

Кафедра конструирования и производства радиоаппаратуры

А.А. Чернышев

КОНСТРУКТИВНЫЕ МЕТОДЫ ОБЕСПЕЧЕНИЯ НАДЕЖНОСТИ БОРТОВОЙ КОСМИЧЕСКОЙ РАДИОАППАРАТУРЫ

Методические указания к практическим, лабораторным занятиям и самостоятельной работе

Чернышев А.А.

Конструктивные методы обеспечения надежности бортовой космической радиоаппаратуры: методические указания к практическим, лабораторным занятиям и самостоятельной работе — Томск: Томский гос. ун-т систем упр. и радиоэлектроники, 2018. — 16 с.: ил.

Представлены указания по содержанию и методике проведения аудиторных занятий и самостоятельной работы магистрантов направления «Электроника и наноэлектроника», связанных с конструированием, производством и испытаниями электронных и радиоэлектронных средств преимущественно авиационно-космического назначения. Рассмотрены вопросы предотвращения повреждения аппаратуры в условиях воздействия климатических, механических факторов и особых факторов космического полета, дана методика комплексной отработки конструкции на надежность.

Указания могут быть использованы при изучении вопросов проектирования и обеспечения надежности электронной аппаратуры для различных объектов установки студентами всех специальностей радиоэлектронного профиля.

СОДЕРЖАНИЕ

1. Введение4
2. Указания по практическим занятиям5
Тема 1. История развития конструкций РЭС5
Тема 2. Обработка результатов испытаний РЭС на надежность6
Тема 3. Способы защиты конструкций РЭС различных конструктивных уровней от климатических воздействий
Тема 4. Механические воздействия и защита РЭС/БКА8
Тема 5. Радиационные теплообменники и тепловые трубы9
Тема 6. Технические решения РЭС/БКА для космических аппаратов негерметичной конструкции10
3. Указания по лабораторным занятиям11
Работа 1. Составление перечня контрольных вопросов для анализа конструкции РЭС/БКА с позиций конструктивных методов обеспечения надежности
Работа 2. Оценка конструкции РЭС/БКА с позиций конструктивных методов обеспечения надежности11
4. Указания по самостоятельной внеаудиторной работе13
5. Список рекомендуемых источников14
Приложение А. Пример перечня контрольных вопросов для анализа блока РЭС с позиций конструктивных мер обеспечения надежности
Приложение Б. Пример оформления титульного листа отчета о выполнении лабораторной работы

1. Введение

При изучении дисциплины «Конструктивные методы обеспечения надёжности бортовой космической радиоаппаратуры» практические, лабораторные занятия и внеаудиторная самостоятельная работа магистрантов по направлению «Электроника и наноэлектроника» выстроены в развитие лекционного материала и направлены на формирование практических инженерно-исследовательских компетенций конструктора электронных средств авиационно-космического назначения.

Отметим, что в настоящем пособии, как и в лекционном курсе, наряду со специализированными терминами «бортовая космическая аппаратура» (БКА) и «бортовая космическая радиоаппаратура» (БКР) там, где это уместно, применяются более общие стандартные термины «электронное средство» (ЭС) и «радиоэлектронное средство» (РЭС).

В перспективе наш выпускник должен обладать:

- способностью к организации и проведению экспериментальных исследований с применением современных средств и методов (ПК-4);
- готовностью определять цели, осуществлять постановку задач проектирования электронных приборов, схем и устройств различного функционального назначения, подготавливать технические задания на выполнение проектных работ (ПК-7)
- способностью проектировать устройства, приборы и системы электронной техники с учетом заданных требований (ПК-8);
- способностью разрабатывать проектно-конструкторскую документацию в соответствии с методическими и нормативными требованиями (ПК-9).

Формирование и развитие соответствующих компетенций достигается в процессе выполнения каждым студентом комплекса аналитических и экспертных заданий с развернутым обсуждением.

На групповые двухчасовые практические занятия вынесены темы, связанные с изучением исторических аспектов обеспечения надежности РЭС, факторов, влияющих на надежность РЭС и методов защиты РЭС/БКА от их вредного влияния. Здесь же рассматриваются вопросы отражения конструктивных мер по обеспечению надежности в комплекте конструкторской документации на изделие.

На четырехчасовые лабораторные занятия (работы конструкторского практикума) вынесены темы, связанные с комплексной отработкой конструкции на надежность. Эти работы выполняются в творческих микрогруппах (командах).

Каждая тема группового занятия рассчитана на 4-8 ч с обширной самостоятельной подготовкой.

Задания выполняются при консультативной помощи преподавателя с последующей оценкой степени компетентности и выставлением рейтингового балла.

2. Указания по практическим занятиям

Тема 1. История развития конструкций РЭС

Цель занятия: развитие навыков анализа конструкторских решений по обеспечению надежности РЭС в контексте исторического развития техники, постановки задач и определения требований к проектированию.

Поскольку данное занятие является первым в цикле групповых занятий, в его начале преподаватель поясняет *особенности преподавания дисциплины*.

Обращается внимание на высокий потенциал магистрантов в деле самостоятельного изучения конкретных вопросов и аспектов дисциплины на основе различных источников.

Занятия с магистрантами, как будущими инженерами-исследователями, требуют от обучающихся демонстрации и развития навыков освоения, представления и анализа требуемой информации. В этой связи помимо традиционных опросов и упражнений значительное время уделяется подготовке и выступлениям с реферативными сообщениями (докладами) на заданную тему или по теме, соответствующей содержанию дисциплины и согласованной с преподавателем. Самостоятельный выбор темы приветствуется и оценивается дополнительными рейтинговыми баллами (см. также указания раздела 4).

Доклад в обязательном порядке строится с компьютерной презентацией, распечатка презентации помещается в папку (портфолио) студента и может быть использована на экзамене. Как правило, каждый магистрант в течение семестра готовит три сообщения соответственно трем аспектам обеспечения надежности РЭС/БКА:

- факторы, воздействующие на аппаратуру при эксплуатации, и вызываемые ими повреждения;
- конструктивные меры, принимаемые для предотвращения или снижения вредного влияния;
- испытания РЭС/БКА, позволяющие гарантировать пригодность аппаратуры для эксплуатации с требуемым качеством в течение заданного времени.

Поскольку конструкторские вопросы тесно взаимосвязаны, выступление студента с докладом не обязательно привязывается к определенной теме занятия.

Опросы, регулярно проводимые на групповых занятиях, могут быть как в устной, так и в письменной форме. В последнем случае ответ на вопрос оформляется в форме эссе, помещается после оценки в папку (портфолио) студента и может быть использован на экзамене.

Следует обратить внимание, что конструктивные меры обеспечения надежности РЭС/БКА связаны, как правило, с нефункциональными элементами аппаратуры.

Переходя от организационно-методических вопросов к теме занятия, преподаватель напоминает *основные этапы развития* конструкций РЭС, начиная с изобретения радио А.С.Поповым. Эти вопросы частично были рассмотрены в дисциплине «История и методология науки и техники в области электроники». Преподаватель посредством наводящих вопросов и развертывания дискуссии активизирует остаточные знания по истории техники применительно к обеспечению надежности.

Далее заслушиваются и обсуждаются *сообщения*, подготовленные магистрантами (их темы могут быть выданы 2-4 студентам на первой лекции). Преподаватель, подводя итог обсуждению, обращает внимание на то, что принимаемые технические решения по обеспечению надежности РЭС во все времена были обусловлены как возникающей потребностью, так и общим уровнем развития технологии.

Примеры докладов по данной теме:

- Первые конструкции радиоаппаратуры, предназначенной для установки на подвижные объекты
- Развитие конструкций РЭС в годы Второй мировой войны
- Проблемы надежности электронной аппаратуры, с которыми столкнулись создатели ракетной техники
- Аппаратура первых ИСЗ и обеспечение ее надежности

Тема 2. Обработка результатов испытаний РЭС на надежность

Цель занятия: формирование компетенций в части организации, проведения и обработки результатов специфического вида экспериментов – испытаний аппаратуры для подтверждения работоспособности и надежности РЭС/БКА согласно заданным требованиям по условиям эксплуатации.

В начале занятия по данной теме преподаватель поясняет значимость испытаний как практически единственного способа убедиться в надежности РЭС до начала эксплуатации или боевого применения. Обращает внимание на отличие испытаний от большинства других видов экспериментов: по результатам испытаний в обязательном порядке принимается управленческое решение.

Далее проводится *опрос* по применяемым в ходе испытаний показателям надежности: вероятность безотказной работы, интенсивность отказов, средняя наработка до отказа и др.

Преподаватель напоминает, что надежность РЭС в значительной мере определяется режимом работы электрорадиоэлементов, в особенности по электрической нагрузке и температуре. Рекомендуется повторить типовые методики расчета надежности и теплового режима РЭС по учебнометодическим пособиям А.К.Кондакова [4, 5].

Затем проводится решение типовых задач:

- 1 Проведены испытания 1000 однотипных изделий. За первые 3000 ч отказало 80 изделий, за интервал 3000-4000 ч отказало еще 50 изделий. Требуется определить частоту и интенсивность отказов изделий в интервале 3000-4000 ч, вероятность безотказной работы за 3000 ч и 4000 ч.
- 2 Проведены испытания 100 однотипных изделий. За первые 4000 ч отказало 50 изделий, за интервал 4000–4100 ч отказало еще 20 изделий. Требуется определить частоту и интенсивность отказов изделий в интервале 4000–4100 ч, вероятность безотказной работы за первые 4000 ч и 4100 ч, а также вероятность отказа на интервале 4000–4100 ч.
- 3 В течение 1000 ч из 10 эксплуатируемых гироскопов отказало 2. За интервал 1000–1100 ч отказал еще один гироскоп. Требуется определить частоту и интенсивность отказов гироскопов в интервале 1000–1100 ч.
- 4 Проведены испытания 400 функциональных узлов (ФУ) БКА. За время наработки 104 ч отказало 4 ФУ, а за последующие 1000 ч отказал еще один ФУ. Определить частоту и интенсивность отказов ФУ в интервале 10-11 тыс.ч, вероятность отказа за время 104 ч.

На второй части занятия заслушиваются и обсуждаются *сообщения* по методам и средствам испытаний РЭС/БКА.

Примеры докладов по данной теме:

- Автоматизированные системы испытания РЭС
- Оборудование для испытания РЭС на воздействие термоудара
- Оборудование для испытаний РЭС на воздействие климатических факторов
- Механические испытания РЭС и применяемое оборудование
- Испытания на воздействие особых условий космического полета

В заключительной части занятия (2 ч) студенты выполняют *расчетную работу* по статистической обработке результатов испытаний РЭС, в которой предлагаемые задачи соответствуют рассмотренным типовым упражнениям.

Тема 3. Способы защиты конструкций РЭС различных конструктивных уровней от климатических воздействий

Цель занятия: формирование компетенций в части исследования и анализа влияния климатических факторов на надежность РЭС/БКА, постановки задач рационального использования различных методов защиты РЭС/БКА от их воздействия, отражения элементов обеспечения надежности в конструкторской документации.

Заслушиваются и обсуждаются *сообщения* по влиянию различных климатических факторов и методов защиты РЭС/БКА.

В подготовленных докладах по характеру воздействия следует рассмотреть:

- макроклиматические районы, мезоклимат, микроклимат;
- климатическое исполнение технических средств с учетом климатической зоны и категории размещения;
- факторы влияния (барометрическое давление, температура, влага, биологическая среда; пыль, песок, соли; агрессивные газы; солнечная радиация; другие факторы с учетом производственного опыта);
- характер вызываемых повреждений в отношении материалов (коррозия, деструкция, изменение механических характеристик) и ЭРЭ/ЭКБ (изменение электрических параметров).

Влияние различных факторов на надежность РЭС/БКА и принимаемые конструктивные меры должны быть рассмотрены на уровнях:

- блока (изделия) в целом;
- оболочек и несущих конструкций;
- печатных узлов;
- межузловых соединений;
- ЭРЭ/ЭКБ;
- прочих особенностей с учетом производственного опыта.

С целью изучения принципов расчета времени эффективной влагозащиты элементов РЭС полимерными материалами рекомендуется ознакомиться с методическими указаниями А.К.Кондакова [6].

Примеры докладов по данной теме занятия:

- Климат. Макроклиматические районы. Факторы, характеризующие климатические воздействия на РЭС
- Повреждения РЭС, вызываемые влиянием климатических факторов
- Конструктивные меры по обеспечению надежности РЭС/БКА в условиях климатических воздействий
- Защита деталей РЭС от коррозии, отражение материалов и покрытий в конструкторской документации

Тема 4. Механические воздействия и защита РЭС/БКА

Цель занятия: формирование компетенций в части исследования и анализа влияния механических нагрузок со стороны объекта-носителя на надежность РЭС/БКА, постановки задач по рациональному использованию различных методов защиты РЭС/БКА от их воздействия, отражения соответствующих конструктивных элементов в конструкторской документации.

Заслушиваются и обсуждаются *сообщения* по влиянию различных видов механических воздействий и методов защиты РЭС/БКА.

Влияние механических воздействий на надежность РЭС/БКА и принимаемые конструктивные меры должны быть рассмотрены на уровнях:

- блока (изделия) в целом;
- оболочек и несущих конструкций;
- печатных узлов;
- межузловых соединений;
- ЭРЭ/ЭКБ;
- прочих особенностей с учетом производственного опыта.

Следует также привести характерные значения параметров механических воздействий для различных объектов установки РЭС/БКА с учетом применяемых средств выведения, а также при хранении и транспортировании к месту старта.

Рассматривая принципы защиты РЭС/БКА от механических воздействий, следует обратить внимание на устранение механических резонансов несущих конструкций и отдельных элементов. С целью изучения принципов расчета резонансных частот конструктивов РЭС рекомендуется ознакомиться с методическими указаниями А.К.Кондакова [7].

Примеры докладов по теме занятия:

- Механические воздействия, характерные для различных объектовносителей РЭС
- Повреждения РЭС, вызываемые механическими воздействиями
- Конструктивные методы обеспечения надежности РЭС/БКА в условиях механических воздействий
- Методы повышения прочности и жесткости несущих конструкций РЭС/БКА
- Возможности повышение надежности РЭС/БКА путем вибродемпфирования

Тема 5. Радиационные теплообменники и тепловые трубы

Цель занятия: формирование компетенций в области обеспечения нормального теплового режима РЭС/БКА в условиях ближнего и дальнего космоса, проведения экспериментов в данном направлении, понимания возможности применения и рационального использования различных методов защиты РЭС/БКА от замерзания и перегрева.

В начале занятия преподаватель обращает внимание участников семинара на особенности тепловых потоков и способы переноса тепла в условиях вакуума и невесомости, а также на термоциклирование, обусловленное орбитой или траекторией движения космического аппарата.

Далее заслушиваются и обсуждаются *сообщения* по обеспечению нормального теплового режима РЭС/БКА и космического аппарата в целом в условиях космического вакуума, невесомости, солнечной и планетной радиации.

Примеры докладов по данной теме:

- Температура в космосе
- Конструктивные методы обеспечения нормального теплового режима БКА в условиях внешнего перегрева.
- Кондуктивные теплостоки в конструкциях энергетической электроники
- Фитильные и бесфитильные тепловые трубы
- Контурные тепловые трубы в системах обеспечения теплового режима БКА
- Применение экранно-вакуумной теплоизоляции (ЭВТИ)

Тема 6. Технические решения РЭС/БКА для космических аппаратов негерметичной конструкции

Цель занятия: формирование компетенций в области обеспечения нормального теплового режима РЭС/БКА в условиях ближнего и дальнего космоса, проведения экспериментов в данном направлении, понимания возможности применения и рационального использования различных методов защиты РЭС/БКА от замерзания и перегрева.

В начале занятия преподаватель напоминает, что аппаратура первых космических аппаратов размещалась в гермоотсеке, что снимало ряд проблем РЭС/БКА, но приводило к существенному увеличению массы конструкции. Дальнейшее развитие РЭС/БКА привело к широкому применению негерметичных конструкций.

Далее заслушиваются и обсуждаются *сообщения* по особенностям конструкций носителей и РЭС/БКА, эксплуатируемых в космическом вакууме.

Примеры докладов по данной теме:

- Проблемы надежности электронной аппаратуры, с которыми столкнулись в 1950-е годы создатели ракетно-космической техники
- Особые факторы космического полета и вызываемые ими повреждения БКА
- Конструктивные меры по обеспечению надежности РЭС/БКА в особых условиях космического полета
- Структура экранно-вакуумной теплоизоляции (ЭВТИ)
- Задачи комплекса автоматики и стабилизации бортовых питающих напряжений
- Конструкции энергетической электроники негерметичной БКА
- Надежность межузловых и межблочных соединений БКА

3. Указания по лабораторным занятиям

Работа 1. Составление перечня контрольных вопросов для анализа конструкции РЭС/БКА с позиций конструктивных методов обеспечения належности

Цель работы: формирование навыков подготовки эксперимента по экспертной оценке качества реальной конструкции изделия с точки зрения требований по обеспечению надежности.

Для подготовки к проведению анализа студентам предлагается реальный блок космической или самолетной аппаратуры.

Должна быть проведена работа по подготовке к экспертному анализу конструкции по следующим составляющим надежности:

- безотказность и долговечность;
- ремонтопригодность.

Требуется составить перечень контрольных вопросов (чек-лист, вопросник) для анализа.

Указание:

Вопросник составляется по тем же принципам, по которым на практических (семинарских) занятиях выявлялись и обсуждались отдельные факторы, влияющие на надежность РЭС/БКА, а также предлагались конструктивные меры по предотвращению или снижению степени их влияния.

Вопросы рекомендуется сгруппировать:

- по воздействующим факторам;
- по уровням конструкции (блок в целом, узлы или печатные узлы, отдельные ЭРЭ).

Отчетом по данной лабораторной работе является составленный вопросник. Пример составленного перечня контрольных вопросов приведен в приложении A.

Работа 2. Оценка конструкции РЭС/БКА с позиций конструктивных методов обеспечения надежности

Цель работы: формирование навыков проведения экспертной оценки качества реальной конструкции изделия с точки зрения обеспечения надежности.

Работа проводится в форме стендового разбора реальной конструкции блока бортовой космической или самолетной радиоаппаратуры. Примером рекомендуемой конструктивной сложности оцениваемого изделия является блок самолетного радиовысотомера PB-5M.

Отчет о лабораторной работе должен содержать следующие разделы:

- 1. Наименование, объект установки, режим эксплуатации и обслуживания изделия.
- 2. Виды воздействий на изделие, характерные для данных условий эксплуатации.
- 3. Цель анализа (с указанием составляющих надежности, с позиций которых ведется обследование конструкции).
 - 4. Краткое описание конструкции изделия.
- 5. Меры по предотвращению снижения надежности изделия из-за внутреннего перегрева.
- 6. Меры по обеспечению прочности и жесткости несущих конструкций, исключению механических резонансов.
- 7. Меры по обеспечению надежности функциональных узлов, ЭРЭ и межузлового электромонтажа в условиях механических воздействий.
- 8. Меры по обеспечению надежности функциональных узлов узлов, ЭРЭ и межузлового электромонтажа в условиях климатических воздействий.
- 9. Меры по обеспечению надежности функциональных узлов, ЭРЭ и межузлового электромонтажа в условиях специальных воздействий (при их наличии).
- 10. Конструктивные меры, обеспечивающие улучшение надежности одновременно при нескольких видах воздействия на изделие (для справки).
- 11. Меры по обеспечению надлежащей ремонтопригодности (для обслуживаемого изделия).
- 12. Заключение (достаточность принятых конструктивных мер для обеспечения требуемой надежности, замечания и предложения по улучшению конструкции).

В отчет рекомендуется включать фотографии фрагментов изделия, иллюстрирующие конкретные наблюдения экспертов.

Пример оформления титульного листа отчета о выполнении лабораторной работы приведен в приложении Б.

4. Указания по самостоятельной внеаудиторной работе

- 4.1 Самостоятельная работа по дисциплине включает в себя следующие элементы:
 - проработка лекционного материала, подготовка к тестовому контролю и опросам на лекциях (устным и письменным);
 - подготовка докладов (реферативных сообщений) по темам, назначенным или согласованным с преподавателем. Как правило, магистрант в течение семестра должен подготовить соответствующие материалы с компьютерными презентациями и сделать в аудитории не менее трех сообщений. Самостоятельность в выборе актуальной темы сообщения приветствуется и оценивается бонусными рейтинговыми баллами;
 - подготовка к практическим (семинарским) занятиям, в том числе к выполнению расчетной работы по статистической оценке надежности блока радиоаппаратуры;
 - подготовка к лабораторным работам (стендовому разбору реальных конструкций) и оформление отчетов о работе;
 - подготовка к экзамену.
- 4.2 Эффективная самостоятельная работа предполагает внимательную и активную работу студента на лекциях и групповых занятиях, аккуратное ведение и детальное изучение конспекта, изучение и усвоение специальной терминологии, подготовку и сдачу распечатки презентаций по сделанным сообщениям.
- 4.4 Для самостоятельной внеаудиторной работы при углубленной проработке теоретического материала рекомендуются учебник [2] и учебные пособия [1, 3].
- 4.6 Для подготовке к практическим занятиям и лабораторным работам рекомендуется использовать методические пособия и указания [4-7]. При оформлении конструкторских документов, в которых должны быть отражены технические решения по обеспечению надежности РЭС/БКА, может быть использован справочник [8].

5. Список рекомендуемых источников

- 1. Теория надежности [Электронный ресурс]: Учебное пособие / Козлов В. Г. 2012. 138 с. Режим доступа: http://edu.tusur.ru/publications/1274 (дата обращения: 23.07.2018).
- 2. Обеспечение надежности сложных технических систем [Электронный ресурс]: учебник / А. Н. Дорохов [и др.]. Изд. 3-е, стер. СПб.; М.; Краснодар Лань, 2017. 352 с. рис. (Учебники для вузов. Специальная литература). Библиогр. с. 341-342. ISBN 978-5-8114-1108-5 Б. ц. Режим доступа: https://e.lanbook.com/reader/book/93594/#3 (дата обращения: 23.07.2018).
- 3. Основы проектирования электронных средств [Электронный ресурс]: Учебное пособие / В. Г. Козлов, А. А. Чернышев, Ю. П. Кобрин 2012. 149 с. Режим доступа: https://edu.tusur.ru/publications/2783 (дата обращения: 23.07.2018).
- 4. Расчёт надёжности функционального узла РЭС [Электронный ресурс]: Методическое пособие для выполнения практического занятия / Кондаков А. К. 2012. 8 с. Режим доступа: http://edu.tusur.ru/publications/1047 (дата обращения: 23.07.2018).
- 5. Расчёт теплового режима блока РЭС [Электронный ресурс]: Методическое пособие для выполнения практического занятия / Кондаков А. К. 2012. 8 с. Режим доступа: http://edu.tusur.ru/publications/1044 (дата обращения: 23.07.2018).
- 6. Расчет толшины РЭС влагозащитных покрытий деталей [Электронный ресурс]: Методическое пособие для выполнения практического / Кондаков A. К. 2012. 11 Режим c. доступа: http://edu.tusur.ru/publications/1040 (дата обращения: 23.07.2018).
- 7. Расчет собственной частоты печатного узла РЭС [Электронный ресурс]: Методическое пособие для выполнения практического занятия / А. К. Кондаков 2012. 4 с. Режим доступа: https://edu.tusur.ru/publications/1043 (дата обращения: 24.07.2018).
- 8. Разработка и оформление конструкторской документации РЭА: Справочник / Э. Т. Романычева, Э. Т. Иванова, А. С. Куликов и др.; Ред. Э. Т. Романычева. 2-е изд., перераб. и доп. М.: Радио и связь, 1989. 448 с.: ил. Экземпляры всего: 21, в т.ч. аунл (16 экз.), МиГ (1), сбо (1 экз.), счз1 (3 экз.)

Приложение А

Пример перечня контрольных вопросов для анализ блока РЭС с позиций конструктивных мер обеспечения надежности

Контрольные вопросы для анализа:

- 1) для работы в каких условиях эксплуатации предназначен блок, предусмотрен ли ремонт в ходе эксплуатации?
- 2) как выстроена общая конструкция блока (несущая конструкция, размещение ФУ и крупных ЭРЭ, межузловой электромонтаж);
- 3) какие меры приняты для предотвращения отказов из-за перегрева (обеспечение нормального теплового режима)?
- 4) какие меры приняты конструктором для обеспечения безотказности и долговечности в условиях климатических воздействий:
 - для НК и их соединений;
 - для ПУ и крупных ЭРЭ;
 - для элементов межузлового электромонтажа?
 - 5) какие меры приняты для защиты от МВ:
- на уровне НК (для повышения прочности и жесткости НК, исключения механических резонансов, стопорения резьбовых соединений)?
 - на уровне печатных узлов и крупных ЭРЭ?
 - на уровне элементов межузлового электромонтажа?
 - на уровне блока в целом?
- 6) какие меры приняты для обеспечения надлежащей ремонтопригодности:
- для быстрого нахождения, поврежденного ЭРЭ согласно принципиальной схеме?
- для удобства подключения контрольной аппаратуры в ходе настройки и диагностики при TOuP?
- 7) какие примененные методы повышают надежность блока одновременно по нескольким видам воздействий (указать, каким именно)?

Примечание — характеризуя принятые конструктивные меры, следует оценить, являются ли они необходимыми и достаточными для обеспечения надежного функционирования блока РЭС в заданных условиях эксплуатации.

Приложение Б

Пример оформления титульного листа отчета о выполнении лабораторной работы

