

Кафедра конструирования узлов и деталей радиоаппаратуры

Романовский М.Н.

ПРОЕКТИРОВАНИЕ ФИЛЬТРОВ НА ПАВ

Руководство к практическим занятиям и самостоятельной работе по дисциплине «Интегральные устройства радиоэлектроники»

Рецензент: Лощилов А.Г., заведующий кафедрой КУДР, кандидат технических наук

Романовский М.Н.

Проектирование фильтров на ПАВ: руководство к практическим занятиям и самостоятельной работе по дисциплине «Интегральные устройства радиоэлектроники». – Томск: ТУСУР, 2016. – 21 с.

Для студентов направления подготовки 11.03.03 Конструирование и технология электронных средств.

© Романовский М.Н. 2016

Содержание

1 Общие сведения	4
2 Выбор материала звукопровода	5
3 Расчет преобразователей	7
4 Входная и выходная проводимость фильтра	10
5 Определение размеров звукопровода	12
6 Материалы ВШП и поглотителей	12
7 Влияние вторичных эффектов	13
8 Электроакустическое согласование	14
9 Задание	17
10 Пример расчета ВШП	17
Литература	21

1 Общие сведения

Интегральные устройства радиоэлектроники – это интегральные схемы (ИС) и технологически совместимые с ними функциональные устройства. Для ИС характерна технологическая интеграция, для функциональных устройств – интеграция параметрическая.

В функциональных акустоэлектронных устройствах носителями информации выступают поверхностные волны упругих деформаций в непрерывных (континуальных) средах, в которых возможен (как правило) пьезоэлектрический эффект.

Основными элементами устройств на поверхностных акустических волнах (ПАВ) являются электроакустические преобразователи и звукопроводы. В качестве преобразователей используются встречно-штыревые системы электродов различной конструкции на пьезоэлектрической подложке [1-3]. Дополнительные планарные поверхности звукопровода элементы на позволяют управлять характеристиками ПАВ: направлением, скоростью, затуханием и т. д. Частотный диапазон устройств на поверхностных акустических волнах (ПАВ) составляет от 10 МГц до 3 ГГц (в лабораторных образцах до 5 ГГц).

Полосовые фильтры на ПАВ характеризуются высокой прямоугольностью амплитудно-частотной характеристики (АЧХ), исключительным внеполосным подавлением, температурной стабильностью, малым весом и габаритами, отсутствием энергопотребления. Они не требуют сложной настройки в аппаратуре и не могут расстроиться в процессе эксплуатации, технология их изготовления совместима с производством интегральных схем.

Основными параметрами полосовых фильтров на ПАВ являются [4]:

- полоса пропускания (Δf) — разница между верхней $f_{\rm B}$ и нижней $f_{\rm H}$ частотами, определяемыми на уровне 3 дБ (соответствует уровню 0.808) от максимального значения модуля коэффициента передачи фильтра /*K*(*f*)/;

- *средняя частота полосы пропускания* (f_0) – полусумма верхней (f_B) и нижней (f_H) частот;

- *номинальная частота* – частота, устанавливаемая в технической документации на фильтр;

- *неравномерность АЧХ в полосе рабочих частот* (δA) – разница между максимальным и минимальным значениями модуля коэффициента передачи

/К(f)/, выраженного в децибелах, в заданном диапазоне частот внутри полосы пропускания;

- *гарантированное относительное затухание* (α) – отношение значений модуля коэффициента передачи /*K*(*f*)/ на номинальной частоте к его максимальному значению в заданных диапазонах частот вне полосы пропускания, выраженное в децибелах;

- коэффициент прямоугольности (К_П) – отношение полосы частот по уровню минус 30дБ к полосе частот по уровню минус 3дБ. Верхний и нижний уровни измерения полосы частот могут быть другими (обычно они оговариваются), например, минус 40 дБ и минус 1 дБ, соответственно;

- вносимое затухание (*A*₀) – значение модуля коэффициента передачи фильтра на номинальной частоте, выраженное в децибелах.

В техническом задании на проектирование фильтра на ПАВ обычно задают не точный вид АЧХ, а предельные значения его основных параметров. Это позволяет подбирать конечную импульсную характеристику исходя из заданных ограничений. Частотный спектр импульсной характеристики фильтра соответствует АЧХ.

Проектируемый фильтр содержит (рис. 1): входной (1) и выходной (3) встречно-штыревые преобразователи (ВШП), звукопровод (2), акустический поглотитель (4).

Рисунок 1 – Структура полосового фильтра на ПАВ

Процедура проектирования включает выбор материала звукопровода и расчет параметров ВШП.

Цель настоящей работы – на примере фильтров приобрести начальные навыки проектирования акустоэлектронных устройств на ПАВ.

2 Выбор материала звукопровода

Звукопроводы изготавливают как из монокристаллов, так и из поликристаллических (пьезокерамических) материалов. Монокристаллы более

стабильны во времени, обеспечивают меньшее затухание ПАВ (0,1÷0,5 дБ/см на частотах до 2 ГГц) и сильную пьезоэлектрическую связь.

Параметры монокристаллических материалов звукопроводов (табл. 1) зависят от кристаллографической ориентации (плоскости среза). Скорость распространения ПАВ (V_A) предопределяет границу верхних частот и габариты фильтра. Коэффициент электромеханической связи (k_m^2) характеризует эффективность взаимодействия ПАВ с ВШП, т. е. пьезоэлектрические свойства звукопровода. Температурный коэффициент частоты (α_f) – относительное изменение частоты f на 1 °C – учитывает изменения размеров звукопровода и скорости распространения ПАВ с температурой.

Электроакустическому согласованию ВШП отвечает равенство полос пропускания преобразователя и согласующей цепи. Относительная полоса пропускания фильтров ограничена свойствами пьезоэлектрического материала. Чтобы потери в устройстве были минимальны, необходимо выполнить условие

$$\frac{\Delta f}{f_0} \le \sqrt{\frac{k_m^2}{\pi}}.$$
(1)

Поэтому для широкополосных фильтров на ПАВ требуются материалы с большим значением k_m^2 . Например, кварц ST-среза используется для устройств с полосой (0,3÷2) %, танталат лития – (4÷10) %, ниобат лития – (10÷23) %.

Материал	<i>V</i> _A , км/с	k_m^2	$\alpha_f \cdot 10^6$, °C ⁻¹
Кварц (<i>SiO</i> ₂)	3.15÷3.2	0.0012÷0.0024	9÷14.8
Ниобат лития (<i>LiNbO</i> ₃)	3.48÷4.0	0.0052÷0.0554	14.4÷15.9
Германат висмута ($Bi_{12}GeO_{20}$)	1.62÷1.7	0.007÷0.0164	100
Танталат лития (<i>LiTaO</i> ₃)	3.22÷3.31	0.0069÷0.0093	16.1÷22
Силикат висмута (<i>Bi</i> ₂ <i>SiO</i> ₅)	167	0.018	118

Таблица 1 – Основные параметры пьезоэлектрических материалов

На данном этапе проектирования должны быть определены основные параметры материала звукопровода: скорость ПАВ, коэффициент электромеханической связи, угол отклонения потока энергии, коэффициент анизотропии, акустическое сопротивление, температурные коэффициенты скорости и задержки, диэлектрическая проницаемость. Основные параметры ряда материалов приведены в [1, 3].

3 Расчет преобразователей

Встречно-штыревой преобразователь (ВШП) состоит из двух гребенок тонкопленочных металлических электродов (штырей), вложенных друг в друга и расположенных на пьезоэлектрической подложке (рис. 1). В качестве парциального элемента ВШП, вносящего энергетический вклад в формирование ПАВ, выступают пары соседних противофазных электродов. Для реализации разнообразных АЧХ предложено множество вариантов *аподизации* – весовой обработки амплитуд и фаз парциальных волн [1, 3].

Расчет ВШП предполагает вычисление или выбор: периода следования (h), ширины (a) и количества (N) электродов; апертуры (W_0) и функции аподизации ВШП; расстояния между входным и выходным преобразователями; согласующих элементов; толщины электродов ВШП.

Период следования электродов ВШП соответствует длине ПАВ (λ_A):

$$h = \lambda_{\rm A} = \frac{v_{\rm A}}{f_0}.$$
 (2)

Ширина электродов и зазор между ними (b)

$$a = b = \lambda_{\rm A}/4. \tag{3}$$

Энергетический вклад (A_i) *i*-ой пары электродов в формирование ПАВ определяется их перекрытием (W_i) . Аподизация ВШП достигается изменением W_i вдоль оси преобразователя. В основе расчета W_i лежат преобразования Фурье, связывающие частотную $K(\omega)$ и импульсную G(t) характеристики ВШП:

$$K(\omega) = \int_{-\infty}^{\infty} G(t) e^{i\omega t} dt, \qquad (4)$$

$$G(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} K(\omega) \, e^{-i\omega t} d\omega.$$
⁽⁵⁾

Максимальное перекрытие *W*₀ – *апертура ВШП* – выбирается из условия согласования с источником сигнала:

$$W_0 = (10 \div 200) \lambda_{\rm A}.$$
 (6)

В простейшем эквидистантном (h = const) и неаподизированном ($W_i = W_0$) преобразователе парциальные волны складываются в фазе с одинаковой амплитудой. АЧХ такого ВШП, согласно (4), соответствует огибающей спектра радиоимпульса со средней частотой f_0 (рис. 2) и имеет вид функции

$$\operatorname{sinc}(x) = \begin{cases} \sin(x)/x, & x <> 0; \\ 1, & x = 0. \end{cases}$$

Наряду с главным лепестком, определяющим полосу пропускания ВШП, функция sinc(x) имеет ряд так называемых боковых лепестков. Подавление боковых лепестков у простейшего ВШП не более 13.6 дБ, что для полосовых фильтров часто является недостаточным.

Рисунок 2 – Импульсный отклик (а) и АЧХ (б) ВШП с эквидистантными электродами одинаковой длины ($W_i = W_0 = const$)

Идеальный полосовой фильтр должен иметь прямоугольную АЧХ (K_{Π} = 1). Импульсная характеристика такого фильтра, согласно (5), имеет вид бесконечной во времени функции sinc(x). В результате ограничения импульсной характеристики во времени появляются боковые лепестки, а также неравномерность АЧХ в полосе пропускания. Объясняется это тем, что разрывы сигнала приводят к возникновению в его спектре высоких паразитных частот (явление Гиббса).

Значения $K_{\Pi} < 1,1$ достигаются аподизацией ВШП вида sinc (x). Длительность импульсной характеристики (т. е. длину преобразователя) ограничивают при этом несколькими лепестками. При числе боковых лепестков n = 2 относительное затухание составляет уже до 23 дБ.

Для дальнейшего снижения боковых лепестков АЧХ применяют различные способы сглаживания импульсной характеристики к краям. С этой целью ее умножают на некоторую убывающую к краям взвешивающую функцию (*F*_A), называемую функцией аподизации. Чаще всего используют функции аподизации Хемминга или Кайзера, обеспечивающие подавление уровня боковых лепестков АЧХ до 40 и до 60дБ, соответственно.

Длина штырей в зависимости от порядкового номера *i* в обе стороны от центра (i = 0) аподизированного ВШП рассчитывают по формуле [5]

$$l_i = (-1)^i \left[\left| \frac{\sin \frac{\pi \Delta f}{2f_0} i}{\frac{\pi \Delta f}{2f_0} i} \cdot F_{\mathrm{A}i} \right| + 1 \right] \cdot \frac{w_0}{2}, \text{ при } 0 < |i| \le N_{\mathrm{max}}.$$
(7)

Знак l_i определяет принадлежность штыря к верхней или нижней гребенке преобразователя. Максимальное количество штырей справа и слева от центра ВШП

$$N_{\rm max} = 2f_0 T, \tag{8}$$

где T – половина длительности импульсного отклика – определяется количеством оставленных боковых лепестков n функции sinc(x):

$$T = \frac{n+1}{\Delta f}.$$
(9)

Общее количество штырей

$$N_{III2} = 2N_{\max} + 1. \tag{10}$$

Длина преобразователя

$$L_{\Pi} = N \frac{v_{\rm A}}{2f_0}.\tag{11}$$

Аналитическое выражение для функции Хемминга

$$F_{Xi} = k + (1-k) \cdot \cos^m \left(\frac{\pi}{4f_0 T} \cdot i\right) \tag{11}$$

Параметры k и m в общем случае могут быть различными, однако чаще всего выбирают k = 0.08 и m = 2.

Число пар штырей входного (неаподизированного) преобразователя

$$N_{\Pi 1} = 1.76 \frac{f}{\Delta f'} \tag{12}$$

число штырей

$$N_{\rm III1} = 2 \cdot N_{\rm \Pi 1}. \tag{13}$$

Дополнительное подавление боковых лепестков АЧХ фильтра достигается при совпадении нулей основных лепестков АЧХ входного и выходного преобразователей. Для функции Хемминга, например, это происходит при соотношении чисел электродов

$$N_{\rm III2} = N_{\rm III1}/2. \tag{14}$$

Расстояние между входным и выходным ВШП L выбирают исходя из допустимого уровня прямой связи через паразитную емкость между входом и выходом, которая должна давать существенно меньший уровень сигнала на выходе, чем акустическая связь через ВШП при минимальных габаритах устройства. Для уменьшения дифракционных потерь входной и выходной ВШП следует располагать в ближней зоне друг относительно друга (см. с. 13).

Толщина электродов ($h_{\rm M}$) **ВШП** выбирается исходя из того, чтобы обеспечить низкий уровень отражений ПАВ от электродов, при приемлемом уровне сопротивления потерь электродов. При не очень большом числе электродов в ВШП и малом коэффициенте связи это обеспечивается толщиной $h_{\rm M}$ / $\lambda_{\rm A} \sim 0.01$. Типичное значение толщины электродов составляет 0.1 ÷ 0.3 мкм.

4 Входная и выходная проводимость фильтра

Эквивалентная схема ВШП включает активную $\text{Re}\{Y\text{Bx}\} = G_A(\omega)$ и реактивную $\text{Im}\{Y\text{Bx}\} = B_A(\omega) + \omega C_{\text{BШП}}$ составляющие входной проводимости (рис. 3, δ), причем реактивная часть обусловлена реактивной составляющей проводимости излучения $B_A(\omega)$ и статической емкостью преобразователя $C_{\text{BШП}}$:

$$Y_{\text{BX}}(\omega) = GA(\omega) + jBA(\omega) + j\omega C_{\text{BIIIII}}$$

На основе теории цепей возможен переход к последовательной эквивалентной схеме, приведенной на рис. 3, *а*.

Рисунок 3 – Последовательная (а) и параллельная (б) эквивалентные схемы ВШП

Для согласования фильтра на ПАВ с внешними электрическими цепями необходимо знать его проводимости $Y(j\omega)$ на входе и выходе.

Активную $g(\omega)$ и реактивную $b(\omega)$ составляющие проводимости неаподизированного ВШП на частоте $\omega_0 = 2\pi f_0$ можно найти по формулам:

$$g(\omega_0) = \frac{4}{\pi} \cdot k_m^2 N \omega_0 C_H, \qquad (16, a)$$

$$b(\omega_0) = \omega_0 C_H, \tag{16, 6}$$

где k_m^2 – коэффициент электромеханической связи, *N* и $C_{\rm H}$ – количество штырей и статическая емкость неаподизированного ВШП.

$$C_{\rm H} = W_0 N C_0, \tag{17}$$

где W_0 – апертура , C_0 – погонная емкость копланарных электродов ВШП (для ниобата лития $C_0 = 0.27 \text{ п}\Phi/\text{м}$, для кварца $C_0 = 0.026 \text{ п}\Phi/\text{м}$).

Погонная емкость двух копланарных электродов (Ф/м) [6]

$$C_0 = \varepsilon_0 (1 + \varepsilon) \frac{K_1(x)}{K(x)},$$
$$x = \sqrt{\frac{1 + (d_1 + d_2)/H}{(1 + d_1/H)(1 + d_2/H)}}$$

где $\varepsilon_0 = 8.85 \cdot 10^{-12} \, \Phi/M$ – диэлектрическая постоянная, ε – относительная диэлектрическая проницаемость материала подложки, d_1 и d_2 – ширина первого и второго электродов, H – расстояние между ними. Сопряженные полные эллиптические интегралы аргумента *x* можно вычислить по формулам

$$K_1(x) = a_0 + a_1 x + a_2 x^2 + (b_0 + b_1 x + b_2 x^2) \cdot \lg(1/x),$$

$$K(x) = K_1(1-x)$$

где $a_0 = 1.3862944$, $a_1 = 0.1119723$, $a_2 = 0.0725296$, $b_0 = 0.5$, $b_1 = 0.1213478$, $b_2=0.0288729$.

Для аподизированного ВШП

$$g(\omega_0) = \frac{2}{\pi} \cdot k_m^2 \omega_0 C_{A1}, \qquad (18, a)$$

$$b(\omega_0) = \omega_0 C_{A2}, \qquad (18, \delta)$$

$$C_{A1} = C_0 \left(\sum_{i=0}^N \sqrt{W_i} \right)^2$$
, (19, a)

$$C_{A2} = C_0 \sum_{i=0}^{N} W_i, \tag{19, 6}$$

где *W*_i – перекрытие штырей.

Емкость интегрирующего (суммирующего) электрода ВШП (в пФ)

$$C_{\Sigma} = 0.09 \cdot \varepsilon \cdot \frac{d \cdot L_{\text{BII}}}{H_D},\tag{20}$$

где ε – диэлектрическая проницаемость материала подложки (для кварца ε = 11.7); d – ширина электрода (d = 1÷2 мм), в см; L_{Π} – длина преобразователя, в см; H_D – толщина подложки, в см.

5 Определение размеров звукопровода

Толщина звукопровода D обычно выбирается не менее $20\lambda_A$.

Длина звукопровода L равна сумме длин входного $L_{\Pi 1}$ и выходного $L_{\Pi 2}$ преобразователей, расстояния между ними L_{12} и двух топологических допусков ΔL :

$$L = L_{\Pi 1} + L_{12} + L_{\Pi 2} + 2\Delta L.$$
(22)

Минимальная величина L₁₂ определяется уровнем не задержанного сигнала, величина которого в основном зависит от диэлектрической проницаемости материала звукопровода. Чтобы прямо прошедший сигнал был мал по сравнению с ПАВ–сигналом, должно выполняться условие

$$L_{12} \ge 5D. \tag{23}$$

Топологический допуск Δ*L* зависит от технологии крепления звукопровода. Ширина звукопровода *B* выбирается из тех же соображений:

$$B = W_0 + 2d + 2\Delta d, \tag{24}$$

где W_0 – апертура, d – ширина пассивной части и подводящих шин, Δd – технологический допуск (выбирается с учетом ограничений тонкопленочной технологии).

6 Материалы ВШП и поглотителей

В качестве материала для решетки ВШП в большинстве устройств на ПАВ используют алюминий. Толщина пленки колеблется в пределах (0.08÷0.3) мкм, – в зависимости от рабочей частоты устройства. Для увеличения адгезии алюминия используется подслой ванадия толщиной (5÷30) нм.

Для устранения отражений акустический поглотитель наносят на торцы звукопровода и на участки рабочей поверхности непосредственно за преобразователем. Толщина поглотителя обычно находится в пределах (0,1÷0,8) мм. В качестве акустических поглотителей можно применять материалы на основе эпоксидных смол, а также элементоорганических каучуков и их смесей. Наиболее технологичными из них и обладающими хорошими поглощающими свойствами являются кремнийорганические компаунды [7].

7 Влияние вторичных эффектов

Основными причинами потерь, вносимых устройствами на ПАВ, являются: двунаправленность входного и выходного ВШП; рассогласование ВШП с внешними электрическими цепями; затухание сигнала в электродах преобразователя; затухание ПАВ в подложке; дифракционная расходимость акустического пучка.

Расчет топологии ВШП не учитывает так называемые эффекты второго порядка (дифракция, изменение скорости ПАВ под электродами ВШП, потери при регенерации ПАВ в электродах ВШП и др.). Эффекты второго порядка влияют на передаточные функции фильтров на ПАВ.

Емкостная связь между входным и выходным ВШП через звукопровод и крышку корпуса приводит к электромагнитной наводке. Для уменьшения этой наводки рекомендуется заземлять противоположные гребенки входного и выходного ВШП, а в промежутке между ВШП устанавливать заземленный металлический экран.

Более сильный паразитный сигнал возникает из-за отражения ПАВ от акустической неоднородности под ВШП, а также из-за регенерации ПАВ выходным преобразователем. Это так называемый *трехкратно отраженный сигнал* (TOC). Для ослабления ТОС применяют:

- ВШП с расщепленными электродами,

- электрическое рассогласование с нагрузкой,

- поворот фазового фронта ПАВ (например, с помощью металлической пленки треугольной формы),

- противофазное отражение ПАВ от составного приемного ВШП.

Различия в импедансах свободного и металлизированного участка звукопровода можно уменьшить с помощью дополнительного осаждения тонкого акустически согласующего материала сверху или снизу электродов.

Для подавления объемных акустических волн (OAB), отраженных от нерабочей поверхности звукопровода, применяют рифление нижней поверхности, клиновидное углубление и покрытие ее поглотителем. Снижение уровня сдвиговых объемных волн, распространяющихся почти параллельно поверхности, достигается:

- выбором среза кристалла с минимальной эффективностью возбуждения ОАВ;

 переизлучением ПАВ в соседний акустический канал с помощью многополоскового ответвителя;

- поворотом фронта ПАВ с помощью треугольной металлической пленки и соответствующим поворотом выходного ВШП;

- использованием двух параллельных акустических каналов.

Дифракционные эффекты в монокристаллах оценивают величиной и знаком параметра анизотропии γ . Идеальным считается материал со значением $\gamma = -1$, при котором расширение акустического пучка минимально или отсутствует (эффект автоколлимации). В изотропной среде $\gamma = 0$; в монокристаллах при $\gamma > 0$ дифракционные потери больше, а при $\gamma < 0$ меньше, чем в изотропной среде. В [3] приведены значения γ для некоторых материалов.

По мере удаления от излучателя изменяются также профили интенсивности акустических волн. По аналогии с классической оптикой можно ввести параметр Френеля

$$F = \frac{4\lambda_A S}{W_0^2},$$

где λ_A – длина волны; *S* – расстояние от преобразователя до точки наблюдения; *W*₀ – апертура преобразователя. Значение *F* < 1 соответствует зоне Френеля (ближней зоне). В ближней зоне энергия акустического луча не выходит за пределы апертуры преобразователя. Значение *F* > 1 соответствует зоне Фраунгофера (дальней зоне), в которой акустический луч разваливается. Очевидно, что для уменьшения потерь ВШП следует располагать в ближней зоне друг относительно друга.

Для уменьшения дифракционных искажений материал и срез звукопровода выбирают с минимальной дифракцией. Компенсация дифракционных искажений может быть достигнута целенаправленной коррекцией АЧХ, рассчитанной без учета дифракции.

Наиболее сильно дифракция ухудшает характеристики аподизованных Существенное уменьшение дифракционных преобразователей. эффектов получается при использовании ВШП с масштабированием отдельных групп электродов, – В несколько раз увеличивают перекрытие электродов, соответствующих боковым лепесткам функции аподизации, но одновременно с помощью внешних делителей уменьшают амплитуду подаваемого на них напряжения сигнала. Это можно сделать, например, с помощью емкостного делителя. Уменьшить дифракционные искажения можно также путем внешнего взвешивания ВШП, слабо подверженного дифракции.

8 Электроакустическое согласование

Электроакустическое согласование сводится к построению цепей, импеданс которых в сечении входа и выхода равен, соответственно, сопряженному выходному и входному импедансу фильтра на ПАВ.

Самый простой способ согласования – использование последовательной или параллельной катушки индуктивности *L*, предназначенной в основном для компенсации статической емкости *C* (рис. 4). Такой способ согласования применяется для фильтров с узкой полосой пропускания.

Рисунок 4 – Последовательная (а) и параллельная (б) схемы согласования узкополосного ВШП

Для фильтров с широкой полосой пропускания используются согласующие *LC*-цепочки (рис. 5), а также активные цепи, имитирующие индуктивность, или дифференциальные трансформаторы в виде интегральных функциональных узлов.

Рисунок 5 – Согласование ВШП со средней полосой пропускания Т-образным четырехполюсником (а) и Г-образным четырехполюсником с трансформатором (б)

Для фильтров с полосой $\Delta f/f = (40 \div 50)$ % целесообразно ограничиться только согласованием активных сопротивлений генератора и фильтра, т. к. в этом случае число элементов согласующей цепи возрастает до 5–10, что не способствует миниатюризации [8].

Резонансная частота образующегося при согласовании контура должна совпадать с f_0 . На частоте f_0 добротность электрического контура (электрическая добротность ВШП)

$$Q_{\mathcal{P}} = \frac{\pi}{k_m^2 N'} \tag{25}$$

где *N* – число электродов преобразователя.

Акустическая добротность обратно пропорциональна относительной полосе пропускания ВШП:

$$Q_A = \frac{f_0}{\Delta f} \sim 2N,\tag{26}$$

где $\Delta f = 1/T_0 \approx f_0/(2N)$.

Оптимальное условие получения высокой эффективности преобразования в широкой полосе частот (рис. 6)

Рисунок 6 – Зависимость электрической (1) и акустической (2) добротности ВШП от числа электродов

Отвечающее этому равенству значение *N* называется оптимальным числом электродов для данного пьезоэлектрического материала:

$$N_{\text{OIT}} = \sqrt{\frac{\pi}{k_m^2}},\tag{28}$$

$$\left. \frac{\Delta f}{f_0} \right|_{\text{опт}} = \frac{1}{N_{\text{опт}}} \sim k_m.$$
(29)

Отношение

$$p = \left(\frac{N_{\text{ont}}}{N}\right)^2 = \frac{R_{\text{H,F}}}{R(\omega)'}$$
(30)

где $R_{\rm H,\Gamma}$ – сопротивление нагрузки (или генератора), называется степенью рассогласования ВШП.

Когда ПАВ достигает приемного преобразователя, часть акустической энергии отражается от него, другая часть преобразуется в электрический сигнал и выделяется на нагрузке, а оставшаяся часть проходит в прежнем направлении и демпфируется поглотителем. Коэффициенты отражения B_{11} , прохождения B_{21} и поглощения B_{31} определяются выражениями:

$$B_{11} = -10 \lg \frac{1}{(1+p)^2}, \quad B_{21} = -10 \lg \frac{p^2}{(1+p)^2}, \quad B_{31} = -10 \lg \frac{2p}{(1+p)^2}.$$
(31)

Рисунок 7 – Энергетические соотношения в ВШП

На рис. 7 представлены зависимости коэффициентов B_{ij} от степени рассогласования. В согласованном режиме $N = N_{onm}$, $R_{\mu}/R_{usn} = 1$, т. е. в нагрузке выделяется 50 % энергии падающей волны ($B_{31}=3$ дБ), 25 % энергии отражается обратно ($B_{11}=6$ дБ) и 25 % энергии ($B_{21}=6$ дБ) проходит преобразователь.

В фильтрах чаще всего $N > N_{\text{опт}}$, при этом $Q_A > Q_{\mathcal{P}}$. Чтобы уравнять полосы пропускания, можно уменьшить R_{H} и, следовательно, повысить добротность электрического контура.

Выражения (31) позволяют при известной степени рассогласования определить энергетические соотношения в устройстве на ПАВ и, в частности, величину вносимых преобразователями потерь B_2 :

$$B_2 = 2\left(B_{31} - 10\lg\frac{R_{\rm H} - R_{\rm B}}{R_{\rm H}}\right),\tag{32}$$

где $R_{\Im} = 2r/N$, $r = \rho W/ah_{\Im}$, a – ширина электрода, h_{\Im} – толщина электрода, ρ – удельное сопротивление материала электродов.

9 Задание

9.1 Спроектировать фильтр на ПАВ. Параметры фильтра задаются преподавателем.

9.2 Рассчитать импульсную и частотную характеристики фильтра.

9.3 Проанализировать результаты и оформить отчет.

10 Пример расчета ВШП

Исходные данные

- средняя частота полосы пропускания $f_0 = 100 \text{ M}\Gamma$ ц;

- полоса пропускания на уровне -3 дБ $\Delta f = 20$ МГц;

- гарантированное относительное затухание $\alpha = 30$ дБ.

Материал звукопровода – ниобат лития *LiNbO*. Скорость ПАВ на свободной поверхности $V_{\rm A} = 4$ км/с, коэффициент электромеханической связи $k_m^2 = 0.05$, диэлектрическая проницаемость $\varepsilon = 11.7$.

Топология широкополосного ВШП

Число пар штырей

$$N_{\Pi 1} = 1.76 \frac{f}{\Delta f} = 1.76 \frac{100 \text{ MFu}}{20 \text{ MFu}} = 8.8.$$

Берем $N_{\Pi 1} = 9$, число штырей $N_{\Pi 1} = 2 \cdot N_{\Pi 1} = 2 \cdot 9 = 18.$

Длина ПАВ

$$\lambda_{\rm A} = \frac{V_{\rm A}}{f_0} = \frac{4 \, {\rm км/c}}{100 \, {\rm M} {\rm \Gamma} {\rm u}} = 40 \, {\rm мкм}.$$

Расстояние между штырями

$$d = \frac{\lambda_A}{2} = 20$$
 мкм

Ширина штырей *а* и промежутки между ними *b*:

$$a=b=rac{\lambda_{\mathrm{A}}}{4}=10$$
 мкм.

Апертура $W_0 = 100 \cdot \lambda_A = 4$ мм.

Топология аподизованного ВШП

Оставляем один лепесток импульсной характеристики фильтра. Длительность половины импульсного отклика

$$T = \frac{n+1}{\Delta f} = \frac{1+1}{20 \text{ M} \Gamma \text{ц}} = 0.1 \text{ мкс.}$$

Максимальное количество штырей справа и слева от центра ВШП

$$N_{max} = 2f_0T = 2 \cdot 100 \cdot 10^6 \cdot 0.1 \cdot 10^{-6} = 20.$$

Общее количество штырей

 $N_{\rm III2} = 2N_{max} + 1 = 2 \cdot 20 + 1 = 41.$

Длина штырей в зависимости от порядкового номера i в обе стороны от центра ВШП (i = 0)

$$l_i = (-1)^i \left[\left| \frac{\sin \frac{\pi \Delta f}{2f_0} i}{\frac{\pi \Delta f}{2f_0} i} \cdot F_{Ai} \right| + 1 \right] \cdot \frac{W_0}{2}$$

при $0 < |i| \le N_{max}$.

При аподизации ВШП функцией Хемминга

$$F_{Ai} = F_{Xi} = 0.08 + 0.02 \cdot \cos^2\left(\frac{\pi}{4f_0T} \cdot i\right)$$

Результаты расчета приведены в табл. 4.

Входная проводимость

Статическая емкость неаподизированного ВШП

$$C_{\rm H} = W_0 N C_0 = 4 \cdot 10^{-3} \cdot 18 \cdot 0.27 = 0.02 \,\mathrm{m}\Phi.$$

Реактивная проводимость

$$b(\omega_0) = \omega_0 C_{\rm H} = 2\pi \cdot 100 \cdot 10^6 \cdot 0.02 \cdot 10^{-12} = 1.2 \cdot 10^{-3}.$$

Активная проводимость

$$g(\omega_0) = \frac{4}{\pi} \cdot k_m^2 N \omega_0 C_{\rm H} = \frac{4}{\pi} \cdot 0.05 \cdot 18 \cdot 1.2 \cdot 10^{-3} = 1.4 \cdot 10^{-3} \,\,{\rm Cm}.$$

Емкость суммирующего электрода

$$C_{\Sigma} = 0.09 \cdot \varepsilon \cdot \frac{d \cdot L}{H_{\Pi}} = 0.09 \cdot 11.7 \cdot \frac{0.2 \cdot 0.036}{0.05} = 0.15 \, \mathrm{m}\Phi.$$

Полная емкость входного преобразователя

 $C_1 = C_{\rm H} + C_{\Sigma} = 0.17 \, \mathrm{m}\Phi.$

Выходная проводимость

Для аподизированных ВШП

$$\begin{aligned} C_{A1} &= C_0 \left(\sum_{i=0}^N \sqrt{W_i} \right)^2 \approx 0.27 \cdot 49.3 \cdot 10^{-2} \cdot 2 = 0.28 \, \mathrm{m}\Phi; \\ C_{A2} &= C_0 \sum_{i=0}^N W_i = 0.27 \cdot 24.65 \cdot 10^{-2} \cdot 2 = 0.14 \, \mathrm{m}\Phi; \end{aligned}$$

Активная проводимость

$$g(\omega_0) = \frac{2}{\pi} \cdot k_m^2 \omega_0 C_{A1} = \frac{2}{\pi} \cdot 0.05 \cdot 10^8 \cdot 0.28 \cdot 10^{-12} = 1.9 \cdot 10^{-3} \text{ Cm};$$

i	$\frac{\sin(_\cdot i)}{(_\cdot i)}$	F_{xi}	$\frac{l_i}{W_0}$	<i>W</i> _{<i>i</i>} , мм
± 0	1	1	1	4
±1	0.95	0.99	-0.99	3.76
±2	0.92	0.96	0.94	3.53
±3	0.85	0.945	-0.9	3.21
± 4	0.76	0.9	0.84	3.0
± 5	0.63	0.86	-0.77	2.16
±6	0.5	0.8	0.7	1.6
±7	0.36	0.73	-0.63	1.05
± 8	0.33	0.66	0.6	0.87
±9	0.1	0.6	-0.55	0.24
±10	0	0.54	0.5	0
±11	0.05	0.46	-0.51	0.1
±12	0.15	0.38	0.525	0.22
±13	0.2	0.31	-0.53	0.25
±14	0.216	0.26	0.535	0.22
±15	0.21	0.2	-0.52	0.17
±16	0.19	0.17	0.15	0.13
±17	0.15	0.13	-0.51	0.08
±18	0.1	0.1	0.505	0.04
±19	0.05	0.085	-0.502	0.02
±20	0	0.08	0.5	0

Таблица 4 – Результаты расчета длины штырей *l* и перекрытия электродов *W*

Реактивная проводимость

$$b(\omega_0) = \omega_0 C_{A2} = 10^8 \cdot 0.14 \cdot 10^{-12} = 1.4 \cdot 10^{-3} \text{ Cm}$$

Емкость суммирующего электрода

$$C_{\Sigma} = 0.09 \cdot \varepsilon \cdot \frac{d \cdot L}{H_{\Pi}} = 0.09 \cdot 11.7 \cdot \frac{0.2 \cdot 0.08}{0.05} = 0.34 \, \mathrm{m}\Phi.$$

Полная емкость выходного преобразователя

 $C_2 = C_{A2} + C_{\Sigma} = 0.14 + 0.34 = 0.48 \ \pi \Phi.$

Литература

1. Дмитриев В.Ф. Устройства интегральной электроники:

Акустоэлектроника. Основы теории, расчета и проектирования: учебное пособие. – СПб.: ГУАП, 2006. – 169 с. [Электронный ресурс] – Режим доступа: <u>http://window.edu.ru/resource/026/45026/files/dmitriev2.pdf</u>, свободный (дата обращения: 19.01.2016).

2. Балышева О.Л. Материалы для акустоэлектронных устройств: учебное пособие. – СПб.: ГУАП, 2005. – 50 с. [Электронный ресурс] – Режим доступа: <u>http://window.edu.ru/resource/861/44861/files/Balysheva1.pdf</u>, свободный (дата обращения: 19.01.2016).

3. Балышева О.Л. Акустоэлектронные устройства обработки и генерации сигналов. Принципы работы, расчета и проектирования / О.Л. Балышева, В.И. Григорьевский, Ю.В. Гуляев, В.Ф. Дмитриев, Г.Д. Мансфельд. – М.: Радиотехника, 2012. – 576 с. [Электронный ресурс] – Режим доступа: <u>http://www.rfbr.ru/rffi/ru/books/o_1782364#1</u>, свободный (дата обращения 19.01.2016).

4. ГОСТ 28170-89. Изделия акустоэлектронные. Термины и определения. [Электронный ресурс] – Режим доступа: <u>http://vsegost.com/Catalog/93/936.shtml</u>, свободный (дата обращения 19.01.2016).

5. Ильин Г.И. Проектирование радиоприемных устройств СВЧ. Методические указания к курсовому и дипломному проектированию / Г.И. Ильин, Л.А. Трофимов, М.А. Царева. – Казань: КГТУ, 2010. – С. 41. [Электронный ресурс] – Режим доступа: <u>http://reku.kai.ru/files/2011/04/РПрУ-Часть-2.pdf</u>, свободный (дата обращения: 19.01.2016).

6. Иоссель Ю.Я. Расчет электрической емкости / Ю.Я. Иоссель, Э.С. Кочанов, М.Г. Струнский. – Л.: Энергоиздат, 1981. – 288 с.

7. Чернышова Т.И. Проектирование фильтров на поверхностноакустических волнах: учебно-методическое пособие / Т.И. Чернышова, Н.Г. Чернышов. – Тамбов: ТГТУ, 2008. – 48 с. [Электронный ресурс] – Режим доступа: <u>http://www.tstu.ru/book/elib/pdf/2008/chernyshova-a.pdf</u>, свободный (дата обращения: 19.01.2016).

8. Орлов В.С. Фильтры на поверхностных акустических волнах / В.С. Орлов, В.С. Бондаренко. – М.: Радио и связь, 1984. – 272с.