Министерство высшего образования и науки РФ Томский государственный университет систем управления и радиоэлектроники

Кафедра экономической математики, информатики и статистики

«Управление в технических системах»

В.И.Смагин

Методические указания к практическим и лабораторным работам для магистрантов направления 09.04.01 «Информатика и вычислительная техника»

Предлагаемые задания к лабораторным работам выполняются магистрантами в компьютерном классе с использованием пакета прикладных программ MATCAD. В приложении к описанию даны варианты исходных данных к заданиям.

СОДЕРЖАНИЕ

Аннотация
Перечень закрепленных за дисциплиной компетенций4
Построение дискретной модели объекта5
Локально-оптимальное управление
с учетом ограничений на управление6
Локально-оптимальное управление
с использованием оценивателей
Адаптивное управление в случае трех
неизвестных параметров (b_1 , b_2 и γ)
Адаптивное управление в случае
двух неизвестных параметров (b_1 и b_2)
Адаптивное управление объектом с использованием
алгоритма двухэтапной идентификации14
Оптимальное управление линейным объектом 3-го порядка17
Адаптивное управление линейным объектом 3-го порядка19
Оптимальное управление нелинейным объектом 3-го порядка22
Адаптивное управление нелинейным объектом 3-го порядка24
ПРИЛОЖЕНИЕ. Варианты заданий к лабораторным работам26
Литература

Аннотация

В учебно-методическом пособии приводятся задания к лабораторным работам, в которых рассмотрены задачи управления в технических системах. Лабораторные работы выполняются с использованием пакета прикладных программ Mathcad.

Пособие разработано для магистрантов ФВС, используется при изучении курса "Управление в технических системах".

Перечень закрепленных за дисциплиной компетенций

•	ь закрепленных за дисципли Формулировка компетен-	Этапы формирования		
Код	ции	компетенции		
ОК-1	Способность совершенствовать и развивать свой интеллектуальный и общекультурный уровень	Должен знать: - терминологию, основные понятия и определения задач управления в техни-		
ОК-5	Способность использования на практике умений и навыков в организации исследовательских и проектных работ, в управлении коллективом	ческих системах; - и применять на практике методы анализа и синтеза управления в технических системах.		
ОК-9	Умение оформлять отчеты о проведенной научно- исследовательской работе и подготавливать публикации по результатам исследования	Должен уметь: - правильно выбирать методы управления в технических системах для решения конкретной задачи;		
ПК-7	Способность применения перспективных методов исследования и решения профессиональных задач на основе знания мировых тенденций развития вычислительной техники и информационных технологий	- осуществлять расчет и анализ погрешностей метода; - понимать и применять на практике компьютерные технологии решения практических задач управления на основе знаний мировых тенденций развития вычислитедьной техники. Должен владеть: - навыками решения практических задач с использованием перспективных методов управления в технических системах.		

ПОСТРОЕНИЕ ДИСКРЕТНОЙ МОДЕЛИ

ЗАДАНИЕ

1. Для модели управляемого технического объекта с непрерывным временем

$$\dot{x}(t) = \bar{A}x(t) + \bar{B}u(t), \quad x(0) = x_0,$$
 (1)

где

$$\overline{A} = \begin{pmatrix} \frac{1}{b_1} & -\frac{\gamma b_2}{b_1} \\ 0 & \gamma \end{pmatrix}, \quad \overline{B} = \begin{pmatrix} -\frac{b_2}{b_1} \\ 1 \end{pmatrix}$$

составить программу решения дифференциального уравнения по методу Эйлера, преобразовав модель к дискретной форме:

$$x(k+1) = Ax(k) + Bu(k),$$

для шага интегрирования $\Delta t = 0,1$ (определить матрицы A и B). Построить графики переходных процессов для фондов и построить фазовый портрет, построить графики при критическом управлении u. Сравнить по точности два метода решения дифференциального уравнения при критическом u. Построить график абсолютной ошибки (исходные данные приведены в приведены в таблице 1).

2. Выполнить моделирование объекта со случайными возмущениями:

$$x(k+1) = Ax(k) + Bu(k) + q(k),$$

где q(k) – гауссовская последовательность с характеристиками:

$$M\{q(k)\}=0, M\{q(k)q^{T}(j)\}=Q\delta_{k,j}.$$

Отметим, что аддитивные возмущения q(k) вводятся для учета возможных ошибок в модели (матрица Q приведена в таблице 1).

3. Повторить моделирование (пункт 4) для матрицы

$$Q = \begin{pmatrix} 2,0 & 0,1 \\ 0,1 & 0,25 \end{pmatrix}.$$

Замечание. В этом случае необходимо извлечь корень из матрицы Q, т.е. дополнительно решить матричное уравнение $XX^T = Q$. Решение этого уравнения и будет корнем квадратным из матрицы.

4. В отчете привести результаты моделирования в виде графиков переходных процессов, фазовые портреты. Сделать выводы.

Лабораторная работа № 2

ЛОКАЛЬНО-ОПТИМАЛЬНОЕ УПРАВЛЕНИЕ С УЧЕТОМ ОГРАНИЧЕНИЙ

Для дискретной модели

$$x(k+1) = Ax(k) + Bu(k) + q(k), \quad x(0) = x_0,$$
 (2)

решить задачу локально оптимального управления. Все исходные данные и варианты приведены в таблицах 1, 2. Матрица выхода системы равна

$$F = (0 1)$$
.

Оптимизируемый локальный критерий имеет вид:

$$J(k) = M\{(Fx(k+1) - z)^{T}C(Fx(k+1) - z) + u^{T}(k)Du(k)\},$$
(3)

где $C,\ D$ – весовые коэффициенты критерия (заданы в таблице 2).

ЗАДАНИЕ

1. Выполнить моделирование системы (2), реализовав локальнооптимальное управление

$$u(k) = -(B^T F^T CFB + D)^{-1} B^T F^T C[FAx(k) - z],$$

обеспечивающее слежение за z. Сначала задать матрицу $\,Q=0\,.\,$ Интервал времени: $\,k=0,....,140\,.\,$

Повторить моделирование для $Q \neq 0$ (см. таблицу 1). Исследовать влияние весового коэффициента C на качество слежения (задать C=0,1; C=1; C=10).

2. Выполнить моделирование с учетом ограничений на управление:

$$\overline{u}(k) = \begin{cases} 10,5 & \text{если} \quad u(k) > 10,5; \\ u(k) & \text{если} \quad 2,1 \leq u(k) \leq 10,5; \\ 2,1 & \text{если} \quad u(k) < 2,1. \end{cases}$$

3. Для всех рассмотренных случаев построить графики переходных процессов и графики управлений. Сделать выводы.

ЛОКАЛЬНО-ОПТИМАЛЬНОЕ УПРАВЛЕНИЕ С ИСПОЛЬЗОВАНИЕМ ОЦЕНИВАТЕЛЕЙ

1. Для дискретной модели объекта

$$x(k+1) = Ax(k) + Bu(k) + q(k), \quad x(0) = x_0,$$
 (4)

выполнить моделирование системы (4), реализовав локальнооптимальное управление

$$u(k) = -(B^T F^T CFB + D)^{-1} B^T F^T C(FA\hat{x}(k) - z),$$

обеспечивающее слежение за траекторией z. Здесь $\hat{x}(k)$ — оценка фильтрации или экстраполяции. Диагональные элементы матрицы Q, весовые коэффициенты критерия C, D взять из таблиц 1, 2. Интервал времени: k=0,...,140.

Предполагается, что модель системы контроля имеет вид:

$$y(k) = Hx(k) + \eta(k)$$
,

где $\eta(k)$ – гауссовская случайная последовательность, независимая от q(k), с характеристиками:

$$M{\lbrace \eta(k)\rbrace} = 0, \quad M{\lbrace \eta(k)\eta^T(j)\rbrace} = V\delta_{k,j},$$

Матрица системы контроля равна

$$H = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}.$$

Реализовать уравнения фильтра Калмана:

$$\hat{x}(k+1) = A\hat{x}(k) + Bu(k) + K_f(k)[y(k+1) - H(A\hat{x}(k) + Bu(k))],$$

$$\hat{x}(0) = \overline{x}(0),$$
(5)

$$P_f(k+1/k) = AP_f(k)A^T + Q,$$
 (6)

$$K_f(k) = P_f(k+1/k)H^T[HP_f(k+1/k)H^T + V]^{-1},$$
 (7)

$$P_f(k+1) = (E_2 - K_f(k)H)P_f(k+1/k), P_f(0) = P_{f0}.$$
 (8)

2. Повторить моделирование с использованием экстраполятора Калмана (этот случай позволяет учитывать возможные задержки поступления информации в системе контроля на 1 такт, результат можно обобщить на случай задержек на несколько тактов):

$$\hat{x}(k+1) = A\hat{x}(k) + Bu(k) + K_e(k)[y(k) - H\hat{x}(k)], \ \hat{x}(0) = \overline{x}(0), \ (9)$$

$$K_e(k) = AP_e(k)H^T(HP_e(k)H^T + V)^{-1},$$
 (10)

$$P_{e}(k+1) = (A - K_{e}(k)H)P_{e}(k)(A - K_{e}(k)H)^{T} + Q + K_{e}(k)VK_{e}^{T}(k), P_{e}(0) = P_{e0}.$$
(11)

Начальные условия следующие $\hat{x}(0)$, диагональные элементы матриц $P_e(0) = P_f(0)$ приведены в таблице 3.

ЗАДАНИЕ

- 1. Исследовать качество оценивания в зависимости от матрицы $P_{e}(0)$, уменьшая и увеличивая диагональные элементы.
- 2. Для всех рассмотренных случаев построить графики переходных процессов их оценок и графики управлений. Сделать выводы.

АДАПТИВНОЕ УПРАВЛЕНИЕ В СЛУЧАЕ ТРЕХ НЕИЗВЕСТНЫХ ПАРАМЕТРОВ ($b_{\scriptscriptstyle 1}$, $b_{\scriptscriptstyle 2}$ и γ)

Для дискретной модели объекта

$$x(k+1) = A(\theta)x(k) + B(\theta)u(k) + q(k), \quad x(0) = x_0,$$
 (12)

и заданного значения z решить задачу синтеза и моделирования адаптивного локально-оптимального управления. В (12) трехмерный вектор неизвестных параметров задается в виде:

$$\theta = \begin{pmatrix} \frac{1}{b_1} \\ \frac{b_2}{b_1} \\ \gamma \end{pmatrix}.$$

Предполагается, что вектор θ является неизвестной константой. Это означает, что динамическая модель для вектора θ следующая:

$$\theta(k+1) = \theta(k), \quad \theta(0) = \theta_0, \tag{13}$$

где θ_0 – случайный вектор с характеристиками:

$$M\{\theta_0\} = \overline{\theta}_0, \quad M\{(\theta_0 - \overline{\theta}_0)(\theta_0 - \overline{\theta}_0)^{\mathrm{T}}\} = P_{\theta_0}.$$

Выполнить моделирование системы (12), реализовав адаптивное управление в предположении, что вектор x(k) контролируется точно без ошибок. Тогда адаптивное управление будет иметь вид:

$$u(k) = -[B^{T}(\hat{\theta}(k))F^{T}CFB(\hat{\theta}(k)) + D]^{-1}B^{T}(\hat{\theta}(k)) \times F^{T}C[FA(\hat{\theta}(k))x(k) - z],$$
(14)

Определить матрицу G(k) = G(x(k), u(k)) и вектор g(k) = g(x(k), u(k)) из соотношения

$$x(k+1) = A(\theta)x(k) + B(\theta)u(k) + q(k) = G(k)\theta + g(k) + q(k).$$
 (15)

В качестве алгоритма идентификации используется дискретный фильтр Калмана, построенный с использованием модели (13) и представлении объекта (12) в виде (15):

$$\hat{\theta}(k+1) = \hat{\theta}(k) + K_{\theta}(k)[x(k+1) - G(k)\hat{\theta}(k) - g(k)], \ \hat{\theta}(0) = \overline{\theta}_{0}, \ (16)$$

$$K_{\theta}(k) = P_{\theta}(k)G(k)^{T}[G(k)P_{\theta}(k)G(k)^{T} + Q]^{-1},$$
 (17)

$$P_{\theta}(k+1) = (E_3 - K_{\theta}(k)G(k))P_{\theta}(k), \ P_{\theta}(0) = P_{\theta_0}.$$
 (18)

Начальные условия для уравнения (16) следующие:

$$\hat{\theta}(0) = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}.$$

Матрица $P_{\theta}(0)$ диагональная (элементы матрицы приведены в таблице 3).

ЗАДАНИЕ

Построить графики переходных процессов, графики адаптивного управления и оценок неизвестных параметров. Исследовать влияние на качество идентификации диагональных элементов матрицы P_{θ_0} (увеличивая их в 10 и 100 раз), диагональных элементов матрицы Q (уменьшая из в 10 и 100 раз, при этом P_{θ_0} принимает исходное значение). Также исследовать влияние на качество оценок параметров ограничений на управление. Сделать выводы.

АДАПТИВНОЕ УПРАВЛЕНИЕ В СЛУЧАЕ ДВУХ НЕИЗВЕСТНЫХ ПАРАМЕТРОВ ($b_1\,$ и $\,b_2\,$)

Для дискретной модели объекта

$$x(k+1) = A(\theta)x(k) + B(\theta)u(k) + q(k), \ x(0) = x_0,$$
 (19)

и заданного значения z синтезировать адаптивное управление.

В (19) вектор неизвестных параметров определить следующим соотношением:

$$\theta = \begin{pmatrix} \frac{1}{b_1} \\ \frac{b_2}{b_1} \end{pmatrix}.$$

Предполагается, что вектор θ является неизвестной константой.

Выполнить моделирование системы (19), реализовав адаптивное управление в предположении, что вектор x(k) контролируется точно без ошибок. Тогда адаптивное управление будет иметь вид:

$$u(k) = -(B^{T}(\hat{\theta}(k))F^{T}CFB(\hat{\theta}(k)) + D)^{-1}B^{T}(\hat{\theta}(k))F^{T} \times C(FA(\hat{\theta}(k))x(k) - z).$$
(20)

Диагональные элементы матрицы Q, весовые коэффициенты критерия C, D заданы в таблицах. Интервал времени: k=0,...,200.

В качестве алгоритма идентификации используется дискретный фильтр Калмана:

$$\hat{\theta}(k+1) = \hat{\theta}(k) + K_{\theta}(k)[x(k+1) - G(k)\hat{\theta} - g(k)], \ \hat{\theta}(0) = \overline{\theta}_0, \quad (21)$$

$$K_{\theta}(k) = P_{\theta}(k)G(k)^{T}(G(k)P_{\theta}(k)G(k)^{T} + Q)^{-1},$$
 (22)

$$P_{\theta}(k+1) = (E_2 - K_{\theta}(k)G(k))P_{\theta}(k), \ P_{\theta}(0) = P_{\theta_0}. \tag{23}$$

Начальные условия для уравнения (4) следующие:

$$\hat{\theta}(0) = \begin{pmatrix} 0 \\ 0 \end{pmatrix}.$$

Матрица $P_{A}(0)$ диагональная и задана в таблице 3.

Определить матрицу G(x(k),u(k)) и вектор g(x(k),u(k)). Учитывая, что 2-ая строка матрицы G(x(k),u(k)) нулевая, модифицировать уравнения фильтрации (21–23). Эта модификация позволит вместо полного вектора x(k+1) в (21) использовать только 1-ю компоненту этого вектора.

ЗАДАНИЕ

- 1. Построить графики переходных процессов, графики адаптивного управлений и оценок неизвестных параметров. Результаты моделирования выполнить для 2-х случаев:
 - а) без учета на ограничения;
 - б) с учетом ограничений.

Сравнить качество оценок неизвестных параметров. Сделать выводы.

2. Выполнить моделирование в предположении, что контроль за состоянием объекта осуществляется с ошибками. Модель системы контроля имеет вид:

$$y(k) = Hx(k) + \eta(k),$$

где $\eta(k)$ – гауссовская последовательность независимая от q(k) с характеристиками:

$$M\{\eta(k)\}=0, \quad M\{\eta(k)\eta^T(j)\}=V\delta_{k,j}.$$

Матрица V диагональная, ее элементы заданы в таблице 2. Матрица системы контроля следующая

$$H = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}.$$

АДАПТИВНОЕ УПРАВЛЕНИЕ С ИСПОЛЬЗОВАНИЕМ АЛГОРИТМА ДВУХЭТАПНОЙ ИДЕНТИФИКАЦИИ

Для дискретной модели объекта

$$x(k+1) = A(\theta)x(k) + B(\theta)u(k) + q(k), \quad x(0) = x_0,$$
 (24)

решить задачу адаптивного управления с использованием двухэтапного алгоритма идентификации.

Вектор неизвестных параметров определяется следующим соотношением:

$$\theta = \begin{pmatrix} \frac{1}{b_1} \\ \frac{b_2}{b_1} \\ \gamma \end{pmatrix}.$$

Выполнить моделирование системы (24), реализовав адаптивное управление в предположении, что вектор x(k) контролируется с помощью следующей модели:

$$y(k) = Hx(k) + \eta(k),$$

где $\eta(k)$ – гауссовская случайная последовательность, независимая от q(k), с характеристиками:

$$M{\lbrace \eta(k)\rbrace} = 0, \quad M{\lbrace \eta(k)\eta^T(j)\rbrace} = V\delta_{k,j}.$$

Матрица системы контроля равна

$$H = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}.$$

Для вычисления оценок вектора неизвестных параметров использовать алгоритм двухэтапной идентификации.

Адаптивное управление будет иметь вид:

$$u(k) = -[B^{T}(\hat{\theta}(k))F^{T}CFB(\hat{\theta}(k)) + D]^{-1}B^{T}(\hat{\theta}(k)) \times F^{T}C[FA(\hat{\theta}(k))\hat{x}(k) - z],$$
(25)

Интервал времени: k = 0,...,140.

Оценки векторов $\hat{x}(k)$ и $\hat{\theta}(k)$ определяются с помощью следующих формул:

$$\hat{x}(k+1) = A(\hat{\theta}(k))\hat{x}(k) + B(\hat{\theta}(k))u(k) + K_f(k)[y(k+1) - H(A(\hat{\theta}(k))\hat{x}(k) + B(\hat{\theta}(k))u(k))], \ \hat{x}(0) = \overline{x}(0),$$
(26)

$$P_{f}(k+1/k) = A(\hat{\theta}(k))P_{f}(k)A(\hat{\theta}(k))^{T} + Q, \qquad (27)$$

$$K_f(k) = P_f(k+1/k)H^T[HP_f(k+1/k)H^T + V]^{-1},$$
 (28)

$$P_f(k+1) = (E_2 - K_f(k)H)P_f(k+1/k), P_f(0) = P_{f_0},$$
 (29)

$$\hat{\theta}(k+1) = \hat{\theta}(k) + K_{\theta}(k)[y(k+1) - HG(k)\hat{\theta} - Hg(k)], \ \hat{\theta}(0) = \overline{\theta}_{0}, \ (30)$$

$$K_{\theta}(k) = P_{\theta}(k)G(k)^{T}[G(k)P_{\theta}(k)G(k)^{T} + HQH^{T} + V]^{-1},$$
 (31)

$$P_{\theta}(k+1) = (E_3 - K_{\theta}(k)G(k))P_{\theta}(k), P_{\theta}(0) = P_{\theta_{\theta}},$$
 (32)

где

$$G(k) = G(\hat{x}(k), u(k)), \ g(k) = g(\hat{x}(k), u(k)).$$

Начальные условия для уравнения (30) следующие:

$$\hat{\theta}(0) = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}.$$

Матрица $P_{\theta}(0)$ диагональная (см. таблицу 3).

ЗАДАНИЕ

Построить графики переходных процессов, графики адаптивного управления и оценок неизвестных параметров. Исследовать влияние на качество идентификации диагональных элементов матрицы P_{θ_0} (увеличивая их в 10 и 100 раз), диагональных элементов матрицы Q и V (уменьшая из в 10 и 100 раз). Сделать выводы.

ОПТИМАЛЬНОЕ УПРАВЛЕНИЕ ЛИНЕЙНЫМ ОБЪЕКТОМ 3-го ПОРЯДКА

1. Для дискретной модели

$$x(k+1) = Ax(k) + Bu(k) + q(k), \quad x(0) = x_0,$$
 (33)

синтезировать локально-оптимальное управление. В (33) матрицы A и B следующие

$$A = \begin{bmatrix} 1 - n_0 \exp(-c) - k_1 & 0 & 0 \\ n_0 \exp(-c) & 1 - k_2 & 0 \\ c n_0 \exp(-c) - k_3 & 0 & 1 \end{bmatrix}, B = \begin{pmatrix} 1 \\ 0 \\ -c_0 \end{pmatrix}, (34)$$

Реализовать оптимальное управление:

$$u(k) = -(B^T F^T CFB + D)^{-1} B^T F^T C(FA\hat{x}(k) - z)).$$
 (35)

Рассмотреть два варианта вычисления оценки $\hat{x}(k)$:

- с использованием фильтра Калмана,
- с использованием экстраполятора Калмана (с задержками на 1 и 2 такта).

Предполагается, что модель системы контроля имеет вид:

$$y(k) = Hx(k) + \eta(k), \tag{36}$$

где $\eta(k)$ – гауссовская случайная последовательность, независимая от q(k), с характеристиками:

$$M\{\eta(k)\}=0, \quad M\{\eta(k)\eta^T(j)\}=V\delta_{k,j}.$$

Исходные данные, необходимые для решения задачи адаптивного управления следующие:

$$F = (0 \ 0 \ 1), C = 1, D = 0.01, r = 0.0062, c = 3.5, c_0 = 1,$$

$$n_0 = 0,8, k_1 = 0,0001, k_2 = 0,02, k_3 = 0,05,$$

$$H = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}, Q = \begin{bmatrix} 0,11 & 0 & 0 \\ 0 & 0,08 & 0 \\ 0 & 0 & 0,095 \end{bmatrix},$$

$$V = \begin{bmatrix} 2,1 & 0 & 0 \\ 0 & 3,2 & 0 \\ 0 & 0 & 0,05 \end{bmatrix}, x(0) = \begin{pmatrix} 200 \\ 110 \\ w_0 \end{pmatrix}, \hat{x}(0) = \begin{pmatrix} 190 \\ 100 \\ w_0 \end{pmatrix}.$$

Дополнительные данные, необходимые для выполнения работы, приведены в таблице 4.

ЗАДАНИЕ

Построить графики переходных процессов, графики оптимального управления и оценок вектора. Моделирование выполнить на интервале времени от 0 до 140 (один такт соответствует 1 дню). Сравнить качество систем управления.

Сделать выводы.

АДАПТИВНОЕ УПРАВЛЕНИЕ ЛИНЕЙНЫМ ОБЪЕКТОМ 3-го ПОРЯДКА

Для дискретной линейной модели

$$x(k+1) = A(\theta)x(k) + Bu(k) + q(k), \quad x(0) = x_0,$$
 (37)

решить задачу адаптивного управления. В (37) вектор неизвестных параметров определен следующим соотношением:

$$\theta = \begin{pmatrix} \theta_1 \\ \theta_2 \end{pmatrix}$$

Предполагается, что вектор θ является неизвестной константой. В (37) матрицы $A(\theta)$ и B следующие

$$A(\theta) = \begin{bmatrix} 1 - \theta_1 \exp(-c) - k_1 & 0 & 0 \\ \theta_1 \exp(-c) & 1 - \theta_2 & 0 \\ c\theta_1 \exp(-c) - k_3 & 0 & 1 \end{bmatrix}, \ B = \begin{pmatrix} 1 \\ 0 \\ -c_0 \end{pmatrix}, \tag{38}$$

Предполагается, что модель системы контроля имеет вид:

$$y(k) = Hx(k) + \eta(k)$$
,

где $\eta(k)$ – гауссовская случайная последовательность, независимая от q(k), с характеристиками:

$$M{\lbrace \eta(k)\rbrace} = 0, \quad M{\lbrace \eta(k)\eta^{T}(j)\rbrace} = V\delta_{k,j},$$

Определить матрицу G и вектор g, необходимые для реализации алгоритма двухэтапной идентификации (см. лабораторную работу $N \ge 6$). Реализовать адаптивное управление фирмой:

$$u(k) = -(B^{T}F^{T}CFB + D)^{-1}B^{T}F^{T}C(FA(\hat{\theta}(k))\hat{x}(k) - z).$$
 (39)

Исходные данные, необходимые для решения задачи адаптивного управления следующие:

$$F = (0 \ 0 \ 1), \ C = 1, \quad D = 0,01, \ r = 0,0062, \ c = 3,5, \ c_0 = 1,$$

$$k_1 = 0,0001, \ k_3 = 0,05,$$

$$H = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}, \ Q = \begin{bmatrix} 0,11 & 0 & 0 \\ 0 & 0,08 & 0 \\ 0 & 0 & 0,095 \end{bmatrix}, \ V = \begin{bmatrix} 2,1 & 0 & 0 \\ 0 & 3,2 & 0 \\ 0 & 0 & 0,05 \end{bmatrix}.$$

$$\hat{\Theta} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}, \quad x(0) = \begin{pmatrix} 200 \\ 110 \\ w_0 \end{pmatrix}, \quad \hat{x}(0) = \begin{pmatrix} 190 \\ 100 \\ w_0 \end{pmatrix}.$$

При моделировании истинные значения θ_1 и θ_2 k_2 принять следуюшие:

$$\theta_1 = 0.8$$
, $\theta_2 = 0.02$.

Дополнительные данные, необходимые для выполнения работы, приведены в таблице 4.

ЗАДАНИЕ

Построить графики переходных процессов, графики адаптивного управления и оценок неизвестных параметров. Использовать двухэтапный алгоритм идентификации. Моделирование выполнить на интервале времени от 0 до 140 (один такт соответствует 1 дню). Исследовать влияние диагональных элементов матрицы V на качество оценивания параметров модели, увеличивая их сначала в 5 и затем в 10, затем в 100 раз.

Сделать выводы.

ОПТИМАЛЬНОЕ УПРАВЛЕНИЕ НЕЛИНЕЙНЫМ ОБЪЕКТОМ 3-го ПОРЯДКА

1. Для дискретной нелинейной модели объекта

$$x(k+1) = A\varphi(x(k)) + Bu(k) + q(k), \quad x(0) = x_0,$$
 (40)

синтезировать оптимальное управление.

Вектор
$$\varphi(x(k)) = (x_1(k) \ x_2(k) \ x_3(k) \ x_1(k)x_2(k))^T$$
.

В (40) матрицы A и B следующие

$$A = \begin{bmatrix} 1 - n_0 \exp(-c) - k_1 & 0 & 0 & n_0 \exp(-c)/Y \\ n_0 \exp(-c) & 1 - k_2 & 0 & -n_0 \exp(-c)/Y \\ cn_0 \exp(-c) - k_3 & 0 & 1 & -cn_0 \exp(-c)/Y \end{bmatrix}, B = \begin{pmatrix} 1 \\ 0 \\ -c_0 \end{pmatrix}, (41)$$

Реализовать оптимальное управление фирмой:

$$u(k) = -(B^{T}F^{T}CFB + D)^{-1}B^{T}F^{T}C(FA\varphi(\hat{x}(k)) - z). \tag{42}$$

где $\hat{x}(k)$ вычисляется с помощью линеаризованного фильтра Калмана:

$$\hat{x}(k+1) = A\varphi(\hat{x}(k)) + Bu(k) + K_f(k)[y(k+1) - H(A\varphi(\hat{x}(k)) + Bu(k))],$$

$$\hat{x}(0) = \overline{x}(0), \tag{43}$$

$$P_f(k+1/k) = \overline{A}P_f(k)\overline{A}^T + Q, \qquad (44)$$

$$K_f(k) = P_f(k+1/k)H^T[HP_f(k+1/k)H^T + V]^{-1},$$
 (45)

$$P_f(k+1) = (E_2 - K_f(k)H)P_f(k+1/k), P_f(0) = P_{f0},$$
 (46)

где матрица \bar{A} определяется по формуле

$$\overline{A}(k) = A \frac{\partial \varphi(x(k))}{\partial x(k)} |_{\hat{x}(k)}. \tag{47}$$

Предполагается, что модель системы контроля имеет вид:

$$y(k) = Hx(k) + \eta(k), \tag{48}$$

где $\eta(k)$ – гауссовская случайная последовательность, независимая от q(k), с характеристиками:

$$M{\lbrace \eta(k)\rbrace} = 0, \quad M{\lbrace \eta(k)\eta^T(j)\rbrace} = V\delta_{k,j}.$$

Исходные данные, необходимые для решения задачи адаптивного управления следующие:

$$F = (0 \ 0 \ 1), \ C = 1, \quad D = 0.001, \ r = 0.0062, \ c = 3.5, \ c_0 = 1,$$

$$n_0 = 0.8, k_1 = 0.0001, k_2 = 0.02, k_3 = 0.05,$$

$$H = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}, \ Q = \begin{bmatrix} 0,11 & 0 & 0 \\ 0 & 0,08 & 0 \\ 0 & 0 & 0,095 \end{bmatrix}, \ V = \begin{bmatrix} 2,1 & 0 & 0 \\ 0 & 3,2 & 0 \\ 0 & 0 & 0,05 \end{bmatrix},$$
$$x(0) = \begin{pmatrix} 200 \\ 110 \\ w_0 \end{pmatrix}, \quad \hat{x}(0) = \begin{pmatrix} 190 \\ 100 \\ w_0 \end{pmatrix}.$$

Дополнительные данные, необходимые для выполнения работы, приведены в таблице 4.

ЗАДАНИЕ

Построить графики переходных процессов, графики оптимального управления и оценок вектора. Моделирование выполнить на интервале времени от 0 до 140. Выполнить моделирование с использованием линеаризованного экстраполятора Калмана.

Сделать выводы.

АДАПТИВНОЕ УПРАВЛЕНИЕ НЕЛИНЕЙНЫМ ОБЪЕКТОМ 3-го ПОРЯДКА

Для дискретной модели объекта

$$x(k+1) = A(\theta)\varphi(x(k)) + Bu(k) + g(k), \quad x(0) = x_0,$$
 (49)

решить задачу адаптивного управления. В (49) вектор неизвестных параметров определен следующим соотношением:

$$\theta = \begin{pmatrix} \theta_1 \\ \theta_2 \end{pmatrix}$$
.

В (49) матрицы $A(\theta)$ и B следующие

$$A(\theta) = \begin{bmatrix} 1 - \theta_1 \exp(-c) - k_1 & 0 & 0 & \theta_1 \exp(-c) / Y \\ \theta_1 \exp(-c) & 1 - \theta_2 & 0 & -\theta_1 \exp(-c) / Y \\ c\theta_1 \exp(-c) - k_3 & 0 & 1 & -c\theta_1 \exp(-c) / Y \end{bmatrix}, \ B = \begin{pmatrix} 1 \\ 0 \\ -c_0 \end{pmatrix}, (50)$$

Определить матрицу $G(\hat{x}(k), u(k))$ и вектор $g(\hat{x}(k), u(k))$ необходимые для реализации алгоритма двухэтапной идентификации. Реализовать адаптивное управление фирмой:

$$u(k) = -(B^T F^T CFB + D)^{-1} B^T F^T C(FA(\hat{\theta}(k)) \varphi(\hat{x}(k)) - z),$$
 (51)

где $\hat{x}(k)$ вычисляется с помощью линеаризованного фильтра Калмана (см. лабораторную работу № 12):

$$\hat{x}(k+1) = \hat{A}\varphi(\hat{x}(k)) + Bu(k) + K_{f}(k)[y(k+1) - H(\hat{A}\varphi(\hat{x}(k)) + Bu(k))],$$

$$\hat{x}(0) = \overline{x}(0) \,, \tag{52}$$

$$P_f(k+1/k) = \overline{A}P_f(k)\overline{A}^T + Q, \qquad (53)$$

$$K_f(k) = P_f(k+1/k)H^T[HP_f(k+1/k)H^T + V]^{-1},$$
 (54)

$$P_f(k+1) = (E_2 - K_f(k)H)P_f(k+1/k), P_f(0) = P_{f0},$$
 (55)

где матрица \overline{A} определяется по формуле

$$\overline{A}(k) = \hat{A} \frac{\partial \varphi(x(k))}{\partial x(k)} |_{\hat{x}(k)}.$$
 (56)

B (56) $\hat{A} = A(\hat{\theta}(k))$.

Исходные данные, необходимые для решения задачи адаптивного управления следующие:

$$F = (0 \ 0 \ 1), \ C = 1, \quad D = 0,01, \ r = 0,0062, \ c = 3,5, \ c_0 = 1,$$

$$k_1 = 0,0001, \ k_3 = 0,05,$$

$$H = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}, \ Q = \begin{bmatrix} 0,11 & 0 & 0 \\ 0 & 0,08 & 0 \\ 0 & 0 & 0,095 \end{bmatrix}, \ V = \begin{bmatrix} 2,1 & 0 & 0 \\ 0 & 3,2 & 0 \\ 0 & 0 & 0,05 \end{bmatrix}.$$

$$\hat{\Theta}(0) = \begin{pmatrix} 0 \\ 0 \end{pmatrix}, \quad x(0) = \begin{pmatrix} 200 \\ 110 \\ w_0 \end{pmatrix}, \quad \hat{x}(0) = \begin{pmatrix} 190 \\ 100 \\ w_0 \end{pmatrix}.$$

При моделировании истинные значения θ_1 и θ_2 k_2 принять следующие:

$$\theta_1 = 0.8$$
, $\theta_2 = 0.02$.

Дополнительные данные, необходимые для выполнения работы, приведены в таблице 4.

ЗАДАНИЕ

Построить графики переходных процессов, графики адаптивного управления и оценок неизвестных параметров. Моделирование выполнить на интервале времени от 0 до 140. Исследовать влияние диагональных элементов матрицы V на качество оценивания параметров модели, увеличивая их сначала в 5 и затем в 10, затем в 100 раз. Сделать выводы.

ВАРИАНТЫ ЗАДАНИЙ К ЛАБОРАТОРНЫМ РАБОТАМ

Таблица 1

N	γ	$x_1(0)$	$x_2(0)$	$b_{\scriptscriptstyle m l}$	b_2	Q_{11}	Q_{22}
1	0,0003	300	200	15	22	2,0	0,25
2	0,0004	310	210	14	20	1,0	0,3
3	0,0002	305	195	15	19	1,0	0,2
4	0,0005	310	205	17	22	1,2	0,05
5	0,0004	320	216	19	23	2,0	0,2
6	0,0003	325	198	17	18	1,0	0,12
7	0,0004	300	200	15	22	2,0	0,14
8	0,0004	330	210	14	20	3,0	0,12
9	0,0002	315	195	15	19	2,1	0,22
10	0,0003	310	215	18	24	2,0	0,02
11	0,0004	310	216	19	23	1,1	0,04
12	0,0005	325	198	17	18	1,0	0,1
13	0,0004	300	200	15	22	2,0	0,1
14	0,0004	310	210	14	20	1,5	0,03
15	0,0003	305	195	15	19	1,0	0,16
16	0,0005	315	205	17	22	2,0	0,07
17	0,0004	320	216	19	23	1,3	0,08
18	0,0005	325	198	17	19	1,2	0,04
19	0,0004	300	205	15	22	2,0	0,06
20	0,0004	320	210	14	20	1,5	0,07
21	0,0003	315	195	17	18	1,7	0,05
22	0,0005	330	215	18	24	1,9	0,09
23	0,0003	320	216	19	23	1,3	0,07
24	0,0005	325	198	17	18	1,0	0,04
25	0,0003	315	195	15	19	2,0	0,03
26	0,0005	310	215	18	24	2,2	0,08
27	0,0004	310	216	20	23	1,7	0,05
28	0,0005	325	210	17	18	1,7	0,04
29	0,0003	310	200	15	22	1,2	0,03
30	0,0004	315	210	16	20	1,2	0,03

Таблица 2

N	z	C	D	V_{11}	V_{22}
1	2,1 2,5 2,2	1	0,06	3,5	3,4
2	2,5	1,2	0,08	5,5	4,5
3	2,2	1,1	0,07	3,9	3,0
	2,1	1,3	0,07	5,5 3,9 3,5	3,4
5	2,6	1,2	0,09	4,2	3,5
6	2,2	1,6	0,08	4,9	3,0
7	2,5	1	0,08	3,5	3,0 1,4 4,5
8	2,4	1,2	0,08	5,5	4,5
9	2,6 2,2 2,5 2,4 2,3 2,4 2,2	1,2 1,1 1,3 1,2 1,6 1 1,2 1,1 1,4 1,2 1,5	0,07	4,2 4,9 3,5 5,5 2,9 4,5 7,5	3,0 3,8 2,5
10	2,4	1,4	0,05 0,08	4,5	3,8
11	2,2	1,2	0,08	7,5	2,5
12	2,6	1,5	0.07	4,9	3,8
13	2,1	1	0,06	7,5	2,4
14	2,2	1,2	0,06	5,5	4,5
15	2,6 2,1 2,2 2,5 2,1 2,2	1,1	0,07	4,9 7,5 5,5 5,9 3,5 3,5 4,9	3,8 2,4 4,5 3,6 3,2 3,5
16	2,1	1,3	0,05	3,5	3,2
17	2,2	1,2	0,09	3,5	3,5
18	2,4 2,1 2,2 2,3 2,0 2,3 2,2	1,6	0,08	4,9	3,0 2,4
19	2,1	1,1	0,05	7,5	2,4
20	2,2	1,2	0,09	7,5 6,5 6,9 3,5 4,5 4,9	4,5 3,0 3,8
21	2,3	1,1	0,07	6,9	3,0
22	2,0	1,0	0,05	3,5	3,8
23 24	2,3	1,2	0,08	4,5	4,5 3,8
24	2,2	1,5	0,07	4,9	3,8
25	2.5	1,2	0,08	3.3	2,3
26	2,2	1,6	0,09	4,9	3,9
27	2,2 2,1 2,2	1,2 1,1 1,3 1,2 1,6 1,1 1,2 1,1 1,0 1,2 1,5 1,6 1,5 1,5	0,05	4,9 6,5 3,5	2,1
28	2,2	1,2	0,08	3,5	4,5
29	2,4	1,3	0,09	6,2	3,0
30	2,4	1,3 1,4	0,04	2,5	2,9

Таблица 3

N	$\hat{x}_1(0)$	$\hat{x}_{2}(0)$	$P_{f11}(0)$	$P_{f22}(0)$	$P_{\theta 11}(0)$	$P_{\theta 22}(0)$	$P_{\theta 33}(0)$
1	270	190	15	15	1,5	2,0	1,0
2	280	180	20	20	1,2	2,5	1,5
3	290	185	21	19	1,4	2,7	2,5
4	275	192	15	16	2,5	2,8	2,3
5	285	184	16	24	1,5	4,9	2,5
6	280	180	22	29	1,7	2,7	2,5
7	275	190	15	15	1,6	2,0	1,0
8	280	180	20	20	1,3	2,5	1,5
9	295	170	21	18	1,5	3,7	3,5
10	275	192	15	16	2,5	2,8	2,5
11	295	185	16	25	1,5	2,3	3,5
12	270	180	22	30	1,6	2,7	2,5
13	270	190	15	15	1,5	2,0	1,0
14	280	180	20	20	1,2	2,5	3,5
15	290	185	21	19	1,4	2,7	2,7
16	265	192	15	16	2,5	2,8	2,3
17	285	184	16	24	1,5	4,9	5,1
18	270	180	22	29	1,7	2,7	2,5
19	275	195	15	15	1,6	3,0	2,0
20	280	180	22	20	1,4	2,5	2,5
21	285	170	21	18	1,5	3,7	3,5
22	275	190	15	16	2,7	4,8	5,5
23	285	195	16	25	1,5	2,3	3,3
24	270	180	25	31	1,6	2,7	2,5
25	280	192	15	16	2,5	2,8	2,3
26	285	180	16	24	1,9	5,9	4,5
27	270	185	22	29	1,7	2,7	2,8
28	265	180	16	16	1,8	2,0	3,0
29	285	180	20	20	1,3	2,5	5,5
30	275	170	22	19	1,5	3,7	3,2

Таблица 4

N	$P_{f11}(0)$	$P_{f22}(0)$	$P_{f33}(0)$	$P_{\theta 11}(0)$	$P_{\theta 22}(0)$
1	1,0	1,0	2,0	1,0	1,0
2	2,0	2,0	1,2	2,5	1,5
3	21	1.0	1,4	2,1	2,2
4	1,5	1,5	2,5	2,8	2,3
5	2,0 21 1,5 1,6 2,2 1,5 2,0 2,6 1,0 2,0 2,7	1,5 2,4 2,9	1,2 1,4 2,5 1,5 1,7	2,5 2,1 2,8 1,9 2,7	1,5 2,2 2,3 2,5 2,5
6	2,2	2,9	1,7	2,7	2,5
7	1,5	1,5 2,0	1,6	2,0	1,0
8	2,0	2,0	1,3	2,5	1,5
9	2,6	1,5	1,5	1,6	3,5
10	1,0	1,0	1,6 1,3 1,5 2,0	1,0	1,0
11	2,0	2,0	1,2	2,5	1,5
12	2,7	1,0	1,4	2,1	2,2
13	1,5	1,8	2,5	2,8	2,3
14	1,6	2,4	1,5	1,9	2,5
15 16	1,5 1,6 2,2 1,5 2,2 2,6 21	2,6	1,7	2,7	2,5
16	1,5	1,5	1,6	2,0	1,0
17	2,2	2,0	1,3	2,5	1,5
18	2,6	1,7	1,5	3,5	3,2
19	21	1,0	1,4	2,1	2,2
20	1,5	1,5	2,5	2,8	2,3
21	1,6	2,4	1,5	1,9	2,5
22	2,6	2,9	1,7	2,7	2,5
23	1,5	2,0 1,0 1,8 2,4 2,6 1,5 2,0 1,7 1,0 1,5 2,4 2,9 1,5	1,6	2,0	1,0
24	2,0	2,0	1,3	2,5	1,5
21 22 23 24 25	2,2	1,5	1,5	2,7	3,5
26	1,5	1,5 1,2 2,0	1,0	1,3	1,4
27	1,0	2,0	1,2	2,5	1,5
28 29	1,5 1,6 2,6 1,5 2,0 2,2 1,5 1,0 2,1 1,5	1,0 1,5	1,2 1,4 2,5 1,5 1,7 1,6 1,3 1,5 1,4 2,5 1,5 1,7 1,6 1,3 1,5 1,0 1,2 1,4 2,5 1,5	2,0 2,5 1,6 1,0 2,5 2,1 2,8 1,9 2,7 2,0 2,5 3,5 2,1 2,8 1,9 2,7 2,0 2,5 3,5 2,1 2,8 1,9 2,7 2,0 2,5 3,5 2,1 2,8 1,9 2,7 2,0 2,5 3,5 2,1 2,8 1,9 2,7 2,0 2,5 3,5 2,1 2,8 1,9 2,7 2,0 2,7 2,0 2,7 2,0 2,7 2,0 2,7 2,0 2,7 2,0 2,7 2,0 2,7 2,0 2,7 2,0 2,7 2,0 2,5 2,7 2,0 2,7 2,0 2,7 2,0 2,7 2,0 2,5 2,7 2,0 2,5 2,7 2,0 2,5 2,7 2,0 2,5 2,7 2,0 2,5 2,7 2,0 2,5 2,7 2,0 2,5 2,7 2,7 2,0 2,5 2,7 2,7 2,0 2,5 2,7 2,7 2,7 2,7 2,7 2,7 2,7 2,7	1,0 1,5 3,5 1,0 1,5 2,2 2,3 2,5 2,5 1,0 1,5 3,2 2,2 2,3 2,5 1,0 1,5 3,2 2,2 2,3 2,5 1,0 1,5 3,5 1,4 1,5 2,2 2,3 2,5
29	1,5	1,5	2,5	2,3	2,3
30	1,6	2,4	1,5	1,9	2,5

ЛИТЕРАТУРА

- 1. **Кротов В.Ф., Гурман В.И. Методы и задачи оптимального управления.** М.: Наука, 1973. 446 с.
- 2. Горский А.А., Колпакова Н.Г., Локшин Б.Я. Динамическая модель производства, хранения и сбыта товара повседневного спроса // Изв. РАН Теория и системы управления. 1998. № 1. С. 144–149.
- 3. **Браммер К., Зиффлинг Г. Фильтр Калмана-Бьюси.** М.: Наука, 1972. 200 с.
- 4. Смагин В.И. Локально-оптимальные следящие системы управления при косвенных измерениях с ошибками // Изв. вузов Авиационная техника. 1995. № 1. С. 26–30.
- 5. Смагин В.И., Параев Ю.И. Синтез следящих систем управления по квадратичным критериям. Томск: Изд-во Том. унта, 1996. 171 с.
- 6. Смагин В.И. Локально-оптимальные следящие системы управления для дискретных объектов со случайными параметрами // Автоматика и вычислительная техника. 1997. № 2. С. 32–40.
- 7. Смагин В.И. Адаптивные локально-оптимальные следящие системы управления // Изв. вузов Авиационная техника. 1997. № 2. С. 41–46.
- 8. Смагин В.И. Локально-оптимальное управление запасами. Учебно-методическое пособие. Томск: Изд-во Том. ун-та, 2001. 32 с.
- 9. Охорзин В.А. Прикладная математика в системе Mathcad. Учебное пособие. 3-е изд. СПб.: Лань, 2009. 352с.