Министерство образования и науки Российской Федерации

Федеральное государственное образовательное учреждение высшего образования

ТОМСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ СИСТЕМ УПРАВЛЕНИЯ И РАДИОЭЛЕКТРОНИКИ (ТУСУР)

Кафедра сверхвысокочастотной и квантовой радиотехники (СВЧиКР)

ИССЛЕДОВАНИЕ ВЛИЯНИЯДИСПЕРСИИ И ПАРАМЕТРОВ АКТИВНЫХ КОМПОНЕНТОВ НА ПОМЕХОУСТОЙЧИВОСТЬ ВОСП МЕТОДОМ МОДЕЛИРОВАНИЯ В САПР SYSTEM VUE

Томск 2017 г. Министерство образования и науки Российской Федерации

Федеральное государственное образовательное учреждение высшего образования

ТОМСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ СИСТЕМ УПРАВЛЕНИЯ И РАДИОЭЛЕКТРОНИКИ (ТУСУР)

Кафедра сверхвысокочастотной и квантовой радиотехники (СВЧиКР)

УТВЕРЖДАЮ

Заведующий кафедрой СВЧ и КР _____ С.Н. Шарангович "___" ____ 2017 г.

ИССЛЕДОВАНИЕ ВЛИЯНИЯДИСПЕРСИИ И ПАРАМЕТРОВ АКТИВНЫХ КОМПОНЕНТОВ НА ПОМЕХОУСТОЙЧИВОСТЬ ВОСП МЕТОДОМ МОДЕЛИРОВАНИЯ В САПР SYSTEM VUE

Методические указания к лабораторной работе для бакалавров направления подготовки 11.03.02 – Инфокоммуникационные технологии и системы связи, дисциплина «Оптические цифровые телекоммуникационные системы»

Разработчики: Студент группы 152 ____Сон С.

Заведующий каф. СВЧиКР ____Шарангович С.Н.

Томск 2017 г.

1	ВВЕДЕНИЕ	4
2	ОБЗОР ФУНКЦИОНАЛЬНЫХ ВОЗМОЖНОСТЕЙ САПР SYSTEM VUE	6
3	ПОРЯДОК ВЫПОЛНЕНИЯ РАБОТЫ	9
4	СОДЕРЖАНИЕ ОТЧЕТА	11
5	КОНТРОЛЬНЫЕ ВОПРОСЫ	12
6	РЕКОМЕНДУЕМАЯ ЛИТЕРАТУРА	12

1 ВВЕДЕНИЕ

Цель работы: исследование помехоустойчивости оптоволоконной системы передач в зависимости от параметров дисперсии и активных компонентов.

Актуальным, в сфере коммуникаций, является разработка, построение и введение в эксплуатацию новых устройств и систем связи. Системы автоматизированного проектирования(САПР) позволяют значительно облегчить и ускорить процесс создания новых устройств и систем путём моделирования этих систем и анализа их характеристик.

SystemVue – это САПР для моделирования и проверки электронного оборудования в нескольких областях на системном уровне (ESL). С ее помощью инженеры-системотехники и разработчики алгоритмов могут стереть границу между схемами модулирующих сигналов и радиочастотными схемами для совершенствования физического уровня (PHY) в едином цикле проектирования систем.

SystemVue многократно упрощает проектирование за счет имеющихся в ней средств моделирования востребованных цифровых сигнальных интерфейсов, разработки процессоров И возможности точных вычислительных устройств, стандартных и специальных образцовых узлов, а также за счёт того что пользователь сам может взаимодействовать с контрольно-измерительными приборами. SystemVue позволяет разрабатывать ВЧ аппаратуру, связывая все области в общей модельноориентированной технологии проектирования, что в два раза сокращает время разработки и проверки физического уровня.

Основные преимущества:

- лучшая в своем классе по точности ВЧ моделирования современная среда разработки на физическом уровне схем модуляции-демодуляции, позволяющая проектировщикам моделировать ВЧ тракты.

- Превосходная интеграция с контрольно-измерительными приборами позволяет ускорить реализацию проекта, организовав унифицированную технологию модельно-ориентированного проектирования – от разработки архитектуры до испытаний готового изделия.

- Уникальные библиотеки компонентов и алгоритмы позволили Keysight обеспечить функциональную совместимость на физическом уровне до изготовления прототипа.

Программа моделирования SystemVue позволяет спроектировать линию передачи, настроить параметры пассивных и активных устройств, проанализировать форму, спектр сигнала в любой точке линии. Возможности программы обширны, так как моделирование осуществляется с различными устройствами и элементами, от аналогового сигнала до световых импульсов. Но при моделировании существуют не все параметры, которые влияют на характеристику линии. Этим и ограничивается виртуальная симуляция от практического расчета линии передачи.

2 ОБЗОР ФУНКЦИОНАЛЬНЫХ ВОЗМОЖНОСТЕЙ САПР SYSTEM VUE

Программа SystemVue представлена пользователю удобным рабочим пространством с широким разнообразием функций и возможностей.

Главный экран программы разбит на несколько функциональных вещей (рисунок 2.1):

Рисунок 2.1 – Главный экран программы SystemVue

На главном экране изображено:

1.Панель управления. Здесь закреплены основные функции работы с файлами программы, её внешним видом, различными служебными действиями (Открыть, Сохранить, Выделить и т.д.). Так же тут расположены панели инструментов с различными часто используемыми функциями программы.

2.Рабочее пространство. Внутри рабочего пространства отображаются окна в которых пользователь совершает основную работу (построение схем, графики, написание кодов и уравнений).

3.Библиотеки элементов. В этой части экрана представлены библиотеки со всеми возможными встраиваемыми элементами и устройствами, с помощью которых пользователь строит свои модели.

4. Дерево проекта. В дереве отображается структура проекта. Введённые схемы, модели, уравнения, построенные графики.

5.Окно ошибок. Тут выводятся все ошибки, возникающие при симуляциях.

В дереве проектов можно открыть окно Schematic (рисунок 2.2). Это окно соответствует схеме, собираемой пользователем. В одном проекте может быть несколько таких окон. Рассмотрим его подробнее.

Рисунок 2.2 – окно Schematic

В нижней части этого окна есть 4 вкладки. Каждая вкладка позволяет управлять определенными параметрами внутри этой модели.

1.PartList – отображает все элементы, находящиеся в схеме вместе с их описанием.

2. Schematic – само пространство для сбора схем.

3. Equations – вкладка, в которой можно описывать необходимые математические операции, уравнения.

4. Parametrs – тут пользователь может создавать новы переменные и параметры, присваивать им значения и размерности, а потом использовать их в описании элементов.

Сигнал, получаемый на выходе можно посмотреть с помощью элемента «Sink». С помощью этих элементов сигнал будет отслеживаться с каждой точки тракта.

У «Sink» можно настроить количество отсчётов или порог времени, до которого он будет производить вычисления (рис 2.3). Так как в нашей работе BitRate=5ГГц, то нам хватит вычислений до 1мкс.

Designator: Bits		Show Designator										
Description: Data Sink		\$	123									
Model: Sink@Data Flow Models												
Manage Models	🎨 Model Help	Use Model										
Main Options Graph and Table												
Output Data To: 0: DataSe	Output Data To: 0: DataSet											
Data Collection	n Samples)											
O Samples From:	0	To: SamplePerBit*800										
Time From:	Start_Time s ~	To: 1	s ~									
Continuous Run and Runtime Tu	unina											
Enable Continuous run and Runtime tuning Disable Data Collection												
Window Size: 500	Samples											
Advanced Options	/ Edit Equations	ОК	Cancel Help									

Рисунок 2.3 – Анализатор сигнала Sink и его параметры

Среда моделирования также содержит окно «Help», в котором можно найти описание любого элемента, его параметров и предназначения (рисунок 2.4).

System/Vue 2011.08 SP1	Help		_			(cont)
File Edit Wew Go Bo	oimacka Heip					
0000	A a e	19				
Address: cptielp://kystervisa	64.2013.08.ap1/doc/algorith	fan,filitForwatter.html				
Cont Index Di 1	Search Baffar	matter				
Contents 😸 I	*					10 🔇 × 🗩
Programmer's Guide Getting Started Guide Tutorials Simulation	BitForm	ig × Algorithm Daugn Library × Signal Processing C	7 Svm	h	arter	erter)
i Part Catalog I Doarneles	Description: Bit Domain: Untime C++ Code Gene SystemVueEngin Associated Parts	Format NF2 1 V 1 V to NR2/RZ Symbol Converter d ration Support YES is Bifformatter Part ters				
	Name	Description	Default	Units	Туре	Runtime Tunable
	SamplesPerBit	Number of output samples per input bit	1		Integer	NO
	Economical	Enemating putterd singult N97 97	607		En inclusion (A107

Рисунок 2.4 – Окно Неlp

3 ПОРЯДОК ВЫПОЛНЕНИЯ РАБОТЫ

3.1 Перед выполнением лабораторной работы необходимо ознакомиться с программным интерефейсом САПР System Vue и параметрами основных компонентов моделирования.

3.2 Последовательно собрать схему базовой модели ВОСП (рисунок3.1-3.3)

Рисунок 3.1 – 1-й Фрагмент ВОСП

Рисунок 3.2 – 2-й фрагмент ВОСП

Рисунок 3.3 – 3-й фрагмент ВОСП

3.3 С помощью элементов «Sink» получить осцилограммы сигналов с выхода каждого структурного элемента схемы.

3.4 Для добавления шума в систему заменить элемент «Gain» элементов «Amplifier». Пронаблюдать, как изменение параметра NoiseFigure будет влиять на осцилограмму сигнала.

3.5 Для добавления дисперсии в систему дополнить схему элементом «Gaussian LPF» и варьирую параметр «Bandwidth» добиться уширения импульсов, передающихся в системе.

3.6 Для точного расчёта помехоустойчивости используется элемент BER_FER. Этот элемент измеряет параметр BER на основе опорного и тестового сигнала, поданного ему на соответствующие входы (рисунок 3.4).

Рисунок 3.4 – Элемент BER_FER

10

На тестовый вход, подаётся сигнал, прошедший линию передачи, а на опорный – битовая последовательность, которая была запущена в эту линию.

В линии передач есть элементы, которые вносят временную задержку, поэтому необходимо синхронизировать тестовый сигнал с опорным на входе BER_FER. Зная величину задержки (вычисляется вручную из осциллограмм входа и выхода линии), подключим к анализатору ошибок элемент задержки по времени, чтобы синхронизировать данные (рисунок 3.5).

Рисунок 3.5 – Элемент задержки

После установки данного элемента, сигналы, поступающие на входы анализатора ошибок синхронизированы и точность расчета увеличена.

3.7 Исследовать зависимость коэффициента ошибок от параметра уширения импульса и внесенного шума усилителя. Построить графики зависимостей.

4 СОДЕРЖАНИЕ ОТЧЕТА

4.1 Название работы, цель работы, и схема ВОСП с полным описанием работы.

4.2 Осцилограммы сигнала на выходе каждого элемента система с указанием параметров элементов.

4.3 Сравнительные осцилограммы с добавлением шума усилителя и дисперсии импульсов.

4.4 Графики зависимостей коэффициента битовой ошибки от количества шума и уширения импульсов.

4.5 Выводы

5 КОНТРОЛЬНЫЕ ВОПРОСЫ

5.1 В чем заключается явление дисперсии?

5.2 Какие основные компоненты влияют на появление шума в оптической системе передач?

5.3 Для чего в структурную схему установки вводится элемент задержки.

6 РЕКОМЕНДУЕМАЯ ЛИТЕРАТУРА

6.1 А. Ярив, П. Юх. Оптические волны в кристаллах. – М.: Мир, 1987.– 616 с.