Министерство образования и науки Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования

«ТОМСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ СИСТЕМ УПРАВЛЕНИЯ И РАДИОЭЛЕКТРОНИКИ» (ТУСУР)

Давыдов В.Н.

ФИЗИЧЕСКИЕ ОСНОВЫ ОПТОЭЛЕКТРОНИКИ

Учебно-методическое пособие для студентов направлений подготовки "Инфокоммуникационные технологии и системы связи» и «Квантовые и оптоэлектронные приборы и устройства»

Томск - 2016

Давыдов В.Н.

Профессор кафедры электронных приборов ТУСУР

ФИЗИЧЕСКИЕ ОСНОВЫ ОПТОЭЛЕКТРОНИКИ. Учебно-методическое пособие для студентов с краткой теорией, примерами решения типовых задач и задачами для самостоятельного решения. - Томск: ТУСУР, 2016. - 92 с.

Данное учебно-методическое пособие является составной частью комплекта учебно-методического обеспечения дисциплин «Физические основы оптоэлектроники», а также «Квантовые и оптоэлектронные приборы и устройства».

В нем приведены примеры решения задач по всем разделам данного курса, изложенным в учебном пособии, а также даны варианты заданий по каждому разделу курса в количестве по 20 задач для контрольных работ и самостоятельного решения. В конце пособия приведены справочные материалы по параметрам наиболее используемых полупроводниковых материалов, необходимые для решения задач. Перед началом каждого раздела дано краткое изложение теории по тем вопросам и в том объеме, которые необходимы для дальнейшего решения задач. В этом теоретическом материале также приведены дополнительные физические параметры и математические выражения, расширяющие представление по данному вопросу и которые потребуются для вычисления требуемых физических процессов и явлений, используемых для создания приборов оптоэлектроники.

Пособие будет полезно студентам очно-заочной и заочной форм обучения, испытывающим трудности в освоении курса «Физические основы оптоэлектроники» и «Квантовые и оптоэлектронные приборы и устройства», а также студентам, изучающим близкие по направлению дисциплины физического профиля.

© Давыдов В.Н.

2016

СОДЕРЖАНИЕ

1. ВВЕДЕНИЕ	8
2. ЦЕЛЬ ПРЕПОДАВАНИЯ ДИСЦИПЛИНЫ	9
 3. СТРУКТУРА И СОДЕРЖАНИЕ ДИСЦИПЛИНЫ 3.1 Наименование тем, их содержание. 3.2 Темы для самостоятельной работы. 3.3. Лабораторные работы. 	11 12 13
4. СПИСОК РЕКОМЕНДУЕМОЙ ЛИТЕРАТУРЫ	14
 5. ЭЛЕМЕНТЫ ЗОННОЙ ТЕОРИИ ТВЕРДЫХ ТЕЛ 5.1 Краткое изложение теории. 5.2 Примеры решения задач по вычислению зонного спектра полупроводника и токопереносу. 5.3 Варианты заданий по вычислению зонного спектра 	15 20
полупроводника и токопереносу к контрольной работе № 1	24
 7. ВЗАИМОДЕЙСТВИЕ ОПТИЧЕСКОГО ИЗЛУЧЕНИЯ С ТВЕРДЫМИ ТЕЛАМИ 7.1 Краткое изложение теории	28
 параметров взаимодействия излучения с полупроводниками 7.3 Варианты заданий по определению параметров взаимодействия излучения с полупроводниками 	29
к контрольной работе № 1	34
 8. ФОТОЭЛЕКТРИЧЕСКИЕ ЯВЛЕНИЯ ПОЛУПРОВОДНИКАХ 8.1 Краткое изложение теории	38
 6.2 Примеры решения задатно определению параметров фотоэлектрических эффектов в полупроводниках	46
фотоэлектрических эффектов в полупроводниках к контрольной работе № 1	53
 9. ЭМИССИЯ ОПТИЧЕСКОГО ИЗЛУЧЕНИЯ ИЗ ПОЛУПРОВОДНИКОВ 	
9.1 Краткое изложение теории	58
 9.2 Примеры решения задач по определению параметров эмиссионных процессов в полупроводниках 9.3 Варианты заданий по определению параметров эмиссионных процессов в полупроводниках 	62

к контрольной работе № 1	67
10 ЖИДКИЕ КРИСТАЛЛЫ В ОПТОЭЛЕКТРОНИКЕ	
10.1 Краткое изложение теории	71
10.2 Примеры решения задач по определению параметров	
жидкокристаллических приборов	73
10.3 Варианты заданий по определению параметров	
жидкокристаллических приборов к контрольной	
работе № 2	76
14 ПРИЛОЖЕНИЕ. СПАВОЧНЫЕ ДАННЫЕ	
ПО ПОЛУПРОВОДНИКОВЫМ МАТЕРИАЛАМ	80

СПИСОК ИСПОЛЬЗУЕМЫХ ОБОЗНАЧЕНИЙ

- 1. Е энергия электрона в твердом теле;
- 2. Ес энергия электрона у дна зоны проводимости;
- 3. *E*_v энергия электрона у потолка валентной зоны;
- 4. ΔE_{q} ширина запрещенной зоны;

5. $k = \frac{2\pi}{\lambda}$ - волновой вектор;

- 6. p = mv импульс классической частицы;
- 7. *m*₀ масса покоя электрона;
- 8. *m*^{*} эффективная масса электрона;
- 9. *L* длина кристалла;
- 10. λ длина волны;
- 11. *N* количество атомов в кристалле;
- 12. *F* энергия уровня Ферми;
- 13. к постоянная Больцмана;
- 14. Т абсолютная температура;
- 15. f(E) функция распределения частиц по энергии;
- 16. ј плотность электрического тока;
- 17. е, q заряд электрона;
- 18. υ скорость движения электрона (дырки);
- 19. m_n^* эффективная масса электрона в зоне проводимости;
- 20. m_{ρ}^{*} эффективная масса дырки в валентной зоне;
- 21. х координата в твердом теле;
- 22. ε электрическое поле;
- 23. *t* текущее время;
- 24. *R* коэффициент отражения излучения;
- 25. / интенсивность оптического излучения;
- 26. α коэффициент поглощения оптического излучения;
- 27. *е*ф-длина свободного пробега фотона;
- 28. *w* круговая частота;
- 29. с скорость света в вакууме;
- 30. σ сечение захвата фотона заряда центром поглощения;
- 31. *т*_{фот} масса фотона;
- 32. *g*_{*n*}- скорость генерации электронов;
- 33. *g*_p скорость генерации дырок;
- 34. *R_n* скорость рекомбинации электронов;
- 35. *R*_p скорость рекомбинации дырок;
- 36. *т*_{*n*} время жизни электронов;

- 37. τ_{p} время жизни дырок;
- 38. η квантовая эффективность полупроводника;
- 39.
 $\sigma_{\textit{n}}$ электронная проводимость полупроводника;
- 40.
 $\sigma_{\it p}$ дырочная проводимость полупроводника;
- 41. *п* концентрация электронов в полупроводнике;
- 42. *р* концентрация дырок в полупроводнике;
- 43. μ_n подвижность электронов;
- 44. μ_{p} подвижность дырок;
- 45. тфп время релаксации фотопроводимости;
- 46. *D_n* коэффициент диффузии электронов;
- 47. *D*_р коэффициент диффузии дырок;
- 48. *L_n* диффузионная длина электронов;
- 49. *L*_р диффузионная длина дырок;
- 50. *d* толщина полупроводникового образца;
- 51. ρ удельное сопротивление образца;
- 52. **S** площадь;
- 53. ϕ разность электростатических потенциалов;
- 56. І величина электрического тока;
- 57. *т*_{*p*-*n*} время релаксации неравновесного заряда в *p*-*n* переходе;
- 58. *f* линейная частота;
- 59. К константа упругости жидкого кристалла;
- 60. р шаг холестерической спирали;
- 61. *z* пространственная координата;
- 62. **Q** параметр порядка в жидких кристаллах;
- 63. Δε величина оптической анизотропии жидкого кристалла;
- 64. *ε*_⊥ диэлектрическая проницаемость, измеренная перпендикулярно длинной оси молекулы жидкого кристалла;
- 65. *є*_{II} диэлектрическая проницаемость, измеренная параллельно длинной оси молекулы жидкого кристалла.

Данное учебно-методическое пособие включает в себя материалы, необходимые для организации студентами самостоятельной работы по изучению дисциплины с использованием компьютерных обучающих, моделирующих и контролирующих программ. Оно также будет полезно студентам очной формы обучения при освоении теоретической и практической частей дисциплин «Физические основы оптоэлектроники» и «Квантовые и оптоэлектронные приборы и устройства».

При очной форме обучения данный курс изучается в течение третьего семестра, по окончании которого сдается зачет. В процессе освоения дисциплины выполняется две контрольных и четыре лабораторных работы.

Первая контрольная работа выполняется по темам:

- элементы зонной теории твердого тела и токопротекание;

- взаимодействие оптического излучения с твердыми телами;

- фотоэлектрические явления в полупроводниках и полупроводниковых приборах;

Вторая контрольная работа третьего семестра направлена на проверку знаний по следующим вопросам:

- флуктуационные процессы в полупроводниках;

- эмиссионные свойства твердых тел;

- жидкие кристаллы в оптоэлектронике.

В процессе изучения дисциплины запланировано также выполнение следующих лабораторных работ:

1. Исследование свойств *p-n* перехода в оптоэлектронных приборах (моделирование на компьютере).

2. Исследование фотопроводимости полупроводников (измерения на лабораторной установке).

3. Исследование шумовых свойств полупроводников (измерения на лабораторной установке).

4. Определение ширины запрещенной зоны полупроводника методом инжекции неосновных носителей заряда (измерения на лабораторной установке).

При написании как учебного пособия к курсу, так и данного учебнометодического пособия автор стремился к подробному изложению физической стороны обсуждаемого явления или процесса, что в ряде случаев сделано в ущерб математическому описанию. Последнее может быть восполнено изучением доступных монографий по физике твердого тела, теории полупроводников. Автор также уделял особое внимание ясности и полноте изложения физических сторон обсуждаемого явления, которые в имеющихся вузовских учебниках либо изложены недостаточно ясно, либо отсутствуют совсем. Это касается описания взаимодействия кванта света с атомом в кристалле, наглядного толкования смысла уровня Ферми в полупроводнике, описания последовательно возникающих ориентационных эффектов в жидких кристаллах в широком диапазоне напряжений и т.д.

В начале каждого раздела приводится краткое описание теории рассматриваемого вопроса. Затем дается детальное описание решения нескольких типовых задач по тематике рассматриваемого свойства оптоэлектронного прибора. В конце раздела приведены 20 задач для самостоятельного решения.

2. ЦЕЛЬ ПРЕПОДАВАНИЯ ДИСЦИПЛИНЫ

Целью изучения дисциплины «Физические основы оптоэлектроники» является ознакомление студентов с основными физическими принципами фукционирования базовых элементов современной оптоэлектроники, а также с их основными характеристиками и параметрами.

В результате изучения этой дисциплины студенты должны знать и уметь использовать в решении практических задач:

- 1. основные положения зонной теории твердого тела;
- 2. токопротекание в полупроводниковых приборах как по дрейфовому, так и диффузионному механизмам;
- 3. основные механизмы взаимодействия оптического излучения с твердыми телами;
- 4. физические свойства фотопроводмости, различных типов фотоэдс, принципы работы фотоприемных элементов, излучающих диодов и лазеров, жидкокристаллических приборов и устройств;
- 5. механизмы формирования различных типов шумов полупроводниковых приборов, уметь рассчитывать их величину и определять спектральные свойства;
- 6. понимать принцип отображения информации с помощью жидких кристаллов, а также вычислять основные параметры оптических ячеек на переходах Фредерикса.

Наряду с этим студенты также должны видеть и понимать перспективы развития твердотельной электроники, связанные с применением новых материалов и технологий, а также новых физических явлений в твердых телах для целей создания новых оптоэлектронных приборов.

3. СТРУКТУРА И СОДЕРЖАНИЕ ДИСЦИПЛИНЫ

3.1. Наименование тем, их содержание

Тема 1. Введение. Основные предпосылки появления оптоэлектроники, её место среди родственных научно-технических направлений: вакуумной и твердотельной электроники, микроэлектроники, оптики. Особенности подхода и преимущества оптоэлектроники при решении задач телекоммуникаций, ин-

форматики, вычислительной техники. Области применения приборов и устройств оптоэлектроники.

Тема 2. Элементы зонной теории твердых тел. Электропроводность кристаллов и попытки её объяснения классической электронной теорией. Зонная структура, образование зон из атомных уровней: модель Зоммерфельда и модель Блоха. Понятие зоны проводимости, валентной зоны и запрещённой зоны, их связь с атомарным представлением о строении кристаллических тел.

Понятие квазиимпульса электрона. Распределение электронов в пространстве квазиимпульсов. Долины энергии и зона Бриллюэна. Плотность состояний, концентрации носителей в зонах. Распределение Ферми-Дирака частиц по энергии. Положительные подвижные частицы: понятие о дырке, её энергетическое положение в зонной диаграмме и в пространстве квазиимпульсов.

Движение электронов и дырок в кристалле под действием электрического поля. Блоховское представление электрона и дырки, наклон зон в энергетической диаграмме полупроводника. Туннелирование частиц через потенциальный барьер. Пробой Зинера. Механизмы токопротекания в полупроводниках. Расчет проводимости кристалла по заданным его параметрам.

Тема 3. Взаимодействие оптического излучения с твердыми телами. Основные параметры и характеристики взаимодействия излучения с веществом: коэффициенты поглощения и отражения, спектры поглощения и отражения. Закон Бугера - Ламберта. Феноменологическое определение коэффициента поглощения. Типы механизмов поглощения излучения. Физические явления при различных типах поглощения излучения: собственное и примесное поглощение в полупроводниках, прямые и непрямые переходы, поглощение свободными носителями, решёточное поглощение. Внутризонные переходы.

Тема 4. Фотоэлектрические явления в полупроводниках и полупроводниковых приборах. Основные параметры, характеризующие изменение состояние вещества при поглощении излучения: времена релаксации концентраций неравновесных носителей заряда, квантовый выход внутреннего фотоэффекта. Кинетика концентраций неравновесных носителей заряда. Собственная и примесная фотопроводимость полупроводников, прямые и непрямые переходы, время релаксации фотопроводимости, коэффициент усиления фотопроводимости.

Роль неосновных носителей заряда в формировании фотоэффектов. Фотоэдс Дембера. Объемная фотоэдс. Квазиуровни Ферми. Электронно-дырочные переходы. Барьерная фотоэдс. Фотодиодный режим. Численные оценки величин различных фотоэффектов и их быстродействия в полупроводниках.

Тема 5. Флуктуационные процессы в полупроводниках и полупроводниковых приборах. Основные понятия теории шумов: виды шу-

мов и их физические причины, дисперсия и распределения плотности вероятностей. Основные виды распределения плотности вероятности случайного процесса. Автокорреляционная функция случайной величины. Метод Фурье, спектральная плотность вероятности. Метод Ланжевена. Рассмотрение теплового, дробового, генерационно-рекомбинационного и избыточного шумов. Численные оценки шумов в полупроводниковых фоторезисторах.

Тема 6. Эмиссия излучения из твердых тел. Излучательные процессы в полупроводниках. Определения различных типов люминесценции. Излучательная способность. Внутренняя и внешняя квантовые эффективности процесса генерации излучения. Спектр излучения и его взаимосвязь со спектром поглощения излучения. Сдвиг Франка-Кордона спектра излучения. Межзонная излучательная рекомбинация. Связь времени излучательной рекомбинации в объеме полупроводника с уровнем его легирования.

Спонтанное и вынужденное излучение атома, связь между ними. Критерии возникновения лазерного излучения в твердых телах. Физические процессы в полупроводниковых лазерах. Принцип работы инжекционных лазеров на p-n переходах. Недостатки диффузионных светодиодов и направления улучшения их параметров. Конструктивные особенности полупроводниковых светодиодов, использующих квантовые ямы и сверхрешетки.

Тема 7. Жидкие кристаллы в оптоэлектронике. Особенности свойств жидких кристаллов. Классификация жидких кристаллов. Основные физические свойства и структура нематиков, холестериков, смектиков. Параметры, хактеризующие структурное состояние жидкого кристалла. Ориентационные свойства нематиков: переход Фредерикса, домены Капустина-Вильямса, динамическое рассеяние света. Оптические свойства нематиков и холестериков. Эффект "гость-хозяин". Принципы управления ориентационными свойствами жидких кристаллов. Применение жидких кристаллов в оптоэлектронике: устройство и принцип работы оптических ячеек, транспарантов, модуляторов, устройств отображения информации и т.д.

Тема 8. Перспективы развития оптоэлектроники. Расширение круга физических явлений, используемых в оптоэлектронике: низкотемпературная сверхпроводимость, двумерные квантовые системы, сверхрешетки, синергетические явления. Расширение числа материалов, используемых в оптоэлектронике: гетероструктуры, полупроводники сложного состава.

3.2 Темы для самостоятельной работы

Для более глубокого понимания и успешного решения заданий контрольной работы № 1 по рекомендованной литературе целесообразно самостоятельно подготовить следующие вопросы:

- зависимость положения уровня Ферми от концентрации примеси и температуры полупроводника (источник № 5 из списка рекомендованной литературы);

- барьерная емкость р-п перехода (источники №1 и № 5 из списка рекомендованной литературы);

- подвижность и коэффициент диффузии неравновесных носителей заряда (источник № 5,6 из списка рекомендованной литературы).

Для понимания и успешного решения заданий контрольной работы № 2 целесообразно самостоятельно подготовить следующие вопросы:

- полный шум полупроводникового прибора (источник № 7 из списка рекомендованной литературы).

4. СПИСОК РЕКОМЕНДУЕМОЙ ЛИТЕРАТУРЫ

- 1. Ю.И. Епифанов. Физические основы микроэлектроники. М., Высшая школа, 1971.- 388с.
- 2. И.К.Верещагин, Л.А.Косяченко, С.М.Кокин. Введение в оптоэлектронику. М., Высшая школа. - 1991. - 189 с.
- 3. Ю.Р. Носов. Оптоэлектроника. М., Радио и связь. 1989. 350 с.
- 4. С.А.Пикин, Л.М.Блинов. Жидкие кристаллы.М., Наука, 1982. 207с.
- 5. С.А. Фридрихов, С.М. Мовин. Физические основы электронной техники. М., Высшая школа. 1982. – 607 с.
- 6. К.В. Шалимова. Физика полупроводников. М., Энергия. 1976. 416 с.
- 7. Ван дер Зил. Шумы. Источники, описание, измерения: Перевод с англ. М.: Сов. радио, 1973. 226 с.

5. «ЭЛЕМЕНТЫ ЗОННОЙ ТЕОРИИ ТВЕРДЫХ ТЕЛ»

5.1. Краткое изложение теории

Общие вопросы. Для объяснения электрических свойств кристаллических твердых тел используют зонную диаграмму. Она представляет собой зависимость энергии электрона в кристалле от координаты, отсчитываемой от одной из поверхностей тела. Зонный спектр полупроводников и диэлектриков состоит из полос разрешенных и запрещенных значений энергии, которые может принимать валентный электрон в кристалле при внешних воздействиях. Однако для большинства практических задач, характеризующихся относительно слабыми внешними воздействиями (освещение, приложение электрического поля), достаточно ограничить свое рассмотрение изучением только поведения электрона только в двух близлежащих зонах: последней зоне невозбужденных состояний валентных электронов и первой зоне возбужденных, называемых валентной зоной и зоной проводимости, соответственно. В валентной зоне могут перемещаться дырки, создавая дырочную проводимость полупроводника, а в валентной зоне – электроны, которые создают электронную проводимость. Верхний уровень валентной зоны и нижний уровень зоны

проводимости обозначают как E_V и E_C , соответственно. Энергетический зазор между этими уровнями ΔE_g , называемый запрещенной

зоной, включает в себя энергетические состояния с энергиями E из диапазона $E_C > E_i > E_V$, в которых электрон находиться не может. Середину запрещенной зоны обозначают как E_i . Рисунок 1 поясняет сказанное.

Начало отсчета энергии электрона и дырки обычно совмещают с потолком валентной зоны: $E_V = 0$. При этом энергия электрона отсчитывается вверх, а энергия дырки – вниз. В равновесных условиях каждая частица стремится занять такое состояние, в котом ее энергия минимальна. Значит, энергетически выгодные состояния для электронов и дырок находятся вблизи E_V и E_C .

Уровень Ферми. Однако в реальных кристаллах в запрещенной зоне могут находиться уровни разрешенных энергий. Их появление связано с наличием в полупроводнике различных примесей и (или) структурных дефектов. При их значительной концентрации они определяют концентрацию свободных носителей заряда в зонах разрешенных энергий. Для оценки заполнения электрона-

ми состояния с энергией *E* в условиях термодинамического равновесия необходимо пользоваться функцией Ферми-Дирака:

$$f(E) = \frac{1}{1 + exp\left(\frac{E - F}{kT}\right)}.$$
(5.1)

Данная функция определяет вероятность f(E) нахождения электрона на уровне с энергией Е, если известно энергетическое положение уровня Ферми F. Здесь $k = 1.38 \cdot 10^{-23}$ Дж/град – постоянная Больцмана, T – абсолютная температура кристалла в кельвинах. Величина f(E) может принимать значения, лежащие в диапазоне от 0 до 1. Значение f(E) = 0 соответствует случаю полной ионизации состояния с энергией Е: данное энергетическое состояние, существование которого обусловлено, например, наличием в полупроводнике примесных атомов (медь железо, фосфор, бор и т.д. в кремнии), соответствует такому состоянию атомов примеси, при котором на его валентных оболочках отсутствует один или несколько валентных электронов. Случай же f(E) = 1 на физическом уровне означает присутствие на валентных оболочках атомов всех валентных электронов. Уровень Ферми – гипотетический (мысленный) уровень в зонной диаграмме кристалла, реально его нельзя обнаружить прямыми методами. Он определяется как некое энергетическое состояние в полупроводнике, вероятности заполнения которого электронами и дырками равны 0.5. Следует отметить, что функция вида (5.1) быстро изменяется вблизи точки E = F: отступив по энергии от этого равенства на $(2 \div 3)kT$ вверх или вниз, функция заполнения примет значения равные нулю или единице с точностью до 5%. Физически это означает, что при f(E) = 1 все состояния, лежащие ниже уровня Ферми на $(2 \div 3)kT$, полностью заполнены электронами; в случае f(E) = 0 все состояния, находящиеся выше уровня Ферми на $(2 \div 3)kT$, полностью лишены электронов за счет их возбужения тепловыми колебаниями решетки.

Вероятность заполнения уровня с энергией *Е* дырками определяется следующим образом:

$$1 - f(E) = \frac{exp\left(\frac{E - F}{kT}\right)}{1 + exp\left(\frac{E - F}{kT}\right)}.$$
(5.2)

Как же на практике пользоваться выражением (5.1)? Продемонстрируем это на простейшем примере: пусть известно, что в полупроводнике имеется примесь донорного типа с концентрацией N_d . Тогда, зная положение уровня Ферми, можно рассчитать, сколько атомов примеси будет в этих условиях неионизовано (или другими словами, сколько электронов находится на примесном уровне):

$$\Delta n_t = N_d \cdot f(E).$$

Другая часть атомов примеси будет ионизована, потеряв с внешней оболочки валентный электрон, который уйдет в зону проводимости. Следовательно, в зоне проводимости появится дополнительное количество электронов (уйдя с примесного уровня, они перешли в межатомное пространство), равное

$$\Delta n = N_d - \Delta n_t = N_d \left(1 - f(E)\right).$$

В свою очередь положение уровня Ферми в полупроводнике определяется концентрацией свободных носителей заряда. Если имеется полупроводник n-типа проводимости с концентрацией электронов в зоне проводимости n_0 , то уровень Ферми расположен от E_V на расстоянии, определяемом выражением:

$$F = E_i + \frac{3}{4}kT \cdot ln\left(\frac{m_p^*}{m_n^*}\right) - kT \cdot ln\left(\frac{n_i}{n_0}\right).$$
(5.3)

Здесь первое слагаемое равно середине запрещенной зоны, второе слагаемое учитывает различие в эффективных массах дырок m_p^* и электронов m_n^* , и только третье слагаемое (5.3) ответственно за влияние на положение уровня Ферми концентрации свободных электронов. Как следует из выражения (5.3), в собственном полупроводнике ($n_0 = p_0 = n_i$ - концентрация носителей заряда в собственном полупроводнике) положение уровня Ферми F_i можно вычислить с помощью выражения

$$F_i = E_i + \frac{3}{4}kT \cdot ln\left(\frac{m_p^*}{m_n^*}\right).$$
(5.4)

Обычно эффективная масса дырок превышает эффективную массу электронов и потому, согласно выражению (5.4), уровень Ферми в собственном полупроводнике лежит выше середины запрещенной зоны E_i . Однако превышение F_i над E_i обычно невелико.

Как следует из выражения (5.3), в электронном полупроводнике уровень Ферми лежит в верхней половине запрещенной зоны, причем он тем ближе к дну зоны проводимости E_C , чем выше концентрация электронов. В полупроводниках p - типа проводимости положение уровня Ферми определяется следующим образом:

$$F = E_i + \frac{3}{4}kT \cdot ln\left(\frac{m_p^*}{m_n^*}\right) + kT \cdot ln\left(\frac{n_i}{p_0}\right),\tag{5.5}$$

где *p*₀ - концентрация дырок в валентной зоне.

Заметим, что приведенные выше выражения дают положение уровня Ферми в джоулях.

В условиях термодинамического равновесия между равновесными концентрациями электронов n_0 и дырок p_0 в зонах существует связь, определяемая следующим соотношением:

$$n_0 \cdot p_0 = n_i^2 \,. \tag{5.6}$$

Здесь n_i - собственная концентрация носителей заряда в полупроводнике. Соотношение (5.6) является важным в теории полупроводников. По этой причине проанализируем его подробнее.

Соотношение концентраций. Пусть имеется собственный полупроводник, у которого число дырок равно числу электронов. Добавим теперь некоторое количество донорных атомов. Число электронов при этом должно возрасти, но, согласно (5.6), если число электронов растет, число дырок должно уменьшаться, так как их произведение постоянно. На первый взгляд это кажется странным. Можно было бы ожидать, что число электронов, перешедших в результате теплового возбуждения из валентной зоны в зону проводимости (и, следовательно, число возникших дырок), зависит только от температуры и на него не влияет наличие донорных атомов. Но это не так. При увеличении концентрации доноров число электронов в зоне проводимости возрастает, однако количество электронов, перешедших через запрещенную зону, уменьшается (не только в относительном, но и в абсолютном выражении). Почему это происходит?

С качественной точки зрения ответ на этот вопрос можно получить, обратившись к концепции «динамического равновесия». Это означает, что электронно-дырочные пары непрерывно возникают и аннигилируют, причем равновесие имеет место в том случае, когда скорость их генерации равна скорости аннигиляции (последнее явление чаще называют "рекомбинацией").

Разумно предположить, что электрону и дырке легче найти друг друга тогда, когда их много. Поэтому скорость рекомбинации должна быть пропорциональна концентрациям дырок и электронов. Для собственного полупроводника можно записать

$$\boldsymbol{R}_{i} = \boldsymbol{\alpha} \cdot \boldsymbol{n}_{i}^{2}, \ \boldsymbol{g}_{i} = \boldsymbol{\alpha} \cdot \boldsymbol{n}_{i}^{2} \quad , \tag{5.7}$$

где *а* - некий коэффициент пропорциональности, *R_i*, *g_i* - скорости рекомбинации и генерации носителей заряда в собственном полупроводнике.

Вполне естественно ожидать, что при добавлении небольшого количества примеси ни скорость генерации, ни коэффициент пропорциональности не изменятся. Поэтому для примесного полупроводника, например, *n*-типа, выражение

$$g_n = \alpha \cdot n_i^2 \tag{5.8}$$

по-прежнему остается справедливым.

Скорость рекомбинации, однако, должна зависеть от истинных концентраций электронов и дырок, так что

$$R_n = \alpha \cdot n \cdot p \,. \tag{5.9}$$

Приравнивая (5.8) и (5.9), получаем искомое соотношение

$$n_i^2 = np , \qquad (5.10)$$

Таким образом, если концентрация электронов начинает превышать концентрацию в собственном полупроводнике, то концентрация дырок должна стать меньше, чем в собственном полупроводнике, чтобы скорость рекомбинации электронно-дырочных пар оставалась постоянной и равной скорости их термической генерации.

Компенсированные полупроводники. Говоря о легировании полупроводников, необходимо указать на одно важное для практического применения его свойство. При выращивании полупроводников не удается полностью исключить проникновение в него неконтролируемых примесей, а также избежать появления в его объеме структурных дефектов. Те и другие могут проявить себя как неконтролируемая легирующая примесь. Как следствие большинство вы-

ращиваемых полупроводников имеют до легирования n-тип проводимости. Более того, при изготовлении полупроводниковых приборов на исходной полупроводниковой подложке с заданной концентрацией легирующей примеси получают области противоположного типа (изготовление p-nпереходов, охранных колец и т.п.).

Рис. 2

Для смены типа проводимости полупроводника ли какой-то его области применяют операцию компенсирования или перекомпенсирования полупроводника. Ее суть сводится к тому, что в указанную область полупроводника локально вводят в нужном количестве легирующую примесь противоположного типа: для получения, например, на полупроводнике n – типа области p – типа вводят акцепторную примесь. Рисунок 2 поясняет сказанное. Здесь $F^{(n)}$ - положение уровня Ферми в исходном полупроводике n – типа с донорной примесью E_d , а $F^{(p)}$ - положение уровня Ферми после введения в полупроводник компенсирующей акцепторной примеси с уровнем E_a . E_i – середина запрещенной зоны, разделяющая ее на верхнюю часть (для донорных примесей) и нижнюю (для акцепторных). На рис. 2 вертикальными стрелками показаны также переходы электронов на стадии формирования зарядового состояния донорной и акцепторной примеси в компенсированном полупроводнике.

Концентрацию вводимой компенсирующей примеси рассчитывают исходя из следующих соображений: после ее введения необходима такая концентрация дырок, чтобы она превысила концентрацию электронов в исходном полупроводнике на величину требуемой концентрации дырок в окончательном состоянии полупроводника. Так, если исходная концентрация электронов составляла $n_0 = 2.5 \cdot 10^{14}$ см⁻³, то для получения *p*-области с концентрацией дырок $p_k = 4.8 \cdot 10^{14}$ см⁻³ необходимо ввести акцепторную примесь (при условии полной ее ионизации) с концентрацией N_a , равной $4.8 \cdot 10^{14} + 2.5 \cdot 10^{14} = 7.3 \cdot 10^{14}$ (см⁻³). В общем случае, когда требуется учесть уровни ионизации донорной и акцепторной примеси концентрация водимой коменсирующей примеси должна удовлетворять следующему условию: ее избыток над донорной примесью должен обеспечить требуемую концентрацию дырок в валентной зоне. Математически это условие можно записать так:

$$p_{k} = N_{a} [1 - f(E_{a})] - n_{0} = N_{a} \cdot \frac{exp\left(\frac{E_{a} - F}{kT}\right)}{1 + exp\left(\frac{E_{a} - F}{kT}\right)} - N_{d} = \frac{(N_{a} - N_{d})exp\left(\frac{E_{a} - F}{kT}\right) - N_{d}}{1 + exp\left(\frac{E_{a} - F}{kT}\right)}$$
(5.11)

где E_a – энергетическое положение вводимой акцепторной примеси, F – положение уровня Ферми в конечном состоянии (после компенсации). При выводе выражения (5.11) учтено, что в дырочном полупроводнике уровень Ферми находится в нижней половине запрещенной зоны и потому любой уровень в верхней половине запрещенной зоны будет полностью ионизован всегда и при любых условиях.

Токоперенос в полупроводниках. В полупроводниках полный ток слагается из двух составляющих: дрейфового тока, возникающего за счет действия на полупроводник внешнего электрического поля, и диффузионного тока, причиной появления которого является неравномерность распределения концентраций носителей заряда в объеме полупроводника.

Дрейфовый ток (или ток проводимости) $j_{\partial p}$ представляет собой сумму токов, возникающих в зоне проводимости и в валентной зоне за счет дрейфового движения свободных электронов и дырок за счет кулоновского взаимодействия их заряда с внешним постоянным электрическим полем - $j_n^{\partial p}$ и $j_p^{\partial p}$ соответственно:

$$j_{\partial p} = j_n^{\partial p} + j_p^{\partial p}. \tag{5.12}$$

Каждый из дрейфовых токов выражения (5.12) подчиняется закону Ома, согласно которому ток равен произведению электропроводности на величину приложенного постоянного электрического поля ε_0 : $j = \sigma \cdot \varepsilon_0$. Следовательно, по выражению (5.12) имеем

$$j_{\partial p} = \sigma_n \varepsilon_0 + \sigma_p \varepsilon_0$$

Электропроводности полупроводника по электронам и по дыркам могут быть найдены из рассмотрения переноса заряда в соответствующей зоне разрешенных значений энергии (см. учебное пособие по курсу Физические основы оптоэлектроники. 2016, глава 1). При этом необходимо учесть, что свободный носитель заряда в твердом теле (в отличие от вакуумной системы) при своем движении испытывает многочисленные столкновения с дефектами решетки и потому такое движение может быть описано введением усредненной скорости дрейфового движения электронов и дырок через введение в рассмотрение подвижностей электронов μ_n и дырок μ_p . Подвижности носителей заряда слабо зависят от внешних условий и могут считаться константами вещества. В итоге полная проводимость полупроводника определяется концентрациями свободных электронов n_0 и дырок p_0 и их подвижностями:

$$\sigma = q\mu_n n_0 + q\mu_p p_0. \tag{5.13}$$

Электрический ток в полупроводниках может возникнуть не только из-за действия электрического поля, но и за счет неравномерного распределения концентрации свободных носителей заряда в полупроводнике. Если имеется градиент концентраций электронов и (или) дырок, то из мест с высокой концентрацией свободные носители устремятся в места, где их концентрация меньше (на то они свободные носители, что могут свободно перемещаться в пространстве). Возникающий при этом ток называется диффузионным, т.к. причина возникновения движения – диффузия носителей заряда. Величина диффузионного тока пропорциональна градиенту концентрации свободных носителей заряда. В одномерном случае диффузионные токи электронов и дырок равны, соответственно

$$j_n^{(\partial u\phi)} = qD_n \frac{\partial n}{\partial x}, \quad j_p^{(\partial u\phi)} = qD_p \frac{\partial p}{\partial x}, \quad (5.14)$$

где $D_n = (kT/q) \cdot \mu_n$, $D_p = (kT/q) \cdot \mu_p$ коэффициенты диффузии электронов и дырок, соответственно. Поскольку они являются константами вещества, то, зная градиенты концентраций, по выражениям (5.14) можно найти величины диффузионных токов.

5.2. Примеры решения задач по вычислению зонного спектра полупроводника и токопереноса

При решении задач раздела необходимо пользоваться справочными данными по численным значениям параметров полупроводников различного физико-химического состава. Эти данные собраны в конце учебно-методического пособия. Задача 1. Вычислить положение уровня Ферми в кремнии относительно потолка валентной зоны, если известно, что данный кристалл находится при температуре $T = 300 \ K$ и содержит $1.4 \cdot 10^{13}$ атомов фосфора в 1 см³. При решении учесть, что атомы фосфора дают энергетический уровень донорного типа, который лежит в запрещенной зоне точно по дну зоны проводимости.

Решение. Для определения энергетического положения уровня Ферми в заданных условиях необходимо воспользоваться выражением (5.3):

$$F = E_i + \frac{3}{4}kT \cdot ln\left(\frac{m_p^*}{m_n^*}\right) - kT \cdot ln\left(\frac{n_i}{n_0}\right).$$

Здесь равновесная концентрация n_0 задается донорной примесью:

$$n_0 = N_d \left(1 - f(E_C) \right) = \frac{N_d \cdot exp\left(\frac{E_C - F}{kT}\right)}{1 + exp\left(\frac{E_C - F}{kT}\right)}.$$

Строго говоря, имеем трансцендентное уравнение относительно F

$$F = E_i + \frac{3}{4}kT \cdot ln\left(\frac{m_p^*}{m_n^*}\right) - kT \cdot ln\left(\frac{n_i}{N_d}\right) - kT \cdot ln\left(1 + exp\left(\frac{F - E_C}{kT}\right)\right), \quad (5.15)$$

которое можно решить приближенным методом, если $F - E_C < 3kT$. Это означает, что если донорный уровень находится выше уровня Ферми на единицы kT, то он полностью ионизован. Тогда последнее слагаемое в выражении (5.15) можно разложить в ряд по малому параметру

$$ln\left(1 + exp\left(\frac{F - E_C}{kT}\right)\right) \approx exp\left(\frac{F - E_C}{kT}\right) < exp(-3) \approx \frac{1}{20} = 0.05$$

и увидеть, что в рассматриваемом случае $ln(1+\delta)$ можно с высокой степенью точности считать равным ln(1), что дает нуль. В результате приходим к следующему выражению для положения уровня Ферми в легированном полупроводнике:

$$F \approx E_i + \frac{3}{4}kT \cdot ln\left(\frac{m_p^*}{m_n^*}\right) - kT \cdot ln\left(\frac{n_i}{N_d}\right)$$

Если считать положение уровня Ферми в электроновольтах (эВ), то это выражение следует разделить на заряд электрона:

$$F \approx E_i + \frac{3}{4} \cdot \frac{kT}{q} \cdot ln \left(\frac{m_p^*}{m_n^*}\right) - \frac{kT}{q} \cdot ln \left(\frac{n_i}{N_d}\right), \qquad (5.16)$$

где E_i - задано уже в электроновольтах. Подстановка численных значений в (5.16) дает

$$\begin{split} F &\approx 0.56 + \frac{3}{4} \cdot \frac{1.38 \cdot 10^{-23} \cdot 300}{1.6 \cdot 10^{-19}} \cdot ln \left(\frac{0.16}{0.19}\right) - \frac{1.38 \cdot 10^{-23} \cdot 300}{1.6 \cdot 10^{-19}} \cdot ln \left(\frac{1.4 \cdot 10^{10}}{1.4 \cdot 10^{13}}\right) \approx \\ &\approx 0.56 + \frac{3}{4} \cdot \frac{1.38 \cdot 10^{-23} \cdot 300}{1.6 \cdot 10^{-19}} \cdot ln \left(\frac{0.16}{0.19}\right) - \frac{1.38 \cdot 10^{-23} \cdot 300}{1.6 \cdot 10^{-19}} \cdot ln \left(\frac{1.4 \cdot 10^{10}}{1.4 \cdot 10^{13}}\right) \approx \\ &= 0.56 + 1.9 \cdot 10^{-2} \cdot ln \left(\frac{16}{19}\right) + 0.078 \cdot ln(10) \approx 0.56 - 0.019 \cdot 0.15 + 0.078 \cdot 2.3 \approx \\ &\approx 0.56 - 0.003 + 0.18 = 0.74 \end{split}$$

Из проведенного расчета следует важный вывод: изменение положение уровня Ферми за счет различия эффективных масс носителей заряда оказывается пренебрежимо малым по сравнению с другими слагаемыми в (5.16) и поэтому неважно: какие рассматривать электроны и дырки (легкие или тяжелые) – результат будет практически один и тот же. Такая ситуация характерна для подавляющего большинства практически важных случаев. Поэтому при рассмотрении кремниевых образцов будем отбрасывать это слагаемое в выражении для положения уровня Ферми.

Далее, полученный результат подтверждает сделанное предположение: уровень Ферми находится ниже уровня донорной примеси на расстоянии в $E_C - E_V - F = E_C - F = 1.12 - 0.74 = 0.38$ эВ, что значительно больше нескольких единиц *kT*.

Таким образом, уровень Ферми в кремнии при наличии в нем донорной примеси с концентрацией $1.4 \cdot 10^{13}$ см⁻³ расположен в верхней половине запрещенной зоны на расстоянии $F \approx 0.74$ эВ от потолка валентной зоны.

Задача 2. Определить положение донорного уровня E_d (в электроновольтах) относительно потолка валентной зоны E_V в кремниевом полупроводниковом образце, если известно, что концентрация свободных электронов в нем равна $n_0 = 6.6 \cdot 10^{14}$ см⁻³, а концентрация введенной донорной примеси $N_d = 9.0 \cdot 10^{14}$ см⁻³?

Решение. Поскольку по условию задачи задана равновесная концентрация электронов, то тем самым задано положение уровня Ферми в запрещенной зоне

$$F = E_i + \frac{3}{4}kT \cdot ln\left(\frac{m_p^*}{m_n^*}\right) - kT \cdot ln\left(\frac{n_i}{n_0}\right).$$

Это положение определяется относительно потолка валентной зоны, а в переводе энергии в электроно-вольты это выражение примет вид:

$$F(\Im B) = E_i(\Im B) + \frac{3}{4} \frac{kT}{q} \cdot ln \left(\frac{m_p^*}{m_n^*}\right) - \frac{kT}{q} \cdot ln \left(\frac{n_i}{n_0}\right).$$
(5.17)

Теперь можно воспользоваться тем, что при заданной концентрации электронов известна также концентрация донорной примеси, связь между которыми устанавливается функцией Ферми-Дирака:

$$n_0 = N_d \left(1 - f(E_d) \right) = \frac{N_d \cdot exp\left(\frac{E_d - F}{kT}\right)}{1 + exp\left(\frac{E_d - F}{kT}\right)},$$
(5.18)

где все величины известны кроме энергии ионизации донорной примеси E_d . Разрешая выражение (5.18) относительно E_d , получим

$$E_d = F + kT \ln \left[\frac{n_0}{N_d - n_0}\right]$$

или в единицах эВ

$$E_d(\mathfrak{S}B) = F(\mathfrak{S}B) + kT \ln\left[\frac{n_0}{N_d - n_0}\right].$$
(5.19)

Здесь положение уровня Ферми определяется выражением (5.17).

Таким образом, совместное использование выражений (5.17) и (5.19) позволяет найти энергетическое положение донорного уровня в численном выражении. Воспользовавшись справочными данными значения для $E_i(\Im B) = \Delta E_g/2 = 1.12/2 = 0.56(\Im B)$, эффективных масс электронов и дырок, а также собственной концентрации носителей заряда в кремнии $n_i = 1.4 \cdot 10^{10}$ см⁻³, из выражения (5.17) найдем:

$$F(\Im B) = E_i(\Im B) + \frac{3}{4} \frac{kT}{q} \cdot ln \left(\frac{m_p^*}{m_n^*}\right) - \frac{kT}{q} \cdot ln \left(\frac{n_i}{n_0}\right) \approx$$

$$\approx 0.56 + \frac{3}{4} \cdot \frac{1.38 \cdot 10^{-23} \cdot 300}{1.6 \cdot 10^{-19}} \cdot ln \left(\frac{0.16}{0.19}\right) - \frac{1.38 \cdot 10^{-23} \cdot 300}{1.6 \cdot 10^{-19}} \cdot ln \left(\frac{1.4 \cdot 10^{10}}{6.6 \cdot 10^{14}}\right) \approx$$

$$\approx 0.56 + 1.9 \cdot 10^{-2} \cdot ln \left(\frac{16}{19}\right) + 0.10 \cdot ln (4.71) \approx 0.56 - 0.003 + 0.16 = 0.72 \quad (\Im B).$$

Таким образом, ответ на поставленный в задаче вопрос таков: $E_d - E_V = 0.72$ эВ.

Задача 3. Какой должна быть концентрация акцепторной примеси, вводимой в образец кремния n – типа с концентрацией электронов $n_0 = 2.4 \cdot 10^{16}$ см⁻³ для получения p – типа с концентрацией дырок $p_0 = 2.8 \cdot 10^{17}$ см⁻³, если энергетический уровень вводимой акцепторной примеси E_a удален от потолка валентной зоны на расстояние $E_a - E_V = 0.12$ эВ?

Решение. После введения акцепторной примеси уровень донорной примеси окажется значительно выше (более чем на несколько единиц kT) уровня Ферми и потому будет полностью ионизован. Действительно, квант колебания решетки в единицах электроно-вольт составляет

$$\frac{kT}{q} = \frac{1.38 \cdot 10^{-23} \cdot 300}{1.6 \cdot 10^{-19}} = \frac{4.14}{1.6} \cdot 10^{-2} = 2.59 \cdot 10^{-2} \quad \Im B \,.$$

Поэтому запрещенная зона кремния в единицах квантов тепловых колебаний решетки составляет

$$\left(\frac{\Delta E_g}{q}\right) / \left(\frac{kT}{q}\right) = \frac{1.12}{2.59} \cdot 10^2 \approx 43.3.$$

Следовательно, верхняя и нижняя половины запрещенной зоны, в которых располагаются донорные и акцепторные уровни легирующих примесей, соответственно, велики по сравнению с областью перезарядки примесного уровня

$$\Delta E = \left(4 - 6\right) \frac{kT}{q}.$$

Эта область значительно меньше указанных выше областей расположения примесных уровней.

Концентрация свободных дырок *p*₀ в валентной зоне полупроводника равна разности концентраций ионизованных акцепторов и концентрации доноров:

$$p_0 = N_a \cdot f(E_a) - N_d , \qquad (5.20)$$

где функция заполнения электронами акцепторного уровня есть

$$f(E_a) = \frac{1}{1 + exp\left(\frac{E_a - F}{kT}\right)}$$

Из выражения (5.20) найдем концентрацию акцепторной примеси:

$$N_a = \left(p_0 + N_d\right) \cdot \left[1 + \exp\left(\frac{E_a - F}{kT}\right)\right].$$
(5.21)

Здесь положение уровня Ферми F относительно потолка валентной зоны определяется уже известным образом (см. (5.17)):

$$\frac{F - E_V}{q} = E_i(\Im B) + \frac{3}{4} \frac{kT}{q} \cdot ln \left(\frac{m_p^*}{m_n^*}\right) - \frac{kT}{q} \cdot ln \left(\frac{n_i}{n_0}\right) , \quad \Im B$$

Перепишем выражение (5.21) в следующем виде, увязав положение ацепторного уровня с потолком валентной зоны: -

$$N_{a} = (p_{0} + N_{d}) \cdot \left[1 + exp\left(\frac{E_{a} - F}{kT}\right) \right] =$$
$$= (p_{0} + N_{d}) \cdot \left[1 + exp\left(\frac{(E_{a} - E_{V}) - (F - E_{V})}{kT}\right) \right],$$

или в таком виде:

$$\begin{split} N_a &= \left(p_0 + N_d\right) \cdot \left[1 + exp\left(\frac{\left(E_a - E_V\right) - \left(F - E_V\right)}{kT}\right)\right] = \\ &= \left(p_0 + N_d\right) \cdot \left[1 + \frac{exp\left(\frac{E_a - E_V}{kT}\right)}{exp\left(\frac{F - E_V}{kT}\right)}\right] \end{split} .$$

Окончательно:

$$N_{a} = (p_{0} + N_{d}) \cdot \left[1 + \frac{exp\left(\frac{(E_{a} - E_{V})}{q} \cdot \frac{q}{kT}\right)}{exp\left(\frac{(F - E_{V})}{q} \cdot \frac{q}{kT}\right)} \right].$$
(5.22)

٦

Теперь подставим численные значения в данное выражение:

$$\frac{E_a - E_V}{q} \cdot \frac{q}{kT} = \frac{0.12}{2.59} \cdot 10^2 = 4.63,$$
$$\frac{F - E_V}{kT} = \frac{E_i - E_V}{kT} + ln\left(\frac{n_i}{p_0}\right).$$

Далее, подставив эти значения в выражение (5.22), получим:

$$\begin{split} N_{a} &= (p_{0} + N_{d}) \cdot \left[1 + \frac{exp(4.63)}{\frac{n_{i}}{p_{0}} exp\left(\frac{(E_{i} - E_{V})}{q} \cdot \frac{q}{kT}\right)} \right] = \\ &= (p_{0} + N_{d}) \cdot \left[1 + \frac{exp(4.63)}{\frac{n_{i}}{p_{0}} exp\left(\frac{0.56}{2.59} \cdot 10^{2}\right)} \right] = (p_{0} + N_{d}) \cdot \left[1 + \frac{exp(4.63)}{\frac{n_{i}}{p_{0}} exp(21.6)} \right] = \\ &= (p_{0} + N_{d}) \cdot \left[1 + \frac{exp(4.63 - 21.6)}{\frac{n_{i}}{p_{0}}} \right] = (p_{0} + N_{d}) \cdot \left[1 + \frac{p_{0} exp(-17.0)}{n_{i}} \right] = \end{split}$$

$$= (2.4 + 28.0)10^{16} \left[1 + \frac{2.8 \cdot 10^{17}}{1.4 \cdot 10^{10}} exp(-17) \right] \approx 3.0 \cdot 10^{17} \left[1 + 2 \cdot 10^7 \cdot exp(-17) \right]$$

Вычислив $exp(-17) \approx \frac{1}{228} \cdot 10^{-5}$, найдем

$$N_a \approx 3.0 \cdot 10^{17} \left(1 + 2 \cdot 10^7 / 228 \cdot 10^5 \right) \approx 3.0 \cdot 10^{17} \left(1 + 0.88 \right) \approx 5.6 \cdot 10^{17} \text{ cm}^{-3}$$

Таким образом, концентрация компенсирующей примеси с заданным энергетическим положением должна составлять 5.6 · 10¹⁷ см⁻³.

Задача 4. Рассчитать удельную электропроводность кристалла германия при комнатной температуре, если известно, что уровень его легирования донорной примесью составляет $N_d = 2 \cdot 10^{15}$ см⁻³.

Решение. В общем случае электропроводность кристалла полупроводника обеспечивается движением электронов и дырок. Поэтому она состоит из двух слагаемых: электронной компоненты электропроводности и дырочной, что с использованием выражения (5.10) можно записать в виде

$$\sigma = q\mu_n n + q\mu_p p = q\mu_n n + q\mu_p \left(\frac{n_i^2}{n}\right).$$
(5.23)

Полная концентрация электронов в зоне проводимости равна концентрации донорной примеси. Поэтому, предполагая полную ионизацию донорной примеси, можно записать:

 $n = N_d$.

Тогда электропроводность кристалла германия (5.23) будет равна:

$$\sigma = q\mu_n N_d + q\mu_p \left(\frac{n_i^2}{N_d}\right).$$
(5.24)

Подставив из Приложения 1 в выражение (5.24) численные значения подвижностей электронов и дырок в германии, получим:

$$\sigma = 1.6 \cdot 10^{-19} \left(3.9 \cdot 10^3 \cdot 2.0 \cdot 10^{15} + 1.9 \cdot 10^3 \frac{2.4 \cdot 2.4 \cdot 10^{26}}{2.0 \cdot 10^{15}} \right) =$$

= 1.6 \cdot 10^{-19} \left(7.8 \cdot 10^{18} + 1.9 \cdot 2.4 \cdot 1.2 \cdot 10^{14} \right) \approx 1.6 \cdot 10^{-19} \left(7.8 \cdot 10^{18} \right) =
= 12.5 \cdot 10^{-1} = 1.2.

Итак, электропроводность исследуемого кристалла германия равна 1,2 Ом⁻¹см⁻¹.

Задача 5. Через образец арсенида галлия, легированный донорной примесью концентрацией $1,4 \cdot 10^{15}$ см⁻³, протекает ток величиною 10^{-3} А. Размеры образца (0,31×0,31×1,0) см³. За какое время электроны пролетают этот образец? Считать, что ток течет вдоль большей стороны кристалла.

Решение. Чтобы найти время пролета электронами образца, необходимо знать скорость дрейфа электронов - v_n , т.к. длина образца известна:

$$t = \frac{L}{\upsilon_n} . \tag{5.25}$$

Скорость электронов может быть найдена через их подвижность:

$$\mu_n = \frac{\upsilon_n}{\varepsilon} , \qquad (5.26)$$

где є - величина электрического поля, приложенного к кристаллу. Ее можно определить из закона Ома:

$$j = \sigma \cdot E \,. \tag{5.27}$$

Значит, искомая неизвестная будет вычисляться по выражению:

$$t = \frac{L}{\upsilon_n} = \frac{L}{\mu_n \cdot \varepsilon} = \frac{L \cdot \sigma}{\mu_n \cdot j} \; .$$

Плотность тока можно найти по известному значению тока через образец I и площади образца $S = (0,31 \times 0,31) = 10^{-1} \text{ см}^2$:

$$j = \frac{I}{S}$$

Окончательное выражение для определения времени пролета электронами образца будет

$$t = \frac{L \cdot \sigma \cdot S}{\mu_n \cdot I} = \frac{L \cdot S}{\mu_n \cdot I} q \left(\mu_n N_d + \mu_p \frac{n_i^2}{N_d} \right).$$
(5.28)

Подставив из Приложения численные значения параметров арсенида галлия, получим:

$$t(c) = \frac{1,0 \cdot 10^{-1}}{8,0 \cdot 10^{3} \cdot 10^{-3}} 1,6 \cdot 10^{-19} \left(8,0 \cdot 10^{3} \cdot 1,4 \cdot 10^{15} + 5,0 \cdot 10^{2} \frac{1,4 \cdot 1,4 \cdot 10^{16}}{1,4 \cdot 10^{15}} \right) = 2,0 \cdot 10^{-21} \left(11,2 \cdot 10^{18} + 7,0 \cdot 10^{3} \right) \approx 22,4 \cdot 10^{-3}.$$

Итак, ответ на поставленный вопрос таков: электрон пролетит образец за 22 миллисекунды.

Задача 6. Рассчитать величину плотности полного диффузионного тока (электронов и дырок) в кремниевом образце при комнатной температуре, если известно, что уровень его легирования донорной примесью составляет $N_d = 2 \cdot 10^{15}$ см⁻³, а зависимости концентраций электронов и дырок от координаты описываются выражениями:

$$n_0(x) = N_d \cdot exp\left[-\alpha_n(x-a)^2\right],$$

$$p_0(x) = \left(\frac{n_i^2}{N_d}\right) \cdot exp\left[-\alpha_p(x-b)^2\right].$$

Здесь α_n , α_p . *a*, *b* - некие постоянные величины.

Решение. Плотность полного диффузионного тока представляет разность диффузионных токов электронов и дырок, поскольку при одинаковом направлении движения переносятся заряды противоположных знаков

$$j^{(\partial u\phi)} = j_n^{(\partial u\phi)} - j_p^{(\partial u\phi)} = qD_n \frac{\partial n}{\partial x} - qD_p \frac{\partial p}{\partial x}$$

Для дальнейших расчетов необходимо найти градиенты концентраций электронов и дырок, что сейчас сделаем:

$$\frac{\partial n}{\partial x} = \left(N_d \cdot exp \left[-\alpha_n (x-a)^2 \right] \right)_x = N_d \left(-2\alpha_n (x-a) exp \left[-\alpha_n (x-a)^2 \right] \right) = \\ = -2\alpha_n (x-a) \cdot n(x);$$
$$\frac{\partial p}{\partial x} = \left(\left(\frac{n_i^2}{N_d} \right) \cdot exp \left[-\alpha_p (x-b)^2 \right] \right)_x = \left(\frac{n_i^2}{N_d} \right) \left(-2\alpha_p (x-b) exp \left[-\alpha_p (x-b)^2 \right] \right) = \\ = -2\alpha_p (x-b) \cdot p(x).$$

Следовательно, выражение для полной плотности тока будет:

$$j^{(\partial u\phi)} = 2q\alpha_p(x-b) \cdot p(x) - 2q\alpha_n(x-a) \cdot n(x).$$
(5.29)

Данное выражение является ответом на поставленный в задаче вопрос.

5.3. Варианты заданий по вычислению зонного спектра полупроводника и токопереносу к контрольной работе № 1

При решении задач раздела необходимо пользоваться справочными данными по численным значениям параметров полупроводников различного физико-химического состава, собранные в конце учебно-методического пособия.

- 1. Определите положение уровня Ферми относительно потолка валентной зоны в кремниевом полупроводнике *p* - типа и концентрацию неосновных носителей, если известно, что концентрация акцепторной примеси в нем равна $N_a = 10^{16}$ см⁻³.
- 2. Определите положение уровня Ферми относительно потолка валентной зоны в кремниевом полупроводнике *n* - типа и концентрацию неосновных носителей, если известно, что концентрация донорной примеси в нем равна $N_d = 10^{16}$ см⁻³.

- 3. Определите положение уровня Ферми относительно середины запрещенной зоны в германиевом полупроводнике p типа и концентрацию неосновных носителей, если известно, что концентрация акцепторной примеси в нем равна $N_a = 10^{17}$ см⁻³.
- 4. Определите положение уровня Ферми относительно потолка валентной зоны в полупроводниковом образце *GaAs* p - типа и концентрацию неосновных носителей, если известно, что концентрация акцепторной примеси в нем равна $N_a = 10^{15}$ см⁻³.
- 5. Определить положение акцепторного уровня E_a (в электроно-вольтах) относительно потолка валентной зоны E_V в кремниевом полупроводниковом образце p типа, если известно, что концентрация свободных дырок в нем равна $p_0 = 6.6 \cdot 10^{14}$ см⁻³, а концентрация акцепторной примеси составляет $N_a = 9.0 \cdot 10^{14}$ см⁻³?
- 6. Определить положение донорного уровня E_d (в электроно-вольтах) относительно потолка валентной зоны E_V в германиевом полупроводниковом образце n-типа, если известно, что концентрация свободных электронов в нем равна $n_0 = 5.6 \cdot 10^{14}$ см⁻³, а концентрация донорной примеси составляет $N_d = 8.8 \cdot 10^{14}$ см⁻³?
- 7. Определить положение донорного уровня E_d (в электроно-вольтах) относительно потолка валентной зоны E_V в арсенид-галлиевом полупроводниковом образце n-типа, если известно, что концентрация свободных электронов в нем равна $n_0 = 1.6 \cdot 10^{12}$ см⁻³, а концентрация донорной примеси составляет $N_d = 3.2 \cdot 10^{12}$ см⁻³?
- 8. Определить положение акцепторного уровня E_a (в электроно-вольтах) относительно потолка валентной зоны E_V в арсенид-галлиевом полупроводниковом образце p-типа, если известно, что концентрация свободных дырок в нем равна $p_0 = 3.6 \cdot 10^{12}$ см⁻³, а концентрация акцепторной примеси составляет $N_a = 9.6 \cdot 10^{12}$ см⁻³?
- 9. Определить положение донорного уровня E_d (в электроно-вольтах) относительно потолка валентной зоны E_V в германиевом полупроводниковом образце *n*-типа, если известно, что концентрация свободных дырок в нем равна $p_0 = 2.6 \cdot 10^{13}$ см⁻³, а концентрация донорной примеси составляет $N_d = 7.7 \cdot 10^{13}$ см⁻³?

- 10. Какой должна быть концентрация компенсирующей акцепторной примеси, вводимой в образец арсенида галлия n-типа с концентрацией электронов $n_0 = 2.4 \cdot 10^{16} \text{ см}^{-3}$ для получения p-типа с концентрацией дырок $p_0 = 2.8 \cdot 10^{17} \text{ см}^{-3}$, если энергетический уровень вводимой акцепторной примеси E_a удален от потолка валентной зоны на расстояние $E_a E_V = 0.12$ эВ?
- 11. Какой должна быть концентрация компенсирующей донорной примеси, вводимой в образец арсенида галлия p-типа с концентрацией дырок $p_0 = 2.4 \cdot 10^{12} \text{ см}^{-3}$ для получения n-типа с концентрацией электронов $n_0 = 2.8 \cdot 10^{13} \text{ см}^{-3}$, если энергетический уровень вводимой донорной примеси E_d удален от потолка валентной зоны на расстояние $E_d E_V = 1.35$ эВ?
- 12. Какой должна быть концентрация компенсирующей донорной примеси, кремния *р* – типа с концентрацией вводимой В образец дырок $p_0 = 1.4 \cdot 10^{17} \,\mathrm{cm}^{-3}$ для получения n-типа с концентрацией электронов $n_0 = 2.8 \cdot 10^{17} \, \mathrm{cm}^{-3}$, если энергетический уровень вводимой донорной привалентной меси Е_d удален потолка ОТ зоны на расстояние $E_d - E_V = 1.00 \ \Im B?$
- 13. Какой должна быть концентрация компенсирующей донорной примеси, вводимой в образец германия p-типа с концентрацией дырок $p_0 = 2.7 \cdot 10^{14} \text{ см}^{-3}$ для получения n-типа с концентрацией электронов $n_0 = 4.8 \cdot 10^{14} \text{ см}^{-3}$, если энергетический уровень вводимой донорной примеси E_d удален от потолка валентной зоны на расстояние $E_d E_V = 0.60$ эВ?
- 14. Образец арсенида галлия содержит донорную примесь с концентрацией $N_d = 2 \cdot 10^{14} \,\mathrm{cm}^{-3}$. Определить удельную электропроводность и тип проводимости полупроводника. Какой должна быть концентрация доноров, чтобы удельная электропроводности равнялась $6.2 \cdot 10^{-2} \,\mathrm{Om}^{-1} \cdot \mathrm{m}^{-1}$?
- 15. Образец германия содержит акцепторную примесь с концентрацией $N_a = 2 \cdot 10^{15} \, \mathrm{cm}^{-3}$. Определить удельную электропроводность и тип проводимости полупроводника. Какой должна быть концентрация доноров, чтобы удельная электропроводности равнялась собственному значению?
- 16. Дрейфовый ток плотностью 10⁻³ А/см² течет через образец германия *п*-типа проводимости с удельным сопротивлением 5 Ом см. За какое время

электроны и дырки пройдут расстояние 5.10⁻³ см?

- 17. Дрейфовый ток плотностью 0,1 А/см² течет через образец кремния *p*-типа проводимости с удельным сопротивлением 0,55 Ом⋅см. За какое время электроны и дырки пройдут расстояние 5.10⁻² см?
- 18. Рассчитать величину плотности полного диффузионного тока (электронов и дырок) в кремниевом образце при комнатной температуре, если известно, зависимости концентраций электронов и дырок от координаты описываются выражениями:

$$n_0(x) = N_d \cdot exp\left[-\frac{1}{2}(x-5)^2\right] / x, \quad p_0(x) = \left(\frac{n_i^2}{N_d}\right) \cdot exp\left[-\frac{1}{5}(x-2)^2\right] / x.$$

19. Рассчитать величину плотности полного диффузионного тока (электронов и дырок) в кремниевом образце при комнатной температуре, если известно, зависимости концентраций электронов и дырок от координаты описываются выражениями:

$$n_0(x) = N_d \cdot exp\left[-\frac{1}{2}(x-5)^2\right]/x, \ p_0(x) = \left(\frac{n_i^2}{N_d}\right)$$

20. Рассчитать величину плотности полного диффузионного тока (электронов и дырок) в кремниевом образце при комнатной температуре, если известно, зависимости концентраций электронов и дырок от координаты описываются выражениями:

$$n_0(x) = N_d$$
, $p_0(x) = \left(\frac{n_i^2}{N_d}\right) \cdot exp\left[-\frac{1}{5}(x-2)^2\right]/x$.

6. «ВЗАИМОДЕЙСТВИЕ ОПТИЧЕСКОГО ИЗЛУЧЕНИЯ С ТВЕРДЫМИ ТЕЛАМИ»

6.1. Краткое изложение теории

При распространении электромагнитного излучения в твердом теле интенсивность излучения монотонно уменьшается. Если параметры твердого тела постоянны по координате *X*, вдоль которой распространяется излучения, то уменьшение интенсивности по мере удаления от освещаемой поверхности подчиняется закону Бугера-Ламберта:

$$I(x) = I_0(1-R) \cdot exp(-\alpha \cdot x). \tag{6.1}$$

Здесь *R* - безразмерная величина, именуемая коэффициентом отражения излучения от поверхности твердого тела, α - коэффициент поглощения излучения. Он имеет размерность обратной длины, и потому вводят еще один параметр, характеризующий взаимодействие излучения с твердым телом – длину свободного пробега фотона:

$$\ell_{\phi} = 1/\alpha \,. \tag{6.2}$$

Она равна среднему расстоянию, которое проходит фотон в твердом теле до момента своего поглощения. Численные значения длины свободного пробега фотона составляют единицы и доли микрона, что указывает на доминирующую роль приповерхностного слоя в процессе поглощения излучения.

Рассмотрение поглощения на основе квантовой теории света приводит к следующему выражению для коэффициента поглощения:

$$\alpha = \sigma \cdot N, \tag{6.3}$$

где σ- вероятность поглощения фотона одиночным центром, имеющая размерность площади; *N* - концентрация центров поглощения.

Из всех возможных механизмов поглощения излучения твердым телом наиболее важные для практического применения следует выделить собственное поглощение, примесное поглощение и поглощение на свободных носителях заряда.

1. Собственное поглощение наблюдается при падении на полупроводник излучения с энергией кванта больше ширины запрещенной зоны:

$$\hbar\omega \ge \Delta E_g. \tag{6.4}$$

Этот тип поглощения доминирует в области коротких длин волн, меньших $\lambda_{\kappa p}$:

$$\lambda_{\kappa p} = \frac{hc}{\Delta E_g}.\tag{6.5}$$

2. Примесное поглощение возникает, когда энергия падающего на полупроводник фотона достаточна для перевода электрона из валентной зоны на уровень примеси – случай акцепторной примеси (ΔE_a) или наоборот: с примеси в

зону проводимости – случай донорной примеси (ΔE_d). Эти условия можно записать так:

$$\lambda_{\kappa p} = \frac{hc}{\Delta E_{d,a}} \quad . \tag{6.6}$$

Необходимым условием наблюдения примесного поглощения является частичная ионизация примесного уровня, что достигается при пониженных температурах полупроводника. Поскольку примесное поглощение также возможно в области коротких длин волн, где доминирует собственное поглощение, то вторым условием наблюдения примесного поглощения является отсутствие собственного поглощения. Наиболее просто это можно достичь, если использовать излучение с длиной волны λ из диапазона $\lambda_{np} > \lambda > \lambda_{\kappa p}$. Учитывая то обстоятельство, что концентрация примесей в полупроводнике на порядки ниже концентрации собственных атомов, согласно выражению (6.3) коэффициент примесного поглощения α в реальных полупроводниках оказывается на несколько порядков ниже коэффициента собственного поглощения. Следовательно, поглощение излучения примесными атомами и ионами происходит в слое полупроводника толщиной до сотен микрон.

6.2. Примеры решения задач по определению параметров взаимодействия излучения с полупроводниками

При решении задач раздела необходимо пользоваться справочными данными по численным значениям параметров полупроводников различного физико-химического состава. Эти данные собраны в конце учебно-методического пособия.

Задача 1. Какая доля от падающей световой интенсивности поглощается в слое полупроводника между координатами $x_1 = 10^{-6}$ см до $x_2 = 2 \cdot 10^{-6}$ см, отсчитанными от освещаемой поверхности, если известно, что длина свободного пробега фотона составляет 10^{-8} м?

Решение. За основу решения задачи возьмем закон Бугера – Ламберта, согласно которому интенсивность оптического излучения на расстоянии x от освещаемой поверхности I(x) уменьшается с ростом глубины по экспоненциальному закону:

$$I(x) = (1 - R) \cdot I_0 \exp(-\alpha x),$$
(6.7)

где R - коэффициент отражения излучения от поверхности, а α - коэффициент поглощения, который по величине обратно пропорционален длине свободного пробега фотона ℓ_d :

$$\alpha = 1/\ell_{\phi}$$

Значит, в точке $x_1 = 10^{-6}$ см интенсивность света будет равна

$$I(\mathbf{x}_1) = I_0 \exp(-\alpha \mathbf{x}_1).$$

Эта доля интенсивности от падающего на полупроводник излучения, пройдя слой вещества до точки $x_2 = 2 \cdot 10^{-6}$ см, уменьшится до

$$I(x_2) = I_0 \exp(-\alpha x_2).$$

Следовательно, в слое толщиной (x₂ - x₁) поглотится интенсивность

$$\Delta I(x_2 - x_1) = I(x_1) - I(x_2) = I_0 \exp(-\alpha x_1) - I_0 \exp(-\alpha x_2)$$

или в относительных единицах

$$\frac{\Delta I(x_2 - x_1)}{I_0} = \exp(-\alpha x_1) - \exp(-\alpha x_2) .$$

Подставляя численные значения в сантиметрах, получим:

$$\frac{\Delta I(x_2 - x_1)}{I_0} = \exp\left(-10^6 \cdot 10^6\right) - \exp\left(-10^6 \cdot 2 \cdot 10^{-6}\right) =$$
$$= \exp(-1) - \exp(-2) = \frac{1}{\exp(1)} - \frac{1}{\exp(2)} = \frac{1}{2.7} - \frac{1}{7.3} \approx 0.23$$

Ответ на поставленный в задаче вопрос таков: в указанном слое поглотится примерно 23% от падающей интенсивности.

Задача 2. Определить вероятность поглощения фотонов видимого оптического излучения в полупроводниковом кремнии, если известно, что 99% падающей световой мощности поглощается в слое толщиной 10⁻⁵ см.

Решение. За основу решения задачи возьмем закон Бугера – Ламберта, согласно которому интенсивность оптического излучения на расстоянии x от освещаемой поверхности I(x) уменьшается с ростом глубины по экспоненциальному закону и равна:

$$I(\mathbf{x}) = (1 - \mathbf{R}) \cdot I_0 \exp(-\alpha \mathbf{x}).$$

Здесь по условию задачи коэффициент отражения R = 0. Известно, что коэффициент поглощения α определяется вероятностью поглощения фотона σ отдельным центром и концентрацией поглощающих центров N:

$$\alpha = \sigma \cdot N \,. \tag{6.8}$$

Следовательно, по условию задачи процент остаточной интенсивности на глубине $x_0 = 10^{-5}$ см равен 1%. Поэтому из закона Бугера - Ламберта имеем

$$\frac{I(x_0)}{I_0} = exp(-\sigma N \cdot x_0) = 0.01.$$

Отсюда находим неизвестную величину:

$$\sigma = -\frac{1}{N \cdot x_0} ln(0.01) = -\frac{1}{N \cdot x_0} ln(10^{-2}) = \frac{2}{N \cdot x_0} ln(10).$$
(6.9)

Так как поглощение излучения осуществляется в собственной полосе длин волн (случай собственного поглощения), то концентрация поглощающих центров равна концентрации атомов кремния. Согласно табличным данным $N = 5 \cdot 10^{22}$ см⁻³, поэтому из выражения (6.9) находим:

$$\sigma = \frac{2}{5 \cdot 10^{22} \cdot 10^{-5}} ln(10) = \frac{2}{5} 10^{-17} \cdot 2.3 = 9.2 \cdot 10^{-18} \text{ cm}^2.$$

Итак, ответ на поставленную задачу таков: вероятность поглощения фотона атомами кремния равна 9.2 · 10⁻¹⁸ см².

Задача 3. Определить мощность оптического излучения на глубине $x_0 = 10^{-4}$ см от освещаемой поверхности полупроводника, если известно, что при падении на поверхность 1 Вт света на расстоянии $x_1 = 2,1 \cdot 10^{-4}$ см поглотилось 85% от прошедшей в полупроводник мощности.

Решение. Как и в предыдущей задаче воспользуемся законом Бугера – Ламберта для мощности для двух глубин поглощения. Требуемая мощность может быть найдена по формуле:

$$P(x_0) = (1-R) \cdot P_0 \exp(-\alpha x_0),$$

где R = 0, $P_0 = 1$ Вт. Для определения мощности на глубине $x_0 = 10^{-4}$ см необходимо вычислить коэффициент поглощения, что также можно сделать, используя закон Бугера – Ламберта:

$$P(x_1) = P_0 \exp(-\alpha x_1)$$

Отсюда получим:

$$\alpha = -\frac{1}{x_1} ln \left(\frac{P(x_1)}{P_0} \right).$$

Тогда искомая величина будет равна

$$P(x_0) = P_0 \exp\left(\frac{x_0}{x_1} \left(ln\left(\frac{P(x_0)}{P_0}\right) \right) \right).$$
(6.10)

Подстановка численных значений в выражение (6.10) дает

$$P(x_0) = 1 \cdot exp(2, 1 \cdot ln(0, 15)) = exp(2, 1 \cdot (-1, 9)) = \frac{1}{exp(4)} \approx \frac{1}{54} = 1, 8 \cdot 10^{-2} Bm.$$

Ответ на поставленный вопрос таков: на глубине 10^{-4} см мощность оптического излучения равна $1,8 \cdot 10^{-2}$ Вт.

Задача 4. Найти концентрацию примесных центров, на которых происходит поглощение инфракрасного излучения с длиной волны 10.6 мкм в кристалле *GaAs* длиной 10^{-4} см, если известно, что на его длине поглотилось 50% падающей мощности, а при концентрации в полупроводнике поглощающих центров той же природы $1,8 \cdot 10^{-2}$ см⁻³ длина свободного пробега фотона указанной длины волны составляет 100 см.

Решение. Неизвестную концентрацию центров поглощения фотонов найдем из закона Бугера – Ламберта:

$$I(L) = I_0 \exp(-\alpha x) = I_0 \exp(-\sigma N \cdot L).$$

Отсюда находим:

$$N = \frac{-1}{\sigma \cdot L} \ln\left(\frac{I(L)}{I_0}\right) = \frac{1}{\sigma \cdot L} \ln\left(\frac{I_0}{I(L)}\right).$$

В данном выражении для отыскания концентрации примесей неизвестной величиной является сечение захвата ими фотонов. Займемся теперь его определением. Из условия задачи известно, что при $N = N_0 = 10^{12}$ см⁻³ длина свободного пробега фотона равна $\ell_{\phi} = 100$ см. По определению она равна обратному значению коэффициента поглощения:

$$\ell_{\phi} = \frac{1}{\alpha} = \frac{1}{\sigma \cdot N_0}$$

Следовательно, сечение захвата отсюда будет равно

$$\sigma = \frac{1}{\ell_{\phi} \cdot N_0}$$

Окончательно выражение для отыскания концентрации примесных центров примет вид:

$$N = N_0 \frac{\ell \phi}{L} ln \left(\frac{I_0}{I(L)} \right). \tag{6.11}$$

Подстановка численных значений в выражение (6.11) дает следующее значение отыскиваемой величины:

$$N \approx 10^{12} \cdot 10^2 \cdot 0.7 = 7 \cdot 10^{14} \text{ cm}^{-3}.$$

Таким образом, окончательный ответ на поставленный в задаче вопрос таков: концентрация примесных центров в полупроводнике, поглощающих излучение с длиной волны 10.6 мкм, составляет 7.10¹⁴ см⁻³.

6.3. Варианты заданий по определению параметров взаимодействия излучения с полупроводниками к контрольной работе № 1

- 1. Какая доля от падающей световой интенсивности поглощается в слое полупроводника от освещаемой поверхности (x = 0) до точки $x_1 = 2 \cdot 10^{-6}$ см, если известно, что длина свободного пробега фотона составляет 10^{-6} см, а ко-эффициент отражения от освещаемой поверхности равен 0.2?
- 2. Какая доля от падающей световой интенсивности поглощается в слое полупроводника от освещаемой поверхности (x = 0) до точки $x_1 = 2 \cdot 10^{-5}$ см, если известно, что длина свободного пробега фотона составляет 10^{-6} см, а коэффициент отражения от освещаемой поверхности равен 0.3?
- 3. Какая доля от падающей световой интенсивности поглощается в слое полупроводника от освещаемой поверхности (x = 0) до точки $x_1 = 2 \cdot 10^{-4}$ см, если известно, что длина свободного пробега фотона составляет 10^{-6} см, а коэффициент отражения от освещаемой поверхности равен 0.4?
- 4. Какая доля от падающей световой интенсивности поглощается в слое полупроводника от освещаемой поверхности (x = 0) до точки $x_1 = 3 \cdot 10^{-6}$ см, если известно, что длина свободного пробега фотона составляет $2 \cdot 10^{-6}$ см, а коэффициент отражения от освещаемой поверхности равен 0.5?
- 5. Какая доля от падающей световой интенсивности поглощается в слое полупроводника от освещаемой поверхности (x = 0) до точки $x_1 = 5 \cdot 10^{-6}$ см, если известно, что длина свободного пробега фотона составляет $2 \cdot 10^{-6}$ см, а коэффициент отражения от освещаемой поверхности равен 0.6?
- 6. Какая доля от падающей световой интенсивности поглощается в слое полупроводника между координатами $x_1 = 10^{-5}$ см до $x_2 = 2 \cdot 10^{-5}$ см, отсчитанными от освещаемой поверхности, если известно, что длина свободного пробега фотона составляет 10^{-6} см?
- 7. Какая доля от падающей световой интенсивности поглощается в слое полупроводника между координатами $x_1 = 10^{-6}$ см до $x_2 = 2 \cdot 10^{-5}$ см, отсчитанными от освещаемой поверхности, если известно, что длина свободного пробега фотона составляет 10^{-6} см?
- 8. Какая доля от падающей световой интенсивности поглощается в слое полупроводника между координатами $x_1 = 2 \cdot 10^{-6}$ см до $x_2 = 2 \cdot 10^{-5}$ см, отсчитанными от освещаемой поверхности, если известно, что коэффициент поглощения излучения составляет 10^6 см⁻¹, а коэффициент отражения от осве-

щаемой поверхности полупроводника равен 0.2?

- 9. Какая мощность света поглощается в слое полупроводника между координатами $x_1 = 5 \cdot 10^{-6}$ см до $x_2 = 2 \cdot 10^{-5}$ см, отсчитанными от освещаемой поверхности, если известно, что падающая на полупроводник мощность света равна $2 \cdot 10^{-3}$ Вт, коэффициент поглощения излучения составляет $3 \cdot 10^{6}$ см⁻¹, а коэффициент отражения света от освещаемой поверхности полупроводника равен 0.1?
- 10. Какая мощность света поглощается в слое полупроводника между координатами $x_1 = 10^{-5}$ см до $x_2 = 2 \cdot 10^{-5}$ см, отсчитанными от освещаемой поверхности, если известно, что падающая на полупроводник мощность света равна $8 \cdot 10^{-2}$ Вт, коэффициент поглощения излучения составляет $2 \cdot 10^6$ см⁻¹, а коэффициент отражения света от освещаемой поверхности полупроводника равен 0.5?
- 11. Определить абсолютное значение мощности оптического излучения на глубине $x_0 = 10^{-6}$ см от освещаемой поверхности полупроводника, если известно, что при падении на поверхность 10^{-3} Вт света на расстоянии $x_1 = 2,1 \cdot 10^{-5}$ см поглотилось 95% от прошедшей в полупроводник световой мощности, а коэффициент отражения света от освещаемой поверхности полупроводника равен 0.15.
- 12. Определить абсолютное значение мощности оптического излучения на глубине $x_0 = 2 \cdot 10^{-6}$ см от освещаемой поверхности полупроводника, если известно, что при падении на поверхность 10^{-3} Вт света на расстоянии $x_1 = 4, 2 \cdot 10^{-5}$ см поглотилось 90% от прошедшей в полупроводник световой мощности, а коэффициент отражения света от освещаемой поверхности полупроводника равен 0.35.
- 13. Определить абсолютное значение мощности оптического излучения на глубине $x_0 = 2 \cdot 10^{-5}$ см от освещаемой поверхности полупроводника, если известно, что при падении на поверхность 10^{-3} Вт света на расстоянии $x_1 = 4, 2 \cdot 10^{-5}$ см поглотилось 70% от прошедшей в полупроводник световой мощности, а коэффициент отражения от освещаемой поверхности равен 0.1.
- 14. Определить долю падающей мощности оптического излучения на глубине $x_0 = 2 \cdot 10^{-5}$ см от освещаемой поверхности полупроводника, если известно, что на расстоянии $x_1 = 8 \cdot 10^{-5}$ см поглотилось 60% от прошедшей в полупроводник световой мощности, а коэффициент отражения от освещаемой поверхности равен 0.25.
- 15. Определить долю падающей мощности оптического излучения на глубине $x_0 = 3 \cdot 10^{-4}$ см от освещаемой поверхности полупроводника, если известно, что на расстоянии $x_1 = 6 \cdot 10^{-5}$ см поглотилось 50% от прошедшей в полупроводник световой мощности, а коэффициент отражения от освещаемой поверхности равен 0.5.
- 16. Найти концентрацию примесных центров, на которых происходит поглощение инфракрасного излучения в кристалле GaAs длиной L = 0.5 см, если известно, что на его длине поглотилось 50% падающей мощности, а при концентрации в полупроводнике поглощающих центров той же природы 10¹³ см⁻³ длина свободного пробега фотона составляет 10 см.
- 17. Найти концентрацию примесных центров, на которых происходит поглощение инфракрасного излучения в кристалле полупроводника *GaAs* длиной *L* = 1 см, если известно, что на его длине поглотилось 90% прошедшей в полупроводник мощности, а при концентрации в полупроводнике поглощающих центров той же природы 1,8 ⋅ 10⁻² см⁻³ длина свободного пробега фотона указанной длины волны составляет 80 см. Коэффициент отражения излучения от поверхности полупроводника принять равным 0.25.
- 18. Найти концентрацию примесных центров, на которых происходит поглощение инфракрасного излучения в кристалле *GaAs* длиной L = 0.35 см, если известно, что на его длине поглотилось 99% прошедшей в полупроводник мощности, а при концентрации в полупроводнике поглощающих центров той же природы 10^{11} см⁻³ длина свободного пробега фотона указанной длины волны составляет 100 см. Коэффициент отражения излучения от поверхности полупроводника принять равным 0.5.
- 19. Найти концентрацию примесных центров, на которых происходит поглощение инфракрасного излучения в кристалле *Si* длиной L = 0.25 см, если известно, что на его длине поглотилось 80% прошедшей в полупроводник мощности, а при концентрации в полупроводнике поглощающих центров той же природы 10^{10} см⁻³ длина свободного пробега фотона указанной длины волны составляет 10 *см*. Коэффициент отражения излучения от поверхности полупроводника принять равным 0.1.
- 20. Найти концентрацию примесных центров, на которых происходит поглощение инфракрасного излучения с длиной волны 10.6 мкм в кристалле GaAs длиной 10⁻⁴ см, если известно, что на его длине поглотилось 10% падающей мощности, а при концентрации в полупроводнике поглощающих центров той же природы 10⁹ см⁻³ длина свободного пробега фотона указанной длины волны составляет 200 см. Коэффициент отражения излучения от поверхности полупроводника принять равным 0.33.

7. «ФОТОЭЛЕКТРИЧЕСКИЕ ЯВЛЕНИЯ В ПОЛУПРОВОДНИКАХ»

7.1. Краткое изложение теории

Фотопроводимость. Одно из основных фотоэлектрических явлений в полупроводниках, которое физически очень прозрачно и которое широко используют в научных исследованиях и технических приложениях – это фотопроводимость. Под фотопроводимостью понимается изменение проводимости полупроводника, вызванное действием падающего оптического излучения. Полупроводник, используемый для регистрации оптического излучения за счет возникновения в нем фотопроводимости, называют **фоторезистором**. Изменение проводимости может регистрироваться при приложении к фоторезистору как постоянного напряжения, так и переменного. В соответствии с этим различают фотопроводимость на постоянном токе и на переменном. Первый тип фотопроводимости подробно рассмотрен в учебном пособии автора: Давыдов В.Н. Физические основы оптоэлектроники. Томск, ТУСУР. – 2016. – 139с.

Физическая причина возникновения фотопроводимости полупроводника $\Delta \sigma$ одна: изменение (возрастание) концентрации свободных носителей заряда Δn , Δp в разрешенных зонах энергии за счет поглощения падающего излучения. Фотопроводимость единичного объема полупроводника описывается следующим выражением:

$$\Delta \sigma = q\mu_n \cdot \Delta n + q\mu_p \cdot \Delta p, \qquad (7.1)$$

где μ_n , μ_p - подвижности электронов и дырок соответственно; Δn , Δp - изменения концентраций свободных носителей заряда в зонах. Их можно найти, решив кинетические уравнения, описывающие изменения концентраций носителей заряда в зонах за счет их генерации и рекомбинации:

$$\frac{\partial \Delta n}{\partial t} = g_n - \frac{\Delta n}{\tau_n}; \quad \frac{\partial \Delta p}{\partial t} = g_p - \frac{\Delta p}{\tau_p}, \tag{7.2}$$

где $g_n = \eta \cdot \alpha \cdot I(x)$, $g_p = \eta \cdot \alpha \cdot I(x)$ - скорости генерации неравновесных электронов и дырок за счет поглощения излучения интенсивностью I(x). Если считать, что интенсивность падающего оптического излучения модулирована по гармоническому закону (так, излучение ламп накаливания модулировано по амплитуде частотой $2 \times 50 = 100 \ \Gamma u$), то можно записать:

$$g_n = g_0 \exp(i\omega t), \quad g_p = g_0 \exp(i\omega t). \tag{7.3}$$

Разумно считать, что изменения концентраций носителей заряда также подчиняются гармоническому закону изменения во времени на той же частоте, и поэтому будем отыскивать решения уравнений (7.2) в виде

$$\Delta n = \Delta n_0 \cdot exp(i\omega t), \quad \Delta p_p = \Delta p_0 \cdot exp(i\omega t). \tag{7.4}$$

Подставив выражения (7.3) и (7.4) в уравнения (7.2), можно найти, что макси-

мальные изменения концентраций носителей заряда зависят от частоты модуляции светового потока:

$$\Delta n_0 = \frac{g_0 \cdot \tau_n}{1 + i\omega \cdot \tau_n}, \ \Delta p_0 = \frac{g_0 \cdot \tau_p}{1 + i\omega \cdot \tau_p}.$$
(7.5)

Однако физический смысл изменения концентраций имеют только реальные части выражений (7.5). Отыскивая их, получим:

$$\Delta n_0 = \frac{g_0 \cdot \tau_n}{1 + \omega^2 \cdot \tau_n^2}, \ \Delta p_0 = \frac{g_0 \cdot \tau_p}{1 + \omega^2 \cdot \tau_p^2}.$$
 (7.6)

Выражения (7.6) показывают, что амплитуды изменений концентраций носителей в зонах зависят от соотношения частоты модуляции светового потока и времени жизни носителей. Если частота модуляции низкая $(\omega \cdot \tau_n \ll 1, \omega \cdot \tau_p \ll 1)$, то изменения концентраций максимальны и равны

$$\Delta n_0^{HY} = g_0 \cdot \tau_n, \ \Delta p_0^{HY} = g_0 \cdot \tau_p. \tag{7.7}$$

На высокой частоте ($\omega \cdot \tau_n >> 1$, $\omega \cdot \tau_p >> 1$) изменения концентраций уменьшаются с ростом частоты:

$$\Delta n_0^{BY} = \frac{g_0 \cdot \tau_n}{\omega^2 \cdot \tau_n^2}, \quad \Delta p_0^{BY} = \frac{g_0 \cdot \tau_p}{\omega^2 \cdot \tau_p^2}. \tag{7.8}$$

Частота, на которой начинается спад амплитуды избыточных концентраций носителей заряда, определяется из условия (в большинстве практически важных случаев $\tau_n = \tau_p$, обозначим $\tau_{n,p} = \tau_n = \tau_p$)

$$\omega_0 \cdot \tau_{n,p} = 1 \tag{7.9}$$

и называется частотой среза:

$$\omega_0 = \frac{1}{\tau_{n,p}}.\tag{7.10}$$

На этой частоте амплитуда неравновесной концентрации уменьшается по сравнению с максимальным значением в два раза.

Из выражения (7.10) следует важный вывод: измеряя экспериментально зависимость амплитуд концентраций неравновесных носителей заряда от частоты модуляции светового потока, можно по частоте среза определить время жизни неравновесных носителей заряда. Тогда на низкой частоте модуляции, зная значения времен жизни неравновесных электронов и дырок $\tau_{n,p}$, по выражениям (7.7) можно найти скорость их генерации, а из неё вычислить квантовую эффективность полупроводника, если известно значение интенсивности падающего излучения. Способом, аналогичным рассмотренному выше, можно найти закон изменения величины фотопроводимости Δσ от частоты модуляции светового потока и получить следующее выражение:

$$\Delta \sigma = \frac{q(\mu_n + \mu_p) \cdot g \cdot \tau_{\phi n}}{1 + \omega^2 \cdot \tau_{\phi n}^2}, \qquad (7.11)$$

где $g = \eta \cdot \alpha \cdot (1 - R) \cdot I_0$ - скорость генерации электронно-дырочных пар в полупроводнике за счет поглощения падающего излучения, а $\tau_{\phi n} \tau_{\phi n}$ - время релаксации фотопроводимости ($\delta n \approx \delta p$)

$$\tau_{\phi n} = \frac{\mu_n \cdot \delta n + \mu_p \cdot \delta p}{\frac{\mu_n \cdot \delta n}{\tau_n} + \frac{\mu_p \cdot \delta p}{\tau_p}} \approx \frac{\mu_n + \mu_p}{\frac{\mu_n}{\tau_n} + \frac{\mu_p}{\tau_p}} = \frac{(\mu_n + \mu_p) \cdot \tau_n \tau_p}{\mu_n \tau_p + \mu_p \tau_n}.$$
 (7.12)

Из выражения (7.11) следует, что фотопроводимость полупроводника на низких частотах модуляции остается постоянной величиной, а на высоких уменьшается пропорционально квадрату частоты модуляции падающего оптического излучения. При этом существует **частота среза фотопроводимости**, определяемая как величина, обратная времени релаксации фотопроводимости

$$\omega_0 = \frac{1}{\tau_{\phi n}}.$$

При экспериментальном определении времени релаксации фотопроводимости по найденной линейной частоте среза f_0 для системы единиц СИ используется выражение:

$$\tau_{\phi n} = \frac{1}{f_0} \, .$$

Таким образом, исследуя свойства фотопроводимости, можно по приведенным выше выражениям вычислить фундаментальные параметры полупроводникового материала.

Фотовольтаические эффекты. В ряде практических приложений фотоэффектов в полупроводниках недостатком на пути использования фотопроводимости является необходимость подключения к фоторезистору источника постоянного напряжения. Более того, протекание постоянного тока через полупроводник ухудшает его шумовые свойства – шум фоторезистора при протекании по нему тока увеличивается. По этим причинам представляют интерес фотоэффекты в полупроводнике, когда в отсутствии источника постоянного напряжения в измерительной цепи освещение приводит к появлению на его торцах фотонапряжения – напряжения, вызванного освещением.

- Фотоэдс Дембера. Физически самым простым фотовольтаическим эффектом в полупроводниках является фотоэдс Дембера. Она возникает в полупроводниковых образцах, имеющих темновую проводимость σ_0 , когда на одну из его поверхностей падет излучение мощностью P_{nad} из собственной полосы поглощения. Различие в скоростях диффузии неравновесных электронов и дырок приводит к их пространственному разделению. Результатом этого разделения является образование электрического диполя, составленного из неравновесных электронов с одной стороны, и неравновесных дырок – с другой. По этой причине в направлении, перпендикулярном освещаемой поверхности, возникает внутреннее электрическое поле, которое на торцах образца фиксируется как некая разность электростатических потенциалов.

Аналитическое выражение, позволяющее оценить величину фотоэдс Дембера, получено в учебном пособии (см. Учебное пособие по курсу «Физические основы оптоэлектроники». Томск: ТУСУР. – 2016, стр. 75-77) и при равенстве градиентов неравновесных электронов и дырок в случае «толстых» полупроводников имеет вид:

$$V_{\mathcal{A}eM\delta}^{*} = \frac{q}{\sigma_0} \left(D_p - D_n \right) \cdot \Delta p(0).$$
(7.13)

Концентрация равновесных дырок (она предполагается равной концентрации неравновесных электронов) определяется параметрами полупроводника и величиной падающей мощности излучения (см. выражение (7.6)):

$$\Delta p = \frac{g \cdot \tau_p}{1 + \omega^2 \cdot \tau_p^2}$$

В свою очередь скорость генерации неравновесных носителей заряда находится следующим образом:

$$g = \eta \alpha (1-R) \frac{P_{na\partial}}{h\nu} \frac{1}{S}.$$

Здесь R – коэффициент отражения световой мощности от поверхности полупроводника, α – коэффициент поглощения излучения, η – квантовый выход внутреннего фотоэффекта, т.е. количество электроно-дырочных пар, образующихся при поглощении одного кванта света с энергией hv. Обычно этот параметр принимается по величине близким к единице.

В итоге конечное выражение для фотоэдс Дембера при освещении полупроводника модулированным на частоте ω излучением заданной мощности P_{nad}^0 будет иметь вид:

$$V_{\mathcal{A}eM\delta}^{*} = \frac{q}{\sigma_0} \left(D_p - D_n \right) \cdot \frac{\tau_p}{1 + \omega^2 \tau_p^2} \cdot \eta \alpha (1 - R) \frac{P_{na\partial}^0}{h\nu} \frac{1}{S}.$$
(7.14)

^

Заметим, что быстродействие этой фотоэдс определяется объемным временем жизни электронов и дырок τ_n , τ_p и в реальных полупроводниках оказывается довольно малой величиной (до 10^{-8} *c*).

- Объемная фотоэдс. Этот вид фотоэдс обнаруживается в объемных полупроводниковых образцах с неоднородностями концентрации легирующей примеси или структурных дефектов, т.е. имеющих градиент темнового сопротивления. Как показано в учебном пособии, величина объемной фотоэдс определяется следующим выражением:

$$V_{o\phi}^* = \frac{q}{S} N \cdot L_p^2 \cdot \left(\frac{\partial \rho_0}{\partial x}\right)_0,$$

где *N*-общее количество неравновесных электронно-дырочных пар, созданных оптическим излучением. Эту величину можно вычислить по следующему выражению:

$$N = \eta \alpha (1 - R) \frac{P_{na\partial}}{h \frac{c}{\lambda}} \frac{\tau_p}{1 + \omega^2 \tau_p^2}.$$

Поэтому окончательное выражение для вычисления объемной фотоэдс будет следующим:

$$V_{o\phi}^{*} = \frac{q}{S} \cdot L_{p}^{2} \cdot \left(\frac{\partial \rho_{0}}{\partial x}\right)_{0} \left(\frac{\tau_{p}}{1 + \omega^{2} \tau_{p}^{2}}\right) \cdot \eta \alpha (1 - R) \frac{P_{na\partial}}{h \frac{c}{\lambda}}$$
(7.15)

Как и в предыдущем случае, инерционность объемной фотоэдс определяется временем жизни неравновесной электронно-дырочной пары в объеме полупроводника и потому инерционность является довольно малой величиной.

- Барьерная фотоэдс. Наиболее широко используемый и значимый по величине фотовольтаический эффект наблюдается при освещении *p-n* перехода. Возникающая при этом электродвижущая сила называется **барьерной фотоэдс**.

Основной характеристикой *p-n* перехода, определяющей качество его изготовления и возможность использования в электронных приборах, является вольт-амперная характеристика (BAX). Она представляет собой зависимость омического тока *j*, протекающего через *p-n* переход, от величины постоянного напряжения V на нем. Из-за наличия потенциального барьера на границе раздела *p-* и *n*-областей перехода, данная характеристика оказывается несимметричной относительно знака прикладываемого напряжения. Так, если к *n*-области приложить положительный потенциал относительно потенциала *p*-области (случай обратных или запорных напряжений), то высота барьера, разделяющего эти области, увеличится и, следовательно, протекание тока основных носителей через переход будет исключено. В этом случае через *p-n* переход протекает ток I_0 , образованный неосновными носителями заряда *n-* и *p*-областей, для которых контактное электрическое поле способствует переносу: электронов из *p*-области в *n*-области в *n*-области в *n*-область и дырок из *n*-области в *p*-область.

Если же к *n*-области приложить отрицательный потенциал относительно потенциала *p*-области (случай прямых или отпирающих напряжений), то высота барьера, разделяющего эти области, уменьшится и, следовательно, через переход будет течь ток основных носителей. Учитывая больцмановский закон распределения частиц по энергиям: количество частиц, имеющих энергию вы-

ше высоты потенциального барьера, экспоненциально увеличивается с уменьшением высоты этого барьера, можно получить выражение для ВАХ *p-n* перехода в следующем виде:

$$I(V) = I_0 \left(exp\left(\frac{qV}{kT}\right) - 1 \right), \tag{7.16}$$

где I_0 - величина обратного тока *p*-*n* перехода. Как указывалось выше, физической причиной его появления является ток неосновных носителей, которые либо генерируются в пределах *p*-*n* перехода примесными атомами и ионами (по этой причине его называют **генерационно-рекомбинационным током**), либо за счет диффузии неосновные носители заряда из *n*- и *p*-областей поставляются к переходу, где подхватываются и разделяются электрическим полем *p*-*n* перехода (его называют **диффузионным током**). Величина обратного тока – важный параметр, определяющий многие электрические свойства перехода. Выражение для определения обратного тока перехода в случае доминирования диффузионного механизма поставки неосновных носителей заряда таково:

$$I_0 = \frac{kT}{q} S \frac{b\sigma_i^2}{(1+b)^2} \left(\frac{1}{\sigma_n L_p} + \frac{1}{\sigma_p L_n}\right).$$
(7.17)

Здесь *S* - площадь перехода; $b = \mu_n / \mu_p$ - отношение подвижностей электронов и дырок; σ_i - собственная электропроводность материала перехода; σ_n , σ_p - удельная электропроводность *n*- и *p* – областей *p*-*n* перехода; L_{n, L_p} - диффузионная длина электронов и дырок соответственно.

Однако на практике часто основным механизмом поставки неосновных носителей заряда, а значит, основным механизмом формирования обратного тока *p-n* перехода является их генерация примесными состояниями, находящимися в запрещенной зоне полупроводника. В этом случае говорят о генерационнорекомбинационном (ГР) обратном токе перехода. Для этого случая величина обратного тока вычисляется с помощью выражения

$$I_0 = q n_i S \frac{W}{\tau_{p-n}} \,.$$

Здесь W - ширина область *p*-*n* перехода, n_i - концентрация носителей заряда в собственном полупроводнике (константа материала), а τ_{p-n} - время релаксации носителей заряда в нем. Остальные обозначения общепринятые.

Другим важным параметром, характеризующим качество перехода, является его дифференциальное сопротивление, обозначаемое как R_d . Физически оно представляет собой сопротивление элемента, оказываемое им протеканию слабого переменного тока. Учитывая то, что слабое переменное напряжение часто используется в радиоэлектронных цепях в качестве сигнального, введение дифференциального сопротивления оказывается во многих случаях доминирующим для оценки возможностей использования данного элемента в той или иной электрической цепи. Определение дифференциального сопротивления элемента, находящегося при постоянном напряжении $V = V_0$, таково

$$R_d = \left(\frac{\partial U}{\partial I}\right)_{V_0} . \tag{7.18}$$

Физически его можно измерить, если наряду с постоянным напряжением V_0 к исследуемому элементу приложить малое переменное напряжение амплитудой $\Delta U_{,}$ частотой f и регистрировать величину протекающего через элемент тока ΔI на этой же частоте. Тогда согласно определению сопротивления по закону Ома найдем:

$$R_d \left(f, \ V_0 \right) = \frac{\Delta U}{\Delta I}. \tag{7.19}$$

Ясно, что величина дифференциального сопротивления зависит как от частоты, на которой оно измеряется, так и от величины постоянного напряжения, приложенного к элементу. Из выражения (7.16) также следует различие между дифференциальным сопротивлением *p-n* перехода и сопротивлением, измеряемым на постоянном токе: они разнятся так же, как отличается производная функции, вычисленная в заданной точке, от среднего значения тангенса угла наклона этой функции в той же точке - в нашем случае: при заданном постоянном напряжении на переходе.

Пользуясь выражением для ВАХ перехода (7.16), подвергнутого одновременному действию произвольного постоянного и малого переменного напряжения, нетрудно определить его дифференциальное сопротивление:

$$\begin{split} R_d &= \frac{1}{\left(\frac{\partial I}{\partial U}\right)_{V=V_0}} = \left(\frac{\partial}{\partial U} \left(I_0 \left(exp\left(\frac{q(V_0+U)}{kT}\right) - 1\right)\right)\right)^{-1} = \\ &= \left(I_0 \left(exp\left(\frac{qV_0}{kT}\right)\frac{\partial}{\partial U} \left(exp\left(\frac{qU}{kT}\right)\right)\right)\right)^{-1} = \\ &= \left(\frac{q}{kT}I_0 \left(exp\left(\frac{q(V_0+U)}{kT}\right)\right)\right)^{-1} \approx \frac{kT}{qI_0} \cdot exp\left(-\frac{qV_0}{kT}\right) \end{split}$$

поскольку обычно $|V_0| >> U \rightarrow 0$, т.к. амплитуда переменного тестового сигнала считается бесконечно малой величиной. Окончательно имеем:

$$R_d(V_0) \approx \frac{kT}{qI_0} \cdot exp\left(-\frac{qV_0}{kT}\right).$$
(7.20)

Из данного выражения следует, что величина дифференциального сопротивления резко уменьшается в области прямых смещений (положительных напряжений, открывающих переход). Оно максимально в точке V = 0 В. В области же обратных смещений данное выражение недействительно ввиду того, что исходное выражение для ВАХ *p-n* перехода не дает экспоненциальной зависимости тока в этой области напряжений. Поэтому для запирающих напряжений дифференциальное сопротивление обычно вычисляется по (7.17), когда $V_0 = 0$:

$$R_d = \frac{kT}{qI_0} . \tag{7.21}$$

Таким образом, величина дифференциального сопротивления p-n перехода при выбранном значении постоянного напряжения на нем V_0 определяется в первую очередь значением обратного тока, а также величиной приложенного к переходу постоянного напряжения.

Следующим важным параметром, характеризующим электрические свойства *p-n* перехода, является его дифференциальная емкость *C*. Физически эта емкость образована *n*- и *p*- областями (их можно рассматривать как обкладки плоского конденсатора), разделенными *i*-слоем толщиной *W*, в котором проводимость равна собственной (его можно рассматривать как слой диэлектрика между обкладками конденсатора). Эта емкость называется **барьерной**. Величина барьерной емкости единичной площади определяется концентрациями донорной N_d и акцепторной N_a примесями в *n*- и *p*- областях соответственно, высотой потенциального барьера на границе раздела областей разного типа проводимости φ_{δ} , а также величиной напряжения на переходе *V*, смещающего его в прямом (проводящем) или обратном (запорном) направлении:

$$C = \frac{\varepsilon \cdot \varepsilon_0}{W} = \sqrt{\frac{q\varepsilon\varepsilon_0}{2(\varphi_{\vec{o}} - V)}} \cdot \frac{N_d N_a}{N_d + N_a}.$$
(7.22)

Здесь разность потенциалов между *n*- и *p*-областями перехода определяет высоту потенциального барьера между областями перехода и определяется следующим образом:

$$\varphi_{\tilde{O}} = \frac{kT}{q} ln \left(\frac{N_d N_a}{n_i^2} \right).$$

Как и всякий электронный прибор, в котором имеется перенос носителей заряда через область их регистрации, p-n переход должен обладать некоторой инерционностью по отношению к внешнему воздействию. Это означает, что при подаче на него переменного напряжения различной частоты p-n переход может не успеть отреагировать на него, если частота напряжения высока и превышает некоторый характеристический параметр, определяемый параметрами p-n перехода, или успевать, если частота внешнего воздействия мала. Этим характеристическим параметром является время перезарядки его емкости C. Для исследования частотных свойств p-n перехода его необходимо включить в прямом или запорном направлении и приложить синусоидальный сигнал с малой амплитудой, обычно не превышающей напряжение постоянного смещения на переходе. Изменяя частоту синусоидального сигнала от меньшего значения к большему, с

помощью квадратичного детектора определяется амплитуда переменного напряжения U_{H} , снимаемого с сопротивления нагрузки R_{H} . Из полученной частотной зависимости $U_{H}(f)$ определяется частота, на которой падение переменного напряжения на сопротивлении нагрузки уменьшится в $\sqrt{2}$ =1.41- раза по сравнению с его значением на низких частотах, например, на частоте 10 Гц. Частота, на которой амплитуда синусоидального напряжения уменьшается в указанное число раз, называется **частотой среза** - f_0 . Из найденного таким образом значения частоты среза определяют время релаксации заряда в переходе:

$$\tau_{p-n} = \frac{1}{f_0}.$$
 (7.23)

Если частота измерена в герцах, то выражение (7.23) дает значение время релаксации в секундах.

С другой стороны, поскольку перезарядка емкости С *p-n* перехода физически осуществляется через его дифференциальное сопротивление $R_{d_{1}}$ то время перезарядки может быть найдено из выражения:

$$\tau_{p-n} = C \times R_d \,. \tag{7.24}$$

Следовательно, если известны значения емкости и дифференциального сопротивления перехода, то имеется возможность вычислить время перезарядки и сравнить его с экспериментально найденным значением времени релаксации *p-n* перехода. С физической точки зрения время релаксации перехода равно времени жизни неравновесных носителей заряда в *p-n* переходе. По его величине можно определить, например, инерционность фотоприемного устройства на основе барьерной фотоэдс *p-n* перехода.

Величина барьерной фотоэдс *p-n* перехода на низкой частоте при напряжении на переходе $V_0 \le 0$ определяется следующим выражением:

$$U_{p-n} = \frac{kT}{q} ln \left(1 + \frac{i_{\phi m}}{I_0} \right) \approx \frac{kT}{qI_0} \cdot i_{\phi m}, \qquad (7.25)$$

где предполагается, что $I_0 >> i_{\phi m}$. Значение фототока на частоте измерения барьерной фотоэдс ω может быть найдено следующим образом

$$i_{\phi m}(\omega) = q \eta \alpha \cdot (1-R) \frac{P_{na\partial}}{h\nu} \cdot \frac{\tau_{p-n}}{1+\omega^2 \tau_{p-n}^2} .$$
(7.26)

т.е. это ток, образованный неравновесными носителями заряда при 100%-ном поглощении в полупроводнике оптической мощности $(1 - R) \cdot P_{nad}$. Здесь P_{nad} - мощность падающего оптического излучения частотой v, R - коэффициент отражения света от поверхности полупроводника, α - коэффициент поглощения света в полупроводнике. При этом мощность оптического излучения модулирована по гармоническому закону:

$$P_{na\partial}(\omega) = P_{na\partial}^0 \cdot (1 + \sin(\omega t)).$$

Напомним, что мощность оптического излучения находится путем умножения интенсивности света на площадь освещаемого участка.

Время жизни неравновесных носителей заряда в *p*-*n* – переходе отличается от его объемного значения $\tau_n = \tau_p = \tau$ на величину, определяемую высотой барьера, разделяющего *p*-и *n*- области:

$$\tau_{p-n} = \tau \cdot exp\left(\frac{q\varphi}{kT}\right). \tag{7.27}$$

Возрастание времени жизни обусловлено пространственным разделением неравновесных носителей заряда полем перехода, а значит и затруднением их рекомбинации, что и приводит к увеличению времени жизни электроннодырочных пар согласно выражению (7.24).

7.2. Примеры задач по определению параметров фотоэлектрических эффектов в полупроводниках

Задача 1. Определить величину фотопроводимости кремниевого образца размерами (1×1×5) cm^3 при его освещении оптическим излучением потоком $I_0 = 10^{12} \ \kappa Bahm/(cm^2 \cdot c)$ из собственной полосы поглощения в предположении, что квантовая эффективность поглощения излучения полупроводника равна $\eta = 0.5$, коэффициент поглощения излучения $\alpha = 10^6 \ cm^{-1}$, а частота модуляции светового потока гармоническим сигналом составляет $f = 10^5 \ \Gamma u$.

Считать, что освещение проводится с широкой стороны образца, а регистрирующие контакты припаяны к узким торцам.

Решение. В данной задаче необходимо определить изменение проводимости всего образца под действием оптического излучения, а не единичного объема, как это рассмотрено в курсе лекций. Поэтому выразим изменение проводимости всего образца, если известно изменение удельной проводимости. Пусть рассматриваемый образец имеет длину *L* в направлении протекания тока и площадь омических контактов к образцу **S** и удельную проводимость σ . Если при освещении удельная проводимость изменяется на величину $\Delta \sigma$, то изменение проводимости всего образца будет равно

$$\Delta G = \Delta \sigma \cdot \frac{S}{L}. \tag{7.28}$$

Именно это выражение определяет искомую неизвестную величину, в котором изменение удельной проводимости есть удельная фотопроводимость. Последняя величина определяется выражением (7.11), в котором неизвестными величинами являются скорость генерации неравновесных электронов и дырок, а также время релаксации фотопроводимости. Используем выражение для вычисления времени релаксации фотопроводимости:

$$\tau_{\phi n} = \frac{\left(\mu_n + \mu_p\right) \cdot \tau_n \cdot \tau_p}{\mu_n \tau_p + \mu_p \tau_n}$$

в котором все величины являются справочными (см. Приложение к данному учебно-методическому пособию). Подставив справочные значения подвижностей электронов и дырок, а также времен их жизни ($\tau_n = \tau_p = 10^{-3}c$), получим:

$$\tau_{\phi n} = \frac{(\mu_n + \mu_p) \cdot \tau_n \cdot \tau_p}{\mu_n \tau_p + \mu_p \tau_n} = \frac{(\mu_n + \mu_p) \cdot 10^{-3}}{\mu_n + \mu_p} = 10^{-3} c.$$

Следующим шагом определим скорость генерации неравновесных носителей заряда с учетом коэффициента отражения интенсивности излучения от поверхности кремния

$$R = \left(\frac{n-1}{n+1}\right)^2 = \left(\frac{\sqrt{\varepsilon_{Si}} - 1}{\sqrt{\varepsilon_{Si}} + 1}\right)^2.$$

Подстановка в данное выражение значения относительной диэлектрической проницаемости кремния дает следующее значение коэффициента отражения

$$R = \left(\frac{\sqrt{11.7} - 1}{\sqrt{11.7} + 1}\right)^2 \approx \left(\frac{3.4 - 1}{3.4 + 1}\right)^2 = \left(\frac{2.4}{4.4}\right)^2 \approx 0.25.$$

Скорость генерации неравновесных носителей - число электронно-дырочных пар, генерируемых светом в единицу времени в единичном объеме, равна

$$g = \eta \alpha \cdot (1 - R) \cdot I_0 = 0.5 \cdot 10^6 \cdot 0.75 \cdot 10^{12} = 3.6 \cdot 10^{17} \, nap \, / c \, .$$

Теперь найдем фотопроводимость единичного объема

$$\Delta \sigma = \frac{q(\mu_n + \mu_p) \cdot g \cdot \tau_{\phi n}}{1 + \omega^2 \tau_{\phi n}^2} = \frac{1.6 \cdot 10^{-19} (1450 + 480) \cdot 3.6 \cdot 10^{17} \cdot 10^{-3}}{1 + 4\pi^2 \cdot 10^{10} \cdot 10^{-6}} = \frac{1.6 \cdot 3.6 \cdot 0.2 \cdot 10^{-4}}{1 + 40 \cdot 10^4} \approx \frac{0.35 \cdot 3 \cdot 10^{-1}}{4 \cdot 10^5} \approx 3 \cdot 10^{-7} \ Omega^{-1}cm^{-1}.$$

Здесь максимальное значение фотопроводимости, достигаемое на низкой частоте модуляции, равно $3 \cdot 10^{-7} O_{M}{}^{-1} c_{M}{}^{-1}$, что видно по значению числителя выражения. Отличный от единицы знаменатель указывает на проявление инерционности полупроводника. Резкое снижение значения фотопроводимости на заданной частоте связано с высокой частотой модуляции излучения (см. знаменатель выражения) по сравнению с частотой среза.

Фотопроводимость образца будет определяться удельной фотопроводимостью и размерами образца согласно выражению (7.25)

$$\Delta G = \Delta \sigma \cdot \frac{S}{L} = 3 \cdot 10^{-7} \cdot \frac{1 \times 1}{5} = 6 \cdot 10^{-8} \text{ Om}^{-1}.$$

Таким образом, ответ на поставленный вопрос таков: фотопроводимость кремниевого образца размерами $(1 \times 1 \times 5)$ *см*³ при освещении высочастотномодулированным излучением с широкой стороны образца равна $6 \cdot 10^{-8}$ Ом⁻¹.

Задача 2. Определить величину фотоэдс Дембера, возникающей в кремниевом образце размерами $(1.5 \times 2.0 \times 10) \ mm^3$ с концентрацией донорной примеси $N_d = 2.4 \cdot 10^{12} \ cm^{-3}$ при освещении образца со стороны узкого торца, если известно, что падающая световая мощность величиной $2.0 \cdot 10^{-9} Bm$ промодулирована по амплитуде на частоте 2500 Γu . Излучение имеет длину волны $\lambda = 1.0 \ mmmode собственного поглощения.$

Решение. Для нахождения фотоэдс Дембера необходимо воспользоваться выражением (7.14)

$$V_{\mathcal{A}eM\delta}^{*} = \frac{q}{\sigma_0} \left(D_p - D_n \right) \cdot \frac{\tau_p}{1 + \omega^2 \tau_p^2} \cdot \eta \alpha (1 - R) \frac{P_{na\partial}^0}{h\nu} \frac{1}{S},$$

в котором для нахождения фотоэдс не достает знания проводимости:

$$\sigma_0 = q\mu_n N_d + q\mu_p \left(\frac{n_i^2}{N_d}\right).$$

Используя справочные данные для кремния, найдем

$$\sigma_{0} = 1.6 \cdot 10^{-19} \cdot 1.45 \cdot 10^{3} \cdot 2.4 \cdot 10^{12} + 1.6 \cdot 10^{-19} \cdot 4.8 \cdot 10^{2} \cdot \left(\frac{1.96 \cdot 10^{20}}{2.4 \cdot 10^{12}}\right) \approx 5.57 \cdot 10^{-4} + 7.68 \cdot 10^{-9} \cdot \left(\frac{1.96}{2.4}\right) \approx 5.6 \cdot 10^{-4} \ (Om^{-1} \cdot cm^{-1})$$

Вычислим отдельно множитель, характеризующий частотные свойства фотоэдс Дембера, используя справочные данные для кремния:

$$\frac{\tau_p}{1+\omega^2\tau_p^2} = \frac{10^{-3}}{1+4\pi^2(2.5\cdot10^3)^2\cdot10^{-6}} = \frac{10^{-3}}{1+4\cdot9.86\cdot6.25\cdot10^6\cdot10^{-6}} = \frac{10^{-3}}{1+246} \approx 4.0\cdot10^{-6}.$$

Этот результат говорит о том, что рассматриваемый случай модуляции излучения для фотоэдс Дембера является высокочастотным.

Оценим множитель, описывающий уровень инжекции неравновесных носителей заряда в результате освещения полупроводника, используя значения $\eta = 1$, R = 0.25 - взято из предыдущей задачи, $\lambda = 1.0$ *мкм*, $c = 3 \cdot 10^{10}$ *см*/*c*:

$$\eta \alpha (1-R) \frac{P_{na\partial}^0}{hv} \frac{1}{S} = \eta \alpha (1-R) \frac{P_{na\partial}^0}{h \frac{c}{\lambda}} \frac{1}{S} =$$
$$= 1 \cdot 10^6 (1-0.25) \frac{2.0 \cdot 10^{-9}}{6.62 \cdot 10^{-34}} \frac{3 \cdot 10^{10}}{1.0 \cdot 10^{-4}} \frac{1}{0.15 \cdot 0.20} =$$
$$= 0.75 \cdot 10^6 \frac{2.0 \cdot 10^{-9}}{6.62 \cdot 3 \cdot 0.03 \cdot 10^{-20}} = \frac{1.5 \cdot 10^{-3}}{0.6 \cdot 10^{-20}} = 2.5 \cdot 10^{17}$$

Произведя предварительные вычисления, рассчитаем фотоэдс Дембера:

$$V_{\mathcal{A}eM\delta}^{*} = \frac{q}{\sigma_{0}} \left(D_{p} - D_{n} \right) \cdot \frac{\tau_{p}}{1 + \omega^{2} \tau_{p}^{2}} \cdot \eta \alpha (1 - R) \frac{P_{na\partial}^{0}}{h\nu} \frac{1}{S} =$$

$$= \frac{q}{\sigma_{0}} \frac{kT}{q} \left(\mu_{p} - \mu_{n} \right) \cdot \frac{\tau_{p}}{1 + \omega^{2} \tau_{p}^{2}} \cdot \eta \alpha (1 - R) \frac{P_{na\partial}^{0}}{h\nu} \frac{1}{S} =$$

$$= \frac{1.38 \cdot 10^{-23} \cdot 300}{5.6 \cdot 10^{-4}} (480 - 1450) \cdot 4 \cdot 10^{-6} \cdot 2.5 \cdot 10^{17} =$$

$$= \frac{5.52}{5.6} 10^{-17} (-970) \cdot 10^{12} \approx 10^{-2} B.$$

Таким образом, фотоэдс Дембера при заданных условиях составит 10 мВ.

Задача 3. Определить величину объемной фотоэдс в кремниевом образце размерами $(a \cdot b \cdot c) = (1.5 \cdot 1.5 \cdot 5.0) cm^3$, освещаемого со стороны широкого торца в точке x = 2.5 cm модулированным в виде узкой полоски излучения шири-

ной d = 1 мм с длиной волны $\lambda = 1.0$ мкм и мощностью $P_{nad}^0 = 1.9 \cdot 10^{-10}$ Bm, если известно, что координатная зависимость темнового сопротивления образца вдоль его длинной стороны описывается выражением

$$\rho(x) = \rho_0 \cdot exp[x / x_0].$$

Здесь $\rho_0 = 10^2 \ Om \cdot cm$, $x_0 = 10^4 \ cm$. Считать, что полоска света направлена перпен-

дикулярно оси *X*, направленной вдоль длиной стороны *C*. Геометрия образца и условия освещения приведены на рис. 5.

Решение. Выражение для определения объемной фотоэдс имеет следующий вид (7.15):

$$V_{o\phi}^{*} = \frac{q}{S} \cdot L_{p}^{2} \cdot \left(\frac{\partial \rho_{0}}{\partial x}\right)_{x=2.5} \left(\frac{\tau_{p}}{1+\omega^{2}\tau_{p}^{2}}\right) \cdot \eta \alpha (1-R) \frac{P_{na\partial}}{h\frac{c}{\lambda}}.$$
 (7.29)

Здесь под площадью $S = a \cdot b$ понимается площадь поперечного сечения образца. Поэтому первый сомножитель выражения (8.16) будет равен

$$\begin{aligned} &\frac{q}{S} \cdot L_p^2 \cdot \left(\frac{\partial \rho_0}{\partial x}\right)_{x=2.5} = \frac{q}{a \cdot d} \left(\sqrt{\frac{kT}{q}} \mu_p \tau_p\right)^2 \cdot \left(\frac{\rho_0}{x_0} \cdot exp\left(\frac{x}{x_0}\right)\right)_{x=2.5} = \\ &= \frac{1.6 \cdot 10^{-19}}{1.5 \cdot 1.5} \left(\frac{1.38 \cdot 10^{-23} \cdot 300}{1.6 \cdot 10^{-19}} 480 \cdot 10^{-3}\right) \cdot \left(\frac{10^2}{10^4} \cdot exp\left(\frac{2.5}{2.5 \cdot 10^4}\right)\right) = \\ &= \frac{19.9}{2.25} 10^{-3} \left(\frac{10^{-2}}{2.5 \cdot exp(10^{-4})}\right) \approx 8.8 \cdot 10^{-3} \cdot 4.0 \cdot 10^{-3} = 3.5 \cdot 10^{-5}. \end{aligned}$$

Теперь рассмотрим частотный множитель выражения (7.15). При локальном освещении полупроводника область, участвующая в формировании фотоэдс, из-за диффузионного растекания неравновесных носителей заряда оказывается больше области освещения на величину $2L_p$. В кремнии

$$\begin{split} L_p &= \sqrt{\frac{kT}{q}} \mu_p \cdot \tau_p = \sqrt{\frac{1.38 \cdot 10^{-23} \cdot 300}{1.6 \cdot 10^{-19}}} 480 \cdot 10^{-3} = \\ &= \sqrt{2.6 \cdot 10^{-2} \cdot 0.48} \approx 1.2 \cdot 10^{-1} \ \text{cm}. \end{split}$$

Таким образом, реальное пространственное разрешение объемной фотоэдс будет составлять почти 3.5 мм. Для того чтобы иметь пространственное разрешение неоднородности сопротивления, определяемое размерами оптической полоски, необходимо, чтобы диффузионное растекание неравновесных носителей заряда за пределы освещенной области было бы значительно меньше размеров освещенной области. В рассматриваемых условиях это означает, что диффузионная длина дырок должна быть, например, в 100 раз меньше 1 мм. Для этого надо выбрать столь высокую частоту модуляции излучения, чтобы диффузионная длина дырок на частоте ω

$$L_p(\omega) = \sqrt{\frac{kT}{q}} \mu_p \frac{\tau_p}{1 + \omega \tau_p}, \quad L_p(\omega) \ll 10^{-1} cM$$

составляла бы единицы микрон. При частоте модуляции 10⁶ Г*ų* это требование реализуется. Тогда частотный множитель в (8.16) дает численное значение

$$\frac{\tau_p}{1+\omega^2\tau_p^2} = \frac{10^{-3}}{1+4\pi^2(10^6)^2\cdot 10^{-6}} = \frac{10^{-3}}{1+4\cdot 9.86\cdot 10^{12}\cdot 10^{-6}} = \frac{10^{-3}}{1+39.4\cdot 10^6} \approx 2.5\cdot 10^{-11}.$$

Множитель выражения (8.16), отвечающий за уровень инжекции неравновесных носителей заряда в полупроводник, будет равен

$$\eta \alpha (1-R) \frac{P_{na\partial}^0}{h\nu} = \eta \alpha (1-R) \frac{P_{na\partial}^0}{h \frac{c}{\lambda}} = 1 \cdot 10^6 (1-0.25) \frac{2.0 \cdot 10^{-10}}{6.62 \cdot 10^{-34} \frac{3 \cdot 10^{10}}{1.0 \cdot 10^{-4}}} = 0.75 \cdot 10^6 \frac{2.0 \cdot 10^{-10}}{6.62 \cdot 3 \cdot 10^{-20}} = \frac{1.5 \cdot 10^{-4}}{1.99 \cdot 10^{-19}} = 0.75 \cdot 10^{15}.$$

Тогда величина объемной фотоэдс будет равна

$$V_{o\phi}^* = \frac{q}{S} \cdot L_p^2 \cdot \left(\frac{\partial \rho_0}{\partial x}\right)_{x=2.5} \frac{\tau_p}{1 + \omega^2 \tau_p^2} \cdot \eta \alpha (1-R) \frac{P_{na\partial}}{h\frac{c}{\lambda}} =$$

= 3.5 \cdot 10^{-5} \cdot 2.5 \cdot 10^{-11} \cdot 0.75 \cdot 10^{15} \approx 0.65 B .

Таким образом, величина объемной фотоэдс в выбранных условиях составляет примерно 650 *мВ*.

Задача 4. Определить величину барьерной фотоэдс кремниевого *p*-*n* перехода площадью $S = 4 \cdot 10^{-2} cm^2$ при его освещении модулированным на частоте $10^4 \Gamma \mu$ излучением с длиной волны $\lambda = 0.64 \, m m$ и мощностью $P_{nad} = 10^{-10} Bm$, если квантовая эффективность поглощения равна $\eta = 1.0$, а значения концентраций акцепторной N_a и донорной N_d примеси в областях одинаковы и равны $2 \cdot 10^{15} cm^{-3}$. Считать, что обратный ток перехода создается диффузионным механизмом поставки неравновесных носителей заряда.

Решение. Исходным выражением для определения барьерной фотоэдс служит выражение (7.25)

$$V_{p-n}^* = \frac{kT}{q} ln \left(1 + \frac{i_{\phi m}}{I_0} \right) \approx \frac{kT}{q \cdot I_0} \cdot i_{\phi m},$$

в котором неизвестными величинами являются обратный ток I_0 и фототок i_{dm} . Найдем их.

Величина фототока на частоте ω может быть найдена из выражения

$$i_{\phi m} = q \eta \alpha \cdot \frac{\tau_{p-n}}{1 + \omega^2 \tau_{p-n}^2} \cdot (1-R) \frac{P_{na\partial}}{h\frac{c}{\lambda}},$$

а обратный ток I₀ может быть вычислен по выражению

$$I_0 = \frac{kT}{q} S \frac{b\sigma_i^2}{(1+b)^2} \left(\frac{1}{\sigma_n L_p} + \frac{1}{\sigma_p L_n}\right),$$

в котором все величины могут быть определены, исходя из табличных данных.

Определим электронную и дырочную проводимости областей *p-n* перехода:

$$\sigma_n = q\mu_n n_n = 1.6 \cdot 10^{-19} \cdot 1450 \cdot 2 \cdot 10^{15} \approx 3.2 \cdot 1.4 \cdot 10^{-1} = 0.45 \ Omega - 1.6 \cdot 10^{-19} \cdot 480 \cdot 2 \cdot 10^{15} \approx 3.2 \cdot 4.8 \cdot 10^{-2} = 0.15 \ Omega - 1.6 \cdot 10^{-19} \cdot 480 \cdot 2 \cdot 10^{15} \approx 3.2 \cdot 4.8 \cdot 10^{-2} = 0.15 \ Omega - 1.6 \cdot 10^{-19} \cdot 480 \cdot 2 \cdot 10^{15} \approx 3.2 \cdot 4.8 \cdot 10^{-2} = 0.15 \ Omega - 1.6 \cdot 10^{-19} \cdot 480 \cdot 2 \cdot 10^{15} \approx 3.2 \cdot 4.8 \cdot 10^{-2} = 0.15 \ Omega - 1.6 \cdot 10^{-19} \cdot 480 \cdot 2 \cdot 10^{15} \approx 3.2 \cdot 4.8 \cdot 10^{-2} = 0.15 \ Omega - 1.6 \cdot 10^{-19} \cdot 480 \cdot 2 \cdot 10^{15} \approx 3.2 \cdot 4.8 \cdot 10^{-2} = 0.15 \ Omega - 1.6 \cdot 10^{-19} \cdot 480 \cdot 2 \cdot 10^{15} \approx 3.2 \cdot 4.8 \cdot 10^{-2} = 0.15 \ Omega - 1.6 \cdot 10^{-19} \cdot 480 \cdot 2 \cdot 10^{15} \approx 3.2 \cdot 4.8 \cdot 10^{-2} = 0.15 \ Omega - 1.6 \cdot 10^{-19} \cdot 480 \cdot 2 \cdot 10^{15} \approx 3.2 \cdot 4.8 \cdot 10^{-2} = 0.15 \ Omega - 1.6 \cdot 10^{-19} \cdot 480 \cdot 2 \cdot 10^{15} \approx 3.2 \cdot 4.8 \cdot 10^{-2} = 0.15 \ Omega - 1.6 \cdot 10^{-19} \cdot 480 \cdot 2 \cdot 10^{15} \approx 3.2 \cdot 4.8 \cdot 10^{-2} = 0.15 \ Omega - 1.6 \cdot 10^{-19} \cdot 480 \cdot 2 \cdot 10^{15} \approx 3.2 \cdot 4.8 \cdot 10^{-2} = 0.15 \ Omega - 1.6 \cdot 10^{-19} \cdot 10$$

Далее вычислим длины диффузии носителей заряда:

$$L_n = \sqrt{\frac{kT}{q}} \mu_n \cdot \tau_n = \sqrt{\frac{1.38 \cdot 10^{-23} \cdot 300}{1.6 \cdot 10^{-19}}} 1450 \cdot 10^{-3} =$$
$$= \sqrt{2.6 \cdot 10^{-2} \cdot 1.45} \approx 1.9 \cdot 10^{-1} \ cm.$$
$$L_p = \sqrt{\frac{kT}{q}} \mu_p \cdot \tau_p = \sqrt{\frac{1.38 \cdot 10^{-23} \cdot 300}{1.6 \cdot 10^{-19}}} 480 \cdot 10^{-3} =$$
$$= \sqrt{2.6 \cdot 10^{-2} \cdot 0.48} \approx 1.2 \cdot 10^{-1} \ cm.$$

Столь высокие значения длин диффузии носителей заряда в кремнии являются следствием высоких значений времен жизни неравновесных носителей заряда. Используя данные, приведенные в Приложении к данному пособию, найдем:

$$\begin{split} I_0 &= \frac{kT}{q} S \frac{b\sigma_i^2}{(1+b)^2} \left(\frac{1}{\sigma_n L_p} + \frac{1}{\sigma_p L_n} \right) = \\ &= \frac{kT}{q} S \frac{(\mu_n / \mu_p)}{(1+\mu_n / \mu_p)^2} \left[q(\mu_n + \mu_p) n_i \right]^2 \left(\frac{1}{\sigma_n L_p} + \frac{1}{\sigma_p L_n} \right) = \\ &= \frac{1.38 \cdot 10^{-23} \cdot 300}{1.6 \cdot 10^{-19}} 4 \cdot 10^{-2} \frac{3}{(1+3)^2} \left(1.6 \cdot 10^{-19} (1450 + 480) \cdot 1.4 \cdot 10^{10} \right)^2 \cdot \left(\frac{10}{0.45 \cdot 1.9} + \frac{10}{0.15 \cdot 1.2} \right) = \\ &= 2.6 \cdot 10^{-2} \cdot 4 \cdot 10^{-2} \frac{3}{16} \left(1.6 \cdot 1.93 \cdot 1.4 \cdot 10^{-6} \right)^2 \cdot (11.7 + 55.6) = \\ &= 1.95 \cdot 10^{-2} \cdot \left(4.3 \cdot 10^{-6} \right)^2 \cdot 67.3 = 2.4 \cdot 10^{-11} A. \end{split}$$

Теперь можно вычислить барьерную фотоэдс:

$$V_{p-n}^{*} \approx \frac{kT}{q} \cdot \frac{\tau_{p-n}}{1 + \omega^{2} \tau_{p-n}^{2}} \cdot \frac{q \eta \alpha (1-R) \cdot P_{na\partial}}{h \frac{c}{\lambda} \cdot I_{0}} = \frac{kT}{hc} \cdot \frac{\tau_{p-n}}{1 + \omega^{2} \tau_{p-n}^{2}} \cdot \frac{\eta \lambda \alpha (1-R) \cdot P_{na\partial}}{I_{0}}$$

Фигурирующий в выражении для барьерной фотоэдс коэффициент отражения света от поверхности полупроводника равен:

$$R = \left(\frac{n-1}{n+1}\right)^2 = \left(\frac{\sqrt{\varepsilon_{Si}} - 1}{\sqrt{\varepsilon_{Si}} + 1}\right)^2 = \left(\frac{\sqrt{11.7} - 1}{\sqrt{11.7} + 1}\right)^2 = \left(\frac{2.4}{4.4}\right)^2 \approx 0.25.$$

Для вычисления частотного множителя необходимо знать время жизни неравновесных носителей заряда в *p-n* – переходе

$$\tau_{p-n} = C \cdot R_d$$

Величину дифференциального сопротивления *p-n* – перехода найдем из выражения

$$R_d = \frac{kT}{qI_0} = \frac{1.36 \cdot 10^{-23} \cdot 300}{1.6 \cdot 10^{-19} \cdot 2.4 \cdot 10^{-11}} = 1.1 \cdot 10^9 \ O_M.$$

Дифференциальная емкость *p-n* - перехода площадью *S* будет

$$C = \frac{\varepsilon \cdot \varepsilon_0}{W} S = S \sqrt{\frac{q \varepsilon \varepsilon_0}{2(\varphi_{\vec{o}} - V)}} \cdot \frac{N_d N_a}{N_d + N_a}.$$

Здесь ϕ_{δ} – разность потенциалов между *n*- и *p*-областями перехода определяет высоту потенциального барьера между областями перехода и определяется следующим образом:

$$\varphi_{\vec{0}} = \frac{kT}{q} ln \left(\frac{N_d N_a}{n_i^2} \right) = \frac{1.38 \cdot 10^{-23} \cdot 300}{1.6 \cdot 10^{-19}} 2 ln \left(\frac{2 \cdot 10^{15}}{1.4 \cdot 10^{10}} \right) = = 5.2 \cdot 10^{-2} ln \left(1.4 \cdot 10^{15} \right) = 5.2 \cdot 10 \cdot [ln(1.4) + 5 \cdot ln(10)] = = 5 / 2 \cdot 10^{-2} \cdot [0.33 + 5 \cdot 2.3] = 5 / 2 \cdot 10^{-2} \cdot 11.8 = 0.61 \ B.$$

Теперь найдем емкость p-n – перехода при V = 0:

$$C = S \sqrt{\frac{q \varepsilon \varepsilon_0}{2(6-V)}} \cdot \frac{N_d N_a}{N_d + N_a} =$$

= $4 \cdot 10^{-2} \sqrt{\frac{1.6 \cdot 10^{-19} 11.7 \cdot 8.85 \cdot 10^{-14}}{2 \cdot 0.61}} \cdot \frac{2 \cdot 10^{15}}{2} = 4 \cdot 10^{-2} \sqrt{\frac{1.66 \cdot 10^{-31}}{1.22}} \cdot 10^{15} \approx$
 $\approx 4 \cdot 10^{-2} \cdot 1.2 \cdot 10^{-8} = 4.8 \cdot 10^{-10} \Phi.$

Значит, время жизни неравновесных носителей заряда будет равно

$$\tau_{p-n} = C \cdot R_d = 4.8 \cdot 10^{-10} \cdot 1.1 \cdot 10^9 = 5.3 \cdot 10^{-1} c.$$

Тогда частотный множитель барьерной фотоэдс на частоте 10⁴ Ги будет равен

$$\frac{\tau_{p-n}}{1+\omega^2\tau_{p-n}^2} = \frac{5.3\cdot10^{-1}}{1+4\pi^2\cdot10^8\cdot\left(5.3\cdot10^{-1}\right)^2} = \frac{5.3\cdot10^{-1}}{1+39.4\cdot10^8\cdot28.1\cdot10^{-2}} = \frac{5.3\cdot10^{-1}}{1+1107\cdot10^6} \approx \frac{5.3\cdot10^{-1}}{1.1\cdot10^8} = 4.8\cdot10^{-9}.$$

Подставляя найденные численные значения, найдем величину барьерной фотоэдс в выбранных условиях:

$$V_{p-n}^{*} = \frac{1.38 \cdot 10^{-23} \cdot 300}{6.62 \cdot 10^{-34} \cdot 3 \cdot 10^{10}} \cdot 4.8 \cdot 10^{-9} \cdot \frac{1 \cdot 0.64 \cdot 10^{-4} \cdot 10^{6} \cdot 0.75 \cdot 10^{-10}}{2.4 \cdot 10^{-11}} = \frac{4.1 \cdot 10^{-21}}{19.9 \cdot 10^{-24}} \cdot 4.8 \cdot 10^{-9} \cdot \frac{2.4 \cdot 10^{-8}}{2.4 \cdot 10^{-11}} = 0.21 \cdot 10^{3} \cdot 4.8 \cdot 10^{-9} \cdot 10^{3} = 1.0 \cdot 10^{-3} = 0.001 \ B.$$

Таким образом, ответ на поставленный вопрос будет таким: при указанных условиях освещения кремниевого *p-n* перехода на нем появится фотоэдс величиной около 1 мВ.

7.3. Варианты заданий по определению параметров фотоэлектрических эффектов в полупроводниках к контрольной работе № 1

1. Определить величину удельной фотопроводимости кремниевого образца при его освещении оптическим излучением мощностью $P_{nad} = 10^{-8} Bm$ из собственной полосы поглощения в предположении, что квантовая эффективность поглощения излучения полупроводника равна $\eta = 0.9$, коэффициент поглощения излучения составляет $\alpha = 10^6 cm^{-1}$, а частота модуляции светового потока гармоническим сигналом составляет $f = 10^2 \Gamma \mu$.

Освещаемая площадь образца составляет $S = 0.5 \ cm^2$.

2. Определить величину удельной фотопроводимости германиевого образца при его освещении оптическим излучением мощностью $P_{nad} = 10^{-10} Bm$ из собственной полосы поглощения в предположении, что квантовая эффективность поглощения излучения полупроводника равна $\eta = 0.9$, коэффициент поглощения излучения составляет $\alpha = 10^6 cm^{-1}$, а частота модуляции светового потока гармоническим сигналом составляет $f = 10^2 \Gamma u$.

Освещаемая площадь образца составляет $S = 0.25 \ cm^2$.

3. Определить величину удельной фотопроводимости арсенид-галлиевого образца при его освещении оптическим излучением мощностью $P_{nad} = 10^{-10} Bm$ из собственной полосы поглощения в предположении, что квантовая эффективность поглощения излучения полупроводника равна $\eta = 0.9$, коэффициент поглощения излучения составляет $\alpha = 10^6 cm^{-1}$, а частота модуляции светового потока гармоническим сиг-

налом составляет $f = 10^6 \Gamma u$. Освещаемая площадь образца составляет

 $S = 5.5 \ cm^2$.

4. Определить величину фотопроводимости кремниевого образца размерами $(1 \times 1 \times 10) \ cm^3$ при его освещении оптическим излучением потоком квантов $I_0 = 10^{12} \ \kappa \ sahm/(cm^2 \cdot c)$ из собственной полосы поглощения в предположении, что квантовая эффективность поглощения излучения полупроводника равна $\eta = 1.0$, коэффициент поглощения излучения составляет $\alpha = 4 \cdot 10^6 \ cm^{-1}$, а частота модуляции светового потока гармоническим сигналом составляет $f = 10^3 \ \Gamma \mu$.

Считать, что освещение проводится с узкой стороны образца, а регистрирующие контакты припаяны к широким торцам.

5. Определить величину фотопроводимости германиевого образца размерами $(1 \times 1 \times 5) cm^3$ при его освещении оптическим излучением потоком квантов $I_0 = 10^{12} \ \kappa ванm / (cm^2 \cdot c)$ из собственной полосы поглощения в предположении, что квантовая эффективность поглощения излучения полупроводника равна $\eta = 1.0$, коэффициент поглощения излучения составляет $\alpha = 2 \cdot 10^6 \ cm^{-1}$, а частота модуляции светового потока гармоническим сигналом составляет $f = 10^6 \ \Gamma u$.

Считать, что освещение проводится с узкой стороны образца, а регистрирующие контакты припаяны к широким торцам.

6. Определить величину фотопроводимости арсенид-галлиевого образца размерами $(0.5 \times 1 \times 10) cm^3$ при его освещении оптическим излучением потоком квантов $I_0 = 10^{15} \ \kappa Bahm / (cm^2 \cdot c)$ из собственной полосы поглощения в предположении, что квантовая эффективность поглощения излучения полупроводника равна $\eta = 0.9$, коэффициент поглощения излучения составляет $\alpha = 5 \cdot 10^5 \ cm^{-1}$, а частота модуляции светового потока гармоническим сигналом составляет $f = 10^6 \ \Gamma u$.

Считать, что освещение проводится с широкой стороны образца, а регистрирующие контакты припаяны к узким торцам.

7. Определить величину фотопроводимости кремниевого образца размерами $(1 \times 1 \times 5) \ cm^3$ при его освещении оптическим излучением потоком квантов $I_0 = 10^{12} \ \kappa \ вант / (cm^2 \cdot c)$ из собственной полосы поглощения в предположении, что квантовая эффективность поглощения излучения полупро-

водника равна $\eta = 0.5$, коэффициент поглощения излучения составляет $\alpha = 10^6 \ cm^{-1}$, а частота модуляции светового потока гармоническим сигналом составляет $f = 10^5 \ \Gamma \mu$.

Считать, что освещение проводится с широкой стороны образца, а регистрирующие контакты припаяны к узким торцам.

- 8. Определить величину фотоэдс Дембера, возникающей в кремниевом образце размерами (1.5×2.0×10) мм³ с концентрацией донорной примеси N_d = 2.4·10¹⁴ см⁻³ при освещении образца с торца, если известно, что падающая световая мощность величиной 1.5·10⁻⁹ Bm промодулирована по амплитуде на частоте 500 Гц. Излучение лежит в полосе собственного поглощения и имеет длину волны λ = 1.0 мкм.
- 9. Определить величину фотоэдс Дембера, возникающей в германиевом образце размерами (1.5·10·2.0) мм³ с концентрацией донорной примеси N_d = 4.6·10¹⁵ см⁻³ при освещении образца с торца, если известно, что падающая световая мощность величиной 2.0·10⁻⁹ Вт промодулирована по амплитуде на частоте 2500 Гц. Излучение лежит в полосе собственного поглощения и имеет длину волны λ = 1.6 мкм.
- 10. Определить величину фотоэдс Дембера, возникающей в арсенидгаллиевом образце размерами ($1.5 \cdot 2.0 \cdot 10$) MM^3 с концентрацией донорной примеси $N_d = 2.4 \cdot 10^{11} cM^{-3}$ при освещении образца с торца, если известно, что падающая световая мощность величиной $1.5 \cdot 10^{-9} Bm$ промодулирована по амплитуде на частоте 5000 $\Gamma \mu$. Излучение лежит в полосе собственного поглощения и имеет длину волны $\lambda = 0.6 \ MKM$.
- 11. Определить величину фотоэдс Дембера, возникающей в германиевом образце размерами ($2.5 \cdot 10 \cdot 2.0$) mm^3 с концентрацией донорной примеси $N_d = 4.6 \cdot 10^{15} cm^{-3}$ при освещении образца с торца, если известно, что падающая световая мощность величиной $2.5 \cdot 10^{-9} Bm$ промодулирована по амплитуде на частоте 200 Γq . Излучение лежит в полосе собственного поглощения и имеет длину волны $\lambda = 1.8 mkm$.

- 12. Определить величину фотоэдс Дембера, возникающей в арсенидгаллиевом образце размерами $(1.5 \times 2.0 \times 10) \ mm^3$ с концентрацией донорной примеси $N_d = 2.4 \cdot 10^{11} cm^{-3}$ при освещении образца с торца, если известно, что падающая световая мощность величиной $6.5 \cdot 10^{-10} Bm$ промодулирована по амплитуде на частоте 50 кГц. Излучение лежит в полосе собственного поглощения и имеет длину волны $\lambda = 0.45 \ mm m$.
- 13. Определить величину объемной фотоэдс в германиевом образце размерами $(a \cdot b \cdot c) = (1.5 \cdot 3.5 \cdot 5.0) cm^3$, освещаемого излучением в виде узкой полоски шириной d = 1 мм со стороны широкого торца в точке x = 1.5 см модулированным по амплитуде и с длиной волны $\lambda = 1.5$ мкм и падающей мощностью $P_{nad}^0 = 2.9 \cdot 10^{-11}$ Bm, если известно, что координатная зависимость темнового сопротивления образца вдоль его длинной стороны описывается выражением

$$\rho(x) = \rho_0 \cdot exp[x / x_0].$$

Здесь $\rho_0 = 10^{-2} O_M \cdot c_M$, $x_0 = 10^4 c_M$. Считать, что полоска света направлена перпендикулярно оси *x*, направленной вдоль длиной стороны *c* (см. рис. к задаче 3).

14. Определить величину объемной фотоэдс в арсенил-галлиевом образце размерами $(a \cdot b \cdot c) = (1.5 \cdot 3.5 \cdot 5.0) cm^3$, освещаемого излучением в виде узкой полоски шириной d = 1 mm со стороны широкого торца в точке x = 1.2 cm модулированным по амплитуде и с длиной волны $\lambda = 0.5 mkm$ и падающей мощностью $P_{nad}^0 = 3.9 \cdot 10^{-11} Bm$, если известно, что координатная зависимость темнового сопротивления образца вдоль его длинной стороны описывается выражением

$$\rho(x) = \rho_0 \cdot exp[x / x_0].$$

Здесь $\rho_0 = 10^{-1} O_M \cdot c_M$, $x_0 = 10^5 c_M$. Считать, что полоска света направлена перпендикулярно оси *x*, направленной вдоль длиной стороны *c* (см. рис. к задаче 3).

15. Определить величину объемной фотоэдс в германиевом образце размерами $(a \cdot b \cdot c) = (3.5 \cdot 3.5 \cdot 5.0) cm^3$, освещаемого излучением в виде узкой полоски шириной $d = 0.1 \ mm$ со стороны широкого торца в точке $x = 0.5 \ cm$ модулированным по амплитуде и с длиной волны $\lambda = 1.5 \ mmmode m$ и падающей мощностью $P_{nad}^0 = 2.0 \cdot 10^{-11} \ Bm$, если известно, что коорди-

натная зависимость темнового сопротивления образца вдоль его длинной стороны описывается выражением

$$\rho(x) = \rho_0 \cdot exp[x / x_0].$$

Здесь $\rho_0 = 10^{-3} O_M \cdot c_M$, $x_0 = 10^4 c_M$. Считать, что полоска света направлена перпендикулярно оси *X*, направленной вдоль длиной стороны *C* (см. рис. к задаче 3).

- 16. Определить величину барьерной фотоэдс кремниевого *p*-*n* перехода площадью $S = 4 \cdot 10^{-2} cm^2$ при его освещении модулированным на частоте $4 \cdot 10^3 \Gamma \mu$ излучением с длиной волны $\lambda = 0.55 \, m km$ и мощностью $P_{nad} = 10^{-9} \, Bm$, если квантовая эффективность поглощения равна $\eta = 0.9$, а значения концентраций акцепторной N_a и донорной N_d примеси в областях одинаковы и равны $2 \cdot 10^{16} cm^{-3}$. Считать, что обратный ток перехода создается диффузионным механизмом поставки неравновесных носителей заряда.
- 17. Определить величину барьерной фотоэдс германиевого *p-n* перехода площадью $S = 4 \cdot 10^{-2} cm^2$ при его освещении модулированным на частоте $10^3 \Gamma u$ излучением с длиной волны $\lambda = 0.64 \ mkm$ и мощностью $P_{nad} = 10^{-10} \ Bm$, если квантовая эффективность поглощения равна $\eta = 0.9$, а значения концентраций акцепторной N_a и донорной N_d примеси в областях одинаковы и равны $2 \cdot 10^{15} cm^{-3}$. Считать, что обратный ток перехода создается диффузионным механизмом поставки неравновесных носителей заряда.
- 18. Определить величину барьерной фотоэдс арсенид-галлиевого *p-n* перехода площадью $S = 4 \cdot 10^{-2} cm^2$ при его освещении излучением с длиной волны $\lambda = 0.64 \ mmmode m$ и мощностью $P_{nad} = 10^{-8} \ Bm$, если квантовая эффективность поглощения равна $\eta = 1.0$, а значения концентраций акцепторной N_a и донорной N_d примеси в областях одинаковы и равны $2 \cdot 10^{14} cm^{-3}$. Считать, что обратный ток перехода создается диффузионным механизмом поставки неравновесных носителей заряда.
- 19. Определить величину барьерной фотоэдс кремниевого *p-n* перехода площадью $S = 4 \cdot 10^{-4} c m^2$ при его освещении модулированным на частоте $4 \cdot 10^{-4} \Gamma u$ излучением с длиной волны $\lambda = 0.45 \ mmmode{mmm} mmmode{mmm}$ и мощностью $P_{nad} = 10^{-10} \ Bm$, если квантовая эффективность поглощения равна

 $\eta = 0.75$, а значения концентраций акцепторной примеси в областях равна $N_a = 2 \cdot 10^{13} \ cm^{-3}$, а донорной примеси $N_d = 2 \cdot 10^{16} \ cm^{-3}$. Считать, что обратный ток перехода создается диффузионным механизмом поставки неравновесных носителей заряда.

20. Определить величину барьерной фотоэдс германиевого *p-n* перехода площадью $S = 5 \cdot 10^{-3} cm^2$ при его освещении модулированным на частоте $2 \cdot 10^5 \Gamma \mu$ излучением с длиной волны $\lambda = 0.55 \, MKM$ и мощностью $P_{nad} = 10^{-10} \, Bm$, если квантовая эффективность поглощения равна $\eta = 1.0$, а значения концентраций акцепторной примеси в областях равна $N_a = 2 \cdot 10^{16} \, cm^{-3}$, а донорной примеси $N_d = 1 \cdot 10^{16} \, cm^{-3}$. Считать, что обратный ток перехода создается диффузионным механизмом поставки неравновесных носителей заряда.

8. «ФЛУКТУАЦИОННЫЕ ПРОЦЕССЫ В ПОЛУПРОВОДНИКАХ»

8.1. Краткое описание теории

Шумы оптоэлектронных приборов по своей природе можно разделить на две большие группы:

- шумы, связанные с флуктуацией параметров светового потока (мощности, поляризации, частоты), вызванной корпускулярной природой света и особенностями его распространения по оптическому тракту оптоэлектронного прибора;

- шумы, связанные с преобразованием сигнала в твердотельной части прибора (в полупроводнике или диэлектрике).

Первый тип шумов определяется квантовой природой света, а также технологией изготовления оптического тракта и потому он обычно пренебрежимо мал по сравнению с шумами, вызванными твердотельным преобразованием оптического сигнала. Поэтому в своем дальнейшем рассмотрении ограничимся шумами, возникающими в полупроводниках на стадии преобразования оптического сигнала в электрический или электрического сигнала одной формы в электрический другой формы.

Природа шумов. Все шумы по своей физической природе имеют причиной случайный характер движения заряженных частиц в твердом теле, их случайное рождение или уничтожение, а также случайные моменты вхождениявыхода электронов и дырок. Наиболее важные для практических применений шумы в твердых телах таковы:

- тепловой шум;
- дробовой шум;
- генерационно-рекомбинационный шум;
- избыточный шум.

Тепловой шум. Тепловой шум создается в результате броуновского движения заряженных частиц и столкновения их с неподвижными ионами решетки твердого тела. В результате этого энергия теплового колебания решетки и энергия теплового движения электронов выравниваются. Поэтому выделяемое электронами при столкновениях джоулево тепло поддерживает температуру решетки постоянной. Однако тепловое движение заряженных частиц может рассматриваться как результат действия на длине их свободного пробега микроисточника напряжения: от одного столкновения до следующего действует один микроисточник со своими параметрами напряжения. Сколько столкновений совершает электрон на своем движении – столько микроисточников напряжения вводится в рассмотрение. Ясно, что число вводимых микроисточника невозможно. Значит, нужно рассматривать один источник: это некий суммарный источник, действующий на весь образец. Поэтому если на концах полупроводникового образца регистрировать переменное напряжение, которое будет представлять собой мгновенную сумму напряжений от всех микроисточников на длине кристалла, то окажется, что это суммарное напряжение изменяет случайным образом во времени свою величину, знак, фазу и частоту. Изменения параметров суммарного напряжения будут однозначно характеризовать тепловое движение электронов в решетке, а значит, температуру полупроводника. Согласно теореме Найквиста, впервые описавшего этот тип шума, средняя амплитуда теплового шума резистора величиною R, измеренная с помощью прибора, имеющего полосу пропускания Δf , равна:

$$\sqrt{\frac{U^2}{u \ menn}} = \sqrt{4kTR \cdot \Delta f} \ . \tag{8.1}$$

В выражении (8.1) на первый взгляд кажется удивительным, что измеряемый уровень шума определяется параметрами измерительного прибора: полосой его пропускания. На самом деле ничего удивительного здесь нет. Дело в том, что на практике шумы измеряют с помощью так называемых селективных нановольтметров. Они представляют собой вольтметры, способные регистрировать очень малые напряжения (до единиц нановольт - 10⁻⁹ В) и имеющие очень узкую, но перестраиваемую оператором, полосу пропускания. Последнее достигается установкой на входе нановольтметра перестраиваемого полосового фильтра. С помощью такого прибора удается проанализировать зависимость амплитуды шума, измеренной в полосе измерительного прибора равной 1 Гц, от частоты его измерения. Такая зависимость называется спектральной плотностью шума. С точки зрения физической интерпретации спектральной плотности шума (и не только шума, но и детерминированного сигнала) поведение шума во всей полосе исследованных частот можно объяснить, предположив, что он создается множеством источников синусоидального переменного напряжения. Амплитуда каждого источника, действующего на строго заданной частоте, равна спектральной плотности шума. Так вот, тепловой шум описывается бесконечно большим числом синусоидальных источников переменного напряжения, амплитуда которого не зависит от частоты и равна

$$\sqrt{\frac{U^2_{\mu}(f)}{m\,men\pi}}(f) = \sqrt{4kTR}, \qquad (8.2)$$

т.е. тепловой шум имеет равномерную спектральную плотность: на какой бы частоте не проводилось измерение шума его величина будет постоянна. Значит, если увеличивать число включаемых в измерение синусоидальных источников шума за счет расширения полосы пропускания прибора, то амплитуда шума, естественно, также должна расти. Именно это обстоятельство отражено тем, что в выражении (8.1) фигурирует полоса пропускания измерительного прибора Δf : чем она больше, тем больше амплитуда измеряемого теплового шума.

Если рассматривается тепловой шум двухполюсника, имеющего активное и реактивное компоненты сопротивления, то тепловой шум создается только

активной частью сопротивления двухполюсника Re(Z), и тогда амплитуда теплового шума будет равна

$$\sqrt{U_{u menn}^2} = \sqrt{4kT \, Re(Z)} \,. \tag{8.3}$$

Если рассматриваемая цепь представляет собой последовательно соединенные активные сопротивления R_1 , R_2 , ..., R_n , то полный шум такой цепи в единичной полосе частот будет иметь среднюю амплитуду, представляющую собой результат сложения квадратов дисперсий тепловых шумов от каждого сопротивления:

$$\sqrt{\frac{U_{u}^{2}}{u men\pi}} = \sqrt{\frac{U_{u}^{2}}{u} + \frac{U_{u}^{2}}{u} + \dots + \frac{U_{u}^{2}}{u}} = \sqrt{\frac{4kTR_{1} + 4kTR_{2} + \dots + 4kTR_{n}}{4kTR_{n}}} = (8.4)$$

$$= \sqrt{\frac{4kT(R_{1} + R_{2} + \dots + R_{n})}{4kT(R_{1} + R_{2} + \dots + R_{n})}}.$$

Этот же результат можно было бы получить, если сложить все последовательно соединенные шумящие сопротивления, а только потом посчитать тепловой шум полного сопротивления.

Дробовой шум. Дробовой шум возникает в результате случайного характера изменения числа частиц, пролетающих область их регистрации. Типичный пример появления этого вида шума: вакуумный диод, с катода которого в каждый момент времени вылетают электроны. Вследствие разброса тепловой энергии электронов в катоде, приобретаемой в результате их столкновения с решеткой материала катода, в каждый момент времени вылетает разное число электронов. В среднем же за достаточно большой промежуток времени их число постоянно и определяется температурой катода, величиной работы выхода и его материала. Другой пример источник дробового шума: протекание постоянного тока через сопротивление. Ясно, что для описания дробового шума лучше вводить случайный источник тока, а не источник напряжения, как это было сделано для теплового шума. Средняя амплитуда дробового шума, создаваемого током величиной I_0 и измеренная в полосе частот измерительного прибора Δf определяется следующим образом:

$$\sqrt{I_{u \ \partial p}^2} = \sqrt{2q \cdot I_0 \cdot \Delta f} , \qquad (8.5)$$

где *q* - заряд электрона. Амплитуда напряжения полного шума в единичной полосе частот, снимаемого с активного сопротивления, по которому течет постоянный ток, определяется тепловым шумом и шумом, вызванным падением напряжения на сопротивлении при протекании по нему дробового шума:

$$\sqrt{U_{u}^2} = \sqrt{U_{u}^2 \operatorname{menn}} + R^2 \cdot \overline{I_{u}^2} = \sqrt{4kTR + R^2 \cdot 2q \cdot I_0} .$$
(8.6)

Генерационно-рекомбинационный шум. Этот вид шума характерен только для полупроводников, где зачастую является доминирующим. Природа его проста: за счет тепловой генерации и случайной рекомбинации в каждый момент времени в зоне проводимости и (или) валентной зоне появляются неравновесные носители заряда, число которых изменяется во времени случайным образом. Так, например, в первую секунду образовалось 100 электронов и дырок; во вторую секунду установилось 120 пар, в следующую – 80 и т.д. Таким образом, в среднем в полупроводнике в каждую секунду появляется 100 электронов и дырок. Однако около этого среднего значения возможны флуктуации числа частиц – в нашем случае около 20 пар. Именно это число неравновесных электронов и дырок приведет к случайному изменению проводимости полупроводника, что при пропускании через него постоянного тока величиной I_0 создаст на концах полупроводника шумовое напряжение

$$\delta U_{\Gamma P}(t) = I_0 \cdot \delta R(t). \tag{8.7}$$

8.2. Примеры решения задач по определению параметров флуктуационых процессов в полупроводниках

Задача 1. Рассчитать амплитуду теплового шума, возникающего на постоянном сопротивлении $R = 2 \cdot 10^8 \ Om$, находящемся при температуре $T = 300 \ K$, если полоса пропускания вольтметра, с помощью которого производится измерение, составляет $\Delta f = 10^8 \ \Gamma \mu$.

Решение. Это типичная задача на использование теоремы Найквиста: уровень шумового напряжения, образующего на активном сопротивлении в заданной полосе частот, равен

$$\sqrt{\frac{U^2}{u \ menn}} = \sqrt{4kTR \cdot \Delta f} \ .$$

Подставив в данное выражение численные значения параметров, получим:

$$\sqrt{U_{\underline{u}\ \underline{menn}}^2} = \sqrt{4kTR \cdot \Delta f} = \sqrt{4 \cdot 1.38 \cdot 10^{-23} \cdot 300 \cdot 2 \cdot 10^8 \cdot 10^8} = \sqrt{24 \cdot 1.38 \cdot 10^{-5}} \approx \sqrt{3.4} \cdot 10^{-2} \approx 1.8 \cdot 10^{-2} = 18 \ \underline{MB}.$$

Таким образом, ответ на поставленный вопрос таков: амплитуда теплового шума на резисторе равна 18 милливольт.

Задача 2. Рассчитать напряжение суммарного шума на частоте $f = 1 \kappa \Gamma q$ *RC* - цепи, составленной из резистора величиной $R = 2 \cdot 10^5 O_M$ и параллельной ему емкости $C = 5 \cdot 10^6 n \Phi$, если к цепи приложено постоянное напряжение величиной V = 2 B, а температура резистора равна T = 300 K. **Решение.** В данной задаче полный шум цепи слагается из теплового и дробового шума. Другая особенность задачи: наличие емкости, которая делает шум частотно-зависимым. Поэтому за основу расчета следует взять выражение (8.6), в котором вместо сопротивления R следует взять реальную часть импеданса цепи:

$$\sqrt{\overline{U_{u}^2}} = \sqrt{\overline{U_{u}^2 \operatorname{menn}}} + \operatorname{Re}(Z)^2 \cdot \overline{I_{u}^2} = \sqrt{4kT\operatorname{Re}(Z) + \operatorname{Re}(Z)^2 \cdot 2q \cdot I_0}.$$

Реальную часть импеданса цепи можно найти, используя выражение для параллельно соединенных сопротивления и емкости

1

$$Z = \frac{R \cdot \frac{1}{j\omega C}}{R + \frac{1}{j\omega C}} = \frac{R}{1 + j\omega CR} = \frac{R \cdot (1 - j\omega CR)}{(1 + j\omega CR)(1 - j\omega CR)} = \frac{R \cdot (1 - j\omega CR)}{1 + \omega^2 (CR)^2} = \frac{R}{1 + \omega^2 (CR)^2} - \frac{1}{j\omega^2 (CR)^2} = \frac{R}{1 + \omega^2 \tau^2} - \frac{1}{j\omega^2 \tau^2} - \frac{1}{$$

Здесь обозначено: $\tau = CR$ - время перезарядки цепи. Следовательно, реальная часть импеданса цепи равна:

$$Re(Z) = \frac{R}{1+\omega^2 \tau^2}.$$
(8.8)

подставим в выражение (8.6) найденную реальную часть импеданса и найдем уровень шума

$$\sqrt{U_{uu}^{2}} = \sqrt{\frac{4kTR}{1+\omega^{2}\tau^{2}} + 2q \cdot I_{0} \frac{R^{2}}{\left(1+\omega^{2}\tau^{2}\right)^{2}}} = \sqrt{\left(\frac{R}{1+\omega^{2}\tau^{2}}\right) \cdot \left(4kT + 2q \frac{I_{0} \cdot R}{1+\omega^{2}\tau^{2}}\right)} = \sqrt{\left(\frac{R}{1+\omega^{2}\tau^{2}}\right) \cdot \left(4kT + 2q \frac{V}{1+\omega^{2}\tau^{2}}\right)}.$$
(8.9)

Подставляя численные значения констант и параметров, получим

$$\begin{split} &\sqrt{U_{uu}^2} = \sqrt{\frac{2 \cdot 10^5}{1 + 4\pi^2 10^6 \cdot 4 \cdot 10^{10} \cdot 25 \cdot 10^{-18}} \cdot \left(4 \cdot 1.38 \cdot 10^{-23} \cdot 300 + 2 \cdot 1.6 \cdot 10^{-19} \frac{2}{1 + 4\pi^2}\right)} \approx \\ &\approx \sqrt{\frac{2 \cdot 10^5}{1 + 40}} \left(1.7 \cdot 10^{-19} + 3.2 \cdot 10^{-19} \frac{2}{1 + 40}\right)} = \sqrt{5 \cdot 10^{-3} \cdot 10^{-19}} \left(1.7 + \frac{6.4}{41}\right)} \approx \\ &\approx 2.9 \cdot 10^{-8} \sqrt{1 + \frac{3.76}{41}} \approx 30 \cdot 10^{-9} \ B / \Gamma u^{1/2}. \end{split}$$

Таким образом, амплитуда шума RC – цепи на частоте 1 $\kappa \Gamma u$ при действии постоянного напряжения равна около 30 $\mu B / \Gamma u^{1/2}$.

Задача 3. Рассчитать спектральную плотность суммарного шума германиевого фотодиода на частоте $10^4 \ \Gamma \mu$ при напряжении на нем $V_0 = 0.1 \ B$, имеющего площадь $S = 10^{-2} \ cm^2$ и плотность обратного тока $j_0 = 10^{-6} \ A / \ cm^2$. Считать уровень легирования *p*- и *n*-областей одинаковым и равным $2.4 \cdot 10^{15} \ cm^{-3}$.

Решение. Полный шум фотодиода $U_{u f}$ на заданной частоте – это спектральная плотность шума. В рассматриваемом случае она складывается из спектральных плотностей теплового шума его активной составляющей импеданса и дробового шума тока, протекающего через переход I(V). Возможное влияние генерационно-рекомбинаци-онного шума на полный шум фотодиода в этой задаче не рассматривается. Таким образом, исходное выражение для отыскания спектральной плотности полного шума будет

$$U_{u f} = \sqrt{U_{u menn}^2 + U_{u dpo\delta}^2} .$$
(8.10)

Поскольку заданная частота измерений шума может оказаться выше частоты среза *p-n* перехода, в вычислениях реальной части импеданса фотодиода необходимо учесть шунтирующее действие емкости перехода C, которая включена параллельно дифференциальному сопротивлению перехода R_d . Пользуясь теоремой Найквиста и выражением для спектральной плотности дробового шума тока I(V), протекающего по активной части импеданса, найдем:

$$U_{u f} = \sqrt{4kT \cdot Re(Z) + \overline{I_{u \partial po\delta}^{2}} \cdot [Re(Z)]^{2}} =$$

$$= \sqrt{4kT \cdot Re(Z) + 2q \cdot I(V) \cdot [Re(Z)]^{2}}.$$
(8.11)

Пересчет параллельной RC-цепи в последовательную цепь дает импеданс

$$Z = \frac{R_d \cdot \frac{1}{j\omega C}}{R_d + \frac{1}{j\omega C}} = \frac{R_d}{1 + j\omega R_d C} = \frac{R_d (1 - j\omega R_d C)}{(1 + j\omega R_d C) \cdot (1 - j\omega R_d C)} = \frac{R_d}{(1 + \omega^2 R_d^2 C^2)} - j \frac{R_d \cdot \omega R_d C}{(1 + \omega^2 R_d^2 C^2)} \cdot \frac{R_d \cdot \omega R_d C}{(1 + \omega^2 R_d^2 C^2)} \cdot \frac{1}{2} \frac{R_d \cdot \omega R_d C}{(1 + \omega^2 R_d^2 C^2)} \cdot \frac{1}{2} \frac{R_d \cdot \omega R_d C}{(1 + \omega^2 R_d^2 C^2)} \cdot \frac{1}{2} \frac{1}{2} \frac{R_d \cdot \omega R_d C}{(1 + \omega^2 R_d^2 C^2)} \cdot \frac{1}{2} \frac{1}{2}$$

Поэтому реальная часть импеданса *p-n* перехода будет равна

$$Re(Z) = \frac{R_d}{1 + \omega^2 R_d^2 C^2}.$$
 (8.12)

Таким образом, определение уровня полного шума фотодиода сводится к определению по выражению (8.12) активной части импеданса перехода и подстановки его значения в выражение (8.11). Прежде всего, необходимо найти дифференциальное сопротивление и емкость перехода. Емкость перехода C определяется его площадью S и толщиной слоя собственной проводимости W и может быть найдена по выражению (7.19)

$$C = \frac{\varepsilon \cdot \varepsilon_0}{W} S = S \sqrt{\frac{q \varepsilon_{Ge} \varepsilon_0}{2(\varphi_{\tilde{o}} - V)}} \cdot \frac{N_d N_a}{N_d + N_a},$$

$$\varphi_{\tilde{o}} = \frac{kT}{q} ln \left(\frac{N_d N_a}{n_i^2}\right),$$
(8.13)

где ε_{Ge} - относительная диэлектрическая проницаемость германия. Подстановка численных значений в выражения (8.13) приводит к следующему результату:

$$\begin{split} \varphi_{\vec{0}} &= \frac{1.38 \cdot 10^{-23} \cdot 300}{1.6 \cdot 10^{-19}} ln \left(\frac{2.4 \cdot 10^{15} \cdot 2.4 \cdot 10^{15}}{2.4 \cdot 10^{13} \cdot 2.4 \cdot 10^{13}} \right) = \frac{1.38 \cdot 4 \cdot 3 \cdot 10^{-21}}{1.6 \cdot 10^{-19}} ln (10) = \\ &= 10^{-1} \cdot 2.3 \approx 0.2 \ B \\ C &= S \sqrt{\frac{q \varepsilon_{Ge} \varepsilon_{0}}{2(\varphi_{\vec{0}} - V)} \cdot \frac{N_{d} N_{a}}{N_{d} + N_{a}}} = 10^{-2} \sqrt{\frac{1.6 \cdot 10^{-19} \cdot 16 \cdot 8.85 \cdot 10^{-14}}{2 \cdot (0.2 - 0.1)}} \cdot \frac{2.4 \cdot 10^{15}}{2} = \\ &= 10^{-2} \sqrt{\frac{1.6 \cdot 1.6 \cdot 8.85 \cdot 1.2}{2}} \cdot 10^{-17} = 10^{-2} \sqrt{1.4 \cdot 10^{-16}} \approx 1.2 \cdot 10^{-10} \ \varPhi. \end{split}$$

Дифференциальное сопротивление перехода в области положительных смещений определяется выражением

$$R_d(V_0) \approx \frac{kT}{qI_0} \cdot exp\left(-\frac{qV_0}{kT}\right) , \qquad (8.14)$$

где все величины табличные или легко вычисляются. Поэтому можно найти величину $R_d(V_0)$:

$$R_{d}(V_{0}) \approx \frac{1.38 \cdot 10^{-23} \cdot 300}{1.6 \cdot 10^{-19} \cdot 10^{-6} \cdot 10^{-2}} \cdot exp\left(-\frac{1.6 \cdot 10^{-19} \cdot 0.1}{1.38 \cdot 10^{-23} \cdot 300}\right) = \frac{4.2 \cdot 10^{-21}}{1.6 \cdot 10^{-27}} \cdot exp\left(-\frac{1.6 \cdot 10^{-20}}{4.2 \cdot 10^{-21}}\right) = 2.6 \cdot 10^{6} \cdot exp(-3.8) = 1.7 \cdot 10^{5} Om.$$

Теперь, используя выражение (8.12), найдем реальную часть импеданса фотодиода на частоте $10^4 \Gamma u$:

$$Re(Z) = \frac{1.7 \cdot 10^{5}}{1 + 4\pi^{2} \cdot 10^{8} (1.7 \cdot 10^{5})^{2} (1.2 \cdot 10^{-10})^{2}} \approx \frac{1.7 \cdot 10^{5}}{1 + 40 \cdot 10^{8} \cdot 2.9 \cdot 10^{10} \cdot 1.4 \cdot 10^{-20}} \approx \frac{1.7 \cdot 10^{5}}{1 + 4 \cdot 2.9 \cdot 1.4 \cdot 10^{-1}} = \frac{1.7 \cdot 10^{5}}{2.6} = 6.5 \cdot 10^{4} OM.$$

Определим величину постоянного тока, текущего через *p-n* переход:

$$I(V) = I_0 \cdot \left(exp\left(\frac{qV}{kT}\right) - 1 \right) = i_0 S \cdot \left(exp\left(\frac{1.6 \cdot 10^{-19} \cdot 0.1}{1.38 \cdot 10^{-23} \cdot 300}\right) - 1 \right) = 10^{-6} \cdot 10^{-2} (exp(1.3) - 1) = 10^{-8} (3.7 - 1) = 2.7 \cdot 10^{-8} A$$

Теперь можно рассчитать спектральную плотность суммарного шума фотодиода, подставив в выражение (8.11) найденное значение активной части импеданса:

$$U_{ul} f = \sqrt{4kT \cdot Re(Z) + \overline{I_{ul}^2 \partial po\delta} \cdot [Re(Z)]^2} = \sqrt{4kT \cdot Re(Z) + 2q \cdot I(V) \cdot [Re(Z)]^2} = \sqrt{4 \cdot 1.38 \cdot 10^{-23} \cdot 300 \cdot 6.5 \cdot 10^4 + 2 \cdot 1.6 \cdot 10^{-19}} \cdot 2.7 \cdot 10^{-8} \cdot (6.5 \cdot 10^4)^2} = \frac{\sqrt{4 \cdot 1.4 \cdot 3 \cdot 6.5 \cdot 10^{-17} + 2 \cdot 1.6 \cdot 2.7 \cdot 4.2 \cdot 10^{-18}}}{\sqrt{4 \cdot 1.4 \cdot 3 \cdot 6.5 \cdot 10^{-17} + 2 \cdot 1.6 \cdot 2.7 \cdot 4.2 \cdot 10^{-18}}} \approx \sqrt{10.1 \cdot 10^{-16} + 0.4 \cdot 10^{-16}} = 3.2 \cdot 10^{-8} B / \Gamma u^{1/2}.$$

Таким образом, ответ на поставленный в этой задаче вопрос таков: спектральная плотность суммарного шума германиевого фотодиода на частоте $10^4 \ \Gamma u$ при напряжении на нем $V = 0.1 \ B$ составляет $3.2 \cdot 10^{-8} \ B / \Gamma u^{1/2}$.

8.3. Варианты заданий по определению параметров флуктуационных процессов в полупроводниках к контрольной работе № 2

- 1. Рассчитать амплитуду теплового шума, возникающего на посто-янном сопротивлении $R = 2.6 \cdot 10^{10} Om$, находящемся при температуре T = 300 K, если полоса пропускания вольтметра, с помощью которого производится измерение, составляет $\Delta f = 10^6 \Gamma \mu$.
- 2. Рассчитать спектральную плотность теплового шума, возникающего на постоянном сопротивлении $R = 9 \cdot 10^8 \ Om$, находящемся при температуре $T = 400 \ K$, если вольтметр, с помощью которого производится измерение, настроен на регистрацию переменного напряжения частотой $f = 10^8 \ \Gamma u$.
- 3. Рассчитать амплитуду теплового шума, возникающего на постоянном

сопротивлении $R = 2 \cdot 10^9 \ Om$, находящемся при температуре $T = 500 \ K$, если полоса пропускания вольтметра, с помощью которого производится измерение, составляет $\Delta f = 10^8 \ \Gamma u$.

- 4. Рассчитать величину активного сопротивления, находящегося при температуре $T = 300 \ K$, если амплитуда регистрируемого на нем вольтметром с полосой пропускания $\Delta f = 10^4 \ \Gamma \mu$, составляет $1.7 \cdot 10^{-8} \ B$.
- 5. Рассчитать величину активного сопротивления, находящегося при температуре $T = 500 \ K$, если амплитуда регистрируемого на нем вольтметром с полосой пропускания $\Delta f = 10^2 \ \Gamma \mu$, составляет $3.7 \cdot 10^{-9} \ B$.
- 6. Рассчитать температуру, при которой находится проволочный резистор величиной $10^9 \ Om$, если амплитуда регистрируемого на нем вольтметром с полосой пропускания $\Delta f = 10^6 \ \Gamma u$, составляет $8.7 \cdot 10^{-8} \ B$.
- 7. Рассчитать величину активного сопротивления, находящегося при температуре T = 300 K, если амплитуда регистрируемого на нем вольтметром с полосой пропускания $\Delta f = 10^4 \Gamma \mu$, составляет $4.5 \cdot 10^{-9} B$.
- 8. Рассчитать напряжение суммарного шума в полосе частот $\Delta f = 10^7 \ \Gamma \mu$, измеряемого на постоянном резисторе величиной $R = 2 \cdot 10^5 \ Om$, если к резистору приложено постоянное напряжение величиной $V = 1.5 \ B$, а температура окружающей среды равна $T = 300 \ K$.
- 9. Рассчитать напряжение суммарного шума в полосе частот $\Delta f = 10^6 \ \Gamma u$, измеряемого на постоянном резисторе величиной $R = 9.1 \cdot 10^5 \ Ommedamma$, если к резистору приложено постоянное напряжение величиной $V = 1.5 \ B$, а температура окружающей среды равна $T = 290 \ K$.
- 10. Рассчитать напряжение суммарного шума в полосе частот $\Delta f = 10^5 \ \Gamma u$, измеряемого на постоянном резисторе величиной $R = 5.1 \cdot 10^6 \ Om$, если к резистору приложено постоянное напряжение величиной $V = 10 \ B$, а температура окружающей среды равна $T = 290 \ K$.
- 11. Рассчитать напряжение суммарного шума на частоте $f = 10 \ \kappa \Gamma \mu \ RC$ цепи, составленной из резистора величиной $R = 5 \cdot 10^5 \ Om$ и параллельной ему емкости $C = 2 \cdot 10^6 \ n\Phi$, если к цепи приложено постоянное напряжение величиной $V = 2 \ B$, а температура окружающей среды $T = 290 \ K$.

- 12. Рассчитать напряжение суммарного шума на частоте $f = 100 \ \kappa \Gamma \mu \ RC$ цепи, составленной из резистора величиной $R = 2.1 \cdot 10^4 \ Om$ и параллельной ему емкости $C = 5 \cdot 10^3 \ n\Phi$, если к цепи приложено постоянное напряжение величиной $V = 0.1 \ B$, а температура окружающей среды $T = 310 \ K$.
- 13. Рассчитать напряжение суммарного шума на частоте $f = 3 \kappa \Gamma \mu RC$ цепи, составленной из резистора величиной $R = 5.1 \cdot 10^4 Om$ и параллельной ему емкости $C = 2.2 \cdot 10^6 n\Phi$, если к цепи приложено постоянное напряжение величиной V = 10 B, а температура окружающей среды T = 290 K.
- 14. Рассчитать напряжение суммарного шума на частоте $f = 20 \ \kappa \Gamma u \ RC$ цепи, составленной из резистора величиной $R = 5.1 \cdot 10^3 \ Om$ и параллельной ему емкости $C = 2.2 \cdot 10^6 \ n\Phi$, если к цепи приложено постоянное напряжение величиной $V = 20 \ B$, а температура окружающей среды равна $T = 350 \ K$.
- 15. Рассчитать спектральную плотность суммарного шума кремниевого фотодиода на частоте $10^4 \ \Gamma u$ при напряжении на нем $V_0 = 0.1 \ B$, имеющего площадь $S = 10^{-2} \ cm^2$ и плотность обратного тока $j_0 = 10^{-6} \ A / \ cm^2$. Считать уровни легирования *p* и *n*-областей одинаковыми и равными $2.4 \cdot 10^{15} \ cm^{-3}$.
- 16. Рассчитать спектральную плотность суммарного шума германиевого фотодиода на частоте $10^{3}\Gamma u$ при напряжении на нем $V_{0} = 0.2 \ B$, имеющего площадь $S = 10^{-2} \ cm^{2}$ и плотность обратного тока $j_{0} = 10^{-8} \ A/\ cm^{2}$. Считать уровни легирования *p* и *n*-областей одинаковыми и равными $2.0 \cdot 10^{14} \ cm^{-3}$.
- 17. Рассчитать спектральную плотность суммарного шума арсенидгаллиевого фотодиода на частоте $10^4 \Gamma u$ при напряжении на нем $V_0 = 0.3 B$, имеющего площадь $S = 10^{-2} cm^2$ и плотность обратного тока $j_0 = 10^{-10} A / cm^2$. Считать уровни легирования *p*- и *n*-областей одинаковыми и равными $1.4 \cdot 10^{13} cm^{-3}$.
- 18. Рассчитать спектральную плотность суммарного шума кремниевого диода на частоте $3 \cdot 10^3 \Gamma \mu$ при напряжении на нем $V_0 = 0.1 B$, имеющего площадь $S = 6 \cdot 10^{-2} cm^2$ и плотность обратного тока $j_0 = 10^{-8} A / cm^2$.

Считать уровни легирования *p*- и *n*-областей одинаковыми и равными 3.3 · 10¹⁶ см⁻³.

- 19. Рассчитать спектральную плотность суммарного шума германиевого диода на частоте $10^6 \ \Gamma u$ при напряжении на нем $V_0 = 0 \ B$, имеющего площадь $S = 7.5 \cdot 10^{-2} \ cm^2$ и плотность обратного тока $j_0 = 2 \cdot 10^{-7} \ A \ cm^2$. Считать уровни легирования *p* и *n*-областей одинаковыми и равными $2.4 \cdot 10^{15} \ cm^{-3}$.
- 20. Рассчитать спектральную плотность суммарного шума арсенидгаллиевого диода на частоте $10^4 \Gamma u$ при напряжении на нем $V_0 = 0 B$, имеющего площадь $S = 10^{-2} cm^2$ и плотность обратного тока $j_0 = 4.5 \cdot 10^{-8} A / cm^2$. Считать уровни легирования *p*- и *n*-областей одинаковыми и равными $8.5 \cdot 10^{15} cm^{-3}$.

9. «ЭМИССИЯ ОПТИЧЕСКОГО ИЗЛУЧЕНИЯ ИЗ ПОЛУПРОВОДНИКОВ»

9.1. Краткое изложение теории

Проблему изучения эмиссии излучения из твердых тел можно рассматривать с двух позиций: макроскопической и микроскопической, различающихся объектом рассмотрения излучающих свойств.

С макроскопической позиции излучательные свойства твердого тела анализируются как свойства однородного кристалла. Здесь для численной оценки эффективности излучательной способности вводят два параметра. Первый из них называется внутренней квантовой эффективностью η . Он характеризует способность атомов полупроводника излучать фотоны при рекомбинации электронно-дырочных пар и вычисляется следующим образом:

$$\eta = \frac{\frac{1}{\tau_l}}{\frac{1}{\tau_l} + \frac{1}{\tau_r}} = \frac{\tau_r}{\tau_r + \tau_l}$$
(9.1)

т.е. это параметр превышения способности генерировать фотоны над способностью того же вещества генерировать фононы. Численно он определяет: сколько генерируется фотонов в результате рекомбинации одной пары «электрон-дырка». Как показывает расчет (см. п.6.2 Учебного пособия по данному курсу), для повышения внутренней квантовой эффективности источника оптического излучения для его изготовления необходимо использовать полупроводники с высоким уровнем легирования.

Для того чтобы наблюдать эмиссию излучения, необходимо, чтобы сгенерированные фотоны вышли из полупроводника через одну из его граней в окружающее пространство. Однако, распространяясь в кристалле на пути от места генерации к излучающей поверхности, фотоны могут быть поглощены другими атомами, находящимися в основном энергетическом состоянии. Поэтому вводят еще один параметр, называемый внешней квантовой эффективностью и обозначаемый как ξ . Он показывает долю сгенерированных в объеме полупроводника фотонов, вышедших через его поверхность:

$$\xi = \frac{\ell \phi}{\ell_{\phi} + L},\tag{9.2}$$

где L – толщина полупроводника в направлении на излучающую поверхность; ℓ_{ϕ} – длина свободного пробега фотона в полупроводнике. Из этого определения видно, что условие достижения высокого выхода светового излучения заключается в том, чтобы сгенерированные фотоны могли выйти из полупроводника не будучи поглощенными другими атомами на пути от излучающего атома до поверхности. Для этого необходимо, чтобы длина свободного пробега фотона была больше толщины образца: $\ell_{d} >> L$.
Конечно, эти два параметра не дают исчерпывающий ответ на вопрос об эффективности излучающей способности полупроводника. Кроме этих двух параметров можно ввести еще несколько, с помощью которых отображалось бы выполнение еще ряда условий, которые необходимо соблюсти для повышения эффективности излучения (например, условия на коэффициент отражения света от внутренней поверхности полупроводника). Но эти два – основные.

С микроскопической позиции излучающие способности твердого тела рассматриваются как результат излучения отдельных атомов, т.е. анализируются механизмы генерации излучения отдельным атомом. Детальный анализ показывает, что при этом подходе двумя параметрами, определяющими эффективность излучения отдельного атома, являются вероятности спонтанного - A_{21} и индуцированного - B_{21} переходов (см. п.6.3 учебного пособия «Физические основы оптоэлектроники». Томск, ТУСУР, 2016 г.). Эти параметры определяются природой атома, его структурного состояния в решетке и потому являются константой для данного вещества. Следовательно, численные значения этих параметров можно найти в справочных материалах.

Для характеристики излучательной способности оптического излучения твердотельного лазера необходимо проверять выполнение двух условий:

- условие резонанса оптической волны на длине резонатора *L* :

$$L = m \frac{\lambda}{2n},\tag{9.3}$$

где n - показатель преломления вещества, являющегося активным в лазере, m - целое число, показывающее количество полуволн оптического излучения, укладывающихся на длине кристалла;

- условие значения коэффициента усиления активного вещества g, достаточного для возникновения генерации, если кристалл помещен в оптический резонатор с зеркалами, коэффициенты отражения от которых равны R_1 , R_2 , а коэффициент поглощения оптического излучения с генерируемой длиной волны в активном веществе лазера равен α :

$$g > \alpha - \frac{1}{2L} ln(R_1 R_2).$$
 (9.4)

Для получения генерации оптического излучения полупроводниковым лазером это условие сводится к необходимости задания протекающего тока через открытый *p-n* переход величиной выше порогового тока.

9.2. Примеры решения задач по определению параметров эмиссионных эффектов в полупроводниках

Задача 1. Определить параметр внутренней квантовой эффективности генерации оптического излучения германиевого образца n – типа проводимости с концентрацией донорной примеси $N_d = 2.4 \cdot 10^{17} cm^{-3}$, находящегося при температуре $T = 300 \ K$.

Решение. Исходным выражением для определения параметра внутренней квантовой эффективности является выражение (9.1), в котором неизвестными величинами являются время жизни излучательной рекомбинации τ_l и время жизни безизлучательной рекомбинации τ_r :

$$\eta = \frac{\tau_r}{\tau_r + \tau_l}.\tag{9.5}$$

Время жизни излучательной рекомбинации зависит от уровня легирования полупроводника по закону:

$$\tau_l = \tau_l^{(i)} \frac{2n_i}{n_0 + p_0}.$$
(9.6)

Из табличных данных известно, что время излучательной рекомбинации в собственном германии составляет $\tau_l^{(i)} = 0.6 \ c$. По выражению (9.6) будем иметь:

$$\tau_l \approx \tau_l^{(i)} \frac{2n_i}{N_d} = 0.6 \frac{2 \cdot 2.4 \cdot 10^{13}}{2.4 \cdot 10^{17}} = 1.2 \cdot 10^{-4} c.$$

Из справочных материалов находим, что время жизни неравновесных электронов и дырок германии составляет величину $\tau = 10^{-5}c$. Это время определено как время жизни неравновесных носителей заряда при безизлучательной рекомбинации τ_r . Значит, интересующий нас параметр внутренней квантовой эффективности процесса излучения может быть вычислен по формуле:

$$\eta = \frac{\tau_r}{\tau_l + \tau_r}.$$
(9.7)

Поэтому окончательно имеем:

$$\eta = \frac{\tau_r}{\tau_l + \tau_r} = \frac{10^{-5}}{1.3 \cdot 10^{-4}} = \frac{0.1}{1.3} \approx 7.7 \cdot 10^{-2}.$$
(9.8)

Таким образом, ответ на поставленный в задаче вопрос будет таким: параметр внутренней квантовой эффективности германиевого образца составляет 0.077 или 7.7%.

Задача 2. Вычислить параметр внешней квантовой эффективности кремниевого образца, изготовленного в виде куба и содержащего $N_{am} = 10^{21}$ атомов, если излучение лежит в диапазоне собственного поглощения.

Решение. Исходным выражением для определения параметра внешней квантовой эффективности служит выражение (9.2), в котором стоят неизвестные величины длины свободного пробега фотонов и размера кристалла. Их можно определить следующим образом: по определению длина свободного пробега фотонов является величиной, обратной коэффициенту поглощения излучения: $\ell_{\phi} = 1/\alpha$. Линейные размеры кристалла можно определить из количества атомов в образце: $L = 1/\sqrt[3]{N_{am}}$. Следовательно, получим:

$$\xi = \frac{\ell \phi}{\ell \phi + L} = \frac{1/\alpha}{1/\alpha + 1/\sqrt[3]{N_{am}}} = \frac{1}{1 + \alpha/\sqrt[3]{N_{am}}} = \frac{1}{1 + \alpha/\sqrt[3]{N_{am}}} = \frac{1}{1 + 10^6/10^7} = \frac{1}{1 + 0.1} = \frac{1}{1.1} \approx 0.9.$$

Таким образом, ответ на вопрос о величине параметра внешней квантовой эффективности будет таков: внешняя квантовая эффективность образца кремния с заданным числом атомов в нем будет составлять около 90%.

Задача 3. Каким должен быть коэффициент усиления излучения из области примесного поглощения (коэффициент поглощения $\alpha = 10^3 cm^{-1}$) в твердом теле длиной $L = 2.5 \cdot 10^{-5} cm$ и торцами в виде отражающих зеркал, коэффициент отражения одного из них $R_1 = 1$, если через второе зеркало выводится 5% генерируемого излучения.

Решение. Эта задача может быть решена с использованием выражения (9.4) при известных значениях коэффициента поглощения излучения α , обоих коэффициентов отражения зеркал R_1 , R_2 и длины кристалла в направлении усиления света L:

$$g > \alpha - \frac{1}{2L} ln(R_1 R_2).$$

Из условия задачи следует, что коэффициент отражения света вторым зеркалом $R_2 = 0.95$. Поэтому с использованием формул разложения логарифма вблизи единичного значения аргумента получим:

$$g > 10^{3} - \frac{1}{5 \cdot 10^{-5}} ln(1 \cdot 0.95) = 10^{3} - \frac{1}{5 \cdot 10^{-5}} ln(1 \cdot 0 - 0.05) \approx$$

$$\approx 10^{3} - \frac{1}{5 \cdot 10^{-5}} (-0.05) = 10^{3} + \frac{1}{5 \cdot 10^{-5}} 0.05 = 10^{3} + \frac{5}{5} \cdot 10^{3} = 2 \cdot 10^{3} cm^{-1}.$$

Таким образом, коэффициент усиления твердого тела должен быть больше $2 \cdot 10^3 cm^{-1}$.

9.3. Варианты заданий по определению параметров эмиссионных эффектов в полупроводниках к контрольной работе № 2

- 1. Определить параметр внутренней квантовой эффективности генерации оптического излучения кремниевого образца n-типа проводимости с концентрацией донорной примеси $N_d = 5.4 \cdot 10^{17} cm^{-3}$, находящегося при температуре $T = 300 \ K$.
- 2. Определить параметр внутренней квантовой эффективности генерации оптического излучения аренид-галлиевого образца *n*-типа проводимости с

концентрацией донорной примеси $N_d = 6.4 \cdot 10^{16} cm^{-3}$, находящегося при температуре $T = 300 \ K$.

- Определить параметр внутренней квантовой эффективности генерации оптического излучения кремниевого образца *p* − типа проводимости с концентрацией акцепторной примеси N_a = 8.6 · 10¹⁶ cm⁻³, находящегося при температуре *T* = 300 K.
- 4. Определить суммарное время жизни неравновесных носителей заряда (фотон + фонон) в германиевом образце n типа проводимости с концентрацией донорной примеси $N_d = 5.4 \cdot 10^{17} cm^{-3}$, находящегося при температуре $T = 300 \ K$, если известно, что внутренняя квантовая эффективность генерации оптического излучения в этом образце составляет 0.68.
- 5. Определить суммарное время жизни неравновесных носителей заряда (фотон + фонон) в кремниевом образце n типа проводимости с концентрацией донорной примеси $N_d = 5.4 \cdot 10^{17} cm^{-3}$, находящегося при температуре $T = 300 \ K$, если известно, что внутренняя квантовая эффективность генерации оптического излучения в этом образце составляет 0.88.
- 6. Определить время жизни неравновесных носителей заряда с излучением фонона в кремниевом образце n-типа проводимости с концентрацией донорной примеси $N_d = 5.4 \cdot 10^{17} cm^{-3}$, находящегося при температуре $T = 300 \ K$, если известно, что внутренняя квантовая эффективность генерации оптического излучения в этом образце составляет 0.88.
- 7. Определить время жизни неравновесных носителей заряда с излучением фонона в арсенид-галлиевом образце n типа проводимости с концентрацией донорной примеси $N_d = 5.4 \cdot 10^{17} cm^{-3}$, находящегося при температуре $T = 300 \ K$, если известно, что внутренняя квантовая эффективность генерации оптического излучения в этом образце составляет 0.12.

8. Вычислить параметр внешней квантовой эффективности германиевого образца, изготовленного в виде куба и содержащего $N_{am} = 10^{20}$ атомов, если излучение лежит в диапазоне собственного поглощения.

9. Вычислить параметр внешней квантовой эффективности арсенидгаллиевого образца, изготовленного в виде куба и содержащего $N_{am} = 10^{22}$ атомов, если излучение лежит в диапазоне собственного поглощения.

10. Вычислить параметр внешней квантовой эффективности германиевого образца, изготовленного в виде куба и содержащего $N_{am} = 10^{24}$ атомов, если излучение лежит в диапазоне примесного поглощения, характеризуемого коэффициентом поглощения $\alpha = 1.0 \cdot 10^3 c M^{-1}$.

11. Вычислить параметр внешней квантовой эффективности арсенидгаллиевого образца, изготовленного в виде куба и содержащего $N_{am} = 10^{23}$ атомов, если излучение лежит в диапазоне примесного поглощения, характеризуемого коэффициентом поглощения $\alpha = 2.3 \cdot 10^2 c m^{-1}$.

12. Вычислить параметр внешней квантовой эффективности кремниевого образца, изготовленного в виде куба и содержащего $N_{am} = 10^{21}$ атомов, если излучение лежит в диапазоне примесного поглощения, характеризуемого коэффициентом поглощения $\alpha = 1.7 \cdot 10^3 cm^{-1}$.

13. Вычислить количество атомов в германиевом образце, изготовленном в виде куба, если излучение лежит в диапазоне примесного поглощения, характеризуемого коэффициентом поглощения $\alpha = 10^3 c m^{-1}$, а параметр внешней квантовой эффективности эмиссии этого излучения составляет величину $\xi = 0.79$.

14. Вычислить количество атомов в арсенид-галлиевом образце, изготовленном в виде куба, если излучение лежит в диапазоне примесного поглощения, характеризуемого коэффициентом поглощения $\alpha = 2.4 \cdot 10^2 c m^{-1}$, а параметр внешней квантовой эффективности эмиссии этого излучения составляет величину $\xi = 0.86$.

15. Каким должен быть коэффициент усиления излучения из области примесного поглощения (коэффициент поглощения $\alpha = 1.8 \cdot 10^3 cm^{-1}$) в твердом теле длиной $L = 1.5 \cdot 10^{-5} cm$ и торцами в виде отражающих зеркал, коэффициент отражения одного $R_1 = 1$, если через второе зеркало выводится 15% генерируемого излучения.

16. Определить долю выводимой из твердотельного лазера оптического излучения, если известно, что лазер генерирует свет из собственной полосы поглощения ($\alpha = 7.5 \cdot 10^5 cm^{-1}$), имеет длину $L = 0.5 \cdot 10^{-5} cm$, а граничное значение коэффициента усиления, соответствующее началу генерации, равно $g = 1.5 \cdot 10^6 cm^{-1}$.

17. Определить долю выводимой из твердотельного лазера оптического излучения, если известно, что лазер генерирует свет из примесной полосы поглощения ($\alpha = 7.5 \cdot 10^2 cm^{-1}$), имеет длину $L = 2.5 \cdot 10^{-5} cm$, а граничное значение коэффициента усиления, соответствующее началу генерации, равно $g = 1.5 \cdot 10^3 cm^{-1}$.

18. Определить коэффициент поглощения твердого тела, используемого в качестве активного элемента лазера, если он имеет длину $L = 0.5 \cdot 10^{-5} c_M$, граничное значение коэффициента усиления, соответствующее началу генерации, равно $g = 1.5 \cdot 10^6 c_M^{-1}$, а доля выводимой через зеркало энергии составляет 10%.

19. Определить коэффициент поглощения твердого тела, используемого в качестве активного элемента лазера, если он имеет длину $L = 2.5 \cdot 10^{-5} cm$, граничное значение коэффициента усиления, соответствующее началу генерации, равно $g = 2.5 \cdot 10^3 cm^{-1}$, а доля выводимой через зеркало энергии составляет 3.5%.

20. Определить коэффициент поглощения твердого тела, используемого в качестве активного элемента лазера, если он имеет длину $L = 2.5 \cdot 10^{-4} c_M$, граничное значение коэффициента усиления, соответствующее началу генерации, равно $g = 2.5 \cdot 10^3 c_M^{-1}$, а доля выводимой через зеркало энергии составляет 5%.

10. «ЖИДКИЕ КРИСТАЛЛЫ В ОПТОЭЛЕКТРОНИКЕ»

10.1. Краткое изложение теории

Жидкие кристаллы – это специфическое агрегатное состояние некоторых органических веществ, в котором они одновременно проявляют свойства жидкости и кристалла. При плавлении кристаллы этих веществ образуют жидкокристаллическую фазу, отличающуюся от обычных жидкостей: она существует в узком температурном диапазоне, вне которого имеем кристалл или изотропную жидкость. Обязательным свойством жидких кристаллов является наличие порядка в пространственной ориентации молекул.

Все известные в настоящее время жидкие кристаллы составлены из одного сорта молекул, которые имеют стержнеобразную форму либо вид вытянутой спирали. В зависимости от характера упорядочения длинных осей молекул в слое жидкие кристаллы разделяют на нематики, смектики и холестерики. Рассмотрим внутреннюю структуру жидких кристаллов и пространственное расположение их молекул.

Нематики. Будем представлять себе молекулы нематического кристалла в виде стержней, т.к. они имеют длину во много раз больше толщины. Тогда структура нематика будет представлять собой «жидкость одинаково ориентированных стержней» (см. рис. 3, a, δ). В твердом состоянии молекулы кристалла строго ориентированы в пространстве (рис. 3, a). В жидкокристал-лическом состоянии молекулы разбросаны по жидкому кри-

сталлу хаотически, они могут перемещаться под действием температуры в любую сторону. Относительный порядок существует только в ориентации длинных осей молекул. Эти стержни движутся хаотически в жидкости, но их преимущественная ориентация не изменяется. Под действием температуры они совершают угловые колебания относительно среднего своего положения, амплитуда которых возрастает при приближении к температуре фазового перехода (рис. 3, δ). После точки фазового перехода «жидкий кристалл – изотропная жидкость» ориентационное упорядочение полностью разрушается тепловым движением молекул (рис. 3, δ).

В отношении оптических свойств нематики ведут себя как оптически одноосные кристаллы.

Для характеристики ориентационного порядка молекул жидкого кристалла вводится вектор единич-

ной длины n, называемый директором, направление которого указывает направление преимущественной орие

Рис. 3

которого указывает направление преимущественной ориентации длинных осей молекул. Однако этой характеристики недостаточно для полного описания структурного состояния жидкого кристалла. Действительно, совершая тепло-

вые колебания относительно направления директора, молекулы могут отклоняться от него на больший или меньший угол в зависимости от температуры жидкого кристалла. Для характеристики среднего отклонения молекул от направления директора, вводится **параметр порядка** Q. Значение Q = 1 соответствует полной ориентации всех молекул нематика в направлении директора, а Q = 0 – полному беспорядку в ориентации молекул. Фактически параметр порядка есть дисперсия случайной переменной – угла отклонения осей молекул.

Смектики. В них степень упорядочения молекул выше, чем в нематиках: помимо ориентационной упорядоченности молекул, существует упорядочение центров их тяжести. В результате смектики организованы в слои, расстояния между которыми фиксированы. Что же касается расположения центров тяжести молекул в пределах одного слоя, то оно хаотично, как в нематике. Поэтому для описания состояния смектика также используются понятия директора n и параметра порядка Q.

Общим для всех смектиков является достаточно сильное взаимодействие молекул в пределах выделенного слоя и слабое взаимодействие между слоями. Поэтому слои легко скользят друг относительно друга и на ощупь все смектики мылоподобны (мыло по-гречески «смегма»).

Холестерики. Они устроены более сложно, чем нематики и смектики. Локально холестерический кристалл устроен так же, как и нематик: в малом объеме упорядочение молекул холестерика, как и нематика, можно охарактеризовать директором и параметром порядка Q. Отличие холестерика от нематика проявляется в больших, по сравнению с молекулярными размерами, масштабах. Эти отличия связаны с тем, то в нем молекулы образуют так называемую холестерическую спираль: существует такое направление, называемое холестерической осью, вдоль которого регулярным образом изменяется ориентация директора. Директор перпендикулярен этой оси и вращается вокруг нее.

Угол поворота линейно связан с расстоянием z вдоль холестерической оси. Расстояние, на котором директор поворачивается на 360⁰, называется **ша-гом холестерической спирали**.

Ориентационные эффекты в жидких кристаллах

Нематики. До сих пор речь шла об однодоменном образце нематика, в котором ориентация директора одинакова во всех его точках. В реальности молекулы жидкого кристалла могут изменять свою ориентацию по поверхности слоя жидкого кристалла, а также с его толщиной, образуя области одинаковой ориентации длинных осей молекул жидкого кристалла. Эти области называют доменами. Причины появления доменов заключаются в случайном характере внешних воздействий, способных задавать ориентацию молекул. Преимущественные ориентации длинных осей молекул в различных доменах обычно никак не связаны между собой, поэтому ориентация директоров в разных доменах хаотична. Чтобы сделать все молекулы жидкого кристалла ориентированными

Рис.4

одинаково (специалисты называют такой кристалл «однодоменным»), необходимы специальные меры. К ним относятся любые способы, задающие ориентацию длинных осей молекул: механическая полировка внутренних поверхностей стекол, между которыми помещается кри-

сталл; обработка опорных поверхностей оптических ячеек; задание ориентации с помощью внешних электрических или магнитных полей и т.д.

В практических и научных исследованиях используют две основных ориентации молекул нематика: вдоль поверхности и перпендикулярно ей. В соответствии с этим используют два типа жидкокристаллических ячеек, показанных на рис. 4. Здесь 1 – верхняя опорная поверхность ячейки, 2 – нижняя опорная поверхность, которые обычно изготавливают из прозрачного стекла. Пленка нематика-3 помещается между опорными поверхностями. Ячейку, показанную в левой части рис. 4, называют планарной, а показанную в правой части – гомеотропной. Для получения планарной ячейки внутренние поверхности стекол, контактирующие с жидким кристаллом, подвергают механической шлифовке в одном направлении, в результате которой на поверхности стекла остаются микроборозды. Молекулы нематика «ложатся» в эти борозды, образуя строго ориентированный поверхностный слой нематика планарной структуры. Ввиду действия сил связи молекулы соседних слоев перенимают ориентацию граничного слоя, передавая ее в объем жидкого кристалла. Тепловое движение молекул стремится разрушить этот порядок. Поэтому существует некоторое расстояние, при удалении на которое от поверхности ориентирующее действие опорной поверхности и разориентирующее влияние теплового движения уравновешивают друг друга. Это расстояние называется когерентной длиной и для типичных жидких кристаллов составляет величину несколько микрон. Поэтому, если толщина слоя нематика невелика – до десятка микрон, то разориентирующее действие упругих сил, теплового движения несущественно и во всем объеме жидкого кристалла его молекулы (на рисунке они показаны в виде коротких линий между стеклами) сориентированы вдоль поверхности ячейки.

Для получения гомеотропной ячейки внутренние поверхности стекол обрабатывают в специальном химическом составе – поверхностно-активном веществе. Молекулы этого вещества также имеют вытянутую форму и при обработке одним концом «приклеиваются» к обрабатываемым поверхностям. Молекулы жидкого кристалла входят в пространство между молекулами поверхностно-активного вещества, ориентируясь перпендикулярно поверхности ячейки. Следующие слои молекул нематика, стремясь минимизировать свою потенциальную энергию по отношению к молекулам соседнего слоя жидкого кристалла, выстраиваются также перпендикулярно стеклам.

Переход Фредерикса. Для технических применений жидких кристаллов важной является возможность изменять ориентацию молекул путем приложения, например, электрического поля, которое обычно прикладывают перпендикулярно поверхностям ячеек. Важной особенностью нематиков является различное значение его диэлектрической проницаемости є, измеренной вдоль осей молекул и перпендикулярно им. Поэтому при помещении нематика в постоянное электрическое поле из-за анизотропии диэлектрической проницаемости его молекулы стремятся ориентироваться так, чтобы направление большего значения є совпадало с направлением приложенного поля. Значит, исходная планарная структура нематика в электрическом поле может перейти в гомеотропную или наоборот. Эффект изменения структуры нематика во внешнем электрическом поле называют переходом Фредерикса. Общим свойством переориентации нематика под действием внешнего поля является ее пороговый характер: как только величина электрического поля достигнет критического значения, все молекулы нематика меняют свою ориентацию. Критическое значение электрического поля, при котором совершается переход Фредерикса, вычисляется по следующей формуле:

$$E_c = \frac{\pi}{d} \left(\frac{4\pi K}{\Delta \varepsilon} \right)^{1/2},$$

где d – толщина слоя жидкого кристалла; K – его коэффициент упругости; $\Delta \varepsilon = \varepsilon_{||} - \varepsilon_{\perp}$ - анизотропия диэлектрической проницаемости жидкого кристалла. Здесь $\varepsilon_{||}$ – диэлектрическая проницаемость жидкого кристалла, когда поляризация света параллельна директору, ε_{\perp} – диэлектрическая проницаемость жидкого кристалла, когда поляризация света перпендикулярна директору. Из этого выражения следует, что критическое напряжение, прикладываемое к слою нематика для его переориентации, не зависит от его толщины d:

$$V_{c} = \pi \left(\frac{4\pi K}{\Delta \varepsilon}\right)^{1/2}.$$
 (10.1)

Выше этого значения напряжения на ячейке изменения структуры быстро достигают насыщения: если продолжать увеличивать напряжение выше критического, то это практически не изменит состояние нематика.

Ориентационное действие электрического поля величиной *Е* проявляется на протяжении электрической когерентной длины, отсчитываемой от опорной поверхности,

$$\lambda_k = \frac{1}{E} \left(\frac{4\pi K}{\Delta \varepsilon} \right)^{1/2}.$$
 (10.2)

Подставив в это выражение типичные значения: $K = 10^{-6} \partial uh$, $\Delta \varepsilon \approx 3$ и $E = 10^3$ В/см, получим, что $\lambda_k \approx 10$ *мкм*. Следовательно, используемые пленки нематика должны иметь толщину меньше двух значений электрической когерентной длины, что соответствует величине порядка единиц микрон.

Если увеличивать напряжение на ячейке выше порога Фредерикса, то вблизи десятка вольт структура нематика претерпевает следующее скачкообразное изменение: вдоль поверхности ячейки образуются круговые потоки молекул нематика, что формирует структуру типа упорядоченного слоя вращающихся цилиндров. Это так называемые домены Капустина-Вильямса. Их возникновение обусловлено проявлением ионной проводимости жидкого кристалла в электрическом поле. Из-за изменения ориентации молекул в пределах домена он выступает как неоднородность є.

Дальнейшее повышение напряжение на ячейке приводит к разрушению доменов, появлению хаотических турбулентных потоков в слое нематика. В результате такого состояния структуры жидкого кристалла он рассеивает падающий на него свет равномерно во все стороны. Поэтому данное состояние нематика называют динамическим рассеянием света, при котором рассеяние падающего света происходит во всех направлениях, что облегчает визуальное наблюдение измененного состояния жидкого кристалла.

Перечисленные структурные состояния нематика в электрическом поле могут быть использованы в оптоэлектронике: для отображения и хранения информации, преобразования световых потоков и т.д.

Холестерики. Следует заметить, что шаг холестерической спирали чувствителен к электрическому полю, магнитному полю, температуре, химическим примесям на поверхности холестерика, радиационному излучению и т.д.: при приложении, например, электрического поля шаг спирали увеличивается с ростом величины поля. При приближении к некоторому пороговому значению электрического поля (обычно это поле достигается при напряжении в несколько вольт) шаг холестерической спирали резко увеличиваться, а при пороговом поле величиной

$$E_p = \left(\frac{\pi^2}{2p_0}\right) \cdot \left(\frac{4\pi K}{\Delta \varepsilon}\right)^{1/2}$$
(10.3)

спираль вообще распрямляется. При этом холестерик переходит в нематик. Здесь p_0 – шаг холестерической спирали в отсутствие воздействия. Его обычно выбирают в области длин волн видимого излучения и, следовательно, в десятки раз меньше толщины слоя жидкого кристалла. Поэтому значение E_p оказывается обычно больше, чем поле, необходимое для перехода Фредерикса. При приложении электрического поля, когда шаг спирали p не превышает p_0 на несколько процентов: $p < 1.05 p_0$ величину шага можно оценить, воспользовавшись следующим аппроксимационным выражением:

$$\frac{p}{p_0} \approx 1 + \frac{1}{32} \left(\frac{2}{\pi} \frac{E_p}{E} \right)^{-4}$$
 (10.4)

В ряде практических задач необходимо рассчитать величину требуемого электрического поля, необходимого для получения требуемого значения шага спирали. Обращение выражения (10.4) относительно Е дает зависимость:

$$\frac{E}{E_p} \approx \frac{2}{\pi} \cdot \frac{4}{\sqrt{32}} \cdot \left(\frac{p}{p_0} - 1\right)$$
(10.5)

В случае, когда в результате действия электрического поля шаг холестерической спирали изменяется от десяти процентов и выше ($p > 1.05 \cdot p_0$), т.е. вблизи критического значения электрического поля E_p , зависимость шага спирали pот приложенного электрического поля E оказывается резкой и описывается с помощью выражения

$$\frac{p}{p_0} \approx \frac{4}{\pi^2} ln \left(\frac{4E_p}{\sqrt{E_p^2 - E^2}} \right).$$
(10.6)

Для решения задач зачастую необходимо найти величину прикладываемого электрического поля по известному значению p, что можно сделать преобразованием выражения (10.6), выразив E как функцию от p:

$$\frac{E}{E_p} \approx \sqrt{1 - \frac{1}{2} \cdot exp\left(\frac{4p_0}{\pi^2 p}\right)} . \tag{10.7}$$

Если продолжать увеличивать напряжение на пленке холестерика выше значения, задающего критическое поле E_p , то можно обнаружить те же струк-

турные преобразования, о которых говорилось при обсуждении свойств нематика: домены Капустина-Вильямса, динамическое рассеяние света. Однако поведение холестерика в электрических полях значительно сложнее нематика. Так, динамическое рассеяние обладает эффектом памяти: рассеивающее состояние холестерика, возникшее в результате наложения поля, сохраняется в течение длительного времени после снятия поля. Время памяти, т.е. сохранения рассеивающего состояния, зависит от свойств конкретного холестерика и может колебаться от минут до нескольких лет. Наложение переменного электрического поля возвращает холестерик в исходное состояние.

Оптические свойства жидких кристаллов

Для понимания принципов работы оптических жидкокристал-лических ячеек необходимо вспомнить раздел оптики, в котором рассматриваются особенности прохождения через оптически активный кристалл линейно поляризованного излучения с заданной ориентацией поляризации и направлением распространения излучения относительно оптической оси кристалла.

Нематики. Нематик является оптически одноосным кристаллом, оптическая ось которого совпадает с направлением директора. Поэтому оптические свойства планарной и гомеотропной структур различные. В ячейке с гомеотропной структурой свет распространяется вдоль оптической оси (вдоль директора), поэтому, как во всяком одноосном кристалле, в этом случае оптические

характеристики ячейки не зависят от поляризации света. При падении же света на ячейку с планарной структурой прохождение света сквозь нее зависит от поляризации падающего света: без изменения поляризации в ней распространяется только свет, вектор электрической индукции в котором перпендикулярен директору.

Используя поляроидные пленки, нанесенные на опорные поверхности, можно сделать гомеотропную структуру непрозрачной для света, скрестив верхний и нижний поляроиды в оптической ячейке (рис. 4). Планарная структура при таком же положении поляроидов пропускает свет, если ориентация поляроида не совпадает с направлением директора. Отсюда следует принцип, на основе которого с помощью жидкокристаллической ячейки можно отображать информацию – путем прикладываемого напряжения переводить планарную текстуру в гомеотропную и обратно. В планарной текстуре направление распространения света перпендикулярно оптической оси. Поэтому показатель преломления света различен для света, плоскость поляризации которого перпендикулярна направлению директора в слое, и света, поляризация которого содержит это направление. Знак оптической анизотропии может быть как положительным, так и отрицательным. В нематике с $\Delta \varepsilon < 0$ фазовая скорость света, поляризованного перпендикулярно направлению директора, оказывается меньше фазовой скорости света, поляризованного в направлении директора. Переход Фредерикса, в котором при отсутствии поля нематик с $\Delta \varepsilon > 0$, образует планарную текстуру, а при наложении поля переходит в гомеотропную, принято называть *S*-эффектом.

В *В*-эффекте в качестве исходной ориентации используется гомеотропная, а поле переводит ее в планарную. Для этого требуется нематик с отрицательной диэлектрической анизотропией $\Delta \varepsilon < 0$. Для *Т*-эффекта исходная планарная структура берется закрученной (ориентация молекул на одной поверхности составляет угол 90⁰ относительной ориентации на другой в плоскости опорной поверхности). Приложенное поле, как и в случае *S*-эффекта, переводит планарную структуру в гомеотропную. В этом случае используются нематики с положительной анизотропией $\Delta \varepsilon > 0$.

Холестерики. Этот тип жидких кристаллов характеризуется спиральным поведением директора вдоль толщины слоя холестерика. Но с изменением направления директора изменяется диэлектрическая проницаемость. Поэтому, по толщине кристалла значение диэлектрической проницаемости периодически изменяется от ε_{\parallel} – диэлектрическая проницаемость жидкого кристалла, когда поляризация света параллельна директору, до ε_{\perp} – диэлектрическая проницаемость кидкого кристалла, когда поляризация света перпендикулярна директору. В холестерике периодом служит не шаг спирали p_0 , на котором директор совершает оборот на 2π , а $p_0/2$, так как ориентации директора n и -n эквивалентны, и период диэлектрических свойств холестерика оказывается вдвое меньше, чем расстояние, на котором директор совершает полный оборот. Поэтому оказывается, что диэлектрические свойства холестерика периодичные

вдоль холестерической спирали с периодом $d = p_0/2$. По этой причине оптические свойства холестерика в указанном направлении можно представить как результат действия чередующихся слоев двух типов с различными значениями диэлектрической проницаемости: ε_{\parallel} и ε_{\perp} .

Если на такую структуру под определенным углом падения падает белый свет (т.е. излучение с широким диапазоном значений длин волн), то в отраженном свете будет иметь дифракция, полученная от оптического излучения только одной длины волны λ из всех. Внешне это будет выглядеть как окрас слоя холестерика в цвет длиной λ . Условия дифракции белого света на холестерике аналогичны условиям наблюдения хорошо известной в классической оптике дифракции Вульфа-Брэгга:

$$2\sin\theta = \frac{m\lambda}{d},\tag{10.8}$$

где θ - угол падения белого света на поверхность пленки холестерика, отсчитываемый от поверхности; *m* - целое число, показывающее порядок дифракции; λ - длина волны дифрагированного света; *d* - толщина одного слоя пленки, составленной из многих слоев. Для холестериков d = p/2. В оптических ячейках обычно используется дифракционное отражение при $\theta = \pi/2$, что соответствует распространению отраженного света в направлении, перпендикулярном падающему.

Шаг спирали холестерика чувствителен к внешним воздействиям. Его легко изменить, нагревая холестерик, помещая в электрическое или магнитное поле и т.д. Отсюда следует один из принципов использования холестерических кристаллов в оптоэлектронике: плавное изменение в широких пределах цвета оптической ячейки при изменении величины внешнего воздействия.

10.2. Примеры решения задач по определению параметров жидкокристаллических приборов

Задача 1. Определить величину минимального напряжения, которое необходимо приложить к слою нематика для получения перехода Фредерикса в нем, если известно, что величина оптической анизотропии $\Delta \varepsilon = 4.2$, а модуль упругости $K = 1.7 \cdot 10^{-6}$ дин.

Решение. Для решения этой задачи воспользуемся выражением (10.1)

$$V_{\mathcal{C}} = \pi \left(\frac{4\pi K}{\Delta \varepsilon}\right)^{1/2}$$

Будем решать задачу в системе СГСЕ, а полученный результат переведем в систему СИ. Подстановка в данное выражение численных значений параметров жидкого кристалла дает величину напряжения перехода Фредерикса:

$$V_c = 3.14 \sqrt{\frac{4 \cdot 3.14 \cdot 1.7 \cdot 10^{-6}}{4.2}} = 3.14 \sqrt{\frac{21.4}{4.2} \cdot 10^{-6}} =$$

$$=3.14\sqrt{5.1}\cdot 10^{-3} \approx 7.1\cdot 10^{-3}$$
 ed. CFCE.

Для перевода единиц СГСЕ в систему СИ воспользуемся переводным коэффициентом: 1 $B \approx 3 \cdot 10^{-3}$ ед. СГСЕ. Поэтому окончательное значение критического значения напряжения, начиная с которого совершается переход Фредерикса, равно около 2.4 *B*.

Задача 2. Определить величину электрической когерентной длины в нематическом жидком кристалле МББА, имеющего значения диэлектрической проницаемости перпендикулярно и параллельно длинной оси $\varepsilon_{\perp} = 5.4$, $\varepsilon_{II} = 4.7$ соответственно, коэффициент упругости $K = 5 \cdot 10^{-6}$ *дин*, если к нематику приложено электрическое поле величиной $E = 3 \cdot 10^{1}$ е*д*. *СГСЕ*.

Решение. Для решения этой задачи воспользуемся выражением (10.2)

$$\lambda_k = \frac{1}{E} \left(\frac{4\pi K}{\Delta \varepsilon} \right)^{1/2}$$

Подставим в это выражение численные значения параметров жидкого кристалла и величину приложенного электрического поля, тогда получим:

$$\lambda_k = \frac{1}{3 \cdot 10^1} \sqrt{\frac{4 \cdot 3.14 \cdot 5 \cdot 10^{-6}}{0.7}} = \frac{9.5 \cdot 10^{-3}}{3 \cdot 10^1} \approx 3.2 \cdot 10^{-4} \ cm.$$

Таким образом, ответ на поставленный вопрос таков: при заданном электрическом поле в нематическом жидком кристалле МББА электрическая когерентная длина равна 3.2 *мкм*.

Задача 3. Определить величину электрического поля, при котором распрямляется холестерическая спираль жидкого кристалла, если известно, что величина оптической анизотропии $\Delta \varepsilon = 4.2$, шаг холестерической спирали в отсутствии электрического поля составлял $p_0 = 0.50$ мкм, а модуль упругости равен $K = 1.7 \cdot 10^{-6}$ дин.

Решение. Для решения этой задачи воспользуемся выражением (10.3)

$$E_p = \left(\frac{\pi^2}{2p_0}\right) \cdot \left(\frac{4\pi \cdot K}{\Delta \varepsilon}\right)^{1/2}.$$

Решая задачу в системе СГСЕ, выразим шаг холестерической спирали в сантиметрах:

$$p_0 = 0.50 \cdot 10^{-4} = 5 \cdot 10^{-5} \,\mathrm{cm}.$$

Подставим в исходное выражение параметры холестерика, тогда получим:

$$E_p \approx \frac{10}{2 \cdot 5 \cdot 10^{-5}} \cdot \sqrt{5.1} \cdot 10^{-3} = 2.4 \cdot 10^2 \ ed. \ C\Gamma CE.$$

Переведем полученный результат в систему СИ, разделив его на переводной коэффициент $3 \cdot 10^{-3}$. В итоге ответ на поставленный вопрос будет звучать так: величина распрямляющего холестерическую спираль электрического поля равна $8 \cdot 10^4 \ B/cm$.

Задача 4. Определить величину электрического поля, которое необходимо приложить к холестерическому жидкому кристаллу для того, чтобы при перпендикулярном падении белого света в отраженном свете изготовленная из него пленка сменила свой цвет с желтого на красный. Считать, что величина оптической анизотропии кристалла $\Delta \varepsilon = 4.2$, а модуль упругости равен $K = 1.7 \cdot 10^{-6}$ дин.

Решение. Как указано в теоретической части данного раздела белый свет дифрагирует на многих слоях, образованных параллельной и перпендикулярной ориентацией директора, и потому при перпендикулярном падении света пленка приобретает цвет, длина волны которого удовлетворяет условию (10.8) при $\theta = \pi/2$. Следовательно, данная задача направлена на определение шага холестерической спирали при действии внешнего электрического поля. По условию задачи изменение шага спирали соответствует условию $p > 1.05 \cdot p_0$. Поэтому для решения воспользуемся выражением (10.7):

$$\frac{E}{E_p} \approx \sqrt{1 - \frac{1}{2} \cdot exp\left(\frac{4p_0}{\pi^2 p}\right)},$$

где E_p - электрическое поле, полностью распрямляющее спираль холестерика. В данном выражении известны все параметры, входящие в его правую часть: $p_0 = 0.55 \ \text{мкм}$, что соответствует желтому цвету, и $p = 0.64 \ \text{мкм}$ соответствует красному цвету. Подставляя значения шага спирали до действия поля и при его наличии, получим

$$\frac{E}{E_p} \approx \sqrt{1 - \frac{1}{2}} \cdot exp\left(\frac{4 \cdot 0.55}{10 \cdot 0.64}\right) = \sqrt{1 - \frac{1}{2}} \cdot exp\left(\frac{2.2}{6.4}\right) = \sqrt{1 - \frac{1}{2}} \cdot exp(0.34) \approx \sqrt{1 - \frac{1}{2}} \cdot 1.4 = \sqrt{0.3} \approx 0.55.$$

Взяв из предыдущей задачи значение критического электрического поля $E_p \approx 8 \cdot 10^4 \ B / cm$, найдем требуемое электрическое поле:

$$E \approx 0.55 \cdot E_p = 0.55 \cdot 8 \cdot 10^4 = 4.4 \cdot 10^4 \ B / c_M$$

Таким образом, ответ на поставленный в задаче вопрос будет таков: для изменения цвета пленки холестерика от желтого до красного необходимо перпендикулярно её поверхности приложить электрическое поле величиной $4.4 \cdot 10^4 \ B/cm$.

10.3. Варианты заданий по определению параметров жидкокристаллических приборов к контрольной работе № 2

- 1. Определить величину минимального напряжения, которое необходимо приложить к слою нематика МББА для получения перехода Фредерикса в нем, если известно, что величины диэлектрической проницаемости этого вещества вдоль оси молекулы и перпендикулярно ей при температуре 22^0 *C* равны $\varepsilon_{II} = 4.7$, $\varepsilon_{\perp} = 5.4$, а модуль упругости $K = 5.0 \cdot 10^{-6}$ дин.
- 2. Определить величину минимального напряжения, которое необходимо приложить к слою нематика марки ПАА для получения перехода Фредерикса в нем, если известно, что величины диэлектрической проницаемости вещества вдоль оси молекулы и перпендикулярно ей при температуре $120^0 C$ равны $\varepsilon_{II} = 4.5$, $\varepsilon_{\perp} = 4.8$, а модуль упругости $K = 9.3 \cdot 10^{-7}$ дин.
- 3. Определить величину минимального напряжения, которое необходимо приложить к слою нематика для получения перехода Фредерикса в нем, если известно, что величины диэлектрической проницаемости этого вещества вдоль оси молекулы и перпендикулярно ей при температуре 27^0 *C* равны $\varepsilon_{II} = 3.4$, $\varepsilon_{\perp} = 4.9$, а модуль упругости $K = 7.8 \cdot 10^{-7}$ дин.
- Определить величину модуля упругости нематика, если известно, что величины диэлектрической проницаемости этого вещества вдоль оси молекулы и перпендикулярно ей при температуре 143⁰ C равны ε_{II} = 5.7, ε_⊥ = 3.4, соответственно, а напряжение перехода Фредерикса в нем составляет 1.4 *B*.
- 5. Какую оптическую ячейку на основе пленки нематика МББА необходимо использовать для создания затвора оптического излучения на эффекте Фредерикса, если известно, что параметры вещества таковы: величины диэлектрической проницаемости этого вещества вдоль оси молекулы и перпендикулярно ей равны $\varepsilon_{II} = 4.7$, $\varepsilon_{\perp} = 5.4$, соответственно, а модуль упругости $K = 5.0 \cdot 10^{-6}$ дин. Опишите конструкцию (планарная или гомеотропная топология, есть ли поляризаторы и отражающие пленки, их расположение) и работу этой ячейки.
- 6. Какую оптическую ячейку на основе пленки нематика необходимо использовать для создания устройства отображения информации на эффекте Фредерикса, если известно, что параметры вещества таковы: величины диэлектрической проницаемости этого вещества вдоль оси молекулы и перпендикулярно ей равны $\varepsilon_{II} = 5.7$, $\varepsilon_{\perp} = 4.4$, соответственно, а модуль упругости $K = 7.3 \cdot 10^{-7}$ дин. Опишите конструкцию (планарная или го-

меотропная топология, есть ли поляризаторы и отражающие пленки, их расположение) и работу этой ячейки.

- 7. Определить величину электрической когерентной длины в нематическом жидком кристалле, имеющем значения диэлектрической проницаемости перпендикулярно и параллельно длинной оси $\varepsilon_{\perp} = 4.4$, $\varepsilon_{II} = 4.7$, коэффициент упругости $K = 3.1 \cdot 10^{-6} \ duh$, если к нематику приложено электрическое поле величиной $E = 2.8 \cdot 10^1 \ ed$. СГСЕ.
- 8. Определить в СИ величину приложенного электрического поля к пленке нематического жидкого кристалла, имеющем значения диэлектрической проницаемости перпендикулярно и параллельно длинной оси $\varepsilon_{\perp} = 4.4$, $\varepsilon_{II} = 4.7$, коэффициент упругости $K = 3.1 \cdot 10^{-6} \, duh$, если в этом случае электрическая когерентная составляет 5.7 *мкм*.
- 9. Определить величину анизотропии диэлектрической проницаемости нематика, имеющем коэффициент упругости K = 4.3 · 10⁻⁷ дин, если при приложении электрического поля величиной E = 2.8 · 10¹ ед. СГСЕ электрическая когерентная длина в этом нематике составляет 6.8 мкм.
- 10. Определить величину анизотропии диэлектрической проницаемости нематического жидкого кристалла, имеющем коэффициент упругости K = 2.3 · 10⁻⁶ *дин*, если при приложении электрического напряжения величиной V = 2.8 В к пленке толщиной d = 10 мкм электрическая когерентная длина в этом нематике составляет 7.9 мкм.
- 11. Определить величину электрического поля, при котором распрямляется холестерическая спираль, если известно, что величина его оптической анизотропии $\Delta \varepsilon = 3.1$, шаг спирали в отсутствии электрического поля составляет $p_0 = 0.45$ мкм, а модуль упругости равен $K = 9.4 \cdot 10^{-7}$ дин.
- 12. Определить шаг холестерической спирали *р* при действии на пленку холестерика электрического поля $E = 3 \cdot 10^3 \ ed$. *СГСЕ*, если известно, что величина его оптической анизотропии $\Delta \varepsilon = 3.1$, шаг холестерической спирали в отсутствии электрического поля составляет $p_0 = 0.45$ мкм, модуль упругости равен $K = 9.4 \cdot 10^{-7}$ дин. Рассматривать случай сильных полей.
- 13. Определить величину электрического поля, при котором распрямляется холестерическая спираль жидкого кристалла, если известно, что величина оптической анизотропии $\Delta \varepsilon = 1.9$, шаг холестерической спирали в отсутствии электрического поля составлял $p_0 = 0.42$ мкм, а модуль упругости равен $K = 6.4 \cdot 10^{-6}$ дин.

- 14. Определить шаг холестерической спирали *р* при действии на пленку холестерика электрического поля $E = 2.7 \cdot 10^3$ *ед. СГСЕ*, если величина оптической анизотропии $\Delta \varepsilon = 3.1$, шаг холестерической спирали в отсутствии электрического поля составляет $p_0 = 0.45$ мкм, модуль упругости равен $K = 9.4 \cdot 10^{-7}$ дин. Рассматривать случай сильных полей.
- 15.Определить величину электрического поля, которое необходимо приложить к холестерическому жидкому кристаллу для того, чтобы при перпендикулярном падении белого света в отраженном свете изготовленная из него пленка сменила свой цвет с синего (длина волны 0.40 *мкм*) в отсутствие электрического поля на красный (длина волны 0.64 *мкм*). Считать, что величина оптической анизотропии кристалла $\Delta \varepsilon = 3.1$, а модуль упругости равен $K = 6.4 \cdot 10^{-6}$ дин. Рассматривать случай сильных полей.
- 16. Определить на какую величину необходимо изменить приложенное к пленке холестерика постоянное электрическое поле для того, чтобы при перпендикулярном падении белого света в отраженном свете изготовленная из него пленка с $p_0 = 0.34$ *мкм* сменила свой цвет с синего (длина волны 0.40 *мкм*) на красный (длина волны 0.64 *мкм*). Считать, что величина оптической анизотропии кристалла $\Delta \varepsilon = 3.1$, а модуль упругости равен $K = 6.4 \cdot 10^{-6}$ дин. Рассматривать случай сильных полей.
- 17. Определить шаг холестерической спирали *р* при действии на пленку холестерика электрического поля $E = 2.9 \cdot 10^3$ ед. *СГСЕ*, если величина оптической анизотропии $\Delta \varepsilon = 2.7$, шаг холестерической спирали в отсутствии электрического поля составляет $p_0 = 0.52$ мкм, модуль упругости равен $K = 8.3 \cdot 10^{-7}$ дин.
- 18. Определить величину электрического поля, которое необходимо приложить к холестерическому жидкому кристаллу для того, чтобы при перпендикулярном падении белого света в отраженном свете изготовленная из него пленка сменила свой цвет с голубого (длина волны 0.45 *мкм*) в отсутствие электрического поля на зеленый (длина волны 0.50 *мкм*). Считать, что величина оптической анизотропии кристалла $\Delta \varepsilon = 2.8$, а модуль упругости равен $K = 5.7 \cdot 10^{-6}$ дин.
- 19. Определить на какую величину необходимо изменить приложенное к пленке холестерика постоянное электрическое поле для того, чтобы при перпендикулярном падении белого света в отраженном свете изготовленная из него пленка с p₀ = 0.25 *мкм* сменила свой цвет с голубого (длина волны 0.45 *мкм*) на желтый (длина волны 0.55 *мкм*). Считать, что опти-

ческую анизотропию кристалла $\Delta \varepsilon = 3.1$, а модуль упругости $K = 6.4 \cdot 10^{-6}$ дин.

20. Определить на какую величину необходимо изменить приложенное к пленке холестерика постоянное электрическое поле для того, чтобы при перпендикулярном падении белого света в отраженном свете изготовленная из него пленка с $p_0 = 0.34$ *мкм* сменила свой цвет с фиолетового (длина волны 0.35 *мкм*) на оранжевый (длина волны 0.60 *мкм*). Считать, что оптическая анизотропия кристалла $\Delta \varepsilon = 1.8$, а модуль упругости $K = 8.4 \cdot 10^{-7}$ дин.

ПРИЛОЖЕНИЕ

№	Параметры материала	Кремний	Германий	Арсенид галлия
1.	Ширина запрещенной зоны при T=300 K, эВ	1.12	0.66	1.4
2.	Число атомов в 1 см ³	$5 \cdot 10^{22}$	$4.4 \cdot 10^{22}$	$2.2 \cdot 10^{22}$
3.	Относительная диэлектрическая проницаемость	11.7	16.0	12.5
4.	Собственная концентрация носителей при Т=300 К, см ⁻³	$1.4 \cdot 10^{10}$	$2.4 \cdot 10^{13}$	1.4·10 ⁸
5.	Подвижность электронов при T=300 K, см ² /м · с	1450	3900	8000
6.	Подвижность дырок при T=300 К, см ² /м · с	480	1900	500
7.	Время жизни электронов, с	10-3	10 ⁻⁵	10 ⁻⁸
8.	Время жизни дырок, с	10-3	10-5	10-8
9.	Эффективная масса электрона, <i>m</i> ₀			0.068
	- тяжелых электронов	0.97	1.58	
	- легких электронов	0.19	0.082	
10.	Эффективная масса дырок, <i>m</i> ₀			
	- легких дырок	0.16	0.04	0.12
	 тяжелых дырок 	0.5	0.3	0.5
11.	Время излучательной рекомбинации, с в собственном полупроводнике	$1.54 \cdot 10^4$	0.61	0.009
12.	Сродство к электрону, эВ	4.05	4.0	4.07
13.	Работа выхода, эВ	4.8	4.4	4.7

СПРАВОЧНЫЕ ДАННЫЕ ПО ПОЛУПРОВОДНИКОВЫМ МАТЕРИАЛАМ