Томский государственный университет систем управления и радиоэлектроники

Приходовский М.А.

Математика

Учебное пособие (курс лекций)

2-й семестр Часть 2

для специальности: 09.03.03 «прикладная информатика в экономике» (группа 445)

Томск ТУСУР 2016 Электронное пособие составлено и скорректировано с учётом реального проведения лекций на ФСУ в группе 445 весной 2016 года.

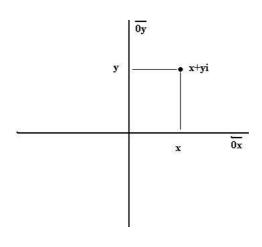
Во второй половине 2 семестра, согласно рабочей программе, на специальности 09.03.03 изучаются следующие темы:

- 1. Основы комплексных чисел.
- 2. Числовые и функциональные ряды.
- 3. Степенные ряды, ряды Тейлора и Лорана.
- 4. Ряды Фурье.

Глава 3. Ряды § 0. Комплексные числа.

При изучении числовых систем В школе становится привычным понятие «действительная ось», «действительные» («вещественные») числа. Но эта система чисел является неполной, так как не содержит корни некоторых, казалось бы, простых уравнений, например $x^2 + 1 = 0$. Если у квадратичного уравнения $ax^2 + bx + c = 0$ отрицательный дискриминант, то есть $b^2 - 4ac < 0$, то на действительной оси нет ни одного корня уравнения. Однако существует система условных, обобщённых чисел, где и такие уравнения тоже имеют решения. Они называются комплексными числами и геометрически соответствуют точкам на плоскости, а известная ранее действительная ось - это горизонтальная ось Ох в данной плоскости. Введено абстрактное понятие «мнимая единица» $i = \sqrt{-1}$ обозначающая «квадратный корень из минус 1». При этом получается $i^2 = -1$.

Геометрическая интерпретация. На плоскости, горизонтальная ось отождествляется со множеством действительных чисел, а мнимая ось, содержащая $i=\sqrt{-1}$, перпендикулярна оси действительных чисел. Но ведь и множество отрицательных чисел тоже когда-то в прошлом считали абстракцией, потому что они не отражают никакое реальное количество объектов



$$N \subset Z \subset Q \subset R \subset C$$
.

Комплексные числа - ещё более абстрактное обобщение. Оно полезно при решении различных физических задач. Плоскость комплексных чисел есть расширение множества действительных чисел. Каждой точке на плоскости с координатами (x,y) можно поставить в соответствие комплексное число, состоящее из действительной и мнимой части: z = x + iy. Проекция на действительную и мнимую ось называются действительной частью и мнимой частью комплексного числа. x = Re(z), y = Im(z).

Если y = 0, то число x + 0i = x это обычное действительное число.

Сложение и вычитание комплексных чисел определяется покоординатно, как для обычных векторов в плоскости.

$$(a+bi)+(c+di) = a+c+bi+di = (a+c)+(b+d)i$$
.

Для вычитания аналогично: (a+bi)-(c+di)=(a-c)+(b-d)i. Умножение.

 $(a+bi)(c+di) = ac+bci+adi+bdi^2$, учитывая тот факт, что $i^2 = -1$, получаем ac-bd+bci+adi = (ac-bd)+(bc+ad)i.

Таким образом, после раскрытия скобок, надо просто учесть $i^2 = -1$ и привести подобные.

Пример. $(1+i)(2+i) = 2+i+2i+i^2 = 1+3i$.

Для числа z = x + iy, число $\bar{z} = x - iy$ называется сопряжённым.

Умножим два взаимно сопряжённых комплексных числа:

$$(x+iy)(x-iy) = x^2 + ixy - ixy + i^2y^2 = x^2 + y^2$$
, получилось действительное число.

ЛЕКЦИЯ № 9. 22. 04. 2016

Мы заметили, что при умножении на сопряжённое мнимая часть станет 0, и получается действительное число. Этот факт можно использовать для процедуры деления. Если домножить на сопряжённое в знаменателе, то там получится действительное число, и это даст возможность разбить на сумму двух дробей. При этом, конечно, в числителе тоже домножаем на сопряжённое к знаменателю, чтобы дробь не изменилась.

$$\frac{a+bi}{c+di} = \frac{(a+bi)\cdot(c-di)}{(c+di)\cdot(c-di)} = \frac{ac+bd+bci-adi}{c^2+d^2} = \frac{ac+bd}{c^2+d^2} + \frac{bc-ad}{c^2+d^2}i$$

Пример. Вычислить $\frac{2+i}{1+i}$.

$$\frac{2+i}{1+i} = \frac{(2+i)(1-i)}{(1+i)(1-i)} = \frac{2+i-2i-i^2}{1+i-i-i^2} = \frac{2+i-2i+1}{1+i-i+1} = \frac{3-i}{2} = \frac{3}{2} - \frac{1}{2}i$$

Поиск корней многочлена 2 степени при D < 0.

Пример. Решить уравнение $x^2 + x + 1 = 0$. $D = b^2 - 4ac = -3 < 0$. Теперь можно вычислить 2 корня, правда, они не на действительной прямой:

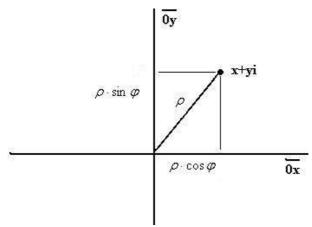
$$x = \frac{-1 \pm \sqrt{-3}}{2} = \frac{-1 \pm \sqrt{3}\sqrt{-1}}{2} = \frac{-1 \pm \sqrt{3}i}{2} = -\frac{1}{2} \pm \frac{\sqrt{3}}{2}i.$$

Как видим, 2 корня получились взаимно сопряжённые, то есть вида $a\pm bi$, так как в выражении было $\pm \sqrt{D}$, где D отрицательно. Для многочлена с отрицательным дискриминантом всегда получаются 2 взаимно сопряжённых корня.

Тригонометрическая форма комплексного числа.

Введём величину $\rho = \sqrt{x^2 + y^2}$ тогда x, y можно представить в таком виде: $x = \rho \cos \varphi$, $y = \rho \sin \varphi$ для некоторого φ , ведь геометрически в этом случае x, y - катеты прямоугольного треугольника,

$$\rho = \sqrt{x^2 + y^2}$$
 - его гипотенуза.



Абсцисса и ордината точки (x, y) на плоскости это проекции на оси, они равны $\rho \cdot \cos \varphi$ и $\rho \cdot \sin \varphi$ соответственно. Кстати, эти величины ρ и φ называются полярными координатами точки на плоскости. Если записать комплексное число x+iy с помощью введённых выше величин ρ и φ , получим:

$$x + iy = \rho \cdot \cos \varphi + i \cdot \rho \cdot \sin \varphi = \rho(\cos \varphi + i \cdot \sin \varphi)$$
.

не

модуля

Понятие

Выражение $z = \rho(\cos\varphi + i \cdot \sin\varphi)$ называется тригонометрической формой комплексного числа, φ - его аргументом, ρ - модулем.

$$\varphi = \arg(z) \quad \rho = |z|.$$

противоречит известному

применявшемуся раньше для отрицательных чисел: и там, и здесь модуль - есть расстояние по кратчайшей линии до начала координат. Для любой точки x+iy модуль вычисляется как $\rho=\sqrt{x^2+y^2}$. Для вычисления аргумента верна формула $\varphi=arctg\bigg(\frac{y}{x}\bigg)$ если точка в 4-й и 1-й четверти, либо $\varphi=\pi+arctg\bigg(\frac{y}{x}\bigg)$, если во 2-й и 3-й четверти. Это связано с тем, что период тангенса равен π , график этой функции непрерывен на интервале от $-\frac{\pi}{2}$ до $+\frac{\pi}{2}$.

Число 1+i запишется в виде $\sqrt{2}\left(\cos\frac{\pi}{4}+i\sin\frac{\pi}{4}\right)$.

Число i соответствует $1\left(\cos\frac{\pi}{2} + i\sin\frac{\pi}{2}\right)$.

Если вычислить синус и косинус, то снова перейдём к обычной, «алгебраической» форме числа:

$$\sqrt{2}\left(\cos\frac{\pi}{4} + i\sin\frac{\pi}{4}\right) = \sqrt{2}\left(\frac{1}{\sqrt{2}} + i\frac{1}{\sqrt{2}}\right) = 1 + i.$$

Действительное число имеет аргумент 0 (если оно положительно) или π (если оно отрицательно).

Угол может определяться разными способами, так, например, вместо угла $\varphi = \frac{3\pi}{4}$ во всех вычислениях для комплексных чисел в тригонометрической форме можно использовать $\varphi = -\frac{5\pi}{4}$, и это не будет ошибкой, так как тригонометрические функции повторяются

Показательная форма комплексного числа.

через промежуток 2π .

Известна формула Эйлера $e^{i\varphi}=\cos\varphi+i\sin\varphi$, таким образом, выражение $z=\rho(\cos\varphi+i\cdot\sin\varphi)$ может быть записано в виде $z=\rho e^{i\varphi}$.

Так, например, мнимой единице соответствует аргумент $\frac{\pi}{2}$ и модуль 1, поэтому запись в тригонометрической и показательной формах такова:

$$i = 1\left(\cos\left(\frac{\pi}{2}\right) + i\sin\left(\frac{\pi}{2}\right)\right) = 1e^{i\pi/2}.$$

$$1 + i = \sqrt{2}\left(\cos\frac{\pi}{4} + i\sin\frac{\pi}{4}\right) = \sqrt{2}e^{i\pi/4}$$

Умножение и деление в тригонометрической и показательной форме.

Умножение, и особенно деление комплексных чисел чаще всего бывает легче выполнять в тригонометрической форме, чем в алгебраической, так как для деления не нужно домножать на сопряжённое в знаменателе.

В показательной форме.

$$z_{1}z_{2} = \rho_{1}e^{i\varphi_{1}}\rho_{2}e^{i\varphi_{2}} = \rho_{1}\rho_{2}e^{i(\varphi_{2}+\varphi_{1})}$$
$$\frac{z_{1}}{z_{2}} = \frac{\rho_{1}}{\rho_{2}}e^{i\varphi_{1}}e^{-i\varphi_{2}} = \frac{\rho_{1}}{\rho_{2}}e^{i(\varphi_{2}-\varphi_{1})}$$

В тригонометрической форме:

$$\rho_1 \rho_2 (\cos(\varphi_1 + \varphi_2) + i \sin(\varphi_1 + \varphi_2))$$

Доказательство формулы:

$$z_1 z_2 = \rho_1(\cos \varphi_1 + i \cdot \sin \varphi_1) \ \rho_2(\cos \varphi_2 + i \cdot \sin \varphi_2) =$$
$$\rho_1 \rho_2(\cos \varphi_1 \cos \varphi_2 - \sin \varphi_1 \sin \varphi_2 + i \cos \varphi_1 \sin \varphi_2 + i \sin \varphi_1 \cos \varphi_2) =$$

$$\rho_1 \rho_2 (\cos(\varphi_1 + \varphi_2) + i \sin(\varphi_1 + \varphi_2))$$

Здесь были использованы известные тригонометрические формулы косинуса суммы и синуса суммы.

Таким образом, для умножения двух комплексных чисел, представленных в тригонометрической форме, достаточно просто умножить их модули и сложить аргументы.

Формула деления двух комплексных чисел в тригонометрической форме:

$$\frac{z_1}{z_2} = \frac{\rho_1}{\rho_2} (\cos(\varphi_1 - \varphi_2) + i \sin(\varphi_1 - \varphi_2)).$$

Для деления двух комплексных чисел, представленных в тригонометрической форме, нужно поделить их модули и вычесть аргументы.

Заметим, что при умножении на мнимую единицу i, а именно при действии (a+bi)i=-b+ai, фактически вектор (a,b) на плоскости

переходит в (-b,a), то есть как раз и прибавляется аргумент числа i, то есть 90 0 .

Пример. Поделить $\frac{i}{1+i}$.

$$\frac{1e^{i\pi/2}}{\sqrt{2}e^{i\pi/4}} = \frac{1}{\sqrt{2}}e^{i\left(\frac{\pi}{2} - \frac{\pi}{4}\right)} = \frac{1}{\sqrt{2}}e^{i\frac{\pi}{4}} = \frac{1}{\sqrt{2}}\left(\cos\frac{\pi}{4} + i\sin\frac{\pi}{4}\right) = \frac{1}{\sqrt{2}}\left(\frac{1}{\sqrt{2}} + i\frac{1}{\sqrt{2}}\right) = \frac{1}{2} + i\frac{1}{2}.$$

В качестве домашнего задания, можно это выполнить и с помощью умножения на сопряжённое, чтобы повторить ранее изученный алгоритм.

Решение:
$$\frac{i}{1+i} = \frac{i(1-i)}{(1+i)(1-i)} = \frac{-i^2+i}{2} = \frac{1+i}{2} = \frac{1}{2}+i\frac{1}{2}$$
.

Формула Муавра, степень. Корни.

Если умножали бы в тригонометрической форме не два разных числа, а одно и то же число $z=\rho(\cos(\varphi)+i\sin(\varphi))$, то получилось бы:

$$ho
ho(\cos(\varphi+\varphi)+i\sin(\varphi+\varphi))$$
, то есть $z^2=
ho^2(\cos(2\varphi)+i\sin(2\varphi))$.

Таким же образом можно умножить z в третий раз и снова в аргументе прибавится φ , а модуль снова умножится на ρ . Таким образом, по индукции доказывается, что

$$z^{n} = \rho^{n} (\cos(n\varphi) + i\sin(n\varphi))$$

Эта формула называется формулой Муавра и позволяет не перемножать множество скобок, если требуется вычислить большую степень числа, а вычислить её по формуле.

И снова можно сказать, что ещё легче возводить в степень с помощью показательной формы числа:

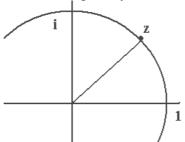
$$z^{n} = \left(\rho e^{i\varphi}\right)^{n} = \rho^{n} e^{in\varphi}$$

Пример. Найти $(1+i)^8$.

Вычислим модуль и аргумент. $\rho = \sqrt{1^2 + 1^2} = \sqrt{2}$

$$\varphi = arctg\left(\frac{1}{1}\right) = arctg1 = \frac{\pi}{4}$$
.

Таким образом, соответствующая точка расположена в первой четверти на пересечении биссектрисы угла и единичной окружности.



По формуле Муавра, $\sqrt{2}^{8} \left(\cos \left(8 \frac{\pi}{4} \right) + i \sin \left(8 \frac{\pi}{4} \right) \right) = 2^{4} \left(\cos 2\pi + i \sin 2\pi \right)$ = $16 \left(\cos 0 + i \sin 0 \right) = 16$.

В показательной форме: $\left(\sqrt{2} \cdot e^{i\pi/4}\right)^8 = 16 \cdot e^{2\pi i} = 16(\cos 0 + i \sin 0) = 16$

Корень порядка п вычисляется по такой формуле:

$$\sqrt[n]{z} = \sqrt[n]{\rho} \left(\cos \frac{\varphi + 2\pi k}{n} + i \sin \frac{\varphi + 2\pi k}{n} \right)$$

Доказательство.

Если возведём в степень п, получим

$$\left(\sqrt[n]{\rho}\right)^{n} \left(\cos(\varphi + 2\pi k) + i\sin(\varphi + 2\pi k)\right) = \rho\left(\cos(\varphi) + i\sin(\varphi)\right) = z.$$

Добавка $\frac{2\pi k}{n}$ после возведения в степень станет кратной 2π , то есть

точка, отстоящие на угол $\frac{2\pi}{n}$, просто опишет один лишний оборот вокруг начала координат, то есть в аргументу добавится 360 градусов, и придёт в ту же точку, что и без $\frac{2\pi k}{n}$.

Пример. Найдите все значения корня $\sqrt[3]{8i}$.

Сначала представим комплексное число, которое находится под знаком корня, в тригонометрической форме.

Точка расположена на мнимой оси выше начала координат,

поэтому аргумент
$$\varphi = \frac{\pi}{2}$$
, модуль $\rho = |8i| = 8$.

Теперь находим все 3 корня.

$$\sqrt[3]{8}$$
 $\left(\cos\frac{\frac{\pi}{2} + 2\pi k}{3} + i\sin\frac{\frac{\pi}{2} + 2\pi k}{3}\right)$ при $k = 0,1,2$.

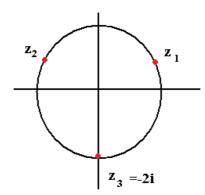
$$2\left(\cos\left(\frac{\pi}{6}+\frac{2}{3}\pi k\right)+i\sin\left(\frac{\pi}{6}+\frac{2}{3}\pi k\right)\right)$$
, отсюда:

1)
$$z_1 = 2\left(\cos\left(\frac{\pi}{6}\right) + i\sin\left(\frac{\pi}{6}\right)\right) = \sqrt{3} + i$$

2)
$$z_2 = 2\left(\cos\left(\frac{5\pi}{6}\right) + i\sin\left(\frac{5\pi}{6}\right)\right) = -\sqrt{3} + i$$

3)
$$z_3 = 2\left(\cos\left(\frac{9\pi}{6}\right) + i\sin\left(\frac{9\pi}{6}\right)\right) = -2i$$

Чертёж:



Если к исходному углу добавить 120 градусов, то для куба этого числа добавится 360 градусов, и результат будет точно такой же. С этим

фактом как раз и связано наличие лишнего слагаемого $\frac{2\pi k}{n}$ в формуле.

Квадратных корней два, а именно $\pm \sqrt{a}$. Это происходит по той же причине: если число было положительным, то его аргумент был 0, и тогда по формуле $\sqrt{z} = \sqrt{a} \bigg(\cos \frac{0 + 2\pi k}{2} + i \sin \frac{0 + 2\pi k}{2} \bigg)$ то есть $\sqrt{a} \bigg(\cos \pi k + i \sin \pi k \bigg) = \sqrt{a} \bigg((-1)^k + i 0 \bigg) = (-1)^k \sqrt{a}$, что и соответствует

 $\sqrt{a(\cos\pi k + i\sin\pi k)} = \sqrt{a(-1)^n + i0} = (-1)^n \sqrt{a}$, что и соответствует $\pm \sqrt{a}$ при k = 0 и k = 1. К аргументу прибавляется по 360 / 2 = 180 градусов.

Корни квадратные из отрицательного числа имеют вид $\pm i\sqrt{a}$.Там аргумент корня имеет вид $\frac{\pi+2\pi k}{2}=\frac{\pi}{2}+\pi k$, то есть 90 и 270 градусов соответственно.

Обобщённые синус и косинус для комплексного аргумента.

$$\sin z = \frac{e^{iz} - e^{-iz}}{2i}$$
 и $\cos z = \frac{e^{iz} + e^{-iz}}{2}$.

Рассмотрим при действительном значении z = x + i0, и докажем, что это на самом деле обобщения тех тригонометрических функций.

$$\cos x = \frac{e^{ix} + e^{-ix}}{2} = \frac{(\cos x + i \sin x) + (\cos(-x) + i \sin(-x))}{2}$$
 по свойствам

чётности и нечётности, получается

$$\frac{(\cos x + i\sin x) + (\cos x - i\sin x)}{2} = \frac{2\cos x}{2} = \cos x.$$

Для синуса, аналогично было бы

$$\frac{(\cos x + i\sin x) - (\cos x - i\sin x)}{2i} = \frac{2i\sin x}{2i} = \sin x.$$

При отступлении в сторону от действительной прямой, значения косинуса и синуса могут быть и больше 1 по модулю, т.е. область значений вовсе не отрезок [-1,1], например $\cos(5i) > 1$.

$$\cos 5i = \frac{e^{i5i} + e^{-i5i}}{2} = \frac{e^{-5} + e^{5}}{2} > \frac{e^{5}}{2} > 1.$$

Эти функции в комплексной плоскости являются неограниченными.

Логарифм комплексного числа.

 $Ln(z) = \ln \rho + i(\varphi + 2\pi k) \ (\forall k \in \mathbb{Z}).$

Доказательство формулы $Ln(z) = \ln \rho + i(\varphi + 2\pi k)$.

$$e^{Ln(z)} = e^{\ln \rho + i(\varphi + 2\pi k)} \Rightarrow z = \rho e^{i(\varphi + 2\pi k)} = z = \rho(\cos(\varphi + 2\pi k) + i\sin(\varphi + 2\pi k)) = \rho(\cos(\varphi) + i\sin(\varphi)) = z$$

так как синус и косинус не зависят от прибавления угла, кратного 2π

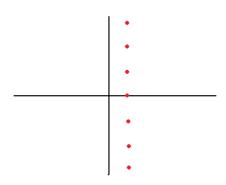
А это равенство уже очевидно, так как это и есть тригонометрическая форма комплексного числа.

Таким образом, логарифм существует для всех точек в плоскости, за исключением нуля. Для действительного положительного числа, аргумент равен 0, поэтому это бесконечное множество точек имеет вид $\ln \rho + i(0+2\pi k)$, то есть одно из значений, а именно, при k=0, попадёт на действительную ось. Если вычислять логарифм отрицательного числа, то получим $\ln \rho + i(\pi + 2\pi k)$, то есть набор точек сдвинут вверх и ни одна из них не попадает на действительную ось.

Из формулы видно, что только при нулевом аргументе исходного числа одно из значений логарифма попадает на действительную ось. А это соответствует правой полуоси, и именно поэтому в курсе школьной математики рассматривали только логарифмы положительных чисел. Логарифмы отрицательных и мнимых чисел также существуют, но у них нет ни одного значения на действительной оси.

На следующем чертеже показано, где в плоскости расположены все значения логарифма положительного числа. Одно из них на действительной оси, остальные выше и ниже на 2π , 4π , 6π и

так далее. Для отрицательного или комплексного числа, аргумент φ отличен от нуля, поэтому происходит сдвиг этой последовательности точек по вертикали, в результате чего на действительной оси не будет ни одной точки.



Пример. Вычислить Ln(-2).

Решение. Определим модуль числа (равен 2) и аргумент 180^0 , то есть π . Тогда $Ln(-2) = \ln 2 + i(\pi + 2\pi k)$.

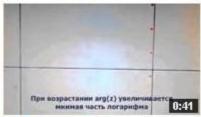
Пример. Вычислить Ln(i).

По формуле, $Ln(z) = \ln \rho + i(\varphi + 2\pi k)$, таким образом

$$Ln(i) = \ln 1 + i \left(\frac{\pi}{2} + 2\pi k \right) = 0 + i \left(\frac{\pi}{2} + 2\pi k \right)$$

В обучающем видео (по ссылке) показано, как движутся точки в комплексной плоскости, являющиеся значениями логарифма, при изменении модуля или аргумента:

http://www.youtube.com/watch?v=LKFFn-TSLd0



ТФКП логарифм комплексного числа

Разложение функции f(z) в виде u+iv.

Если вычислить функцию, подставляя z = x + iy, то можно затем отделить действительную и мнимую часть, и образовать выражение u+iv, состоящее из так называемой действительной и мнимой части функции. u(x,y) = Re(f), v(x,y) = Im(f).

Пример.
$$f(z) = z^2$$
.

$$(x+iy)(x+iy) = x^2 + ixy + iyx + i^2y^2 = (x^2 - y^2) + i(2xy).$$

После раскрытия скобок, мы собрали в отдельное слагаемое те части, в которых нет i, и те, в которых есть i, тем самым выделили действительную и мнимую часть функции.

Таким образом, для отображения из плоскости в плоскость верно:

$$\begin{cases} u = x^2 - y^2 \\ v = 2xy \end{cases}.$$

Рассмотрим функцию e^{rx} если r комплексное число.

$$e^{(a+bi)x} = e^{ax}e^{ibx} = e^{ax}(\cos bx + i\sin bx) = e^{ax}\cos bx + ie^{ax}\sin bx.$$

то есть здесь действительная и мнимая часть - как раз те самые функции, которые входят в Φ CP при наличии комплексных корней.

Кстати, далеко не любые две компоненты могут являться частями какой-то комплексной функции. Они должны быть согласованы между собой. Более того, с помощью одной из них можно восстановить вторую часть.

Области в комплексной плоскости и неравенства, задающие их.

|z| = R - окружность радиуса R вокруг начала координат.

Пример. |z-i|<1 это круг радиуса 1 вокруг точки i . Это неравенство задаёт следующее условние: удаление числа z от фиксированного числа i не превышает 1. Можно непосредственно преобразовать в уравнение круга в плоскости: $|z-i|<1 \implies |(x+iy)-i|<1$

 $\Rightarrow |x+i(y-1)| < 1 \Rightarrow \sqrt{x^2 + (y-1)^2} < 1 \Rightarrow x^2 + (y-1)^2 < 1$ а это уравнение круга, центр которого в точке (0,1), то есть как раз в точке i. Чертёж:

i

Пример. $|z-1-i| < 2 \implies |z-(1+i)| < 2$ это круг радиуса 2 с центром в точке 1+i, то есть точке (1,1) в плоскости.

Пример. Множество $1 < \left| z - i \right| < 2$ это кольцо вокруг точки i .

§ 1. Числовые ряды.

Пусть дана последовательность $\{a_1,a_2,...,a_n,...\}$. Можно образовать бесконечную сумму: $a_1+a_2+...+a_n+...=\sum_{k=1}^\infty a_k$. Такая сумма

называется рядом.

Если суммировать до какого-то номера n, то получается «частичная сумма» $S_n = \sum_{k=1}^n a_k$. Часть, которая следует после слагаемого с

номером n при этом называется остатком ряда. $\sum_{k=n+1}^{\infty} a_k$.

Если сумма ряда обозначена S , то: $\sum_{k=n+1}^{\infty} a_k = S - S_n$.

Для каждого ряда существует последовательность частичных сумм: $\{S_1, S_2, ..., S_n, ...\}$ ведь мы можем произвести конечное суммирование от 1-го до 1-го, затем от 1-го до 2-го, от 1-го до 3-го и так далее, и так для каждого п. Если сходится последовательность частичных сумм, то

есть она имеет конечный предел, то и соответствующий ряд называется сходящимся рядом.

Сходимость ряда эквивалентна сходимости любого из его остатков. Действительно, если отбросить какое-то конечное число членов ряда, то оставшиеся можно пронумеровать снова, начиная с 1-го номера, и получается новый бесконечный ряд, а то что отняли, есть конечная сумма чисел $(a_1+a_2+...+a_n)$, то есть конечное число. С другой стороны, это следует из того, что предел последовательности частичных сумм также можно считать начиная с любого номера: если есть предел, то неважно, начиная с какого элемента мы начинаем рассматривать последовательность, предел всё равно получается точно такой же.

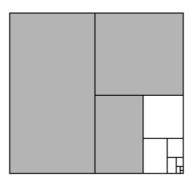
Более подробное определение сходимости с помощью ε :

Ряд
$$\sum_{k=1}^{\infty} a_k$$
 называется сходящимся, если для всякого $\varepsilon > 0$

существует такой номер $n \in N$, что абсолютная величина остатка ряда (после этого элемента) будет меньше, чем ε .

Смысл: начиная с некоторого номера, сумма оставшихся элементов меньше любой заранее заданной погрешности, это и означает, что ряд сходится, а частичные суммы стабилизируются при $n \to \infty$. Пример. Рассмотрим убывающую геометрическую прогрессию - кстати, прогрессия это один из важных частных случаев ряда.

$$\frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \dots$$
 Геометрическая интерпретация: возьмём квадрат



Если закрасить половину, затем четверть квадрата, и каждый раз половину того, что осталось до целого, то мы никогда не превысим площадь квадрата, а закрашенная площадь будет приближаться к 1. Известна формула суммы бесконечной убывающей геометрической

прогрессии:
$$S = \frac{b_1}{1-q}$$
. В данном случае $S = \frac{\frac{1}{2}}{1-\frac{1}{2}} = 1$.

Для погрешности $\varepsilon=0.01$ найдём такой элемент, что частичная сумма отклоняется от суммы прогрессии менее чем на $\varepsilon=0.01$, то есть остаток меньше $\varepsilon=0.01$.

$$\frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \frac{1}{16} + \frac{1}{32} + \frac{1}{64} + \frac{1}{128} + \dots$$
 После 7-го элемента, $\frac{1}{256} + \frac{1}{512} + \dots$ то есть для остатка, который тоже есть геометрическая прогрессия,

$$S-S_7=rac{1/256}{1-1/2}=rac{1/256}{1/2}=rac{1/256}{1/2}=1/128$$
 < 0,01. Таким образом, после 7-го

элемента, частичные суммы отклоняются от суммы менее чем на $\varepsilon=0.01$.

Теорема 1. Необходимый признак сходимости.

Если ряд
$$\sum_{k=1}^{\infty} a_k$$
 сходится, то $a_n \to 0$.

Доказательство. Так как остаток ряда стремится к нулю, то есть сумма

 $\sum_{k=n+1}^{\infty} a_k = a_{n+1} + a_{n+2} + ...$ по модулю меньше чем ε , то одно первое

слагаемое из остатка - тем более, меньше чем ε . Получается, что при росте номера $|a_n| \to 0$, а значит и общий член ряда уменьшается к нулю, $a_n \to 0$.

Замечание. Это необходимый, а не достаточный признак! Т.е. если $a_n \to 0$, это ещё не всегда означает, что ряд сходящийся, а вот если общий член ряда не стремится к нулю, то ряд расходится, то есть такие ряды даже не надо исследовать, про них сразу же известно, что сходимости нет.

Сейчас мы увидим пример, где слагаемые стремятся к 0, а сходимости всё же нет.

Гармонический ряд
$$1 + \frac{1}{2} + \frac{1}{3} + ... + \frac{1}{n} + ...$$

Доказательство его расходимости.

Возьмём сумму от элемента номер n+1 до 2n. Докажем, что она больше 1/2, то есть для произвольного ε , невозможно сделать её меньше, чем ε .

Если была бы сходимость, то для любого ε остаток, начиная с какогото номера, меньше чем ε . Запишем для п даже не весь остаток ряда, а его часть, а именно, последующие п элементов.

$$\frac{1}{n+1} + \frac{1}{n+2} + \dots + \frac{1}{2n}$$

Наименьший элемент здесь $\frac{1}{2n}$. Если мы заменим все слагаемые на

него, то сумма лишь уменьшится, т.е.

$$\frac{1}{n+1} + \frac{1}{n+2} + \ldots + \frac{1}{2n} > \frac{1}{2n} + \frac{1}{2n} + \ldots + \frac{1}{2n} = \frac{n}{2n} = \frac{1}{2}.$$

Итак, часть частичной суммы от номера n+1 до 2n больше, чем $\frac{1}{2}$, то

есть не может быть меньше ε . Определение сходимости не выполнено, ряд расходится. Здесь это происходит из-за того, что слагаемые уменьшаются слишком медленно.

Замечание. Тема «ряды» связана с темой «несобственные интегралы», там тоже рассматриваются только функции, стремящиеся к 0, и для них может быть либо сходимость, либо расходимость несобственного интеграла 1-го рода. Но там непрерывные, а здесь дискретные величины. Вспомним, что там тоже интеграл от $\frac{1}{}$ был расходящимся, аналогичное мы сейчас увидели для ряда

$$1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n} + \dots$$

ЛЕКЦИЯ № 10. 29. 04. 2016

Суммы рядов в некоторых случаях можно найти, используя формулу Тейлора. Вспомним, например, $e^x = 1 + x + \frac{x^2}{2!} + \frac{x^3}{2!} + \dots$ если здесь положим x = 1, то получается $e = 1 + 1 + \frac{1}{2!} + \frac{1}{3!} + \dots$, то есть сумма $1 + \frac{1}{2!} + \frac{1}{3!} + \dots = e - 1.$

Либо вспомним разложение функции
$$\ln(x+1)=x-\frac{x^2}{2}+\frac{x^3}{3}+\dots$$
, тогда при $x=1$ получается $1-\frac{1}{2}+\frac{1}{3}+\dots=\ln 2$.

Если все слагаемые здесь были бы со знаком «+» то это был бы гармонический ряд, расходимость которого доказали ранее. Получается, что если знаки чередуются, то сходимость может быть из-за частичной компенсации слагаемых, а если взять по модулю, то сходимости может и не быть. В связи с этим возникает такое понятие.

Абсолютная и условная сходимость.

Если ряд $\sum_{n=1}^{\infty} a_n$ сходится, и при этом также $\sum_{n=1}^{\infty} |a_n|$ сходится, то ряд

 $\sum_{n=1}^{\infty} a_n$ называется абсолютно сходящимся. А если $\sum_{n=1}^{\infty} a_n$ сходится, а

 $\sum_{n=1}^{\infty} |a_n|$ расходится, то исходный ряд называется условно сходящимся.

Если все слагаемые положительны, то сходимость равносильная абсолютной, а понятие «условно» не имеет смысла и не применяется.

Изменение суммы от перестановки бесконечного числа слагаемых (пример). $1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \frac{1}{5} + ... = \ln 2$. Теперь переставим так, чтобы после каждого положительного следовали ровно по 2 отрицательных члена ряда.

$$1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \frac{1}{5} + \dots = \left(1 - \frac{1}{2} - \frac{1}{4}\right) + \left(\frac{1}{3} - \frac{1}{6} - \frac{1}{8}\right) + \left(\frac{1}{5} - \frac{1}{10} - \frac{1}{12}\right) + \dots$$

объединим первые 2 слагаемых в каждой скобке.

$$\left(\frac{1}{2} - \frac{1}{4}\right) + \left(\frac{1}{6} - \frac{1}{8}\right) + \left(\frac{1}{10} - \frac{1}{12}\right) + \dots$$
 а теперь вынесем $\frac{1}{2}$.

$$\frac{1}{2} \left(\left(1 - \frac{1}{2} \right) + \left(\frac{1}{3} - \frac{1}{4} \right) + \left(\frac{1}{5} - \frac{1}{6} \right) + \dots \right) = \frac{1}{2} \left(1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \frac{1}{5} - \frac{1}{6} + \dots \right)$$
 мы

получили точно такой же ряд, как и был в начале, но с

коэффициентом $\frac{1}{2}$. То есть сумма теперь должна быть не $\ln 2$, а $\frac{1}{2} \ln 2$.

Вот такой парадокс: привычный закон коммутативности далеко не всегда выполняется в бесконечных суммах!

Если ряд абсолютно сходится, то его сумма не зависит от перестановки бесконечного количества слагаемых. В связи с этим как раз и введено понятие абсолютной сходимости.

Признаки сходимости числовых рядов.

признаки сходимости - это теоремы, дающие конкретные методы исследования рядов на сходимость или расходимость. Теорема 2. Интегральный признак Коши.

Если дан ряд $\sum_{n=1}^{\infty}a_{n}\,$ и при этом существует функция $\,f(x)\,,$ такая, что

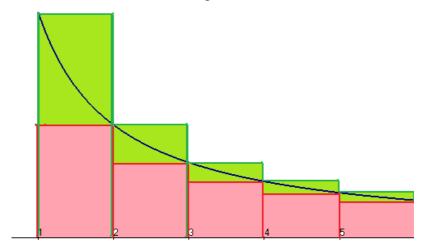
при целых значениях она совпадает с членами этого ряда, т.е.

$$f(n)=a_n$$
 , то ряд $\sum_{n=1}^{\infty}a_n\,$ сходится тогда и только тогда, когда сходится

несобственный интеграл $\int_{1}^{\infty} f(x)dx$.

Доказательство. Рассмотрим чертёж. Высоты столбцов, расположенных выше графика (включающие в себя и зелёную и красную часть), это числа a_1, a_2, a_3, \ldots , так как эти высоты f(1), f(2) и т.д. Сумма площадей этих столбцов, как раз и есть сумма ряда. И это больше, чем несобственный интеграл.

В то же время столбцы, расположенные ниже графика (только красная часть на чертеже), имеют высоту a_2, a_3, a_4, \ldots так как у первого из них высота f(2). Сумма их площадей это сумма остатка ряда без 1-го слагаемого. Но они все ниже графика, то есть их суммарная площадь меньше, чем несобственный интеграл.



Итак, получили:
$$a_2 + a_3 + ... \le \int_1^\infty f(x) dx \le a_1 + a_2 + a_3 + ...$$

Правое неравенство означает: из того, что ряд сходится, следует, что несобственный интеграл сходится. А левое неравентство значит, что из сходимости интеграла следует сходимость остатка ряда, начиная со 2-го элемента. Но ведь сходимость остатка ряда равносильна сходимости самого ряда. Поэтому в итоге получается такой факт: ряд сходится тогда и только тогда, когда несобственный интеграл сходится.

Фактически, с помощью этой теоремы можно во многих случаях как бы заменять n на x, и исследовать не дискретные, а непрерывные величины, а это удобнее, т.к. можно интегрировать, применять перавообразные, то есть гораздо больше способов для исследования.

Пример. Ряды вида $\sum_{n=1}^{\infty} \frac{1}{n^a}$, сходятся при a>1. Они эквивалентны

интегралам $\int\limits_{1}^{\infty} \frac{1}{x^a} dx$, про которые известно, что при a>1 есть

сходимость. Итак,
$$\sum_{n=1}^{\infty} \frac{1}{n^2}$$
, $\sum_{n=1}^{\infty} \frac{1}{n^3}$, $\sum_{n=1}^{\infty} \frac{1}{n^{\frac{3}{2}}}$ сходятся, а вот $\sum_{n=1}^{\infty} \frac{1}{n}$, $\sum_{n=1}^{\infty} \frac{1}{\sqrt{n}}$

расходятся, здесь степень меньше или равна 1.

Но не всегда удаётся подобрать такую функцию, чтобы применить интегральный признак Коши. Например, в ряде может содержаться n! Поэтому нужны и другие признаки.

Если исследовать внутреннюю структуру ряда, а именно отношение следующего слагаемого к предыдущему, то например, для геометрической прогресмсии это число всегда одно и то же q (называется знаменатель прогрессии). А вот если ряд не является прогресией, то оно как-то варьируется, для сходимости важно, чтобы оно оказалось меньше какого-то q, то есть было меньше сходящейся прогрессии.

Теорема 3. Признак Даламбера в конечной (не-предельной) форме.

Если при всех $n > n_0$ (то есть начиная с некоторого номера)

выполняется условие $\frac{\mid a_{n+1}\mid}{\mid a_{n}\mid} \leq q < 1$, то ряд абсолютно сходится.

Доказательство. Во-первых, сходимость ряда равносильная сходимости его остатка, т.е. можем рассмотреть остаток ряда и заново перенумеровать члены ряда, начиная с n_0 , поэтому можно доказывать

даже при том условии, что $\frac{\mid a_{n+1}\mid}{\mid a_{n}\mid} \leq q < 1$ верно, даже начиная с

первого номера. Обратите внимание, что условие $\frac{|a_{n+1}|}{|a_n|} \le q < 1$ это не

то же самое что $\frac{|a_{n+1}|}{|a_n|} < 1$. В нашем случае все они меньше q,

которое само меньше 1, т.е. отделено от 1 некоторым расстоянимем на числовой прямой, т.е. предел этих величин не может быть равен 1, от любой из них до 1 остаётся некоторое расстояние (1-q)!



$$\begin{split} & \frac{\mid a_2\mid}{\mid a_1\mid} \leq q \quad \Rightarrow \mid a_2 \mid \leq q \mid a_1\mid, \\ & \frac{\mid a_3\mid}{\mid a_2\mid} \leq q \quad \Rightarrow \mid a_3 \mid \leq q \mid a_2\mid \ \Rightarrow \mid a_3 \mid \leq q^2 \mid a_1\mid. \end{split}$$

Продолжая таким образом, можно модуль каждого члена ряда оценить с помощью $|a_1|$ и какой-то степени числа q.

Итак,
$$|a_1|+|a_2|+|a_3|+... \le |a_1|+q|a_1|+q^2|a_1|+... = |a_1|\left(1+q+q^2+...\right)$$
 получилось, что ряд, состоящий из модулей, меньше некоторой убывающей геометрической прогрессии.

$$\sum_{n=1}^{\infty} \left| a_n \right| \, = \, \left| \, a_1 \, \right| \, + \, \left| \, a_2 \, \right| \, + \, \left| \, a_3 \, \right| \, + \dots \, \, \leq \, \left| \, a_1 \, \right| \, \left(1 + \, q + \, q^{\, 2} \, + \dots \right) = \left| \, a_1 \, \right| \, \frac{1}{1 - q} \, .$$

Итак, сумма меньше некоторого конечного числа, т.е. ряд $\sum_{n=1}^{\infty} |a_n|$ сходится, а значит, исходный ряд сходится абсолютно.

Теорема 4. Признак Даламбера в предельной форме.

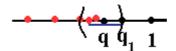
Если $\lim_{n\to\infty}\frac{\mid a_{n+1}\mid}{\mid a_{n}\mid}=q<1$ то ряд абсолютно сходится, если при этом

q > 1 то ряд расходится.

Доказательство. Следует из предыдущей теоремы таким образом. Если предел равен q и оно строго меньше 1, то для всякого $\varepsilon > 0$,

начиная с некоторого номера, все отношения вида $\frac{\mid a_{n+1}\mid}{\mid a_n\mid}$ входят в

окрестность $(q-\varepsilon,q+\varepsilon)$, а если заранее возьмём $\varepsilon<1-q$, то все эти элементы окажутся левее, чем $q_1=q+\varepsilon$, при этом $q_1<1$.



То есть, они всё равно будут отделены от 1 неким расстоянием. А тогда выполняются условия прошлой теоремы, и ряд абсолютно сходится.

Пример. Исследовать сходимость ряда $\sum_{n=1}^{\infty} \frac{1}{3^n}$.

Поделим n+1 й член ряда на n-й. На практике лучше пользоваться предельным признаком, т.е. сразу перейти к пределу и получить q.

$$\lim_{n\to\infty}\frac{|\,a_{n+1}\,|}{|\,a_{n}\,|}=\lim_{n\to\infty}\left(\frac{1}{3^{n+1}}:\frac{1}{3^{n}}\right)=\lim_{n\to\infty}\frac{3^{n}}{3^{n+1}}=\frac{1}{3}<1\,.$$
 Ответ: ряд сходится.

Замечание. Сходимость здесь сразу абсолютная, так как все слагаемые и так положительны.

Пример. Исследовать сходимость ряда $\sum_{n=1}^{\infty} \frac{1}{n!}$.

$$\lim_{n\to\infty}\frac{\mid a_{n+1}\mid}{\mid a_{n}\mid}=\lim_{n\to\infty}\left(\frac{1}{(n+1)!}:\frac{1}{n!}\right)=\lim_{n\to\infty}\frac{n!}{(n+1)!}=\lim_{n\to\infty}\frac{1\cdot 2\cdot ...\cdot n}{1\cdot 2\cdot ...\cdot n\cdot (n+1)}=\lim_{n\to\infty}\frac{1}{n+1}=0 \text{ . Итак, } q=0<1, \text{ ряд сходится.}$$

Пример. Исследовать сходимость ряда $\sum_{n=1}^{\infty} \frac{2^n}{n!}$.

$$\lim_{n\to\infty}\frac{\mid a_{n+1}\mid}{\mid a_{n}\mid}=\lim_{n\to\infty}\left(\frac{2^{n+1}}{(n+1)!}:\frac{2^{n}}{n!}\right)=\lim_{n\to\infty}\left(\frac{2^{n+1}}{(n+1)!}\frac{n!}{2^{n}}\right)=\lim_{n\to\infty}\frac{2}{n+1}=0\ ,\ \text{ряд сходится (абсолютно)}.$$

Замечание. Если было бы знакочередование, для признака Даламбера всё равно надо было бы рассмотреть по модулю, т.е. отбросить $(-1)^n$.

 $\sum_{n=1}^{\infty} \frac{(-1)^n 2^n}{n!}$ тоже сходится абсолютно. Знакочередование - вовсе не значит, что сходимость условная. Если исследовать здесь ряд даже без знакочередования, то он сходится.

Теорема 5. Радикальный признак Коши в конечной форме. Если при всех $n>n_0$ выполнено условие $\sqrt[n]{|a_n|} \le q<1$, то ряд

$$\sum_{n=1}^{\infty} a_n$$
 абсолютно сходится.

Доказательство. Если $\sqrt[n]{|a_n|} \le q$, то $|a_n| \le q^n$. Таким образом, начиная с некоторого номера, остаток ряда меньше или равен, чем убывающая геометрическая прогрессия.

 $|a_1|+|a_2|+|a_3|+... \le q+q^2+q^3+...=\frac{q}{1-q}$. Эта сумма конечна, то есть ряд абсолютно сходится.

Теорема 6. Радикальный признак Коши в предельной форме.

Если $\lim_{n\to\infty} \sqrt[n]{|a_n|} = q < 1$ то ряд абсолютно сходится, если q > 1 расходится.

Доказательство. Как и для признака Даламбера в предельной форме, следует из предыдущей теоремы. Если предел равен q, то после какого-то номера, все элементы меньше, чем $q_1=q+\varepsilon$, т.е. для числа q_1 верны условия теоремы 5.

Пример. Выяснить сходимость ряда $\sum_{n=1}^{\infty} \left(1 + \frac{1}{n}\right)^{n^2}$.

Рассмотрим
$$\lim_{n\to\infty} \sqrt[n]{|a_n|} = \lim_{n\to\infty} \left(1+\frac{1}{n}\right)^{\frac{n^2}{n}} = \lim_{n\to\infty} \left(1+\frac{1}{n}\right)^n = e>1$$
 (использовали 2-й замеч. предел) ряд расходится.

Замечание. При q=1 признак Даламбера и радикальный признак Коши не дают никакого ответа, в этом случае надо применять какиелибо другие признаки.

Теперь серия признаков, основанных не на внутренней структуре ряда, а на сравнении с каким-то внешним, «эталонным» рядом. Теорема 7. Признак сравнения в конечной форме.

Даны 2 ряда, $\sum_{n=1}^{\infty} a_n$ и $\sum_{n=1}^{\infty} b_n$, причём, начиная с какого-то номера n_0 верно $a_n \leq b_n$. Тогда:

- 1) Из сходимости $\sum_{n=1}^{\infty} b_n$ следует сходимость $\sum_{n=1}^{\infty} a_n$,
- 2) Из расходимости $\sum_{n=1}^{\infty}a_n$ следует расходимость $\sum_{n=1}^{\infty}b_n$.

Пример. Выяснить сходимость $\sum_{n=3}^{\infty} \frac{1}{2^n \ln n}$.

Заметим, что $\frac{1}{2^n \ln n} < \frac{1}{2^n}$ при $n \ge 3$, так как $\ln n > \ln e = 1$.

В то же время ряд $\sum_{n=3}^{\infty} \frac{1}{2^n}$, с помощью которого мы ограничили сверху, это сходящаяся геометрическая прогрессия, поэтому тот исходный ряд тоже сходится.

Теорема 8. Признак сравнения в предельной форме.

Даны 2 ряда, $\sum_{n=1}^{\infty}a_n$ и $\sum_{n=1}^{\infty}b_n$, причём $\lim_{n\to\infty}\frac{a_n}{b_n}=C$, где C константа,

 $C \neq 0, \infty$, т.е. a_n, b_n - бесконечно малые одного порядка, тогда ряд

 $\sum_{n=1}^{\infty}a_n$ сходится тогда и только тогда, когда $\sum_{n=1}^{\infty}b_n$ сходится.

Пример. Выяснить, сходится ли ряд $\sum_{n=1}^{\infty} \frac{n+1}{n^3+2}$.

Пусть $a_n = \frac{n+1}{n^3+2}$, тогда возьмём $b_n = \frac{n}{n^3} = \frac{1}{n^2}$. Предел отношения этих величин равен 1.

$$\lim_{n \to \infty} \left(\frac{n+1}{n^3 + 2} : \frac{1}{n^2} \right) = \lim_{n \to \infty} \frac{(n+1)n^2}{n^3 + 2} = \lim_{n \to \infty} \frac{n^3 + n^2}{n^3 + 2} = 1.$$

Поэтому для исследования сходимости, можно рассматривать $\sum_{n=1}^{\infty} \frac{1}{n^2}$

вместо $\sum_{n=1}^{\infty} \frac{n+1}{n^3+2}$, они эквивалентны в смысле сходимости. В то же

время $\sum_{n=1}^{\infty} \frac{1}{n^2}$ уже легко сравнить с несобственным интегралом

 $\int\limits_{1}^{\infty} \frac{1}{x^2} dx$, который в свою очередь сходится. Ответ: ряд сходится (абсолютно, т.к. слагаемые все положительны).

Теорема 9. Признак Лейбница. Если выполнены 2 условия:

1) Ряд знакочередующийся, 2) $|a_n|$ монотонно убывает к нулю.

Тогда ряд
$$\sum_{n=1}^{\infty} a_n$$
 сходится.

Идея доказательства. У нас есть ряд вида $a_1 - a_2 + a_3 - a_4 + ...$

Сначала объединим так: $(a_1-a_2)+(a_3-a_4)+...$ в каждой скобке положительное число, так как вычитаемое меньше по модулю, из-за монотонности. Получается, что подпоследовательность в последовательности частичных сумм возрастает.

А теперь перегруппируем так: $a_1-(a_2-a_3)-(a_4-a_5)-...$ из элемента a_1 вычитаются какие-то положительные числа, то есть частичный суммы меньше, чем a_1 . Итак, последовательность частичных сумм монотонно возрастает и ограничена сверху, а значит, у неё есть предел. тогда ряд сходится.

Пример.
$$1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \frac{1}{5} + \dots = \sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n}$$
 условно сходится.

§2. Функциональные ряды.

Ряд вида $\sum_{n=1}^{\infty} f_n(x)$ называется функциональным рядом.

Для функций комплексного переменного $\sum_{n=1}^{\infty} f_n(z)$.

Если фиксировать ту или иную точку из области определения, будет получать различные числовые ряды. Фактически, здесь имеется бесконечное множество числовых рядов, так как бесконечное множество точек в области определения.

Область сходимости функционального ряда. Множество D называется областью сходимости, если для каждой точки $z_0 \in D$

соответствующий числовой ряд $\sum_{n=1}^{\infty} f_n(z_0)$ сходится.

Если ряды из комплексных функций, то D это область в плоскости, например круг, а если действительные функции, то D какой-либо интервал или объединение интервалов на действительной прямой.

Метод нахождения области сходимости. применять те же самые признаки (Даламбера, Коши) но только для «произвольного» x. То есть, в пределе так до конца и остаётся переменная. а затем решить неравентво.

Пример. Найти область сходимости ряда $\sum_{n=1}^{\infty} \frac{x^n}{2^n}$.

$$\lim_{n \to \infty} \left(\frac{|x|^{n+1}}{2^{n+1}} : \frac{|x|^n}{2^n} \right) = \lim_{n \to \infty} \frac{|x|^{n+1} 2^n}{2^{n+1} |x|^n} = \frac{|x|}{2} = q(x) < 1.$$

Если раньше, в теме «числовые ряды» мы просто получали в пределе какое-то число q и могли сказать, что оно больше либо меньше 1, то теперь получили функцию от x, т.е. при одних значениях больше 1, а при других меньше. Надо решить неравенство и найти, где это выражение меньше 1.

 $\frac{|x|}{2} < 1 \implies |x| < 2 \implies x \in (-2,2)$ это интервал, где есть абсолютная сходимость.

Там, где q(x) > 1, то есть $x \in (-\infty, -2) \cup (2, \infty)$ ряд расходится. При q(x) = 1 признак Даламбера не даёт ответа, надо проводить исследование поведения ряда в граничных точках в ручном режиме.

Подставим x = 2. Получим ряд $\sum_{n=1}^{\infty} \frac{2^n}{2^n} = \sum_{n=1}^{\infty} 1$ он расходится.

Подставим
$$x=-2$$
 . Получим ряд $\sum_{n=1}^{\infty}\frac{(-2)^n}{2^n}=\sum_{n=1}^{\infty}(-1)^n$ он тоже

расходится, не выполнен необходимый признак, т.е. слагаемые не уменьшаются к 0. Итак, граничные точки не добавятся к области сходимости, и ответ остаётся таким: $x \in (-2,2)$.

Пример. Найти область сходимости ряда $\sum_{n=1}^{\infty} \frac{x^n}{n}$.

$$\lim_{n \to \infty} \left(\frac{|x|^{n+1}}{n+1} : \frac{|x|^n}{n} \right) = \lim_{n \to \infty} \frac{|x|^{n+1}n}{|x|^n (n+1)} = |x| \lim_{n \to \infty} \frac{n}{n+1} = |x|.$$

Теперь решим неравенство |x| < 1. Это означает $x \in (-1,1)$ - вот область абсолютной сходимости.

Исследуем граничные точки.

При x = 1: ряд $\sum_{n=1}^{\infty} \frac{1}{n}$, он расходится (гармонический ряд, изучали

ранее). При x = -1: ряд $\sum_{n=1}^{\infty} \frac{(-1)^n}{n}$, знакочередующийся, сходится по

признаку Лейбница, но условно, так как $\sum_{n=1}^{\infty} \frac{1}{n}$ это и есть ряд из его модулей а он расходится. итак, ответ: область сходимости $x \in [-1,1)$.

ЛЕКЦИЯ № 11. 06. 05. 2016

Пример. Найти область сходимости $\sum_{n=1}^{\infty} \frac{2^n}{(x-1)^n}$.

Решение. Извлечём корень п порядка из модуля. Получим $\frac{2}{|x-1|}$.

Решим неравенство $\frac{2}{|x-1|} < 1$, т.е. |x-1| > 2 . Удаление от 1 на

расстояние 2 и больше. Решением неравенства будет множество $(-\infty,-1)\cup(3,\infty)$.

Подставляя граничные точки, получаем расходимость, там слагаемые не стремятся к 0, по необходимому признаку должна быть расходимость.

При
$$x = 3$$
: $\sum_{n=1}^{\infty} \frac{2^n}{(3-1)^n} = \sum_{n=1}^{\infty} \frac{2^n}{2^n} = \sum_{n=1}^{\infty} 1$ ряд расходится.

При
$$x = -1$$
: $\sum_{n=1}^{\infty} \frac{2^n}{(-1-1)^n} = \sum_{n=1}^{\infty} \frac{2^n}{(-2)^n} = \sum_{n=1}^{\infty} (-1)^n$ ряд расходится.

Otbet: $(-\infty,-1) \cup (3,\infty)$.

§3. Степенные ряды.

Общий вид степенного ряда: $\sum_{n=0}^{\infty} a_n (z-z_0)^n$, где a_n числовые коэффициенты. В этом ряде только положительные степени одного и того же выражения $(z-z_0)$ и константа (что получается при нулевой степени). Возможно, что часть коэффициентов равна 0, то есть некоторые степени пропущены.

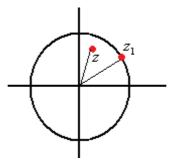
Теорема 1 (Абеля). 1) Если ряд $\sum_{n=0}^{\infty} a_n z^n$ сходится в точке z_1 , то он сходится в любой точке z, для которой $|z| < |z_1|$, причём абсолютно.

2) Если ряд $\sum_{n=0}^{\infty} a_n z^n$ расходится в точке z_1 то он расходится в любой точке, для которой $|z| > |z_1|$.

Доказательство. Сходимость в точке z_1 ряда $\sum_{n=0}^{\infty} a_n z^n$ означает, что

 $\sum_{n=0}^{\infty}a_n{z_1}^n=C$. Если этот ряд сходится, то согласно необходимому признаку, слагаемые стремятся к 0. Тогда среди них есть максимальное по модулю, и таким образом, они ограничены в совокупности, некоторой константой M , т.е. $\left|a_n{z_1}^n\right| \leq M$.

Теперь рассмотрим ряд $\sum_{n=0}^{\infty} a_n z^n$ в произвольной точке z, которая ближе к началу координат на комплексной плоскости.



Итак, взяли точку, для которой $|z| < |z_1|$. Тогда $\left| \frac{z}{z_1} \right| = q < 1$.

Для доказательства абсолютной сходимости, рассмотрим ряд,

состоящий из модулей:
$$\sum_{n=0}^{\infty} |a_n z^n| = \sum_{n=0}^{\infty} |a_n z_1^n| \frac{z}{|z_1|}^n$$
 (домножили и

поделили). При этом
$$\left|a_n z_1^{\ n}\right| \leq M$$
 . Тогда $\sum_{n=0}^{\infty} \left|a_n z_1^{\ n}\right| \frac{z}{z_1} \right|^n \leq \sum_{n=0}^{\infty} M q^n =$

$$M\sum_{n=0}^{\infty}q^{n}=M(1+q+q^{2}+q^{3}+...)=M\frac{1}{1-q}$$
 то есть меньше или равно

некоторой сходящейся геометрической прогрессии.

Итак,
$$\sum_{n=0}^{\infty} \left| a_n z^n \right| \le M \, \frac{1}{1-q}$$
 , то есть ряд $\sum_{n=0}^{\infty} \left| a_n z^n \right|$ сходится, то есть

$$\sum_{n=0}^{\infty} a_n z^n$$
 сходится абсолютно.

Пункт 2. Нужно доказать, что если ряд $\sum_{n=0}^{\infty} a_n z^n$ расходится в точке z_1 ,

то он расходится в любой точке, которая дальше от начала координат. Допустим, что в z_1 расходимость, но есть сходимость в какой-то более далёкой точке z. Но тогда это противоречило бы уже доказанному пункту 1, так как из сходимости в z следовала бы сходимость в более близкой к началу координат точке z_1 .

Следствие. Область сходимости степенного ряда есть круг.

Действительно, по теореме 1, во всех более близких к центру точках - сходимость, а если нашлась точка, где ряд расходится, то сразу же во всех, более далёких от центра - тоже расходимость. Тогда область есть круг.

Примечание. Центр круга сходимости это точка z_0 . Мы доказали теорему Абеля для центра в точке 0 для простоты и ясности обозначений, но полностью аналогичные выкладки верны и для центра в любой другой точке.

Но на самом деле, выше был рассмотрен случай в комплексной плоскости. А для рядов из действительных степенных функций $\sum_{n=0}^{\infty} a_n (x-x_0)^n$, пересечение круга с действительной прямой порождает симметричный интервал с центром в точке x_0 . Таким образом, область сходимости это интервал (x_0-c,x_0+c) .

Пример. $\sum_{n=1}^{\infty} \frac{(x-1)^n}{2^n}$. Если рассматривать как раньше, т.е. просто как для функциональных рядов, по радикальному признаку Коши, получим $\frac{|x-1|}{2} < 1$, т.е. |x-1| < 2, -2 < x-1 < 2, решая эти два неравенства, получим x > -1, x < 3, то есть $x \in (-1,3)$ - интервал абсолютной сходимости. Это и есть симметричный интервал с центров в точке 1 и радиуса 2.

Теорема 2. Формулы радиуса сходимости степенного ряда:

$$R = \lim_{n \to \infty} \frac{\mid a_n \mid}{\mid a_{n+1} \mid} \quad \text{if } R = \lim_{n \to \infty} \frac{1}{\sqrt[n]{\mid a_n \mid}} \,.$$

Заметим, что в этих формулах a_n обозначает не просто n-е слагаемое, а лишь его часть, сам числовой коэффициент без степенной функции, а дроби обратные по сравнению с теми, как в признаках Даламбера

или Коши. Рассмотрим доказательство, чтобы понять, почему так происходит.

Доказательство.

Применим к степенному ряду $\sum_{n=0}^{\infty} a_n (z-z_0)^n$ признак Даламбера.

$$\lim_{n\to\infty}\frac{\left|a_{n+1}\right|\cdot\left|z-z_{0}\right|^{n+1}}{\left|a_{n}\right|\cdot\left|z-z_{0}\right|^{n}}=\left|z-z_{0}\right|\lim_{n\to\infty}\frac{\left|a_{n+1}\right|}{\left|a_{n}\right|}<1\,,$$
 из чего следует
$$\left|z-z_{0}\right|<\frac{1}{\lim\limits_{n\to\infty}\frac{\left|a_{n+1}\right|}{\left|a_{n}\right|}},\text{ т.е. }\left|z-z_{0}\right|<\lim\limits_{n\to\infty}\frac{\left|a_{n}\right|}{\left|a_{n+1}\right|}=R\,.$$

Вот и получилось условие, задающее круг в комплексной плоскости. Это можно считать также вторым, независимым доказательством того следствия из теоремы Абеля, где говорилось, что область сходимости есть круг.

Докажем вторую формулу.

Применим к степенному ряду $\sum_{n=0}^{\infty} a_n (z-z_0)^n$ признак Коши.

$$\lim_{n \to \infty} \sqrt[n]{|a_n| \cdot |z - z_0|^n} = |z - z_0| \lim_{n \to \infty} \sqrt[n]{|a_n|} < 1, \text{ r.e. } |z - z_0| < \frac{1}{\lim_{n \to \infty} \sqrt[n]{|a_n|}}, \text{ r.e.}$$

$$|z-z_0| < \lim_{n \to \infty} \frac{1}{\sqrt[n]{|a_n|}} = R.$$

Пример. Найти радиус сходимости ряда $\sum_{n=1}^{\infty} \frac{(x-1)^n}{2^n}$.

Отбросим степенную часть и извлечём коэффициент.

$$a_n=rac{1}{2^n}$$
 , тогда $a_{n+1}=rac{1}{2^{n+1}}$. Тогда $R=\lim_{n o\infty}rac{\mid a_n\mid}{\mid a_{n+1}\mid}=\lim_{n o\infty}rac{1}{2^n}rac{2^{n+1}}{1}=2$.

Можно считать и по второй формуле: $R = \lim_{n \to \infty} \frac{1}{\sqrt[n]{|a_n|}} = \lim_{n \to \infty} \sqrt[n]{2^n} = 2$.

Итак, центр в точке 1, а радиус 2, то есть область сходимости - интервал (–1,3). Примечание. Чуть раньше мы решали этот же пример другим способом, просто по признаку Даламбера, а здесь по формулам радиуса R.

Пример. Найти радиус и область ех. ряда $\sum_{n=1}^{\infty} \frac{(x-1)^n}{5^n}$.

$$R = \lim_{n \to \infty} \frac{1}{\sqrt[n]{|a_n|}} = \lim_{n \to \infty} \sqrt[n]{5^n} = 5$$
. R=5, интервал сходимости (-4,6).

Поиск суммы для рядов с помощью почленного интегрирования и дифференцирования.

До сих пор мы искали область сходимости, то есть «где» сходится ряд. А теперь научимся находить суммы рядов, обозначаемые через S(x). Проще всего, если ряд это геометрическая прогрессия,

можно воспользоваться формулой $S = \frac{b_1}{1-q}$. Однако далеко не всегда

ряд это прогрессия. Тем не менее, бывают такие ряды, для котрых сумма производных или сумма первообразных от его слагаемых будет геометрической прогрессией. То есть, можно свести к прогрессии с помощью почленного дифференцирования или интегрирования.

$$S(x) = \sum_{n=1}^{\infty} f_n(x)$$
 тогда $S'(x) = \sum_{n=1}^{\infty} f_n'(x)$. Рассмотрим на примерах.

Пример. Найти сумму ряда $\sum_{n=0}^{\infty} (n+1)x^n$.

Подробная запись: $1+2x+3x^2+4x^3+...$ заметим, что первообразные уже просто степенных функции, т.е. здесь легче найти не S(x) а её первообразную.

$$\int S(x)dx = \sum_{n=0}^{\infty} \int (n+1)x^n dx = \sum_{n=0}^{\infty} x^{n+1} = x + x^2 + x^3 + \dots$$
а это уже

геометрическая прогрессия со знаменателем q=x. Её сумма $\frac{x}{1-x}$, и

это напомним, первообразная от S(x). Тогда $S(x) = \left(\frac{x}{1-x}\right)' = \frac{1 \cdot (1-x) - (-1)x}{(1-x)^2} = \frac{1}{(1-x)^2}$. Ответ $\frac{1}{(1-x)^2}$.

А бывают примеры, где наоборот, сначала надо дифференцировать.

Пример. Найти сумму ряда $\sum_{n=1}^{\infty} \frac{x^n}{n}$.

Здесь тоже не прогрессия, но тот случай, когда можно свести к

прогрессии. Если
$$S(x) = \sum_{n=1}^{\infty} \frac{x^n}{n}$$
 то $S'(x) = \sum_{n=1}^{\infty} \left(\frac{x^n}{n}\right)' = \sum_{n=1}^{\infty} x^{n-1} = \sum_{n=1}^{\infty} x^n$

 $1+x+x^2+...=\frac{1}{1-x}$. При этом, сходимость прогрессии обеспечена только при |x|<1 , то есть $x\in (-1,1)$.

A теперь, чтобы вернуться к S(x), надо проинтегрировать.

$$S(x) = \int \frac{1}{1-x} dx = -\ln(1-x) + C$$
, знак модуля под логарифмом не

нужен, так как при $x \in (-1,1)$ будет x < 1, т.е. 1-x > 0, выражение и так положительное. Однако мы искале через первообразную, и там ещё есть неопределённая константа С. Чтобы её найти, надо присвоить какое-то значение x одновременно в ряде и функции,

например 0. $S(0) = \sum_{n=1}^{\infty} \frac{0^n}{n} = 0$ а с другой стороны, это равно

$$-\ln(1-0)+C$$
, то есть $C=0$. Ответ $S(x)=-\ln(1-x)$.

На практике рассмотрим другие примеры, где есть особенности, связанные с реализацией этих методов. Например, иногда надо решать в 2 шага, а иногда домножать на что-либо, чтобы потом можно было продифференцровать и получить прогрессию.

§4. Ряды Тейлора и Лорана.

До сих пор мы изучали степенные ряды и находили суммы. А бывает наоборот, дана функция, и надо представить её в виде степенного ряда.

Ряд
$$f(z) = \sum_{n=0}^{\infty} \frac{f^{(n)}(z_0)}{n!} (z - z_0)^n$$
 - разложение функции $f(z)$ в

степенной ряд в окрестности точки z_0 , он называется рядом Тейлора этой функции.

Соответственно, для действительных функций,

$$f(x) = \sum_{n=0}^{\infty} \frac{f^{(n)}(x_0)}{n!} (x - x_0)^n.$$

Метод определения круга сходимости (до ближайшей точки разрыва).

Пусть
$$f(z) = \frac{1}{1-z}$$
 . Если надо разложить её в ряд вида $\sum_{n=0}^{\infty} a_n z^n$, то

центр $z_0=0$, а ближайшая точка, где ряд точно расходится, это точка разрыва z=1. Тогда круг сходимости как раз и будет |z|<1.

Разложим $f(z) = \frac{1}{1-z}$ в степенной ряд, то есть найдём её ряд

Тейлора. Первый способ - найти производные до любого порядка n, и записать по формуле.

$$f(z) = \frac{1}{1-z} = (1-z)^{-1}$$
. Тогда:
 $f'(z) = (-1)(1-z)^{-2}(1-z)' = f'(z) = (-1)(-1)(1-z)^{-2} = (1-z)^{-2}$.
 $f''(z) = (-1)^2(-1)(-2)(1-z)^{-3} = (1-z)^{-3} 2!$
 $f'''(z) = (-1)^3(-1)(-2)(-3)(1-z)^{-4} = (1-z)^{-4} 3!$, и.т.д.

В точке 0 п-я производная равна п!

Тогда
$$f(z) = \sum_{n=0}^{\infty} \frac{n!}{n!} z^n = \sum_{n=0}^{\infty} z^n = 1 + z + z^2 + z^3 + \dots$$

Но не обязательно так искать все производные и устанавливать закономерность при их вычислении. Иногда количество слагаемых

при дифференцировании экспоненциально возрастает (если там было произведение) на каждом шаге в 2 раза и равно 2^n , а закономерности очень сложно находятся. Так что напрямую по формуле считать не всегда удобно. Есть 2 способ - получать всё разложение сразу, используя геометрическую прогрессию.

 $f(z) = \frac{1}{1-z}$, заметим, что при |z| < 1 эта функция может рассматриваться как сумма прогрессии (т.е. уже свёрутая по формуле суммы). Здесь знаменатель прогрессии q = z. Тогда $\frac{1}{1-z} = 1 + z + z^2 + z^3 + \dots$ как видим, то же самое и получили.

Рассмотрим разные модификации для других случаев.

Пример. Разложить в ряд Тейлора с помощью геометрической прогрессии: $f(z) = \frac{1}{1+z}$ по степеням z, то есть в круге с центром 0.

Сумма вместо разности вовсе не является препятствием к тому, чтобы использовать прогрессию, запишем $\frac{1}{1+z} = \frac{1}{1-(-z)}$ тогда q=-z и

 $\frac{1}{1-(-z)} = 1-z+z^2-z^3+...$ когда в знаменателе была сумма получается знакочередующийся ряд.

Пример. Разложить в ряд Тейлора с помощью геометрической прогрессии: $f(z) = \frac{1}{2+z}$ по степеням z.

Решение.
$$f(z) = \frac{1}{2+z} = \frac{1}{2\left(1+\frac{z}{2}\right)} = \frac{1}{2}\frac{1}{1-\left(-\frac{z}{2}\right)} = \frac{1}{2}\sum_{n=0}^{\infty}\left(-\frac{z}{2}\right)^n =$$

$$\sum_{n=0}^{\infty} (-1)^n \frac{z^n}{2^{n+1}} = \frac{1}{2} - \frac{z}{4} + \frac{z^2}{8} - \dots$$

Пример. Разложить в ряд Тейлора с помощью геометрической прогрессии: $f(z) = \frac{1}{3+z}$ по степеням (z-1), то есть в круге с центром в точке 1.

Здесь мы сначала определим круг сходимости. От точки 1 до точки разрыва z=-3 расстояние 4, так что разложение в ряд возможно в круге |z-1|<4.

Отделим разность (z-1) искусственным путём, т.е. прибавим и отнимем 1.

$$f(z) = \frac{1}{3+z} = \frac{1}{4+(z-1)}$$
. А теперь далее не раскрываем блок $(z-1)$

вплоть до ответа, то есть эта скобка так и будет как единое целое.

$$\frac{1}{4+(z-1)} = \frac{1}{4} \frac{1}{1+\frac{z-1}{4}} = \frac{1}{4} \frac{1}{1-\left(-\frac{z-1}{4}\right)} = \frac{1}{4} \sum_{n=0}^{\infty} \left(-\frac{z-1}{4}\right)^n =$$

 $\sum_{n=0}^{\infty} (-1)^n \frac{(z-1)^n}{4^{n+1}} \,. \quad \text{Заметим, что при этом знаменатель прогрессии}$ $q = -\frac{z-1}{4} \,, \text{ он должен быть меньше 1 по модулю, но так и есть, ведь}$ круг сходимости |z-1| < 4, как уже заметили раньше.

Мы в этих примерах всегда применяем формулу суммы прогрессии $\frac{1}{1-q} = \sum_{n=0}^{\infty} q^n = 1 + q + q^2 + ...,$ при этом, желательно заранее вынести все множители из числителя за пределы дроби, чтобы «очистить» числитель до 1, этим самым мы обеспечиваем то, что можно пользоваться упрощённой формулой суммы прогрессии $\frac{1}{1-q} = \sum_{n=0}^{\infty} q^n,$ так как 0 степень как раз и равна 1.

ЛЕКЦИЯ № 12. 13. 05. 2016

Приложения рядов Тейлора.

1. Приближённые вычисления.

Значения функции в точке можно приближённо вычислять с помощью разложения в ряд Тейлора, более того, во всех калькуляторах и компьютерах именно так и запрограммировано. Каждая функция там задана просто в виде набора коэффициентов ряда, и при обращении к функции именно это и вычисляется автоматически, с той точностью, с которой позволяет разрядная сетка калькулятора.

Так, вычислим
$$e^1$$
. Ихвестно, что $e^x=1+x+\frac{x^2}{2!}+\frac{x^3}{3!}+\dots$ Тогда $e=1+1+\frac{1}{2!}+\frac{1}{3!}+\frac{1}{4!}+\dots=e=1+1+\frac{1}{2}+\frac{1}{6}+\frac{1}{24}+\dots$ Так, для первых шагов сразу получаем значение 2,5 затем прибавляется $\frac{1}{6}\approx 0,1666666$

и стало 2,6666666 а затем $\frac{1}{24} \approx 0,0416666$ станет 2,7083333 и так с каждым шагом всё ближе к $e \approx 2,71828$.

2. Нахождение производной высокого порядка.

Если разложить функцию в ряд и рассмотреть слагаемое со степенью

n, то можно сравнить его с теоретически полученным видом
$$\frac{f^{(n)}(x_0)}{n!}$$

и отсюда извлекается информация о значении $f^{(n)}(x_0)$, причём не требуется вычислять все производные включительно до п порядка, а сразу получаем значение n-й производной в точке. Ведь бывает так, что функция содержит произведение, и там число слагаемых удваивается на каждом шаге, и их уже 1024 для 10-й производной.

Пример. Найти $f^{(10)}(0)$ для $f(x) = x^3 \sin x$.

$$f(x) = x^{3} \left(x - \frac{x^{3}}{3!} + \frac{x^{5}}{5!} - \frac{x^{7}}{7!} + \frac{x^{9}}{9!} - \dots \right) = x^{4} - \frac{x^{6}}{3!} + \frac{x^{8}}{5!} - \frac{x^{10}}{7!} + \frac{x^{12}}{9!} - \dots$$

Здесь нам нужен только коэффициент при степени 10.

$$-\frac{1}{7!} = \frac{f^{(10)}(0)}{10!} \implies f^{(10)}(0) = -\frac{10!}{7!} = -8 \cdot 9 \cdot 10 = -720.$$

Ответ. -720.

3. Нахождение определённого интеграла.

Если функция требует больших трудоёмких подстановок, или многократного интегрирования по частям, можно разложить функцию в ряд, состоящий из степенных функций, и приближённо вычислить.

Пример. Приближённо найти интеграл $\int_{0}^{1/2} \sin(x^3) dx$ с точностью 10^{-4} .

$$\int_{0}^{0.5} \sin(x^{3}) dx = \int_{0}^{0.5} \left((x^{3}) - \frac{(x^{3})^{3}}{3!} + \frac{(x^{3})^{5}}{5!} - \ldots \right) dx =$$

$$\int_{0}^{0.5} \left(x^{3} - \frac{x^{9}}{3!} + \frac{x^{15}}{5!} - \ldots \right) dx = \frac{x^{4}}{4} \Big|_{0}^{1/2} - \frac{x^{10}}{10 \cdot 3!} \Big|_{0}^{1/2} + \frac{x^{16}}{16 \cdot 5!} \Big|_{0}^{1/2} - \ldots =$$

$$\frac{1}{2^{4} \cdot 4} - \frac{1}{2^{10} \cdot 10 \cdot 6} + \frac{1}{2^{16} \cdot 16 \cdot 120} - \ldots \text{ очевидно, здесь 3 и последующие}$$

слагаемые заведомо меньше 10^{-5} , и не повлияют на 4-й знак после запятой, поэтому приближённое значение

$$\frac{1}{2^4 \cdot 4} - \frac{1}{2^{10} \cdot 10 \cdot 6} = \frac{1}{64} - \frac{1}{1024 \cdot 60} \approx 0,0156 - 0,000016 \approx 0,0156.$$

Как видим, даже 2-е слагаемое можно было не рассматривать, т.к. оно меньше, чем 10^{-4} .

4. Решение дифференциальных уравнений.

Можно представить неизвестную функцию y(x) в виде степенного ряда $y = a_0 + a_1 x + a_2 x^2 + \dots$ и подставить его в дифференциальное уравнение, тогда решение найдётся тоже в виде ряда, т.е. можно знать строение решения, его график и т.д. даже без аналитического выражения этой функции.

Пример. y' = y решить с помощью рядов.

$$y = a_0 + a_1 x + a_2 x^2 + \dots$$
 тогда $y' = a_1 + 2a_2 x + 3a_3 x^2 + \dots$

Из равенства $a_1 + 2a_2x + 3a_3x^2 + ... = a_0 + a_1x + a_2x^2 + ...$ получаем: $a_1 = a_0$, $2a_2 = a_1$, $3a_3 = a_2$ и так далее.

В этом случае все коэффициенты можно последовательно выразить

через
$$a_0$$
. А именно, $a_1=a_0$, $a_2=\frac{a_1}{2}=\frac{a_0}{2!}$, $a_3=\frac{a_2}{3}=\frac{a_0}{3!}$ и т.д.

Тогда
$$y = a_0 + a_1 x + a_2 x^2 + \dots = a_0 \left(1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \dots \right)$$
 здесь видно,

что в скобках получилось разложение экспоненты. Итак, $y = a_0 e^x$. Эту единственную константу можно переобозначить C и получится знакомый из вид общего решения такого уравнения: $y = Ce^x$.

Ряды ЛОРАНА.

Ряд вида $\sum_{n=-\infty}^{\infty} a_n (z-z_0)^n$, то есть содержащий как положительные, так

и отрицательные целые степени, называется рядом Лорана. Совокупность слагаемых с нулевой и положительной степенью называется его правильной частью, а отрицательных - главной частью.

$$\sum_{n=0}^{\infty} a_n (z-z_0)^n$$
 правильная часть, $\sum_{n=-\infty}^{-1} a_n (z-z_0)^n$ главная часть,

впрочем, её также можно переписать в виде: $\sum_{n=1}^{\infty} \frac{a_{-n}}{(z-z_0)^n}$.

Теорема 1. Область сходимости ряда Лорана есть кольцо вида $r < |z - z_0| < R$.

Доказательство. Распишем по отдельности на главную и

правильную часть:
$$\sum_{n=0}^{\infty} a_n (z-z_0)^n + \sum_{n=1}^{\infty} \frac{a_{-n}}{(z-z_0)^n}$$
.

1. Для правильной части верна теорема Абеля, ведь это обычный степенной ряд. Правильная часть абсолютно сходится в некотором круге $|z-z_0| < R$.

2. Рассмотрим главную часть ряда Лорана $\sum_{n=1}^{\infty} \frac{a_{-n}}{(z-z_0)^n}$.

Сделаем в ней замену с целью представить через положительные степени и применить теорему Абеля. $w = \frac{1}{z-z_0}$. тогда для новой

переменной w ряд принимает такой вид: $\sum_{n=1}^{\infty} a_{-n} w^n$. Это степенной

ряд, его круг сходимости с центром в 0. То есть, $|w| < r_1 \iff \frac{1}{|z-z_0|} < r_1$

$$\Leftrightarrow |z-z_0| > \frac{1}{r_1}$$
 , обозначим $\frac{1}{r_1} = r$, вот и получили $|z-z_0| > r$.

Итак, область сходимости есть $r < |z - z_0| < R$, это кольцо.

Бывают и крайние случаи: круг с выколотой точкой $0<\left|z-z_{0}\right|< R$ внешняя часть некоторого круга $r<\left|z-z_{0}\right|<\infty$.

Это если r=0 либо $R=\infty$.

Пример. Найти кольцо сх ряда Лорана $\sum_{n=0}^{\infty} \frac{(z-1)^n}{5^n} + \sum_{n=1}^{\infty} \frac{1}{2^n (z-1)^n}$.

Решение. Найдём отдельно по радикальному признаку Коши область сходимости правильной и главной части.

1. Для
$$\sum_{n=0}^{\infty} \frac{(z-1)^n}{5^n}$$
 получается $\frac{|z-1|}{5} < 1$, т.е. $|z-1| < 5$

2. Для
$$\sum_{n=1}^{\infty} \frac{1}{2^n (z-1)^n}$$
 получается $\frac{1}{2|z-1|} < 1$, т.е. $|z-1| > \frac{1}{2}$.

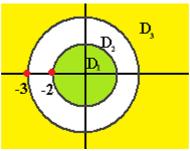
Ответ. Кольцо сходимости: $\frac{1}{2} < |z-1| < 5$.

Разложение в ряд Лорана с помощью геометрической прогрессии.

Пример. Разложить функцию $\frac{1}{(z+2)(z+3)}$

- а) в ряд Лорана в кольце 2 < |z| < 3
- б) во внешней области |z| > 3
- в) в ряд Тейлора в круге |z| < 2.

Во-первых, если центр кольца 0, а точки разрыва z=-2 и z=-3, то есть 3 области: $D_1=\left\{z\right|<2\right\},\quad D_2=\left\{2<\left|z\right|<3\right\},\quad D_3=\left\{z\right|>3\right\}.$ Чертёж:



 $D_2 = \{2 < |z| < 3\}$ кольцо, расположенное между двумя точками разрыва, так, чтобы ни одна из низ не была внутри кольца. Разложим на простейшие дроби. Это действие необходимо в любом случае, независимо от того, в каком множестве надо получать разложение в ряд.

$$\frac{1}{(z+2)(z+3)} = \frac{A}{z+2} + \frac{B}{z+3} = \frac{A(z+3) + B(z+2)}{(z+2)(z+3)}$$

$$\Rightarrow (A+B)z + (3A+2B) = 0z + 1 \Rightarrow \text{система: } \begin{cases} A+B=0\\ 3A+2B=1 \end{cases} \Rightarrow$$

$$A = 1, B = -1 \Rightarrow f(z) = \frac{1}{z+2} - \frac{1}{z+3}.$$

1) Для разложения в ряд Лорана в кольце, надо вынести за скобку иногда константу, а иногда z, чтобы всегда получалось что-то меньшее 1.

Из условия 2 < |z| < 3 следует $\frac{2}{|z|} < 1$ и $\frac{|z|}{3} < 1$, то есть в знаменателе

можно получать $\frac{2}{z}$ и $\frac{z}{3}$, но нельзя $\frac{z}{2}$ и $\frac{3}{z}$.

$$\frac{1}{z+2} - \frac{1}{z+3} = \frac{1}{z\left(1+\frac{2}{z}\right)} - \frac{1}{3\left(1+\frac{z}{3}\right)} = \frac{1}{z} \frac{1}{1-\left(-\frac{2}{z}\right)} - \frac{1}{3} \frac{1}{1-\left(-\frac{z}{3}\right)}$$

теперь в каждом случае получено выражение вида $\frac{1}{1-q}$ котрое и является суммой геометрической прогрессии, и его можно превратить в бесконечную сумму по формуле $\frac{1}{1-q} = \sum_{n=0}^{\infty} q^n$.

$$\frac{1}{z} \frac{1}{1 - \left(-\frac{2}{z}\right)} - \frac{1}{3} \frac{1}{1 - \left(-\frac{z}{3}\right)} = \frac{1}{z} \sum_{n=0}^{\infty} \left(-\frac{2}{z}\right)^n - \frac{1}{3} \sum_{n=0}^{\infty} \left(-\frac{z}{3}\right)^n =$$

$$\sum_{n=0}^{\infty} (-1)^n \frac{2^n}{z^{n+1}} - \sum_{n=0}^{\infty} (-1)^n \frac{z^n}{3^{n+1}} = \dots + \frac{2^2}{z^3} - \frac{2}{z^2} + \frac{1}{z} - \frac{1}{3} + \frac{z}{3^2} - \frac{z^2}{3^3} - \dots$$

2) Теперь разложим в ряд во внешней области, которую, впрочем, можно также считать кольцом типа $3<|z|<\infty$. Здесь |z|>3 причём автоматически выполнено также и |z|>2, т.е. надо получать в знаменталелях выражения $\frac{2}{z}$ и $\frac{3}{z}$, и в итоге в ответе будут только отрицательные степени.

$$\frac{1}{z+2} - \frac{1}{z+3} = \frac{1}{z\left(1+\frac{2}{z}\right)} - \frac{1}{z\left(1+\frac{3}{z}\right)} = \frac{1}{z} \frac{1}{1-\left(-\frac{2}{z}\right)} - \frac{1}{z} \frac{1}{1-\left(-\frac{3}{z}\right)} =$$

$$\frac{1}{z}\sum_{n=0}^{\infty} \left(-\frac{2}{z}\right)^{n} - \frac{1}{z}\sum_{n=0}^{\infty} \left(-\frac{3}{z}\right)^{n}$$
 в данном случае их можно и объединить,

т.к. в каждом слагаемом есть одинаковые степени.

$$\frac{1}{z}\sum_{n=0}^{\infty} \left(-\frac{2}{z}\right)^n - \left(-\frac{3}{z}\right)^n = \sum_{n=0}^{\infty} (-1)^n \frac{2^n - 3^n}{z^{n+1}}.$$
 В этом ряде Лорана есть только главная часть.

3) Если требуется разложить в ряд в круге, то это получится ряд Тейлора, там наоборот, в обеих дробях надо выносить константу,

чтобы было
$$\frac{z}{3}$$
 и $\frac{z}{2}$.

$$\frac{1}{z+2} - \frac{1}{z+3} = \frac{1}{2\left(1 + \frac{z}{3}\right)} - \frac{1}{3\left(1 + \frac{z}{3}\right)} = \frac{1}{2} \frac{1}{1 - \left(-\frac{z}{2}\right)} - \frac{1}{3} \frac{1}{1 - \left(-\frac{z}{3}\right)} =$$

$$\frac{1}{2}\sum_{n=0}^{\infty}\left(-\frac{z}{2}\right)^{n}-\frac{1}{3}\sum_{n=0}^{\infty}\left(-\frac{z}{3}\right)^{n}=\sum_{n=0}^{\infty}(-1)^{n}\left(\frac{1}{2^{n+1}}-\frac{1}{3^{n+1}}\right)z^{n}.$$

Пример (со сдвигом центра)

Разложить функцию $\frac{1}{(z+2)(z+3)}$ в ряд Лорана по степеням z-1.

Решение. Центр в точке 1, тогда расстояние до ближайшей особой точки равно 3, а до второй 4. Получается, что кольцо, где будет ряд, для этой задачи: 3 < |z-1| < 4.

Разложение на простейшие дроби то же самое, $\frac{1}{z+2} - \frac{1}{z+3}$.

Но после этого надо отделить выражение z-1.

$$\frac{1}{z+2} - \frac{1}{z+3} = \frac{1}{(z-1)+3} - \frac{1}{(z-1)+4}$$
 далее в соответствии с

неравенствами |z-1| < 4 |z-1| > 3 надо вынести за скобку в одной дроби константу, а в другой z-1.

$$\frac{1}{(z-1)+3} - \frac{1}{(z-1)+4} = \frac{1}{z-1} \frac{1}{1+\frac{3}{z-1}} - \frac{1}{4} \frac{1}{1+\frac{z-1}{4}} = \frac{1}{z-1} \frac{1}{1-\left(-\frac{3}{z-1}\right)} - \frac{1}{4} \frac{1}{1-\left(-\frac{z-1}{4}\right)} = \frac{1}{z-1} \sum_{n=0}^{\infty} \left(-\frac{3}{z-1}\right)^n - \frac{1}{4} \sum_{n=0}^{\infty} \left(-\frac{z-1}{4}\right)^n.$$

Объединить их нельзя, так как в одной части отрицательные степени, а в другой части положительные, это главная и правильная часть ряда соответственно.

ЛЕКЦИЯ № 13. 20. 05. 2016 Ряды Фурье **§4. Ряды Фурье.**

Скалярное произведение функций.

Вспомним скалярное произведение векторов $(a,b) = a_1b_1 + ... a_nb_n$.

Для функций можно построить обобщение. Если заданы 2 функции f(x), g(x), то очевидно, их можно умножить в каждой точке. Затем все эти произведения надо проинтегрировать, так как точек на интервале бесконечное количество. Получается как бы бесконечное количество координат.

Итак, определим скалярное произведение пары функций на интервале

$$(a,b)$$
 по формуле: $(f,g) = \int_a^b f(x)g(x)dx$.

Можно считать, что это верно и на отрезке [a,b], ведь две граничные точки не влияют на величину интеграла.

Пример. Найти скалярное произведение f(x) = x и $g(x) = x^2$ на интервале (0,1).

Решение.
$$(f,g) = \int_{0}^{1} x \cdot x^{2} dx = \int_{0}^{1} x^{3} dx = \frac{x^{4}}{4} \Big|_{0}^{1} = \frac{1}{4}.$$

Свойства скалярного произведения, которые легко следуют из свойств линейности интеграла:

$$(f,g) = (g,f)$$

 $(f+g,h) = (f,h) + (g,h), (f,g+h) = (f,g) + (f,h)$
 $(cf,g) = c(f,g), (f,cg) = c(f,g)$

Вспомним, что для векторов есть понятие модуля,

$$\left| a \right| = \sqrt{{a_1}^2 + \ldots {a_n}^2} = \sqrt{(a,a)}$$
 . Аналогичное понятие для функций

называется нормой функции:

$$||f|| = \sqrt{\int_a^b f(x)f(x)dx} = \sqrt{\int_a^b f^2(x)dx} = \sqrt{(f,f)}.$$

Очевидно, что этот квадратный корень существует, ведь $f^2(x) \ge 0$, а значит и $\int\limits_{-\infty}^{b} f^2(x) dx \ge 0$.

Ортогональные функции.

Две функции называются ортогональными на интервале (a,b), если

$$(f,g) = 0$$
, to ect $\int_{a}^{b} f(x)g(x)dx = 0$.

Здесь нет такого простого геометрического смысла, как в случае перпендикулярных векторов, для функций ортогональность значит, что произведение функций где-то больше, а где-то меньше нуля так, чтобы эти части компенсировались и уничтожились при интегрировании.

Пример. Функции $f = \sin x$, $g = \cos x$ на интервале $(0, \pi)$.

$$\int_{0}^{\pi} \sin x \cos x dx = \frac{1}{2} \int_{0}^{\pi} \sin 2x dx = -\frac{1}{4} \cos 2x \Big|_{0}^{\pi} = -\frac{1}{4} (\cos 2\pi - \cos 0) = 0.$$

Замечание. Если одна из функций в произведении тождественно равна 0, то интеграл очевидно, равен 0. Поэтому тождественный 0 это ортогональная всем функция.

Ортогональные системы. Если любая пара функций в системе ортогональна, то система называется ортогональной.

 $\{\varphi_0,\varphi_1,\varphi_2,...,\varphi_n,...\}$ ортогональна, если $(\varphi_i,\varphi_j)=0$ для любых $i\neq j$.

Вывод формул для вида коэффициента (Фурье) разложения по ортогональной системе.

$$c_n = \frac{(f, \varphi_n)}{(\varphi_n, \varphi_n)}$$
 или $c_n = \frac{(f, \varphi_n)}{\left\|\varphi_n\right\|^2}$.

Доказательство. Пусть функция f представлена в виде суммы:

$$f = c_0 \varphi_0 + c_1 \varphi_1 + ... c_n \varphi_n + ...$$
 найдём коэффициенты .

Можно скалярно домножить на φ_n . Получим

$$(f, \varphi_n) = (c_0 \varphi_0 + c_1 \varphi_1 + \dots + c_n \varphi_n + \dots, \varphi_n) = c_0(\varphi_0, \varphi_n) + c_1(\varphi_1, \varphi_n) + \dots + c_n(\varphi_n, \varphi_n) + \dots$$

среди этих слагаемых, лишь одно отлично от нуля, ведь система ортогональна, и при $i \neq n$ будет $(\varphi_i, \varphi_n) = 0$.

Тогда
$$(f, \varphi_n) = c_n(\varphi_n, \varphi_n)$$
 , тогда $c_n = \frac{(f, \varphi_n)}{(\varphi_n, \varphi_n)}$ то есть $c_n = \frac{(f, \varphi_n)}{\left\|\varphi_n\right\|^2}$.

Можно записать и с помощью интегралов: $c_n = \frac{\int\limits_a^b f(x) \varphi_n(x) dx}{\int\limits_a^b {\varphi_n}^2(x) dx} \, .$

Аналогичное равенство верно и для векторов: $a_1 = \frac{(a,e_1)}{\left|e_1\right|^2} = \frac{a_1}{1}$.

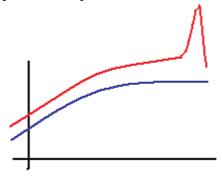
Равномерное, среднее и среднеквадратичное отклонение.

Чтобы исследовать взаимосвязь 2 функций, а конкретно, их удаление друг от друга, можно использовать такую величину:

$$\Delta = \max_{x \in [a,b]} |f(x) - g(x)|$$
 называемую «равномерным» отклонением

между графиками. Однако это не совсем точно характеризует взаимосвязь пары функций, ведь они могут идти очень близко, а затем

удалиться на коротком интервале, а отклонение будет считаться большим. Например, как на чертеже:



Вместо этого можно рассматривать среднее значение модуля разности, и это уже более точная оценка.

$$\Delta_2 = \frac{1}{b-a} \int_a^b |f(x) - g(x)| dx$$
 - среднее отклонение.

Но чтобы посчитать интеграл от модуля, надо искать точки пересечения и разбивать интервал на части. Чтобы избежать этих громоздких вычислений, можно рассматривать такую величину:

$$\Delta_3 = \sqrt{\frac{1}{b-a} \int_a^b (f(x) - g(x))^2 dx}$$
 среднеквадратичное отклонение между

f и g. Когда среднее стремится к 0, то и среднеквадратичное тоже, и хотя они не прямо пропорциональны, но минимальное значение одной из этих величин достигается при тех же условиях, что и у другой.

Если домножить функции из системы на какие-то коэффициенты, то получится выражение $P_n=\alpha_0\varphi_0+\alpha_1\varphi_1+...+\alpha_n\varphi_n$ многочлен по ортогональной системе.

Теорема. Среднеквадратичное отклонение между f и P_n минимально \Leftrightarrow коэффициенты $\alpha_i = c_i$ (совпадают с коэффициентами Фурье).

Доказательство. $\Delta_3 = \sqrt{\frac{1}{b-a} \int_a^b (f(x) - g(x))^2 dx}$ минимально тогда и

только тогда, когда $\int_{a}^{b} (f(x) - g(x))^2 dx$ минимально, так что мы можем

рассмотреть просто интеграл от квадрата разности, то есть величину $(f - P_n, f - P_n)$. Во-первых, она по построениею больше или равна 0. Рассмотрим её подробнее:

$$(f-P_n,f-P_n)=\left(f-\sum_{i=0}^n a_i \varphi_i,f-\sum_{i=0}^n a_i \varphi_i\right)$$
 применим свойства

скалярного произведения, будет так:

$$(f,f)-2\left(f,\sum_{i=0}^{n}a_{i}\varphi_{i}\right)+\left(\sum_{i=0}^{n}a_{i}\varphi_{i},\sum_{i=0}^{n}a_{i}\varphi_{i}\right)=$$

$$||f||^{2}-\sum_{i=0}^{n}2a_{i}(f,\varphi_{i})+\sum_{i=0}^{n}\sum_{i=0}^{n}a_{i}a_{j}(\varphi_{i},\varphi_{j}).$$

Но от двойной суммы где $(n+1)^2$ слагаемых, фактически остаётся только (n+1) так как при несовпадении номера, скалярные произведения 0, ведь это ортогональная система.

$$||f||^2 - \sum_{i=0}^n 2a_i(f, \varphi_i) + \sum_{i=0}^n a_i(\varphi_i, \varphi_i) = ||f||^2 - \sum_{i=0}^n 2a_i(f, \varphi_i) + \sum_{i=0}^n a_i ||\varphi_i||^2$$

преобразуем 2-е слагаемое по формуле $c_n = \frac{(f, \varphi_n)}{\left\| \varphi_n \right\|^2}$.

$$\|f\|^2 - \sum_{i=0}^n 2a_i c_i \|\varphi_i\|^2 + \sum_{i=0}^n a_i \|\varphi_i\|^2$$
 теперь прибавим и вычтем такое

слагаемое, чтобы образовать разность квадратов:

$$||f||^{2} - \sum_{i=0}^{n} 2a_{i}c_{i}||\varphi_{i}||^{2} + \sum_{i=0}^{n} a_{i}||\varphi_{i}||^{2} + \sum_{i=0}^{n} c_{i}||\varphi_{i}||^{2} - \sum_{i=0}^{n} c_{i}||\varphi_{i}||^{2} =$$

$$||f||^{2} - \sum_{i=0}^{n} c_{i}||\varphi_{i}||^{2} + \sum_{i=0}^{n} (a_{i} - 2a_{i}c_{i} + c_{i})||\varphi_{i}||^{2} =$$

$$||f||^2 - \sum_{i=0}^n c_i ||\varphi_i||^2 + \sum_{i=0}^n (a_i - c_i)^2 ||\varphi_i||^2$$
.

Это выражение минимально, когда разность $(a_i - c_i)$ равна 0, то есть в точности, когда $a_i = c_i$ что и требовалось доказать.

Отсюда следует **неравенство Бесселя:**
$$\|f\|^2 - \sum_{i=0}^n c_i \|\varphi_i\|^2 \ge 0$$

При
$$n \to \infty$$
 получается равенство $\|f\|^2 = \sum_{i=0}^n c_i \|\varphi_i\|^2$, которое

называется уравнением замкнутости.

Аналоги в векторных пространствах: если рассмотреть неполную сумму квадратов координат какого-то вектора, то очевидно, она меньше, чем квадрат его модуля. Так, для вектора из 3 координат

$$a_1^2 + a_2^2 + a_3^2 = |a|^2$$
, $a_1^2 + a_2^2 < |a|^2$. Так и здесь, если рассматривать не всю систему функций, а всего лишь до номера n то получим неравенство, а если всю - то равенство.

Кстати, с помощью скалярных произведений и норм можно доказать аналог теоремы Пифагора для систем функций.

$$||x + y||^2 = (x + y, x + y) = (x, x) + 2(x, y) + (y, y) = ||x||^2 + ||y||^2$$
 если $x(t), y(t)$ ортогональные функции.

Основная тригонометрическая система

Рассмотрим на отрезке [-l,l] такую систему функций:

$$\left\{\frac{1}{2}, \sin\frac{\pi x}{l}, \cos\frac{\pi x}{l}, \dots, \sin\frac{n\pi x}{l}, \cos\frac{n\pi x}{l}, \dots\right\}$$

Рассмотрим подробнее, какие у них периоды. Известно, что при умножении на коэффициент частота увеличивается, а соответственно период уменьшается.

Если $\sin x$ имеет период 2π , то $\sin \pi x$ имеет период 2,

 $\sin\frac{\pi x}{l}$ имеет период 2l , то есть как раз совершает одно колебание на [-l,l]. Впрочем, можно было бы рассматривать и на [0,2l].

$$\sin \frac{n\pi x}{l}$$
 имеет период $\frac{2l}{n}$, то есть для двух первых

тригонометрических функций (не считая константы, конечно) на этом промежутке укладывается ровно одна волна, а для последующих - кратное число колебаний.

Докажем её ортогональность.

Константа ортогональна любой из функций этой системы, так как

в интегралах
$$\int_{-l}^{l} \frac{1}{2} \sin \frac{n\pi x}{l} dx$$
 и $\int_{-l}^{l} \frac{1}{2} \cos \frac{n\pi x}{l} dx$ интегрируется функция, у

которой целое количество периодов на данном отрезке, и такой интеграл равен 0.

Ортогональность всех остальных функций доказывается по формулам тригонометрии:

$$\sin \alpha \sin \beta = \frac{1}{2} (\cos(\alpha - \beta) - \cos(\alpha + \beta))$$

$$\cos \alpha \cos \beta = \frac{1}{2} (\cos(\alpha - \beta) + \cos(\alpha + \beta))$$

$$\sin \alpha \cos \beta = \frac{1}{2} (\sin(\alpha - \beta) - \sin(\alpha + \beta)).$$

$$\left(\sin\frac{n\pi x}{l}, \sin\frac{m\pi x}{l}\right) = \int_{-l}^{l} \sin\frac{n\pi x}{l} \sin\frac{m\pi x}{l} dx =$$

разные функции из системы) то будет
$$\frac{1}{2}\int_{-l}^{l} \left(\cos\frac{k\pi x}{l} - \cos\frac{s\pi x}{l}\right) dx$$
 то

есть разность интегралов, каждый из которых 0 в силу того, что там периодическая функция, у которой на промежутке укладывается целое число полных периодов.

Для двух косинусов аналогично:
$$\left(\cos\frac{n\pi x}{l},\cos\frac{m\pi x}{l}\right) = \int_{-l}^{l}\cos\frac{n\pi x}{l}\cos\frac{m\pi x}{l}dx = \frac{1}{2}\int_{-l}^{l}\left(\cos\frac{(n-m)\pi x}{l} + \cos\frac{(n+m)\pi x}{l}\right)dx = 0.$$
Пля синуса и косинуса
$$\left(\sin\frac{n\pi x}{l}\cos\frac{m\pi x}{l}\right) = \int_{-l}^{l}\sin\frac{n\pi x}{l}\cos\frac{m\pi x}{l}dx = 0.$$

Для синуса и косинуса
$$\left(\sin\frac{n\pi x}{l},\cos\frac{m\pi x}{l}\right) = \int_{-l}^{l} \sin\frac{n\pi x}{l}\cos\frac{m\pi x}{l} dx =$$

$$\frac{1}{2} \int_{-l}^{l} \left(\sin \frac{(n-m)\pi x}{l} - \sin \frac{(n+m)\pi x}{l} \right) dx = 0.$$

А если умножать не разные функции, а одну и ту же, то получится квадрат нормы. Посчитаем квадраты норм всех функций:

$$\left\| \frac{1}{2} \right\|^{2} = \left(\frac{1}{2}, \frac{1}{2} \right) = \int_{-l}^{l} \frac{1}{2} \frac{1}{2} dx = \frac{1}{4} 2l = \frac{l}{2}.$$

$$\left\| \sin \frac{n\pi x}{l} \right\|^{2} = \left(\sin \frac{n\pi x}{l}, \sin \frac{n\pi x}{l} \right) = \int_{-l}^{l} \left(\sin \frac{n\pi x}{l} \right)^{2} dx = \frac{1}{2} \int_{-l}^{l} \left(1 - \cos \frac{n\pi x}{l} \right) dx = \frac{1}{2} \left(2l - 0 \right) = l.$$

$$\left\| \cos \frac{n\pi x}{l} \right\|^{2} = \left(\cos \frac{n\pi x}{l}, \cos \frac{n\pi x}{l} \right) = \int_{-l}^{l} \left(\cos \frac{n\pi x}{l} \right)^{2} dx = \frac{1}{2} \int_{-l}^{l} \left(1 + \cos \frac{n\pi x}{l} \right) dx$$

$$= \frac{1}{2} (2l + 0) = l.$$

Ряд Фурье:
$$f(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} \left(a_n \cos \frac{n\pi x}{l} + b_n \sin \frac{n\pi x}{l} \right)$$

его коэффициенты:

$$a_0 = \frac{1}{l} \int_{-l}^{l} f(x) dx$$
, $a_n = \frac{1}{l} \int_{-l}^{l} f(x) \cos \frac{n\pi x}{l} dx$, $b_n = \frac{1}{l} \int_{-l}^{l} f(x) \sin \frac{n\pi x}{l} dx$.

Ряд Фурье с помощью синусов и косинусов разных частот осуществляет наилучшее приближении графика функции, в том смысле, что наименьшее среднеквадратичное отклонение. Для частичных сумм ряда, чем больше взято частот, тем более мелкие особенности графика будут учтены, и огибающая пройдёт ближе.

Почему коэффициенты выглядят именно так? Вспомним общую формулу $c_n = \frac{(f, \varphi_n)}{\left\| \varphi_n \right\|^2}.$ У нас квадрат нормы равен l для этой

конкретной системы. Скалярное произведение определяется через интеграл. Вот поэтому и получаются такие формулы.

Свойства чётности и нечётности.

Если f(x) чётная, то $b_n=0$ и ряд состоит только из константы и косинусов. При вычислении $b_n=\frac{1}{l}\int\limits_{-l}^{l}f(x)\sin\frac{n\pi x}{l}dx$ в интеграле одна функция чётная, а синус нечётный, произведение нечётное. Интеграл

от нечётной функции по симметричному отрезку равен 0. Аналогично, если f(x) нечётная, то $a_n = 0$, ведь в интеграле

$$a_n = \frac{1}{l} \int_{-l}^{l} f(x) \cos \frac{n\pi x}{l} dx$$
 одна нечётная вторая чётная, и интеграл

получается от нечётной, по симметричному промежутку, и он равен 0.

Ряд Фурье более подробно учитывает поведение функции на всём протяжении промежутка, в отличие от ряда Тейлора, который учитывает производные только в одной точке.

Пример. Разложить в триг-й ряд Фурье: f(x) = |x| на (-1,1).

$$a_0 = \frac{1}{1} \int_{-1}^{1} |x| dx = 2 \int_{0}^{1} x dx = 2 \frac{x^2}{2} \Big|_{0}^{1} = 1$$
, при этом $\frac{a_0}{2} = \frac{1}{2}$, кстати, это и

есть средняя высотра графика.

$$a_n = \int_{-1}^{1} |x| \cos(n\pi x) dx = 2 \int_{0}^{1} x \cos(n\pi x) dx$$
, интегрируем по частям.

$$u = x, u' = 1, \ v' = \cos(n\pi x), \ v = \frac{1}{n\pi}\sin(n\pi x).$$

$$2\int_{0}^{1} x \cos(n\pi x) dx = 2\left(\frac{x \sin(n\pi x)}{n\pi}\Big|_{0}^{1} - \frac{1}{n\pi} \int_{0}^{1} \sin(n\pi x) dx\right) = 2\left((0-0) + \frac{\cos(n\pi x)}{n^{2}\pi^{2}}\Big|_{0}^{1}\right) = 2\frac{\cos(n\pi) - \cos0}{n^{2}\pi^{2}} = 2\frac{(-1)^{n} - 1}{n^{2}\pi^{2}}.$$

Обратите внимание, что $\cos(n\pi)$ равен +1 при чётных n и -1 при нечётных, поэтому совпадает с $(-1)^n$.

Коэффициенты $b_n = 0$ так как функция чётная. Итак, получаем ряд:

$$\frac{1}{2} + \sum_{n=1}^{\infty} \frac{2((-1)^n - 1)}{n^2 \pi^2} \cos n \pi x.$$

Более подробная запись:

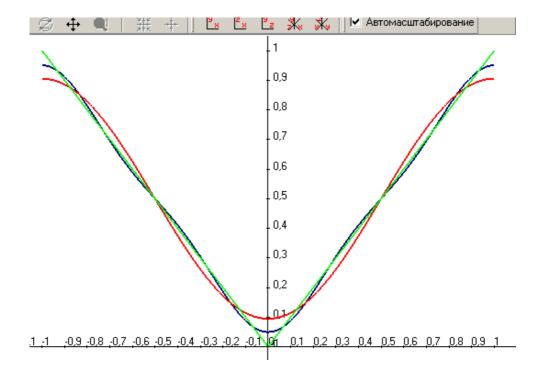
$$\frac{1}{2} - \frac{4}{\pi^2} \cos \pi x - \frac{4}{9\pi^2} \cos 3\pi x - \frac{4}{25\pi^2} \cos 5\pi x - \dots$$

Графики:

Зелёным цветом показан график модуля,

красным частичная сумма
$$\frac{1}{2} - \frac{4}{\pi^2} \cos \pi x$$
.

синим - частичная сумма
$$\frac{1}{2} - \frac{4}{\pi^2} \cos \pi x - \frac{4}{9\pi^2} \cos 3\pi x$$
.



ЛЕКЦИЯ № 14. 27. 05. 2016

Периодическое продолжение.

Мы ищем разложение функции в ряд на [-l,l], однако функции sin и сов существуют на всей действительной оси. Таким образом, в каждой точке x+2l из интервала [l,3l] они принимают точно такое же значение, как и в точке $x \in [-l,l]$. Таким образом, ряд Фурье сходится на [l,3l] к точно такой же функции, как и на [-l,l]. То же самое будет на [-3l,-l], и на [3l,5l], и так далее. Получается, что сумма ряда Фурье это функция, определённая на всей числовой оси,

Поведения ряда в точках разрыва, теорема Дирихле.

Ряд Фурье в точке разрыва сходится к среднему арифметическому правостороннего и левостороннего пределов функции в этой точке:

$$S(x) = \frac{f(x-0) + f(x+0)}{2}$$

Если точка разрыва на конце интервала, то $S(l) = \frac{f(l-0) + f(-l+0)}{2}$.

Гармонический вид ряда Фурье.

Обозначим
$$A_n = \sqrt{a_n^2 + b_n^2}$$
 тогда $\frac{a_n}{A_n} = \cos \varphi_n$, $\frac{b_n}{A_n} = \sin \varphi_n$.

Тогда ряд принимает вид:

$$f(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} A_n \left(\cos \varphi_n \cos \frac{n\pi x}{l} + \sin \varphi_n \sin \frac{n\pi x}{l} \right)$$

что по тригонометрической формуле

 $\cos(\alpha - \beta) = \cos\alpha\cos\beta + \sin\alpha\sin\beta$ можно свести к выражению

$$\frac{a_0}{2} + \sum_{n=1}^{\infty} A_n \cos\left(\frac{n\pi x}{l} - \varphi_n\right)$$

здесь A_n - амплитуда, $\frac{n\pi}{l}$ - частота, φ_n - фаза.

Как видим, сумма $a\cos x + b\sin x$ на самом деле представляет собой одно колебание, одну волну, с амплитудой $A = \sqrt{a^2 + b^2}$.

Комплексный ряд Фурье.

Пусть $\varphi: R \to C$ комплексная функция действительного аргумента, то есть $\varphi_1(x) + i \varphi_2(x)$. Скалярное произведение комплекснозначных

функций определено так:
$$(f, \varphi) = \int_a^b f(x)\overline{\varphi}(x)dx$$
.

Вторая сопряжённая, т.к. только таким спосбом можно корректно ввести понятие нормы функции. Если по этому правилу умножать

одну и ту же функцию, то
$$(f,f) = \int_a^b f(x)\bar{f}(x)dx =$$

$$\int_{a}^{b} (f_1 + if_2)(f_1 - if_2)dx = \int_{a}^{b} (f_1^2 + f_2^2)dx \ge 0$$
. Таким образом, существует

корень квадратный из этой величины, $\|f\| = \sqrt{(f,f)}$.

Рассмотрим систему функций
$$\left\{e^{\frac{in\pi x}{l}}\right\}_{n\in Z}$$
 т.е. ..., $e^{\frac{-i\pi x}{l}}$,1, $e^{\frac{i\pi x}{l}}$, $e^{\frac{i2\pi x}{l}}$,...

причём при n=0 получается именно $e^0=1$, т.е. константа автоматически находится в составе такой системы функций.

Докажем ортогональность системы $\left\{e^{\frac{in\pi x}{l}}\right\}$ и вычислим нормы этих

функций.

$$\left(e^{\frac{in\pi x}{l}}, e^{\frac{im\pi x}{l}}\right) = \int_{-l}^{l} e^{\frac{in\pi x}{l}} e^{-\frac{im\pi x}{l}} dx = \int_{-l}^{l} e^{\frac{i(n-m)\pi x}{l}} dx$$
, что при $n \neq m$ означает

$$\int_{-l}^{l} e^{\frac{ik\pi x}{l}} dx = \int_{-l}^{l} \cos\frac{k\pi x}{l} dx + i \int_{-l}^{l} \sin\frac{k\pi x}{l} dx = 0 + 0i$$
 так как на отрезке $[-l, l]$

будет целое количество полных периодов этих тригонметрических функций.

Если вычислять это скалярное произведение при одном и том же номере n ,то мы получим этим самым квадраты норм этих функций.

$$\left\|e^{\frac{in\pi x}{l}}\right\|^2 = \left(e^{\frac{in\pi x}{l}}, e^{\frac{in\pi x}{l}}\right) = \int_{-l}^{l} e^{\frac{in\pi x}{l}} e^{-\frac{in\pi x}{l}} dx = \int_{-l}^{l} e^{\frac{0i\pi x}{l}} dx = \int_{-l}^{l} e^{0} dx = \int_{-l}^{l} 1 dx =$$

2l . Квадраты норм равны 2l .

Комплексный ряд Фурье. $f(x) = c_0 + \sum_{n=-\infty}^{\infty} c_n e^{\frac{in\pi x}{l}}$.

Где
$$c_0 = \frac{1}{2l} \int_{-l}^{l} f(x) dx$$
, $c_n = \frac{1}{2l} \int_{-l}^{l} f(x) e^{\frac{-in\pi x}{l}} dx$.

Пример. Найти комплексный ряд Фурье для функции:

$$f(x) = \begin{cases} 0 & x \in (-1,0) \\ 1 & x \in (-01) \end{cases}$$

$$c_0 = \frac{1}{2} \int_0^1 dx = \frac{1}{2} \cdot c_n = \frac{1}{2} \int_0^1 e^{-in\pi x} dx = -\frac{1}{2in\pi} e^{-in\pi x} \Big|_0^1 = -\frac{e^{-in\pi} - e^0}{2in\pi} = -\frac{\cos n\pi - i \sin n\pi - 1}{2in\pi} = -\frac{\cos n\pi - 1}{2in\pi} = -\frac{(-1)^n - 1}{2in\pi} = \frac{1 - (-1)^n}{2in\pi}$$
Other.
$$f(x) = \frac{1}{2} + \sum_{n=0}^{\infty} \frac{1 - (-1)^n}{2in\pi} e^{in\pi x}$$

Если дальше преобразовать экспоненту в комплексной степени, то можно свести к обычному тригонометрическому ряду Фурье. Сделаем это. Объединим пары слагаемых при номерах n,-n.

$$f(x) = \frac{1}{2} + \sum_{n=0}^{\infty} \left(\frac{1 - (-1)^n}{2n\pi} e^{in\pi x} + \frac{1 - (-1)^{-n}}{2(-n)\pi} e^{-in\pi x} \right) =$$

$$f(x) = \frac{1}{2} + \sum_{n=0}^{\infty} \left(2\frac{1 - (-1)^n}{2in\pi} (e^{in\pi x} - e^{-in\pi x}) \right) =$$

$$f(x) = \frac{1}{2} + \sum_{n=0}^{\infty} \left(2\frac{1 - (-1)^n}{n\pi} \frac{e^{in\pi x} - e^{-in\pi x}}{2i} \right) =$$

$$f(x) = \frac{1}{2} + \sum_{n=0}^{\infty} \frac{2(1 - (-1)^n)}{n\pi} \sin n\pi x.$$

Если записать подробнее комплексный ряд Фурье, т.е. внутри суммы подробно представить коэффициент, то получим:

$$f(x) = c_0 + \sum_{n = -\infty}^{\infty} \left(\frac{1}{2l} \int_{-l}^{l} f(x) e^{-\frac{in\pi x}{l}} dx \right) e^{\frac{in\pi x}{l}}.$$

Обозначим частоту $\omega_n = \frac{n\pi}{l}$. Приразение частоты от предыдущего к

следующему номеру:
$$\Delta\omega_n=\omega_{n+1}-\omega_n=\frac{(n+1)\pi}{l}-\frac{n\pi}{l}=\frac{\pi}{l}$$
 .

Разложение в ряд Фурье существует для функции на [-l,l] для любого сколь угодно большого l. При этом период увеличивается, а частота уменьшается. Если представить что $l \to \infty$ то вся действительная ось

представляет собой один большой период, при этом $\Delta \omega_n = \frac{\pi}{l} \to 0$.

Очевидно, что можно рассматривать тригонометрические функции с любым действительным коэффициентом, т.е. может ьыть не лискретный, а непрерывный набор частот синуса и косинуса. Предельным переходом при $\Delta \omega_n \to 0$ сумма превращается в интеграл (как интегральные суммы в прошлых темах).

Интеграл Фурье
$$f(x) = \frac{1}{2\pi} \int_{-\infty}^{\infty} \left(\int_{-\infty}^{\infty} f(u) e^{-i\omega u} du \right) e^{i\omega x} d\omega$$

Промежуточная переменная u во внутренней части этого двойного интеграла пишется для того, чтобы отличать её от внешней переменной x. Но ведь можно коэффициент поделить поровну между внешним и внутренним интегралом,

$$f(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} \left(\frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} f(u) e^{-i\omega u} du \right) e^{i\omega x} d\omega$$
. Та функция от ω ,

которая здесь в скобке, называется преобразованием Фурье:

Преобразование Фурье
$$F(\omega) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} f(x)e^{-i\omega x} dx$$

Когда мы не рассматриваем её в двойном интеграле, то можно x не заменять на новую переменную u.

Симметричность формул прямого и обратного преобразования Фурье:

$$F(\omega) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} f(x)e^{-i\omega x} dx \quad \text{if } f(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} (F(\omega))e^{i\omega x} d\omega$$

Пример. Найти преобразование Фурье для функции

$$f(x) = \begin{cases} 0 & x \in (-\infty, 0) \\ e^{-3x} & x \in (-0, \infty) \end{cases}$$

Решение. Здесь на левой части действительной оси функция тождественно 0, так что интеграл только по правой части:

$$F(\omega) = \frac{1}{\sqrt{2\pi}} \int_{0}^{\infty} e^{-3x} e^{-i\omega x} dx = \frac{1}{\sqrt{2\pi}} \int_{0}^{\infty} e^{-(3+i\omega)x} dx = \frac{1}{\sqrt{2\pi}} \frac{-1}{3+i\omega} e^{-(3+i\omega)x} \Big|_{0}^{\infty} = \frac{1}{\sqrt{2\pi}} \frac{-1}{3+i\omega} (0-1) = \frac{1}{\sqrt{2\pi}(3+i\omega)}.$$
 Можно ещё и домножить на

сопряжённое, чтобы в знаменателе получить действительное выражение, тогда ответ: $F(\omega) = \frac{3 - i\omega}{\sqrt{2\pi}(9 + \omega^2)}$.

Числовые ряды и ряды Фурье, их взаимосвязь.

С помощью разложения функции $f(x) = x^2$ в тригонометрический ряд Фурье в [-1,1] можно найти суммы рядов $\sum_{n=1}^{\infty} \frac{1}{n^2}$ и $\sum_{n=1}^{\infty} \frac{(-1)^n}{n^2}$.

Функция является четной, $b_n = 0$.

$$a_0 = \int_{-1}^{1} x^2 dx = 2 \int_{0}^{1} x^2 dx = 2 \frac{x^3}{3} \Big|_{0}^{1} = \frac{2}{3}.$$

 $a_n = \int_{-1}^{1} x^2 \cos n\pi x dx$ в силу чётности равно $a_n = 2 \int_{0}^{1} x^2 \cos n\pi x dx$, такой

интеграл можно найти с помощью интегрирования по частям в 2 шага.

Сначала
$$u_1 = x^2, u_1' = 2x, v_1' = \cos n\pi x, v_1 = \frac{1}{n\pi} \sin n\pi x.$$

$$\begin{split} a_n &= 2 \int\limits_0^1 x^2 \cos n\pi x dx = 2 \Bigg(\frac{x^2}{n\pi} \sin n\pi x dx \Bigg|_0^1 - \frac{2}{n\pi} \int\limits_0^1 x \sin n\pi x dx \Bigg) = \\ &- \frac{4}{n\pi} \int\limits_0^1 x \sin n\pi x dx \,. \, \text{Затем 2-й шаг,} \\ u_2 &= x, u_2^{'} = 1, \, \, v_2^{'} = \sin n\pi x, v_1 = \frac{-1}{n\pi} \cos n\pi x \,. \\ &- \frac{4}{n\pi} \int\limits_0^1 x \sin n\pi x dx = - \frac{4}{n\pi} \bigg(-\frac{x}{n\pi} \cos n\pi x \Bigg|_0^1 + \frac{1}{n\pi} \int\limits_0^1 \cos n\pi x dx \bigg) = \\ &- \frac{4}{n\pi} \bigg(-\frac{1}{n\pi} \cos n\pi + \frac{1}{n^2\pi^2} \sin n\pi x \Bigg|_0^1 \bigg) = \frac{4}{n^2\pi^2} \cos n\pi + 0 = \frac{4(-1)^n}{n^2\pi^2} \,. \end{split}$$

Итак,
$$a_n = \frac{4(-1)^n}{n^2 \pi^2}$$
, $\frac{a_0}{2} = \frac{1}{3}$, $b_n = 0$.

Разложение функции в ряд Фурье:

$$x^{2} = \frac{1}{3} + \sum_{n=1}^{\infty} \frac{4(-1)^{n}}{n^{2} \pi^{2}} \cos n\pi x \text{ To ectb } x^{2} = \frac{1}{3} + \frac{4}{\pi^{2}} \sum_{n=1}^{\infty} \frac{(-1)^{n}}{n^{2}} \cos n\pi x.$$

Подставим
$$x = 0$$
. $0 = \frac{1}{3} + \frac{4}{\pi^2} \sum_{n=1}^{\infty} \frac{(-1)^n}{n^2}$, то есть

$$\frac{4}{\pi^2} \sum_{n=1}^{\infty} \frac{(-1)^n}{n^2} = -\frac{1}{3}, \text{ из чего следует } \sum_{n=1}^{\infty} \frac{(-1)^n}{n^2} = -\frac{\pi^2}{12}.$$

Подставим
$$x=1$$
. $1=\frac{1}{3}+\frac{4}{\pi^2}\sum_{n=1}^{\infty}\frac{(-1)^n}{n^2}\cos n\pi$, то есть

$$\frac{2}{3} = \frac{4}{\pi^2} \sum_{n=1}^{\infty} \frac{(-1)^n (-1)^n}{n^2} = \frac{4}{\pi^2} \sum_{n=1}^{\infty} \frac{1}{n^2}, \text{ из чего следует } \sum_{n=1}^{\infty} \frac{1}{n^2} = \frac{\pi^2}{6}.$$

ЛЕКЦИЯ № 15. 27. 06. 2016

Обзорная лекция + дополнительный материал.