Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

ТОМСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ СИСТЕМ УПРАВЛЕНИЯ И РАДИОЭЛЕКТРОНИКИ (ТУСУР)

ИССЛЕДОВАНИЕ ВАХ И ВФХ ИНЕРЦИОННОЙ И БЕЗЫНЕРЦИОННОЙ МОДЕЛИ ДИОДА

Методические указания по выполнению лабораторной работы

Томск 2018

1 Введение

В основе компьютерного проектирования лежит замещение элементов их моделями, позволяющими рассчитать отклик элемента при известном воздействии на него. Самый простой для моделирования случай – это когда объект является линейным. Для построения линейной модели достаточно каким-либо образом описать импульсную характеристику или передаточную функцию объекта. Моделирование нелинейных объектов значительно сложнее, чем линейных, так как для нелинейных неизвестно соотношение воздействия на объект и отклика на него. Модели нелинейных объектов создаются для конкретных элементов с учетом физики их работы. Универсальные модели, т.е. в виде черного ящика, без учета физики работы существуют, но они «работают» только на ограниченном множестве входных нелинейных сигналов. Различают моделей два типа элементов: безынерционные «энергоемкие» (инерционные). Самым И простым нелинейным полупроводниковый Его элементом является ДИОД. безынерционная модель, построенная с учетом физики его работы, выглядит следующим образом:

$$i(u) = IS\left[\exp\left(\frac{q}{NkT}u\right) - 1\right],$$

где *IS* – ток насыщения [А];

N – коэффициент неидеальности;

q – заряд электрона [Кл];

k – постоянная Больцмана [Дж/К];

Т – абсолютная температура [К].

Таким образом, если не учитывать емкость диода, то его простейшая модель полностью определяется всего двумя параметрами: *IS* и *N*. Эти параметры диода входят в качестве главных в систему SPICE-параметров. Чтобы называть такую характеристику i(u), существует специальный термин вольт-

амперная характеристика (ВАХ). Реально ВАХ определяется более сложным образом, чтобы учитывать процессы пробоя при отрицательном смещении диода.

К нелинейным чисто реактивным элементам относятся, прежде всего, емкости *р-п*-переходов и структур металл-диэлектрик-полупроводник (МДП). В настоящее время реально используются только модели нелинейных емкостей, у которых емкость зависит только от мгновенного Это напряжения на них. позволяет свести моделирование К дифференциальному уравнению первого порядка, которое относительно легко решается:

$$i(t) = C(u)\frac{du(t)}{dt}$$

Зависимость C(u) называется вольт-фарадной характеристикой (ВФХ).

Модель нелинейной емкости *p-n*-перехода в основном определяется так называемой барьерной емкостью. Величина барьерной емкости тем больше, чем больше компенсируется контактная разность потенциалов внешним напряжением:

$$C(u) = CJ0 \left(1 - \frac{u}{VJ}\right)^{-M},$$

где СЈ0 – емкость перехода при нулевом смещении [Ф];

VJ – контактная разность потенциалов [B];

M – коэффициент нелинейности ВФХ (зависит от распределения примесей в переходе). Обычно M = 0.33...0.5.

Когда p-n-переход находится в прямом смещении и через него начинает течь прямой ток, в области пространственного заряда накапливается некоторое количество носителей заряда (неосновных). Они создают дополнительный заряд (а, следовательно, емкость) перехода. Эта емкость называется диффузионной. Количество дополнительного заряда q определяется величиной прямого тока через переход і и подвижностью носителей заряда:

$$q(u) = TT i(u),$$

где *TT* (transition time) – время переноса заряда.

Подставим в эту формулу ВАХ и получим:

$$q_{\mu}(u) = TT IS \left[\exp\left(\frac{q}{NkT}u\right) - 1 \right]$$

Диффузионная емкость определяется как производная по напряжению от этого дополнительного заряда:

$$C_{\mu}(u) = TT \ IS \frac{q}{NkT} \exp\left(\frac{q}{NkT}u\right)$$

Полная емкость *p-n*-перехода (барьерная и диффузионная):

$$C(u) = CJ0 \left(1 - \frac{u}{VJ}\right)^{-M} + TT \ IS \ \frac{q}{NkT} \exp\left(\frac{q}{NkT}u\right),$$

Полная модель нелинейной емкости *p*-*n*-перехода описывается набором следующих параметров:

- CJ0 емкость при нулевом смещении, [Φ];
- *VJ* контактная разность потенциалов, [B];
- М коэффициент нелинейности ВФХ;
- *N* коэффициент неидеальности;
- *TT* время переноса заряда (время жизни неосновных носителей).

Цель лабораторной работы: получить навыки построения ВАХ и ВФХ диода. Изучить влияние регулируемых параметров на характеристики диода. Сравнить характеристики модели диода с характеристиками его эквивалентной схемы.

2 Порядок выполнения работы

2.1 Безынерционная модель диода

Запустите AWR DE. Создайте новый проект и сохраните его. Создайте рабочее поле. На панели Elements нажмите на вкладку Nonlinear => Diode. В появившемся списке выберите безынерционную модель диода (рисунок 2.1).

🔫 Elements	Į ×	/	яĘ	Dic	bd	×	ĺ		
	nterconnects	1	- 83	瘀	30	30	30	30	ž
	inear Devices	- 0	- 88	88	8	8	8	æ	3
	umped Element	- 1	- 55	88	80	80	80	ě	3
	/leasDevice	1	18	- 88	8	8	8	20	3
🕀 🗠 🕰 🖉	Aicrostrip		- 88	- 55	- X0 - C0	ж 6	ж 6	99 68	3
	Ionlinear		- 10	- 10	-	2	20	22	1
	🤇 вјт		-	-	2	2		38	j,
	- Capacitor	- 8	18	18				33	3
	* Diode	- 83	12	12				33	ŝ
	f FET	- 83	16	12	¥.	ŝ,	£	33	3
	- Other	- 8	<u>30</u>	\$1.	8	8	8	22	3
	Volterra Devices	1	- 30	- 20	8	8	8	22	- 2
	Obsolete		<u>.</u>	20		1	10	22	- 12
Models	Description	- 2	30	30	5	5	5	<u>ي</u>	8
		3	30	30	8	8	8	2 •	8
	Chalmers Heterostructure Barrier Vara		- 30. - 155	30. 15	्स इ.	35 82	8 8	(2) (2) (2)	3
	Simple diode model		18	15	š.	8	8	33	ŝ
	Physical diode model	1	10	${\mathcal S}_{i}^{(i)}$	8	3	38	33	3
	Philips IUNCAP Model	- 2	18	1	8	8	8	33	3
	PIN Diode	100	1	Č.	8	8	1	38	3
	Robert Caverly PIN Diode Model		- 10		k .)	x 3		े. अ	3
	Diode Resistive Junction: No Paracitics			- 22	8	ŝ	÷	- 33	3
DNIV N	Noisy Diode Resistive Junction, No Pallasides	- 8	- 82	38	8	8	8	30	3
	SDICE Non-Connection Directory Directory	- 8	- 88	:8	£	\hat{s}	£	1	3
SDIODE	SPICE Non-Geometric Junction Diode	- 8	- 98	10		$\hat{\mathbf{x}}$	$\hat{\mathbf{x}}$	33	3
SDIODEG	SPICE Geometric Junction Diode Mode		18	18	2	2	2	38	3
	Zhang and Raisanen Step-Recovery Di		16	12	10	10	10	33	8
- STEPRD	Step-Recovery Diode Model	- 83	122	100	1			33	S.

Рисунок 2.1 – Панель элементов

Далее на панели элементов нажимаем на вкладку MeasDevice => IV. Источник постоянного напряжения обозначен как IVCURVE (рисунок 2.2).

Рисунок 2.2 – Панель элементов

Соедините выход источника Swp с диодом. Выход диода заземлите. Выставите параметры источника в соответствии с рисунком 2.3.

			· · ¥ · · · ¥ · · ·	
			· Gran dt and · ·	
			Swp Step	
			· · · · · <u>· · · ·</u> · · ·	
•		•		
•	·	·	· [. [*] . [*] . [*] .	
·	·	•	IVĊURVE	
·	·	·	ID=IV1	
•	•	•	VSWEEP_start=0 V	Начальное значение напряжения
•	•	·	VSWEEP_stop=2 V	Конечное значение напряжения
•	•	•	VSWEEP sten=0.001.V	
•				шаг изменения напржения
	•	·	VSTEP start=0 V	шаг изменения напржения
			VSTEP_start=0 V VSTEP_ston=0 V	шаг изменения напржения
			VSTEP_start=0 V VSTEP_stop=0 V VSTEP_stop=0 V	шаг изменения напржения
			VSTEP_start=0 V VSTEP_stop=0 V VSTEP_step=0 V	шаг изменения напржения
			VSTEP_start=0 V VSTEP_stop=0 V VSTEP_step=0 V	шаг изменения напржения
	· · ·		VSTEP_start=0 V VSTEP_stop=0 V VSTEP_step=0 V	шаг изменения напржения

Рисунок 2.3 – Настройки модели источника постоянного напряжения

Далее необходимо построить ВАХ в **прямом** смещении. Создайте новый график, нажав Add New Graph на панели инструментов. Добавьте характеристику, нажав на Add New Measurement. Настройка характеристики представлена на рисунке 2.4.

Measurement	Туре	Measurement	Search	Data Source Name	
E Nonlinea	r ^	GDC IDC	^	Diode	~
Char	ge ent	IDC D	- 6 .	IVCURVE.IV1.SWP	
Inter	mod	IVCurve2		Use for x-axis	~
- Op P	oint	IVDelta		IVCURVE.IV1.STEP	
Oscil	lator meter	Icomp		Plot all traces	~
Powe	er 🗸	Ienv	~		
I-V curve trace I at swept tern	ninal				
Simulator	APLAC DC		~		
Configuration	Default		\sim		
Complex Modif	fer				
() Real	O Imag. O Mag.	Angle Angl	eU		
0.5	Courses				

Рисунок 2.4 – Окно настройки ВАХ

Запустите симуляцию. Вольтамперная характеристика будет выглядеть следующим образом:

Рисунок 2.5 – ВАХ безынерционного диода в прямом смещении

Исследуйте влияние параметров модели на ВАХ диода. Для этого вызовите свойства диода и поставьте галочки в графе Tune напротив таких параметров как ток насыщения и коэффициент неидеальности (рисунок 2.6).

3 <u>6</u> (5		8	92	12		8	1	3		2 3	2 3	Свойства	: Elem	ent Opt	ions: DI	ODE1	- Simp	ole diode	model		>
38 8	2	30	5	25	35	38	85	53	\$		2 B	8 8	Paramet	ers o	tatistics	Dieplay		mbol	avout N	Indel Ontin	ne Vecto	
28 - S	5	1 5	š.,	33	12	23	33	33	1		31 8	2 4	i aramet		dusucs	Dispia	y 5y	mboi	Layout P	iouer opuu	ns vecu	
8 4 - 8		彩		3 23		8	8	12	3		3 3 (3	5 23	Name	Value	Unit	Tune	Opt	Limit	Lower	Upper	Step	Description
88 X	•	88	80			- 88	3.	•2	- 83		•0 b	8	ID ID	D1								Element ID
К	ЭЭС	dbd	ли	IN	ент	. H	еи	iea	л	ьн	oc	ги	B Nu	1.2				П	0	0	0	Ideality factor
					1.1.1		518.4	100				000	Вт	21.8	5 DegC				-273.15	-273.15	-273.15	Temperature
To	ĸ	на	СЬ	min	ен	19	81	53	3		5 B	8.8	BIO	1e-6	mA		П	Г	0	0	0	Saturation current
21 N		16		1	1		33	52	R		3 8	8 0										
8 s	3	20			85	8	83	2	3		8 8	1.2										
(注:)	9	- 88	80	æ	26	8	39	18	8		8) (d	5 63										
80	4	20	\mathbf{x}	33	8	\otimes	8	10	- 2		8 8	6 B										
SX - 3	2	12		33	52	Sã	22	85	1		33 - S	8 6										
36 (3	30.	8	22	32	36	8	12	3		2 3	8 8										
21 3	8		æ	33	13		33	83				s										
8 s	2	33	3	33	85	8	83	12	3		9 9	5 32										
83 3	i.	88	8	æ	35	83	39	10	8		8. B	5 83	Saturat	ion cur	rent							
88 - S	÷.	38	80	1	\mathbb{R}	88	34	10	- 8		90 B	8.6			nent	Death	S.					Show Secondary
51 3	2			33	53		22	83	i.		33 - S	8 6		Je elei	nent	Partin	umber	۰. ا				anew providery
36 (3	3 0	8	32	32	32	\otimes	18	3		25 3	8 8	110			-	-	-	0 <u>-</u> 0000000	11		-
38 8	2	32	s	2	33	32	8	53	3		5 B						OK	_	Отмена	Сп	равка	Element Help Vendor Help

Рисунок 2.6 – Окно свойств диода

Затем воспользуйтесь инструментом Tune для наблюдения влияния изменения параметров на ВАХ безынерционного диода.

Постройте ВАХ безынерционного диода в обратном смещении. Для этого параметры источника настройте следующим образом:

								·							
¥ ¥							·								
🖌	•	•		•	•	•	•	•	•	•	•			•	•
Swp Step	•	•	•	•	•	•	•	•	·	•	•	•	•	•	•
	•	•	•	•	•	•	·	•	·	•	•	•	•	•	·
	•	•	•	•	•	•	·	•	·	•	•	•	•	•	·
· · · · · · · · · · · · · · · · · · ·	•	•	•	•	•	•	·	•	·	•	•	•	•	•	·
· · · · · · · · · · · · · · · · · · ·	•	•		•	•	•	·	·	·	•	•	·	•		·
IVĊURVE	•	•	•	•	•	•	·	•	·	•	•	•	•	•	·
ID=IV1	•	•		•	•	•	•	•	•	•	•	•	•	•	•
VSWEEP_start=-10 V	•	Ha	ча	ЛЬ	но	ė a	вна	ч	ни	ėн	ian	юя	же	ни	я
VSWEEP_stop=0 V	•	Ко	не	ЧH	oe	ЗН	iач	ėн	ие	на	пр	яж	ėн	ия	•
VSWEEP_step=0.1 V	•	Шa	ar I	ИЗІ	мe	нe	низ	я́н	åп	ря	жеі	ния	я.́	•	•
VSTEP_start=0 V	•	•	•	•	•	•	•	•	•		•	•	•	•	•
VSTEP stop=0 V	•	•		•	•	•	·	•	·	•	•	•	•	•	·
VSTEP step=0 V	•	•	•	•	•	•	•	•	·	•	•	•	•	•	•
· · · · · · ·'· · · ·	•	•	•	•	•	•	·	·	·	·	·	·	·	•	•

Рисунок 2.7 – Модель источника постоянного напряжения

Запустите симуляцию. ВАХ безынерционного диода будет выглядеть:

Рисунок 2.8 – ВАХ безынерционного диода в обратном смещении

Исследуйте влияние параметров модели на ВАХ диода. Для этого вызовите свойства диода и поставьте галочки в графе Tune напротив таких параметров как ток насыщения и коэффициент неидеальности. Затем воспользуйтесь инструментом Tune для наблюдения влияния изменения параметров на ВАХ безынерционного диода.

2.2 Инерционная модель диода

Добавьте еще одно рабочее поле, нажав на панели инструментов Add New Schematic. На панели Elements нажмите на вкладку Nonlinear => Diode. В появившемся списке выберите инерционную модель диода (рисунок 2.1). На панели главного меню нажмите на вкладку Options => Project Options (рисунок 2.9).

Рисунок 2.9 – Панель главного окна

В появившемся окне зайдите на вкладку Global Units и выставьте настройки, согласно рисунку 2.10. Нажмите кнопку ОК.

Project Option	is						Х
Frequencies Frequency MHz Angle Deg Temperatur DegC Time ns	Schematic	s/Diagrams Resistance Ohm Conductance S Inductance nH Capacitance pF Current	Global Units	Interpolation Power Linear MW Log. dBm ength ength	i/Passivity Use B	Yield Options	
Voltage V	•	Current mA	•	Length type	mm	•	
			(DK	Отмена	Справка	

Рисунок 2.10 – Окно настроек проекта

Вызовите свойства диода. Нажмите на кнопку Show Secondary. Эта кнопка раскроет скрытые параметры. Измените параметр СJ0 на отличный от нуля (рисунок 2.11). Во вкладке Statistics в графе Use напротив CJ0 поставьте галочку (рисунок 2.12).

2		8¥	8	1	20		8	1	8	12	•	8 3	94	8	×.	94 (Свойства: Ele	ement Opti	ions: SDIC	DE - SPI	CE No	n-Geo	metric Jur	nction Die	ode Mod	lel X
9 3		93 93		10 10	18 18	ж Ж	ж Ц	(8) 192	8	10 10		8 8 8 3		94				Parameters	Statistics	Display	Symbol	Layou	at Mo	del Options	Vector		
94 194		54 34	ाव (%)	22 22	100 - 200 - 200	93 92	98 22	34 33	34 64	12	1	R 1 K 1		18 12	没: 注	88 3 36 7		Name	Value	Unit	Tune	Opt	Limit	Lower	Upper	Step	Description ^
3	. 28	23	3	8	13	33	-	3	3	3	1	15 B	ŝ	-	3	21 I		MULT	1				<u> </u>	0	0	0	Scaling factor
2	(8)	88	8	12	20		83	×.	1	2	3	8 3	9	8	×.	98 S	• •	AFAC	1			닏	<u>–</u>	0	0	0	Junction area
ð	1.18	- 23	31		- 88	*	85	8	34		1	83	8		8	94 X	•		0.001	Ohm		H	H-	0	0	0	Series resistan
ж 4	1 (4) ()2)	- 33	24	10	- 78 - 16	945 633	100	29. 29.	28	- 12		8 3 6 3		22	98 134 - 1	en e Si i		E N	1	0.10		Ξ	Ē	0	0	0	Bottom ideality
		14	84	1	30	S.	<u>.</u>	3	56	ŝ	1.1	16 1			ä.,	8.3	i	BΠ	0	ns				0	0	0	Storage time
ļ	ΞM	KO	сть	пe	pe	xo,	цą	пр	N H	ΙУЛ	le	301	M	см	ец	ен	ии .	E C30	1	pF				0	0	0	Zero-voltage t
	i ai	- 38			333		æ			- 2		8.3		æ	ă.	98 0		CJP	0	pF				0	0	0	Zero-voltage r
	1.18	- 88	- 24		- 335			a.	34			8 8		æ.	a i	88 - 1 88 - 1		E VJ	0.8	V				0	0	0	Bottom built-in
		- 88	84		32	96	22		84	10		2 3				84 - S		PHP		V							Periphery built
34	- (6	8	8	13	18	(ii)	(s)	19	8	.8	3	8 3	21	12	÷.	sk e		ВМ <	0.5		Г			n	n	n	Bottom junctio *
2	1	36	61	18	¥8.	1	22	2	84	10	1.3	16 - A	8	<u>.</u>	3	36 9		Diode ID									
8		38	8	12	30. Alto	20 	20 	3	8	18	5.5	£ 3	8	20	3	38 - 6 		Enable e	lement	Part Num	ber						Hide Secondary
90 18	- 29 18	- 23 - 28	13 34	- 10	- 35 - 38	93 38	12 16	ात (स		- 8	6 8 8 8	55 5 56 8	83 80		ar GK	80 1 81 1				12		7				-	
9	18	-	3	÷	18	×	×.	8	3	÷		8 8	20	R	8	83 3				0	к	От	мена	Спра	вка	Element	Help Vendor Help

Рисунок 2.11 – Окно свойств инерционного диода

Name Use Opt In% Tol Distribution Description IMULT Image: Imag	arameters	Statist	ics	Display	Symbol	Layout	Mod	el Options	Vector			
Image: Multimediate in the second	Name	Use	Opt	t In%	Tol	Distribu	ution	Descriptio	n			^
Image: AFAC Image: One of the second sec					0	Normal		Scaling fa	ctor			
PJFAC 0 Normal Junction periphery RS 0 Normal Series resistance N 0 Normal Bottom ideality factor TT 0 Normal Storage time CJ0 Image: CJP 0 Normal Zero-voltage bottom junction capacitance VJ 0 Normal Bottom built-in voltage PHP 0 Normal Bottom built-in voltage M 0 Normal Bottom junction capacitance	AFAC				0	Normal		Junction a	area			
Image: Series resistance 0 Normal Series resistance Image: N 0 Normal Bottom ideality factor Image: Tr 0 Normal Storage time Image: CJP 0 Normal Zero-voltage bottom junction capacitance Image: CJP 0 Normal Zero-voltage periphery junction capacitance Image: VJ 0 Normal Bottom built-in voltage Image: PHP 0 Normal Bottom junction grading coefficient	B PJFAC				0	Normal		Junction p	periphery			
Image: Normal Image: Normal Bottom ideality factor Image: TT Image: Normal Storage time Image: TT Image: Normal Storage time Image: CJD Image: Normal Zero-voltage bottom junction capacitance Image: CJP Image: Normal Zero-voltage periphery junction capacitance Image: VJ Image: Normal Bottom built-in voltage Image: PHP Image: Normal Bottom junction grading coefficient Image: Normal Image: Normal Bottom junction grading coefficient	B RS				0	Normal		Series res	istance			
Image: The second se	BN				0	Normal		Bottom ide	eality factor			
Image: CJD Image: CJD <td>B TT</td> <td></td> <td></td> <td></td> <td>0</td> <td>Normal</td> <td></td> <td>Storage ti</td> <td>ime</td> <td></td> <td></td> <td></td>	B TT				0	Normal		Storage ti	ime			
Image: CJP Image: CJP <td>B C30</td> <td></td> <td></td> <td></td> <td></td> <td>Normal</td> <td></td> <td>Zero-volta</td> <td>age bottom junc</td> <td>tion capacitan</td> <td>ce</td> <td></td>	B C30					Normal		Zero-volta	age bottom junc	tion capacitan	ce	
Image: Image interview of the second seco	E CJP				0	Normal		Zero-volta	age periphery ju	nction capacit	ance	
PHP Periphery built-in voltage M Image Normal Bottom junction grading coefficient	BVJ				0	Normal		Bottom bu	uilt-in voltage			
M D D Normal Bottom junction grading coefficient *	PHP							Periphery	built-in voltage			
C >	BI M				n	Normal		Rottom iu	nction grading o	nefficient		1
	ζ										>	
										Hide Secor	ndary	1

Рисунок 2.12 – Окно свойств инерционного диода

Добавьте источник постоянного напряжения. Настройте его параметры в соответствии с рисунком 2.13. Соедините выход Swp источника с диодом, второй вывод диода заземлите. Также на выходе источника поставьте порт.

:::);:::	· · · · · · · · · · · · · · · · ·
Swp Step	
IVCURVE	
ID=IV1 VSWEEP_start=-2 V	Начальное значение напряжения
VSWEEP_step=0.05 V VSTEP_start=0 V	Шаг изменения напряжения
VSTEP_stop=0 V VSTEP_step=0 V	· · · · · · · · · · · · · · · · · ·

Рисунок 2.13 – Настройки модели источника постоянного напряжения

Постройте вольтфарадную характеристику. Для этого создайте новый график и добавьте на него характеристику, свойства которой представлены на рисунке 2.14.

	T	Manager 1 Count	
Measurement	туре	Measurement Search.	Data Source Name
Data	agnetic	C_SRC	Diode2 V
File	agricac	DMAGB DPHSB	Port index
E Linear		GD GM1	1
	ſ	GM2 Geven	Sweep Freq (FDOC)
Output E System	quations	Godd	Freq = 1000 MHz 🛛 🗸 💙
TYield		L_PRL	V IVCURVE.IV1.SWP
Capacitance of	Input as a Paral	lel RC	Use for x-axis 🗸 🗸
5 11			IVCURVE.IV1.STEP
Simulator	Default Linear	~	Plot all traces 🗸 🗸
Configuration	Default	~	, Network and the second se
Complex Modif	ier		
Real	Imag. Ma	a. Angle Angleu	

Рисунок 2.14 – Окно настройки ВФХ

Запустите симуляцию. Характеристика примет следующий вид:

Рисунок 2.15 – ВФХ инерционного диода

Вызовите свойства диода, раскройте скрытые параметры и поставьте галочки в графе Tune, напротив таких элементов, как M, CJ0, Vj (рисунок 2.16).

	Свойства: Ele	ment Optior	ns: SDIO	DE - SPI	CE No	n-Geo	metric Ju	unction Die	ode Mo	del
	Parameters	Statistics D	Display !	Symbol	Layou	ut Mo	del Option	ns Vector		
*** ****** ******	Name	Value	Unit	Tune	Opt	Limit	Lower	Upper	Step	Description
	BT	0	ns	Г			0	0	0	Storage time
Емкость при нулевом смещении	E C30	1	pF	V			0	0	0	Zero-voltage t
	E CJP	0	pF				0	0	0	Zero-voltage p
Контактная разность потенциалов	E VJ	0.8	V	V			0	0	0	Bottom built-in
	E PHP		V							Periphery built
Коэффициент нелинейности ВФХ	BM	0.5		V			0	0	0	Bottom junctio
	MJSW	0.33					0	0	0	Periphery junc
	E FC	0.5					0	0	0	Bottom depleti
	FCS	0.5		Γ			0	0	0	Periphery depl
	BV	1000000	V		Г		0	0	0	Breakdown vo
	€	1	mΔ	Г	5		n	n	n	Current at hre
	Bottom junc	tion grading c	oefficient							
ana nanatan nanatan Tan nanatan	Enable e	lement P	Part Numb	oer						Hide Secondary
			ОК		От	мена	Сп	равка	Element	Help Vendor He

Рисунок 2.16 – Окно свойств инерционного диода

С помощью тюнера исследуйте влияние изменения номиналов выбранных параметров на вид ВФХ инерционного диода.

2.3 Эквивалентной схема диода

Добавьте рабочее поле. На панели Elements раскройте ветвь Nonlinear. В появившемся списке выберите Capacitor => PNCAP (рисунок 2.17).

Рисунок 2.17 – Панель Elements

Далее раскройте ветвь Sources и выберете источники постоянного тока DC. Из появившегося списка выберете модель DCCSS (рисунок 2.18).

Рисунок 2.18 – Панель Elements

Соберите эквивалентную схему диода, как показано на рисунке 2.19.

Рисунок 2.19 – Эквивалентная схема диода

Вызовите свойства конденсатора. По аналогии с инерционным диодом, измените параметр СЈО. Постройте ВФХ эквивалентной схемы диода. Для этого настройте график характеристики в соответствии с рисунком 2.20.

Measurement	Type	Measurement Sea	rch	Data Source Name	
Data		C PRC	~	Diode3	~
Electrom	agnetic	DMAGB		Portiodex	
+ Linear	e.	GD		1	ñ.
⊡ Load Pull ⊕ Nonlinea	r	GM1 GM2 Geven		Sweep Freq (FDOC)	
- Output E	quations	Godd		Freq = 1000 MHz 🛛 🗸	>
Yield		L_PRL	~	DCCSS.I1	
Capacitance of	f Input as a Paral	lel RC		Idc = 0 mA	~
				IVCURVE.IV1.SWP	
Simulator	Default Linear	~		Use for x-axis	~
Configuration	Default	~		IVCURVE.IV1.STEP	
Complex Modif	fier			Vstep = 0 V	~
Real	◯ Imag, ◯ Ma	a. Angle AngleU		n je na zakona za zakona na selektrone zakona na selektrone zakona zakona zakona zakona zakona zakona zakona z Na zakona zako Na zakona zako	1
-					

Рисунок 2.20 – Окно настройки ВФХ эквивалентной схемы диода

Запустите симуляцию. График ВФХ примет вид:

Рисунок 2.21 – ВФХ эквивалентной схемы диода

Настройте параметры модели нелинейной емкости так, чтобы ВФХ эквивалентной схемы диода совпадала с ВФХ инерционного диода. Сделайте выводы по выполненной работе.

Контрольные вопросы

1. В чем отличие между инерционной моделью диода и безынерционной?

2. Что такое диффузионная и барьерная емкость? Как определить на ВФХ работает диффузионная, а где барьерная емкости?

3. Как и почему влияет на вид ВАХ изменение коэффициента неидеальности? Тока насыщения?

4. Как и почему влияет на вид ВФХ изменение емкости нулевого смещения? Контактной разности потенциалов? Коэффициента неидеальности?

5. Как построить ВАХ в прямом и обратном смещении?