Министерство образования и науки Российской Федерации

Федеральное государственное бюджетное образовательное учреждение высшего образования «Томский государственный университет систем управления и радиоэлектроники»

Кафедра компьютерных систем в управлении и проектировании

ИНТЕЛЛЕКТУАЛЬНЫЕ ТЕХНОЛОГИИ И ПРЕДСТАВЛЕНИЕ ЗНАНИЙ

Методические указания к самостоятельной работе

Кочергин М.И, Ганджа Т.В.

Интеллектуальные технологии и представление знаний / Методические указания к самостоятельной работе. – Томск: Томский государственный университет систем управления и радиоэлектроники, 2018. – 26 с.

Методическое пособие для студентов вузов технических направлений посвящено изучению таких разделов современных интеллектуальных технологий как базы знаний, нечёткая логика, нейронные сети, автоматическая обработка текста, интеллектуальный анализ данных.

ОГЛАВЛЕНИЕ

1 Введение в интеллектуальные системы
2 Системы, основанные на знаниях
2.1 Лабораторная работа 1. Логическая модель представления
знаний6
2.2 Лабораторная работа 2. Продукционная модель представления
знаний6
2.3 Лабораторная работа 3. Разработка онтологии предметной
области
2.4 Домашнее задание. Проектирование базы знаний по логической
модели8
2.5 Домашнее задание. Проектирование базы знаний продукционного
типа9
2.6 Домашнее задание. Проектирование базы знаний фреймового
типа
2.7 Домашнее задание. Проектирование базы знаний сетевого типа 10
2.8. Контрольная работа №111
3 Введение в теорию нечетких множеств и нечёткую логику
3.1 Лабораторная работа 4. Построение нечёткого аппроксиматора. 12
3.2 Лабораторная работа 5. Формирование базы правил нечёткой
системы 13
3.3 Лабораторная работа 6. Исследование алгоритма нечёткой
классификации
3.4 Домашнее задание. Нечёткие множества. Операции над
нечёткими множествами
3.5 Домашнее задание. Нечёткие соответствия
3.6 Домашнее задание. Нечёткие выводы
3.7 Контрольная работа №2
4 Машинное обучение и глубинное обучение. Нейронные сети
4.1 Лабораторная работа 7. Построение нейросетевого
аппроксиматора16
4.2 Лабораторная работа 8. Применение нейросетей для
распознавания образов16
4.3 Лабораторная работа 9. Исследование сети Кохонена и алгоритма
обучения без учителя17
4.4 Домашнее задание. Обучение персептрона
5 Введение в компьютерную логику и компьютерную лингвистику 19
5.1 Лабораторная работа 10. Создание модели классификации
текстов
5.2 Лабораторная работа 11. Неконтролируемая кластеризация
локументов

5.3 Лабораторная работа 12. Информационный поиск	20
5.4 Домашнее задание. Анализ фрагмента текста на	различных
уровнях	21
6 Интеллектуальный анализ данных	
6.1 Лабораторная работа 13. Анализ покупательской корзи	
ассоциативных правил в данных)	22
6.2 Лабораторная работа 14. Анализ эколого-экономически	
регионе	23
6.3 Лабораторная работа 15. Применение генетического	
для решения задачи оптимизации	23
6.4 Домашнее задание. Построение деревьев решений	
6.5 Индивидуальное задание	
Список использованной литературы	
1 71	

1 Введение в интеллектуальные системы

Трудоёмкость проработки лекционного — 1 час. Форма контроля — опрос на занятии.

Темы для подготовки:

- Краткая история искусственного интеллекта.
- Основные направления в области исследования искусственного интеллекта

2 Системы, основанные на знаниях

Трудоёмкость проработки лекционного – 5 часов. Форма контроля – опрос на занятии.

Темы для подготовки:

- Классификация знаний.
- Понятие поля знаний. Предметный язык.
- Формализация знаний о предметной области.
- Данные и знания. Структурирование знаний.
- Типы знаний: декларативные и процедурные, экстенсиональные и интенсиональные.
 - Стратегии получения знаний.
 - Логические модели представления знаний.
- Логика высказываний. Вывод в логических моделях нулевого порядка.
- Логика предикатов первого порядка. Выводы в логических моделях первого порядка.
 - Модели семантических сетей. Выводы в семантических сетях.
- Представление знаний в фреймовой модели. Вывод в фреймовой модели.
- Продукционные модели представления знаний. Вывод в продукционной модели.
- Введение в экспертные системы. Определение, структура. Классификация систем, основанных на знаниях.
- Технологии проектирования и разработки систем, основанных на знаниях. Инструментальные средства разработки.
- Онтологический подход и его использование. Инструментальные средства построения интеллектуальных систем и оболочки.

2.1 Лабораторная работа 1. Логическая модель представления знаний

Трудоёмкость подготовки к лабораторной работе – 2 часа.

Трудоёмкость оформления отчёта о лабораторной работе – 2 часа.

Формы контроля выполнения: входной контроль, отчёт о лабораторной работе, защита отчёта.

1. Цель работы

Изучение логической модели представления знаний, формирование навыков формализации знаний и создания баз знаний для решения прикладных задач.

2. Входной контроль

- Понятие предиката, высказывания.
- Формальные системы.
- Операторы алгебры предикатов.
- Процедура логического вывода

3. Контрольные вопросы

- Опишите особенности логической модели представления знаний.
- Основные типы моделей представления знаний.
- Понятие предиката. Понятие высказывания.
- Особенности представления логической модели представления знаний в ПРОЛОГ (переменные, структура, алфавит, операторы и пр.)
- Составьте классифицирующую логическую МПЗ для заданной предметной области согласно варианту (5-10 фактов, 2-3 правила).
- Имеется набор правил (состоящий из предиката «смена(X,Y)» человек X работает в смену Y). Запишите правило-предикат, позволяющее установить знакомы ли X и Z (они считаются знакомыми если работают в одну смену).

2.2 Лабораторная работа 2. Продукционная модель представления знаний

Трудоёмкость подготовки к лабораторной работе – 2 часа.

Трудоёмкость оформления отчёта о лабораторной работе – 2 часа.

Формы контроля выполнения: входной контроль, отчёт о лабораторной работе, защита отчёта.

1. Цель работы

Изучение продукционной модели представления знаний, формирование навыков формализации знаний и создания баз знаний для решения прикладных задач.

2. Входной контроль

- База знаний.
- Антецедент и консеквент.
- Прямой и обратный вывод.
- Соответствия в дискретной математике.
- Логическое следование.

3. Контрольные вопросы

- Опишите особенности представления продукционной модели представления знаний в CLIPS/Exsys Corvid (имена переменных, структура, алфавит, операторы и пр.).
- Опишите особенности продукционной модели представления знаний.
- Формальное (математическое) описание продукционной модели представления знаний.
- Состав и структура типовой системы, основанной на продукционной базы знаний.
 - Механизмы вывода в продукционных системах (с примером).
- Составьте консультирующую продукционную МПЗ для заданной ПрО (4-6 правил; по вариантам).

2.3 Лабораторная работа 3. Разработка онтологии предметной области

Трудоёмкость подготовки к лабораторной работе – 2 часа.

Трудоёмкость оформления отчёта о лабораторной работе — 2 часа.

Формы контроля выполнения: входной контроль, отчёт о лабораторной работе, защита отчёта.

1. Цель работы

Изучение технологии создания онтологий, формирование навыков формализации знаний, построения концептуальных моделей и создания баз знаний для решения прикладных задач.

2. Входной контроль

- Граф. Множество.
- Сущности. Бинарные отношения.
- База знаний.
- Экспертная система.

3. Контрольные вопросы

- Понятие онтологии. Формальная модель онтологии.
- Состояние современной глобальной сети. Семантическая паутина (Semantic web). Рекомендации W3C, связанные с Semantic Web.
- Структура онтологии. Сфера применений онтологии. Общие отношения для различных онтологий:
 - Web ontology language (OWL).
 - Редакторы онтологий. Protégé
 - Общая схема взаимосвязи онтологий. Понятие метаонтологии.
 - Составление прототипа онтологии (по вариантам).

2.4 Домашнее задание. Проектирование базы знаний по логической модели

Трудоёмкость – 2 часа.

Формы контроля выполнения: домашнее задание, опрос на занятии.

1. Цель работы

Формирование навыков проектирования баз знаний.

2. Содержание работы

Составьте и запишите на языке логики предикатов базу знаний логического типа, содержащую:

- 1) не менее 15-20 фактов,
- 2) не менее 4-8 правил вывода.

Указаниг к работе:

- 1. Определите объекты предметной области, которые будут описываться базой знаний. Выделите их свойства и отношения между ними, которые будут описываться.
- 2. Составьте список предикатов, описывающих свойства объектов и отношения.
- 3. Составьте список фактов о предметной области в виде формул на языке логике предикатов.
- 4. Определите правила вывода для получения новых знаний об объектах предметной области (см. пример "предок(X,Y)" в лекции)

- 5. Запишите эти правила на языке логики предикатов, используя символы: \land , \lor , \neg , \rightarrow , \leftrightarrow (конъюнкция, дизъюнкция, отрицание, импликация, эквивалентность)
 - Домашнее задание. Проектирование базы знаний продукционного типа

Трудоёмкость – 2 часа.

Формы контроля выполнения: домашнее задание, опрос на занятии.

1. Цель работы

Формирование навыков проектирования баз знаний.

2. Содержание работы

- 1. Составьте проект базы знаний по продукционной модели. Укажите в отчёте следующую информацию:
 - а) предметная область (ПрО),
 - б) краткое описание ПрО,
 - в) задачи решаемые с помощью БЗ
- 2. Составьте и запишите 10-15 продукционных правил (вида ЕСЛИ-ТО), входящей проектируемую Б3, предназначенной для решения некоторой выбранной Вами задачи (выбор места отдыха, выбор товара).

Примечание. Для записи правил используйте следующий синтаксис: ECЛИ <антецедент>, TO <консеквент>,

гле

<антецедент> = (И $\{<$ условие> $\}$) | (ИЛИ $\{<$ условие> $\}$); (т.е. может иметь вид <условиеI> И <условие2> ИЛИ <условие3>)

<*ycловие*> = <*nepeменная*> <*onepamop*> <*значение*>; (т.е. например, "давление != 40" или "давление > 40")

<консеквент> = {<действие>};

Например:

ЕСЛИ намерение = "отдых" И дорога = "ухабистая", **ТО** рекомендуемый_транспорт = "джип".

ЕСЛИ meмnepamypa > 50, **ТО** $cocmoshue_вентиляторa_l = "включить".$

2.6 Домашнее задание. Проектирование базы знаний фреймового типа

Трудоёмкость – 2 часа.

Формы контроля выполнения: домашнее задание, опрос на занятии.

1. Цель работы

Формирование навыков проектирования баз знаний.

2. Содержание работы

- 1. Составьте проект базы знаний по фреймовой модели. Укажите в отчёте следующую информацию:
 - а) предметная область (ПрО),
 - б) краткое описание ПрО,
 - в) задачи решаемые с помощью БЗ
- 2. Схематично (в виде рисунка) изобразите содержимое базы знаний по фреймовой модели. База должна состоять из нескольких протофреймов (незаполненных оболочек) с общим количеством слотов не менее 10 и нескольких экзофреймов (заполненных "экземпляров") с общим количеством слотов не менее 20.
 - 2.7 Домашнее задание. Проектирование базы знаний сетевого типа

Трудоёмкость – 2 часа.

Формы контроля выполнения: домашнее задание, опрос на занятии.

1. Цель работы

Формирование навыков проектирования баз знаний.

2. Содержание работы

- 1. Составьте проект базы знаний в виде семантической сети. Укажите в отчёте следующую информацию:
 - а) предметная область (ПрО),
 - б) краткое описание ПрО,
 - в) задачи решаемые с помощью БЗ
- 2. Схематично (в виде графа) изобразите содержимое базы знаний по модели семантической сети (база может состоять из одного или нескольких графов с общим количеством вершин (сущностей, понятий) не менее 20).

2.8. Контрольная работа №1

Трудоёмкость подготовки к контрольной работе – 4 часа.

Теоретические вопросы:

- Данные и знания.
- Логическая модель представления знаний.
- Продукционная модель представления знаний.
- Фреймовая модель представления знаний.
- Сетевая модель представления знаний.
- База знаний. Экспертная система.

Практические задания:

- Формализуйте фрагмент текста.
- Составьте проект базы знаний логического типа.
- Составьте проект базы знаний продукционного типа.
- Составьте проект базы знаний фреймового типа.
- Составьте проект базы знаний сетевого типа.

3 Введение в теорию нечетких множеств и нечёткую логику

Трудоёмкость проработки лекционного — 1 час. Форма контроля — опрос на занятии.

Темы для подготовки:

- Нечёткая логика.
- Нечёткие знания.
- Методы работы с нечёткими знаниями.
- Понятия лингвистической переменной.
- Нечеткий вывод для систем искусственного интеллекта.

3.1 Лабораторная работа 4. Построение нечёткого аппроксиматора

Трудоёмкость подготовки к лабораторной работе – 2 часа.

Трудоёмкость оформления отчёта о лабораторной работе – 2 часа.

Формы контроля выполнения: входной контроль, отчёт о лабораторной работе, защита отчёта.

1. Цель работы

Изучение основных функций пакета Fuzzy Logic Toolbox программной среды Matlab, приобретение навыков построения нечеткой аппроксимирующей системы

2. Входной контроль

- Чёткое множество. Нечёткое множество.
- Чёткое соответствие. Нечёткое соответствие.
- Чёткое высказывание. Нечёткое высказывание.
- Функция принадлежности. Лингвистическая переменная.
- Постановка задачи аппроксимации.

3. Контрольные вопросы

- Понятие нечёткого множества и лингвистической переменной.
 Функция принадлежности нечёткого множества.
 - Операции над нечёткими множествами.
 - Нечеткие высказывания. Операции над ними.
 - Чёткие и нечёткие соответствия и отношения.
 - Нечёткая логика в Matlab (Fuzzy toolbox).
 - Расчёт значений функции принадлежности.
 - Аппроксимация. Нечёткая аппроксимация

3.2 Лабораторная работа 5. Формирование базы правил нечёткой системы

Трудоёмкость подготовки к лабораторной работе – 2 часа.

Трудоёмкость оформления отчёта о лабораторной работе – 2 часа.

Формы контроля выполнения: входной контроль, отчёт о лабораторной работе, защита отчёта.

1. Цель работы

Изучение методики и формирование навыков создания нечётких информационных систем.

2. Входной контроль

- База знаний.
- Продукционные правила.
- Чёткое множество. Нечёткое множество.
- Чёткое соответствие. Нечёткое соответствие.
- Чёткое высказывание. Нечёткое высказывание.
- Функция принадлежности. Лингвистическая переменная

3. Контрольные вопросы

- Понятие нечёткого множества и лингвистической переменной.
 Функция принадлежности нечёткого множества.
 - Операции над нечёткими множествами.
 - Нечеткие высказывания. Операции ними.
- Чёткие соответствия и отношения. Нечёткие соответствия и отношения. Их способы задания.
 - Нечёткие логический вывод. Его этапы и особенности.
 - Нечёткая логика в Matlab (Fuzzy toolbox).
 - Расчёт значений функции принадлежности.

3.3 Лабораторная работа 6. Исследование алгоритма нечёткой классификации

Трудоёмкость подготовки к лабораторной работе – 2 часа.

Трудоёмкость оформления отчёта о лабораторной работе – 2 часа.

Формы контроля выполнения: входной контроль, отчёт о лабораторной работе, защита отчёта.

1. Цель работы

Исследование работы алгоритма нечёткой классификации, формирование навыков построения нечётких классификаторов.

2. Входной контроль

- Классификация.
- База знаний.
- Продукционные правила.
- Нечёткое множество.

3. Контрольные вопросы

- Постановка задачи классификации
- Нечёткая классификация
- Нечеткие отношения
- База знаний нечёткой системы

3.4 Домашнее задание. Нечёткие множества. Операции над нечёткими множествами

Трудоёмкость – 2 часа.

Формы контроля выполнения: домашнее задание, опрос на занятии.

1. Цель работы

Знакомство с понятием нечёткого множества.

2. Содержание работы

- 1. Задание нечёткого множества.
- 2. Выполнение операций над нечётким множеством.

3.5 Домашнее задание. Нечёткие соответствия

Трудоёмкость – 2 часа.

Формы контроля выполнения: домашнее задание, опрос на занятии.

1. Цель работы

Знакомство с понятием нечёткого соответствия.

2. Содержание работы

- 1. Задание нечётких множеств.
- 2. Задание нечёткого соответствия.

3.6 Домашнее задание. Нечёткие выводы

Трудоёмкость – 2 часа.

Формы контроля выполнения: домашнее задание, опрос на занятии.

1. Цель работы

Знакомство с нечётким логическим выводом.

2. Содержание работы

- 1. Выполнение операций над нечёткими высказываниями.
- 2. Расчёт системы нечёткого логического вывода.

3.7 Контрольная работа №2

Трудоёмкость подготовки к контрольной работе – 4 часа.

Теоретические вопросы:

- Чёткое множество. Нечёткое множество.
- Чёткое соответствие. Нечёткое соответствие.
- Чёткое высказывание. Нечёткое высказывание.
- Функция принадлежности. Лингвистическая переменная

Практические задания:

- Выполнение операций над нечётким множеством.
- Выполнение операций над нечёткими высказываниями.
- Расчёт системы нечёткого логического вывода.

4 Машинное обучение и глубинное обучение. Нейронные сети

Трудоёмкость проработки лекционного – 1 час. Форма контроля – опрос на занятии.

Темы для подготовки:

- Машинное обучение и глубинное обучение.
- Нейронные сети.
- Модели нейронных сетей. Алгоритмы обучения.
- Особенности обработки символьной и численной информации в нейронных сетях.
 - 4.1 Лабораторная работа 7. Построение нейросетевого аппроксиматора

Трудоёмкость подготовки к лабораторной работе – 2 часа.

Трудоёмкость оформления отчёта о лабораторной работе – 2 часа.

Формы контроля выполнения: входной контроль, отчёт о лабораторной работе, защита отчёта.

1. Цель работы

Изучение основ работы с Neural Networks Toolbox в среде Matlab, формирование навыков построения нейросетевых систем их использования для решения задач аппроксимации.

2. Входной контроль

- Аппроксимация.
- Процедура обучения нейронных сетей.
- Перцептрон.

3. Контрольные вопросы

- Постановка задачи аппроксимации
- Нейронная сеть. Типы нейронных сетей
- Обучение нейронных сетей
- Работа с нейронными сетями в Matlab
- 4.2 Лабораторная работа 8. Применение нейросетей для распознавания образов

Трудоёмкость подготовки к лабораторной работе – 2 часа. Трудоёмкость оформления отчёта о лабораторной работе – 2 часа. Формы контроля выполнения: входной контроль, отчёт о лабораторной работе, защита отчёта.

1. Цель работы

Формирование навыков работы в пакете Neural Networks Toolbox среды Matlab, навыков решения задач распознавания образов с применением нейросетей.

2. Входной контроль

- Классификация.
- Перцептрон.
- Обучение нейронной сети.

3. Контрольные вопросы

- Постановка задачи распознавания образов.
- Постановка задачи классификации.
- Лонятие персептрона.
- Нейронная сеть.
- Нейросетевой классификатор.

4.3 Лабораторная работа 9. Исследование сети Кохонена и алгоритма обучения без учителя

Трудоёмкость подготовки к лабораторной работе – 2 часа.

Трудоёмкость оформления отчёта о лабораторной работе – 2 часа.

Формы контроля выполнения: входной контроль, отчёт о лабораторной работе, защита отчёта.

1. Цель работы

Изучение архитектуры самоорганизующихся нейронных слоев Кохонена, а также приобретение навыков построения самоорганизующихся слоев для исследования топологической структуры данных, навыков решения задачи кластеризации данных с применением нейронных сетей.

2. Входной контроль

- Кластеризация.
- Обучение нейронной сети.
- Типы нейронных сетей.

3. Контрольные вопросы

- В чем заключается задача кластеризации?

- Какую структуру имеет нейронная сеть Кохонена?
- Каким алгоритмом обучается нейронная сеть Кохонена?
- Дайте определение самоорганизующейся карты Кохонена.

4.4 Домашнее задание. Обучение персептрона

Трудоёмкость – 2 часа.

Формы контроля выполнения: домашнее задание, опрос на занятии.

1. Цель работы

Изучение процедуры обучения нейронной сети.

2. Содержание работы

Расчёт модели обучения персептрона при решении задачи бинарной классификации.

5 Введение в компьютерную логику и компьютерную лингвистику

Трудоёмкость проработки лекционного – 1 час. Форма контроля – опрос на занятии.

Темы для подготовки:

- Автоматическое понимание текстов на естественном языке.
- Построение естественноязыковых интерфейсов.
- Извлечение информации из текста.
- Информационный поиск.

5.1 Лабораторная работа 10. Создание модели классификации текстов

Трудоёмкость подготовки к лабораторной работе – 2 часа.

Трудоёмкость оформления отчёта о лабораторной работе – 2 часа.

Формы контроля выполнения: входной контроль, отчёт о лабораторной работе, защита отчёта.

1. Цель работы

Изучение возможностей Text Analytics Toolbox в Matlab, формирование навыков построения классификаторов слабоструктурированных данных.

2. Входной контроль

- Классификация.
- Уровни понимания текста.
- Типы данных.
- Данные и знания.

3. Контрольные вопросы

- Постановка задачи классификации.
- Слабоструктурированные данные.
- Задача классификации документов.
- Text Analytics Toolbox.

5.2 Лабораторная работа 11. Неконтролируемая кластеризация документов

Трудоёмкость подготовки к лабораторной работе -2 часа. Трудоёмкость оформления отчёта о лабораторной работе -2 часа.

Формы контроля выполнения: входной контроль, отчёт о лабораторной работе, защита отчёта.

1. Цель работы

Изучение процедуры кластеризации слабоструктурированных данных, формирование навыков решения задачи кластеризации.

2. Входной контроль

- Кластеризация.
- Уровни понимания текста.
- Типы данных.
- Данные и знания.

3. Контрольные вопросы

- Постановка задачи кластеризации.
- Слабоструктурированные данные.
- Задача кластеризации документов.
- Text Analytics Toolbox.
- Кластеризация в Matlab

5.3 Лабораторная работа 12. Информационный поиск

Трудоёмкость подготовки к лабораторной работе – 2 часа.

Трудоёмкость оформления отчёта о лабораторной работе – 2 часа.

Формы контроля выполнения: входной контроль, отчёт о лабораторной работе, защита отчёта.

1. Цель работы

Изучение методов информационного поиска, формирование навыков разработки алгоритмов для информационного поиска.

2. Входной контроль

- Бинарный поиск.
- Уровни понимания текста.
- Типы данных.
- Данные и знания.

3. Контрольные вопросы

- Информационный поиск. Постановка задачи.
- Информационный поиск средствами Matlab.
- Ошибки первого рода.

- Ошибки второго рода.
- Меры оценка результатов поиска.
- 5.4 Домашнее задание. Анализ фрагмента текста на различных уровнях

Трудоёмкость – 2 часа.

Формы контроля выполнения: домашнее задание, опрос на занятии.

1. Цель работы

Изучение процедуры автоматического анализа текста на различных уровнях.

2. Содержание работы

- 1) Морфологический анализ.
- 2) Синтаксический анализ.
- 3) Семантический анализ. Представление выражение в виде набора предикатов.
 - 4) Прагматический анализ.

6 Интеллектуальный анализ данных

Трудоёмкость проработки лекционного -2 часа. Форма контроля - опрос на занятии.

Темы для подготовки:

- Обработка неструктурированных данных.
- Обработка больших массивов данных.
- Интеллектуальный анализ данных.
- Распознавание образов.
- Ассоциативные правила.
- Кластеризация.
- Классификация.
- Деревья решений.

6.1 Лабораторная работа 13. Анализ покупательской корзины (поиск ассоциативных правил в данных)

Трудоёмкость подготовки к лабораторной работе – 2 часа.

Трудоёмкость оформления отчёта о лабораторной работе – 2 часа.

Формы контроля выполнения: входной контроль, отчёт о лабораторной работе, защита отчёта.

1. Цель работы

Знакомство со средой Deductor Academic, изучение алгоритмов поиска ассоциативных правил, формирование навыков использования ассоциативных правил для анализа рыночной корзины.

2. Входной контроль

- Интеллектуальный анализ данных.
- Предобработка данных.
- Ассоциативные правила.

3. Контрольные вопросы

- Что такое ассоциация?
- В чем заключается основная задача анализа рыночной корзины?
- Предметный набор. Транзакция.
- Поддержка ассоциативного правила
- Достоверность ассоциативного правила. Лифт. Левередж
- Произвести интерпретацию ассоциативного правила.

6.2 Лабораторная работа 14. Анализ эколого-экономических рисков в регионе

Трудоёмкость подготовки к лабораторной работе – 2 часа.

Трудоёмкость оформления отчёта о лабораторной работе – 2 часа.

Формы контроля выполнения: входной контроль, отчёт о лабораторной работе, защита отчёта.

1. Цель работы

Формирование навыков использования методов интеллектуального анализа данных для решения практических задач.

2. Входной контроль

- Интеллектуальный анализ данных.
- Предобработка данных.
- Ассоциативные правила.
- В чем заключается основная задача анализа рыночной корзины?

3. Контрольные вопросы

- Что такое ассоциация?
- Поддержка ассоциативного правила
- Достоверность ассоциативного правила. Лифт. Левередж
- Задачи, решаемые методами интеллектуального анализа данных
- Методы интеллектуального анализа данных

6.3 Лабораторная работа 15. Применение генетического алгоритма для решения задачи оптимизации

Трудоёмкость подготовки к лабораторной работе – 2 часа.

Трудоёмкость оформления отчёта о лабораторной работе – 2 часа.

Формы контроля выполнения: входной контроль, отчёт о лабораторной работе, защита отчёта.

1. Цель работы

Изучение основ работы с генетическими алгоритмами в Matlab, исследование экстремумов функций с помощью генетических алгоритмов.

2. Входной контроль

- Постановка задачи оптимизации.
- Поиск минимума функции двух переменных.

- Метод покоординатного спуска.
- Понятие генетического алгоритма.

3. Контрольные вопросы

- Каковы механизм передачи наследственной информации?
- Дайте определение генетического алгоритма (ГА).
- Перечислите основные отличительные особенности ГА.
- Перечислите генетические операторы.
- Какие критерии останова используются для ГА?
- Опишите схему классического ГА.
- В чем заключаются особенности совместного использования генетических операторов?
 - Сформулируйте фундаментальную теорему ГА.

6.4 Домашнее задание. Построение деревьев решений

Трудоёмкость – 2 часа.

Формы контроля выполнения: домашнее задание, опрос на занятии.

1. Цель работы

Формирование навыков решения задачи классификации образов с применением деревьев решений.

2. Содержание работы

Применение деревьев решений в задаче классификации.

6.5 Индивидуальное задание

Трудоёмкость — 10-25 часов (в зависимости от глубины проработки). Формы контроля выполнения индивидуального задания: отчёт об индивидуальном задании, защита отчёта.

Направления работ для индивидуального задания:

- Построение базы знаний выбранной предметной области по одной из моделей.
- Разработка прототипа экспертной системы для решения выбранной задачи.
 - Разработка онтологии предметной области.
 - Разработка нечёткой системы управления.
 - Разработка нейросетевой системы управления.

- Разработка системы автоматической обработки текста.
- Применение генетического алгоритма для решения выбранной задачи.
 - Решение задачи распознавания образов выбранным методом.

Примерные темы работ индивидуального задания:

- Разработка нейросетевой системы идентификации говорящего.
- Разработка нечёткой системы управления вентилятором.
- Разработка онтологии предметной области «Механическое движение».
 - Разработка системы анализа тональности текста.
 - Разработка чат-бота для осуществления технической поддержки.

СПИСОК ИСПОЛЬЗОВАННОЙ ЛИТЕРАТУРЫ

- 1. Banchs R. E. Text Mining with MATLAB. Springer Science+Business Media New York, 2013. 356 p.
- 2. Аведьян Э.Д.,. Галушкин А.И, Червяков Н.И., Сахнюк П.А.. Ней-росетевые технологии обработки информации: учебное пособие. Ставрополь: Изд-во «Агрус», 2013. 292 с.
- 3. Гаврилова Т.А., Хорошевский В.Ф. Базы знаний интеллектуальных систем. СПб.: «Питер», 2001. 382 с.
- 4. Гладков Л.А., Курейчик В.В., Курейчик В.М. Генетические алгоритмы. 2-е изд., М.: ФИЗМАТЛИТ, 2006. 320 с.
- 5. Горшков С. Введение в онтологическое моделирование [Электронный ресурс]. ООО «ТриниДата», 2014-2016. 165 с. URL: https://trinidata.ru/files/SemanticIntro.pdf (дата обращения: 13.06.2018).
- 6. Муромцев Д.И. Онтологический инжиниринг знаний в системе Protégé. СПб: СПб ГУ ИТМО, 2007. 62 с.
- 7. Николаев С.В., Баженов Р.И. Распознавание образов с помощью нейронных сетей в среде MatlabR2009b // Nauka-rastudent.ru. 2015. No. 13 (13-2015) / [Электронный ресурс] Режим доступа. URL: http://nauka-rastudent.ru/13/2355/ (дата обращения 13.06.2018)
- 8. Потапов А.С. Технологии искусственного интеллекта СПб: СПбГУ ИТМО, 2010. 218 с.
- 9. Сахнюк П.А. Интеллектуальные системы и технологии. Ставрополь: Агрус, 2012. 228 с.
- 10. Седова Е. Н., Раменская А. В., Безбородникова Р.М. Ассоциативные правила в социально-экономических и экологических исследованиях. Оренбург: ОГУ, 2015.-170 с.
- 11. Хабаров С.П. Интеллектуальные информационные системы PROLOG язык разработки интеллектуальных и экспертных систем. СПб.: СПбГЛТУ, 2013.-140 с.