Министерство образования и науки РФ

Федеральное государственное бюджетное образовательное учреждение высшего образования

ТОМСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ СИСТЕМ УПРАВЛЕНИЯ И РАДИОЭЛЕКТРОНИКИ

Кафедра менеджмента

ЭКОНОМИКА И ОРГАНИЗАЦИЯ ПРОИЗВОДСТВА

Методические указания для практических занятий

Составитель: Рябчикова Т.А.

Экономика и организация производства: методические указания для практических занятий — Томск: Изд-во ТУСУР, 2017 — 24 с.

Рецензент Редактор

Методические указания для практических занятий по дисциплине «Экономика и организация производства» для направлений подготовки 38.03.02. «Менеджмент», 38.03.02 «Управление персоналом»

Печатаются по решению методического семинара кафедры экономики. Протокол \mathfrak{N}_{2} от

Утверждены и введены в действие проректором по учебной работе

Содержание

Введение	4
1. Этапы развития организации производства	4
2. Планирование подготовки производства	5
3. Сетевое планирование	8
4. Организация производственного процесса во времени	10
5. Методы организации производства	12
6. Предприятие как производственная система	15
7. Организация производственных вспомогательных процессов и	
Обслуживающих производств	16
8. Производственный контроль.	20
Рекомендуемая литература.	24

Введение

Целью методических указаний является закрепление теоретических знаний, полученных студентами по курсу «Экономика и организация производства» и привитие навыков самостоятельного экономического исследования. Методические указания содержат 8 заданий по 8 темам.

Таблица -1. План практических занятий (семинаров)

1 40	лица -1. 1	<u> </u>	рактических занятии (семинаро	D <i>)</i>	
No	No	семест	рТематика практических	Трудоём-	Компетенции
п/п	раздела		занятий	кость в ч.	ОК, ПК
	дисцип-				
	лины				
1	1	4	Этапы развития теории	4	ОК-3
			организации производства.		
2	1	4	Планирование подготовки	2	ОК-3
			производства		
3	1	4	Сетевое планирование	6	ОК-3
4	1	4	Организация	6	ОК-3
			производственных		
			процессов во времени		
5	1	4	Методы организации	8	ОК-3
			производства		
6	2	4	Предприятие как	4	ОК-3
			производственная система		
7	2	4	Организация	4	ОК-3
			вспомогательных		
			производственных		
			процессов и		
			обслуживающих		
			производств		
8	2	4	Производственный	2	ОК-3
			контроль		
			ИТОГО	36	

1. Этапы развития теории организации производства

Задание

Провести анализ следующих этапов формирования и развития науки об организации производства:

1) переход к машинному производству;

- 2) качественные изменения в общественном производстве, вследствие научно-технической революции;
- 3) появлением и развитием информационного производства.

Назвать для каждого этапа временные рамки, характерные черты, основные тенденции, происходящие в экономике, основных теоретиков.

2. Планирование подготовки производства

Задание

Определить коэффициент сравнительной экономической эффективности, годовой и условно-годовой экономический эффект от использования новой технологии, срок окупаемости

дополнительных капитальных вложений, годовую экономию затрат на материальные ресурсы и заработную плату.

Исходные данные

Исходные данные представлены в таблице 2.

Таблица 2 – Технико-экономические показатели

Показатели	Значения		
	Базовый способ	Новый способ	
	производства	производства	
Объём производства, шт.	10000	12000	
Капитальные вложения,			
тыс.р.:	5000	0	
1 год	15000	20000	
2 год	2000	7000	
3 год			
Норма дисконта, %	10		
Месяц ввода в	март		
эксплуатацию			
Текущие затраты на			
производство:			
материальные, р./шт.	80	75	
зарплата основных	15	12	
рабочих, р./шт.	200	250	
постоянные затраты,			
тыс.р.			

Методические указания

$$E = \frac{\left(\frac{C6 \cdot QH}{Q6} - CH\right)}{KH - K6}, \qquad (1)$$

где Е – коэффициент сравнительной экономической эффективности;

Сб и Cн – соответственно текущие затраты на производство по базовому и новому вариантам, р.;

Кб и Кн – соответственно капитальные вложения по базовому и новому вариантам, р.

Об и Qн – соответственно объём производства по базовому и новому варианту, шт.

Если Е больше чем нормативный коэффициент сравнительной экономической эффективности (Eн = 0,12), то новая технология экономически эффективна.

$$C = (3_M + 3_3)Q + 3_{\Pi}, \tag{2}$$

где С – текущие затраты на производство, р.;

3м – материальные затраты, р./шт.;

33 – зарплата основных рабочих, р./шт.;

Q – объём производства, шт.

3п – затраты постоянные, р.

$$= \sum_{i=1}^{n} (\mathbf{K}_t \cdot \alpha_t)$$

$$\mathbf{K} \qquad , \tag{3}$$

где К – капитальные вложения, р.;

 K_t – капитальные вложения t-го года, p.;

 α_t – коэффициент дисконтирования t-го года.

$$\alpha_{t} = \frac{1}{(1+EA)^{t}},$$

(4)

где Ед – норма дисконта, в долях ед.

t – порядковый номер года. В качестве расчётного (нулевого года) принять 3 год осуществления капитальных вложений.

$$\frac{\left(3\pi p_{6}^{/} - 3\pi p_{H}^{/}\right)}{Q_{H}}$$

$$(5)$$

где $\Im \Gamma$ – годовой экономический эффект от внедрения новой технологии, р. $\Im np_6^{\ \ \ \ }$, $\Im np_{\ \ \ \ \ \ \ }$ - соответственно удельные приведённые затраты по базовому и новому варианту, р/шт.;

$$\frac{3\pi \mathbf{p}}{3\pi \mathbf{p}' = \mathbf{Q}} \tag{6}$$

где Зпр – приведённые затраты, р.

$$3\pi p = C + E_{H} \cdot K, p. \tag{7}$$

$$\frac{\exists \mathbf{r} \cdot \mathbf{T}_{\mathbf{\pi}}}{\mathbf{12}} \tag{8}$$

где Эуг – условно-годовой экономический эффект от внедрения новой технологии, р.;

Тд – количество месяцев действия мероприятия в текущем году.

$$Tok = \frac{\frac{(K_H - K_G)}{C_G - C_H}}{Q_G}$$
(9)

где Ток – срок окупаемости дополнительных капитальных вложений, лет.

$$\Delta M = (3M\delta - 3MH)QH, p., \tag{10}$$

где ΔM – годовая экономия материальных ресурсов, р.,

Змб и Змн – соответственно материальные затраты по базовому и новому вариантам, р./шт.

$$\Delta 3 = (336 - 33H)QH, p.,$$
 (11)

где $\Delta 3$ – годовая экономия заработной платы рабочих, р.,

Ззб и Ззн – соответственно затраты на заработную плату рабочих по базовому и новому вариантам, р./шт.

3. Сетевое планирование

Задание

Построить сетевую модель, определить её параметры, оптимизировать по времени.

Исходные данные

Исходные данные представлены в таблице 3.

Таблица 3 – Исходные параметры сетевой модели

Код	Продолжительность	Количество работнин	ков, чел
работы	работы, дн.	конструкторы	техники
0-1	8	2	-
0-2	10	4	-
1-2	0	-	-
1-5	4	3	-
2-3	6	-	2
2-4	12	4	-
3-4	0	-	-
4-7	8	-	4
5-6	10	4	-
5-7	6	-	3
6-8	3	2	-
7-8	6	-	4

Методические указания

Оптимизация сетевого графика по времени, чтобы сократить продолжительность разработки в целом, или уложиться в установленные сроки. При этом надо учитывать коэффициенты напряженности путей. Работы, лежащие на путях с коэффициентом напряженности Кн < 8, уже могут быть использованы для оптимизации сетевого графика, при этом в первую очередь, используются резервы работ с путей, имеющих минимальные коэффициенты напряженности. Оптимизация сетевого графика проводится: - путем перевода части исполнителей с ненапряженных работ, то

есть имеющих частные резервы времени, на работы критического пути, выполняемые параллельно с ненапряженными работами. При переводе исполнителей должны быть учтены их квалификация и специальность;
— путем изменения сроков начала и окончания работ ненапряженных путей в пределах их полного резерва времени.

Оптимизация сетевого графика включает следующие этапы:

1. Определяется объем ненапряженной работы, с которой предполагается перевести часть исполнителей на работу критического пути по формуле:

$$Q_{i-j} = t_{i-j} \cdot P_{i-j}, \tag{12}$$

где — $Q_{i\text{-}j}$ - объем ненапряженной работы. для i-j работы, чел./дн.;

 $t_{i\text{--}j}$ - продолжительность i-j работы, дн.;

 P_{i-j} – количество исполнителей на данной работе, чел.

2. Определяется оптимальная численность исполнителей для выполнения данной работы при условии увеличения ее продолжительности на величину частного резерва времени по формуле:

$$\mathbf{U}_{i-j}^{\text{OIT}} = \frac{Q_{i-j}}{\left(t_{i-j} + r_{i-j}\right)},\tag{13}$$

где— r_{i-j} - частный резерв времени i-j работы, дн.

3. Определяется количество исполнителей, которые могут быть переведены на параллельно выполняемую работу критического пути по формуле:

где $\mathbf{q}_{i-j}^{\text{пер}}$ – количество переводимых работников с i-j работы, чел.;

 $\mathbf{q}_{\text{i-j}}$ - количество работников на i-j работе, чел.;

4. Определяется объем работы критического пути, на которую предполагается перевести часть исполнителей, по формуле:

$$Q_{i-j}^{kp} = t_{i-j}^{kp} \cdot Y_{i-j}^{kp}, \tag{15}$$

где $Q_{i-j}^{\kappa p}$ – объём i-j работы критического пути, чел-дн.;

 ${\rm Y}_{{\rm i}-{\rm j}}{}^{\rm kp}$ — численность работников на ${\rm i}{\mbox{-}{\rm j}}$ работе критического пути, чел.

5. Определяется продолжительность работы критического пути после увеличения численности исполнителей на этой работе, по формуле:

$$\Delta t_{i,j}^{\text{kp}} = \frac{Q_{i-j}^{\text{kp}}}{\left(Y_{i-j}^{\text{kp}} + Y_{i/j}^{\text{nep}}\right)},$$

(16)

где $\Delta t_{i-j}^{\kappa p}$ – изменение продолжительности i-j работы критического пути, дн.

6. Определяется продолжительность критического пути после оптимизации сетевого графика.

4. Организация производственного процесса во времени *Задание*

Рассчитать длительность технологического цикла и построить цикловой график изготовления сложного изделия. Определить нормативы опережения в сдаче продукции.

Исходные данные

Длительность изготовления деталей и узлов см. табл. 4. Дата сдачи изделия 15 апреля. Сборочная схема см. рис. 1.

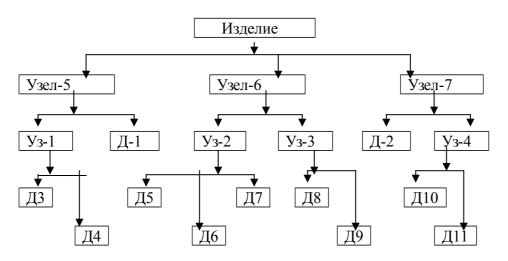


Рисунок 1 – Сборочная схема сложного изделия

Таблица 4 – Производственный цикл изготовления сборочных единиц

ДН. Сборочная Вариант единица Деталь 1 Деталь 2 Деталь 3 Деталь 4 Деталь 5 Деталь 6 Деталь 7 Деталь 8 Деталь 9 Деталь 10 Деталь 11 Узел 1 Узел 2 Узел 3 Узел 4 Узел 5 Узел 6 Узел 7 Изделие

Методические указания

Технологический цикл изготовления сложного изделия равен наиболее продолжительной цепочке взаимосвязанных последовательно выполняемых операций.

На основе сборочной схемы строится цикловой график изготовления изделия в виде ленточной диаграммы.

Норматив опережения показывает, предельный интервал времени от начала изготовления данной сборочной единицы до момента готовности изделия в целом. Расчёт величин опережения представить в таблице 5. Даты начала работ определить по календарю, исключив выходные дни.

Таблица 5 – Расчёт нормативов опережения

Технологи-	Сборочная	Технологический	Опере-	Дата начала
ческая	единица	цикл изготовления,	жение,	работ
цепочка		дн.	дн.	

5. Методы организации производства

Задание

Определить параметры поточной линии и длину замкнутой ленты конвейера.

Исходные данные

Сборка блока осуществляется на рабочем конвейере непрерывного действия. Шаг конвейера — 1,5 м. Диаметр приводного и натяжного барабана — 0,4 м каждый. Технологический процесс состоит из 8 операций. Нормы времени на операциях представлены в таблице 6. Программа выпуска 500 блоков/сутки. Режим работы поточной линии двухсменный по 8 ч. Регламентированные перерывы на отдых по 30 мин в смену.

Таблица 6 — Нормы времени на операциях

Номер операции	1	2	3	4	5	6	7	8
Средняя продолжительность операции,	3,5	7,0	5,0	9,0	1,8	5,2	3,0	8,0
мин								
Максимальная продолжительность на	-	-	-	-	2,0	-	-	_
нестабильных операциях, мин								

Методические указания

1) Определить суточный фонд времени работы поточной линии по формуле:

$$\Phi_{\text{Д}} = (60\text{Тсм} - \text{Тпер})\text{Кс},$$
 (17)

где Фд – суточный фонд времени работы поточной линии, мин.;

Тсм – продолжительность смены, ч.;

Тпер – продолжительность перерывов, мин.;

Кс – количество смен в сутках.

2) Определить такт поточной линии по формуле:

$$r = \frac{\Phi_{\mathcal{I}}}{Q}, \tag{18}$$

где г – такт поточной линии, мин/шт.;

Q – суточная программа выпуска, шт./сут.

3) Определить ритм поточной линии по формуле:

$$R = \frac{1}{r}, \tag{19}$$

где R – ритм поточной линии, шт./мин.

3) Определить расчётное количество рабочих мест на операциях по формуле:

$$Cpi = \frac{t_i}{r}, \qquad (20)$$

где Срі — расчётное количество рабочих мест на і-ой операции, t_i - средняя продолжительность і-ой операции, мин.

- 4) Определить принятое количество рабочих мест округлением расчётного числа рабочих мест до целого в большую сторону.
- 5) Определить коэффициенты загрузки рабочих мест по формуле:

$$K_{3i} = \frac{Cpi}{C\pi i}, \tag{21}$$

где Кзі – коэффициент загрузки рабочих мест на і-ой операции, Спі – принятое количество рабочих мест на і-ой операции.

6) Определить скорость конвейера по формуле:

$$V = \frac{l}{r}$$

(22) где V – скорость конвейера, м/мин.; l – шаг конвейера, м.

7) Определить длину рабочих зон на операциях по формуле:

$$L_i = t_i \cdot V, \tag{23}$$

где L_i – длительность рабочей зоны на i-ой операции, м.

8) Определить длину резервных зон на нестабильных операциях по формуле:

$$Lp_i = (tmax_i - t_i) \cdot V, \qquad (24)$$

где Lp_i – длительность резервной зоны на i-ой операции, м;

tmax_i – максимальная продолжительность i-ой операции, мин.

9) Занести расчёты в таблицу 7.

Таблица 7 – Параметры поточной линии.

$ $ Номер операции $ $ $ $ t_i , мин. $ $ $ $ tmax $_i$, мин. $ $ Срі $ $ Спі $ $ Кзі	L _i , M	Lp _i . м
--	--------------------	---------------------

10) Определить длину рабочей зоны конвейера по формуле:

$$\sum_{i=1}^{n} L_i \quad \sum_{i=1}^{n} Lp_i$$

$$Lp_K = + , \qquad (25)$$

где Lpк – длина рабочей зоны конвейера, м;

n – количество операций на конвейерной линии.

11) Определить длину замкнутой ленты конвейера по формуле:

$$L_{\Pi} = D \cdot \pi + 2Lp\kappa, \tag{26}$$

где Lл – длина замкнутой ленты конвейера, м;

D – диаметр натяжного барабана, м;

$$\pi - 3.14$$
.

6. Предприятие как производственная система

Задание

Изучить сущность и элементы производственных систем. Ответить на следующие вопросы:

- 1) Что такое система и каковы её составляющие?
- 2) Что такое производственная система?
- 3) Какие виды подсистем выделяют в производственной системе, и каковы их особенности?
- 4) Как классифицируются элементы производственной системы по содержанию, и каковы их особенности?
- 5) Как классифицируются элементы производственной системы по структурным подразделениям, и каковы их особенности?
- б) Как классифицируются элементы производственной системы по процессам, и каковы их особенности?
- 7) Что такое производственная структура предприятия? Назвать виды производственных структур и их особенности.

7. Организация вспомогательных производственных процессов и обслуживающих производств

Задание

Определить годовую потребность в токарных резцах в каждом из трёх цехов, изменение запаса токарных резцов в ЦИС по системе «максимум – минимум» и точку заказа инструмента в ЦИС.

Исходные данные

На станке одновременно работают п резцов (см. табл. 8), машинное время $t_{\text{м}}$ мин. (см. табл. 8), штучное время $-t_{\text{шт}}$ мин. (см. табл. 8), стойкость резца 1,8 ч., возможное число переточек m (см. табл. 9), коэффициент случайной убыли инструмента - 0,03, продолжительность заточки инструмента 16 ч. Фактический запас токарных резцов в цехе №1 на начало планового периода 130 шт., в цехе №2 110 шт., в цехе № 3-120 шт. Цеха работают в 2 смены,

продолжительность смены - 8ч., количество рабочих дней в году - 265, потери рабочего времени на ремонт оборудования - 5%. Годовая программа выпуска обрабатываемых токарными резцами деталей в цехах — Nпл (см. табл. 8), млн. шт. Поставка инструмента из ЦИСа в ИРК еженедельная, периодичность доставки инструмента на рабочие места - 8,ч.; коэффициент страхового запаса инструмента на рабочих местах - 0,1; коэффициент страхового запаса в ИРК - 0,1; коэффициент выполнения норм - Квн (см. табл. 9). Периодичность пополнения запаса ЦИС – 45 дней, время срочного изготовления инструмента — Тизг, дн. (см. табл. 9), коэффициент, учитывающий задержку поставки инструмента - 1,3.

Таблица 8 – Исходные данные

Цех	п, шт.	t _{шт} , мин.	t _м , мин.	N _{пл} , млн. шт.
№ 1	3	2,2	1,8	1,2
№2	2	2,5	2,0	1,6
№3	1	1,8	0,8	2,3

Таблица 9 – Исходные данные по вариантам

Вариант	m, pa3	Квн	Тизг, дн.
1	6	1,1	15
2	7	1,15	10
3	8	1,2	12
4	8	1,15	15
5	6	1,1	10
6	7	1,15	15
7	8	1,2	10
8	7	1,1	12
9	6	1,2	15
10	5	1,15	10
11	8	1,1	10
12	8	1,15	12
13	6	1,2	15
14	7	1,2 1,15	10
15	8	1,1	15
16	7	1,15	10
17	6	1,2	12
18	5	1,1	15

Методические указания

1) Определить годовую потребность в инструменте:

$$\Pi_{\Gamma} = P_{\Pi\Pi} + Z_{\Pi} - Z_{\phi}, \tag{27}$$

где Π_r – годовая потребность в инструменте, шт.;

 $P_{\text{пл}}$ – расход инструмента в плановом периоде, шт.;

 Z_{u} – цеховой оборотный фонд инструмента, шт.;

 Z_{φ} – фактический запас инструмента на начало планового периода, шт.

$$P_{nn} = \frac{\left(N_{nn} \cdot H_{p}\right)}{1000},$$

(28)

где N_{nn} – плановый объём производства обрабатываемых деталей, шт.;

H_p - норма расхода инструмента на 1000 деталей, шт.

$$H_{p} = \frac{(1000 \cdot t_{M} \cdot n)}{\left[60 \cdot (m+1) \cdot t_{c} \cdot (1-K_{y})\right]},$$
(29)

где $t_{\scriptscriptstyle M}$ – норма машинного времени обработки одной детали, мин.;

n – количество инструмента данного типоразмера, одновременно работающего на станке, шт;

т – число переточек инструмента до полного его износа;

t_с-стойкость резца, ч;

 K_{y} – коэффициент случайной убыли инструмента.

$$Z_{II} = Z_{D} + Z_{3} + Z_{K},$$
 (30)

где Z_p – количество инструмента на рабочих местах, шт.;

 Z_3 – количество инструмента в заточке и на восстановлении, шт.;

 Z_{κ} – количество инструмента в ИРК, шт.

$$Z_{p} = \frac{\mathbf{C} \cdot \mathbf{n} \cdot \mathbf{T}_{\pi}}{\mathbf{T}_{c}} + C(1 + \mathbf{K}_{3}\mathbf{p}), \tag{31}$$

где С – количество рабочих мест, шт.;

n – количество инструментов, одновременно применяемых на станке, шт.;

 T_{π} – период между подачей инструмента к рабочим местам, ч;

Т_с – период между сменами инструмента на станке, ч;

 $K_{_{3p}}-$ коэффициент резервного запаса инструмента на каждом рабочем месте, шт.

$$C = \frac{(t_{m\pi} \cdot N_{m\pi})}{(60 \cdot \kappa_{EH} \cdot \Phi_{\pi})},$$
(32)

где $K_{\text{вн}}$ – коэффициент выполнения норм;

 $\Phi_{\text{\tiny Л}}-$ действительный фонд времени, ч.

$$\Phi_{\pi} = \prod_{p} K_{cm} \cdot t_{cm} \cdot \frac{\mathbf{1} - \mathbf{p}}{\mathbf{100}}, \tag{33}$$

где Д $_p$ – количество рабочих дней;

 $K_{\text{см}}$ – количество смен в рабочем дне;

 $t_{\mbox{\tiny cm}} - \mbox{продолжительности смены, ч.;}$

р – потери времени на ремонт оборудования, %.

$$T_{c} = \frac{(t_{c} \cdot t_{mir})}{t_{M}}, \qquad (34)$$

где $t_{\text{шт}}$ – штучное время на операции, мин., t_{c} – стойкость резца, ч.

$$Z_{3} = \frac{(\mathbf{C} \cdot \mathbf{n} \cdot \mathbf{T}_{3})}{\mathbf{T}_{\pi}}, \tag{35}$$

где Тз – продолжительность заточки инструмента, ч.

$$Z_{\kappa} = P_{\text{cyr}} \cdot T_{\text{пост}} (1 + K_{3c}), \tag{36}$$

где $P_{\text{сут}}$ – среднесуточный расход инструмента, шт./день;

Тпост – период между двумя поставками из ЦИС в ИРК, дн.;

 K_{3c} – коэффициент страхового запаса в ИРК.

$$P_{\text{cyr}} = \frac{P_{\text{mn}}}{\mathcal{I}_{p}}, \tag{37}$$

где P_{nn} – роасход инструмента в плановом периоде, шт.; \mathcal{L}_p – количество рабочих дней.

2) Определить минимальный запас инструмента в ЦИС.

$$Z_{\min} = \sum_{i=1}^{n} P_{\text{cyt}}(K_{3i} - 1), \tag{38}$$

где Z_{min} – минимальный запас инструмента в ЦИС, шт.;

 $P_{\text{сут}}$ - среднесуточный расход инструмента, шт./день;

 $K_{_{3H}}$ — коэффициент задержки изготовления инструмента;

n – количество цехов.

3) Определить точку заказа инструмента в ЦИС.

$$Z_{\text{T.3.}} = Z_{\text{min}} + T_{\text{M3F}} \cdot \sum_{i=1}^{n} P_{\text{cyt}}$$
 (39)

где $Z_{{\scriptscriptstyle T.3}}$ – точка заказа инструмента в ЦИС, шт.;

 $T_{\mbox{\tiny изг}}$ – время срочного изготовления инструмента, дн.:

n – количество цехов.

4) Определить максимальный запас инструмента в ЦИС

$$Z_{\text{max.}} = Z_{\text{min}} + T_{\text{II}} \cdot \sum_{i=1}^{n} P_{\text{cyt}}$$
 (40)

где Z_{max} – максимальный запас инструмента в ЦИС, шт.;

 $T_{\rm u}-$ цикл пополнения инструмента в ЦИС, дн.;

n – количество цехов.

8. Производственный контроль

Задание

С вероятностью см. табл. 10 определить пределы, в которых будет находиться средний вес образцов партии.

Таблица 10 – Степень вероятности

Вариант	степени вероятности $\Phi(t)$	коэффициент доверия <i>t</i>
1	0,683	1
2	0,954	2
3	0,997	3
4	0,866	1,5
5	0,988	2,5
6	0,999	3,5
7	0,683	1
8	0,954	2
9	0,997	3
10	0,866	1,5
11	0,988	2,5
12	0,999	3,5

13	0,683	1
14	0,954	2
15	0,997	3
16	0,866	1,5
17	0,988	2,5
18	0,999	3,5

Исходные данные

На предприятии осуществлена выборка по качеству продукции численностью 200 образцов по весу. Необходимо принять решение о качестве всей партии в количестве 2000000 образцов. Выборочное распределение приведено в табл. 11.

Таблица 11 – Выборочное распределение

Вес образцов, г	Число образцов
297-301	-
302-306	2
307-311	12
312-316	29
317-321	36
322-326	43
327-331	35
332-336	27
337-341	11
342-346	3
347-351	2

Методические указания

Границы (пределы), в которых заключена средняя генеральной совокупности:

$$\widetilde{x}$$
 - $\Delta_{\widetilde{x}} \leq \overline{x} \leq \widetilde{x} + \Delta_{\widetilde{x}}$ или \widetilde{x} - $\overline{x} = \pm \Delta_{\widetilde{x}}$. (34)

где \overline{x} - средняя величина в генеральной совокупности;

 $\Delta_{\widetilde{x}}$ - предельная ошибка выборки;

 \widetilde{x} - средняя в выборочной совокупности.

$$\Delta_{\widetilde{x}} = t \sqrt{\frac{\sigma^2}{n}}, \tag{35}$$

где t – коэффициент доверия;

σ - среднее квадратическое отклонение;

n - объем выборочной совокупности.

$$\sigma = \sqrt{\frac{\sum_{i=1}^{n} (x_i - \bar{x})^2 \cdot f_i}{\sum_{i=1}^{n} f_i}},$$
(36)

где x_i - варианты вариационного ряда;

fi – частоты теоретического ряда;

 \overline{x} - средняя величина выборки.

$$\bar{x} = \frac{\sum_{i=1}^{n} x_i \cdot f_i}{\sum_{i=1}^{n} f_i}$$
 (37)

Распределение выборочной совокупности должно соответствовать нормальному распределению. К элементарным приёмам определения «нормальности» распределения относят сравнение средней арифметической с модой и медианой. Для нормального распределения эти три значения равны между собой.

Рекомендуемая литература

Основная литература:

- 1. Веснин, Владимир Рафаилович, Теория организации в схемах [Текст] : учебное пособие для вузов / В. Р. Веснин. М. : Проспект, 2013. 126 с. -
- 2. Рябчикова Т.А., Экономика и организация производства: учебное пособие / Т.А.Рябчикова; Мин. обр. и науки РФ, Томск. гос.ун-т сист. упр. и радиоэлектроники. Томск: Эль Контент, 2013. 130 с. Библиогр.: с. 123.
- 3. <u>Рябчикова, Татьяна Александровна</u>. Экономика и организация производства [Электронный ресурс] : учебное пособие / Т. А. Рябчикова ; Томский государственный университет систем управления и

радиоэлектроники (Томск). - Электрон. текстовые дан. - Томск : [б. и.], 2013. - on-line, 130 с. - Б. ц.

Дополнительная литература:

- Иванов, Игорь Николаевич, Организация производства на промышленных предприятиях: Учебник / И. Н. Иванов. М.: Инфра-М, 2008. 350[2] с.: ил. (Высшее образование). Библиогр.: с. 346-347.
 ISBN 978-5-16-003118-7: 264.00 р.
- 2. Тарновская, Людмила Ивановна. Организация и планирование производства (Для специальностей ФСУ): учебное пособие / Л. И. Тарновская; Федеральное агентство по образованию, Томский государственный университет систем управления и радиоэлектроники. Томск: ТУСУР, 2007. 158 с.: ил. Библиогр.: с. 157-158. 104.74 р.