} + M_{1}^{p} \right] \\ \frac{\partial}{\partial \tau} n_{1}^{p} = \delta n_{p} \frac{2^{k}}{b} \left[\frac{2k}{1+m_{0}} \frac{M_{0}^{p}}{M_{n}} \left\{ \sqrt{m_{0}} - iG \frac{n_{1}^{p}}{p} \right\} + \frac{M_{1}^{p}}{M_{n}} \right] - \delta n_{i} b_{m}(\tau) \frac{M_{1}^{p}}{M_{n}}, \end{cases}$$
(3.8)

где $f^p = f(\tau, p)$. Учитывая, что функция $n_1(\tau, y)$ является медленно меняющейся по сравнению с $M_0(\tau) \cdot \exp(F_1(\tau) \cdot \tau)$ [64,65], где $F_1(\tau) = b_m(\tau) + 2^k/b$, и используя начальное условие $M_1(\tau=0)=0$ и теорему о среднем для определенного интеграла $\int_a^b \varphi(x) f(x) dx = \varphi(\xi) \int_a^b f(x) dx$, где $a \le \xi \le b$, получим следующее выражение

для первой гармоники концентрации мономера:

$$M_{1}(\tau, p) = -\frac{2^{k}}{b} \frac{2k}{1+m_{0}} \left[\sqrt{m_{0}} - iG \frac{n_{1}(\tau, p)}{p} \right] \cdot \int_{0}^{\tau} M_{0}(\tau') \cdot e^{-\int_{\tau}^{\tau} F_{1}(\tau') d\tau'} d\tau'.$$

С учетом полученного выражения для $M_1(\tau,p)$ решение для $n_1(\tau,p)$ запишем в виде:

$$n_1(\tau, p) = -\delta n_p F_2 \sqrt{m_0} \cdot \int_0^{\tau} R(\tau') e^{\frac{\delta n_p F_2 i G}{p} \int_{\tau}^{\tau} R(\tau'') d\tau''} d\tau',$$

где
$$F_2 = \frac{2^k}{b} \frac{2k}{1+m_0}$$
, $R(\tau) = \frac{M_0(\tau)}{M_n} - \left(\frac{2^k}{b} - C_n\right) \cdot \int_0^{\tau} \frac{M_0(\tau')}{M_n} \cdot e^{-\int_{\tau'}^{\tau} F_1(\tau'')d\tau''} d\tau'$.

Для получения конечного выражения для первой гармоники показателя преломления используем обратное преобразование Лапласа по пространственной координате *у*. В результате получим

$$n_{1}(\tau, y) = \delta n_{p} F_{2} \sqrt{m_{0}} \cdot \int_{0}^{\tau} R(\tau') H_{0}(\tau', \tau, y) d\tau', \qquad (3.9)$$

где
$$H_0(\tau',\tau,y) = 1 + \sqrt{-\frac{i \cdot F_2 \cdot \Gamma}{d-y} \int_{\tau'}^{\tau} R(\tau'') d\tau''} \cdot J_1 \left[2\sqrt{-i \cdot F_2 \cdot \Gamma \cdot (d-y) \int_{\tau'}^{\tau} R(\tau'') d\tau''} \right], J_1(x) - функция$$

Бесселя, $C_n = \delta n_i / \delta n_p$, $\Gamma = \delta n_p G d$ - коэффициент связи, определяющий эффективность взаимодействия записывающих волн с ПДР, d – толщина ФПМ.

Выражение (3.9) определяет временную динамику пространственного распределения амплитуды ПДР с учетом эффекта самодифракции. Из решения видно, что пространственная неоднородность распределения амплитуды и фазы вдоль решетки обусловлена только эффектом самодифракции. Для перехода к случаю без учета самодифракции достаточно положить нулю коэффициент связи, характеризующий эффект самодифракции, тогда выражение (3.9) переходит в полученное ранее с учетом $\alpha d \approx 0$ и $L_{\gamma}=0$.

На рис.3.4 приведены модуль (а) и аргумент (б) нормированного пространственного профиля ДС, рассчитанные по полученным выражениям для $C_n=2$, $\delta n_p=0.014$, k=0.5, $m_0=0.01$, d=20мкм, $\theta_0=\theta_1=10^0$, b=5 (а, б).

Рисунок 3.4

Видно, что для *b*>1, амплитудный и фазовый профили решетки являются существенно пространственно неоднородными. Неоднородность фазового профиля характеризует поворот эффективного вектора решетки, и как следствие, смещение угла Брэгга.

В целом эффекты самодифракции приводят к аналогичным изменениям профиля решетки, как для ПГДР, так и для ОГДР, за исключением того, что пространственные профили для ОГДР являются спадающими вдоль координаты *у*, вследствие отличия направлений нарастания дифрагированной волны при формировании ОГДР от ПГДР.

3.1.3 Запись ОГДР с учетом высших пространственных гармоник

В данном разделе рассмотрим ситуацию записи ОГДР пучками с плоскими фазовыми фронтами. Решение задачи получено для (*N*+1) гармоники концентрации мономера и показателя преломления, с учетом постоянного оптического поглощения, контраста интерференционной картины, произвольной степени нелинейности процесса фотополимеризации и постоянного коэффициента диффузии.

Как и в пункте 3.1.2 рассмотрение данного вопроса на стадии получения решения для ОГДР является полностью идентичным процедуре проведенной в
пункте 2.1.7 для ПГДР. Таким образом, полученное в 2.1.7 решение (2.59), (2.63)-(2.65) может быть использовано и для ОГДР, с учетом отличий, обусловленных только геометрией записи в поглощающем ФПМ, для пространственной зависимости средней интенсивности и контраста записывающей интерференционной картины, описанных в пункте 3.1.2 (см.(3.2)).

Пусть две когерентные монохроматические световые волны с амплитудами E_0 , E_1 , плоскими фазовыми фронтами и волновыми векторами k_0' и k_1' на границе раздела сред распространяются под углами θ_0 и θ_1 внутри плоского поглощающего фотополимерного слоя ($0 \le y \le d$). Также будем считать, что k_0' и k_1' лежат в плоскости ХОҮ. Пространственная геометрия и векторная диаграмма процесса записи представлены для симметричного случая на рис. 3.6 (а,б) и несимметричного – на рис.3.6 (в,г).

Для моделирования использовались первые три пространственные гармоники показателя преломления, аналитические выражения амплитуд которых определены выражениями (2.44).

Как и ранее моделирование проведем для двух областей параметра b, когда вклад диффузии мономера в процесс фотополимеризации является незначительным (b<1) или существенным (b>1). Для данных двух крайних областей b получается существенно различные кинетики формирования решеток.

Рисунок 3.5

Ввиду того, что решения для амплитуд гармоник отличаются от аналогичных для ПГДС только при существенном поглощении, то в основе моделирования процесса записи будем исследовать только влияние поглощения на вид профиля. Так как вектор ДС для ОГДС направлен вдоль *y*, то в отличии от ПГДС нет необходимости исследовать двумерное распределение, т.к. профиль вдоль *x* является однородным. Поэтому для исследования влияния поглощения на вид профиля ДС, на рис.3.6 приведем нормированные пространственно-временные профили $n(\tau, y)/\delta n_p$ решеток в ФПМ. Расчет проведен для *k*=0.5, *b*=0.25 (a), *b*=5 (б), *m*₀=1, *C*_n=2, α_d =3 Неп.

Из рис. .3.6 видно, что неоднородный профиль ДС существенно модифицируется во времени, переходя от вогнутого вдоль *у* (рис. .3.6 а) на начальной стадии формирования к колоколообразному (рис. .3.6 в) на стационарном режиме, что согласуется с результатами моделирования и выводами из пункта 3.1.2. Профиль обоих гармоник для всей области *b* имеет колоколообразный вид. В связи с чем соотношение гармоник вдоль профиля ДС слабо изменяется.

Рисунок 3.6

Трансформация во времени пространственной модуляции связана с изменением соотношению амплитуд пространственных гармоник профиля, что особенно выражено для b=0.25 (рис.3.6 а). Отметим, что синусоидальный вид профиля на начальной стадии формирования на рис..3.6 (а) связано с отставанием формирования второй гармоники от первой. С течением времени амплитуда второй гармоники возрастает, что приводит к отличию вида профиля от синусоидального рис. 3.6 (а). Из рис. 3.6 (б) видно, что для области b>1, как и для ПГДС, вклад высших гармоник является пренебрежимо малым, а огибающая профиля ДС повторяет профиль суммы первой и нулевой гармоник, рассчитанный в пункте 3.1.2.

3.1.4 Многоволновое смешение на высших пространственных гармониках

В данном параграфе разрабатывается модель формирования дополнительной дифракционной решетки (ДДР) в результате многоволнового смешения. В основу рассмотрения положены кинетические уравнения для концентрации мономера *M* и показателя преломления *n* (2.11),(2.12).

Механизм формирования ДДР на высших пространственных гармониках в общем является аналогичным рассмотренному для ПГДР. Основные отличия связанны с тем, что в симметричной геометрии формируются две ДДР на каждой высшей пространственной гармонике с векторами равными K_1 и две с

нулевым вектором решетки, как это видно из векторной диаграммы, представленной на рис.1(а).

В несимметричной геометрии на каждой высшей гармонике, происходит формирование в общем случае четырех ДДР (рис.3.86) с векторами $K_{j0}=k_0-k_j$, $K_{j1}=k_1-k_i, K_{0j}=k_j'-k_0, K_{1j}=k_1-k_j'$.

Рисунок 3.7

Рисунок 3.8

Процедура получения решения для ДДР в общем полностью соответствует описанной в пункте 2.1.7 для ПГДР, поэтому подробные пояснения будет опущены в данном пункте.

Как и для ПГДР, принимая во внимание малость амплитуд ДДР, можно пренебречь их взаимовлиянием и влиянием на пространственные гармоники решетки. Интерференционная картина в ФПМ может быть записана в виде:

$$I(\mathbf{r}) = I_0 \begin{pmatrix} 1 + me^{-i\cdot\mathbf{K}_1\mathbf{r}} + \frac{E_0E_2^*}{I_0}e^{-i\mathbf{K}_{20}\mathbf{r}} + \frac{E_1E_2^*}{I_0}e^{-i\mathbf{K}_{21}\mathbf{r}} + \\ + \frac{E_0E_2^{\prime*}}{I_0}e^{-i\mathbf{K}_{02}\mathbf{r}} + \frac{E_1E_2^{\prime*}}{I_0}e^{-i\mathbf{K}_{12}\mathbf{r}} + \dots + c.c. \end{pmatrix},$$
(3.10)

где $I_0 = I^0 + I^1$, $I^j = |E_j|^2$, j = 0,1; $m = 2\sqrt{I^0 I^1} \cdot (e_1 \cdot e_0)/(I^0 + I^1)$ - контраст интерференционной картины; $K_1 = |K_1|$, $K_1 = k_0 - k_1$ – вектор решетки, *r*-радиусвектор, E_j – амплитуды, k_j - волновые вектора и e_j – вектора поляризации падающих записывающих волн.

Общее решение задачи будем искать в виде:

$$M = 0.5 \begin{cases} \sum_{j=0}^{N} M_{j}(\mathbf{r},t)e^{-iK_{j}r} + M_{1}^{20}(\mathbf{r},t)e^{-iK_{20}r} + M_{1}^{21}(\mathbf{r},t)e^{-iK_{21}r} + \\ + M_{1}^{02}(\mathbf{r},t)e^{-iK_{02}r} + M_{1}^{12}(\mathbf{r},t)e^{-iK_{12}r} + c.c. \end{cases},$$

$$n = n_{st} + 0.5 \begin{cases} \sum_{j=0}^{N} n_{j}(\mathbf{r},t)e^{-iK_{j}r} + n_{1}^{20}(\mathbf{r},t)e^{-iK_{20}r} + n_{1}^{21}(\mathbf{r},t)e^{-iK_{21}r} + \\ + n_{1}^{02}(\mathbf{r},t)e^{-iK_{02}r} + n_{1}^{12}(\mathbf{r},t)e^{-iK_{12}r} + c.c. \end{cases}.$$

$$(3.11)$$

где M_j , n_j – амплитуды гармоник концентрации мономера и показателя преломления основной решетки, M_{20} , M_{21} , M_{02} , M_{12} , n_{20} , n_{21} , n_{02} , n_{12} – амплитуды первых гармоник концентрации мономера и показателя преломления ДДР.

Принимая во внимание малость амплитуд ДДР, можно пренебречь их влиянием на гармоники основной решетки и разделить рассматриваемую задачу на две части. Это позволяет в первой части найти решение для пространственных гармоник основной решетки и, используя его, решить задачу формирования ДДР.

ДДР формируются результате интерференции В падающих записывающих волн С волнами, дифрагированными на высших пространственных гармониках основной решетки. Принимая во внимание малость дифрагированных волн, можно не учитывать изменения падающих записывающих волн и ограничить рассмотрение дифрагированными волнами на рассматриваемой высшей пространственной гармонике E_l, E'_l

$$\begin{cases} \frac{\partial E_{l}}{\partial y} = iG_{l} \Big(E_{0} n_{l}(\tau) e^{-i\Delta K_{0l}y} + E_{1} n_{l-1}(\tau) e^{-i\Delta K_{0l}y} + E_{0} n_{1}^{l0}(\tau, y) + E_{1} n_{1}^{l1}(\tau, y) \Big) \\ \frac{\partial E_{l}'}{\partial y} = iG_{l} \Big(E_{0} n_{l}(\tau) e^{-i\Delta K_{0l}'y} + E_{1} n_{l-1}(\tau) e^{-i\Delta K_{0l}'y} + E_{0} n_{1}^{0l}(\tau, y) + E_{1} n_{1}^{l1}(\tau, y) \Big) \end{cases}$$
(3.12)

где $G_l = \pi/(\lambda \cos \theta_l)$, λ - длина волны света в ФПМ, $n_l(\tau)$ - l-тая гармоника n, определенная в решении для основной решетки с учетом $\alpha d \approx 0$ (l > 1), $n_1^{j}(\tau, y)$ – первая гармоника j-той ДДР показателя преломления n, индекс j = l0, l1, 0l, 1l – соответствует рассматриваемой ДДР с волновым вектором K_j , формируемой одной из записывающих волн и волной, дифрагированной на l-той пространственной гармонике ОГДР, $\Delta K_{0l} = |\Delta K_{0l}|$ – модуль вектора фазовой расстройки (см. рис.3.8), $\tau = t/T_m$ – относительное время, $T_m = 1/(K_1^2 D_m)$ – время диффузии, D_m - коэффициент диффузии, $K_1 = |K_1|$.

Учитывая малость амплитуд ДДР, можно пренебречь их взаимовлиянием. Используя методику из подраздела 3.1.3 [64,65], где кинетические уравнения записи дополняются дифракционным уравнением в приближении заданного поля и без учета поглощения, запишем интегродифференциальные кинетические уравнения записи для ДДР с вектором *K*₁₁:

$$\begin{cases} \frac{\partial}{\partial \tau} M_1^{l0}(\tau, y) = -r_{l0}^2 M_1^{l0}(\tau, y) - \frac{2^k}{b} \left[2k M_0(\tau) \frac{E_0 E_l^*(\tau, y)}{E_0^2 + E_1^2} + M_1^{l0}(\tau, y) \right] \\ \frac{\partial}{\partial \tau} n_1^{l0}(\tau, y) = \delta n_p \frac{2^k}{b} \left[2k \frac{M_0(\tau)}{M_n} \frac{E_0 E_l^*(\tau, y)}{E_0^2 + E_1^2} + \frac{M_1^{l0}(\tau, y)}{M_n} \right] - \delta n_i r_{l0}^2 \frac{M_1^{l0}(\tau, y)}{M_n} \end{cases}$$
(3.13)

где $E_l(\tau, y)$ - определяется решением системы (3.12) в приближении заданного поля и учетом $|n_1^{\ 1}| < |n_{l-1}|$; $M_0(\tau)$ – нулевая гармоника M, определенная в решении для основной решетки выражениями с учетом $\alpha d \approx 0$; $M_1^{\ 10}(\tau, y)$, – первая гармоника дополнительной решетки концентрации мономера с вектором $K_{l0}, r_{l0} = K_{l0}/K_1, K_{l0} = |K_{l0}|$.

Для решения (3.13) используем интегральное преобразование Лапласа по пространственной координате *у*

$$\begin{cases} \frac{\partial}{\partial \tau} M_{1}^{l0}(\tau, p) = -r_{l0}^{2} M_{1}^{l0}(\tau, p) - \frac{2^{k}}{b} M_{1}^{l0}(\tau, p) + \\ + 2i \frac{2^{k}}{b} M_{0}(\tau) \frac{k}{1+m_{0}} \left\{ G_{l} \frac{n_{l}^{l0}(\tau, p)}{p} + H(\tau, p) \right\} \\ \frac{\partial}{\partial t} n_{1}^{l0}(\tau, p) = -\delta n_{i} r_{l0}^{2} \frac{M_{1}^{l0}(\tau, p)}{M_{n}} + \delta n_{p} \frac{2^{k}}{b} \frac{M_{1}^{l0}(r, \tau)}{M_{n}} - \\ - 2i \frac{2^{k}}{b} \frac{M_{0}(\tau)}{M_{n}} \frac{k}{1+m_{0}} \left\{ G_{l} \frac{n_{l}^{l0}(\tau, p)}{p} + H(\tau, p) \right\} \end{cases}$$
(3.14)

где введены обозначения
$$H(\tau,p) = L\{H(\tau,y)\} = L\{H(\tau,y)\} = L\{M_0(\tau) \int_0^{d-y} \{n_l(\tau) + \sqrt{m_0} n_{l-1}(\tau)\} e^{-i\Delta K_{0l}y'} dy' \}, F_1 = r_{l0}^2 + \frac{2^k}{b}, F_2 = -\frac{2^k}{b} \frac{2iG_l k \delta n_p}{1+m_0}, m_0 = E_1^2 / E_0^2.$$

Учитывая, что функция $n_1^{l0}(\tau, y)$ является медленно меняющейся по сравнению с $M_0 \cdot \exp(-F_1 \cdot \tau)$ [64,65], и используя начальное условие $M_1^{l0}(\tau=0)=0$ и теорему о среднем для определенного интеграла $\int_a^b \varphi(x) f(x) dx = \varphi(\xi) \int_a^b f(x) dx$, где $a \le \xi \le b$, получим следующее решение для первого уравнения из (3.14):

$$M_{1}^{l0}(\tau,p) = -\frac{F_{2}e^{F_{1}\tau}}{\delta n_{p}} \frac{n_{1}^{l0}(\tau,p)}{p} \int_{0}^{\tau} M_{0}(\tau')e^{-F_{1}\tau'} d\tau' - \frac{F_{2}e^{F_{1}\tau}}{\delta n_{p}} \int_{0}^{\tau} H(\tau',p)e^{-F_{1}\tau'} d\tau'.$$
(3.15)

Подставляя полученное решение (3.15) во второе уравнение из (3.14) и используя обратное интегральное преобразование Лапласа по пространственной координате *y*, решение для $n_1^{10}(\tau, y)$ запишем в виде:

$$n_{l0}(\tau, y) = F_2 \int_0^{\tau} \left\{ Q(\tau', y) + \int_0^{d-y} Q(\tau', y') \cdot H_0(\tau', \tau, y - y') \right\} d\tau', \qquad (3.16)$$

где $Q(\tau, y) = \left(C_n r_{l0}^2 - \frac{2^k}{b}\right) e^{F_l \tau} \int_0^{\tau} \frac{H(\tau', y)}{M_n} e^{-F_l \tau'} d\tau' - \frac{H(\tau, y)}{M_n}, \quad C_n = \delta n_i / \delta n_p,$ $H_0(\tau', \tau, y) = 1 + \sqrt{\frac{F_2}{d - y}} \int_{\tau'}^{\tau} R(\tau'') d\tau'' \cdot J_1 \left[2\sqrt{F_2(d - y)} \int_{\tau'}^{\tau} R(\tau'') d\tau''\right],$ $R(\tau) = \left(C_n r_{l0}^2 - \frac{2^k}{b}\right) \cdot e^{F_l \tau} \int_0^{\tau} \frac{M_0(\tau')}{M_n} e^{-F_l \tau'} d\tau' - \frac{M_0(\tau)}{M_n},$

$$H(\tau, y) = M_0(\tau) \int_0^{d-y} \left(n_l(\tau) + \sqrt{m_0} n_{l-1}(\tau) \right) e^{-i\Delta K_{0l} y'} dy', J_1(x) - \phi y \text{нкция Бесселя}$$

Таким образом, выражение (3.16) определяет временную динамику пространственного распределения амплитуды ДДР с вектором решетки K_{10} , образованной дифрагированной записывающими волнами И на *l*-той пространственной гармонике ОГДР. Из решения видно, что ДДР в отличии от основной пространственно гармоник решетки имеет неоднородные распределения амплитуды и фазы вдоль глубины решетки даже в отсутствии поглощения.

Проведя аналогичную процедуру решения для ДДР с вектором решетки *К*₁₁ можно получить следующие решения:

$$n_1^{l1}(\tau, y) = F_2 \int_0^{\tau} \left\{ Q(\tau', y) + \int_0^{d-y} Q(\tau', y') \cdot H_0(\tau', \tau, y - y') \right\} d\tau', \qquad (3.17)$$

где $H_0(\tau', \tau, y) = 1 + \sqrt{\frac{F_2\sqrt{m_0}}{d-y}} \int_{\tau'}^{\tau} R(\tau'') d\tau'' \cdot J_1 \left[2\sqrt{F_2\sqrt{m_0}} (d-y) \int_{\tau'}^{\tau} R(\tau'') d\tau'' \right], \quad H(\tau, y)$ полностью

совпадает с приведенным в (3.16), а $Q(\tau, y)$ и $R(\tau, y)$ совпадают с приведенными в (3.16) с точностью до замены r_{l0} на $r_{l1}=K_{l1}/K_1$.

Проведя аналогичную процедуру решения для ДДР с вектором решетки *К*₁₁ можно получить следующие решения:

$$n_1^{l1}(\tau, y) = F_2 \int_0^{\tau} \left\{ Q(\tau', y) + \int_0^y Q(\tau', y') \cdot H_0(\tau', \tau, y - y') \right\} d\tau', \qquad (3.18)$$

где
$$H_0(\tau', \tau, y) = 1 + \sqrt{\frac{F_2 \sqrt{m_0}}{y}} \int_{\tau'}^{\tau} R(\tau'') d\tau'' \cdot J_1 \left[2\sqrt{F_2 \sqrt{m_0}} y \int_{\tau'}^{\tau} R(\tau'') d\tau'' \right], \quad H(\tau, y)$$
 полностью

совпадает с приведенным в (3.16), а $Q(\tau, y)$ и $R(\tau, y)$ совпадают с приведенными в (3.16) с точностью до замены r_{l0} на $r_{l1}=K_{l1}/K_1$.

Решения для ДДР с векторами K_{0l} совпадают с решениями (3.16) для ДДР с векторами K_{0l} с точностью до замены r_{l0} на $r_{0l} = K_{0l}/K_1$ и $H(\tau, y) = M_0(\tau) \int_{0}^{d-y} (n_{l-1}(\tau) + \sqrt{m_0} n_l(\tau)) e^{-i\Delta K'_{0l}y'} dy'.$ Аналогично, решения для ДДР с векторами K_{1l} совпадают с решениями (3.17) для ДДР с векторами K_{1l} с точностью до замены r_{l1} на $r_{1l} = K_{1l}/K_1$ и $H(\tau, y) = M_0(\tau) \int_0^{d-y} (n_{l-1}(\tau) + \sqrt{m_0} n_l(\tau)) e^{-i\Delta K'_{0l}y'} dy'.$

На рис.3.9 представлены результаты расчета модуля и аргумента пространственного профиля решетки с волновым вектором K_{20} при $C_n=2$, $\delta n_p=0.01, \theta_0=80^0, \theta_1=85^0$ (в воздухе), $\theta_2=74^0, d=85$ мкм, $\Delta K_{02}=71.4$.

Из рис.3.9(а,б) видно, что решетка $n_1^{20}(\tau,y)$ имеет неравномерный квазипериодический амплитудно-фазовый пространственный профиль. Наличие фазовой составляющей профиля ДДР приводит к образованию дополнительного максимума угловой селективности в угловом положении соответствующем порождающей гармонике ОГДР (рис. 3.9б).

Амплитуда ДДР может быть сравнима с амплитудой порождающей гармоники при малых величинах угла записи (θ_0 , θ_1) и толщины материала (d). С увеличением d и θ_0 , θ_1 период осцилляции профиля ДДР вдоль y уменьшается, как и амплитуда ДДР. Необходимо отметить, что неоднородность фазового фронта приводит к пространственной неоднородности направления вектора решетки.

Расчеты также показали, что для решетки с вектором K_{12} амплитуднофазовый профиль $n_1^{12}(\tau, y)$ совпадает с приведенными на рис. 3.9 (а,б). Для иллюстрации на рис.3.10 приведем двумерные контурные графики пространственных профилей, как гармоник основной решетки, так и первых гармоник ДДР образованных на второй пространственной гармонике.

Рисунок 3.10

Необходимо особенности основные пространственных отметить профилей ДДР. Во-первых, профили ДДР имеют двумерное квази периодическое амплитудное распределение, а, во-вторых, неоднородность фазовой составляющей профиля ДДР приводит к повороту вектора решетки и искажению фазового фронта.

3.2 Дифракционные свойства пространственно неоднородных ОГДР

Рассмотрим процесс считывания ДР произвольно поляризованным

монохроматическим световым пучком в пренебрежении остаточным поглощением ФПМ

$$\boldsymbol{E}_{r}(t,\boldsymbol{r}) = \sum_{i=s,p} \int \boldsymbol{e}_{0}^{i} \boldsymbol{E}_{r}^{i}(\boldsymbol{k}_{0}) \cdot \exp[i \cdot (\boldsymbol{\omega} \cdot \boldsymbol{t} - \boldsymbol{k}_{0} \cdot \boldsymbol{r})] d\boldsymbol{k}_{\tau 0} + \hat{\boldsymbol{e}}.\tilde{\boldsymbol{n}}.$$
(3.19)

где $E_r^i(k_0)$ - угловой спектр (УС), $k_{\tau 0} = k \Delta \theta_0$ – тангенсальная компонента волнового вектора k_0 , связанная с углом отклонения $\Delta \theta_0$ плосковолновой компоненты углового спектра от оси пучка k_0' .

Пространственная и векторная геометрия процесса считывания представлена на рис.3.11 для двух дифракционных порядков.

Рисунок 3.11

Световое поле E в области ФПМ в силу дифракции считывающего пучка E_r (3.19) на пространственных гармониках решетки можно записать в виде суммы N+1 световых пучков E_i

$$\boldsymbol{E}(t,\boldsymbol{r}) = \sum_{j=0}^{N} \boldsymbol{E}_{j} = \frac{1}{2} \left\{ \sum_{i=s,p} \sum_{j=0}^{N} \int \boldsymbol{e}_{j}^{i} \boldsymbol{E}_{j}^{i}(\boldsymbol{r},\boldsymbol{k}_{j}) \cdot \exp\left[i \cdot (\boldsymbol{\omega} \cdot \boldsymbol{t} - \boldsymbol{k}_{j} \cdot \boldsymbol{r})\right] d\boldsymbol{k}_{\tau j} + \hat{\boldsymbol{e}}.\tilde{\boldsymbol{n}}. \right\},$$
(3.20)

каждый из которых представлен двумя составляющими вектора напряженности E_j в соответствующем ортогональном поляризационном базисе, заданном двумя ортами e_j^p и e_j^s , лежащими в плоскости, перпендикулярной оси пучка E_j . Здесь $E_j^i(\mathbf{r}, \mathbf{k}_j)$ – медленно меняющиеся амплитуды плосковолновых составляющих угловых спектров компонент $E_j e_j^i$, j=0 соответствует проходящему пучку, j=1..N – дифрагированному пучку на решетке с $K_j=j\cdot K_1$, причем e_j^p лежит в плоскости дифракции ХОҮ, а e_j^s - перпендикулярен ей (см. рис.3.11).

Напряженность электрического поля *E*(*t*,*r*) в области взаимодействия описывается векторным волновым уравнением, следующим из уравнений Максвелла

rot rot
$$\boldsymbol{E}(t,\boldsymbol{r}) = -\mu_0 \varepsilon_0 \frac{\partial^2}{\partial t^2} [\varepsilon(t,\boldsymbol{r}) \cdot \boldsymbol{E}(t,\boldsymbol{r})],$$
 (3.21)

где возмущение диэлектрической проницаемости є представляется в виде

$$\varepsilon(t,\mathbf{r}) = \varepsilon_0 + \Delta\varepsilon(t,\mathbf{r}) = \varepsilon_0 + 0.5n_{st} \left[n_0(t,\mathbf{r}) + \sum_{j=1}^N n_j(t,\mathbf{r}) e^{i\mathbf{K}_j \cdot \mathbf{r}} + \hat{e}.\tilde{n} \right], \qquad (3.22)$$

где $\varepsilon_0 = n_{st}^2$, $n_j(y)$ - определены решениями, полученными ранее при рассмотрении процесса записи ОГДР.

Подставляя выражения (3.20) и (3.22) в (3.21) и следуя методу медленноменяющихся амплитуд (MMA), получим две независимых системы уравнений связанных волн для амплитуд плосковолновых составляющих УС перпендикулярных E^s и тангенсальных E^p компонент поля E, определяемых с точностью до $\Delta \varepsilon / \varepsilon_0$ [79]:

$$\begin{cases} \frac{d\mathring{A}_{0}^{i}(y,\Delta\theta_{0},\Delta\lambda)}{dy} = G_{0}^{i}\sum_{j=1}^{N}n_{j}(y)\cdot\mathring{A}_{j}^{i}(y,\Delta\theta_{j},\Delta\lambda)\cdot e^{i\cdot\Delta K_{j}(\Delta\theta_{j},\Delta\lambda)y} \\ \frac{d\mathring{A}_{1}^{i}(y,\Delta\theta_{1},\Delta\lambda)}{dy} = G_{1}^{i}n_{1}(y)\cdot\mathring{A}_{0}^{i}(y,\Delta\theta_{0},\Delta\lambda)\cdot e^{-i\cdot\Delta K_{1}(\Delta\theta_{1},\Delta\lambda)y} \\ \frac{d\mathring{A}_{N}^{i}(y,\Delta\theta_{N},\Delta\lambda)}{dy} = G_{N}^{i}n_{N}(y)\cdot\mathring{A}_{0}^{i}(y,\Delta\theta_{0},\Delta\lambda)\cdot e^{-i\cdot\Delta K_{N}(\Delta\theta_{N},\Delta\lambda)y} \end{cases}$$
(3.23)

где индекс *i=s* соответствует взаимодействию *s*-компонент, *i=p* - *p*-компонент; $G_j^s = ik/(2\cos(\theta_j)), G_j^p = -ik/(2\cos^2(\theta_j)), \Delta\theta_j = \Delta\theta_j(\Delta\theta_0, \Delta\lambda)$, отклонение длины волны считывания от условий Брэгга.

Принимая во внимание граничные условия $E_0^{s,p}(y=0,\Delta\theta_0,\Delta\lambda) = E_r^{s,p}(\Delta\theta_0,\Delta\lambda)$, $E_j^{s,p}(y=d,\Delta\theta_0,\Delta\lambda) = 0$ и учитывая малость амплитуд гармоник $n_j(y) \sim \delta n_p << n_{st}$, решение системы (3.23) запишем с помощью метода возмущений [80] в матричном виде:

$$\boldsymbol{E}_{j}(\boldsymbol{y},\Delta\boldsymbol{\theta}_{j},\Delta\boldsymbol{\lambda}) = \boldsymbol{T}_{j}(\boldsymbol{y},\Delta\boldsymbol{\theta}_{j},\Delta\boldsymbol{\lambda})\boldsymbol{E}_{r}(\Delta\boldsymbol{\theta}_{0},\Delta\boldsymbol{\lambda}), \qquad (3.24)$$

где

$$\boldsymbol{E}_{j}(\boldsymbol{y},\Delta\boldsymbol{\theta}_{j},\Delta\boldsymbol{\lambda}) = \begin{pmatrix} E_{j}^{p}(\boldsymbol{y},\Delta\boldsymbol{\theta}_{j},\Delta\boldsymbol{\lambda}) \\ E_{j}^{s}(\boldsymbol{y},\Delta\boldsymbol{\theta}_{j},\Delta\boldsymbol{\lambda}) \end{pmatrix}, \quad \boldsymbol{E}_{r}(\Delta\boldsymbol{\theta}_{0}) = \begin{pmatrix} E_{r}^{p}(\Delta\boldsymbol{\theta}_{0},\Delta\boldsymbol{\lambda}) \\ E_{r}^{s}(\Delta\boldsymbol{\theta}_{0},\Delta\boldsymbol{\lambda}) \end{pmatrix},$$
$$\boldsymbol{T}_{j}(\boldsymbol{y},\Delta\boldsymbol{\theta}_{j},\Delta\boldsymbol{\lambda}) = \begin{pmatrix} T_{j}^{p}(\boldsymbol{y},\Delta\boldsymbol{\theta}_{j},\Delta\boldsymbol{\lambda}) & 0 \\ 0 & T_{j}^{s}(\boldsymbol{y},\Delta\boldsymbol{\theta}_{j},\Delta\boldsymbol{\lambda}) \end{pmatrix}, \quad \boldsymbol{j=0..N}; \text{ компоненты } T_{j}^{p} \text{ и } T_{j}^{s} \text{ являются}$$

когерентными передаточными функциями для *p* и *s* – компонент и задаются выражениями

$$T_{0}^{i}(y,\Delta\theta_{0},\Delta\lambda) = \sum_{k=0}^{\infty} T_{0,2k}^{i}(y,\Delta\theta_{0},\Delta\lambda) \left(\delta n_{p} / n_{st}\right)^{2k},$$

$$T_{j}^{i}(y,\Delta\theta_{j},\Delta\lambda) = \sum_{k=0}^{\infty} T_{j,2k+1}^{i}(y,\Delta\theta_{j},\Delta\lambda) \left(\delta n_{p} / n_{st}\right)^{2k+1},$$
(3.25)

а коэффициенты $T_{0,2k}^i$, $T_{j,2k+1}^i$ определяются рекуррентными соотношениями

$$T_{0,2k}^{i}(y,\Delta\theta_{0},\Delta\lambda) = G_{0}^{i} \int_{0}^{d-y} \sum_{j=1}^{N} n_{j}'(y') T_{j,2k-1}^{i}(y',\Delta\theta_{j},\Delta\lambda) e^{i\Delta K_{j}(\Delta\theta_{j},\Delta\lambda)y'} dy',$$

$$T_{j,2k+1}^{i}(y,\Delta\theta_{j},\Delta\lambda) = G_{j}^{i} \int_{0}^{d-y} n_{j}'(y') T_{0,2k}^{i}(y',\Delta\theta_{0},\Delta\lambda) e^{-i\Delta K_{j}(\Delta\theta_{j},\Delta\lambda)y'} dy',$$
(3.26)

 $T_{0,0}^{i}(y,\Delta\theta_{0},\Delta\lambda) = 1, n_{j}'(y) = n_{j}(y)/\delta n_{p}.$

Таким образом, соотношения (3.24)-(3.26)являются решением самосогласованной дифракционной задачи исследовать И позволяют дифракционную эффективность свойства ПГДР И селективные при произвольных амплитудах И количестве гармоник пространственнонеоднородной решетки показателя преломления, а также при произвольных поляризации и амплитудно-фазовом распределении считывающего пучка.

3.2.1 Дифракционная эффективность и селективные свойства

Дифракционную эффективность в *j*-том порядке определим как отношение потока энергии *j*-го дифрагированного пучка к потоку энергии считывающего пучка в направлении нормали к границе раздела сред (вдоль оси у). Учитывая, что каждой монохроматической волне с комплексной векторной Пойтинга амплитудой E_i можно сопоставить вектор $\boldsymbol{S}_{j} = c / (2\pi) \boldsymbol{N}_{j} \int (\boldsymbol{E}_{j} \cdot \boldsymbol{E}_{j}^{*}) d(\Delta \boldsymbol{\theta}_{j}),$ запишем дифракционной выражение для эффективности в виде: $\eta_{d,i} = (\boldsymbol{S}_i \cdot \boldsymbol{y}_0) / (\boldsymbol{S}_0 \cdot \boldsymbol{y}_0).$ где y_0 – единичный вектор вдоль оси y, N_j – нормаль вдоль оси j-го пучка (см. рис.3.11).

Для исследования зависимости дифракционной эффективности в *j*-том (*j*=1..*N*) дифракционном порядке от угла падения считывающего пучка и селективных свойств дифракционной решетки необходимо получить соотношения для модулей векторов фазовой расстройки $\Delta K_j = \Delta K_{0j} + \Delta K'_j$ в (3.23) от θ_0 и $\Delta \theta_0$ в явном виде. Для этого запишем векторные соотношения фазового синхронизма для центральной угловой компоненты УС ($\Delta \theta_0=0$) *j*-го дифрагированного пучка (см. рис. 3.11, для *j*=1,2)

$$\boldsymbol{k}'_{j} = \boldsymbol{k}'_{0} + j\boldsymbol{K}_{1} + \Delta \boldsymbol{K}_{0j}, \qquad (3.27)$$

и текущей компоненты УС ($\Delta \theta_0 \neq 0$)

$$\boldsymbol{k}_{j} = \boldsymbol{k}_{0} + j\boldsymbol{K}_{1} + \Delta \boldsymbol{K}_{0j} + \Delta \boldsymbol{K}_{j}^{\prime}. \qquad (3.28)$$

Далее запишем (3.27) для проекций векторов на оси координат. Из уравнения для проекций на ось *x*, определим угловые положения центральных компонент УС

$$\theta_{j} = \frac{\pi}{2} - \arccos\left[\frac{k_{0x} + K_{jx}}{k}\right]$$

$$\theta_{j}(\theta_{0}, \gamma) = \pi/2 - \arccos\left[(j-1)\sin(\theta_{0}) - j\sin(\theta_{0} - 2\gamma)\right]$$
(3.29)

Подставляя (3.29) в уравнение для проекций на ось *у*, найдем модули векторов начальной фазовой расстройки:

$$\Delta K_{0j} = k'_{jy} - jK_{1y} - k'_{0y},$$

$$\Delta K_{0j}(\theta_0, \gamma) = k \left\{ \cos(\pi - \theta_j) - j\cos(\pi - \theta_0 + 2\gamma) + (j - 1)\cos(\theta_0) \right\}.$$
(3.30)

Используя разложение векторов $k_j = k'_j + P_j \Delta \theta_j k'_j$ в ряд Тейлора вблизи направлений k'_j в (3.28) и учитывая (3.27) и (3.29), определим фазовые расстройки $\Delta K'_j$ и угловые положения $\Delta \theta_j$ текущих компонент УС дифракционных порядков, взаимодействующих с угловой компонентой считывающего пучка, отклоненной от его оси на угол $\Delta \theta_0$:

$$\Delta K'_{j}(\Delta \theta_{0}) = -\Delta \theta_{0} k'_{0} \frac{(\boldsymbol{P}_{0} \cdot \boldsymbol{N}_{j})}{(\boldsymbol{q} \cdot \boldsymbol{N}_{j})}, \quad \Delta K'_{j}(\Delta \theta_{0}) = -\Delta \theta_{0} k'_{0} \frac{\cos(\pi/2 - \theta_{0} - \theta_{j})}{\cos(\gamma + \theta_{j})}, \quad (3.31)$$

$$\Delta \theta_{j}(\Delta \theta_{0}) = \Delta \theta_{0} \frac{P_{0x}}{P_{jx}}, \quad \Delta \theta_{j}(\Delta \theta_{0}) = \Delta \theta_{0} \frac{\cos(\theta_{0})}{\cos(\theta_{j})}.$$
(3.32)

где P_j – единичный вектор, указывающий направление смещения волнового вектора *j*-ой волны от начального направления k'_j (см. рис.3.11б), $q = K_1/|K_1|$.

При отклонении длины волны считывания от условий Брэгга на $\Delta\lambda$

используем, как и ранее, разложение в ряд Тейлора вблизи начальных направлений k'_i

$$\boldsymbol{k}_{0} = \boldsymbol{k}_{0}' + 2\pi n \boldsymbol{N}_{0} \frac{\Delta \lambda}{\lambda^{2}}, \qquad \boldsymbol{k}_{j} = \boldsymbol{k}_{j}' + 2\pi n \boldsymbol{N}_{j} \frac{\Delta \lambda}{\lambda^{2}} + \boldsymbol{P}_{j} \Delta \boldsymbol{\theta}_{j} \boldsymbol{k}_{j}', \qquad (3.33)$$

где *j*=1..*N*.

Тогда, подставляя (3.33) в (3.28) и учитывая (3.27) и (3.29), можно получить следующие соотношения

$$\Delta \mathbf{K}_{j}'(\Delta \lambda) = k_{0}' \frac{\Delta \lambda}{\lambda} \mathbf{N}_{j} \left\{ 1 - (\mathbf{N}_{0} \cdot \mathbf{N}_{j}) \right\},$$

$$\Delta \mathbf{K}_{j}'(\Delta \lambda) = -\frac{\Delta \lambda}{\lambda} k_{0}' \left(1 - \frac{\cos(\pi - \theta_{0} - \theta_{j})}{\cos(\pi - \theta_{j})} \right),$$

(3.34)

$$\Delta \theta_{j}(\Delta \lambda) = \frac{\Delta \lambda}{\lambda} \frac{N_{0x} - N_{jx}}{P_{jx}}, \quad \Delta \theta_{j}(\Delta \theta_{0}) = \frac{\Delta \lambda}{\lambda} \frac{\cos(\pi + \theta_{0}) + \cos(\pi + \theta_{j})}{\cos(\theta_{j})}.$$
(3.35)

3.2.2 Дифракционные свойства ОГДР в поглощающем ФПМ

На практике информация о кинетике профиля решеток определяется из кинетики дифракционной эффективности $\eta_d(\tau)$, которая, являясь интегральной характеристикой, учитывает неоднородность профиля $n_i(y)$.

На рис. 3.12 приведены графики динамики дифракционных характеристик: эффективности дифракции $\eta_d(\tau)$ (а,б), ширины полосы пропускания $2\Delta_{0,5}$ (в,г), уровня первого бокового лепестка $\eta_{d_{SL}}$ [dB] (д,е). Все характеристики рассчитаны для $C_n=2$, s=1, $\delta n_p=0.004$, d=20мкм, $\theta_0=\theta_1=10^0$, b=0.25 (а,в,д), b=5 (б,г,е). На рис. 3.12 использованы следующие обозначения: кривая 1 - $\alpha_d \approx 0$ Неп и $m_0=1$, кривая 2 - $\alpha_d \approx 2$ Неп и $m_0=1$, кривая 3 - $\alpha_d=4$ Неп и $m_0=1$.

Увеличение поглощения в области b < 1 при $m_0=1$, как видно из рис. 3.12 а (кривые 1-3), приводит к увеличению времен достижения максимального и стационарного значений η_d записываемой ДС и величины η_d на стационарном уровне, в то время как величина максимального значения η_d уменьшается. Уменьшение максимального значения обусловлено снижением локального контраста m_y , что приводит к снижению амплитуды ДС, а увеличение стационарного уровня можно объяснить увеличением b_y , приводящее к затягиванию кинетики и увеличению вклада диффузии мономера в процесс полимеризации.

При b>1 диффузия мономера происходит достаточно быстро, поэтому увеличение поглощения приводит к дальнейшему увеличению локального $b_y>b$, что сказывается на замедлении полимеризации.

Рисунок 3.12 – Дифракционные характеристики ОГДС

Для $m_0>0.5$ для отражающих решеток, поглощение приводит к уменьшению дифракционной эффективности, особенно для b>1, за счет увеличению влияния поглощения на локальный контраст записываемой интерференционной картины.

Для *b*<1 (рис3.12 в,д) все изменения дифракционных характеристик обусловлены в основном только неоднородностью профиля, т.к. влияние амплитуды ДС и следовательно $\eta_d(\tau,0)$ на данные характеристики, как видно из зависимости, показанной кривыми 1 на рис..3.12 (в,д) (равномерный профиль, т.к. α_d =0 Hen), пренебрежимо мало в сравнении с влиянием неравномерности профиля. Из чего можно заключить, что неоднородность профиля приводит к существенному увеличению полосы пропускания и снижению уровня первого бокового лепестка. Первое обусловлено уменьшением эффективной длины ДС, за счет уменьшения амплитуды ДС от *y*/*d*=0.5 к *y*/*d*=0 и от *y*/*d*=1, что также можно характеризовать как уменьшение скорости нарастания амплитуды на периферийных участках ДС, приводящее в свою очередь и к уменьшению уровня боковых лепестков.

Присутствие ЖК при *b*<1 приводит к уменьшению спада ДЭ на стационарном уровне, а также отсутствию локальных максимумов (минимумов) в $2\Delta_{0,5}(\tau)$, $\Delta\eta_{d_{SL}}(\tau)$.

В отсутствии поглощения для b>1 (рис.3.12 (г,е), кривые 1) можно проследить влияние амплитуды ДС на ее селективные свойства, т.к. пространственный профиль в данном случае является равномерным. Сравнение кривых 2, 3 с 1 на рис.3.12 (г,е) показывает, что поглощение приводит к дальнейшему увеличению полосы пропускания и снижению уровня первого бокового лепестка, что можно связать с локализацией профиля ДС в области 0.3 < y/d < 0.7 (см. рис. 3.12 б), приводящей к уменьшению эффективной длины взаимодействия света с решеткой. Данное влияние поглощения на селективные свойства аналогично случаю с b < 1, т.к. длина область эффективного взаимодействия остается практически без изменения для всех b.

Разрыв в зависимости бокового лепестка при $\alpha d=4$ Hen (рис. 3.12 (е),

кривая 3), обусловлен тем, что первый лепесток уменьшается по величине и ширине под влиянием расширяющегося основного лепестка и неподвижного второго (см. сплошная линия на рис. 3.12 (в). В некоторый момент, второй боковой лепесток становится первым, как видно из сравнения сплошной и штрих линий на рис. 3.12 (в), а затем проявляется и заплывание минимумов характеристики (сплошная линия на рис. 3.12 в).

Перейдем к рассмотрению влияния фотоиндуцированного изменения поглощения на дифракционные характеристики ОГДС . Как и для ПГДС промоделируем случай, когда за время записи затухание изменяется от 4 Неп до нуля. На рис.3.13 представлены дифракционные характеристики $\eta_d(\tau)$, $2\Delta_{0,5}(\tau)$, $\Delta\eta_{d_SL}(\tau)$ для $C_n=2$, s=1, $\delta n_p=0.004$, d=20мкм, $\theta_0=\theta_1=10^0$, $\alpha_2d\approx0$ и $\alpha_1d=0$ (кривые 1), $\alpha_2d=4$ Неп и $\alpha_1d=0$ (кривые 2), $\alpha d=4$ Неп и $\alpha_1d=1.4$ Неп (кривые 3).

Рисунок 3.13

Как видно из рис.3.13, фотоиндуцированное изменение поглощения приводит все характеристики к некоторому среднему между случаем с постоянным затуханием и случаем без затухания. Данное поведение присуще для всей области параметра *b*.

3.2.3 Дифракционные свойства с учетом самодифракции при малом контрасте

На рис.3.4 приведены модуль (а) и аргумент (б) нормированного пространственного профиля ДС, рассчитанные по полученным выражениям На рис. 3.4 (в) приведены кривые нормированной угловой селективности,

рассчитанные для случая с $C_n=2$, $\delta n_p=0.014$, k=0.5, $m_0=0.01$, d=20мкм, $\theta_0=\theta_1=10^0$, b=5 (a, б), соответствующему модулю и аргументу нормированного пространственного профиля ДС на рис.3.4.

Рисунок 3.14

Из рис. 3.14 видно, что смещение максимума ДЭ составило ~50% от полуширины основного максимума, что связанно с неоднородностью $\arg(n_1(y))$, вызванного двухволновым смешением. В тоже время для ПГДС данное смещение не более 25% в композиционном материале с ЖК.

Однако в отсутствие ЖК смещение для ПГДС составляло 10%, а для ОГДС 50%. Т.о. наличие ЖК приводит к увеличению смещения максимума только ДС.

Неоднородность амплитудного профиля ДС приводит к заплыванию минимумов ДС, как видно из кривой в логарифмическом масштабе.

На рис. 3.15(а) приведены кривые дифракционной эффективности на стационарном уровне от соотношения интенсивностей записывающих пучков $\eta_d(m_0)$ с помощью модели без учета эффекта СЗВ $\eta_{dC3B-}(m_0)$ (1,3) и с учетом $\eta_{dC3B+}(m_0)$ (2,4). Расчет проведен для параметров: $C_n=2$, $\alpha d=0$, k=0.5, $\delta n_p=0.004$, d=20мкм, при b=0.25 (1,3) и b=5 (2,4). На рис. 3.15 (б) приведены сравнительные кривые, $\Delta \eta_d(m_0) = \frac{\eta_{dC3B+}(m_0) - \eta_{dC3B-}(m_0)}{\eta_{dC3B+}(m_0)} 100\%$ для кривых на рис. 3.152.16 (а)

Рисунок 3.15

Из рис. 3.15 (а) видно, что при малом b эффект СЗВ мало сказывается, т.к. сама ДС является слабой, поэтому учет СЗВ для данной области b не является принципиально важным. Для области больших b добавка в эффективность дифракции за счет СЗВ становится существенной, особенно с уменьшением соотношения интенсивностей пучков. С увеличением параметров k, δn_p , b, d вклад в эффективность ДС за счет самовоздействия записывающих волн увеличивается, что также объясняется увеличением эффективности самой ДС.

3.2.4 Дифракционные свойства ОГДР в поглощающем ФПМ с учетом высших пространственных гармоник

В дальнейшем моделировании используем выражение из п.3.2.1. для расчета эффективности дифракции в первом и во втором дифракционных порядках для считывания вертикально-поляризованной волной (*s*-поляризация). Результаты представлены на рис.3.16 для следующих параметров: *b*=0.25, *C_n*=2, δn_p =0.004, *d*=20 µm, θ_1 = θ_0 =6.67⁰ (10⁰ в воздухе). На рис.3 приняты обозначения: 1 - α_d =0 Неп, *k*=0.5, *m*₀=1; 2 - α_d =2 Неп, *k*=0.5, *m*₀=1; 3 - α_d =2 Неп, *k*=0.5, *m*₀=0.3; 4 - α_d =2 Неп, *k*=0.3, *m*₀=1.

Рисунок 3.16 – Дифракционная эффективность в первом (а) и во втором (б) порядках дифракции от времени записи.

Как видно из кривых 1 на рис. 3.16 (а,б), в отсутствие поглощения дифракционные эффективности в первом (η_{d1}) и во втором (η_{d2}) порядках дифракции становятся соизмеримыми по величине на стационарном уровне (η_{d1} / $\eta_{d2} \approx 1.1$). В отличии от ПГДС, поглощение (кривые 2 на рис. 3.16 (а,б)) приводит к увеличению эффективности первой гармоники и уменьшению эффективности второй гармоники на стационарном уровне. Проведенный дополнительный анализ показал, что для *b*=5 в отсутствие поглощения отношение $\eta_{d1}/\eta_{d2} > 10$. Учет поглощение (2 Неп) приводит к уменьшению η_{d1} и η_{d2} , а также к возрастанию времен выхода на стационарные значения обоих гармоник

Из сравнения кривых 4 с кривыми 2 на рис. 3.16 видно, что уменьшение k (кривые 4) приводят к снижению эффективности дифракции, как на первой (рис. 3.16а), так и на второй (рис. 3.16б) гармониках ДС. А из сравнение кривых 3 с кривыми 2 на рис. 3.16 видно, что уменьшение m_0 (кривые 3) приводит к снижению эффективности дифракции, на второй (рис. 3.16б) гармоники ДС и увеличению эффективности первой (рис. 3.16а).

Таким образом, уменьшение m_0 и увеличение $b=T_p/T_m$ позволяет уменьшить дифракционную эффективность на высших пространственных гармониках решеток в ФПМ с помощью внешних условий записи: интенсивностей записывающих пучков (T_p) и их соотношения (m_0) и угла схождения (*T_m*), однако уменьшение *m*₀ существенно снижает и ДЭ первой гармоники.

Зависимость $\eta_{d1}(b)$ и $h(b)=\eta_{d1}(b)/\eta_{d2}(b)$ рассчитанные для аналогичных данных совпадает для ОГДС с зависимостям для ПГДС.

Учет поглощения приводит к изменению масштаба зависимости h(b) по оси *b* с коэффициентом примерно равным $2^k \exp(-\alpha_d k)$, так как поглощение приводит к ослаблению пучков по глубине материала, т.е. появлению пространственной зависимости b(y).

Таким образом, снижение контраста, увеличение b и увеличение k (для b>6) приводит к снижению дифракционной эффективности на высших пространственных гармониках, причем первые два параметра могут варьироваться в эксперименте

4 Голографическое формирование наложенных дифракционных структур

В данном разделе представлены теоретические модели и характеристики голографического процесса последовательной и параллельной записи наложенных дифракционных структур В композиционных (ΦΠM) учетом фотополимеризующихся материалах c взаимосвязи пространственных гармоник и эффектов самодифракции записывающих пучков на пространственных гармониках [17-39].

4.1 Последовательная запись наложенных голографических дифракционных структур в ФПМ с учетом взаимодействия пространственных гармоник и эффектов самодифракции

В данном подразделе представлены теоретические модели И характеристики голографического процесса последовательной записи дифракционных наложенных структур композиционных (ΦΠM) фотополимеризующихся материалах с учетом взаимосвязи пространственных гармоник и эффектов самодифракции записывающих пучков на пространственных гармониках [144-168].

4.1.1 Формирование основных гармоник НГДР в ФПМ с фотоиндуцированным изменением поглощения

В данном подразделе рассматривается формирование наложенных голографических дифракционных решеток (НГДР) при их последовательной голографической записи в ФПМ в условиях углового мультиплексирования с целью определения условий записи для получения НГДР с заданными дифракционными характеристиками.

Принцип последовательной записи НГДР показан на рисунке 4.1. Дифракционные решётки записываются последовательно с одинаковым или различным углом схождения записывающих лазерных пучков θ^{i} и различаются углами наклона Ψ_{i} векторов решетки K_{i} .

4.1.1.1 Аналитическая модель процесса формирования НГДР

При математическом описании динамики последовательно записываемых наложенных голограмм, за основу примем кинетические уравнения из [145]. Так как запись ГДР является последовательной, то в модели для каждой ГДР необходимо учесть изменение начальной концентрации мономера, для чего необходимо ввести в исходные выражения индекс *i*, обозначающий номер записываемой ГДР, а время сделать текущим, аналогично работам [15,16], посвященным изучению импульсной записи.

Пусть два когерентных, квазимонохроматических световых пучка с амплитудными профилями $E_0(\mathbf{r})$, $E_1(\mathbf{r})$ и волновыми векторами \mathbf{k}'_0 и \mathbf{k}'_1 на границе раздела сред распространяются под углами θ_0 и θ_1 внутри плоского поглощающего фотополимерного слоя ($0 \le y \le d$). Будем считать, что \mathbf{k}'_0 и \mathbf{k}'_1 лежат в плоскости ХОҮ. Оптическое поле внутри ФПМ толщиной *d* запишем в следующем виде:

$$E(t, \mathbf{r}) = \sum_{j=0,1} \mathbf{e}_{j} \cdot E_{j}(\mathbf{r}) \cdot e^{-\frac{\alpha(t, \mathbf{r})}{2} \left(N_{j} \cdot \mathbf{r}\right)} \cdot e^{i \cdot (\omega \cdot t - k_{j}' \cdot \mathbf{r})} + \kappa.c.$$
(4.1)

где e_j –вектор поляризации, $\alpha(t,r)$ – коэффициент поглощения ФПМ, r – радиусвектор, $k'_j = k \cdot N_j$, $k = n\omega/c$ – волновое число и N_j – нормаль к волновому фронту, n – показатель преломления.

Запишем выражение для распределения интенсивности

интерференционной картины светового поля:

$$I^{i}(t,\boldsymbol{r}) = I_{0}^{i}(t,x,y) \cdot \left[1 + m^{i}(t,x,y) \cdot \cos(\boldsymbol{K}_{1}^{i}\boldsymbol{r})\right], \qquad (4.2)$$

где $m^{i}(t, x, y) = 2\sqrt{I^{0i}(t, x, y) \cdot I^{1i}(t, x, y)} \cdot (e_{1} \cdot e_{0})/(I^{0i}(t, x, y) + I^{1i}(t, x, y))}$ - локальный контраст интерференционной картины, $I_{0}^{i}(t, x, y) = \{I^{0i}(t, x, y) + I^{1i}(t, x, y)\},$ $I^{0i}(t, x, y) = I_{0}^{i}(x) \cdot e^{-\alpha(t, x, y)y/\cos\theta_{0}^{i}}, I^{1i}(t, x, y) = I_{1}^{i}(x) \cdot e^{-\alpha(t, x, y)y/\cos\theta_{1}^{i}}$ - для пропускающей геометрии записи, $I^{1i}(t, x, y) = I_{1}^{i}(x) \cdot e^{-\alpha(t, x, y)(d-y)/\cos\theta_{1}^{i}}$ - для отражающей геометрии записи; $I_{j}(x) = |E_{j}(x)|^{2}, j = 0,1; K_{1} = k_{0}' - k_{1}', i$ - номер наложенной решетки.

Тогда общий вид решения системы кинетических уравнений можно свести к виду:

$$M(t, \mathbf{r}) = \sum_{i=1}^{N_s} \left[M_0^i(t, x, y) + M_1^i(t, x, y) \cos(\mathbf{K}_1^i \mathbf{r}) \right],$$
(4.3)

$$n(t, \mathbf{r}) = \sum_{i=1}^{N_s} \left[n_0^i(t, x, y) + n_1^i(t, x, y) \cos(\mathbf{K}_1^i \mathbf{r}) \right],$$
(4.4)

где *i* – номер наложенной ГДР, *N*_s – количество наложенных ГДР.

Используя методику, описанную в [13], из системы общих кинетических уравнений [13] после подстановки в них (4.2) – (4.4) и разложения выражения $\{I_0^i(t, x, y) \cdot [1 + m^i(t, x, y) \cos(K_1^i r)]\}^k$ в ряд Тейлора, ограниченного первыми тремя членами, получим уравнения для нулевой и первой гармоник концентрации мономера и показателя преломления:

$$\begin{cases} -\frac{\partial M_0^i}{\partial \tau} = \left\{ \left(1 + L^i\right) \right) \cdot M_0^i + \frac{km^i}{2} \cdot M_1^i \right\} \cdot \frac{2^k}{b^i} \cdot I_{0n}^i \\ \frac{\partial n_0^i}{\partial \tau} = \delta n_p \left\{ \left(1 + L^i\right) \cdot \frac{M_0^i}{M_n} + \frac{km^i}{2} \cdot \frac{M_1^i}{M_n} \right\} \cdot \frac{2^k}{b^i} \cdot I_{0n}^i \\ \end{cases}, \qquad (4.5)$$

$$\left[-\frac{\partial M_{1}^{i}}{\partial \tau} = b_{m}^{i} M_{1}^{i} + \frac{2^{k}}{b^{i}} I_{0n}^{i} \left[km^{i} M_{0}^{i} + (1+1.5L^{i}) M_{1}^{i} \right] \\ \frac{\partial n_{1}^{i}}{\partial \tau} = -\delta n_{ic} b_{m}^{i} \frac{M_{1}^{i}}{M_{n}} + \delta n_{p} \frac{2^{k}}{b^{i}} I_{0n}^{i} \left[km^{i} \frac{M_{0}^{i}}{M_{n}} + (1+1.5L^{i}) \frac{M_{1}^{i}}{M_{n}} \right],$$

$$(4.6)$$

где $M_{j}^{i} = M_{j}^{i}(\tau, x, y), n_{j}^{i} = n_{j}^{i}(\tau, x, y), j = 0,1; b^{i} = T_{p}^{i} / T_{m}^{i}, T_{m}^{i} = 1 / (K_{1}^{i} D_{m})$ – время

диффузии, $\tau = t/T_m^i$ – относительное время для каждой наложенной ГДР, K_{1}^i – волновое число первой гармоники *i*-ой решетки $K_{1}^i = |\mathbf{K}_{1}^i|$, $T_p^i = h^{-1}(M_n^i)/(I_{00}^i)^k$ время полимеризации, $I_{0n}^i = I_{0n}^i(\tau, x, y) = I_{0}^i(\tau, x, y)/I_{00}^i$ – нормированная суммарная интенсивность записывающих пучков, $I_{00}^i = I_{0max}^i + I_{1max}^i$, $b_m^i = b_m^i(\tau, x, y) = \exp[-s (1 - (M_0^i(\tau, x, y) + M_{1}^i(\tau, x, y))/M_n^i)],$ $L^i = L^i(\tau, x, y) = k(k - 1) m^{i2}(\tau, x, y)/4.$

Допуская, что $M_{1}^{i}(\tau,x,y) \ll M_{0}^{i}(\tau,x,y)$, в системе (4.5) можно пренебречь влиянием первой гармоники на нулевую, и используя начальные условия $M_{0}^{i}(\tau_{f}^{i-1},x,y) = M_{0}^{i-1}(\tau_{f}^{i-1},x,y), \quad n_{0}^{i}(\tau_{f}^{i-1},x,y) = n_{0}^{i-1}(\tau_{f}^{i-1},x,y)$ получим решения для нулевых гармоник:

$$M_0^i(\tau, x, y) = M_n p(\tau, x, y), \quad n_0^i(\tau, x, y) = \delta n_p \{1 - p(\tau, x, y)\}, \quad (4.7)$$

 $p(\tau, x, y) = \exp\left[-\frac{2^{k}}{b^{i}}\int_{\tau_{f}^{i}}^{\tau} (1 + L^{i}(\tau', x, y)) \cdot I_{0n}^{i}(\tau', x, y) d\tau\right], \quad \tau_{f} - \text{ время окончания записи}$

предыдущей решетки.

Имея решение для $M_0^i(\tau, x, y)$, интегрируя уравнение для $M_1^i(\tau, x, y)$ из системы (3.5) с начальными условиями $M_1^i(\tau_f, x, y) = 0$, запишем решение для $M_1^i(\tau, x, y)$ в виде:

$$M_{1}^{i}(\tau, x, y) = -M_{n} \cdot f(\tau, x, y), \qquad (3.8)$$

$$f(\tau, x, y) = \frac{2^{k}}{b^{i}} k \int_{\tau_{f}^{i}}^{\tau} p(\tau', x, y) \cdot m^{i}(\tau', x, y) \cdot I_{0n}^{i}(\tau', x, y) \cdot b_{m}^{i'}(\tau, \tau', x, y) d\tau', \qquad ,$$

где

$$b_{m}^{i}(\tau,\tau',x,y) = \exp\left[-\int_{\tau'}^{\tau} \left(b_{m}^{i}(\tau'',x,y) + \frac{2^{k}}{b}I_{0n}^{i}(\tau'',x,y) \cdot (1+1.5L^{i}(\tau'',x,y))\right)d\tau''\right]$$
$$b_{m}^{i}(\tau,x,y) = \exp\left(-s\left(1-p(\tau,x,y)\right)\right).$$

Далее, подставляя выражения (4.7) для $M_0^i(\tau,x,y)$ и (4.8) в уравнение для $n_1^i(\tau,x,y)$ из системы (4.6) и интегрируя с начальными условиями $n_1^i(\tau_f^{i-1},x,y)=0$, получим решение для пространственно-временного распределения первой гармоники решетки показателя преломления

$$n_{1}^{i}(\tau, x, y) = n_{1p}^{i}(\tau, x, y) + n_{lic}^{i}(\tau, x, y), \qquad (4.9)$$

136

$$n_{1ic}^{i}(\tau, x, y) = \delta n_{ic} \int_{\tau_{f}^{i}}^{\tau} f(\tau', x, y) \cdot b_{m}^{i}(\tau', x, y) d\tau'$$

где

$$n_{1p}^{i}(\tau, x, y) = \delta n_{p} \frac{2^{k}}{b} \int_{\tau_{f}^{i}}^{\tau} I_{0n}^{i}(\tau', x, y) \cdot \left(\frac{k \cdot p(\tau', x, y)}{\left(m^{i}(\tau', x, y)\right)^{-1}} - \frac{f(\tau', x, y)}{\left(1 + 1.5L^{i}(\tau', x, y)\right)^{-1}} \cdot \right) d\tau'$$
(4.10)

Выражение (4.9) описывают процесс записи НГДР пропускающего и отражающего типа пучками с произвольными амплитудными профилями с учетом фотоиндуцированного изменения поглощения, диффузионно-фотополимеризационного процесса формирования решетки.

4.1.1.2 Результаты численного моделирования формирования НГДР

Как видно из полученного решения для последовательной записи НГДР фотоиндуцированное ФПКМ, поглощение приводит К В TOMV, что пространственные профили каждой НГДР являются различными, ввиду неравномерного, изменяющегося во времени распределения излучения в материале и, соответственно, неравномерного и изменяющегося во времени расхода мономера и красителя . Таким образом каждая следующая НГДР записывается с учетом неравномерного по глубине распределений мономера и красителя, оставшихся после записи предыдущей НГДР. Причем как было показано в [149], фотоиндуцированное изменение поглощения приводит степень неравномерности пространственного распределения $n_1(\tau, x, y)$ И дифракционных характеристик к некоторому среднему между случаем с постоянным поглощением и случаем без поглощения. Причем, чем сильнее выражено ФИП, тем ближе дифракционные характеристики к случаю без поглощения, и наоборот.

Следует отметить, что для пропускающей геометрии при двух НГДР с достаточно большой эффективностью первая ДР будет иметь спадающий по глубине профиль, а вторая - возрастающий. Таким образом данные НГДР

можно считать физически разнесенными по глубине материала.

Вследствие неравномерности пространственного распределения показателя преломления численное моделирование и сравнение НГДР следует дифракционным характеристикам. Так проводить ПО интегральным дифракционная эффективность (η_d) позволяет учесть неравномерность пространственных профилей амплитуд первых гармоник НГДР [146].

Учитывая, что η_d для НГДР на практике не превышает 20%, зависимость интенсивности дифрагированного пучка при считывании от относительной брэгговской расстройки, с учётом процессов протекающих в ФПМ, будет:

$$I_{1\Sigma}(\Delta) = \left| E_{1\Sigma} \right|^2 = \left| \sum_{i=1}^n i \cdot G_1^i(\theta_i) \cdot \int_0^d n_1^i(\tau, y) \cdot \exp(i(\Delta - \Delta_i)y) dy \right|^2, \quad (3.11)$$

где $G_{1i} = \pi/\lambda \cos \theta_i$, θ_i -угол записи *i*-ой голограммы в фотополимере, d – толщина фотополимера. Относительную брэгговскую расстройку Δ можно пересчитать в длину оптической волны или в угол наклона ФПКМ.

На рисунке 4.2 приведены графики кинетики дифракционной эффективности НГДР $\eta_d(\tau)$ с равным временем записи каждой НГДР (а) и до равной эффективности дифракции каждой НГДР (б). Сплошной линией показана кинетика формирования НГДР во время записи до ее остановки, а пунктирной – ее возможное продолжение, т.е. если бы запись НГДР продолжилась. Для расчетов приняты следующие значения параметров: $C_n=1$, $m_0=1, b=5, \alpha_2 d=0$ Неп, $\alpha_1 d=3$ Неп, d=85мкм, $s=0, \delta n_p=0.004$.

a)

Рисунок 4.2

Из рисунка 4.2 видно, что при записи каждой следующей НГДР кинетика становится более затянутой, т.е. за одинаковое время записи решетка достигает меньшей эффективности (а), либо для достижения той же эффективности требуется большее время. Затягивание кинетики обусловлено увеличением времени полимеризации (увеличение *b*) каждой следующей НГДР, вследствие уменьшения концентрации мономера. Эффективность каждой последующей НГДР уменьшается экспоненциально, а скорость уменьшения пропорциональна времени записи каждой НГДР.

Рисунок 3.3

НГДР Основным требованием К мультиплексоров / для демультиплексоров, является равенство их эффективностей. Для получения равных эффективностей каждой НГДР, для каждой следующей НГДР выбрано соответствующее записи. Увеличение времени время записи каждой обусловлено уменьшением следующей НГДР концентрации мономера, приводящей к увеличению времени полимеризации ($b=T_p/T_m$ pacter), и как следствие увеличению вклада диффузии в формирование ДР [13-16]. Т.о., увеличение вклада диффузионного механизма в формирование НГДР, приводит к тому, что для достижения амплитуды первой гармоники заданной величины требуется меньше мономера для каждой последующей НГДР за счет диффузии мономера из темных областей в светлые.

Ha 4.3 рисунке приведены сводные результаты расчетов последовательной записи НГДР в ФПКМ с равными эффективностями дифракции. На рисунке 4.3 (a) показана зависимость эффективности дифракции $H\Gamma ДР$ от количества записываемых $H\Gamma ДР \eta_d(N)$. Видно, что зависимость является существенно нелинейной. Дополнительные расчеты показали, что зависимость имеет аналогичный характер для всей области параметра b, только с увеличением *b* происходит рост максимума (эффективности одной ДР) и рост скорости спада. Этот результат показывает что амплитуда НГДР при записи с равной амплитудой не равно амплитуде одиночной ДР, деленной на количество записываемых НГДР. Следует отметить, что для b>1 амплитуда одиночной ДР более чем в два раза превосходит амплитуду двух НГДР.

На рисунке 4.3(б) показаны зависимости времени записи каждой НГДР для случаев, представленных на рисунке 4.3(а). Видно, что время записи каждой последующей НГДР больше, чем для предыдущей, причем зависимость имеет нелинейный характер. Из рисунке 4.3(б) видно, что чем больше количество записываемых НГДР, тем меньше отличаются время записи предыдущей и последующей НГДР, т.е. с увеличением количества записываемых НГДР, наклон кривой уменьшается.

Как показало численное моделирование для исследуемой области параметра b>1, без учета ФИП прогнозируемая дифракционная эффективность является завышенной, так для двух НГДР в 1.06 раза, а для 10 НГДР в 1.5 раза. Также погрешность оценки времен записи НГДР без учета ФИП, составляет от 10% до 75%, причем погрешность существенно изменяется с номером записываемой НГДР.

4.1.2 Формирование высших пространственных гармоник НГДС в поглощающих ФПМ при нелинейных взаимодействиях гармоник

4.1.2.1 Математическое модель процесса формирования НГДС

В данном разделе дополним полученную в п.4.1.1.1 модель

последовательной записи наложенных голографических дифракционных структур (НГДС) пучками с произвольными амплитудными и плоскими фазовыми фронтами учетом высших пространственных гармоник. В задаче приняты аналогичные ограничения как и для высших гармоник одиночной ГДС.

Решение задачи записи будем искать в виде:

$$M(\boldsymbol{\tau}, \mathbf{r}) = \sum_{i=1}^{N} \sum_{j=0}^{H} M_{j}^{i}(\boldsymbol{\tau}, \mathbf{r}) \cos(j\mathbf{K}_{1}^{i}\mathbf{r}), \quad n(\boldsymbol{\tau}, \mathbf{r}) = n_{st} + \sum_{i=1}^{N} \sum_{j=0}^{H} n_{j}^{i}(\boldsymbol{\tau}, \mathbf{r}) \cos(j\mathbf{K}_{1}^{i}\mathbf{r}), \quad (4.12)$$

где $M_{j}^{i}(\tau,x,y)$, $n_{j}^{i}(\tau,x,y)$ - амплитуды *j*-ых гармоник концентрации мономера и показателя преломления *i*-ой ГДС соответственно; n_{st} - значение показателя преломления ФПМ при $\tau = 0$, $\tau = t / T_m$ - относительное время.

Подставляя (4.12) в общие кинетические уравнения, и используя свойства ортогональности пространственных гармоник , получим систему связанных кинетических дифференциальных уравнений для амплитуд гармоник концентрации мономера

$$\begin{cases} \frac{\partial M_{0}^{i}(\tau, x, y)}{\partial \tau} = \sum_{l=0}^{H} a_{0,l}^{i}(x, y) M_{l}^{i}(\tau, x, y) \\ \frac{\partial M_{1}^{i}(\tau, x, y)}{\partial \tau} = -M_{1}^{i}(\tau, x, y) + \sum_{l=0}^{H} a_{1,l}^{i}(y) M_{l}^{i}(\tau, x, y) \\ \frac{\partial M_{H}^{i}(\tau, x, y)}{\partial \tau} = -N^{2} M_{H}^{i}(\tau, x, y) + \sum_{l=0}^{H} a_{N,l}^{i}(x, y) M_{l}^{i}(\tau, x, y) \\ \frac{\partial M_{H}^{i}(\tau, x, y)}{\partial \tau} = -N^{2} M_{H}^{i}(\tau, x, y) + \sum_{l=0}^{H} a_{N,l}^{i}(x, y) M_{l}^{i}(\tau, x, y) \\ \end{cases}$$
(4.13)

и систему дифференциальных уравнений для амплитуд гармоник показателя преломления

$$\begin{cases} \frac{\partial n_{0}^{i}(\tau, x, y)}{\partial \tau} M_{n} = -\delta n_{p} \sum_{l=0}^{H} a_{0,l}^{i}(x, y) M_{l}^{i}(\tau, x, y) \\ \frac{\partial n_{1}^{i}(\tau, x, y)}{\partial \tau} M_{n} = -\delta n_{p} \sum_{l=0}^{H} a_{1,l}^{i}(x, y) M_{l}^{i}(\tau, x, y) + \delta n_{ic} M_{1}^{i}(\tau, x, y) \\ \frac{\partial n_{H}^{i}(\tau, x, y)}{\partial \tau} M_{n} = -\delta n_{p} \sum_{l=0}^{H} a_{H,l}^{i}(x, y) M_{l}^{i}(\tau, x, y) + \delta n_{ic} H^{2} M_{H}^{i}(\tau, x, y) \\ \frac{\partial n_{H}^{i}(\tau, x, y)}{\partial \tau} M_{n} = -\delta n_{p} \sum_{l=0}^{H} a_{H,l}^{i}(x, y) M_{l}^{i}(\tau, x, y) + \delta n_{ic} H^{2} M_{H}^{i}(\tau, x, y) \\ (4.14)$$

В системах (3.13) и (3.14) введена матрица коэффициентов

 $L_s^i = L^i$

e

где

Коэффициенты матрицы $a^{i}_{j,l}(x,y)$ показывают вклад полимеризационнодиффузионного механизма записи. Однако, как и для одиночных ГДС, для анализа систем уравнений (4.13), (4.14) удобно ввести коэффициенты связи $c_{j,l}(x,y) = a_{j,l}(x,y) - j^2 \delta_{j,l}$ ($\delta_{j,l}$ - символ Кронекера), характеризующие связь *j*-той гармоники с *l*-той.

Для решения системы связанных дифференциальных уравнений (4.13) с начальными условиями (для каждой ГДС отличающимися концентрацией мономера в начальный момент времени)

$$M_0^i(\tau = \tau_f^{i-1}, x, y) = M_0^{i-1}(\tau = \tau_f^{i-1}, x, y),$$

$$M_1^i(\tau = \tau_f^{i-1}, x, y) = 0, \qquad \dots \quad , \quad M_H^i(\tau = \tau_f^{i-1}, x, y) = 0,$$
(4.15)

 $M_0^i(\tau = 0, x, y) = M_n, \quad \tau_f^0 = 0,$ воспользуемся решетки для первой причем операторным методом. Общее решение для пространственных амплитудных профилей гармоник концентрации мономера $M_{j}^{i}(\tau, x, y)$ запишем в виде:

$$M_{j}^{i}(\tau, x, y) = M_{0}^{i-1}(\tau = \tau_{f}^{i-1}) \cdot \sum_{l=0}^{H} A_{j,l}^{i}(x, y) \exp[\lambda_{l}^{i}(x, y) \cdot \tau], \qquad (4.16)$$

где функциональные зависимости коэффициентов $\lambda_l^i(x,y)$ определяются как корни характеристического уравнения $|c_{j,l}^{i}(x,y)-\lambda_{l}^{i}(x,y)|=0$. Анализ показывает, что $\lambda_{l}^{i}(x,y)$ являются вещественными, различными и отрицательными. $A_{j,l}^{i}(x,y)$ находятся из (4.13) и (4.16) с учетом начальных условий (4.15) как решения (N+1) систем линейных алгебраических уравнений

$$\begin{cases} 1 & 1 & 1 & 1 & 1 & 1 & 1 \\ \lambda_{0}^{i} & \lambda_{1}^{i} & \lambda_{2}^{i} & \ddots & \lambda_{N}^{i} \\ \lambda_{0}^{i^{2}} & \lambda_{1}^{i^{2}} & \lambda_{2}^{i^{2}} & \ddots & \lambda_{N}^{i^{3}} \\ \lambda_{0}^{i} & \lambda_{1}^{i^{4}} & \lambda_{2}^{i^{4}} & \ddots & \lambda_{N}^{i^{4}} \\ \ddots & \ddots & \ddots & \ddots & \ddots \\ \lambda_{0}^{i^{N}} & \lambda_{1}^{i^{N}} & \lambda_{2}^{i^{N}} & \ddots & \lambda_{N}^{i^{N}} \\ \end{cases} \times \begin{cases} \delta_{j,0}^{i} \\ A_{j,4}^{i} \\ \dots \\ A_{j,N}^{i^{N}} \\ \end{pmatrix} = \\ = M_{0}^{i^{-1}}(\tau_{f}^{i^{-1}}) \begin{cases} \delta_{j,0}^{i} \\ \sum_{i_{0}=0}^{N} c_{j,i_{0}}^{i} c_{i_{0},0}^{i} \\ \sum_{i_{0}=0}^{N} c_{i_{1},i_{0}}^{i} c_{i_{0},0}^{i} \\ \dots \\ \sum_{i_{1}=0}^{N} c_{j,i_{1}}^{i} \sum_{i_{1}=0}^{N} c_{i_{1},i_{0}}^{i} c_{i_{0},0}^{i} \\ \dots \\ \dots \\ \dots \\ \dots \\ \sum_{i_{(N-2)}=0}^{N} c_{j,i_{N-2}}^{i} \dots \\ \sum_{i_{2}=0}^{N} c_{i_{1},i_{2}}^{i} \sum_{i_{1}=0}^{N} c_{i_{1},i_{0}}^{i} c_{i_{0},0}^{i} \\ \end{pmatrix}, (4.17)$$

где $\lambda_j^i = \lambda_j^i(x,y) \exp(-\lambda_j^i(x,y) \tau_f^{i-1}), \quad A_{j,l}^i = A_{j,l}^i(x,y), \quad c_{j,l}^i = c_{j,l}^i(x,y), \quad \tau_f^{i-1}$ – время окончания записи (*i*-1)-ой НГДС.

Далее, подставив (4.16) в (4.14) и интегрируя полученные дифференциальные уравнения с начальными условиями

$$\begin{split} &n_0^i(\tau=\tau_f^{i-1},x,y)=n_0^{i-1}(\tau=\tau_f^{i-1},x,y),\\ &n_1^i(\tau=\tau_f^{i-1},x,y)=0, \qquad \dots \quad , \quad n_H^i(\tau=\tau_f^{i-1},x,y)=0, \end{split}$$

найдем общее решение для амплитуды *j*-ой гармоники решетки показателя преломления в виде:

$$n_{j}^{i}(\tau, x, y) = n_{pj}^{i}(\tau, x, y) + n_{icj}^{i}(\tau, x, y), \qquad (4.18)$$

$$n_{pj}^{i}(\tau, x, y) = \delta n_{p} \sum_{l=0}^{H} a_{j,l}^{i}(x, y) \sum_{p=0}^{H} A_{l,p}^{i}(x, y) \frac{\exp[\lambda_{p}^{i}(x, y) \cdot \tau_{f}^{i-1}] - \exp[\lambda_{p}^{i}(x, y) \cdot \tau]}{\lambda_{p}^{i}(x, y)}, \qquad (4.18)$$

$$n_{icj}^{i}(\tau, x, y) = -\delta n_{ic} \cdot j^{2} \sum_{p=0}^{H} A_{j,p}^{i}(x, y) \frac{\exp[\lambda_{p}^{i}(x, y) \cdot \tau_{f}^{i-1}] - \exp[\lambda_{p}^{i}(x, y) \cdot \tau]}{\lambda_{p}^{i}(x, y)}, \quad j=0...N.$$

где

дифракционных решеток в поглощающих фотополимерных средах и определяют кинетику двумерных пространственных профилей концентрации мономера $M(\tau, x, y)$ и показателя преломления $n(\tau, x, y)$.

4.1.2.2 Результаты численного моделирования формирования НГДС

На основе полученной модели последовательной записи НГДС в ФПМ проведем численное моделирование. Ввиду того, что дифракционная эффективность является интегральной характеристикой и зависит от толщины материала, угловых положений записывающих пучков, поглощения, то для оценки эффективности НГДС будем оценивать амплитуду первой гармоники НГДС.

На рисунке 4.4 приведены графики кинетики нормированных амплитуд первой и второй гармоник НГДС $n_1(\tau)/\delta n_p$, $n_2(\tau)/\delta n_p$ с равным временем записи. Сплошной линией показана кинетика записи во время записи до ее остановки, а пунктирной – ее возможное продолжение, т.е. если бы ее не остановили. Для расчетов приняты следующие значения параметров: $C_n=2$, $m_0=1$, b=0.1 (рисунок 4.4 (a)), b=5 (рисунок 4.4 (б)).

Из рисунка 4.4 видно, что при записи каждой следующей НГДС кинетика становится более затянутой, т.е. за одинаковое время записи решетка записывается до меньшего значения амплитуды. Затягивание кинетики обусловлено увеличением времени полимеризации (увеличение *b*) каждой

следующей НГДС, вследствие уменьшения концентрации мономера. Следует отметить, что для b<1 (рисунок 4.4 (a)) затягивание кинетики приводит к тому, что последующие НГДС на стационарном уровне могут превосходить по амплитуде первую НГДС, а отношение высших гармоник к первой соответственно падать.

При *b*>1, каждая следующая НГДС записывается до меньшей амплитуды и за большее время.

На рисунке 4.5 приведены наборы точек, характеризующие нормированную амплитуду первой гармоники НГДС при последовательной записи с равными временами записи в момент окончания записи. Наборы точек отличаются друг от друга значением времени записи НГДС. Расчеты, представленные на рисунке 4.5 проведены для параметров с рисунка 4.4.

Основным требованием к НГДС для мультиплексоров / демультиплексоров, является равенство эффективностей НГДС. На рисунке 4.6 приведены для обеих областей параметра b кинетики нормированной амплитуды первой и второй гармоник НГДС. Для получения равных амплитуд первой гармоники каждой НГДС, для каждой следующей НГДС выбрано соответствующее время записи. Следует отметить, что при b < 1 для каждой следующей НГДС происходит увеличение отношения амплитуд первой ко второй гармонике решеток. В то время как с увеличением *b*, изменение данного отношения уменьшается.

144

Ha рисунке 4.7 приведены сводные результаты расчетов последовательной записи НГДС в ФПМ с равными амплитудами первых гармоник. На рисунке 4.7 (а,б) показаны кривые зависимости амплитуды первой гармоники НГДС от количества (N) записываемых НГДС. Видно, что зависимость является существенно нелинейной для всей области параметра b. Этот результат позволяет опровергнуть утверждение, что амплитуда НГДС при записи с равной амплитудой равно амплитуде одиночной ДС, деленной на количество записываемых НГДС. Следует отметить, что для *b*=0.1 (рисунке 4.7 (a)) максимальная амплитуда, до которой можно записать ДС, является одинаковой для одиночной ДС и для двух НГДС. В тоже время, для b>1 амплитуда одиночной ДС более чем в два раза превосходит амплитуду двух НГДС. Далее происходит существенный спад максимальной амплитуды НГДС от их количества, но по нелинейному закону.

На рисунке 4.7 (в,г) показаны зависимости времени записи каждой НГДС для случаев, представленных на рисунке 4.7(а,б). Видно, что время записи каждой последующей НГДС больше, чем для предыдущей, причем зависимость имеет нелинейных характер. Из рисунка 4.7 (в,г) видно, чем больше количество записываемых НГДС, тем больше отличаются время записи предыдущей и последующей НГДС, т.е. с увеличением количества записываемых НГДС, наклон кривой увеличивается.

Следует также отметить, что как показали расчеты, для каждой следующей НГДС для формирования с той же амплитудой требуется меньшее количество мономера, чем для предыдущей. Это объясняется изменением кинетики записи НГДС, что приводит к увеличению вклада диффузионного механизма записи в формирование НГДС.

4.1.3 Формирования дополнительных пространственных гармоник при двухпучковых взаимодействиях записывающих волн при записи НГДР

4.1.3.1 Математическая модель процесса формирования дополнительных пространственных гармоник НГДС

В данном подразделе получена модель формирования *j*-той дополнительной дифракционной решетки (ДДС) при записи *j*+1 НГДС в результате самодифракции записывающих волн на первой пространственной

гармонике *N*-той НГДС.

Рассмотрим механизм формирования ДДС на первой пространственной гармонике НГДС при записи последующих (начиная со второй) НГДС, векторная диаграмма которого представлена на рисунке 4.8 для отражающей (а) и прорускающей (б) геометрий.

В процессе записи первой НГДС в ФПМ вследствие нелинейности среды формируется основная решетка, состоящая из набора пространственных гармоник, аналитическое описание кинетики формирования которых найдено в предыдущем подразделе (см. выражение (4.18)).

Волны, дифрагированные на первой гармонике (*j*-1)-ой НГДС, в результате интерференции с записывающими волнами приводят к записи ДДС с векторами $\mathbf{K}_{01}^{j} = \mathbf{k}_{0} - \mathbf{k}_{1j}$, $\mathbf{K}_{00}^{j} = \mathbf{k}_{0} - \mathbf{k}_{0j}$, $\mathbf{K}_{11}^{j} = \mathbf{k}_{1} - \mathbf{k}_{1j}$, $\mathbf{K}_{10}^{j} = \mathbf{k}_{1} - \mathbf{k}_{0j}$ (верхний индекс в обозначениях характеризует номер записываемой решетки, см. рисунок 4.8). В этом случае записывающее *j*-ю НГДС световое поле внутри ФПМ с учетом самодифракции можно представить в следующем виде:

$$I(t,\mathbf{r}) = I_t^{\ j}(\mathbf{r}) + I_d^{\ j}(t,\mathbf{r}), \qquad (4.19)$$

где интенсивность поля, формируемого интерференцией падающих записывающих волн -

$$I_t^{\ j}(\mathbf{r}) = 0.5I_0 \left[1 + m_j e^{-i(\mathbf{k}_0 - \mathbf{k}_1)\mathbf{r}} + \kappa.c. \right], \tag{4.20}$$

интенсивность поля, формируемого интерференцией падающих и дифрагированных волн.

$$I_{d}^{j}(t,\mathbf{r}) = 0,5I_{0} \left[\frac{E_{0}E_{1j}^{*}}{I_{0}} e^{-i(\mathbf{k}_{0}-\mathbf{k}_{1j})\mathbf{r}} + \frac{E_{0}E_{0j}^{*}}{I_{0}} e^{-i(\mathbf{k}_{0}-\mathbf{k}_{0j})\mathbf{r}} + \frac{E_{1}E_{1j}^{*}}{I_{0}} e^{-i(\mathbf{k}_{1}-\mathbf{k}_{1j})\mathbf{r}} + \frac{E_{1}E_{0j}^{*}}{I_{0}} e^{-i(\mathbf{k}_{1}-\mathbf{k}_{0j})\mathbf{r}} + \hat{e}.\tilde{n} \right].$$
(4.21)

Здесь $I_0 = I^0 + I^1$, $I^0 = |E_0|^2$, $I^1 = |E_1|^2$; $m_j = 2(\mathbf{e}_1 \cdot \mathbf{e}_0) \sqrt{I^0 I^1} / (I^0 + I^1)$ -контраст интерференционной картины; $E_{1j} = E_{1j}(t, \mathbf{r})$, $E_{0j} = E_{1j}(t, \mathbf{r})$ – амплитуды, \mathbf{k}_{1j} , \mathbf{k}_{0j} – волновые вектора дифрагированных волн. Отметим, что в (4.20)-(4.21) для упрощения записи опущен индекс j в амплитудах E_0 , E_1 и векторах \mathbf{k}_0 , \mathbf{k}_1 .

Рисунок 4.8

Решение задачи формирования НГДС в ФПКМ будем искать в общем виде как сумму основных НГДС и сумму ДДС концентрации мономера и показателя преломления:

$$M(\boldsymbol{\tau}, \mathbf{r}) = \sum_{j=1}^{N} M_{\text{gen}}^{j}(\boldsymbol{\tau}, \mathbf{r}) + \sum_{j=2}^{N} M_{add}^{j}(\boldsymbol{\tau}, \mathbf{r}) ,$$

$$n(\boldsymbol{\tau}, \mathbf{r}) = n_{st} + \sum_{j=1}^{N} n_{\text{gen}}^{j}(\boldsymbol{\tau}, \mathbf{r}) + \sum_{j=2}^{N} n_{add}^{j}(\boldsymbol{\tau}, \mathbf{r}) ,$$

$$(4.22)$$

где основные НГДС содержат Н+1 пространственных гармоник -

$$M_{gen}^{j}(\tau,\mathbf{r}) = \frac{1}{2} \sum_{l=0}^{H} M_{l}^{j}(\tau) e^{-il\mathbf{K}_{1}^{j}\mathbf{r}} + \kappa.c., \quad n_{gen}^{j}(\tau,\mathbf{r}) = \frac{1}{2} \sum_{l=0}^{H} n_{l}^{j}(\tau) e^{-il\mathbf{K}_{1}^{j}\mathbf{r}} + \kappa.c., \quad (4.23)$$

а дополнительные ДС – четыре пространственные гармоники -

$$M_{add}^{j} = \frac{1}{2} \left(M_{01}^{j}(\tau, \mathbf{r}) e^{-i\mathbf{K}_{01}^{j}\mathbf{r}} + M_{00}^{j}(\tau, \mathbf{r}) e^{-i\mathbf{K}_{00}^{j}\mathbf{r}} + M_{11}^{j}(\tau, \mathbf{r}) e^{-i\mathbf{K}_{11}^{j}\mathbf{r}} + M_{10}^{j}(\tau, \mathbf{r}) e^{-i\mathbf{K}_{10}^{j}\mathbf{r}} + \kappa.c. \right),$$

$$n_{add}^{j} = \frac{1}{2} \left(n_{01}^{j}(\tau, \mathbf{r}) e^{-i\mathbf{K}_{01}^{j}\mathbf{r}} + n_{00}^{j}(\tau, \mathbf{r}) e^{-i\mathbf{K}_{00}^{j}\mathbf{r}} + H_{11}^{j}(\tau, \mathbf{r}) e^{-i\mathbf{K}_{11}^{j}\mathbf{r}} + n_{10}^{j}(\tau, \mathbf{r}) e^{-i\mathbf{K}_{10}^{j}\mathbf{r}} + \kappa.c. \right).$$
(4.24)

Здесь $M_l^j(\tau)$, $n_l^j(\tau)$ – амплитуды *l*-ых пространственных гармоник

концентрации мономера и показателя преломления основной *j*-ой НГДС; $M_{01}^{j}(\tau,\mathbf{r}), M_{00}^{j}(\tau,\mathbf{r}), M_{11}^{j}(\tau,\mathbf{r}), M_{10}^{j}(\tau,\mathbf{r}), n_{01}^{j}(\tau,\mathbf{r}), n_{00}^{j}(\tau,\mathbf{r}), n_{11}^{j}(\tau,\mathbf{r}), n_{10}^{j}(\tau,\mathbf{r}) =$ амплитуды первых гармоник ДДС концентрации мономера и показателя преломления, формирующихся на первой гармонике основной (*j*-1)-ой НГДС: n_{st} - значение показателя преломления ФПМ при $\tau = 0$; $\tau = t/T_{mj}$ - относительное время; $T_{mj}=1/(D_m |\mathbf{K}_1^j|^2)$ – время диффузии мономера.

Следует отметить, что при записи первой НГДС (j = 1), как видно из (4.22), формирование ДДС не происходит, т.к. для нее нет предыдущей НГДС, на которой происходила бы дифракция записывающих волн.

Принимая во внимание малость амплитуд ДДС, можно пренебречь их взаимовлиянием и влиянием на пространственные гармоники НГДС и разделить далее рассматриваемую задачу на две части. В первой части найдем решение для пространственных гармоник основной решетки (4.23) и, используя его, во второй части получим решение для ДДС (4.24). Решение для пространственных гармоник основной решетки (4.23) было найдено в подразделе 4.1.2.1 (см. выражение (4.18)).

(j+1)-ой НГДС формируются ЛЛС при записи В результате интерференции падающих записывающих волн с волнами, дифрагированными первой гармонике ј-ой НГДС. Принимая BO внимание на малость дифрагированных волн в (4.21), можно не учитывать изменения амплитуд падающих записывающих волн и ограничить рассмотрение дифрагированными волнами на рассматриваемой *j*-ой НГДС:

$$\begin{cases} \frac{\partial E_{1j}}{\partial y} = \mp i G_{1j} \left[E_1 \left(n_1^{j-1} e^{-i\Delta K_1^j y} + n_{11}^j (\tau, y) \right) + E_0 n_{01}^j (\tau, y) \right] \\ \frac{\partial E_{0j}}{\partial y} = \mp i G_{0j} \left[E_0 \left(n_1^{j-1} e^{-i\Delta K_0^j y} + n_{00}^j (\tau, y) \right) + E_1 n_{10}^j (\tau, y) \right] \\ , \qquad (4.25)$$

где $G_{1j}=\pi/(\lambda\cos\theta_{Ij})$, θ_{Ij} - угол между векторами \mathbf{N}_{1j} и \mathbf{y}_0 , $n_1^{j-1}(\mathbf{y})$ - первая гармоника (*j*-1) НГДС, определенная в решении для основной НГДС (4.17), $\Delta K_0^{\ j}=|\Delta \mathbf{K}_0^{\ j}|, \Delta K_1^{\ j}=|\Delta \mathbf{K}_1^{\ j}|$ – модуль вектора фазовой расстройки (см. рисунок 4.8);

знак '-' – для пропускающей геометрии записи НГДС, '+' – для отражающей геометрии записи НГДС.

Учитывая малость амплитуд ДДС, можно пренебречь их взаимовлиянием и решить задачу записи для каждой ДДС независимо. Дополняя общие кинетические уравнения дифракционными уравнением (4.25), запишем интегро-дифференциальные кинетические уравнения записи для амплитуд первых гармоник ДДС с вектором \mathbf{K}_{00}^{j} при записи *j*-ой НГДС:

$$\begin{cases} \frac{\partial}{\partial \tau} M_{00}^{j} = -r_{00}^{j^{2}} M_{00}^{j} - \frac{2^{k}}{b_{j}} \left[2k M_{0}^{j} \frac{E_{0} E_{0j}^{*}(\tau, y)}{E_{0} E_{1}} + M_{00}^{j} \right] \\ \frac{\partial}{\partial \tau} n_{00}^{j} = \delta n_{p} \frac{2^{k}}{b_{j}} \left[2k \frac{M_{0}^{j}}{M_{n}} \frac{E_{0} E_{0j}^{*}(\tau, y)}{E_{0} E_{1}} + \frac{M_{00}^{j}}{M_{n}} \right] - \delta n_{ic} r_{00}^{j^{2}} \frac{M_{00}^{j}}{M_{n}} \end{cases}$$
(4.26)

где $E_{0j}(\tau, y)$ - определяется решением системы (4.25) в приближении заданного поля с учетом $|n_{00}^{j}| < |n_{1}^{j}(y)|$; $M_{0}^{j} = M_{0}^{j}(\tau)$ – нулевая гармоника M, определенная в решении для основной решетки выражением (4.9) с учетом $\alpha d \approx 0$; $M_{00}^{j} = M_{00}^{j}(\tau, y), n_{00}^{j} = n_{00}^{j}(\tau, y)$ – первые гармоники концентрации мономера и показателя преломления рассматриваемой ДДС; $r_{00}^{j} = K_{00}^{j}/K_{1}^{j}$; $b_{j} = T_{pj}/T_{mj}$. Аналогичный вид имеют уравнения для формирования ДДС $n_{01}^{j}(\tau, \mathbf{r}), n_{11}^{j}(\tau, \mathbf{r}),$

Для решения (4.26) используем интегральное преобразование Лапласа по пространственной координате у

$$\begin{cases} \frac{\partial}{\partial \tau} M_{00}^{j}(\tau, p) = -M_{00}^{j}(\tau, p) \left(r_{00}^{j^{2}} - \frac{2^{k}}{b} \right) \mp \frac{2^{k}}{b} \frac{2ikG_{0j}}{1 + m_{0}} \left\{ M_{0}^{j}(\tau) \frac{n_{00}^{j}(\tau, p)}{p} + H(\tau, p) \right\} \\\\ \frac{\partial}{\partial t} n_{00}^{j}(\tau, p) = -\delta n_{ic} r_{00}^{j^{2}} \frac{M_{00}^{j}(\tau, p)}{M_{n}^{j}} + \delta n_{p} \frac{2^{k}}{b} \frac{M_{00}^{j}(\tau, p)}{M_{n}^{j}} \pm \\\\ \pm 2i \frac{2^{k}}{b} \frac{k}{1 + m_{0}} \left\{ G_{l} \frac{M_{0}^{j}(\tau)}{M_{n}^{j}} \frac{n_{00}^{j}(\tau, p)}{p} + H(\tau, p) \right\} \end{cases}$$

(4.27)

где
$$H(\tau,p) = L\{H(\tau,y)\}, \quad H(\tau,p) = L\left\{M_0^j(\tau)\int_0^{\psi(y)} \left\{n_1^{j-1}(y')\right\}e^{-i\Delta K_0^j y'} dy'\right\}, \quad F_1 = r_{00}^{j^2} + \frac{2^k}{b},$$

$$F_2 = \pm \frac{2^k}{b} \frac{2iG_{0j}k\delta n_p}{1+m_0}$$
, верхний знак для пропускающей геометрии записи, а

нижний знак для отражающей геометрии записи, $m_0 = E_1^2 / E_0^2$, $\psi(y) = y - для$ пропускающей геометрии записи, $\psi(y) = d - y - для$ отражающей геометрии записи.

Учитывая, что функция $n_{00}{}^{j}(\tau, y)$ является медленно меняющейся по сравнению с $M^{j}{}_{0} \exp(-F_{1} \cdot \tau)$, и используя начальное условие $M_{00}{}^{j}(\tau = \tau_{f}) = 0$ и теорему о среднем для определенного интеграла $\int_{a}^{b} \varphi(x) f(x) dx = \varphi(\xi) \int_{a}^{b} f(x) dx$, где $a \le \xi \le b$, получим решение для первого уравнения из (4.27)

$$M_{00}^{j}(\tau, p) = -\frac{F_{2}e^{F_{1}\tau}}{\delta n_{p}} \frac{n_{00}^{j}(\tau, p)}{p} \int_{\tau_{f}^{i}}^{\tau} \left(M_{0}^{j}(\tau') + H(\tau', p) \right) e^{-F_{1}\tau'} d\tau'$$
(4.28)

Используя обратное интегральное преобразование Лапласа по пространственной координате *у*, выражение (3.28) запишем в виде:

$$M_{00}^{j}(\tau, y) = -\frac{F_{2}e^{F_{1}\tau}}{\delta n_{p}} \left[\int_{0}^{\Psi(y)} \int_{\tau_{f}^{j}}^{\tau} M_{0}^{j}(\tau')H(\tau', y')e^{-F_{1}\tau'}d\tau'dy' \right] \otimes \int_{0}^{y} n_{00}^{j}(\tau, y')dy', \qquad (4.29)$$

где ⊗ - означает свертку по координате у.

где

Подставляя полученное решение (4.28) во второе уравнение из (4.27) и используя обратное интегральное преобразование Лапласа по пространственной координате *y*, решение для $n_1^{10}(\tau, y)$ запишем в виде:

$$n_{00}^{j}(\tau, y) = \int_{\tau_{f}^{i}}^{\tau} Q(\tau', y) + Q(\tau', y) \cdot \sqrt{\frac{\sum_{\tau'}}{y} R(\tau'') d\tau''} J_{1}\left(2\sqrt{y}\int_{\tau'}^{\tau} R(\tau'') d\tau''\right) d\tau', \qquad (4.30)$$
$$R(\tau) = \frac{F_{2}}{M_{n}} \left[M_{0}^{j}(\tau) + \left(\frac{2^{k}}{b} - C_{n}r_{00}^{j^{2}}\right) \int_{0}^{\tau} M_{0}^{j}(\tau') e^{-F_{1}(\tau-\tau')} d\tau' \right]$$

$$Q(\tau, y) = R(\tau) \int_{0}^{\psi(y)} n_1^{j-1}(y') e^{-i\Delta K_0^2 y'} dy', J_1(x) - функция Бесселя.$$

4.1.3.2 Результаты численного моделирования

Далее рассмотрим процесс формирования дополнительных решеток при записи НГДС на основе численного моделирования с помощью полученных решений (4.30). На рисунке 4.9 представлен график зависимостей аргумента (ось слева) модуля (ось справа) нормированной амплитуды И пространственного профиля ДДС $n_{00}^{J}(\tau, y/d)/\delta n_{p}$ для записи четырех НГДС с равной амплитудой первой гармоники . Параметры расчета: C_n=2, m₀=1, b=0.1, угол записи 10⁰, угол поворота ФПКМ $\Psi=5^{0}$, $\delta n_{p}=0.001$, толщина ФПКМ d=80 мкм. Для данных параметров расчеты показали практически одинаковый характер пространственных профилей для всех двенадцати ДДС в данном случае (*j*=2..4), с изменением амплитуды в пределах 10%.

Из рисунка 4.9 видно, что ДДС имеет квазипериодический амплитудно фазовый пространственный профиль. Период осцилляции амплитуды И фазы уменьшается при увеличении вектора фазовой расстройки ΔK_0^j , что достигается уменьшением угла

записи, угла наклона ФПКМ, длиной волны записи. Также период осцилляции зависит от толщины d. Увеличение амплитуды ДДС происходит при уменьшении фазовой расстройки ΔK_0^j , увеличении толщины d, увеличении b.

Необходимо отметить основные особенности пространственных профилей ДДС. Во-первых, профили ДДС имеют двумерное квазипериодическое амплитудное распределение, а, во-вторых, неоднородность фазовой составляющей профиля ДДС приводит к повороту вектора решетки и искажению фазового фронта (пространственной неоднородности направления вектора ДДС) и образованию дополнительного максимума угловой селективности.

Из проведенного численного моделирования формирования НГДС с учетом формирования ДДС было получено, что при b=0.1 модуль амплитуды ДДС в точке максимума составляет 10% от амплитуды второй гармоники НГДС. При увеличении b происходит уменьшение амплитуды ДДС, так при b=1 имеем 5%, при b=5 – менее 1%.

4.2 Параллельная многопучковая запись наложенных голографических дифракционных структур в ФПМ с учетом взаимодействия пространственных гармоник

В данном подразделе представлены теоретическая модель И характеристики голографического процесса параллельной записи наложенных дифракционных В композиционных фотополимеризующихся структур материалах (ФПМ) с учетом нелинейности процесса и эффектов взаимолияния Представленные формируемых пространственных гармоник. модели И результаты являются развитием работ [13-16].

4.2.1 Геометрия формирования НГДС различной симметрии

На рисунке 4.10 приведены несколько, в дальнейшем рассмотренных, геометрий записи. Для формирования трехмерной периодической структуры необходимо как минимум 4 некомпланарных когерентных луча. На рисунке (umbrella 4.10,a приведена геометрия типа «ЗОНТИК» configuration), используемая для записи пропускающей геометрии. В конфигурации «зонтик» центральный луч перпендикулярен плоскости образца, а другие 3 луча расположены симметрично вокруг центрального, причем возможны два случая: все 4 луча находятся в одной полуплоскости (рисунок 4.10, а) и случай, когда центральный луч расположен в другой полуплоскости относительно плоскости образца. Случай расположения всех 4-х лучей в одной полуплоскости привлекателен с экспериментальной точки зрения, так как отпадает

необходимость в прозрачной подложке.

На рисунке 4.10,6 приведена двухплоскостная геометрия (2 planes geometry или tetrahedral configuration), где одна пара лучей расположена с одной стороны образца, а другая пара – с другой.

Рисунок 4.10 – Конфигурации записи

В зависимости от пространственного угла *у* между пучками можно выделить различные симметрии фотонной структуры в голографическом сформированном фотонном кристалле, приведенные в таблице 4.1.

Таблица 4.1 – Углы γ в материале и соответствующие постоянные решетки *а* для различных геометрий лучей. ($\lambda = \lambda_0 / n_{mam}$).

Трансляционная симметрия	Угол ү в материале	Постоянная решетки
для конфигурации «зонтик»		
простая кубическая (s.c.)	$\gamma_{sc} = \arccos(1/3) = 70.53^{\circ}$	$a_{sc} = \lambda \sqrt{3} / 2 \approx 0.87 \lambda$
объемоцентрированная	$\gamma_{bcc} = \arccos(-1/3) = 109.47^{0}$	$a_{bcc} = \lambda \sqrt{3} / 2 \approx 0.87 \lambda$
кубическая (б.с.с.)		
гранецентрированная кубическая (f.c.c.)	$\gamma_{fcc} = \arccos(7/9) = 38.94^0$	$a_{fcc} = \lambda 3 \sqrt{3} / 2 \approx 2.6 \lambda$
для схемы с двумя плоскостями		
обьемоцентрированная	$u = arccos(1/2) = 100.47^{0}$	$a_{bcc} = \lambda \sqrt{3} / 2 \approx 0.87 \lambda$
кубическая (b.c.c.)	γ_{bcc} -arccos(-1/3)-109.47	
гранецентрированная	$v_{c} = \arccos(-3/5) = 126 \ 87^{0}$	$a_{fcc} = \lambda \sqrt{5} / 2 \approx 1.12 \lambda$
кубическая (f.c.c.)	/fcc=arecos(-5/5)=120.07	

4.2.2 Аналитическая модель процессов формирования НГДС

Запись осуществляется световыми пучками с волновыми векторами \mathbf{k}_i , падающими на ФПМК под углами θ_i к нормали к поверхности образца. Векторная диаграмма для рассмотренных выше геометрий записи приведена на рисунке 4.11. При этом в объеме ФПКМ с поглощением α образуется интерференционная картина со следующим распределением интенсивности:

$$I_{i}(\mathbf{r}) = I_{0}(\mathbf{r}) \cdot \left[1 + \sum_{i=1}^{N} \sum_{j=i+1}^{N} m_{ij}(\mathbf{r}) \cdot \cos\left(\mathbf{K}_{ij} \cdot \mathbf{r}\right) \right], \qquad (4.31)$$

где N – количество записывающих пучков, $I_0(\mathbf{r}) = \sum I_i(\mathbf{r})$, $\mathbf{K}_{ij} = \mathbf{k}_i - \mathbf{k}_j$ - волновые вектора решеток, $m_{ij}(\mathbf{r}) = 2\sqrt{I_i(\mathbf{r})I_j(\mathbf{r})} / \sum_{i=1}^N I_i(\mathbf{r})$ – локальные контрасты, $I_i(\mathbf{r})$ – интенсивность i пучка. Зависимость I_i , m_{ij} от \mathbf{r} вызвана поглощением фотополимерного композита и записывается следующим образом: $I_i(\mathbf{r}) = I_i^0 \exp(-\alpha \cdot / \mathbf{k}_i / \cdot z / k_{iz})$ для пропускающей геометрии записи ($k_{iz} > 0$), $I_i(\mathbf{r}) = I_i^0 \exp(\alpha \cdot / \mathbf{k}_i / \cdot (z - d) / k_{iz})$ для отражающей геометрии записи ($k_{iz} < 0$), где I_i^0 - интенсивность i пучка при z=0.

Рисунок 4.11 – Векторная диаграмма для схемы 4.10a (a), 4.10б (б) Рассматривая для определенности ФПКМ вида ФПМ + наночастицы, решения кинетических уравнений записи [13] представим для пространственного распределения *M* и показателя преломления *n* в виде суммы пространственных гармоник.

$$M(\tau, \mathbf{r}) = M_0(\tau) + \sum_{i=1}^{N-1} \sum_{j=i+1}^{N} \sum_{h=1}^{H} M_{ij}^h(\tau, \mathbf{r}) \cos(h\mathbf{K}_{ij}\mathbf{r}) , \qquad (4.32)$$

$$n(\tau, \mathbf{r}) = n_0(\tau) + \sum_{i=1}^{N-1} \sum_{j=i+1}^{N} \sum_{h=1}^{H} n_{ij}^h(\tau, \mathbf{r}) \cos(h\mathbf{K}_{ij}\mathbf{r}) , \qquad (4.33)$$

где M^{h}_{ij} , $n^{h}_{ij} = n^{ph}_{ij} + n^{ih}_{ij}$ - амплитуды пространственных гармоник НДР мономера и показателя преломления; n^{ph}_{ij} , n^{ih}_{ij} – составляющие n^{h}_{ij} за счет фотополимеризационного и диффузионного механизмов записи; N - количество записывающих пучков, формирующих НДР с G=N(N-1)/2 решетками, содержащих $G \cdot H$ +1 гармоник с векторами решеток \mathbf{K}_{ij} .

Подставляя вид решения (4.32) и (4.33) в кинетические уравнения [13], используя свойство ортогональности гармонических функций, получаем систему связанных уравнений для гармоник концентрации мономера (4.34) и показателя преломления (3.35):

где $q_{mk} = K_{mk}/K_{12}$ – нормировка волновых чисел наложенных решеток по первой, $b_s = b_s(\mathbf{r}) = T_{ps}(\mathbf{r})/T_m = b_s^0 \cdot I_0(0)^k / I_0(z)^k$ - безразмерный параметр, характеризующий условия записи, $e = e(\mathbf{r}) = 2^k / b_s(\mathbf{r})$, $c_{ij} = c_{ij}(\mathbf{r}) = 2^k \cdot k \cdot m_{ij}(\mathbf{r})/2b_s(\mathbf{r})$, $\tau = t/T_m$ - относительное время, где $T_m = 1/K_{12}^2 D_m$ – время диффузии, $T_{ps}(\mathbf{r}) = h^{-1}/I_0(\mathbf{r})^k$ - время полимеризации, $b_s^0 = T_{ps}^0/T_m$, $T_{ps}^0 = h^{-1}/I_0(0)^k$.

Применяя матричную запись для систем уравнений (4.34), (4.35), в

результате получим.

$$\frac{\partial \mathbf{M}(\tau, \mathbf{r})}{\partial \tau} = \mathbf{A}(\mathbf{r})\mathbf{M}(\tau, \mathbf{r}),$$

$$\frac{\partial \mathbf{N}(\tau, \mathbf{r})}{\partial \tau} = \delta n_p \mathbf{B}(\mathbf{r})\mathbf{M}(\tau, \mathbf{r}) + \delta n_i \mathbf{C}\mathbf{M}(\tau, \mathbf{r}),$$
(4.36)

где **M** – вектор-столбец гармоник концентрации мономера размерности $N \cdot (N-1)/2 \cdot H$, N – вектор-столбец гармоник показателя преломления размерности $G \cdot H$, **B**(**r**), **C**, **A**(**r**)=**B**(**r**)-**C** – матрицы, включающие в себя параметры материала и условия записи (интенсивности и поляризацию пучков, коэффициенты диффузии, состав материала). Зависимость этих матриц от **r** вызвана наличием поглощения в объеме композитного материала.

Запишем вектора **M**, **N** и матрицы **A**, **B**, **C** в компактной форме, используя правила блочной записи: $\mathbf{M}(t,\mathbf{r}) = [\mathbf{M}^0, \mathbf{M}^1, \dots \mathbf{M}^H]^T$, $\mathbf{N}(t,\mathbf{r}) = [\mathbf{N}^0, \mathbf{N}^1, \dots \mathbf{N}^H]^T$,

$$\mathbf{B}(\mathbf{r}) = \begin{bmatrix} \mathbf{E}^{0} & \mathbf{C}^{r} & \mathbf{0} & \mathbf{0} & \dots & \mathbf{0} & \mathbf{0} \\ \mathbf{C}^{c} & \mathbf{E} & \mathbf{C}^{m} & \mathbf{0} & \dots & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{C}^{m} & \mathbf{E} & \mathbf{C}^{m} & \dots & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & \mathbf{C}^{m} & \mathbf{E} & \dots & \mathbf{0} & \mathbf{0} \\ \dots & \dots & \dots & \dots & \dots & \dots \\ \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \dots & \mathbf{C}^{m} & \mathbf{E} \end{bmatrix}, \quad \mathbf{C}(\mathbf{r}) = \begin{bmatrix} \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \dots & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{Q}^{1} & \mathbf{0} & \mathbf{0} & \dots & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & \mathbf{Q}^{2} & \mathbf{0} & \dots & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{Q}^{3} & \dots & \mathbf{0} & \mathbf{0} \\ \dots & \dots & \dots & \dots & \dots & \dots \\ \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \dots & \mathbf{0} & \mathbf{Q}^{H} \end{bmatrix}$$

где символическая запись типа \mathbf{F}_{NM} означает блок из матрицы размерности N на M, составляющие векторов $\mathbf{M}(t,\mathbf{r})$ и $\mathbf{N}(t,\mathbf{r})$ записываются следующим образом: $\mathbf{M}^{0} = \mathbf{M}^{0}_{11} = [M_{0}], \quad \mathbf{M}^{h} = \mathbf{M}^{h}_{1G} = [M^{h}_{0l}, \dots M^{h}_{N-l,N}]^{T}, \quad \mathbf{N}^{0} = \mathbf{N}^{0}_{11} = [n_{0}], \quad \mathbf{N}^{h} = \mathbf{N}^{h}_{1G} = [n^{h}_{0l}, \dots n^{h}_{N-l,N}]^{T}, \quad \mathbf{a}$ составляющие блоки матриц \mathbf{B} , \mathbf{C} имеют вид: $\mathbf{E}^{0} = \mathbf{E}^{0}_{1,1} = [\mathbf{e}], \quad \mathbf{C}^{r} = \mathbf{C}^{r}_{1,G} = [\mathbf{c}_{01}, \dots \mathbf{c}_{N-1N}], \quad \mathbf{C}^{c} = \mathbf{C}^{c}_{G,1} = [2\mathbf{c}_{01}, \dots 2\mathbf{c}_{N-1N}]^{T},$

$$\mathbf{E} = \mathbf{E}_{G,G} = \begin{bmatrix} e & \dots & 0 \\ \dots & \dots & \dots \\ 0 & \dots & e \end{bmatrix}, \mathbf{Q}^{h} = \mathbf{Q}_{G,G}^{h} = \begin{bmatrix} h^{2} \cdot q_{01}^{2} & \dots & 0 \\ \dots & \dots & \dots \\ 0 & \dots & h^{2} \cdot q_{N-1N1}^{2} \end{bmatrix}, \mathbf{C}^{m} = \mathbf{C}_{G,G}^{m} = \begin{bmatrix} \tilde{n}_{01} & \dots & 0 \\ \dots & \dots & \dots \\ 0 & \dots & \tilde{n}_{N-1N} \end{bmatrix}.$$

Начальные условия для решения уравнения (3.36) представляются в следующем виде.

$$\mathbf{M}(\tau = \mathbf{0}, \mathbf{r}) = (M_n \ 0 \ \dots \ 0)^T = \mathbf{M}_{\mathbf{0}}, \qquad \mathbf{N}(\tau = \mathbf{0}, \mathbf{r}) = (0 \ 0 \ \dots \ 0)^T.$$
(4.37)

Для решения матричных дифференциальных уравнений (4.36) с начальными условиями (4.37) воспользуемся матричными методами. В этом случае общие решения представляются в виде:

$$\mathbf{M}(\tau, \mathbf{r}) = \exp[\mathbf{A}(\mathbf{r}) \cdot \tau] \mathbf{M}_{0},$$

$$n(\tau, \mathbf{r}) = \delta n_{p} \mathbf{B}(\mathbf{r}) \int_{0}^{\tau} \exp[\mathbf{A}(\mathbf{r}) \cdot \tau'] \mathbf{M}_{0} d\tau' + \delta n_{i} \mathbf{C} \int_{0}^{\tau} \exp[\mathbf{A}(\mathbf{r}) \cdot \tau'] \mathbf{M}_{0} d\tau',$$

(4.38)

где под функциями от матриц понимаются функции, определенные на спектрах входящих в них матриц. Учитывая, что матрица $\mathbf{A}(\mathbf{r})$ является простой с вещественными, различными и отрицательными собственными числами λ_i , функции от матрицы А можно представить, воспользовавшись разложением Лагранжа-Сильвестра.

В этом случае, раскрывая решение (4.38) покомпонентно, получим выражения для амплитудных профилей пространственных гармоник наложенных решеток концентрации мономера и показателя преломления $n^{h}_{ij}=n^{hp}_{ij}+n^{hi}_{ij}$:

$$M_{ij}^{h}(\boldsymbol{\tau},\mathbf{r}) = M_{0}(\mathbf{r})\sum_{l=0}^{GH} f_{v(i,j,h),l}(\mathbf{r}) \exp[\lambda_{p}(\mathbf{r})\cdot\boldsymbol{\tau}],$$

$$n_{ij}^{hp}(\boldsymbol{\tau},\mathbf{r}) = -\delta n_{p} 2\sum_{l=0}^{GH} b_{v(i,j,h),l}(\mathbf{r})\sum_{p=0}^{GH} f_{l,p}(\mathbf{r}) \frac{1 - \exp[\lambda_{p}(\mathbf{r})\cdot\boldsymbol{\tau}]}{\lambda_{p}(\mathbf{r})},$$

$$n_{ij}^{hi}(\boldsymbol{\tau},\mathbf{r}) = -\delta n_{i} 2c_{v(i,j,h),v(i,j,h)} \frac{D_{i}}{D_{m}} \sum_{p=0}^{GH} f_{l,p}(\mathbf{r}) \frac{1 - \exp[\lambda_{p}(\mathbf{r})\cdot\boldsymbol{\tau}]}{\lambda_{p}(\mathbf{r})},$$
(4.39)

где $v(i,j,h)=(h-1)G+(2\cdot N\cdot i-i^2-i)/2+(j-i), \lambda_p$ – собственные числа матрицы связи **А** кинетических уравнений, b_{ij} , c_{ij} – элементы соответствующих матриц, коэффициенты $f_{j,p}$ находятся из матрицы **A**, как решения ($H\cdot G+1$) систем линейных алгебраических уравнений (4.40).

$$\begin{cases} 1 & 1 & 1 & 1 & 1 \\ \lambda_{0} & \lambda_{1} & \lambda_{2} & . & \lambda_{N} \\ \lambda_{0}^{2} & \lambda_{1}^{2} & \lambda_{2}^{2} & . & \lambda_{N}^{2} \\ . & . & . & . \\ \lambda_{0}^{HG} & \lambda_{1}^{HG} & \lambda_{2}^{HG} & . & \lambda_{N}^{HG} \end{cases} \mathbf{x} \begin{cases} f_{j,0} \\ f_{j,1} \\ f_{j,2} \\ ... \\ f_{j,HG} \end{cases} = M_{n} \begin{cases} \delta_{j,0} \\ a_{j,0} \\ \vdots \\ a_{j,0} \\ BG \\ \vdots \\ a_{j,0} \\ BG \\ BG \\ a_{j,0} \\ BG$$

где матрица в левой части уравнения (4.40) размерностью $(N \cdot G+1) \times (N \cdot G+1)$ является транспонированной матрицей Вандермонда. В силу вещественности и различия всех λ_i , определитель указанной матрицы отличен от нуля. Следовательно $(N \cdot G+1)$ систем (A_i) имеют единственные решения.

Решения (4.39) определяют динамику развития пространственных профилей гармоник полимерной и инертной наложенных решеток при голографической записи дифракционных структур и являются математической основой для исследования и оптимизации процесса формирования сложных фотонных структур в поглощающих фотополимерных композитах.

4.2.3 Результаты численного моделирования процесса формирования НГДС

Проведем численное моделирование процессов параллельной записи в поглощающих фотополимерных композитах с целью проведения исследования влияния взаимосвязи всех гармоник, внешних и внутренних условий записи, а именно: b_s , m_{0i} , на кинетики гармоник, пространственные распределения голографических фотонных структур. Также рассмотрим поведение двумерных профилей гармоник в зависимости от времени записи, продольной координаты, поглощения и геометрии записи.

Для моделирования процессов голографической записи в поглощающих фотополимерных композитах было разработано программное обеспечение на основании аналитических выражений (4.29) для расчета и оптимизации таких структур.

159

4.2.3.1 Пропускающая геометрия

Рассмотрим кинетики роста гармоник наложенных решеток с \mathbf{K}_{12} (рисунок 4.12а) \mathbf{K}_{23} (рисунок 4.12б) в поглощающих фотополимерных материалах а зависимости от времени по глубине материала (координате *z*) при следующих параметрах: k=0.7, $C_n=0.1$, $b_s^0 = 0.25$, $\alpha d=4$, d=10 мкм, $m_{0i}^0 = I_i^0 / I_i^0 = 1$, 0.1, 0.1, 0.1, для числа пучков h = 4 ($\varphi = 0$, 90, 180, 270; $\theta = 10^0$) при учитываемом количестве гармоник H=2 и длине волны записи $\lambda = 633$ нм.

Как видно из рисунка 4.12, вследствие поглощения пространственные профили гармоник решеток, кроме трансформации амплитуды по времени становятся неоднородными по глубине.

Рисунок 4.12 – Пространственные профили первых гармоник

Наблюдается различное поведение n_{ij}^{l} . Так для n_{12}^{l} (рисунок 4.12а) пространственный профиль по глубине образца трансформируется во времени от спадающего к возрастающему, в то время как для n_{23}^{l} (рисунок 4.12б) наблюдается однозначный спад.

Рисунок 4.12 – Пространственные профили вторых гармоник

Такой характер для n_{12}^{l} связан с преобладанием полимеризационных процессов над диффузионными на малых глубинах, вследствие чего в светлых областях быстро полимеризуется и истощается, т.к. из темных областей мономер не успевает диффундировать. В то время как на больших глубинах диффузионные процессы преобладают над полимеризационными, в результате чего мономер диффундирует из неосвещенных областей в освещенные с его полимеризацией в освещенных областях. В случае n_{23}^{l} (рисунок 4.12, б) происходит уменьшение вклада самого полимеризационного процесса, в результате чего истощение мономера не происходит по всей глубине образца, а затухание по глубине только затягивает время выхода на стационарный режим.

Для вторых гармоник (рисунок 4.12, в, г), в независимости от их решеток, наблюдается спадание её абсолютной величины по толщине образца. Это связано с тем, что для вторых гармоник полимеризационные процессы протекают много медленнее первых, поэтому их поведение аналогично с поведением n_{23}^{1} (рисунок 4.12, б).

На рисунке 4.13,а представлены кинетики первых гармоник n_{ij}^1 при различных контрастах m_{0i}^0 ($m_{0i}^0=1,0.1,0.1$ и $m_{0i}^0=1,0.1,0.01,0.1$) при z = 2 мкм. Видно, что изменение соотношения интенсивности между пучками приводит к отличию кинетик гармоник n_{ij}^1 , как по амплитуде так и по времени выхода на стационарное значение. При этом изменение интенсивности второго пучка

 (m_{02}^0) приводит к отличию кинетик гармоник n_{ij}^h , связанных с решетками между вторым и остальными пучками $(n_{13}^h, n_{23}^h, n_{34}^h)$, которые различны как по амплитуде, так и по времени выхода на стационарное значение. Таким образом, за счет нелинейности процесса записи и взаимосвязи между гармониками происходит изменение уровней всех гармоник (n_{12}^h, n_{14}^h) .

Рисунок 4.13 – Амплитуды гармоник при z =2 мкм (а) и при τ =0.5, τ =5 отн. ед. (б)

На рисунке 4.13б представлены амплитуды n_{ij}^{h} при $\tau = 0.5$ отн. ед. и $\tau = 5$ отн. ед, $m_{0i}^{0}=1,0.1,0.1,0.1$. При этом наблюдаетя трансформация пространственных профилей гармоник при $\tau = 5$ отн. ед. по сравнению с $\tau = 0.5$ отн. ед. (амплитуды гармоник при $\tau = 5$ отн. ед. становятся возрастающими, что говорит о возрастании глубины модуляции по толщине при спадающем профили наложенной интерференционной картины).

Рассмотрим поведение двумерных профилей гармоник в зависимости от параметра b_s , представленных на рисунке 4.14а для $b_s = 0.25$ и рисунке 4.14б для $b_s = 5$.

Рисунок 4.14 – Двумерные профили гармоник показателя преломления

Поведение гармоник в зависимости от параметра b_s , качественно повторяет результаты, полученные для двухпучковой параллельной записи в поглощающих фотополимерных композитах. Такое поведение гармоник связано с изменением соотношения диффузионно-полимеризационных процессов, и объясняется ранее.

Рисунок 4.15 – Одномерные профили n(x) при y=0, z = 0 (a), z=2.5 мкм (б)

На рисунке 4.15 приведены одномерные срезы интерференционной

картины и распределения показателя преломления при y = 0 и различных *z*. Видно, что распределение показателя преломления существенно отличается от распределения интенсивности как по координате *x*, так и в различные моменты записи τ , что связано с нелинейностью процесса записи и эффектами взаимовлияния гармоник

На рисунке 4.16 представлены двумерные срезы наложенной интерференционной картины (а) и сформированной дифракционной структуры (б) по *y*=5 мкм (слева), *z*=0, *z*=6 мкм (справа) при *h*=4, $b_s^0 = 1.2$, $\tau = 5$ отн. ед., $m_{0i}^0 = 1, 0.1, 0.1, 0.1$.

Рисунок 4.16 – Двумерные срезы интерференционной картины (а)

Видно, что результат записи существенно отличается от интерференционной картины как в срезах *z*, что связано с появлением высших пространственных гармоник и взаимовлиянием гармоник друг на друга, так и в срезах *y*, что связано с диффузионно-полимеризационными процессами, описанными выше.

Рисунок 4.16 – Двумерные срезы распределения показателя преломления (б)

Видно, что результат записи существенно отличается от интерференционной картины как в срезах *z*, что связано с появлением высших пространственных гармоник и взаимовлиянием гармоник друг на друга, так и в срезах *y*, что связано с диффузионно-полимеризационными процессами, описанными выше.

Стоит отметить, что поведение гармоник существенно различается, в зависимости от геометрии. Так, в дальнейшем, поведение гармоник в схеме с двумя плоскостями при наложении отражательной и пропускающей геометрии (рисунок 4.10, б) существенно отличается от полученных результатов в данном разделе.

4.2.3.2 Гибридная геометрия

Рассмотрим двухплоскостную геометрию записи, представленную на рисунке 3.10 со следующим расположением записывающих пучков: $m_{0i}^0 = I_i^0 / I_i^0$ = 1, 1, 1, 1, h = 4 ($\varphi = 0$, 90, 180, 270; $\theta = 10^0$). При этом остальные параметры записи аналогичны предыдущему рассмотренному случаю: k=0.7, $C_n=0.1$, $b_s^0 = 0.25$, $\alpha d=4$, d=10 мкм, H=2, $\lambda = 633$ нм.

Кинетика формирования первых гармоник по глубине поглощающего ФПМ показана на рисунке 4.17а для решеток с n_{12}^{h} , n_{34}^{h} и на рисунке 4.176 для решеток с n_{13}^{h} , n_{24}^{h} т. Следует отметить, что в первом случае формируются решетки пропускающего типа, а во втором – отражающего типа.

Из сравнения рисунке 4.17 и рисунке 4.12 также видно, что поведение профилей гармоник при гибридной геометрии существенно отличается от поведения гармоник при конфигурации типа «Зонтик». Так профили гармоник n_{13}^{h} , n_{14}^{h} , n_{23}^{h} , n_{24}^{h} (рисунке 4.176) при z < d/2 возрастают, а при z > d/2, становятся убывающими по толщине ФПМ z. Это связано с различными условиями распространения для пучков и диффузионно-полимеризационными процессами, описанными выше.

Рисунок 4.17 – Кинетика записи гармоник показателя преломления

При распространении излучения первый и второй пучки затухает, при увеличении глубины, а третий и четвертый возрастает. Таким образом локальная освещенность для описанных гармоник меняется от малого значения при z = 0, до максимального значения z = d/2, и до малого при z = d. Соответственно, при больших значениях интенсивности полимеризационные процессы преобладают над диффузионными, что описывалось в предыдущем подпункте. Для гармоник n_{12}^{h} (рисунок 4.17а) результаты аналогичны геометрии типа «зонтик», это связано с тем, что оба пучка затухают.

Рисунок 4.18 – Профили гармоник при τ = 0.5 отн. ед. (а), τ = 5 отн. ед. (б)
На рисунке 4.18 приведены профили гармоник показателя преломления
в различные моменты времени. Как и в случае с геометрией типа «Зонтик»
видна трансформация поведения гармоник с течением времени.

Рисунок 4.19 – Трехмерное распределение интерференционной картины

На рисунке 4.19 приведено трехмерное распределение интерференционной картины. Видно, что трансформируется напрвление решеток. Это связано с тем, что при z, близких к нулю, сильны пучки, формирующие одно направление решеток, а при z, близких к d, другую.

Рисунок 4.20 – Двумерные срезы интерференционной (a) и показателя преломления (б) картин

Как и в случае с геометрией типа «зонтик» результат записи существенно отличается от интерференционной картины как в срезах *z* (рисунок 4.20), что связано с появлением высших пространственных гармоник и взаимовлиянием гармоник друг на друга, так и в срезах *y*, что связано с диффузионно-полимеризационными процессами, описанными выше.

Список использованных источников

- Gabor D. Microscopy by reconstructed wavefronts, Proc. Royal Soc., ser.A,197, 1949, рус пер. в книге: Строук «Введение в когерентную оптику и голографию». – М.: Мир, 1967, с.218-301
- Gabor D. Microscopy by reconstructed wavefronts II, Proc. Royal Soc., ser.B, 64, 1951, рус пер. в книге: Строук «Введение в когерентную оптику и голографию». – М.: Мир, 1967, с.218-301.
- Оптическая голография: Пер. с англ./Под ред. Колфилда Г. М.: Мир, 1982 – Т. 1.
- Оптическая голография: Пер. с англ./Под ред. Колфилда Г. М.: Мир, 1982
 Т. 2.
- 5. Кольер Р., Беркхарт К., Лин Л. Оптическая голография. М.: Мир, 1973.
- 6. Петров М.П., Степанов С.И., Хоменко А.В. Фоточувствительные среды в голографии и оптической обработке информации. М.: Наука, 1982.
- Винецкий В.Л, Кухтарев Н.В. Динамическая голография. Киев: Наукова думка, 1983.
- Евтихиев Н.Н., Евтихиева О.А., Компанец И.Н. Информационная оптика: Учебное пособие для вузов / Ред. Н.Н.Евтихиева. - М.: Издательство МЭИ, 2000.
- Передереева.С.И, Козенков В.М, Кисилица П.П. Фотополимеры для голографии. Л.:Наука. 1998
- Акаев А.А., Гуревич С.Б., Жумалиев К.М. Голографические системы хранения и выборки информации. – Бишкек-СПб.: Илим. 2000.
- 11. Багдасарьян Теория радикальной полимеризации. М.: Наука. 1966.
- Ваганов Р.Б., Кацеленбаум Б.З. Основы теории дифракции. М.: Наука. 1982.
- Lawrence J.R., O'Neill F.T., Sheridan J.T. Photopolymer holographic recording material. // Optik (The international journal for light and electronic optics), -2001. - V. 112, N. 10. - P. 449-463.

- Gambogi W.J., Weber A.M., Trout T.J. Advances and Applications of DuPont Holographic Photopolymers // Proc. SPIE. – 1993. - V.2043, P. 2-13.
- Смирнова Т.Н., Сахно О.В., Стрелец И.А., Тихонов Е.А. Температурная стабильность и лучевая прочность голографических решеток на фотополимерных материалах // ЖТФ. – 1998. - Т. 68. - № 6. - С. 105-134.
- Rhee U.S., Caulfield H.J., Shamir J., Vikram C.S., Mirsalehi M.M., Characteristics of the DuPont photopolymers for angularly multiplexed pageoriented holographic memories // Opt. Eng. – 1993. - V. 32 - P. 1839-1847.
- Гаврилов Г.А., Маурер И.А., Муратиков К.Л., Писаревская С.А., Сотникова Г.Ю. Краевые эффекты при записи пропускающих голографических решеток на фотополимерном материале // Оптика и спектроскопия. – 1995. – Т. 78. - № 2. - С. 312–315.
- Kostuk R. Dynamic hologram recording characteristics in DuPont photopolymers // Appl. Opt. – 1999. - V. 38, No8, P. 1357-1363.
- Lougnot D.J., Turck C. Photopolymers for holographic recording: III. Time modulated illumination and thermal post-effect // Pure Appl. Opt. - 1992. - V. 1.
 - P. 269-279.
- Close D.H., Jacobson A.D., Magerum R.C., Brault R.G., McClung F.J. Hologram recording on photopolymer materials // Applied Physics Letters. – 1969. -- V. 14. - N. 5. - P. 159-160.
- Jenney J.A. Holographic Recording with Photopolymers // J. Opt. Soc. Amer. -1970. - V. 60. - N 9. - P. 1155-1161.
- 22. Sugawara S., Murase K., Kitayama T. Holographic recording by dye-sensitized photopolymerization of acrylamide (E) // Appl. Opt. 1975. V. 14. N. 2. P. 378-382.
- Sukegawa K., Sugawara S., Murase K. Holographic recording by Fe³⁺ sensitized photopolymerization // Electron. Commun. Jap. 1975. V. 58-C(11). P. 132-138.
- Sadlej N., Smolinska B. Stable photo-sensitive polymer layers for holography // Optics and Laser Technology. - 1975. - P. - 175-179.

- 25. Jeudy M. J., Robillard J. J. Spectral photosensitisation of a variable index material for recording phase holograms with high efficiency // Optics Communications. – 1975. - V. 13. - N. 1. - P. 25-28.
- 26. Calixto S. Dry polymer for holographic recording // Appl. Opt. 1987. V. 26. P. 3904-3910.
- 27. Гюльназаров Э.С., Смирнова Т.Н., Тихонов Е.А. Анализ спектральноугловых характеристик фазовой дифракционной решетки на фотополимеризующейся композиции // ЖТФ. – 1987. - Т. 57. - № 5. - С. 932-936.
- Fimia.A, Lopez N., Mateos F., Sastre R., Pineda J., Amat-Gueri F. New photopolymer used as a holographic recording material // Appl. Opt. 1993. V. 32. P. 3706-3707.
- 29. Герасимова Т.Н., Константинова А.В., Пен Е.Ф., Синюков А.М., Шелковников В.В. Исследование голографических характеристик при записи объемных фазовых голограмм в фотополимерном материале // Автометрия. -1993. –№. 4. - С. 23-30.
- 30. Martin S., Leclere P., Renotte Y., Toal V., Lion Y. Characterisation of an acrylomide-based dry holographic recording material // Opt. Eng. -1995. V. 33.
 P. 3942-3946.
- Weiss V, Millul E. Grating microstructures in photoactive polymers by laser interference patterns // Appl. Surf. Sci. – 1996. - V.106. - P. 293-300.
- Blaya S., Carretero L., Mallavia R., Fimia A., Madrigal M.R., Ulibarrena M., Levy D. Optimization of an acrylamide-based dry film used for holographic recording // Appl. Opt. – 1998. - V. 37. – P. 7604-7610.
- 33. Zhao F., Frietman E.E.E., Li X. Novel type of red-sensitive photopolymer system for optical storage // Proc. SPIE. 1998. V.3468, P. 317-321.
- 34. Booth B.L. Photopolymer Material for Holography // Appl. Opt. 1972. V. 11.
 P. 2994-2995.
- 35. Booth B.L. Photopolymer material for holography // Appl. Opt. 1975. V. 14.
 №3. P. 593-601.

- 36. Monroe B.M., Smothers W.K., Keys D.E., Krebs R.R., Mickish D.J., Harrington A.F., Schicker S.R., Armstrong M.A., Chan D.M., Weathers C.I. Improved Photopolymers for Holographic Recording. I. Imaging Properties // J. Img. Sci. 1991. V. 35 № 1. P. 19-25.
- 37. Monroe B.M. Improved Photopolymers for Holographic Recording. II.
 Mechanism of Hologram Formation // J. Img. Sci. 1991. V. 35 № 1. P.
 19-25.
- Смирнова Т. Н., Сахно О. В., Тихонов Е. А., Смирнов В. В. Формирование рельефа при голографической записи на фотополимеризующихся композитах // Оптика и спектроскопия. – 1994. – Т. 76. - № 5. - С. 808 – 809.
- Попов А.П., Седунов Ю.Н., Вениаминов А.В. Аподизация объемных голограмм за счет диффузии органических молекул в полимере // Оптика и спектроскопия. -1991. – Т. 71, № 3. – С. 507-508.
- 40. Смирнова Т.Н. Структурно-кинетические особенности формирования голограмм на фотополимеризующихся композициях // Оптика и спектроскопия. – 1998. – Т. 85. - № 5. - С. 848-853.
- 41. Сахно О.В., Смирнова Т.Н. Влияние термодинамических свойств фотополимеризующихся композиций на их голографические характеристики // Оптика и спектроскопия. – 1998. – Т. 85. - № 6. - С. 1033-1038.
- 42. Гюльназаров Э.С., Смирнова Т.Н., Тихонов Е.А. Постполимеризационное самоусиление голограмм на фотополимеризующемся композите ФПК-488 // ЖТФ. -1991. Т.61. №1. С. 111-117.
- 43. Moreau V., Renotte Y., Leon Y. Characterization of DuPont photopolymers: determination of kinetic parameters in a diffusion model // Appl.Opt. – 2002. -V. 41. - N 17. P. 3427-3435.
- 44. Гюльназаров Э.С., Смирнова Т.Н., Тихонов Е.А. Самоусиление фазовых голограмм в фотополимеризующейся композиции // ЖТФ. 1988. Т. 58. № 12. С. 2405-2407.

- 45. Гюльназаров Э.С., Смирнова Т.Н., Тихонов Е.А. Динамическое самоусиление фазовых голограмм, записанных на фотополимерном композите // ЖТФ. 1991. Т. 61. № 10. -С. 114-119.
- 46. Константинова А.В., Пен Е.Ф., Синюков А.М., Шелковников В.В.
 Оптическое усиление в фотополимерном материале // Автометрия. -1993. №4. С.31-36.
- 47. Colburn W.S., Haines K.A. Volume hologram formation in photopolymer materials// Appl. Opt. 1971. V. 10. P. 1636-1641.
- 48. Wopschall R.H., Pampalone T.R. Dry photopolymer film for recording holograms // Appl. Opt. 1972. V.11, N. 9, P. 2096-2097.
- 49. Kogelnik H. Coupled wave theory for thick hologram gratings // Bell Sys. Tech.
 J. 1969. V. 48. P. 2909-2947.
- 50. Гюльназаров Э.С., Обуховский В.В., Смирнова Т.Н. К вопросу о теории голографическоп записи на фотополимеризующемся материале // Оптика и спектроскопия. 1990. Т. 69. №. 1. С. 178 182.
- 51. Обуховский В.В., Смирнова Т.Н. Модель процесса голографической записи на фотополимеризующихся композитах // Оптика и спектроскопия.
 1993. Т. 74. №4. С. 778-785.
- 52. Карпов Г.М., Обуховский В.В., Смирнова Т.Н., Сарбаев Т.А. Теория формирования голограмм в фотополимерных материалах с полимеризационно-диффузионным механизмом записи. І. Общая система уравнений // Оптика и спектроскопия. – 1996. – Т. 81. - № 6. - С. 1033-1038.
- 53. Карпов Г.М., Обуховский В.В., Смирнова Т.Н., Сарбаев Т.А. Теория формирования голограмм в фотополимерных материалах с полимеризационно-диффузионным механизмом записи. II. Закономерности процесса и критерий эффективности голографической записи // Оптика и спектроскопия. - 1997. - Т. 82. - №1. - С. 145-152.
- Sheridan J.T., Lawrence J.R. Nonlocal-response diffusion model of holographic recording in photopolymer. // J. Opt. Soc. Am. A, - 2000. - V. 17, N. 6. - P. 1108-1114.

- 55. Zhao G., Mouroulis P. Diffusion model of hologram formation in dry photopolymer materials // J.Mod.Opt. 1994. V. 41. P. 1929-1939.
- Kovalenko E., Sharangovich S., Zelenskaya T. Recording and amplification of holograms in photorefractive polymers // Synthetic Metals. -1996. - Special Issue N83. - P. 293-300.
- Syms R.R.A. Practical Volume Holography // The Oxford Engineering Science Series, Vol. 24 (Clarendon Press, Oxford 1990).
- Gaylord T.K., Moharam M.G. Analysis and applications of optical diffraction by gratings // IEEE Proc. – 1985. – V. 73. – P. 894-937.
- 59. Zhao G., Mouroulis P. Extension of diffusion model of holographic photopolymer // J.Mod.Opt. 1995. V. 41, P. 1929-1939.
- 60. Piazzolla S., Jenkins B.K. First-harmonic diffusion model for holographic grating formation in photopolymers // Opt. Lett. 1996. V. 21, P. 1075-1077.
- Colvin V.L., Larson R.G., Harris A.L., Schiling M.L. Quantitative model of volume hologram formation in photopolymer // J. Appl. Phys. – 1997. - V. 81, P. 5913-5923.
- Kovalenko E., Sharangovich S., Zelenskaya T. Dynamical model of hologram recording in photopolymer materials // Proc. SPIE. - 1996. - V. 2851. - P. 129-136.
- 63. Коваленко Е.С., Шарангович С.Н., Шелковников В.В., Плеханов И.И., Пен Е.Ф. Импульсная запись голографических дифракционных решеток в поглощающих фотополимерных материалах // Сб. научн. трудов ТУСУР. Томск, 1998. Т.1. С.180-187.
- 64. Коваленко Е.С., Шарангович С.Н. Динамика оптического самоусиления голограмм в фотополимерных материалах // Известия вузов. Физика. 1997. №1. С. 81-91.
- Коваленко Е.С., Шарангович С.Н. Динамическая дифракция света на голографических решетках в фотополимерных материалах // Известия вузов. Физика. – 2001. - Т. 44. - №10. - С. 53-59.
- 66. Kovalenko E.S., Sharangovich S.N., Sysuev V.V., Dovolnov E.A. Experimental

research of process of a record of the holograms in photopolymers // Proc. SPIE. "Optoelectronic Information System and Processing". – 2001. - V. 4513. - P.75-82.

- 67. Sharangovich S.N., Dovolnov E.A. Analytical model of the recording process of transparent holographic gratings in photopolymers with photoinduced absorption // Proc. SPIE of Second Asia Pacific Conf. on fund. probl. of opto and microelectronics (APCOM-2002). 2002. V. 5129-33. p. 236-242.
- Sharangovich S.N., Dovolnov E.A. Results of experimental investigation of recording trasparent holograms in absorbent photopolymers and matching them with the analytical model // Proc. SPIE of Second Asia - Pacific Conf. on fund. probl. of opto and microelectronics (APCOM-2002). – 2002. - V. 5129-33, - P. 229-235.
- 69. Сахно О.В., Тихонов Е.А. Влияние изменений оптической толщины регистрирующего фотополимерного материала на голографическую запись // ЖТФ. – 1991. – Т. 61. - № 10. - С. 105-113.
- Rhee U.S., Caulfield H.J., Vikram C.S., Shamir J. Dynamics of hologram recording in DuPont photopolymer // Appl.Opt. – 1995. - V. 34. – N 5. -P. 846-853.
- Gallo J., Verber C. Model for the effect of material shrinkage on volume holograms // Appl. Opt. – 1994. - V. 33. - P. 6797-6804.
- Zhao C., Liu J., Fu Z., Chen R. Shrinkage corrected volume holograms based on photopolymeric phace media for surface-normal optical interconnects // Appl.Phys Let. – 1997. - V.71. - P. 1464-1466.
- 73. O'Neill F., Lawrence J., Sheridan J.T. Improvement of holographic recording material using aerosol sealant // J.Opt.A: Pure Appl. Opt. 2000. V. 2. P. 1-6.
- 74. O'Neill F.T., Lawrence J.R., Sheridan J.T. Thickness variation of selfprocessing acrylomide based photopolymer and reflection holography // Opt. Eng. – 2001. – V. 40. – P. 533-539.
- 75. Kelly J.V., O'Neill F.T., Sheridan J.T., Neipp C., Gallego S., Ortuno M.

Holographic photopolymer materials with nonlocal and nonlinear response // Proc. SPIE. – 2003. – V. 5216. - P. 127–138.

- 76. Sheridan J.T., O' Neill F.T., Kelly J.V. Photopolymer Holographic Materials: The Non-local Diffusion Model // International Conference on Photorefractive Effects, Materials, and Devices, Nice, France, (June 17th-21st, 2003) OSA, TOPS, Invited talk (see http://www.iota.u-psud.fr/~PR2003/)
- 77. S.-D. Wu and E. N. Glytsis Holographic grating formation in photopolymers: analysis and experimental results based on a nonlocal diffusion model and rigorous coupled wave analysis // J. Opt. Soc. Am. B. – 2003. – V.20. P. 1177– 1188.
- 78. Гандмахер Ф.Р. Теория матриц. 4-е. изд. М.: Наука, 1988.
- 79. Задорин А.С., Шандаров С.М., Шарангович С.Н. Акустические и акустооптические свойства монокристаллов. Т.: Изд-во Томского университета. 1987. 152 с.
- 80. НайфеА. Введение в методы возмущений. М.: Мир., 1984. -535 с
- Allan Ashmead The Application Of Electrically Switchable Bragg Gratings // Optical communication.- №3.- 2001.- P. 14- 1.
- К.М. Жаркова, И.В. Самсонова, С.А. Стрельцов, В.М. Хачатурян, Т.Н. Герасимова, В.В. Шелковников, Е.Ф. Пен. Фотополимерножидкокристаллический композит с пространственно-периодической структурой // Автометрия, т.40, №1.- 2004- С. 89-95.
- Allan Ashmead The Application Of Electrically Switchable Bragg Gratings // Optical communication.- №3- 2001- P. 14- 16.
- T. J. Bunning. Holographic polymer-dispersed liquid crystals // Annual Review of Materials Science, August 2000.- Vol. 30.- P. 83-115.
- 85. G. Abbate, A. Marino, F. Vita. Dynamical electro- optical characterization of policryps gratings. //Acta physica polonica.-2003.- № 103.- P. 177-186.
- 86. Antifone Marino, Francessco Vita, Volodymyr Tkachenko, Roberto Caputi, Cesary Umeton, Allesandro Veltri, Giancarlo Aabbate. Dynamical behavior of policryps grating. //Electronic-Liquid crystal Communication, February 05,

2004.-P. 1-10.

- А.Н. Симонов, А.В. Ларичев, В.П. Шибаев. Голографическя запись азотосодержащих ЖК полимеров в присутствии ориентирующего электрического поля // Квантовая электроника.- 30, №7.- 2000.- С. 635-640.
- А.Н.Симонов, Д.В.Ураев, В.П.Шибаев, С.Г.Костромин. Фотореверсивная оптическая запись в пленках аморфных азосодержащих полимеров. // Квантовая электроника.- 32, №2.- 2002.- С. 143-148.
- В.Ф. Шабанов, С.Я. Ветров, А.В. Шабанов. Оптика реальных фотонных кристаллов. Жидкокристаллические дефекты, неоднородности.-Новосибирск, 2005.- С. 240.
- R. M. Henry, S. C. Sharma, R. A. Ramsey, M. L. Cramer, J. B. Atman. Effects of formulation variables on liquid-crystal droplet size distributions in ultravioletcured polymer-dispersed liquid-crystal cells // Polymer Physics 2005.- V.43.- P. 1842-1848.
- 91. G.M. Zharkova, I.V. Samsonova, S.A. Streltsov, V.M. Khachaturyan. Effect of Polymer Concentration on the Structure of Cholesteric Liquid Crystal Composites and their Scattering Properties // Mol. Cryst. Liq. Cryst..- vol.331.-1999.- P. 533-540.
- 92. G.M. Zharkova, I.V. Samsonova, L.A. Kutulya, V.V. Vashchenko, S.A. Streltzov, V.M. Khachaturyan Selective optical properties of induced cholesteric containing dispersed network polymer // Functional Materials.- vol. 7, № 1.-2000.- P. 126-131.
- 93. G.M. Zharkova, I.V. Samsonova, S.A. Streltsov, V.M. Khachaturyan, A.P. Petrov. Liquid Crystal Composites with Spatially Periodic Structure // Symposium Proceeding, 25-28 august 2003.- Moscow, 2003.- P. 102-105.
- 94. А.В. Баранник, А.В. Шабанов, В.Я. Зырянов. Интерференционные осцилляции в динамике оптического отклика капсулированных полимером нематических жидких кристаллов // Письма в ЖТФ.- том 28, вып. 16.-2002.- С. 22-31.
- 95. Yi-Hsin Lin, Hongwen Ren, Yung-Hsun Wu, Yue Zhao, Jiyu Fang, Zhibing Ge,

and Shin-Tson Wu, University of Central Florida. Polarization-independent liquid crystal phase modulator using a thin polymer-separated double-layered structure // Optic Expess, October 31, 2005.- Vol. 13, No. 22.- P.8746 – 8752.

- 96. P. Kossyrev, M. E. Sousa, G. Crawford. One- and Two-Dimensionally Structured Polymer Networks in Liquid Crystals for Switchable Diffractive Optical Applications // Advanced Functional Materials, 7 April 2004.- P. 1227-1232.
- 97. Sebastien Massenot, Jean-Luc Kaiser, Raymond Chevallier, Yvon Renotte. Study of the Dynamic Formation of Transmission Gratings Recorded in Photopolymers and Holographic Polymer-Dispersed Liquid Crystals // Applied Optics, October 2004.- Volume 43, Issue 29.- P. 5489-5497.
- 98. Artur V. Galstyan, Rafik S. Hakodyan, Steven Harbour, Tigran Galstyan. Study of the inhibition period prior to the holographic grating formation in liquid crystal photopolymerizable material. //Electronic-Liquid crystal Communication, may 07, 2004.-P. 1-15.
- 99. R. Caputo, A.V. Sukhov, N.V. Tabirian, C. Umeton, R.F. Ushakov. Mass transfer processes induced by inhomogeneous photo-polymerisation in a milticomponent medium // Chemical Physics, 2001.- 271.- P. 323-335.
- 100. Г.М. Жаркова, С.И. Трашкеев. Ориентация ЖК в сферическом объеме // Кристаллография.- Т. 34, вып. 3.- 1989.- С. 695-699.
- 101. Roberto Caputo, Alessandro Veltri, Cesare Umeton, Andrey V. Sukhov. Kogelnik-like model for the diffraction efficiency of POLICRYPS gratings // Optical Society of America, April 2005.- Volume 22, Issue 4.- P. 735-742.
- 102. Andrive Dvadyusha, Malgosia Kaszmarek, Sergei Slussarenco. Dynamics and uniformity of reorientation in liquid crystal cell with PVK alignment layers. //Electronic-Liquid crystal Communication, December 23, 2003.- P. 1-10.
- 103. Qian Wang, Sailing He A new effective model for the director distribution of a twisted nematic liquid crystal cell // Pure and Applied Optics, July 2005.- P. 438-444.
- 104. Mojca Jazbin , Irena Dreven , and Marko Zgonik. Characterization of

holographic polymer dispersed liquid crystal transmission gratings // Journal of Applied Physics, October 15, 2001.- Volume 90, Issue 8.- P. 3831-3837.

- 105. Kinya Kato, Tomoko Hisaki and Munekazu Date. In-Plane Operation of Alignment-Controlled Holographic Polymer-Dispersed Liquid Crystal // Jpn. J. Appl. Phys., 1999.- Vol.38.- P. 1466-1469.
- 106. Jean-Luc Kaiser, Raymond Chevallier, Jean-Louis de Bougrenet de la Tocnaye, Hayqing Xianyu, Gregory Philip Crawford. Chirped Switchable Reflection Grating in Holographic Polymer-Dispersed Liquid Crystal for Spectral Flattening in Free-Space Optical Communication Systems // Applied Optics, November 2004.- Volume 43, Issue 32.- P. 5996-6000.
- 107. Chris C. Bowley , Pavel A. Kossyrev , and Gregory P. Crawford. Variablewavelength switchable Bragg gratings formed in polymer-dispersed liquid crystals // Journal of Applied Physics, October 15, 2001.- Volume 90, Issue 8.-P. 3831-3837.
- 108. De Bougrenet de la Tocnaye Jean-Louis. Engineering liquid crystals for optimal uses in optical communication systems // Liquid Crystals, 2004.- Vol. 31.- P. 1-29.
- 109. С. Чандресекар. Жидкие кристаллы: Пер. с англ./ Под ред. А.А. Веденова и И.Г. Чистякова.- М.: Мир, 1980.- 344 с.
- 110. Сонин А.С. Введение в физику жидких кристаллов.- М.: Наука. Главная редакция физико-математической литературы, 1983.- 320 с.
- 111. Ярив А., Юх П. Оптические волны в кристаллах: пер. с анг.- М.: Мир, 1987.- 616 с.
- 112. Кушнарев И.Н., Шарангович С.Н. Акустоэлектрооптическое взаимодействие в кристаллах с электроиндуцированной неоднородностью // ЖТФ. - Т. 62. - № 1. – 1992. -С. 171-186.
- 113. Шарангович С.Н. Трехмерная дифракция света на ультразвуке в оптически неоднородных кристаллах // Радиотехника и электроника. -Т.41. -N8.-1996. -C.1-12.
- 114. Довольнов Е.А., Шарангович С.Н. Отражающие голографические

дифракционные решетки в поглощающих фотополимерных средах // Изв. вузов. Физика. -2005. -№ 3. – С.62-70.

- 115. Довольнов Е.А., Шарангович С.Н. Нелинейная модель записи и считывания голографических дифракционных решеток пропускающего типа в поглощающих фотополимерах. 1.Теоретический анализ // Изв. вузов. Физика. -2005. -Т.48 -№ 5. – С.56-63.
- 116. Довольнов Е.А., Шарангович С.Н. Нелинейная модель записи и считывания голографических дифракционных решеток пропускающего типа в поглощающих фотополимерах. 2. Численное моделирование и эксперимент// Изв. вузов. Физика. -2005. –Т.48. -№7 -85-92.
- 117. Довольнов Е.А., Шарангович С.Н. Формирование дополнительных дифракционных решеток в фотополимерном материале в результате двухволнового смешения // Известия вузов. Физика-2005. -Т.48. -№ 6. Приложение. – С. 79-80.
- 118. Довольнов Е.А., Шарангович С.Н. Теоретическое и эспериментальное исследование записи и считывания амплитудно-неоднородных голографических решеток с изменяющимся периодом в фотополимерном материале // Известия вузов. Физика-2005. -Т.48. -№ 6. Приложение. С. 81-82.
- 119. Кузнецов В.В., Устюжанин С.В., Шарангович. С.Н. Теоретическое исследование паралельной записи наложенных голограмм в фотополимерных материалах // Известия вузов. Физика. -2005. -Т.48. -№ 6. Приложение. С. 83-84.
- 120. Довольнов Е.А.,. Ноздреватых Б.Ф., Шабанов А.А., Батаногов Р.Ю., Шарангович. С.Н. Теоретическое и экспериментальное исследование формирования фотополимерных дифракционных решеток с учетом высших пространственных гармоник // Известия вузов. Физика. -2005. -Т.48. -№ 6. Приложение. -- С. 105-106.
- 121. Dovolnov E., Sharangovich S. Theory of nonlinear process of formation of nonuniform photopolymer holographic grating // Proceeding of The Second
IASTED International Conference on Communication systems (ACIT-CS 2005). - Novosibirsk, Russia. June 20-24, 2005. – P.33-38.

- 122. Sergey N. Sharangovich, Vitaliy A. Kuznechov, Vladimir V. Shelkovnikov, Eugene F. Pen. Holographic recording of superimposed gratings by angle multuplexing in photopolymers with light induced changing of optical absorption// Proc. SPIE "Holography, Diffractive Optics, and Applications II" . -2005. -Vol. 5636. –P. 802-811.
- 123. Dovolnov E., Sharangovich S., Sheridan J.T. Theoretical and experimental investigation of photopolymer chirped gratings formation // Photorefractive Effects, Materials, and Devices 2005 (PR05), OSA Trends in Optics and Photonics Series (TOPS).-2005.- Vol.99, P. 337-342.
- 124. Dovolnov E., Sharangovich S., Sheridan J.T. Inharmonic theoretical models for photopolymers gratings formation // Photorefractive Effects, Materials, and Devices 2005 (PR05), OSA Trends in Optics and Photonics Series (TOPS).-2005.- Vol.99, P. 469-474.
- 125. Довольнов Е.А., Устюжанин С..В., Ноздреватых Б.Ф., Шарангович С.Н Формирование апподизированных дифракционных решеток в фотополимерных жидкокристаллических композиционных материалах// Современные проблемы радиоэлектроники: Сб. науч. тр. /Под ред. А.И. Громыко, А.В. Сарафанова. Красноярск: ИПЦ КГТУ, 2005. –С.632-635.
- 126. Довольнов Е.А., Ноздреватых Б.Ф., Смирнов В.П., Шарангович С.Н. Запись пропускающих дифракционных решеток в фотополимерном материале при малых контрастах с учетом самодифракции // Сб. науч. трудов Всероссийской науч-технич. конф. «Научная сессия ТУСУР-2005». Часть З. –Томск: Томск. гос. ун-т систем управления и радиоэлектроники, 2005. – С. 310-313.
- 127. Довольнов Е.А., Ноздреватых Б.Ф., Устюжанин С.В., Шарангович С.Н. Исследование дифракционных структур в композитных фотополимерных жидкокристалических материалах // Сб. науч. трудов Всероссийской научтехнич. конф. «Научная сессия ТУСУР-2005». Часть 3. –Томск: Томск. гос.

ун-т систем управления и радиоэлектроники, 2005. - С.353-356.

- 128. Довольнов Е.А., Шарангович С.Н. Особенности формирования отражательных голографических решеток в фотополимерном материале при двучпучковом взаимодействии и малых контрастах // Вестник Томск. Гос. Пед. ун-та (Вестник ТГПУ). Спецвыпуск. -2005. – Вып.7 (51). Естественные и точные науки. –С. 72-76.
- 129. Шарангович С.Н., Довольнов Е.А. Нелинейная модель формирования голографических дифракционных решеток отражательного типа в поглощающих фотополимерах // Вестник Томск. Гос. Пед. ун-та (Вестник ТГПУ). Спецвыпуск. -2005. – Вып.7 (51). Естественные и точные науки. – С. 77-83.
- 130. Dovolnov E.A, Sharangovich S.N. Analysis of dynamics of holographic grating formation with inharmonic spatial distribution in photopolymer +liquid crystal compounds // in *Tenth International Conference on Nonlinear Optics of Liquid and Photorefractive Crystals*, Proceedings of SPIE Vol. 6023 (SPIE, Bellingham, WA, 2005) Article CID Number 602301. –P. 1-8.
- 131. Шарангович С.Н., Довольнов Е.А., Устюжанин С.В, Ноздреватых Б.Ф., Миргород В.Γ. Дифракция света электрически-управляемых на неоднородных дифракционных структурах в фотополимеризующихся Доклады жидкокристаллических композиционных материалах// Международной научно-практической конференции «Электронные средства и системы управления». Томск, Изд-во Института оптики атмосферы СО РАН, 2005 г. В двух частях. Ч.1. – С.230-234.
- 132. Шарангович С.Н., Довольнов Е.А., Ноздреватых Б.Ф., Устюжанин С.В. Нелинейная модель формирования отражающих дифракционных структур в фотополимеризующихся жидкокристаллических композиционных материалах// Доклады Международной научно-практической конференции «Электронные средства и системы управления». Томск, Издво Института оптики атмосферы СО РАН, 2005 г. В двух частях. Ч.1. – С.227-230.

- 133. Dovolnov E., Sharangovich S. Higher-harmonics nonlinear model for dynamical holographic grating formation in absorbent photopolymers// Technical digest of International Conference on Coherent and Nonlinear Optics "ICONO/LAT 2005". CD-ROM (St. Petersburg, Russia, 2005). № IFN31. -1 p. (Proc. SPIE, 2005. -10 p.. – в печати).
- 134. Довольнов Е.А.,. Ноздреватых Б.Ф., Шабанов А.А., Батаногов Р.Ю., Шарангович. С.Н. Исследование амплитудно-фазовых методов коррекции спектральных и энергетических характеристик волновых ответвителей на основе фотополимерных дифракционных решеток для ВОСП-СР// Тез. докл. XI междунар. науч.-техн. конф. "Радиоэлектроника, электротехника и энергетика". В 3х т. Т.1. – Москва.- Изд-во МЭИ, 2005, с.85-86.
- 135. Кузнецов В.В., Устюжанин С.В., Лялюк А.П., Шарангович С.Н. Расчет и оптимизация волновых мультиплексоров для ВОСП-СР на основе параллельного процесса формирования наложенных дифракционных решеток в фотополимерных материалах // Тез. докл. XI междунар. науч.техн. конф. "Радиоэлектроника, электротехника и энергетика". В 3х т. Т.1. –Москва.- Изд-во МЭИ, 2005, с.94.
- 136. Sharangovich S., Dovolnov E. Holographic recording of inharmonic and non uniform gratings in absorbent photopolymers // Abstracts in Advance Programme of The European Conference on Lasers and Electro-Optics (CLEO/Europe 2005) / Holography, Wavemixing, Phase Conjugation, Adaptive Optics, Optical Storage and Photorefractives. –Munich, Germany. –June, 2005. P. 100. (Paper №CC-6-WED)
- 137. Sharangovich S., Dovolnov E. Holographic formation of 1D-2D apodized diffraction structures in photopolymer composition materials// Techn. Dig. of SPIE Europe Congress on Optics and Optoelectronics. - Warsaw Univ. of Technology, Warsaw, Poland, 28 August–2 September. 2005. -1 p
- 138. Dovolnov E., Sharangovich S. Nonlinear holographic record of diffraction structures at two-wave mixing on high-order spatial harmonics in photopolymer materials // Abstract Book of International Conference on Holography, Optical

Recording and Processing of Information (Holography 2005). - Varna, Bulgaria. 21 - 25 May 2005, 2005. -1 p.

- 139. Довольнов Е.А., Ноздреватых Б.Ф., Устюжанин С.В., Шарангович С.Н. Особенности формирования двумерных дифракционных структур при двухпучковом взаимодействии в фотополимерных материалах// Материалы XLIII Международной науч.. студ. конф. «Студент и научнотехнический прогресс»: Физика/ Новосиб. гос. ун-т. Новосибирск, 2005. – С.114.
- 140. Довольнов Е.А., Кузнецов В.В., Ноздреватых Б.Ф., Шарангович С.Н. Формирование дифракционных решёток в фотополимерных материалах с учётом эффектов самодифракции // Материалы XLIII Международной науч.. студ. конф. «Студент и научно-технический прогресс»: Физика/ Новосиб. гос. ун-т. Новосибирск, 2005. –С. 113.
- 141. Sharangovich S., Dovolnov E., Ustuzhanin S., Nozdrevatykh B. Nonlinear Holographic Record of Reflection Diffraction Gratings at Two-wave Mixing on High-order Spatial Harmonics in Photopolymer Composite Materials" // Proc. of Fifth Asia - Pacific Conf. and Workshop "Fundamental problems. of opto and microelectronics" (APCOM'2005). - Vladivostok September 12-14, 2005, Russia. CD-ROM. –P. 20..
- 142. Sharangovich S., Dovolnov E., Ustuzhanin S., Nozdrevatykh B. Theoretical investigation of the apodized holographic grating formation in liquid crystal photopolymerizable materials// Proc. of Fifth Asia - Pacific Conf. and Workshop "Fundamental problems. of opto and microelectronics" (APCOM'2005). - Vladivostok September 12-14, 2005, Russia. CD-ROM. –P. 21.
- 143. Dovolnov E., Sharangovich S. Theoretical investigation of nonlinear holographic record of 2D photonic Bragg gratings in photopolymer materials at two-wave mixing // Proc. of IEEE International Conference on Advanced Optoelectronics and Lasers (CAOL 2005). -September 12 -17, 2005, Yalta, Crimea, Ukraine. – 1 P.

- 144. Довольнов Е.А. Последовательная запись наложенных голографических структур в фотополимерных композиционных материалах с учетом фотоиндуцированного поглощения / Довольнов Е.А., Устюжанин С.В., Шарангович С.Н. // Доклады ТУСУР. –Томск: Изд-во ТУСУР, 2008. Вып.1 (17). -С.34-40.
- 145. Довольнов Е.А. Нелинейная модель последовательной записи наложенных голографических решеток В фотополимерных c самодифракции композиционных материалах учетом на пространственных гармониках / Довольнов Е.А., Шарангович С.Н // Оптика и спектроскопия . 2008. -Т.105. №2. -С.330-339.
- 146. Устюжанин С.В. Дифракция световых пучков на неоднородной ФПМ-ЖК голографической структуре с учетом статистики ЖК молекул /Устюжанин С.В., Шарангович С.Н. // Известия вузов. Физика. -2008. -Т.51. -№9/3. - С.171-172.
- 147. Миргород В.Г. Оптимизация формирования трехмерных фотонных структур в фотополимерных композиционных материалах / Миргород В.Г., Шарангович С.Н. // Известия вузов. Физика. -2008. -Т.51. -№9/3. С.165-166.
- 148. Mirgorod V. Nonlinear model for holographic formation of inharmonic multiplexed photonic structures in absorbent photopolymer composites / Mirgorod V., Sharangovich S. // Techn. Dig. of International Conference on Linear and Nonlinear Optics of Organic Materials VIII. -Symposium:Photonic Devices + Applications/ 10 - 14 August 2008 San Diego, CA USA.-1 p. (SPIE Paper Number 7049-34)
- 149. Dovolnov E. Analytical model of holographic formation of photonic inharmonic gratings in absorbent photopolymer composites / Dovolnov E., Mirgorod V., Sharangovich S. // Techn. Dig. of Seventh International Conference «Electronic Processes in Organic Materials. Lviv, Ukraine. 26-30 May, 2008. -1 p.
- 150. Миргород В.Г. Программное обеспечение для расчета и оптимизации

процессов параллельной голографической записи фотонных решеток в фотополимерных композитах / Миргород В. Г., Шарангович С. Н. // Информационные технологии в науке и образовании. Доклады международной научно – практической конференции Шахты, 2008. – С.124-127.

- В.Γ. 151. Миргород Аналитическая модель параллельной записи пропускающих голографических фотонных структур в поглощающих фотополимерных композитах / Миргород В. Г., Шарангович С. Н. // Сборник тезисов. материалы 14-й Всероссийской научной конференции студентов-физиков и молодых ученых (ВНКСФ-14, Уфа). - Екатеринбург – Уфа: Изд-во АСФ России, 2008. — C.351-352.
- 152. Миргород В.Г. Численное моделирование процессов параллельной записи пропускающих голографических фотонных структур в поглощающих фотополимерных композитах / Миргород В.Г., Шарангович С.Н // Сборник тезисов, материалы 14-й Всероссийской научной конференции студентов-физиков и молодых ученых (ВНКСФ-14, Уфа). Екатеринбург Уфа: Изд-во АСФ России. -2008. С.352-354.
- 153. Миргород В. Г. Исследование динамики голографического формирования фотонных структур в поглощающих фотополимерных композитах / Миргород В. Г., Шарангович С. Н. // Доклады всероссийской научно – технической конференции «Информатика и проблемы телекоммуникаций» Сибирский государственный университет телекоммуникаций и информатики, 2008. -С. 198 – 201.
- 154. Миргород В.Г. Влияние фотоиндуцированного изменения коэффициента диффузии на динамику нелинейной голографической записи дифракционных структур в поглощающих фотополимерных композиционных материалах / Миргород В.Г., Шарангович С.Н // XIY Международная научно-практическая конференция студентов и молодых ученых "Современные техника и технологии" /Сборник

трудов в 3-х томах. Т.3. – Томск: Изд-во Томского политехнического университета, 2008. - С.75-77.

- 155. Миргород В.Г. Исследование влияния поглощения на динамику нелинейной голографической записи мультиплексированных дифракционных структур в фотополимерных композиционных материалах / Миргород В.Г., Шарангович С.Н // Материалы XLVI Международной науч. студ. конф. «Студент и научно-технический прогресс»: Физика/ Новосиб. гос. ун-т. Новосибирск, 2008. – с. 126 – 127.
- 156. Sharangovich S.N. Holographic Formation of Multiplexed Gratings in Photopolymer Composite with Nanoparticle at Nonlinear Interactions on Spatial Harmonics / Sharangovich S.N., Dovolnov E.A., Mirgorod V.G. // Techn. Dig. Of 21st Congress of the International Commission for Optics «ICO-21 2008 Congress». Sydney, Australia/ - 7-10 July 2008. - 1 p.
- 157. Миргород В.Г. Аналитическая модель формирования фотонных структур в фотополимерных композитах с учетом фотоиндуцированных эффектов / Миргород В.Г., Шарангович С.Н. // Материалы докл. Всероссийской науч-технич. конф. «Научная сессия ТУСУР-2008»: В пяти частях. Ч. 1. – Томск: В-Спектр, 2008. – С.206-208.
- 158. Миргород В.Γ. Моделирование процессов параллельной кубической голографической записи фотонных кристаллов с симметрией в поглощающих фотополимерных композитах / Миргород В.Г., Тонышева И. С., Кузьмина Л. А., Пучинина Е. Б., Шарангович С.Н. // Материалы докл. Всероссийской науч-технич. конф. «Научная сессия ТУСУР-2008»: В пяти частях. Ч. 1. – Томск: В-Спектр, 2008. – C.209-211.
- 159. Лыков А.С. Дифракционная модель неоднородной ФПМ-ЖК голографической структуры с учетом статистики ЖК молекул / Лыков А.С., Черкашин Е.С., Ноздреватых Б.Ф., Устюжанин С. В.,

Шарангович С.Н. // Материалы докл. Всероссийской науч-технич. конф. Научная сессия ТУСУР-2008».: В пяти частях. Ч. 1. – Томск: В-Спектр, 2008. – С.212-214.

- 160. Миргород В.Г. Нелинейное формирование фотонных структур в фотополимерных нанокомпозиционных материалах / Миргород В.Г., Шарангович С.Н. // Современные проблемы радиоэлектроники: Сб. науч. тр. /Под ред. А.И. Громыко, А.В. Сарафанова. Красноярск: ИПК СФУ, 2008. - С.283-287.
- 161. Миргород В.Г. Дифракционные характеристики динамически управляемых голографических структур сформированных в ФПМ-ЖК материалах / Миргород В.Г., Ноздреватых Б.Ф., Устюжанин С.В., Шарангович С.Н. // Голография: фундаментальные исследования, инновационные проекты и нанотехнологии. –Материалы XXVI школы по когетентной оптике и голографии». - Иркутск: Изд-во «Папирус», 2008. –С. 454-457.
- 162. Миргород В.Г. Дифракция света на структурах, сформированных голографическимим методом в ФПМ-ЖК материалах / Миргород В.Г., Ноздреватых Б.Ф., Устюжанин С.В., Шарангович С.Н. // Физика наукоемких технологий. Выпуск 2./ Сборник научных статей. Учебное пособие для адьюнктов и курсантов Военного Научного Общества // Под общей редакцией Малова А.Н. и Пахомова С.В. - Иркутск: ИВВАИУ, 2008. – С.240-246.
- 163. Sharangovich S. Nonlinear holographic formation of photonic structures in photopolymer-based nano-composites / Sharangovich S., Dovolnov E., Mirgorod V. // Proc. of The 22nd General Conference of the Condensed Matter Division of the European Physical Society «EPS - CMD 22». Rome, Italy, 25th to 29th August 2008. – 1 p. (Serial number: POL 26).
- 164. Sharangovich S. Nonlinear holographic record of photonic quasi crystals in photopolymer based composites / Sharangovich S., Dovolnov E., Mirgorod V. // Proc. of International school-conference for young scientists

"Nanostructure materials, applied optics and photonics" at 16th international symposium "Nanostructures: Physics and Technology". Vladivostok, Russia, 15-19, July 2008. - P.47.

- 165. Sharangovich S. Holographic photonic structures in photopolymer-based nano-composites / Sharangovich S., Dovolnov E., Mirgorod V. // Technical Program . of International Conference "Laser Optics 2008". -St.Petersburg, Russia, June 23-28, 2008. – 1 p.
- 166. Довольнов Е.А. Многопучковая запись голографических фотонных структур в фотополимерных композитах с учетом фотоиндуцированных эффектов / Довольнов Е.А., Миргород В.Г., Шарангович С.Н. // Труды междунар. науч. конф. «Оптика кристаллов и наноструктур». - Хабаровск: ДГУПС. 15-20 ноября 2008 г. - 5 с.
- 167. Sharangovich S. Anisotropic Light Beam Diffraction on Electrically Controlled Holographic Gratings in Photopolymer-Dispersed Liquid Crystals/ S. Sharangovich , B. Nozdrevatykh, S. Ustyzhanin // Proc. of The 4-th International Conference on Advanced Optoelectronics and Lasers (CAOL'2008). September 29 - October 4, 2008, Alushta, Crimea, Ukraine. - C.407-409.
- 168. Sharangovich S. Nonuniform holographic photonic structures in photopolymer-based nano-composites / Sharangovich S., Dovolnov E., Mirgorod V. // Proc. of The 4- th International Conference on Advanced Optoelectronics and Lasers (CAOL'2008). September 29 - October 4, 2008, Alushta, Crimea, Ukraine –C.189-191.
- 169. Довольнов Е.А., Шарангович С.Н. Свидетельство №5020 об отраслевой регистрации разработки «Пакет программ для расчета и оптимизация голографических дифракционных структур в фотополимерных материалах» в «Отраслевом фонде алгоритмов и программ» от 18.07.2005. Москва.
- 170. Миргород В.Г., Шарангович С.Н. Программа расчета и оптимизации голографических фотонных структур в фотополимерных композитах. -

М.: ВНТИЦ, 2008. - № 50200800100. (Свидетельство № 9718 о регистрации в «Отраслевом фонде алгоритмов и программ» от 18.01.2008. Москва).

Учебное издание

Шарангович Сергей Николаевич

ГОЛОГРАФИЧЕСКИЕ ФОТОННЫЕ СТРУКТУРЫ В ФОТОПОЛИМЕРНЫХ МАТЕРИАЛАХ

Учебное пособие

Формат 60х84 1/16. Усл. печ. л.----. Тираж --- экз. Заказ-----. Отпечатано в Томском государственном университете систем управления и радиоэлектроники. 634050, Томск, пр. Ленина, 40. Тел. (3822) 533018.