Министерство образования и науки Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования «Томский государственный университет систем управления и

(ТУСУР)

радиоэлектроники»

Кафедра радиоэлектронных технологий и экологического мониторинга (РЭТЭМ)

		УТВЕРЖДАЮ
	Заведун	ощий каф. РЭТЭМ
		В.И. Туев
‹ ‹	>>	2015 г.

ПОЛУПРОВОДНИКОВАЯ СВЕТОТЕХНИКА

Методические указания по практической и самостоятельной работе студентов

Разработали:	
Заведующий каф. РЭТЭМ	
В.И. Туев	
Профессор каф. РЭТЭМ	
А.А. Вилисов	
Доцент каф. РЭТЭМ	
В.С. Солдаткин	
• • • •	2015

Томск 2015

Солдаткин В.С., Вилисов А.А., Туев В.И. Полупроводниковая светотехника: Методические указания по практической и самостоятельной работе студентов. – Томск: Томский государственный университет систем управления и радиоэлектроники, 2015. – 9 с.

Настоящие методические указания по практической работе студентов Федерального составлены cучетом требований Государственного профессионального образовательного стандарта высшего образования (ΦΓΟС $B\Pi O$) третьего поколения ПО направлению подготовки 11.03.03 «Конструирование и технология электронных средств», профиль «Технология Методические электронных средств». указания самостоятельной и индивидуальной работе студентов предназначены для студентов, изучающих специальную дисциплину по выбору вариативной части профессионального цикла ООПБЗ.В.ДВ.1.1 «Полупроводниковая светотехника» и содержат необходимую информацию и курс лекций для изучения дисциплины. В изучения материалов данного учебного пособия, студенты должны расширить свои знания по изучаемой дисциплине, а также данное учебное пособие направлено на формирования у студентов следующих компетенций:

- ОК-6 способностью стремиться к саморазвитию, повышению своей квалификации и мастерства
- ОК-8 способностью осознавать социальную значимость своей будущей профессии, обладать высокой мотивацией к выполнению профессиональной деятельности.
- *ПК-3* готовностью учитывать современные тенденции развития электроники, измерительной и вычислительной техники, информационных технологий в своей профессиональной деятельности.

Задача №1

Определить критический угол и долю вышедшего излучения из светодиодного кристалла GaN в воздух.

Дано:

Показатель преломления воздуха,

показатель преломления кристалла *GaN*,

 $P_{\mathit{внутр}}$ мощность оптического излучения внутри кристалла

Определить

Критический угол $\varphi_{\kappa p}$,

долю оптической мощности вышедшей из кристалла $P_{\it внеш}$.

Решение:

По формулам:

$$\varphi_{\kappa p} = arcsin (n_2/n_1),$$

$$P_{\text{внеш}} / P_{\text{внутр}} = (1/4) \times (n_2^2 / n_1^2)$$

Рассчитаем значения $\phi_{\kappa p}$, и $P_{\textit{внеш}}$.

Ответ:

Критический угол для GaN составляет $\varphi_{\kappa p}=23,6$ град., а доля вышедшего излучения в воздух $P_{\it shew}=4,18\%$.

Индивидуальное задание

$N_{\underline{0}}$	n_1	n_2	$P_{\mathit{внутp}}$
1	1	1,1	2
2	2,1	1,1	1,5
3	1,5	1	3
4	1,7	1,5	1
5	1	2	2,5
6	1,3	1	2
7	1	1,3	3
8	1,1	1,7	2
9	2,2	1,5	1
10	3	2,5	1

Определить значение критического угол $\varphi_{\kappa p}$ и доли вышедшего излучения в воздух $P_{\it внеш}$.

Задача №2

Вычислить значения световых потоков Φ_{I} , Φ_{2} , Φ_{3} светодиодного источника света на длинах волн $\lambda_{I}=450$ нм, $\lambda_{2}=550$ нм, $\lambda_{3}=650$ нм, если для каждого из соответствующих потоков оптическая мощность равна P=2 Вт.

Дано:

$$\lambda_1 = 450 \text{ HM}, \lambda_2 = 550 \text{ HM}, \lambda_3 = 650 \text{ HM},$$

$$P_1 = P_2 = P_3 = 2 \text{ Bt.}$$

Определить: Φ_1 , Φ_2 , Φ_3 .

Решение:

Соотношения между световым потоком и оптической мощностью излучения:

$$\Phi = 683 \times k(\lambda) \times P$$

 ϵ де, $k(\lambda)$ — уровень спектральной световой чувствительности для данной длины волны излучения.

Таблица 1. Фотопическая функция человеческого глаза

λ, нм	K	λ, нм	K	λ, нм	K	λ, нм	K
380	0,00004	480	0,139	580	0,870	690	0,0082
390	0,00012	490	0,208	590	0,757	700	0,0041
400	0,00040	500	0,323	600	0,631	710	0,0021
410	0,0012	510	0,503	610	0,503	720	0,00105
420	0,0040	520	0,710	620	0,381	730	0,00052
430	0,0116	530	0,862	630	0,265	740	0,00025
440	0,023	540	0,954	640	0,175	750	0,00012
450	0,038	550	0,995	650	0,107	760	0,00006
460	0,060	555	1,0000	660	0,061	770	0,00003
470	0,091	560	0,995	670	0,032		
		570	0,952	680	0,017		

$$\lambda_{I} = 450 \text{ HM}, \rightarrow k(\lambda_{I}) = 0.038;$$

$$\lambda_2 = 550 \text{ HM}, \rightarrow k(\lambda_2) = 0.995$$

$$\lambda_3 = 650$$
 нм, $\rightarrow k(\lambda_3) = 0.107$

Тогда световые потоки будут равны:

$$\Phi_1 = 683 \times 0.038 \times 2 = 51.6 \text{ лм};$$

$$\Phi_2 = 683 \times 0,995 \times 2 = 1359,2$$
 лм;

$$\Phi_3 = 683 \times 0.107 \times 2 = 146.2$$
 лм.

Ответ:

Значения светового потока для каждой длины волны составили:

$$\Phi_1 = 51,6$$
 лм; $\Phi_2 = 1359,2$ лм; $\Phi_3 = 146,2$ лм.

Индивидуальное задание

№	P_{I}	P_2	P_3	λ_I	λ_2	λ_3
1	1	2	3	440	530	640
2	1,5	3	2	445	555	645
3	3	2,5	1	455	555	650
4	1	3,5	2	380	470	590
5	1,5	3,5	2	460	570	620
6	2,5	1,5	3,5	450	525	627
7	2	3	3	470	530	630
8	2,5	3	2	430	535	635
9	1,7	3,5	2,5	465	540	670
10	3	2	1	477	550	680

Определить: Φ_1, Φ_2, Φ_3 .

Задача №3

Определить значение прогнозного срока службы светодиода, если значение прямого тока составляет $I_{np}=20$ мА, значение прямого напряжения $U_{np}=3.2$ В, тепловое сопротивление $R_t=150$ К/Вт при температуре эксплуатации $T_{o\kappa p}=65$ °C, энергией активации 0,75 эВ и срок службы $80\,000$ часов.

Дано:

$$I_{np} = 20 \text{ MA},$$

$$U_{np} = 3.2 \text{ B},$$

$$R_t = 150 \text{ K/BT},$$

$$T_{o\kappa p} = 65$$
 °C,

$$E_a = 0.75 \text{ 3B},$$

 $t_{HOM} = 80~000$ часов.

Определить: t_v – срок службы светодиода при $T_{o\kappa p}$ = 65 °C.

Решение:

Определим температуру p-n перехода светодиодного кристалла по формуле:

$$Q_{pn} = Q_{o\kappa p} + (R_t \times P)$$

где, $Q_{окр}$ – температура окружающей среды, ${}^{0}\mathrm{C}$;

Р – электрическая мощность (Вт), определяют из уравнения:

$$P = I \times U$$
,

 I_{np} – прямой ток через светодиодный кристалл, A;

 U_{np} – прямое напряжение светодиодного кристалла, В.

$$Q_{pn} = (25 \text{ °C} + 150 \text{ K/BT} \times 0.064 \text{ BT}) = 34.6 \text{ °C},$$

$$Q_{pnv} = (65 \text{ °C} + 150 \text{ K/BT} \times 0.064 \text{ BT}) = 74.6 \text{ °C},$$

Определим коэффициент ускорения по формуле:

$$K_y = exp(E_a/k) \times (1/(Q_{pn} + 273)) - (1/(Q_{pny} + 273))$$

$$K_y = exp\left(((0.75 \cdot 1.6 \cdot 10^{-19})/(1.38 \cdot 10^{-22}))\right) \times ((1/(34.6 + 273) - (1/(74.6 + 273)))$$

$$K_y = 1,38$$

$$t_y = t_{\text{ном}} / K_y$$

 $t_y = 80\ 000\ /\ 1,38 = 57\ 784$ часов.

Ответ:

Срок службы светодиода при $T_{o\kappa p}=65$ °C составил: $t_y=57~784$ часов.

Индивидуальное задание

№	I_{np}	U_{np}	R_t	$T_{o\kappa p}$
1	10	3,2	150	30
2	20	3,1	150	30
3	60	3,0	50	30
4	150	2,9	50	30
5	350	3,5	15	30
6	500	3,1	15	30
7	800	3,1	5	30
8	1000	3,1	5	30
9	1500	3,0	5	30
10	2000	3,0	2,5	30

Определить: t_y – срок службы светодиода.

СПИСОК РЕКОМЕНДУЕМОЙ ЛИТЕРАТУРЫ

- 1. Солдаткин В.С., Вилисов А.А., Туев В.И. Полупроводниковая светотехника: Учебное пособие. Томск: Томский государственный университет систем управления и радиоэлектроники, 2015. 53с.
- 2. Шуберт Ф. Светодиоды / пер. с англ. под ред. А.Э. Юновича. 2е изд. – М.: ФИЗМАТЛИТ, 2008. - 496 с.
- 3. Nakamura S., Fasol G. The Blue Laser Diod (Springer, Berlin). 1997. C. 335.
- 4. Панков Ж. Оптические процессы в полупроводниках / пер с англ. Ж. Панков; под ред. Ж.И. Алфёрова и В.С. Вавилова М.: Мир, 1973. 456 с.
- 5. Коган Л.М. Полупроводниковые светоизлучающие диоды. М.: Энергоатомиздат, 1983. 208 с.
- 6. Ландсберг Г.С. Оптика. Учеб. Пособие: Для вузов. 6-е изд., стереот. М. ФИЗМАТЛИТ, 2003. 848 с.
- 7. Энергоэффективное электрическое освещение: учебное пособие / С.М. Гвоздев, Д.И. Панфилов, Т.К. Романова и др.; под. ред. Л.П. Варфоломеева. М.: Издательский дом МЭИ, 2013. 288 стр.