1.1. Объект исследования и его свойства

Объект исследования (ОИ) — условно изолированное целое, содержащее в себе совокупность протекающих в нем процессов и средств их реализации.

Средства реализации — совокупность систем управления и контроля и связи между ними и исследуемым объектом. Объект исследования характеризуется рядом свойств, важнейшие из которых: сложность, полнота априорной информации, управляемость и воспроизводимость.

Сложность — число состояний объекта исследования, которые в соответствии с целью исследования и принятой техникой эксперимента можно четко различить.

Объекты бывают:

- простые (два состояния «да» или «нет»);
- сложные (много состояний).

В общем случае число C состояний ОИ равно

$$C = \prod_{i=1}^k n_i,$$

где n_i — число уровней i-го фактора; k — число факторов.

Априорная информация — информация об ОИ, известная до начала исследования, содержащаяся в монографиях, научных статьях, отчетах, описаниях открытий и изобретений, каталогах, справочниках.

Априорная информация об ОИ бывает:

- полная (об объекте известно все и экспериментальные исследования не нужны);
- ограниченная (информация об объекте существует, но недостаточна для достижения цели исследований; эксперимент необходим, чтобы дополнить существующие знания);

 нулевая (об объекте неизвестно ничего и экспериментальные исследования проводятся с целью установить присущие ОИ свойства и закономерности).

Управляемость — свойство, позволяющее изменять состояние объекта по усмотрению исследователя. ОИ бывают:

- управляемые (исследователь может изменять все входные величины);
- частично управляемые (исследователь может изменять не все входные величины, а только их часть);
- неуправляемые (исследователь не может влиять на ОИ, эксперимент в таком случае невозможен, возможно только наблюдение).

Воспроизводимость — свойство объекта переходить в одно и то же состояние, если все входные величины находятся на одном и том же уровне. Воспроизводимость может быть низкая и высокая.

Чем выше воспроизводимость, тем проще выполнять эксперимент и тем достовернее его результат.

Объектом исследования может быть не только физическое устройство, но и любой процесс, в том числе и технологический.

На исходную технологическую операцию поступают материалы или заготовки. Пребывая на этой технологической операции некоторое время T_1 они, под действием некоторой затраченной энергии (точение, фрезерование, литье и т.д.) преобразуются в иной вид

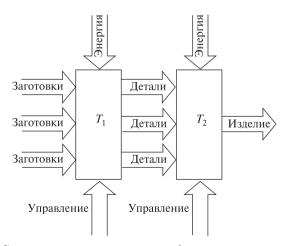


Рис. 1.1. Схематическое представление любого технологического процесса

(условно «детали»), которые поступают на следующую технологическую операцию. На следующей технологической операции детали подвергаются определенному энергетическому воздействию (сборка, монтаж, контроль и т. д.) в течение времени T_2 , где они преобразуются в иной вид (условно «изделие»). Это происходит до тех пор, пока на выходе технологического процесса получают готовый продукт. Однако помимо энергетических и временных затрат на каждой технологической операции необходимо обеспечить еще один неотъемлемый процесс, а именно процесс управления каждой технологической операцией.

Управления являются важной и неотъемлемой, хотя и не единственной частью любого технологического процесса.

Для осуществления управления необходимо иметь определенную совокупность сведений о производственном процессе или иными словами — определённый объём информации [2].

Различают два вида информации: начальную (или априорную) и рабочую.

Начальной информацией называют совокупность сведений об управляемой системе, необходимых для построения и функционирования данной системы управления, имеющейся в нашем распоряжении до начала её функционирования.

Системы, управления которыми производится лишь на основе априорной информации, могут выполнять лишь наиболее простые функции, например, включение и выключение агрегатов, подачу определенных сигналов по некоторой программе и т. д. Все эти функции управления представляют собой заранее определённые движения или сигналы, не зависящие от действительного хода производственного процесса или конкретного состояния агрегата.

Такое «слепое» и «глухое» управление не всегда приемлемо и приходится переходить к управлению с использованием рабочей информации.

Рабочей информацией называют совокупность сведений о состоянии процесса, получаемых в ходе самого процесса и используемых для управления. В автоматических системах рабочая информация получается в виде сигналов (дискретных или аналоговых), выполняемых специальными измерительными устройствами. Система управления преобразует поступающие на её вход от программного устройства или датчиков сигналы в управляющие воздействия. Основная задача такой системы — это соблюдение определённой зависимости между входными и выходными сигналами.

1.2. Классификация факторов и параметров, влияющих на ход технологического процесса

В процессе производства РЭС на различных этапах технологического процесса (ТП) изделие подвергается воздействию большого числа факторов, причем степень их влияния различна, а совокупное их воздействие приводит к большому разбросу электрофизических параметров изделий.

Для каждого процесса таких факторов может быть несколько десятков, а в течение всего производственного процесса изготовления изделие подвергается воздействию нескольких сотен технологических факторов. Поэтому анализировать весь ТП можно только на основе системного анализа с применением вычислительных систем.

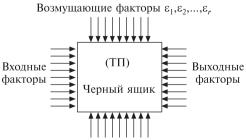
Основным понятием при этом является понятие «большая система» или, в нашем случае, «большая технологическая система», т.е. совокупность происходящих физико-химических процессов, объектов обработки и средств для их реализации. В виде большой системы можно представить любой технологический процесс, который схематически можно изобразить в виде «черного ящика» (рис. 1.2). Входящие стрелки соответствуют входным, возмущающим и управляющим величинам, а выходящие — выходным величинам.

В теории эксперимента влияющие на процесс величины обычно называют факторами, а выходные — параметрами, откликами, реакциями и целевыми функциями [3].

Параметры характеризуют состояние объекта исследования.

 Φ акторами обозначается все, что оказывает влияние на выходные величины.

Предполагается, что на момент проведения эксперимента внутренняя структура объекта и сущность связей между входными и



Управляющие факторы $U_1, U_2, U_3, ..., U_k$

Рис. 1.2. Классификация факторов

выходными величинами исследователю неизвестны, о них он судит по тому, какие значения принимают выходные величины при данных значениях входных.

Правильный выбор параметров и факторов в значительной степени предопределяет успех исследования [4].

На рис. 1.2 выделены основные группы факторов, определяющих его течение и характеризующее его состояние в любой момент времени. Обычно выделяются следующие группы:

Входные факторы X_1, X_2, \dots, X_n , значения которых могут быть измерены, но возможность воздействия на них отсутствует. Значения указанных параметров не зависит от режима процесса.

Управляющие факторы $U_1, U_2, U_3, \dots U_k$, на которые можно оказывать прямые воздействия с теми или иными требованиями, что позволяет управлять процессом (например, число исходных продуктов, температура, давление и т. д.).

Возмущающие факторы $\varepsilon_1, \varepsilon_2, \dots, \varepsilon_r$, значения которых случайным образом изменяется во времени и которые недоступны для измерения. Это могут быть, например, различные примеси в исходном сырье.

Факторы и предъявляемые к ним требования. Фактор — переменная величина, оказывающая влияние на ОИ, вызывающая изменение параметров и способная изменить свое значение независимо от других входных величин объекта.

Факторы можно разделить на следующие три группы:

- 1) контролируемые и управляемые, которые можно измерять и устанавливать на соответствующем уровне, по желанию экспериментатора (подача и частота вращения вала насоса, напряжение питающей сети и т. д.);
- 2) контролируемые, но неуправляемые (температура окружающей среды, атмосферное давление и т.д.);
- 3) неконтролируемые и неуправляемые (случайные возмущения).

К факторам предъявляются следующие требования:

- фактор должен оказывать влияние на параметры ОИ;
- фактор не должен быть коррелирован с другими факторами;
- фактор должен быть количественным;
- совместимость при всех сочетаниях их уровней эксперимент можно поставить и он будет безопасным;
- операциональность экспериментатору должно быть известно, как, где, каким прибором и с какой точностью контролировать величину фактора;

- управляемость экспериментатор должен иметь возможность устанавливать значение уровня фактора по своему усмотрению;
- точность установления уровня фактора должна быть существенно, по крайней мере, на порядок выше точности определения параметра;
- однозначность воздействия фактора на объект исследования.

Выходные параметры или параметры состояния Y_1, Y_2, \ldots, Y_f , значения которых определяются режимом процесса и которые характеризуют его состояние, возникающее в результате суммарного воздействия входных, управляющих и возмущающих параметров.

Параметры и предъявляемые к ним требования. *Параметр* — величина, характеризующая состояние или поведение ОИ.

В инженерном эксперименте в качестве параметров принимаются технические (коэффициент полезного действия, расход энергии, производительность машины, давление, напряжение и т. д.) или экономические величины (приведенные затраты, себестоимость, производительность труда и т. д.).

К параметру предъявляются следующие основные требования:

- параметр должен быть количественным и оцениваться числом. Для качественных параметров используются ранговые и условные показатели оценки;
- параметр должен обладать свойством совместимости допускать безопасное проведение эксперимента при любом сочетании факторов. Недопустимо, чтобы при каком-либо сочетании произошла авария;
- параметр должен быть однозначным данному сочетанию факторов с точностью до погрешности должно соответствовать одно значение параметра;
- параметр должен быть универсальным характеризовать объект исследования всесторонне;
- желательно, чтобы параметр имел простой физический или экономический смысл, просто и легко вычислялся;
- рекомендуется, чтобы параметр был единственным. Исследовать объект, построить математические зависимости можно для нескольких параметров, оптимизация же может выполняться только по одному. Если параметров несколько, то рассматриваются компромиссные задачи. Выбирается основной, с точки зрения исследователя, параметр, а остальные используются для наложения соответствующих ограничений на объект.

По отношению к процессу входные и управляющие параметры можно считать внешними, что подчеркивает независимость их

значений от режима процесса. Напротив, выходные параметры являются внутренними, на которые непосредственно влияют режимы процесса.

Возмущающие параметры могут быть как внешними, так и внутренними. Действие возмущающих параметров проявляется в том, что параметры состояния процесса при известной совокупности входных и управляющих параметров характеризуются неоднозначно.

Процессы, в которых действие возмущающих факторов велико, называют *стохастическими*, в отличие от детерминированных, для которых предполагается, что параметры состояния однозначно определяются заданием входных и управляющих воздействий.

Одной из основных целей исследования технологических процессов, анализа существующих и синтеза новых технологий является решение задач оптимального управления технологическими процессами.

Оптимизация — это целенаправленная деятельность, заключающаяся в получении наилучших результатов при соответствующих условиях. Применительно к производству РЭА объектом оптимизации может быть любой типовой технологический или производственный процесс.

Решение любой задачи оптимизации начинают с выявления цели оптимизации, т. е. формулировки требований, предъявляемых к объекту оптимизации. От того, насколько правильно выражены эти требования, может зависеть возможность решения задачи.

Иногда задачу оптимизации формируют так: «получить максимальный выход продукции при минимальном расходе сырья». Такая постановка задачи в корне неверна, поскольку минимум сырья равняется 0, при этом ни о каком максимуме продукции не может быть и речи. Правильной постановкой задачи будет такая: «получить максимальный выход продукции при заданном расходе сырья».

Для решения задач оптимизации нужно располагать ресурсами оптимизации, под которыми понимают свободу выборов значений некоторых параметров оптимизируемого объекта (т. е. необходимо, чтобы у процесса имелись управляющие факторы (U_1,U_2,\ldots,U_k) .

Иными словами, объект оптимизации должен обладать определенными степенями свободы, т. е. направлений, в котором он может изменяться. Понятие степени свободы, хорошо известное в термодинамике, можно распространить на любой технологический процесс и выразить соотношением

где f — число степеней свободы системы; L — число данных, описывающих систему (общее число управляющих параметров U_1,U_2,U_3,\ldots,U_k); M — число взаимосвязей описывающих систему данных (т. е. число независимых уравнений, связывающих управляющие параметры U_1,U_2,U_3,\ldots,U_k).

Еще одним условием правильной постановки задачи оптимизации является возможность количественной оценки интересующего качества объекта оптимизации. Это условие также необходимо, поскольку лишь при его выполнении можно сравнить эффекты от выбора тех или иных управляющих воздействий.

Качество продукции — совокупность свойств продукции, удовлетворяющих определённым потребностям в соответствии с её назначением определяется при одновременном рассмотрении и оценке технических, эксплуатационных, конструкторско-технологических параметров, норм надёжности и долговечности, художественно-эстетических свойств и экономических показателей (стоимости производства и эксплуатации) [5–7].

Свойства, определяющие качество продукции, характеризуются показателями качество продукции, которые могут быть абсолютными, относительными или удельными.

Показатели качества продукции устанавливаются объективными методами, органолептически (т.е. с помощью органов чувств), экспертным путём и т. д.

Показатель качества продукции, характеризующий одно её свойство, называют единичным, два свойства и более — обобщающим или комплексным.

Относительная характеристика качества продукции, основанная на сравнении её с соответствующей совокупностью базовых показателей, называется *уровнем качества продукции*.

Количественную оценку показателей качества осуществляют с использованием различных методов: теории оптимального управления, теории массового обслуживания, линейного, нелинейного и динамического программирования.

Количественная оценка оптимизируемого объекта обычно называется критерием оптимальности или целевой функцией, функцией качества и т. д.

Вид критерия оптимальности определяется конкретным содержанием решаемой задачи и иногда может оказывать существенное влияние на выбор метода решения.

В конечном счете достигаемое значение критерия оптимальности дает количественную оценку объекта оптимизации.

2.1. Модели, их классификация

В прикладных исследованиях применяют моделирование, под которым понимают способ познания действительности с помощью моделей [2, 3, 8–10].

Моделирование и подобие определяют, как должен проводиться эксперимент, какие величины, карактеризующие исследуемый объект или процесс, должны измеряться при экспериментальных исследованиях и как обрабатывать результаты исследований, чтобы полученные закономерности были справедливы как для данного объекта (процесса), так и для группы ему подобных.

Модель — материальный или информационный объект, отражающий основные свойства объекта-оригинала.

Использование моделей позволяет исследователю с меньшими затратами получить более точные результаты и избежать ряда погрешностей.

Важнейшим требованием, предъявляемым к моделям, является их *адекватность* — подобие объектам-оригиналам. Два объекта подобны, если по известным характеристикам одного простым пересчетом можно получить характеристики другого.

Кроме того, модель должна обеспечивать достаточную степень точности результатов исследований.

Модели бывают материальными и мысленными.

Материальные модели делятся на натурные и аналоговые.

Натурная модель — сам объект исследования или другой объект — характерна тем, что физическая природа протекающих в ней процессов аналогична природе процессов объекта-оригинала. При этом объект исследования абстрагируется — не учитывается влияние второстепенных, не имеющих существенного влияния на изучаемый процесс параметров или даже систем.

Процессы в аналоговых моделях имеют другую физическую природу по сравнению с процессами объекта-оригинала. Например,

исследование гидравлических объектов может проводиться на электрических моделях.

Мысленные модели могут быть наглядными, символическими и математическими.

К *наглядным моделям* относятся так называемые воображаемые модели (например, модель атома).

Символические (знаковые) модели могут иметь вид условно знаковых представлений: принципиальные схемы, записи химических реакций, графы.

Наиболее полной мысленной моделью является математическая, суть которой заключается в описании свойств и связей объекта математическими уравнениями и соотношениями.

2.2. Построение моделей

При построении математических моделей руководствуются следующими соображениями.

- 1. Из общего комплекса процессов, характеризующих объект, выделяют те, которые важны в данном исследовании и отражают основные свойства оригинала.
- 2. Создают общую описательную модель выделенных процессов. Выполняют словесное описание, проводят классификацию и систематизацию.
- 3. Определяют параметры и устанавливают значимые факторы. С этой целью сложный объект разбивают на элементарные звенья. Для каждого звена определяют входные и выходные величины. Оценивают весомость влияния каждого фактора, выделяют значимые и отбрасывают второстепенные.
- 4. Создают математическую модель объекта, для чего составляют уравнения, описывающие процессы в звеньях, устанавливают и записывают уравнения связей и соотношений, выбирают метод решения.
 - 5. Проверяют адекватность модели реальному объекту.
- 6. Решают уравнения (аналитически, численными методами на ЭВМ или на аналоговых моделях).

При построении натурных моделей поступают следующим образом:

- выделяют процессы, отображающие основные свойства оригинала;
- дают общее словесное описание модели и устанавливают параметры и факторы;

определяют критерии подобия, по значениям которых рассчитывают значения физических параметров модели.

2.3. Физическая и математическая модели машины

Классический подход к исследованию работы машины или отдельной системы состоит в следующем. Разрабатывается физическая модель того или иного процесса, на основании её составляется математическая модель и затем путем решения математической модели и анализа полученных результатов проверяется адекватность, т.е. соответствие этой модели действительной картине процесса [11–13].

 Φ изическая модель процесса или системы представляет собой ее абстрагированное символическое описание.

Например, изучаются колебательные процессы в редукторе привода рабочего органа машины. Возьмем в качестве такой машины центробежный насос с одним рабочим колесом (рис. 2.1,a). Физическая модель такой системы представляет собой ротор приводного двигателя, вал, рабочее колесо. Схематично физическая модель такой системы будет иметь вид, показанный на рис. 2.1,6.

Модель учитывает моменты сил $M_1(t)$ и $M_2(t)$, действующих на ротор двигателя и рабочее колесо насоса, моменты инерции этих тел I_1 и I_2 , коэффициенты жесткости C_{12} и демпфирования β_{12} вала.

В модели не учитываются корпус насоса, подшипники, соединительная муфта, уплотнения и другие элементы.

Поскольку двухмассовая система математически может быть описана только системой двух дифференциальных уравнений, упростим ее, считая, что момент инерции ротора двигателя намного больше момента инерции колеса, — физическая модель несколько упростится и примет вид, показанный на рис. 2.2,a.

Математическая модель процесса представляет собой аналитическое описание связей между отдельными элементами физической модели.

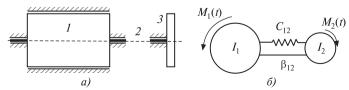


Рис. 2.1. Конструктивная схема (a) и физическая модель (δ) системы привода одноступенчатого насоса: 1 — ротор двигателя; 2 — вал; 3 — рабочее колесо

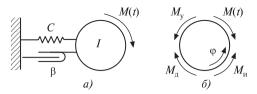


Рис. 2.2. Упрощенная физическая модель системы привода одноступенчатого насоса (a) и схема моментов сил, действующих на рабочее колесо (δ)

Уравнение движения рабочего колеса имеет вид

$$M_{\scriptscriptstyle \mathrm{M}} + M_{\scriptscriptstyle \mathrm{M}} + M_{\scriptscriptstyle \mathrm{M}} = M(t),$$

где $M_{\rm u}$, $M_{\rm g}$, $M_{\rm y}$ — моменты сил, действующие на рабочее колесо: момент сил инерции, момент демпфирующих сил (сопротивление движению) и момент упругой деформации вала; M(t) — момент внешних сил (внешнее возмущение).

Перемещение элементов системы, в данном случае рабочего колеса, характеризуется тремя параметрами — угловым перемещением φ (деформация вала), угловой скоростью $\partial \varphi/\partial t$ и угловым ускорением $\partial^2 \varphi/\partial t^2$. Тогда моменты $M_{\rm H}$, $M_{\rm H}$, $M_{\rm H}$, могут быть выражены через перемещение:

$$M_{ exttt{ iny H}} = I rac{\partial^2 arphi}{\partial t^2}; \quad M_{ exttt{ iny H}} = eta rac{\partial arphi}{\partial t}; \quad M_y = C arphi.$$

Уравнение движения примет вид

$$I \frac{\partial^2 \varphi}{\partial t^2} + \beta \frac{\partial \varphi}{\partial t} + C \varphi = M(t).$$

Полученное уравнение представляет собой математическую модель рассматриваемой системы.

Если математическая модель представляет собой, как в рассматриваемом случае, дифференциальное уравнение второго порядка с постоянными коэффициентами, т. е. линейными связями между параметрами системы, такую систему называют линейной динамической системой второго порядка.

В случае, когда связь между параметрами математической модели описывается нелинейными зависимостями (например, квадратичными, кубическими или степенными), динамические системы носят название нелинейных динамических систем.

Далее, если слагаемые левой части уравнения являются переменными и переменность их обусловлена непостоянством коэффициентов, такие математические модели и соответствующие им динамические системы носят название систем с переменными коэффи-

циентами. Характерным примером системы с переменными коэффициентами является полет ракеты, масса которой уменьшается в процессе полета.

Если в математической модели и левая и правая ее части — детерминированные (функциональные) зависимости, математическая модель и соответствующая ей система относятся к детерминированным (функциональным), т.е. связи между параметрами системы описываются детерминированными (строго определенными) зависимостями.

В случае, когда правая часть математической модели является случайной функцией, говорят, что такие математические модели (дифференциальные уравнения) относятся к классу уравнений со случайной правой частью, а динамические системы — к системам со случайным возмущением.

И, наконец, если и коэффициенты в левой части уравнения, и его правая часть — случайные величины или функции, то такие дифференциальные уравнения и соответствующие им динамические системы называются стохастическими, т. е. случайными во времени.

2.4. Решение и анализ математической модели динамической системы

Разделив обе части приведенного выше дифференциального уравнения на I и обозначив

$$rac{eta}{I}=2n; \quad rac{C}{I}=\omega^2; \quad rac{M(t)}{I}=m(t),$$

получим дифференциальное уравнение, приведенное к стандартному виду:

$$rac{\partial^2 arphi}{\partial t^2} + 2nrac{\partial arphi}{\partial t} + \omega^2 arphi = m(t).$$

Решением таких уравнений является *суперпозиция*, т. е. сумма решений однородного дифференциального уравнения, соответствующего данному уравнению, и частного решения, т. е.

$$\varphi = \varphi_o + \varphi_{\rm q}$$

где $\varphi_o,\, \varphi_{\scriptscriptstyle \mathrm{I}}$ — общее и частное решения однородного уравнения.

Однородное дифференциальное уравнение, соответствующее данному неоднородному, в рассматриваемом случае имеет вид [3, 13]

$$\frac{\partial^2\varphi}{\partial t^2} + 2n\frac{\partial\varphi}{\partial t} + \omega^2\varphi = 0,$$

т. е. это, собственно, то же дифференциальное уравнение, но с нулевой правой частью. А это означает, что рассматриваемая динамическая система находится в невозмущенном состоянии, точнее, система выведена из состояния покоя и предоставлена сама себе.

Решением уравнения будет $\varphi_o = C \mathrm{e}^{Zt}$, где C — постоянная интегрирования; Z — корень характеристического уравнения

$$Z^2 + 2nZ + \omega^2 = 0.$$

Корни этого уравнения равны $Z_{1,2}=-n\pm\sqrt{n^2-\omega^2}.$ Тогда решение уравнения принимает вид

$$\varphi_{o} = \operatorname{C} \exp(-n \pm \sqrt{n^{2} - \omega^{2}})t = \operatorname{Ce}^{-nt} \exp[(\pm \sqrt{n^{2} - \omega^{2}})t].$$

Из решения уравнения следует, что при положительном n с увеличением времени $\mathrm{e}^{-nt} \to 0$, т. е. φ_o как функция времени — затухающая. Это всегда имеет место для рассматриваемых динамических систем (всегда имеет место рассеяние энергии системой), каков бы ни был дискриминант (положительный или отрицательный).

На характер функции φ_0 существенное влияние оказывает знак подкоренного выражения. В случае, если $\sqrt{n^2-\omega^2}\geqslant 0$, функция φ_0 будет иметь вид кривой, плавно приближающейся к нулю.

Рассмотрим более подробно случай, когда выражение под корнем отрицательное $\sqrt{n^2-\omega^2}<0$, т.е. когда $\omega>n$. В этом случае поступают следующим образом. Выражение $\sqrt{n^2-\omega^2}$ записывают в виде

$$\sqrt{n^2 - \omega^2} = i\sqrt{\omega^2 - n^2} = ip,$$

где $i=\sqrt{-1};\ p^2=\omega^2-n^2.$ Тогда решение уравнения примет вид $arphi_0=C\mathrm{e}^{(-n\pm ip)t}.$

Функция $\mathrm{e}^{\pm ipt}$ — это полная гармоническая функция, или функция Эйлера

$$e^{\pm ipt} = \sin pt + \cos pt.$$

Тогда решение уравнения примет вид

$$\varphi_0 = e^{-nt}(C_1 \sin pt + C_2 \cos pt).$$

Постоянные интегрирования C_1 и C_2 определяются из начальных условий. Для дальнейшего анализа удобно решение уравнения свернуть и представить в виде

$$\varphi_{\rm o} = A {\rm e}^{-nt} \sin(pt + \varepsilon),$$

где $\sqrt{C_1^2+C_2^2}$ — амплитуда; $\sqrt{\omega^2-n^2}$ — частота; $arepsilon=\arg \operatorname{tg} C_2/C_1$ — фаза.

Из полученного следует: решение уравнения — периодическая затухающая функция времени. Физически это означает, что динамическая система, выведенная из равновесного состояния или состояния покоя и предоставленная самая себе, колеблясь вокруг равновесного (исходного) состояния, с течением времени приходит к этому равновесному состоянию или состоянию покоя.

Величина p называется частотой собственных колебаний системы и зависит от массы, жесткости и демпфирующей способности системы.

Рассмотрим, с какими параметрами происходят колебания системы. В случае, если n значительно меньше ω , можем считать

$$p pprox \omega = \sqrt{C/I}$$
,

где ω — частота собственных колебаний крутильного маятника, которая зависит от момента инерции и жесткости. Увеличение жесткости вала приводит к увеличению частоты, а увеличение момента инерции — к ее уменьшению.

Изменение демпфирующих свойств системы (рассеяния энергии) влияет как на частоту, так и на амплитуду колебаний. Увеличение потерь энергии приводит к уменьшению частоты собственных колебаний и к их затуханию-уменьшению амплитуды по логарифмической кривой ${\rm e}^{-nt}$.

Скорость (интенсивность убывания амплитуды обусловлена параметром

$$n = \frac{\beta}{2I},$$

характеризующим рассеивающую (демпфирующую) способность системы. Поэтому параметр n называют логарифмическим декрементом колебания.

Таким образом, линейная динамическая система второго порядка, выведенная из равновесного состояния (равномерного движения или покоя) и предоставленная сама себе с течением времени, колеблясь, возвращается в исходное состояние. При этом скорость ее возвращения и колебания вокруг этого состояния обусловливаются параметрами самой системы — рассеивающей способностью, жесткостью и инерционными свойствами системы.

Частное решение дифференциального уравнения обычно ищут в том же виде, что и его правая часть, но на степень выше, если это линейная или криволинейная зависимость или в виде полной гармонической функции, если она задана неполной гармонической функцией. Пусть правая часть уравнения задано периодической функ-

цией вида (внешнее возмущение)

$$M(t) = Q \sin \lambda t,$$

где Q — амплитуда; λ — частота внешнего возмущения. Тогда

$$m(t) = rac{Q\sin\lambda t}{I} = g\sin\lambda t,$$

где g = Q/I.

Уравнение примет вид

$$\frac{\partial^2 \varphi}{\partial t^2} + 2n \frac{\partial \varphi}{\partial t} + \omega^2 \varphi = g \sin \lambda t.$$

Частное решение уравнения ищем в виде

$$\varphi_{\mathbf{q}} = A \sin \lambda t + B \cos \lambda t.$$

Далее поступают так. Это решение подставляют в исходное уравнение и определяют неизвестные A и B таким образом, чтобы они удовлетворяли решению. Найдем первую и вторую производные:

$$\frac{\partial \varphi_{\mathbf{q}}}{\partial t} = A\lambda \cos \lambda t - B\lambda \sin \lambda t;$$

$$\frac{\partial^2 \varphi_{\mathbf{q}}}{\partial t^2} = -A\lambda^2 \sin \lambda t - B\lambda^2 \cos \lambda t.$$

После подстановки полученных производных в исходное уравнение, будем иметь

$$-A\lambda^{2}\sin \lambda t - B\lambda^{2}\cos \lambda t + 2n(A\lambda\cos \lambda t - B\lambda\sin \lambda t) + \omega^{2}(A\sin \lambda t + B\cos \lambda t) = g\sin \lambda t.$$

Собрав члены $\sin \lambda t$ и $\cos \lambda t$, получим систему уравнений

$$\begin{cases} A(\omega^2 - \lambda^2) - 2nB\lambda = g; \\ 2nA\lambda + B(\omega^2 - \lambda^2) = 0, \end{cases}$$

которое однозначно решается относительно неизвестных. Решение этой системы будем искать в виде

$$A=rac{\Delta_A}{\Delta}; \quad B=rac{\Delta_B}{\Delta},$$

где

$$\Delta = egin{array}{ccc} (\omega^2 - \lambda^2) & -2n\lambda \ 2n\lambda & (\omega^2 - \lambda^2) \end{array} igg| = (\omega^2 - \lambda^2)^2 + 4n^2\lambda^2; \ \Delta_A = egin{array}{ccc} g & -2n\lambda \ 0 & (\omega^2 - \lambda^2) \end{array} igg| = g(\omega^2 - \lambda^2)^2; \quad \Delta_B = egin{array}{ccc} (\omega^2 - \lambda^2) & g \ 2n\lambda & 0 \end{array} igg| = -2gn\lambda.$$

МируиоП

$$arphi_{ ext{ iny q}} = rac{g(\omega^2 - \lambda^2)\sin \lambda t}{(\omega^2 - \lambda^2)^2 + 4n^2\lambda^2} - rac{2gn\lambda\cos \lambda t}{(\omega^2 - \lambda^2)^2 + 4n^2\lambda^2}.$$

Преобразуем полученное выражение:

$$\begin{split} \varphi_{\mathbf{q}} &= \frac{g[(\omega^2 - \lambda^2)\sin\lambda t - 2n\lambda\cos\lambda t]}{(\omega^2 - \lambda^2)^2 + 4n^2\lambda^2} = \frac{g\sqrt{(\omega^2 - \lambda^2)^2 + 4n^2\lambda^2}}{(\omega^2 - \lambda^2)^2 + 4n^2\lambda^2} \times \\ &\times \left(\frac{(\omega^2 - \lambda^2)\sin\lambda t}{\sqrt{(\omega^2 - \lambda^2)^2 + 4n^2\lambda^2}} - \frac{2n\lambda\cos\lambda t}{\sqrt{(\omega^2 - \lambda^2)^2 + 4n^2\lambda^2}}\right) = \\ &= \frac{g(\cos\theta\sin\lambda t - \sin\theta\cos\lambda t}{\sqrt{(\omega^2 - \lambda^2)^2 + 4n^2\lambda^2}} = \frac{g\sin(\lambda t - \theta)}{\sqrt{(\omega^2 - \lambda^2)^2 + 4n^2\lambda^2}}, \end{split}$$

где $heta=rg \operatorname{tg}rac{2n\lambda}{\omega^2-\lambda^2}$ — фаза вынужденных колебаний.

Рассмотрим физический смысл полученного решения, для чего запишем его в виде

$$\varphi_{\mathbf{q}} = \frac{g \sin(\lambda t - \theta)}{\omega^2 \sqrt{(1 - \lambda^2/\omega^2)^2 + 4n^2 \lambda^2/\omega^4}}.$$

Величина $\frac{g}{\omega^2}=\frac{Q}{I}\frac{I}{C}=\frac{Q}{C}=\varphi_{\rm cr}$ соответствует деформации вала под действием статической нагрузки, равной амплитуде колебаний нагрузки. Величину

$$k_{ extsf{ iny A}} = rac{1}{\sqrt{(1-\lambda^2/\omega^2)^2 + 4n^2\lambda^2/\omega^4}}$$

называют коэффициентом динамической системы. Тогда частное решение уравнения принимает вид

$$arphi_{ ext{ iny q}} = rac{k_{ ext{ iny Z}}g\sin(\lambda t - heta)}{\omega^2},$$
 или $arphi_{ ext{ iny q}} = arphi_{ ext{ iny CT}}k_{ ext{ iny R}}\sin(\lambda t - heta).$

Полное решение уравнения (математической модели)

$$arphi = A \mathrm{e}^{-nt} \sin(pt + arepsilon) + rac{g}{\omega^2} k_{\mathrm{A}} \sin(\lambda t - heta).$$

Следует заметить, что при некотором $t=T_{\rm II}$ первое слагаемое — амплитуда собственных колебаний — становится близкой к нулю (после окончания так называемого переходного процесса) и для установившегося режима работы $(t>T_{\rm II})$ решение математической модели примет вид

$$arphi = rac{g}{\omega^2} k_{ extsf{ iny Z}} \sin(\lambda t - heta).$$

Другими словами, в установившемся режиме работы колебания являются постоянными и проходят с частотой внешнего возмущения.

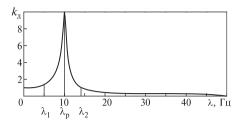


Рис. 2.3. График коэффициента динамичности

Рассмотрим далее более подробно коэффициент динамичности системы. График зависимости $k_{\rm д}$ от частоты внешней нагрузки λ представлен на рис. 2.3. На графике можно выделить три зоны, поведение динамической системы в которых будет различным:

Зона $1-0\leqslant \lambda<\lambda_1$, при этом $k_{\rm д}\approx 1$. Это означает, что при внешнем возмущении с этой частотой перемещения в системе равны перемещениям под действием такой же по величине статической нагрузки.

Такие частоты иногда называют *прошивными*, нагрузка прошивает динамическую систему без изменения.

Это так называемая низкочастотная составляющая нагрузки. На рис. 2.4 представлены колебания системы при соотношении частот собственных и вынужденных колебаний $\lambda/p=1/10$. На протяжении времени переходного процесса $T_{\rm II}$ на преобладающие вынужденные колебания с частотой λ накладываются затухающие собственные колебания с частотой p. По окончании переходного процесса колебания системы происходят с частотой внешнего возмущения и постоянной амплитудой, равной Q/C.

Зона $2-\lambda_1\leqslant \lambda<\lambda_2$, значение λ близко к частоте собственных колебаний системы. При этом значение $k_{\rm H}$ значительно превышает 1.

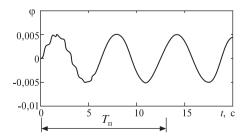


Рис. 2.4. График вынужденных колебаний в зоне прошивных частот

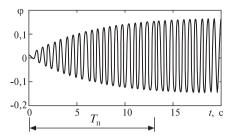


Рис. 2.5. График вынужденных колебаний в зоне резонанса

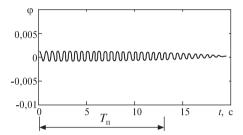


Рис. 2.6. График вынужденных колебаний в зоне высоких частот

Значение $k_{\scriptscriptstyle
m I}$ достигает максимума при частоте

$$\lambda_{
m p} = \sqrt{\omega^2 - 2n\lambda^2}.$$

Эта частота называется резонансной, а рассматриваемый диапазон частот — зоной резонанса.

На рис. 2.5 представлены колебания системы при $\lambda=\lambda_{\rm p}$. В течение переходного процесса $T_{\rm n}$ происходит накопление энергии системой и амплитуда колебаний возрастает, после чего происходят колебания с амплитудой, многократно превышающей амплитуду колебаний в зоне прошивных частот. Коэффициент динамичности при резонансе составляет

$$k_{ exttt{ iny H}} = rac{\omega^2}{2n\sqrt{\omega^2-n^2}} - rac{\omega^2}{2np},$$

или при $\omega \gg n \ k_{\rm H} pprox \omega/2n.$

Зона $3-\lambda>\lambda_2,\ k_{\rm д}$ уменьшается и при увеличении частоты стремится к нулю. Это высокочастотная составляющая нагрузки.

На рис. 2.6 представлены колебания системы при соотношении частот собственных и вынужденных колебаний $\lambda/p=5/1$. Видно, что наибольшая амплитуда колебаний имеет место во время переходного процесса. Амплитуда вынужденных колебаний в установившемся режиме весьма мала.

3.1. Некоторые определения и пояснения

В толковых словарях понятие подобия обычно определяется как наличие общих свойств или сходство по сути или неотъемлемым признакам.

В соответствии с этим определением два объекта рассматриваются как подобные, если они одинаковы или, по крайней мере, сопоставимы по некоторым, но не обязательно по всем свойствам. Кроме того предполагается, что свойства, по которым они сравниваются в данном контексте, являются существенными.

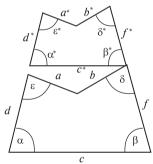


Рис. 3.1. Геометрически подобные фигуры

Таким образом, для заданного набора объектов можно определить множество различных видов подобия, в зависимости от свойств, которые считаются существенными в каждом конкретном случае.

По-видимому, геометрическое подобие — это первый вид строго сформулированного и разработанного подобия [14]. Оно было определено Евклидом следующим образом: «подобными называются такие прямолинейные геометрические

фигуры, у которых углы одинаковы, а стороны, противолежащие одинаковым углам, пропорциональны». В соответствии с этим определением фигуры, показанные на рис. 3.1, подобны, потому что:

- 1) $\alpha = \alpha^*$; $\beta = \beta^*$; $\varepsilon = \varepsilon^*$; $\delta = \delta^*$;
- 2) их стороны, противолежащие равным углам пропорциональны, т.е. $a=ka^*;\ b=kb^*;\ d=kd^*;\ f=kf^*;\ c=kc^*,$ где k коэффициент пропорциональности.

Одна фигура может быть получена из другой простым линейным преобразованием, которое увеличивает или уменьшает фигуру,

но не искажает её. Такое преобразование обычно называют конформным линейным преобразованием.

Понятие геометрического подобия плоских фигур можно значительно расширить, если рассматривать углы фигур как объекты линейного преобразования. При этом удобно представлять плоские фигуры как совокупность точек в двумерном декартовом пространстве с координатами X и Y. Обобщенное геометрическое подобие плоских фигур, основанное на общем линейном преобразовании координат, можно представить уравнениями

$$x^* = k_{1,x}x + k_{2,x}y + k_{3,x}; y^* = k_{1,y}x + k_{2,y}y + k_{3,y},$$
(3.1)

где индексированные величины k являются постоянными коэффициентами. Эти коэффициенты должны быть такими, чтобы уравнения (3.1) единственным образом определяли решения x и y при заданных значениях x^* и y^* .

Преобразование (3.1) естественным образом обобщается на случай трехмерного декартова пространства, называют общим аффинным преобразованием. Оно включает различные виды преобразований (и подобия), такие, как преобразование, сохраняющее форму, симметричное отображение, одномерное растяжение или сжатие, вращение и т.д.

Пример 1. Рассмотрим дискретное декартово пространство [14]. На рис. 3.2 показано несколько фигур, которые являются подобными, т.е. переводятся друг в друга с помощью общих аффинных преобразований. Они представляют разные характерные случаи:

- а) тождественное преобразование (исходная фигура);
- б) симметричное отображение относительно оси y и сдвиг;
- в) поворот и сдвиг;
- г) растяжение вдоль оси y;
- д) растяжение и сдвиг (геометрическое подобие);
- е) общий случай.

Примером уравнений, не задающих аффинного преобразования, являются уравнения:

$$x^* = x + y;$$
$$y^* = x + y.$$

Действительно, эти уравнения не обеспечивают единственного решения x и y, а существует множество решений x и y при условии $x^* = y^*$.

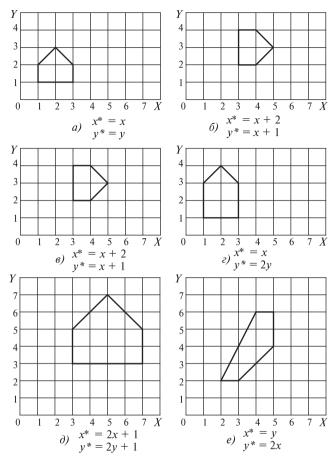


Рис. 3.2. Демонстрация аффинных преобразований

Геометрическое преобразование (равноправное по всем направлениям) полностью сохраняет геометрический объект, если не считать его увеличения или сжатия. Поэтому можно говорить о том, что оно определяет строгое подобие для таких геометрических объектов, как плоские фигуры и твердые тела.

Общее аффинное преобразование сохраняет геометрические объекты только приблизительно, так как допускает изменение формы в широком диапазоне. Можно сказать, что этим преобразованием определяется слабое подобие геометрических объектов. Нарушение формы, допустимые при общем аффинном преобразовании, могут быть ограничены разными способами. Например, мы можем потребовать, чтобы все коэффициенты в уравнении (3.1) кроме $k_{1,x}$ и

 $k_{2,y}$ были равны нулю. Такое преобразование обобщает понятие геометрического подобия, так как допускает различные коэффициенты пропорциональности в разных направлениях, но определяет менее общий вид подобия, чем при общем аффинном преобразовании.

Таким образом, можно дать следующее определение подобия. Две системы подобны, если они сохраняют некоторые общие характеристики и могут быть преобразованы друг в друга соответствующими преобразованиями, применимыми к другим характеристикам.

При решении системных задач часто удобно (а иногда и необходимо) решать задачу для системы-заменителя, а не реальной системы, для которой была сформулирована эта задача. Использование подходящих систем заменителей дешевле, быстрее, безопаснее, удобней, проще для понимания и контроля, точнее более непротиворечиво и лучше приспособлено к человеческому восприятию. Две системы (реальная и её заменитель) должны быть подобны в достаточно строгом смысле применительно к рассматриваемой задаче.

Рассмотрим две системы X и Y, которые подобны относительно множества преобразований, применимых к некоторым их характеристикам. Вудем считать, что X — изучаемая система, а Y — её желаемое представление. Тогда X называется подлинной системой (или просто подлинником), Y — модулирующей системой, а Y вместе с соответствующими преобразованиями называется моделью X. Поскольку отношение подобия симметрично, то можно и систему Y рассматривать как подлинную.

Вопрос о том, является ли какая-то система подходящей моделью для подлинной системы, решается исключительно из прагматических соображений. Это решение принимается пользователем. Пользователь обычно выбирает нужную модель как заменитель подлинной, если, по его мнению, она имеет явные преимущества по сравнению с подлинной, и в то же время не хуже любой другой из имеющихся в его распоряжении моделей.

Таким образом, термин «модель» используется в связи с определенным отношением между двумя системами. Он означает, что две системы в некотором смысле подобны и одна из них с определенной целью может быть заменена другой с помощью соответствующих преобразований. Моделирующая система становится моделью, если её дополнить преобразованиями, которые соответствующим образом связывают её с подлинником. Другими словами, каждой модели необходим подлинник. Для одного и того же подлинника можно построить различные модели.

3.2. Типы моделирующих систем

Если отличать чисто абстрактные системы, не имеющие физических аналогов (без каналов наблюдений), от интерпретированных систем (будем называть их физическими), то можно выделить четыре типа моделирующих отношений в зависимости от природы подлинной и моделирующей системы [4] (табл. 3.1).

К первому типу относятся все виды математических моделей. Эти модели основываются на известных физических и других законах природы. Они позволяют решать задачи, связанные с физическими системами, с помощью математических рассуждений (алгебраических преобразований или вычислительных методов) лучше, чем с помощью экспериментов с подлинными физическими объектами. Можно, например, ответить на многие вопросы, связанные с искусственными физическими системами до их создания. Вообще модели этого типа позволяют воспроизвести мысленный эксперимент на математических моделях гипотетического физического объекта. Например, определение электрического тока и напряжения в гипотетической электрической цепи с помощью решения соответствующей системы алгебраических и дифференциальных уравнений предпочтительнее создания реальной цепи и выполнения соответствующих измерений.

Примером моделей второго типа являются всевозможные компьютеры: цифровые, аналоговые или смешенного типа. Сюда относятся также различные специальные физические системы определенного вида. В качестве примеров можно привести линейные анализаторы (для решения линейных алгебраических уравнений), полимиальные анализаторы (для работы со степенными функциями), электролитические ванны (для решения уравнений в частных производных).

Использование моделей этого класса состоит в измерении некоторых параметров физической системы измерении некоторых других параметров, что позволяет описать решения соответствующих математических уравнений или ответить на некоторые математические вопросы.

Таблица 3.1

Тип системы	Подлинная система	Моделирующая система
I	Физическая	Абстрактная
II	Абстрактная	Физическая
III	Физическая	Физическая
IV	Абстрактная	Абстрактная

Третий тип моделей играет важную роль в технике. Наиболее простым примером этого типа являются масштабные модели, представляющие собой системы, просто увеличенные или уменьшенные в определенном масштабе по отношению к подлиннику. Они используются, например, для изучения динамических свойств новых моделей самолетов, вертолетов или ракет в аэродинамических трубах, для испытаний новых типов кораблей в специальных бассейнах, для проверки плотин, мостов и других строительных проектов.

Хотя все эти случаи сводятся к простому геометрическому подобию, результаты, полученные с помощью таких масштабных моделей, необходимо преобразовать соответствующим образом, чтобы они были применимы к подлинной системе. Действительно, при уменьшении (или увеличении) по отношению к подлиннику линейных размеров в C раз площади (т. е. площадь поперечного или продольного сечения крыла самолёта) уменьшаются (или увеличиваются) в C^2 раз, а объем в C^3 раз.

Задачи, возникающие в связи с изучением свойств преобразований для моделей этого типа, и их различные обобщения изучаются в теории подобия или размерности.

К четвертому типу относятся очень важные для прикладной математики модели. Они связаны с различными видами математических преобразований (преобразования Лапласа, Фурье и т. д.), используются для моделирования математических систем одного типа (например, дифференциальных уравнений) системами другого типа (например, алгебраическими уравнениями). Вместо того чтобы работать с подлинной системой, мы можем использовать моделирующую систему, которая значительно проще, а затем применить полученные результаты к подлиннику. Для некоторых случаев (например, для преобразования Лапласа) имеются справочники, устанавливающие соответствие между подлинными и моделирующими системами.

3.3. Теоремы подобия

В литературе [3, 15, 16] существует и иное определение подобия: объекты называются *подобными*, если по характеристике одного из них характеристику другого можно получить простым пересчетом. В соответствии с этим определением различают абсолютное и практическое подобие.

Абсолютное подобие требует тождества всех процессов в объектах в пространстве и во времени.

Практическое подобие требует тождества только тех процессов, которые наиболее существенны для данного исследования.

Теория подобия позволяет:

- обоснованно выбрать модель, подобную объекту-оригиналу;
- определить параметры модели, обеспечивающие это подобие;
- пересчитать результаты модельного эксперимента на натурный объект;
- обобщить результаты исследований, проведенных в различных условиях и в различных режимах работы;
- получить обобщенные зависимости между входными и выходными величинами объекта исследования, которые будут справедливы как для данного объекта, так и для целого класса объектов, подобных ему;
- распространить результаты эксперимента, проведенного в данном диапазоне изменения факторов, на более широкие интервалы их варьирования.

Процессы в объекте исследования описываются в общем случае известной или неизвестной системой дифференциальных уравнений связи между параметрами и факторами.

Необходимым условием подобия двух объектов является одинаковый вид системы уравнений. Только в этом случае характер процессов в объектах может быть одинаковым и сами объекты можно будет отнести к общему классу.

Если в одном объекте связь между параметром и фактором является линейной, а во втором подчиняется, например, синусоидальному закону, то по характеристикам первого нельзя получить характеристики второго объекта простым пересчетом. Рассматриваемые объекты не могут быть подобными. Однако одинаковый вид уравнений, описывающих процессы в объектах, является только необходимым, но не достаточным условием подобия. Так, в рассмотренном выше примере динамической системы, описываемой линейным дифференциальным уравнением, сущность процесса в системе определяется соотношением коэффициентов жесткости ω и демпфирования n. Если $\omega < n$ — процесс изменения во времена параметра φ — сходящийся апериодический, а при $\omega > n$ — сходящийся колебательный. Рассмотренные процессы принципиально отличаются друг от друга, хотя и описываются уравнениями одинакового вида.

Различными окажутся также процессы, описываемые двумя уравнениями одинакового вида, с численно одинаковыми коэффициентами, при одинаковых начальных условиях, если знаки коэф-

фициентов будут различными. При n<0 процесс будет колебательным, но не сходящимся, а расходящимся.

Для выделения из множества процессов, описываемых данным видом уравнений, конкретного процесса необходимо располагать значениями коэффициентов при переменных и их производных, а также начальными условиями. Для уравнений в частных производных, кроме того, должны быть известны граничные зависимости. Коэффициенты, начальные условия и граничные зависимости в совокупности являются условиями однозначности процессов.

Подобие, кроме одинаковости систем уравнений, предъявляет определенные требования и к условиям однозначности. Поясним суть этих требований следующим примером. Предположим, что имеется два объекта. В первом процесс описывается функцией

$$y = f(x_1, x_2, \dots, x_n),$$

где y — параметр; x_1, x_2, \dots, x_n — факторы. Для второго объекта уравнение процесса имеет вид

$$Y = f(X_1, X_2, \dots, X_n),$$

где Y — параметр; X_1, X_2, \dots, X_n — факторы.

В условия однозначности входят все факторы.

Пропорциональность означает, что $x_1/X_1=m_1$, $x_1/X_1=m_1$, $x_2/X_2=m_2,\ldots,\ x_n/X_n=m_n$.

Для подобных объектов коэффициенты пропорциональности для сходственных параметров должны быть равны.

Например, если среди факторов для первого объекта имеются две массы — факторы x_1 и x_2 и для второго также две массы — факторы X_1 и X_2 и если первый и второй объекты подобны, то должно выполняться условие

$$x_1/X_1 = x_2/X_2$$
 или $m_1 = m_2$.

Аналогичные соображения можно высказать для соответствующих длин, ускорений, усилий и т.д.

Между конкретными величинами (например, массами, ускорениями и силами) в объектах существует определенная функциональная связь, которая предопределяет возможность получения обобщенных характеристик — критериев подобия.

Теория подобия базируется на трех теоремах.

Первая теорема. Необходимым условием подобия двух объектов является равенство соответствующих критериев подобия.

Вторая теорема. Уравнения, описывающие процесс в объекте, могут быть представлены зависимостями между критериями подобия.

Третья теорема. Необходимыми и достаточными условиями подобия объектов являются равенство критериев подобия и пропорциональность сходственных параметров, входящих в условия однозначности.

3.4. Критерии подобия. Перерасчет результатов модельных испытаний на натуру

Kритерии подобия — безразмерные комбинации, которые составлены из физических величин, описывающих процессы в исследуемых объектах. Критерии подобия должны обладать четким физическим смыслом. Обозначаются критерии буквой π [3].

В соответствии с теорией подобия при экспериментах необходимо измерять все величины, входящие в состав критериев. Обрабатывать результаты следует в виде зависимостей между критериями подобия. Полученные таким образом зависимости будут справедливы не только для данного эксперимента, но и для всех подобных объектов.

Например, критериями практического подобия двух однотипных лопастных машин (радиальных или осевых), работающих в установившихся режимах, являются безразмерный напор π_1 и безразмерная подача π_2 :

$$\pi_1=\overline{H}=\frac{gH}{n^2D^2};\quad \pi_2=\overline{Q}=\frac{Q}{nD^3},$$

где H — напор насоса; Q — подача; n — частота вращения ротора; D_2 — диаметр рабочего колеса.

Зависимость безразмерного напора от безразмерной подачи представляет собой безразмерную (типовую) напорную характеристику лопастной машины. Она не связана с размерами, частотой вращения ротора и плотностью жидкости, а характеризует только особенности гидродинамической схемы и является одинаковой для всего семейства лопастных машин.

При создании крупных машин первоначально изготовляют несколько небольших моделей различных гидродинамических схем и проводят их испытания. Определяя критерии π_1 и π_2 для различных режимов, строят график зависимости π_1 от π_2 — безразмерную характеристику, а затем по законам подобия определяют размеры, частоту вращения и строят зависимость напора от подачи для натурной машины.

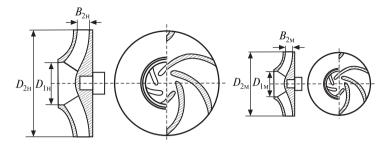


Рис. 3.3. Рабочие колеса геометрически подобных центробежных насосов

Пропорциональность сходственных параметров, входящих в условия однозначности, для лопастных машин, работающих в установившихся режимах, выполняется при их геометрическом подобии. Последнее требует одинаковости форм и одинакового отношения сходственных размеров. Геометрическое подобие является обязательным условием практического подобия большинства объектов.

Лопастная машина состоит из подвода, рабочего колеса и отвода. Два рабочих колеса, например, радиальной машины будут геометрически подобными, если число и форма лопаток у них будут одинаковыми, а сходственные размеры будут находиться в соотношении

$$rac{D_{1 ext{H}}}{D_{1 ext{M}}} = rac{D_{2 ext{H}}}{D_{2 ext{M}}} = rac{B_{2 ext{H}}}{B_{2 ext{M}}},$$

где $D_{1\text{H}}$, $D_{2\text{H}}$, $B_{2\text{H}}$ и $D_{1\text{M}}$, $D_{2\text{M}}$, $B_{2\text{M}}$ — диаметр входа, диаметр и ширина колеса натурной и модельной машин соответственно (рис. 3.3).

Для геометрического подобия лопастных машин, кроме рабочих колес, должно быть соблюдено подобие их подводов и отводов.

3.5. π -теорема и ее следствия

В соответствии с π -теоремой, если процесс в объекте характеризуется m фундаментальными физическими величинами, для выражения размерностей которых используется k основных единиц, то этот процесс можно описать m-k безразмерными комбинациями, составленными из этих величин.

Из теоремы следует два важных практических вывода:

- 1. Уравнения, описывающие физические процессы, могут быть выражены уравнениями связи между безразмерными комбинациями критериями подобия. Последние уравнения будут справедливы для всех подобных объектов.
- 2. Число независимых критериев равно m-k, т. е. меньше числа размерных физических переменных на число основных единиц.

Уменьшение числа переменных, которыми описывают процесс, ведет к уменьшению объема экспериментальных исследований и делает результаты более наглядными. Предположим, что процессы в объекте описываются m=5 фундаментальными физическими величинами. Одна из них выходная — параметр и четыре входных — факторы. Решено экспериментальным путем установить связь между выходной и входными величинами, не прибегая к безразмерным комбинациям. Пусть при постановке опытов каждый фактор будет фиксироваться на пяти уровнях [3].

В этих условиях для перебора всех возможных сочетаний необходимое число опытов, равное сложности объекта, составит $C=5^4=625$. Выполнить такое число опытов весьма затруднительно.

Сложен также анализ результатов эксперимента, поскольку необходимо получить зависимость в виде функции четырех переменных. Подобрать такую зависимость весьма сложно. Кроме того, результаты опытов практически невозможно будет представить графически.

Посмотрим, что даст переход к безразмерным комбинациям. Предположим, что число основных единиц k=3 — это очень часто встречающийся случай при исследовании механических и гидравлических систем. В условиях рассматриваемого примера в соответствии с π -теоремой после перехода к критериям подобия число безразмерных переменных составит m-k=5-3=2. Одна из них — безразмерный параметр, вторая — обобщенный безразмерный фактор. Для получения данных, одинаково достоверных с данными экспериментов без использования критериев подобия, в последнем случае достаточно будет поставить не 625, а всего 5 опытов.

При переходе к безразмерным комбинациям упрощается анализ и графическое представление информации.

Зависимость безразмерного параметра от обобщенного безразмерного фактора описывается функцией одной переменной и будет представлена на графике одной линией.

Известны два способа определения критериев подобия: с помощью анализа размерностей и по уравнениям процесса.

3.6. Определение критериев подобия с использованием теории размерностей

Решение этой задачи состоит из трех этапов.

На первом этапе выбираются фундаментальные переменные — параметры и факторы. Обычно при выборе параметра (выходной

	Таблица 3.2
Основные единицы СИ	

Величина	Обозначение	Размерность	Название
Единица длины Единица массы Единица времени Единица силы электрического тока Единица температуры Единица числа вещества Единица силы света	$egin{array}{c} l & & & & & & & & & & & & & & & & & & $	L M T I K N J	метр килограмм секунда ампер Кельвин моль кандела

переменной) осложнений не бывает — это та величина, для которой мы ищем закономерность.

Для правильного выбора факторов (входных переменных) необходимо глубокое проникновение в суть исследуемого объекта. Часто это требует не только изучения априорной информации, но и постановки предварительных экспериментов. Если после выбора фундаментальных переменных система безразмерных комбинаций не получается, то необходимо возвратиться к анализу объекта исследования.

На втором этапе выбирается система основных единиц для размерностей фундаментальных переменных. В качестве основных рекомендуется принимать основные единицы СИ (табл 3.2). Используя размерности основных единиц, можно составить формулы размерностей всех фундаментальных переменных.

Например, известно, что сила определяется зависимостью F=ma. Формула размерности силы определяется как произведение формул размерности массы и ускорения:

$$[F] = [m][a] = [MLT].$$

Записав формулы размерностей всех фундаментальных переменных, описывающих процессы в объекте, устанавливают, какие размерности основных единиц в них входят. Эти единицы и будут составлять систему основных единиц в условиях конкретной задачи.

На третьем этапе определяются критерии подобия с использованием теории размерностей. Для размерной функциональной зависимости $y=[f([x_1,x_2,\ldots,x_n)]$ размерности левой и правой частей должны быть равны:

$$[\mathbf{y}] = [f([x_1, x_2, \dots, x_n)]$$
или $\frac{[y]}{[f(x_1, x_2, \dots, x_n)]}.$

Пример. Определение критериев подобия процесса силового взаимодействия шара с обтекающим потоком жидкости.

Формулы размерностей фундаментальных переменных				
Величина	Обозначение	Размерность		
Сила взаимодействия шара и потока жидкостей	F	MLT^2		
Скорость жидкости	v	LT^{-1}		
Плотность жидкости	ρ	ML^{-2}		
Динамическая вязкость жидкостей	μ	$ML^{-1}T^{-1}$		
Диаметр шара	d	L		

Таблица 3.3 Формулы размерностей фундаментальных переменных

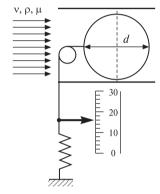


Рис. 3.4. Схема стенда для определения силы воздействия потока на шар

Схема стенда для определения силы, с которой поток действует на шар, показана на рис. 3.4. Шар помещен в трубопровод настолько большого внутреннего диаметра, что стеснением им потока можно пренебречь. Гибкой нитью шар связан через блок с пружинным динамометром. Усилие F зависит от свойств шара и потока. Если шероховатостью шара можно пренебречь, его свойства определяются одной переменной — диаметром d. Свойства потока оцениваются средней скоростью v, плотностью ρ и вязкостью μ жидкости. Таким образом, в рассматриваемом случае

фундаментальных переменных пять: параметр F и факторы d, v, ρ и $\mu.$

Для выбора основных единиц запишем формулы размерностей фундаментальных переменных (табл. 3.3). Из этой таблицы следует, что размерности всех фундаментальных переменных можно выразить тремя основными единицами — M, L и T. Так как число m фундаментальных переменных пять, а число k основных единиц три, то независимых критериев будет m-k=5-3=2.

Критерий (безразмерная комбинация) в общем случае может быть представлен произведением фундаментальных переменных в определенных степенях. В рассматриваемом случае критерий

$$\pi = F^x d^y \nu^z \rho^u \mu^w,$$

где x, y, z, u, w —показатели степеней. Показатели могут быть целыми, дробными, положительными и отрицательными числами. Они могут принимать и нулевое значение. В последнем случае критерий не будет зависеть от соответствующей фундаментальной переменной.

Представим искомую зависимость в виде

$$F^a d^b \nu^c \rho^e \mu^f = 1, \tag{3.2}$$

где a, b, c, e, f — неизвестные показатели степеней.

Если зависимость (3.2) справедлива относительно переменных, то она будет справедлива и относительно размерностей. Подставим в уравнение вместо переменных их размерности.

Левую часть уравнения представим произведением размерностей в нулевых степенях:

$$(MLT^{-2})^a L^b (LN^{-1})^c (ML^{-3}) (ML^{-1}T^{-1})^f = M^0 L^0 T^0.$$

Чтобы последнее выражение было справедливым, должны выполняться условия равенства показателей степени для каждой из трех основных единиц:

для M: a+e+f=0; для L: a+b+c-3e-f=0; для T: -2a-e-f=0.

В трех уравнениях пять переменных. Решив совместно уравнения, можно исключить три переменные. От того, какие переменные исключаются, зависит вид критериев. Все критерии будут формально верными. Однако одни из них имеют физический смысл, а другие — нет. Поэтому решение задачи по установлению вида критериев иногда приходится повторять при различных комбинациях исключаемых переменных. Выразим переменные $b,\ c$ и e через a и f. Получим

$$e = -a - f;$$
 $c = -2a - f;$ $b = -2a - f.$ (3.3)

Подставим в выражение (3.2) показатели степеней (3.3):

$$F^a d^{-2a-f} v^{-2a-f} \rho^{-a-f} \mu^f = 1.$$

Объединим члены, имеющие одинаковые показатели степеней:

$$\left(\frac{F}{d^2\rho\nu^2}\right)^a\left(\frac{\mu}{\rho\nu d}\right)^f=1.$$

Из последнего выражения следует, что в качестве критериев подобия могут быть приняты комплексы:

$$\pi_1 = (rac{F}{d^2
ho
u^2}); \quad \pi_2 = \left(rac{\mu}{
ho
u d}
ight).$$

Первый является безразмерным усилием. Усилие, действующее со стороны потока на шар, делится на произведение площади квадрата, сторона которого равна диаметру шара (d^2) и удвоенного скоростного давления ρv^2 .

Так как $\mu/\rho=\gamma$ — кинематический коэффициент вязкости жидкости, а $vd/\gamma={\rm Re}$ — число Рейнольдса, то критерий $\pi_2={\rm Re}^{-1}$. По теории подобия произведение, частное нескольких критериев или возведение их в произвольную степень дадут новый критерий. Таких критериев можно получить бесчисленное множество. Однако независимых среди них будет только m-k критериев.

Следовательно, можем избавиться от показателя степени и принять $\pi_2 = \mathrm{Re}.$

При установлении зависимости силы от определяющих факторов без перехода к безразмерным комбинациям необходимо фиксировать диаметр, скорость, плотность и вязкость на определенном числе уровней, например на пяти.

 Δ ля плотности и вязкости независимые изменения при этом практически реализовать нельзя.

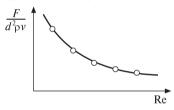


Рис. 3.5. График зависимости безразмерного усилия взаимодействия шара с потоком жидкости от числа Рейнольдса

После перехода к безразмерным комбинациям при постановке эксперимента необходимо изменять только одну из входных величин. Проще всего изменению поддается скорость. Установив пять уровней скорости, получим пять соответствующих уровней числа Рейнольдса. Измерив усилие, определим величину безразмерного усилия и построим график зависимости безраз-

мерного усилия взаимодействия шара с потоком жидкости от числа Рейнольдса (рис. 3.5). Полученная зависимость будет справедлива для шара любого размера, находящегося в потоке жидкости любой плотности и вязкости.

3.7. Определение критериев подобия из уравнений процесса

Описанный выше метод универсален и применим к различным объектам исследования, в том числе и к объектам типа «черный ящик». Однако получить таким методом безразмерные комбинации, имеющие четкий физический смысл и удобные для дальнейшего анализа, в некоторых случаях весьма сложно. В случае, если для объекта исследования априорно известны некоторые уравнения, характеризующие протекающие в нем процессы, безразмерные комбинации можно получить путем преобразования этих уравнений.

Для решения поставленной задачи необходимо уравнения, которыми описываются процессы в исследуемом объекте, привести к

безразмерному виду. Эта операция может выполняться несколькими способами. Один из наиболее рациональных — способ, основанный на введении безразмерных переменных.

Пример. Определение критериев подобия при исследовании местного гидравлического сопротивления [3, 16].

Для некоторого клапана, установленного в гидролинии, необходимо найти зависимость для определения потерь давления на этом клапане. В качестве факторов выступают характеристики потока (средняя скорость и плотность жидкости) и конструктивные характеристики клапана — его форма и размеры.

Известно, что при автомодельном режиме движения жидкости имеет место зависимость

$$\Delta P = \rho g a Q^2,$$

где ΔP — перепад давления на гидравлическом сопротивлении; Q — расход жидкости через это сопротивление; a — сопротивление; ρ — плотность жидкости; g — ускорение свободного падения. Представим расход как произведение средней скорости потока v и площади проходного сечения клапана F: Q=vF. Тогда

$$\Delta P = \rho q a \nu^2 F^2$$
.

Разделим обе части этого уравнения на скоростное давление $\rho v^2/2$, получим

$$\frac{2\Delta P}{\rho \nu^2} = 2gaF^2.$$

Левая и правая части полученного уравнения являются безразмерными комбинациями. Проверим это:

$$\begin{split} [\Delta P \rho^{-1} \nu^{-2}] &= (M L^{-1} T^{-2}) (M L^{-3})^{-1} (L T^{-1})^{-2} = M^0 L^0 T^0 = 1; \\ [qa F^2] &= (L T^{-2}) (L^{-5} T^2) (L^2)^2 = V^0 L^0 T^0 = 1. \end{split}$$

Получили два критерия подобия:

$$\pi_1=rac{2\Delta P}{
ho
u^2}; \quad \pi_2=2gaF^2.$$

Первый критерий является отношением потерь давления на местном сопротивлении (клапане) и скоростного давления потока жидкости и учитывает характеристики потока жидкости — плотность и среднюю скорость.

Второй критерий учитывает только характеристики самого местного сопротивления (клапана) — размеры его проходного сечения, форму проточной части, качество поверхностей и т. д. Этот

критерий называют коэффициентом местного сопротивления и обозначают символом ξ .

Таким образом, коэффициент ξ показывает соотношение между потерями давления на местном сопротивлении и скоростным давлением потока жидкости. Этот коэффициент определяется опытным путем и будет одинаковым для класса подобных сопротивлений.

В рассматриваемом примере, найдя с помощью эксперимента значение коэффициента ξ для некоторого клапана, через который протекает некоторая жидкость, мы сможем рассчитать потери давления на любом клапане, конструкция которого подобна конструкции исследованного клапана, при протекании через него любой жидкости с любой скоростью.

4.1. Основные понятия и определения

Обработка результатов эксперимента производится, чтобы получить исходные данные для любых последующих расчётов, в том числе и вероятностных.

Методы анализа результатов эксперимента и определение по ним вероятностей событий и характеристик случайных величин даёт математическая статистика (MC) — общий раздел современной теории вероятностей.

Исходным материалом для применения статистических методов являются экспериментальные или статистические данные, под которыми понимаются сведения о числе объектов, обладающих теми или иными признаками. Например, статистическими данными являются:

 $d_1, d_2, d_3, \dots, d_i, \dots, d_n$ — отклонения размеров диаметров n однотипных бактерий сфероидной формы от среднего размера (d_i — отклонение диаметра i-й бактерии);

 $x_1, x_2, x_3, \dots, x_i, \dots, x_n$ — отклонения размеров n однотипных деталей от номинального размера (x_i — отклонение размера i-й детали);

 $x_1, x_2, x_3, \ldots, x_i, \ldots, x_n$ — значения предельной прочности n некоторого материала;

 $t_1, t_2, t_3, \dots, t_i, \dots, t_n$ — продолжительность функционирования до отказа (долговечности) n образцов прибора.

Перечисленные данные являются числовыми характеристиками массовых случайных явлений (размеров бактерий, сортности деталей, прочности материала, долговечности прибора и т. д.). Поэтому предметом математической статистики служат случайные явления, а её основной задачей — количественный и качественный анализ этих явлений [14].

Напомним кратко исходные понятия МС и те задачи, которые она решает.

Если опыт будет многократно повторяться (хотя бы мысленно!), то мы будем получать различные конкретные выборки. В МС постулируется, что множество конкретных выборок образует n-мерный случайный вектор $x_1, x_2, x_3, \ldots, x_i, \ldots, x_n$, называемый случайной выборкой из ГС, где, во-первых, все компоненты x_i независимы, во-вторых, каждый компонент x_i есть случайная величина с тем же законом распределения (вообще говоря, неизвестным), которому подчиняется генеральная совокупность X.

Таким образом, выборочные данные $x_1, x_2, x_3, \ldots, x_i, \ldots, x_n$, полученные в результате эксперимента по изучению случайной величины X, выступают в двух ролях одновременно:

- в роли конкретных чисел $x_1, x_2, x_3, \ldots, x_i, \ldots, x_n$, с которыми мы оперируем для вычисления значений некоторых характеристик;
- в роли случайных величин $x_1, x_2, x_3, \ldots, x_i, \ldots, x_n$, если мы мысленно процесс получения n выборочных значений «проигрываем» многократно.

Последнее нужно для того, чтобы можно было сделать выводы о свойствах тех или иных правил обработки результатов наблюдений.

Основой любых статистических выводов о свойствах генеральной совокупности является выборочный метод, заключающийся в том, что свойства генеральной совокупности X (случайной величины X), устанавливаются путем изучения тех же свойств на случайной выборке объёма n. При этом сами выводы носят вероятностный характер (т. е. справедливы лишь в среднем при многократном повторении эксперимента), а их точность тем выше, чем больше объём выборки n и чем больше объём априорной информации имеется вначале исследования.

Замечание. Наряду с одномерной ГС, можно рассматривать многомерную ГС $(X,Y,\ldots,Z);(X_1,Y_1,\ldots,Z_1);\ldots;(X_n,Y_n,\ldots,Z_n).$

Условно можно выделить следующие основные классы задач, решаемых методами MC:

- оценка неизвестных параметров в статистических моделях (например, оценка параметров $\theta_1, \theta_2, \theta_3, \dots, \theta_n$, от которых зависит функция распределения $F(x, \theta_1, \theta_2, \theta_3, \dots, \theta_n)$ случайной величины, вид которой известен);
- проверка статистических гипотез (в том числе гипотез о предполагаемом виде неизвестного закона распределения случайной величины);
- установления формы и степени связи между несколькими случайными переменными;
- классификация объектов по измерению вектора признаков (Y_1, Y_2, \ldots, Y_m) , т. е. распределение объектов на классы по какому-то критерию близости «родственных» объектов.

Первые три группы задач будут кратко рассмотрены ниже.

4.2. Основные выборочные характеристики

Случайные величины могут быть дискретными и непрерывными. Появление случайных величин можно охарактеризовать вероятностью их появления:

$$P(x = x_1) = P(x_1) = P_1, (4.1)$$

где P — вероятность появления случайной величины; x — случаная величина; $x_1, x_2, x_3, \ldots, x_n$ — возможные значения случайной величины. Равенство (4.1) означает, что вероятность того, что случайная величина x будет иметь значение x_1 , равна P_1 . Поскольку появление в данном опыте возможного значения, например x_1 , исключает появление других возможных значений x_2, x_3, \ldots, x_n , то возможные значения случайной величины являются несовместимыми событиями. Из теории вероятностей известно, что сумма двух несовместимых событий равняется 1. Для рассматриваемого случая

$$\sum_{i=1}^{n} P(x_i) = 1.$$

Соотношение, устанавливающее связь между возможными значениями случайной величины и соответствующимиим вероятностями, называется законом распределения случайной величины. При этом значения случайной величины являются аргументом, а соответствующие им вероятности — функцией.

4.2.1. Построение таблиц распределений

Для построения таблицы распределения строят вариационный ряд.

Таблица 4.1

x_i	x_1	x_2	 x_k	Проверка
m_i	m_1	m_2	 m_k	$\sum_{i=1}^{k} m_i = n$
$P_i = m_i/n$	P_1	P_2	 P_k	$\sum_{i=1}^{k} P_i = 1$

Вариационный ряд. Одним из самых простых преобразований выборочных значений является их упорядочение по величине, т. е. расположение их в так называемый вариационный ряд:

$$X_1 \leqslant X_2 \leqslant \ldots \leqslant X_k \leqslant \ldots \leqslant X_n$$

где X_k-k -й член вариационного рада, или k-й порядковый член выборки. После построения вариационного рядастроят таблицу зависимостей между случайной величиной и её вероятностью в следующей последовательности:

- устанавливается m_i число одинаковых значений x_i ;
- определяется вероятность $P_i = m_i/n$, где n общее число всех опытных данных;
- после этого строится таблица распределений (табл. 4.1).

В табл. 4.1 величина k — число различных значений x. В поледнем столбце табл. 4.1 показаны формулы для проверки правильности её заполнения.

Если число разных значений опытных данных $n\approx 15...20$, то при группировке все эти данные целесообразно сводить в определенное число разрядов, принимая ширину разряда одинаковой. Тогда построение таблицы ведётся в следующей последовательности.

- 1. Находят наибольшее x_{max} и наименьшеее x_{min} значения случайной величины.
 - 2. Вычисляют размах изменения R по выражению

$$R = x_{\text{max}} - x_{\text{min}}$$
.

- 3. Задаются некоторым числом разрядов k, принимая его нечетным. При общем числе замеров n>100 целесообразно брать k=9...15, а при n<100 можно принять k=7.
- 4. Определяют ширину разряда h по выражению h=R/k, и для упрощения расчётов полученное значение h округляют в любую сторону.
- 5. Устанавливают границы разрядов и подсчитывают число замеров в каждом разряде. При подсчёте значения x, находящиеся на

1.00 mag 1.2					
J_i	$x_1 - x_2$	$x_2 - x_3$		$x_k - x_{k+1}$	Проверка
h_i	h_1	h_2		h_k	
m_i	m_1	m_2		m_k	$\sum_{i=1}^{k} m_i = n$
$P_i = m_i/n$	$P_1 = m_1/n$	$P_1 = m_2/n$		m_k/n	$\sum_{i=1}^{k} P_i = 1$

Таблина 4.2

границе разрядов, следует относить всегда к одному и тому же разряду, например к разряду, где x встречается впервые, т. е. является верхней границей разряда.

6. Определяют вероятность для каждого разряда и записывают ряд распределения в таблицу (табл. 4.2).

Гистограмма распределения. Графической формой представления случайных величин, сведенных в разряды, является гистограмма.

Последовательность построения гистограммы на одинаковых разрядах следующая:

- 1. Определяется величина ординаты $y_i = p_i/h$, где p_i вероятность появления случайной величины в i-м разряде; h — ширина каждого разряда.
- 2. В системе координат $y_i =$ $=f(x_i)$ на ширине разряда h определяются величины y_i как высоты и строятся прямоугольники (рис. 4.1).

 $0 h_1 h_2 \cdots$ h_i Очевидно, что площадь элементарного прямоугольника $S_i = {}_{{f Puc.~4.1.}}$ Гистограмма распределе-

 $=\ hy_i =\ hP_i/h =\ P_i$, а площадь всей гистограммы $S = \sum\limits_{i=1}^k S_i = \sum\limits_{i=1}^k P_i.$

Эмпирическая функция распределения. Обозначим вероятность того, что случайная величина x окажется меньше или равной какому-то значению x_i , как $P(x \leqslant x_i)$. Тогда зависимость, показывающая возрастание вероятности $P(x \leqslant x_i)$ при увеличении x, называется функцией распределения $F(x) = P(x \leqslant x_i)$.

Поскольку функция распределения F(x) равна вероятности $P(x \leqslant x_i)$, а вероятность может изменяться от 0 до 1, т.е. $0 \leqslant$

 $\leqslant F(x) \leqslant 1$. Поэтому

$$P(x\leqslant x_i)=\sum_{i=1}^k P(x=x_i)=\sum_{i=1}^k P_i,$$
 или $F(x)=\sum_{i=1}^k P_i,$

где k — число точек x_i , лежащих не правее x_k .

Построение функции распределения осуществляется в следуюшей последовательности.

- 1. В системе координат F(x) и x наносится точка с координатами x_1 и $F(x_1) = P_1$.
- 2. Из нанесенной точки опускается перпендикуляр до пересечения с осью x, и из неё проводится горизонтальная линия вправо до пересечения с перпендикуляром, восстановленным из точки x_2 .



Рис. 4.2. Графики функций $F_n(X)$ и F(X) Из графика следует, что:

- 3. На перпендикуляре, восстановленном из точки x_2 , откладывается $F(x_2)=P_2$.
- 4. Из точки x_2 и $F(x_2)$ проводится линия вправо и т. д.
- 5. Полученный график и является функцией распределения (рис. 4.2).
- функция распределения изменяется скачкообразно, причём величина скачка в точке x_i равна вероятности появления этого значения P_i ;
- функция распределения является неубывающей, т.е. такой функцией, которая может либо возрастать, либо не изменять своего значения.

Пусть дана функция распределения F(x) и требуется найти вероятность того, что x будет находиться в интервале a < x < b, т. е. нужно найти P(a < x < b). По определению P(x < a) = F(a).

Из графика функции распределения видно, что

$$P(a < x < b) = P(x < b) - P(x < a).$$

Это можно записать в виде

$$P(a < x < b) = F(b) - F(a).$$

Отсюда следует вывод: вероятность появления случайной величины в заданном интервале равна разности значений функции распределения на границах заданного интервала.

Закон распределения случайной величины X_k легко выражается через F(x) — закон распределения Γ С X. Например, закон рас-

пределения левого крайнего члена X_1 $F(X_1)=1-[1-F(X)]^n$. Это позволяет решать обратную задачу: по наблюдениям «слабейших» образцов, т. е. по реализациям случайной величины X_1 находить закон распределения Γ С F(X). На основе порядковых членов выборки основаны многие критерии проверки различных свойств Γ С.

Приближенное представление о неизвестной функции распределения Γ С F(X), определяющей в точке X вероятность события (X < x), дает так называемая эмпирическая, или выборочная функция распределения

$$F_n(X) = \nu(x)/n,\tag{4.2}$$

где v(x) — число выборочных значений, лежащих левее точки x на числовой оси.

Из определения (4.2) видно, что $\nu(x)/n$ есть частота события (X < x), которая при больших значениях n близка к вероятности этого события F(X), т.е. $F_n(X) \cong F(X)$. Доказано, что при $n \to \infty$ $F_n(X) \to F(X)$ для любых x.

График функции $F_n(X)$ представляет собой ступенчатую функцию со скачками 1/n в каждой точке x_i , i = 1, 2, ..., n, (см. рис. 4.2).

Зная вид функции $F_n(X)$, можно решать задачу обоснованного выбора закона распределения $\Gamma C F(X)$, используя так называемые критерии согласия, а также вероятностную меру.

4.4.2. Связь между функцией распределения и гистограммой

Из определения функции распределения следует, что

$$F(x_1) - F(x_0) = P_1;$$
 $F(x_2) - F(x_1) = P_2; \dots; F(x_i) - F(x_{i-1}) = P_i.$

Обозначим

$$F(x_1) - F(x_0) = \Delta F_1(x); \ F(x_2) - F(x_1) = \Delta F_2(x); \dots;$$

 $F(x_i) - F(x_{i-1}) = \Delta F_i(x),$

где $\Delta F_i(x)$ — приращение функции распределения.

С другой стороны, как было установлено ранее, ордината гистограммы

$$y_1 = \frac{\Delta F_1(x)}{\Delta x_1}; y_2 = \frac{\Delta F_2(x)}{\Delta x_2}; \dots; y_i = \frac{\Delta F_i(x)}{\Delta x_i}.$$

В общем случае можно записать

$$y = \frac{\Delta F(x)}{\Delta x},\tag{4.3}$$

т. е. ордината гистограммы равна отношению приращения функции распределения к приращению случайной величины.

По предыдущему разделу число разрядов равно отношению размаха R к ширине интервала h, т.е.

$$k = R/h = R/\Delta, \tag{4.4}$$

а уменьшение Δx равнозначно увеличению числа разрядов k.

Из формул (4.3) и (4.4) следует, что увеличение числа разрядов или, что то же самое, уменьшение величины Δx ведёт к сглаживанию гистограммы и функции распределения F(x) при сохранении площади гистграммы, равной единице. Для непрерывной случайной величины при $\Delta x \to 0$ гистограмма и функция распределения переходят в плавные кривые. При этом площадь плавной гистограммы по-прежнему будет равна 1, а ордината $y = \Delta F(x)/\Delta x$ при $\Delta x \to 0$ будет стремиться к пределу

$$y = \lim_{\Delta x \to 0} \frac{\Delta F(x)}{\Delta x} = \frac{dF(x)}{dx},$$

т. е. превратится в производную от F(x). Производная от функции распределения по переменной x называется плотностью распределения, а её график кривой — кривой распределения. Плотность распределения записывается в виде

$$\frac{dF(x)}{dx} = f(x).$$

Из интегрального исчисления известно, что площадь S под кривой распределения f(x) выражается интегралом

$$S = \int_A^B f(x) \, dx,$$

где A и B — наименьшее и наибольшее значение x.

С другой стороны,

$$S = \int_{A}^{B} f(x) \, dx = 1. \tag{4.5}$$

Равенство (4.5) является основным условием, которому должна удовлетворять кривая распределения.

Эмпирическая плотность распределения f(x). Если число наблюдений n велико, то выборочные данные распределяют по разрядам, разбивая занятую ими область на интервалы $(J_1,J_2,.,J_m)$ одинаковой длины Δ и подсчитывая частоты n_k/n попадания в эти интервалы.

	J_1	J_2	 J_k	 J_m	$1 \sum_{m}^{m}$
ĺ	n_1/n	n_2/n	 n_k/n	 n_m/n	$\frac{1}{n}\sum_{k=1}^{n}n_{k}=1.$

Табличное оформление этих данных носит название интервального статистического ряда:

Разделив частоты $p_k=n_k/n$ на длину интервалов Δ , получают относительные плотности выборочных значений $f_k=n_k/n\Delta$, $k=1,2,\ldots,m$, которые и определяют эмпирическую, или выборочную, плотность распределения $f_k(x)=f_k$ при $x\in J_k$, $k=1,2,\ldots,m$. Ясно, что $f_k(x)\cong f_k$ — плотности распределения ГС X. Графическое изображение функции $f_k(x)$ носит название гистограммы (см. рис. 4.1). При вычислении гистограммы рекомендуется интервалы J_k выбирать так, чтобы в каждом из них было не менее 10 точек.

4.3. Метод моментов

Основные свойства распределения случайной величины значительно проще можно описать несколькими числовыми характеристиками, которые определяют наиболее существенные особенности распределения. Такой системой характеристик являются моменты случайной величины. Моменты систематизируются по трём признакам: по порядку момента β_i ; по началу отсчёта случайной величины; по виду случайной величины.

Порядок момента может быть любой целой величиной, практически же рассматривают моменты 0-го, 1-го, 2-го, 3-го и 4-го порядков.

По началу отсчёта случайной величины моменты могут быть начальными и центральными, а по виду — для дискретных и непрерывных величин.

Hачальным моментом β -го порядка называется выражение

$$\alpha_s = \sum_{i=1}^n x_i p(x_i^{\beta}) = \sum_{i=1}^n x_i^{\beta} p_i.$$
 (4.6)

При уменьшении расстояния между соседними величинами дискретная величина Δx будет стремиться перейти в непрерывную. При этом

$$\lim_{\Delta x \to 0} \sum_{i=1}^n x_i^\beta p(x_i) = \int_A^B x^\beta f(x) \, dx,$$

где $\alpha_s = \int_A^B x^\beta f(x)\,dx$ — начальный момент β -го порядка для непрерывной величины.

Рассмотрим как определяются разные моменты непрерывных величин.

Начальный момент нулевого (0-го) порядка, или нулевой начальный момент

$$\alpha_0 = \int_A^B x^0 f(x) \, dx = \int_A^B f(x) \, dx.$$

Но $\int_A^B f(x) dx = 1$, следовательно, нулевой момент $\alpha_0 = 1$ и характеризует площадь, находящуюся под кривой распределения.

Начальный момент первого порядка

$$\alpha_1 = \int_A^B x f(x) \, dx$$

характеризует значение случайной величины, вокруг которого группируются все возможные её значения, т.е. определяет положение центра группирования, и называется средним значением или математическим ожиданием случайной величины. Для случайной величины x принято обозначени $\alpha_1=m_x$. Величина m_x имеет ту же размерность, что и x.

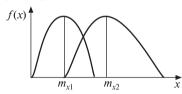


Рис. 4.3. Два распределения плотностей вероятности непрерывной случайной величины

Графики распределений, имеющих математические ожидания $m_{x2}>m_{x1},$ приведены на рис. 4.3.

Из рис. 4.3 видно, что математическое ожидание, или среднее значение, является той числовой характеристикой, которая определяет центр группирования случайной величины. Центр группирования часто прини-

мают за начало отсчета, что равносильно переносу координат в точку m_x . Случайные величины, отсчитываемые от центра группировки, т. е. от математического ожидания, называются центрированными. Моменты центрированой величины называются центральными. Переход от начальных моментов к центральным осуществляется заменой для дискретных величин значения x_i на (x_i-m_x) , а для непрерывных x на $(x-m_x)$.

Так, для непрерывных величин будем иметь нулевой центральный момент

$$\mu_0 = \int_A^B (x - m_x)^0 f(x) \, dx = \int_A^B f(x) \, dx.$$

Но $\int_A^B f(x) \, dx = 1$, следовательно, $\mu_0 = 1$ и выражает площадь под кривой распределения.

Первый центральный момент

$$\mu_1 = \int_A^B (x - m_x) f(x) dx,$$

или

$$\mu_1 = \int_A^B x f(x) \, dx - m_x \int_A^B f(x) \, dx$$

и, учитывая, что $\int_A^B x\,f(x)\,dx=m_x$ и $\int_A^B f(x)\,dx=1$, получаем

$$\mu_1 = \int_A^B (x - m_x) f(x) \, dx = m_x - m_x = 0.$$

Отсюда следует, что математическое ожидание центрированной величины равно 0.

Второй центральный момент

$$\mu_2=\int_A^B (x-m_x)^2 f(x)\,dx$$

характеризует рассеяние случайной величины x относительно среднего иназывается дисперсией, обозначаемой $S_x^2=\mu_2=\sigma^2$, т. е. имеет размерность квадрата случайной величины.

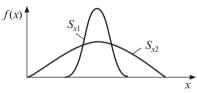


Рис. 4.4. Распределение плотности вероятности для различных дисперсий $(S_{x_2} > S_{x_1})$

Среднее квадратичное отклонение случайной величины \boldsymbol{x}

$$\sqrt{S_x^2} = S_x = \sigma.$$

Для наглядности на рис. 4.4 приведено распределение плотности вероятности для различных дисперсий.

Таким образом, положение

кривой распределения характеризуется математическим ожиданием, а степень разбросанности параметров — дисперсией S_x^2 . Для более полного описания распределения параметров привлекают моменты высших порядков.

Третий центральный момент

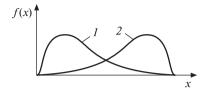
$$\mu_3 = \int_A^B (x - m_x)^3 f(x) \, dx$$

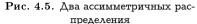
характеризует скошенность, или ассимметрию распределения.

Безразмерный коэффициент ассимметрии вычисляется как

$$A_x = \frac{\mu_3}{S_x^3}.$$

На рис. 4.5 представлены два ассимметричных распределения.





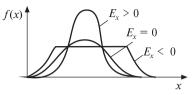


Рис. 4.6. Четвертые моменты (эксцессы) распределений

Одно из них (кривая 1) имеет положительную ассимметрию, другое (кривая 2) отрицательную.

Четвёртый центральный момент

$$\mu_4 = \int_A^B (x - m_x)^4 f(x) \, dx$$

характеризует «крупность» распределения, т.е. островершинность или плосковершинность распределения. Эти свойства распределения описываются с помощью безразмерной величины, так называемого эксцесса

$$E_x = \frac{\mu_4}{S_x^4} - 3.$$

Число 3 вычитается из μ_4/S_x^4 потому, что для весьма важного и широко распространённого в природе нормального распределения эксцесс $E_x=0$. Кривые островершинные, по сравнению с нормальной, обладают положительным эксцессом, а кривые более плосковершинные — отрицательным эксцессом (рис. 4.6).

Эмпирические (выборочные) числовые характеристики — это приближенные значения соответствующих числовых характеристик Γ С, определяемые по выборочным значениям x_1, x_2, \ldots, x_n .

Представление о математическом ожидании или среднем значении ΓC дает выборочное среднее значение

$$\overline{X} = \frac{1}{n} \sum_{i=1}^{n} X_k, \tag{4.7}$$

для дисперсии ΓC приближенным значением служит выборочная дисперсия

$$D(x) = S^{2} = \frac{1}{n} \sum_{i=1}^{n} (X_{k} - \overline{X})^{2}.$$
 (4.8)

Величина $\sqrt{S^2}=\overline{S}$ определяет выборочное среднее квадратическое (или стандартное) отклонение Γ С $\sigma=\sqrt{S^2}$.

Приближенным значением ковариации (или корреляционного

момента) двух случайных величин X и Y является выборочная ковариация

$$k_{xy} = \frac{1}{n} \sum_{i=1}^{n} (X_k - \overline{X})(Y_k - \overline{Y}).$$
 (4.9)

Для приближенного значения коэффициента корреляции r между X и Y вычисляют выборочный коэффициент корреляции

$$r = \frac{k_{xy}}{\overline{S}_x \overline{S}_y} = \frac{\sum_{i=1}^n (X_k - \overline{X})(Y_k - \overline{Y})}{\sqrt{\sum_{i=1}^n (X_n - \overline{X}) \sum_{i=1}^n (Y_n - \overline{Y})}}.$$
 (4.10)

При больших n от исходных выборочных данных (x_1, x_2, \ldots, x_n) переходят к группированным выборкам (x_i, n_i) , i = 1, 2, ...n, $\sum n_i = n$, где x_i — середина интервала J_i , на который попадают n_i выборочных значений x_k ; тогда формулы (4.7)–(4.9) очевидным образом меняются на следующие:

$$\overline{X} = \frac{1}{n} \sum_{i=1}^{n} \rho_k X_k; \quad S^2 = \frac{1}{n} \sum_{i=1}^{n} \rho_k (X_k - \overline{X})^2;
k_{xy} = \frac{1}{n} \sum_{i=1}^{n} \rho_{kj} (X_k - \overline{X}) (Y_j - \overline{Y}),$$
(4.11)

где $\rho_k = n_k/n$; $\rho_{kj} = n_{kj}/n$.

Заметим, что при вычислении выборочных характеристик по результатам опыта в формулы (4.7)–(4.10) вместо случайных величин X_k подставляются их конкретные числовые значения x_k , полученные в опыте.

Соотношения между начальными и центральными моментами. Установим соотношение между начальным и центральным моментом на примере второго момента. По предыдущему

$$\mu_2 = \int_A^B (x - m_x)^2 f(x) \, dx.$$

Возведя в квадрат подинтегральное выражение и представляя равенство в виде суммы интегралов, получим

$$egin{align} \mu_2 &= \int_A^B (x^2 - 2m_x + m_x^2) f(x) \, dx = \ &= \int_A^B x^2 f(x) \, dx - 2m_x \int_A^B x f(x) \, dx + m_x^2 \int_A^B f(x) \, dx. \end{gathered}$$

Обозначая $\int_A^B x^2 f(x) \, dx = \alpha_2$ и $m_x = \alpha_1$, а также учитывая, что после подстановки $\mu_2 = \alpha_2 - 2\alpha_1^2 + \alpha_1^2 = (\alpha_2 - \alpha_1)^2$. Аналогично для остальных центральных моментов будем иметь:

$$\mu_1 = 0; \quad \mu_3 = \alpha_3 - 3\alpha_2\alpha_1 + 2\alpha_1^3;$$

 $\mu_4 = \alpha_4 - 4\alpha_1\alpha_3 + 6\alpha_1^2\alpha_2 + \alpha_1^2 - 3\alpha_1^4.$

Приведённые соотношения справедливы как для непрерывных, так и для дискретных величин. На практике при статистической обработке данных обычно ограничиваются определением первого и второго моментов, т. е. математического ожидания и среднеквадратичного отклонения.

Однако для более полной характеристики распределения целесообразно находить все моменты.

Определение моментов по экспериментальным данным. Поскольку экспериментальные данные являются дискретными величинами, их моменты могут быть определены, как моменты дискретных величин по уравнению (4.6) при подстановке в него вместо p_i значения $p_i = m_i/n$. Тогда

$$\alpha_s = \frac{1}{n} \sum_{i=1}^n x_i^{\beta} m_i.$$

Расчёт проводится в следующей последовательности:

- 1. Для уменьшения числовых значений x перейти к новому началу отсчета $x_0 \approx (x_{\rm max} + x_{\rm min})/2$, причем округление может быть произведено в любую сторону.
- 2. Перейти к новой переменной $x^*=(x-x_0)/h$, где h выбирается таким образом, чтобы x^* измерялось по возможности целыми числами.
 - 3. Определить суммы

$$\sum_{i=1}^{k} x_i^* m_i; \quad \sum_{i=1}^{k} x_i^{*2} m_i; \quad \sum_{i=1}^{k} x_i^{*3} m_i; \quad \sum_{i=1}^{k} x_i^{*4} m_i.$$

4. Определить начальные моменты

$$\alpha_1^* = \frac{1}{n} \sum_{i=1}^k x_i^* m_i; \quad \alpha_2^* = \frac{1}{n} \sum_{i=1}^k x_i^{*2} m_i;$$

$$\alpha_3^* = \frac{1}{n} \sum_{i=1}^k x_i^{*3} m_i; \quad \alpha_4^* = \frac{1}{n} \sum_{i=1}^k x_i^{*4} m_i.$$

5. Для проверки правильности проведённого расчёта найти кон-

трольную величину $\alpha_k^*=\frac{1}{n}\sum_{i=1}^k(x_i^*+1)^4m_i$, которая, с другой стороны, равна $\alpha_k^*=\alpha_0^*+4\alpha_1^*+6\alpha_2^*+4\alpha_3^*+\alpha_4^*$, где $\alpha_0^*=1$.

Значения α_k^* , определенные по двум приведённым формулам, должны быть равны.

- 7. Найти центральные моменты: $\mu_2^*=\alpha_2^*-\alpha_1^*$; $\mu_3^*=\alpha_3^*-3\alpha_1^*\alpha_2^*+2\alpha_1^{*3}$; $\mu_4^*=\alpha_4^*-4\alpha_1^*\alpha_3^*+6\alpha_1^{*2}\alpha_2^{*2}-2\alpha_1^{*4}$.
- 8. Перейти обратно от численных характеристик x^* к характеристикам экспериментальной величины x. Из равенства $x^*==(x-x_0)/h$ очевидно, что $x=x_0+hx^*$, и после простых преобразований можно получить

$$m_x = x_0 + lpha_1^*; \quad S_x = h\sqrt{\mu_2^*}; \quad A_x = rac{\mu_3^*}{\sqrt{\mu_3^{*3}}}; \quad E = rac{\mu_4^*}{\mu_2^{*2}} - 3.$$

Выше был рассмотрен способ расчета моментов функции распределения для случая, когда в опытах фиксируются значения случайных величин.

4.4. Точечные оценки параметров

Во многих случаях бывает заранее известно, что функция распределения F(X) ГС принадлежит к определенному классу функций, зависящих от одного или нескольких параметров:

$$F(X) = F(x, \theta_1, \theta_2, \theta_3, \dots, \theta_n).$$

В этом случае отыскание закона распределения ГС X сводится к оценке неизвестных параметров $\theta_1, \theta_2, \theta_3, \ldots, \theta_n$ по выборке $x_1, x_2, x_3, \ldots, x_n$.

Например, пусть x есть результат измерения некоторой физической постоянной a, т. е. $x=a+\varepsilon$, где ε — погрешность измерения, которую в силу действия многих независимых факторов можно считать распределенной по нормальному закону с математическим ожиданием $M\varepsilon=0$ (если отсутствует систематическая погрешность) и дисперсией $S_\varepsilon^2=\sigma^2$, определяющей класс точности измерительного прибора. Тогда закон распределения x является также нормальным, с параметрами Mx=a и $S_x^2=S_\varepsilon^2=\sigma^2$, которые и нужно определить по результатам nизмерений: x_1,x_2,\ldots,x_n .

Подчеркнем, что ни при каком конечном объеме выборки n нельзя определить по выборке точное значение неизвестного параметра θ , можно лишь найти его приближенное значение, которое называется оценкой параметра по выборочным данным.

Существуют два вида оценок неизвестного параметра θ :

- 1) точечная оценка θ^* , под которой понимается любая функция выборочных значений $\theta^*=f(x_1,x_2,\ldots,x_n)$, приближенно равная θ : $\theta^*=f(x_1,x_2,\ldots,x_n)\cong\theta$;
- 2) интервальная оценка $(\underline{\theta}, \overline{\theta})$ в виде интервала, границы которого $\underline{\theta}$ и $\overline{\theta}$ определяются по выборочным данным таким образом, что интервал накрывает неизвестное значение θ с заданной вероятностью γ называемой доверительной и близкой к 1, т. е.

$$P(\underline{\theta} < \theta < \overline{\theta}) = \gamma.$$

Рассмотрим вначале точечные оценки параметров. Прежде всего, заметим, что любая оценка θ^* , являясь функцией случайных выборочных значений x_1, x_2, \ldots, x_n , сама является случайной величиной. Поэтому приближенное равенство $\theta^* \cong \theta$ следует понимать в вероятностном смысле: для любого $\varepsilon > 0$ вероятность того, что $|\theta^* - \theta| < \varepsilon$, близка к 1 при больших значениях n.

Оценка θ^* параметра θ считается хорошей, когда она является:

- 1) несмещенной (иначе не дает систематической погрешности) это означает, что $M\theta^*=\theta.$
- 2) состоятельной, если сходится по вероятности к θ , т. е. $P(|\theta^*-\theta|<arepsilon)\to 1$ при $n\to\infty$;
- 3) эффективной по сравнению с другими оценками θ_k , если обладает наименьшей среди них дисперсией, т.е. $D\theta^* = \min D\theta_k$.

Существуют различные методы отыскания точечных оценок: метод моментов, метод максимального правдоподобия, метод наименьших квадратов и др. [15, 16]. Оценки максимального правдоподобия обладают перечисленными выше свойствами (кроме, может быть, первого, нарушение которого обычно легко исправить) и, кроме того, при больших значениях n исследуемые величины распределены по нормальному закону [18].

Примеры точечных оценок

1. Пусть параметр $\theta=Mx$ — среднее значение ΓC x. Тогда независимо от вида закона распределения X несмещенной, состоятельной оценкой θ является выборочное среднее $\overline{\theta}=\overline{x}=\frac{1}{n}\sum_{i=1}^n x_k$.

Оценка $\theta_1=(x_1+x_n)/2$ является несмещенной и состоятельней, но не является эффективной. Если известно дополнительно, что величина X распределена нормально, т. е. $x\sim N(\mu,\sigma)$, то $\overline{x}=\frac{1}{n}\sum_{i=1}^n x_k$ является оценкой максимального правдоподобия.

2. Пусть $\theta=Dx$ — дисперсия Γ С X. Тогда можно показать, что выборочная дисперсия $S^2_{\text{выб}}=\frac{1}{n}\sum_{i=1}^n(x_k-\overline{x})^2$ является состоя-

тельной и эффективной оценкой, но не является несмещенной, так как $MS_{\text{выб}}^2=\frac{n-1}{n}\sigma^2.$ Нетрудно видеть, что «подправленная» выборочная дисперсия

$$D(x) = S_{\text{вы6}}^2 = \frac{n-1}{n} \sum_{i=1}^{n} (x_k - \overline{x})^2$$
 (4.11)

будет уже несмещенной оценкой. Эту оценку мы и будем использовать в дальнейшем.

3. Пусть $\sigma=p$ — параметр биноминального закона распределения, имеющий смысл вероятности появления успеха в любом из n независимых испытаний.

Оценкой максимального правдоподобия этого параметра является частота успеха в n опытах: $p\cong \theta^*=m/n$, где m — число успехов в n испытаниях. Эта оценка является несмещенной и состоятельной.

Другие примеры и техника расчета точечных оценок приведены в [16, 18]. Недостаток точечных оценок состоит в том, что при малом объеме выборки n вычисленное значение оценки может сильно отличаться от неизвестного значения параметра θ^* , и о значении этого отклонения у нас нет никакой информации.

Можно было бы наряду с оценкой θ^* указывать её дисперсию $\mathrm{D}\theta^*$ или её оценку X, что позволило бы судить о точности θ^* . Однако более удобным инструментом для этой цели являются интервальные оценки, или доверительные интервалы.

4.5. Интервальные оценки параметров

Определение интервальной оценки, или доверительного интервала (ДИ) $(\underline{\theta},\overline{\theta})$ уровня γ было дано выше. Добавим, что $\underline{\theta}$ называется нижней доверительной границей (НДГ), а $\overline{\theta}$ — верхней доверительной границей (ВДТ); ширина интервала $\overline{\theta}-\underline{\theta}=2r$ определяет точность оценки, а доверительная вероятность γ — достоверность её. Смысл величины γ состоит в следующем: при большом числе повторений эксперимента, по результатам которого определяется ДИ $(\underline{\theta},\overline{\theta})$, лишь в $(1-\gamma)\cdot 100$ % случаев истинное значение θ не будет накрыто ДИ. Так, если $\gamma=0.9$ и опыт повторен N=100 раз, то лишь в 10 случаях мы не гарантируем накрытия доверительным интервалом неизвестного значения параметра θ . Обычно рассматривают либо симметричные доверительные интервалы вида $\theta-\varepsilon,\theta+\varepsilon$ (в случае симметричного распределения оценки θ^*), где θ^* — некоторая точечная оценка параметра θ , а ε подбирается из условия $P(|\theta^*-\theta|<\varepsilon)=\gamma$, либо интервалы, у которых вероятность

нарушения условия $(\underline{\theta}<\theta<\overline{\theta})$ в ту и другую сторону одинакова и равна $(1-\gamma)/2=\alpha/2$, т. е.

$$P(\theta < \underline{\theta}) = P(\theta > \overline{\theta}) = \alpha/2.$$

Иногда интерес представляет лишь НДГ $\underline{\theta}$ или лишь ВДТ $\overline{\theta}$ (например, если θ есть средний срок службы изделия, то достаточно указать НДГ $\underline{\theta}$, если θ — интенсивность отказов, то достаточно определить ВДГ $\overline{\theta}$). Тогда говорят об одностороннем доверительном интервале уровня γ .

Если найдены односторонние $\Delta\Gamma$ $\underline{\theta}$ и $\overline{\theta}$ уровня γ каждая, то тем самым определен двусторонний Δ И ($\underline{\theta},\overline{\theta}$) уровня $\gamma'=2\gamma-1$. Методы построения точных Δ И для неизвестного параметра изложены в [5, 7]. Общее правило определения Δ И для любого параметра θ (которое является приближенным) основано на центральной предельной теореме Λ япунова, согласно которой оценка θ при больших значениях n (n>50) имеет нормальный закон распределения со средним $M\theta^*=\theta$ (если θ — несмещенная оценка) и дисперсией $D\theta^*$. Обозначим через $Z_{1-\alpha/2}$ квантиль нормального распределения уровня $1-\alpha/2$, где $\alpha=1-\gamma$, т. е. такое значение аргумента функции Λ апласа $\Phi(x)$, при котором $\Phi(Z_{1-\alpha/2})=1-\alpha/2$. Тогда

$$P(\theta^* - \theta < Z_{1-\alpha/2}\sqrt{D\theta^*}) \cong 2\Phi(Z_{1-\alpha/2}) - 1 = \gamma,$$

т.е. ДИ для параметра θ (будем его обозначать $J_{\gamma}(\theta)$ имеет вид

$$J_{\gamma}(\theta) = \theta^* \pm Z_{1-\alpha/2} \sqrt{D\theta^*}. \tag{4.12}$$

Таким образом, чтобы применить формулу (4.12), нужно лишь знать оценку θ^* и её дисперсию $D\theta^*$. Например, если $\theta=\mu=Mx$, то $\theta^*=\overline{x}$ и $D\theta^*=s^2/n$, а если $\theta=\sigma=\sqrt{D\theta^*}$, то $\theta^*=S$ и $D\theta^*=2s^2/(n-1)$, где \overline{x} и S— выборочные оценки, которые определяются по формулам (4.7), (4.11). Если $\theta=\rho$ — коэффициент корреляции между случайными величинами X и Y, то $\theta^*=r$ и $D\theta^*\cong (1-r^2)^2/n$, где r определяется по формуле (4.10).

4.6. Точные доверительные интервалы для параметров нормального закона

На практике наиболее распространены нормально распределенные случайные величины (в силу действия центральной предельной теоремы). Если исследуемый признак X имеет нормальный закон распределения с неизвестными параметрами $\mu=Mx$ и $\sigma=\sqrt{Dx}$, (коротко это записывается в виде $X\sim n(\mu,\sigma)$), то точные ДИ уровня γ для μ и σ определяются следующим образом. Предварительно

вычисляются точечные оценки параметров μ и σ (если σ неизвестно) по формулам (4.7), (4.12), затем по заданной доверительной вероятности γ находят $\alpha/2=(1-\gamma)/2$ и $1-\alpha/2$, после чего с учетом объема выборки n по соответствующим таблицам [13, 17, 18] находят квантили уровней $1-\alpha/2$ и $\alpha/2$ соответствующих распределений.

Возможны следующие случаи:

1. Параметр σ известен. Оценка $X\sim n(\mu,\sigma/\sqrt{n})$ и, следовательно, $p(|\overline{x}-\mu|< Z_{1-\alpha/2}\sigma/\sqrt{n}=\gamma)$, т. е. доверительный интервал

$$J_{\gamma}(\mu) = \overline{x} \pm Z_{1-\alpha/2} \sigma / \sqrt{n}.$$

2. Параметр σ неизвестен. Случайная величина $u=(\overline{x}-\mu)\sqrt{n}/s$ имеет распределение Стьюдента с n-1 степенью свободы.

По таблицам этого распределения при заданных значениях n-1 и $1-\alpha/2$ можно найти квантиль $t_{1-\alpha/2}$ уровня $1-\alpha/2$, при котором $P((\overline{x}-\mu)\sqrt{n}/s < t_{1-\alpha/2}) = \gamma$, откуда следует, что доверительный интервал

$$J_{\gamma}(\mu) = \overline{x} \pm t_{1-\alpha/2} S / \sqrt{n}. \tag{4.13}$$

При n>20 $t_{1-\alpha/2}\cong Z_{1-\alpha/2}$ и вместо таблиц распределения Стьюдента можно пользоваться таблицами нормального распределения.

3. Параметры μ и σ неизвестны. Нужно найти ДИ $J_{\gamma}(\sigma^2)$ и $J_{\gamma}(\sigma)$. Воспользуемся тем, что случайная величина $s^2(n-1)/S^2$ имеет χ^2 («хи-квадрат»)-распределение с n-1 степенью свободы. По таблицам этого распределения [13, 17, 18] при заданных значениях n-1 и $\alpha=1-\gamma$ можно найти значения $\chi^2_{\alpha/2}$ и $\chi^2_{1-\alpha/2}$ — квантили этого распределения уровней $\alpha/2$ и $1-\alpha/2$, для которых

$$P\left(\chi_{\alpha/2}^2<\frac{(n-1)\sigma^2}{S^2}<\chi_{1-\alpha/2}^2\right)=1-\alpha=\gamma;$$

откуда следует, что искомые ДИ имеют вид

$$J_{\gamma}(\sigma^{2}) = \left(S^{2} \frac{n-1}{\chi_{1-\alpha/2}^{2}}, S^{2} \frac{n-1}{\chi_{\alpha/2}^{2}}\right);$$

$$J_{\gamma}(\sigma) = \left(S \sqrt{\frac{n-1}{\chi_{1-\alpha/2}^{2}}}, S \sqrt{\frac{n-1}{\chi_{\alpha/2}^{2}}}\right).$$

$$(4.14)$$

4.7 Обработка результатов измерений (две основные задачи теория ошибок)

При измерении некоторого физического параметра a результат i-го измерения X, как уже отмечалось выше, можно представить в

виде $x_i=a+\varepsilon$, $i=1,2,3,\ldots,n$, где ошибку измерения ε_i полагают нормально распределенной случайной величиной, т. е. $\varepsilon_i\sim N(0,\sigma^2)$. Тогда $x_i\sim N(a,\sigma^2)$, причем измерения предполагаются независимыми [17].

Таким образом, результаты измерения x_1, x_2, \ldots, x_n оказываются независимыми нормально распределенными с параметрами a и σ случайными величинами.

Две основные задачи теории ошибок как раз и состоят в оценке «истинного значения» a измеряемой величины и средней квадратической ошибки σ измерения. Иными словами, требуется по выборке x_1,x_2,\ldots,x_n из нормальной генеральной совокупности X найти точечные a^* , $S=\sigma^*$ оценки параметров a и σ и их ДИ $J_\gamma(a)$ и $J_\gamma(\sigma)$ заданного уровня γ . Решение этих задач уже рассмотрено выше.

Пример. По результатам испытаний на прочность 4 образцов стальных стержней получены следующие значения разрывных усилий (в ньютонах): $x_1 = 300$, $x_2 = 310$, $x_3 = 330$, $x_4 = 340$.

Найти ДИ уровня $\gamma=0.9$ для средней прочности $\mu=Mx$ и среднее квадратическое отклонение $\sigma=\sqrt{Dx}$, считая закон распределения x нормальным.

$$\overline{X} = \frac{1}{n} \sum_{i=1}^{n} X_i = 320; \quad S = \sqrt{\frac{1}{n-1} \sum (x_i - \overline{x})^2} = 18{,}25.$$

По таблицам распределения Стьюдента [13, 18] для $\alpha=1-\gamma=0.1$ и n-1=3 находим $t_{1-0.05}=2.35$, а по таблицам χ^2 -распределения при n-1=3, $\alpha/2=0.05$ и $1-\alpha/2=0.95$ находим $\chi^2_{0.05}=0.35$ и $\chi^2_{0.95}=7.8$.

Подставляя найденные значения в формулы (4.13) и (4.14), получим $J_{\gamma}=0.9(\mu)=320\pm21.4;\ J_{\gamma}=0.9(\sigma)=(11.3;53.3).$

5.1. Понятия критерия и правило проверки гипотез

Статистической гипотезой называют любое предположение о законе распределения или его параметрах одной или нескольких случайных величин. Например, предположения типа $\mu=Mx=\mu_0$, где μ_0 — известное значение; $Dx_1=Dx_2$, $F(x)=F_0(x)$, где $F_0(x)$ — известная функция распределения и т. д. являются статистическими гипотезами.

Задача состоит в том, чтобы на основании выборочных наблюдений (полученных в эксперименте) дать ответ на вопрос «можно ли принять выдвинутую гипотезу или нет» или «можно ли считать, что данные эксперимента согласуются с выдвинутой гипотезой или они ей противоречат?»

Ответ на этот вопрос невозможно дать абсолютно достоверно, как бы ни был велик объем выборочных наблюдений, так как всегда есть некоторая вероятность α , называемая уровнем значимости ошибочно отклонить исходную (или как говорят, нулевую) гипотезу H_0 и, следовательно, принять некоторую альтернативную, или конкурирующую, гипотезу H_1 . Уровень значимости α есть вероятность ошибки 1-го рода — отклонить гипотезу H_0 , когда она верна. Наряду с этим неизбежна ошибка 2-го рода: принять H_0 , когда она неверна, а следовательно, верна конкурирующая гипотеза H_1 . Вероятность ошибки 2-го рода обозначается через β .

Для проверки любой статистической гипотезы подбирается некоторая функция выборочных наблюдений, зависящая от H_0 ,

$$T = T(x_1, x_2, \dots, x_n \mid H_0),$$

закон распределения которой, в предположении что H_0 верна, полностью известен (является одним из табличных). Любая такая функция носит название критерия проверки данной гипотезы.

Ясно, что для проверки одной и той же гипотезы могут существовать различные критерии и, следовательно, нужно уметь как-то сравнивать их. Вопросы выбора наилучших критериев является достаточно сложным [18] и здесь не рассматривается. Для проверки стандартных гипотез наиболее часто встречающиеся на практике наилучшие критерии, как правило, уже известны. Основные из этих критериев рассмотрены ниже.

Правило проверки гипотезы H_0 при выбранном критерии T состоит в следующем. Область возможных значений критерия T (т. е. всю числовую ось R) разбивают на две области:

- критическую область K, куда возможные значения могут попасть лишь с малой вероятностью (не превышающей допустимого уровня α), если H_0 верна;
- область допустимых значений $D=R\setminus K$, являющуюся дополнением K. Если значение критерия $T=T_0$, вычисленное по конкретным выборочным данным, попадает в область D, то гипотеза H_0 принимается на уровне значимости α (т.е. делается вывод о том, что она не противоречит опытным данным). В противном случае, т.е. при $T_0 \in K$, гипотеза H_0 отклоняется и принимается конкурирующая гипотеза H_1 .

Для применения этого правила нужно:

- 1) выбрать в соответствии с общими рекомендациями подходящий для данного случая критерий T;
- 2) задать приемлемый уровень значимости α ($\alpha=0.01...0.2$) и по нему определить (пользуясь таблицей для выбранного критерия T) критическую область K так, чтобы вероятность ошибки 1-го рода не превышала α :

$$P(T \in K \mid H_0) \leqslant \alpha, \tag{5.1}$$

а величина ошибки 2-го рода β была минимальной;

3) сравнить вычисленное по результатам конкретных наблюдений x_1, x_2, \ldots, x_n значение критерия $T = T_0$ с критической областью K, отклоняя H_0 , если $T_0 \in K$, и принимая H_0 , если $T_0 \in \overline{K} = D$.

Замечание 1. В п. 3 часто вместо условия $T_0 \in K$ пишут $T > T_{\rm Kp}$, где $T_{\rm Kp}$ — критическое значение критерия T, определяющее границу области K, которое находят из соответствующих таблиц по заданному уровню значимости α и объему выборки n.

Замечание 2. Другой способ сравнения T_0 с граничным значением $T_{\rm KP}$, который иногда бывает удобнее, состоит в следующем. Сравнивается вероятность $P(T>T_0\mid {\rm H}_0)$ того, что возможные при гипотезе ${\rm H}_0$ значения T превысят наблюдаемое в опыте значение T_0

с допустимым уровнем значимости. Если $P(T>T_0\mid \mathrm{H}_0)>\alpha$, то это означает, что значения критерия T, превышающие T_0 , вполне вероятны, т. е. результаты опыта подтверждают гипотезу H_0 .

5.2. Правило наилучшего выбора критической области

Условие (5.1), обеспечивающее приемлемый уровень ошибки 1-го рода, определяет критическую область K (для выбранного критерия T) неоднозначно, т. е. при одном и том же уровне α область K может быть различной (рис. 5.1). При этом вид области K существенно влияет на значение ошибки 2-го рода β .

Правило Неймана–Пирсона предписывает такой выбор K из множества возможных, определяемых условием (5.1), при котором β минимальна или, что все равно, максимальна дополнительная вероятность $W=1-\beta$ отклонения H_0 , когда она неверна (верна конкурирующая гипотеза H_1). Вероятность W называется мощностью критерия и, очевидно, зависит от конкурирующей гипотезы. Проиллюстрируем правило наилучшего выбора K на примере проверки следующей гипотезы.

Задача (проверка гипотезы о среднем значении). Требуется проверить на уровне значимости α гипотезу H_0 , $\mu=\mu_0$, где $\mu=Mx$, а $x_i\sim N(\mu,\sigma)$, т.е. X имеет нормальный закон распределения с параметрами μ и σ ; σ известна. Исходные данные — выборка x_1,x_2,\ldots,x_n объема n из $\Gamma\mathrm{C}(X)$.

Рассмотрим возможные конкурирующие гипотезы:

- а) H_1 : $\mu \neq \mu_0$ двусторонняя альтернатива;
- б) H_2 : $\mu > \mu_0$ правая односторонняя альтернатива;
- в) Н $_3$: $\mu < \mu_0$ левая односторонняя альтернатива.

Рассмотрим возможные конкурирующие гипотезы:

а) H_1 : $\mu \neq \mu_0$ — двусторонняя альтернатива;

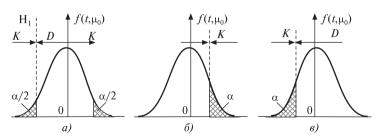


Рис. 5.1. Различные крайние типы критических областей: a — двусторонняя; b — правая односторонняя; b — левая односторонняя

- б) H_2 : $\mu > \mu_0$ правая односторонняя альтернатива;
- в) H_3 : $\mu < \mu_0$ левая односторонняя альтернатива.

Альтернативы «б» и «в» предполагают наличие некоторой дополнительной информации.

Критерий проверки H_0 естественно строить, исходя из выборочной оценки среднего $\overline{X}=\frac{1}{n}\sum_{i=1}^n X_i$, которая близка к μ_0 , если H_0 верна.

Примем в качестве критерия величину

$$T = \frac{\overline{x} - \mu_0}{\sigma} \sqrt{n},$$

которая имеет стандартное нормальное распределение N(0,1), если \mathbf{H}_0 верна.

Рассмотрим следующие три типа критической области K, являющиеся крайними случаями при выполнении условия (5.1) (см. рис. 5.1, где $f(t,\mu)$ — распределение T, при условии, что $\mu=\mu_0$).

Можно показать, что ошибка β будет минимальной, если критическая область K выбирается в области тех значений T, которые соответствуют конкурирующей гипотезе. Это значит, что если H_1 — двусторонняя, то K тоже должна быть двусторонней и т. д.

Найдем критическое значение критерия $T_{\rm kp}$ (по таблицам нормального распределения), определяющее границу критической области K для каждого из случаев «а», «б», «в». Значение $T=T_{\rm kp}$ называют также табличным значением критерия.

Так как $T \sim N(0,1)$, то для двусторонней альтернативы

$$\alpha = P(|T| > T_{KD}) = 1 - P(|T| < T_{KD}),$$

откуда $T_{\mathrm{\kappa p}} = Z_{1-\alpha/2}$ — квантиль нормального распределения уровня $1-\alpha/2.$

При правой односторонней альтернативе $T_{\rm \kappa p}$ выбирается из условия

$$\alpha = P(T > T_{\text{Kp}}) = 1 - P(T < T_{\text{Kp}}),$$

откуда $T_{ ext{kp}} = Z_{1-lpha}$ — квантиль нормального закона уровня 1-lpha.

Наконец, для левой односторонней альтернативы в силу симметричности нормального распределения $T_{ ext{KD}} = -Z_{1-lpha} = Z_{lpha}.$

Зная $T_{\rm kp}$, с учетом замечания 1 делаем вывод о том, что ${\rm H}_0$ отклоняется, если:

 $|T|>T_{
m \kappa p}$ в случае «а»;

 $T > T_{\rm kp}$ в случае «б»;

 $T < T_{
m KD}$ в случае «в».

Замечание 3. Если σ — неизвестно, то в качестве критерия принимают величину

$$T = \frac{\overline{x} - \mu_0}{\sigma} \sqrt{n} / S,$$

которая называется критерием Стьюдента, так как имеет распределение Стьюдента с n-1 степенью свободы. При этом $T_{\rm kp}=t_{1-\alpha/2}$ в случае «а»; $T_{\rm kp}=t_{1-\alpha}$ — в случае «б»; $T_{\rm kp}=-t_{1-\alpha/2}$ в случае «в», где t_{φ} — квантиль распределения Стьюдента с n-1 степенью свобода уровня φ .

5.3. Проверка стандартных гипотез

Рассмотренная выше задача 1 является примером проверки стандартной гипотезы. Рассмотрим ещё ряд стандартных гипотез.

Задача (проверка гипотезы о равенстве двух средних значений). Требуется проверить на уровне значимости α гипотезу H_0 : $\mu=\mu_0$ — против H_1 : $\mu\neq\mu_0$, имея n_1 выборочных значений x_1,x_2,\ldots,x_n случайной величины $x_i\sim N(\mu_1,\sigma_1)$ и n_2 выборочных значений y_1,y_2,\ldots,y_n случайной величины $y\sim N(\mu_2,\sigma_2)$.

Случай 1: σ_1 и σ_2 — известны. Тогда в качестве критерия принимают

$$T = (\overline{x} - \overline{y}) / \sqrt{\frac{\sigma_1}{n_1} + \frac{\sigma_2}{n_2}}, \sim N(0, 1), \tag{5.2}$$

если H_0 верна. Здесь $\overline{x}=rac{1}{n}\sum_{i=1}^n x_i;\ \overline{y}=rac{1}{n}\sum_{i=1}^n y_i.$

При выбранной альтернативе H_1 (двусторонней)

$$T_{\rm kp} = Z_{1-\alpha/2}$$
.

Случай 2: σ_1 и σ_2 — не известны, но известно, что $\sigma_1=\sigma_2$. Тогда в качестве критерия принимают

$$T = (\overline{x} - \overline{y}) / \left(S \sqrt{\frac{1}{n_1} + \frac{1}{n_2}} \right), \tag{5.3}$$

где $S^2=rac{
u_1}{
u_1+
u_2}S_x^2+rac{
u_2}{
u_1+
u_2}S_y^2;\;
u_1=n_1-1;\;
u_2=n_2-1;\; S_x^2,\; S_y^2-$ выборочные дисперсии x и y.

Критерий (5.3) имеет распределение Стьюдента с $\nu=\nu_1+\nu_2$ степенями свободы, если H_0 верна. Следовательно, $T_{\rm Kp}=t_{1-\alpha/2}$ — квантиль распределения Стьюдента с $\nu=n_1+n_2-2$ степенями свободы уровня $1-\alpha/2$. Когда σ_1 и σ_2 неизвестны и, быть может, $\sigma_1\neq\sigma_2$, точного решения не существует (это так называемая проблема Беренса-Фишера [18]), то неплохим приближением может

служить критерий (5.2), в котором неизвестные значения, σ_1 и σ_2 следует заменить их выборочными оценками S_1 и S_2 .

Задача (проверка гипотезы о равенстве двух дисперсий). Требуется проверить на уровне значимости α гипотезу H_0 : $\sigma_1^2=\sigma_2^2$ против H_1 : $\sigma_1^2\neq\sigma_2^2$, имея выборки x_1,x_2,\ldots,x_n и y_1,y_2,\ldots,y_n из двух генеральных совокупностей X и Y, распределенных по нормальному закону.

 Δ ля проверки указанной гипотезы наилучшим является *критерий* Φ ишера, равный отношению двух выборочных дисперсий:

$$T = S_1^2 / S_2^2$$

где

$$S_1^2 = \frac{1}{n_1 - 1} \sum_{i=1}^n (X_k - \overline{X})^2; \quad S_2^2 = \frac{1}{n_2 - 1} \sum_{i=1}^n (Y_k - \overline{Y})^2;$$

при $S_1^2 > S_2^2$ (или $T = S_2^2/S_1^2$ при $S_1^2 < S_2^2$), который имеет F-распределение Фишера с $\nu_1 = n_1 - 1$; $\nu_2 = n_2 - 1$ степенями свободы (с ν_1 и ν_2 при $S_1^2 > S_2^2$), если H_0 верна.

Поскольку всегда T>1, то принимаем в качестве критической области $K=\{T>F_{1-\alpha/2}\}$, где $F_{1-\alpha/2}$ — квантиль F-распределения с ν_1 и ν_2 степенями свободы уровня $1-\alpha/2$, определяемый по таблицам [18, 19].

Задача (проверка однородности дисперсий). Требуется проверить на уровне значимости α гипотезу H_0 : $\sigma_i^2=\sigma^2$, $i=1,2,\ldots,r$, против H_1 : $\sigma_i^2\neq\sigma^2$, где σ_i^2 — дисперсия случайной величины $x_i\sim N(\mu_i,\sigma_i)$, если выборочные дисперсии S_1^2,S_2^2,\ldots,S_r^2 найдены по выборкам объемов n_1,n_2,\ldots,n_r соответственно.

Если r=i, т.е. проверяется гипотеза о равенстве дисперсии заданному значению σ^2 , то для её проверки используется критерий «хи-квадрат», или критерий Пирсона

$$T = (n-1)S_1^2/S_2^2$$

имеющий χ^2 -распределение с n_1-1 степенью свободы, если H_0 верна.

В качества критической области (при H_1 : $\sigma_i^2 \neq \sigma^2$) принимают $K=\{\chi_{\alpha/2}^2 < T < \chi_{1-\alpha/2}^2\}$, где $\chi_{\alpha/2}^2$ и $\chi_{1-\alpha/2}^2$ — квантили χ^2 -распределения с числом степеней свободы n_1-1 уровня α и $1-\alpha/2$ соответственно.

Если r>i, но все $n_i=n$ (объемы выборок одинаковы), то для проверки однородности дисперсий r случайных величин использу-

ется критерий Кохрена

$$T = \max(S_i^2) / \sum_{i=1}^r S_i^2,$$

таблицы распределения которого, зависящего от двух параметров r и n, приведены, например, в [18, 19]. По ним при заданных значениях α , r и n можно найти критическое значение $T_{\rm KD}$.

Если r>i и $n_i\neq n$ (объемы выборок различны), то вместо критерия Кохрена используется критерий Бартлета, имеющего приближенно χ^2 -распределение. Вид этого критерия можно найти в [20].

Мы оставляем в стороне за недостатком места многие другие критерии проверки «стандартных» гипотез (таких, как проверка однородности двух и более распределений, отбраковка аномальных наблюдений, гипотез о виде закона распределения и др.). Подробное изложение этих вопросов можно найти в [18–20].

6.1. Определение пассивного и активного эксперимента

Технологический процесс производства радиоэлектронной аппаратуры относится к системам I типа. Это означает, что для того чтобы осуществлять правильное управление технологическим процессом (подлинная система физическая), необходимо его заменить некоторым математическим описанием (моделирующая система абстрактная).

Математическую модель того или иного технологического процесса строят, используя экспериментально-статистический подход. Он основан на том, что над физической системой (технологическим процессом) проводится некоторое число разнообразных экспериментов, после чего при помощи статистического анализа обрабатываются полученные в ходе этих экспериментов результаты. Для построения математических моделей технологических процессов используют два вида экспериментов: пассивный и активный.

Пассивный эксперимент является традиционным методом построения математических моделей. При пассивном эксперименте последовательно варьируется каждый из факторов, влияющий на технологический процесс, и при каждом последующем варьирования измеряется функция качества (выходной параметр).

При этом все остальные факторы, также влияющие на технологический процесс, остаются на неизменном уровне. После некоторой серии опытов фактор, который варьировали, фиксируют на некотором уроне (придают ему некоторое постоянное значение) и варьировать начинают следующий из влияющих на технологический процесс факторов. Остальные факторы, также влияющие на технологический процесс, остаются в ходе этого второго цикла экспериментов неизменными. Значение их остается на том же уровне, что и в первой серии опытов.

Такая процедура осуществляется до тех пор, пока каждый из факторов не будет проварьирован.

Полученные результаты обрабатываются при помощи корреляционного и регрессионного анализов, на основе которых и получают математическую модель исследуемого процесса.

Набор и анализ статистического материала в ходе того или иного реального производства того или иного изделия также можно отнести к пассивному эксперименту.

При активном эксперименте одновременно варьируются все факторы, влияющие на процесс, по определенному заранее выработанному плану (планирование эксперимента) [4]. Это позволяет установить силу взаимодействия параметров и их влияние на процесс. Используя при обработке данных корреляционный и регрессионный анализы, удается найти зависимости между параметрами и условиями максимума. В обоих случаях математической моделью является функция отклика, связывающая параметр оптимизации, характеризующей результаты эксперимента, с переменными параметрами, которые экспериментально варьируют при проведении опытов [20–27]:

$$Y = f(x_1, x_2, \dots, x_k).$$

Независимые переменные x_1, x_2, \dots, x_k называют факторами. Координатное пространство x_1, x_2, \dots, x_k называют факторным пространством, а геометрическое изображение функции отклика в факторном пространстве — поверхностью отклика. Эту поверхность можно представить в виде контурной диаграммы.

При решении задач математической статистики, связанных с установлением формы и степени связи между несколькими случайными переменными, которые возникают при исследовании многих физических явлений, когда целью эксперимента является построение математической модели явлений, большой класс моделей может быть представлен в форме аналитической зависимости между набором контролируемых переменных x_1, x_2, \ldots, x_k и функцией

$$Y=f(x_1,x_2,\ldots,x_k)+arepsilon$$
 или $Y=f(x)+arepsilon,$

где f(x) — неизвестная функция, существование которой постулируется; ε — случайная величина, имеющая смысл погрешности модели, её природа — это ошибки измерения и действие неучтенных факторов. Иногда причины, обусловливающие величину ε , действуют порознь. Если заведомо известно, что между откликом и факторами существует детерминированная зависимость (т. е. $Y=\eta$ — не

случайная величина), то величина ε порождена лишь погрешностями измерения. Напротив, при отсутствии погрешностей величина ε определяется лишь действием неучтенных факторов. В этом случае отклик является случайной величиной. Как в том, так и в другом случае величина $\eta=f(x)=M[(Y/x)]$, т.е. η является условным средним значением Y при заданных значениях x.

Соотношение $\eta=f(x)$ называется уравнением регрессии переменной Y по переменным x_1,x_2,\ldots,x_k , а установление вида функции f(x) в некоторой области значений Q по результатам экспериментов — регрессивным анализом (здесь x-m-мерное пространство факторов).

В результате экспериментов в некоторых x_i точках, $i=1,2,\ldots,n$, измеряются значения $f_i(x)$, на которые накладываются случайные ошибки ε_i , т.е. фиксируются величины

$$y_i = f_i(x) + \varepsilon_i, \quad i = 1, 2 \dots, n.$$

По этим данным, а также при некоторых априорных сведениях о функции f(x) требуется возможно более точно оценить неизвестную функцию f(x). Обычно на основе физических соображений, а также предварительных исследований известно, что функция f(x) принадлежит к некоторому классу Z достаточно «хороших» функций, например дифференцируемых функций. Наиболее благоприятным является такой случай, когда Z — некоторое параметрическое семейство функций, заданных в области.

Например, известно, что скорость протекания химической реакции между некоторыми компонентами пропорциональна объему исходного вещества. Тогда объем V(t) в момент времени t меняется по экспоненциальному закону

$$V(t) = Q_0 e^{-Q_1(t-t_0)}, \quad t > t_0,$$

где $Q_0,\ Q_1$ — неизвестные параметры модели, которые нужно оценить наилучшим образом; t_0 — начальный момент времени.

Одним из наиболее общих методов оценки неизвестных параметров Q_0 и Q_1 является метод наименьших квадратов, который будет рассмотрен ниже. К сожалению, рассмотренный выше случай является редким.

Более реальна ситуация, когда о функции y^* известно лишь, что она является достаточно гладкой и может быть «с малой погрешностью» представлена отрезком разложения вряд Тейлора:

$$Y = \beta_0 + \sum_{j=1}^{n} \beta_j x_j + \sum_{u,j;j \neq u}^{n} \beta_{uj} x_u x_j + \sum_{j=1}^{n} \beta_{jj} x_{jj}^2 + \dots,$$
 (6.1)

где

$$\beta_j = \frac{\partial y}{\partial x_j}; \quad \beta_{uj} = \frac{\partial^2 y}{\partial x_j \partial x_u}; \quad \beta_{jj} = \frac{\partial^2 y}{\partial x_j^2}.$$

Иными словами, исходный класс функций, к которому принадлежит искомая функция $y^* = \varphi(x)$, заменяется некоторым классом более простых по структуре функций, представляемых (6.1), и задача снова сводится к наилучшей оценке вектора неизвестных параметров β .

После обработки экспериментальных данных, поскольку модель и измерение имеют определенную погрешность ε , получают так называемые выборочные коэффициенты регрессии $b_0, b_1, \ldots, b_j, \ldots, b_{uj}, \ldots, b_{jj}$, являющимися оценками теоретических коэффициентов $\beta_0, \beta_j, \beta_{uj}, \beta_{jj}$. Уравнение регрессии, полученное на основании опыта запишется следующим образом:

$$y* = b_0 + \sum_{j=1}^{n} b_j x_j + \sum_{u,j;j \neq u}^{n} b_{uj} x_u x_j + \sum_{j=1}^{n} b_{jj} x_{jj}^2 + \dots,$$
 (6.2)

где b_0 называется свободным членом уравнения регрессии; b — линейными эффектами; b_{uj} — эффектами взаимодействия; b_{jj} — квадратичными эффектами коэффициенты уравнения (6.2) определяются методом наименьших квадратов.

6.2. Метод наименьших квадратов

По методу наименьших квадратов коэффициенты в уравнении регрессии определяют из условия

$$\Phi = \sum_{i=1}^N (\overline{y_i} - y_i^*)^2 = \min,$$

где N — объем выборки из всей совокупности исследуемых параметров; $\overline{y_i}$ — экспериментальные значения функции отклика в точках $i; y_i^*$ — расчетные значения функции отклика, определяемые из выражения (6.2).

Разность между объемом выборки N и числом связей l, наложенных на эту выборку, называется степенью свободы f=N-l. При отыскании управления регрессии число связей равно числу определяемых коэффициентов.

В табл. 6.1 показано число коэффициентов, которые должны быть определены, чтобы получить уравнения (полиномы) различных степеней для условий от 2 до 5 независимых параметров. Видно,

писло коэффициентов в уравнении регрессии							
Число факторов	Степенное уравнение						
(независимых переменных)	1-й степени	2-й степени	3-й степени	4-й степени			
2 3 4 5	3 4 5 6	6 10 15 21	10 20 35 56	15 35 70 126			

Таблица 6.1 Число коэффициентов в уравнении регрессии

что число коэффициентов, подлежащих определению, увеличивается быстро как с числом независимых переменных, так и с порядком уравнения.

Вид уравнения регрессии выбирается путем экспериментального подбора.

6.3. Методы регрессивного и корреляционного анализа

При изучении зависимости от одного переменного параметра полезно для определения вида уравнения регрессии построить эмпирическую линию регрессии. Для этого весь диапазон изменения x на поле корреляции разбивается на равные интервалы Δx_j , а $\overline{y_i}$ относят к его середине. Для этого подсчитывают частные средние

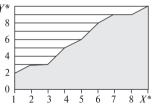


Рис. 6.1. Эмпирическая линия регрессии

 $\overline{y_i}$ для каждого интервала:

$$\overline{y_i} = \frac{1}{n_j} \sum_{i=1}^{n_j} y_{ji},$$

где
$$n_j$$
 — в интервале Δx_j ; $\sum\limits_{j=1}^k n_j = N$; k — число интервалов разбиения; N — объем выборки.

Затем последовательно соединяют точки $(x_j,\overline{y_j})$ отрезками прямой (рис. 6.1). Полученная ломаная линия называется эмпирической линией регрессии y по x. По виду эмпирической линии регрессии можно подобрать уравнение регрессии $Y^*=f(x,b_0,b_1,\ldots)$. Задача определения параметров уравнения регрессии сводится практически к определению минимума функции многих перемных. Если $Y^*=f(x,b_0,b_1,\ldots)$ есть функция дифференцируемая и требуется b_0,b_1,\ldots выбрать так, чтобы

$$\Phi = \sum_{i=1}^{N} (\overline{y_i} - y_i^*)^2 = \min.$$

$$(6.3)$$

Необходимым условием минимума функции Φ (6.3) является выполнение равенств

$$\frac{\partial \Phi}{\partial b_0} = 0; \quad \frac{\partial \Phi}{\partial b_1} = 0; \quad \frac{\partial \Phi}{\partial b_2} = 0; \dots; \frac{\partial \Phi}{\partial b_j} = 0,$$

или

$$\sum_{i=1}^{N} 2[y_i - f(x, b_0, b_1, \ldots)] \frac{\partial f(x, b_0, b_1, \ldots)}{\partial b_0} = 0;$$

$$\sum_{i=1}^{N} 2[y_i - f(x, b_0, b_1, \ldots)] \frac{\partial f(x, b_0, b_1, \ldots)}{\partial b_1} = 0;$$

$$\sum_{i=1}^{N} 2[y_i - f(x, b_0, b_1, \ldots)] \frac{\partial f(x, b_0, b_1, \ldots)}{\partial b_i} = 0.$$

После преобразований получим

$$\sum_{i=1}^{N} y_{i} \frac{\partial f(x, b_{0}, b_{1}, \dots)}{\partial b_{0}} - \sum_{i=1}^{N} f(x, b_{0}, b_{1}, \dots) \frac{\partial f(x, b_{0}, b_{1}, \dots)}{\partial b_{0}} = 0;$$

$$\sum_{i=1}^{N} y_{i} \frac{\partial f(x, b_{0}, b_{1}, \dots)}{\partial b_{1}} - \sum_{i=1}^{N} f(x, b_{0}, b_{1}, \dots) \frac{\partial f(x, b_{0}, b_{1}, \dots)}{\partial b_{1}} = 0;$$

$$(6.4)$$

$$\sum_{i=1}^N y_i \frac{\partial f(x,b_0,b_1,\ldots)}{\partial b_j} - \sum_{i=1}^N f(x,b_0,b_1,\ldots) \frac{\partial f(x,b_0,b_1,\ldots)}{\partial b_j} = 0.$$

Система (6.4) содержит столько же уравнений, сколько неизвестных коэффициентов b_0, b_1, \ldots Величина $\Phi \geqslant 0$ (поскольку квадрат) при любых b_0, b_1, \ldots Следовательно, у неё должен быть хотя бы один min. Поэтому, если система уравнений (6.4) имеет единственное решение, то оно и является минимумом для величины Φ . Решить систему (6.4) в общем виде нельзя. Поэтому надо задаться конкретным видом функции $Y^* = f(x, b_0, b_1, \ldots)$.

6.4. Линейная регрессия от одного параметра

По методу наименьших квадратов требуется определить коэффициенты линейного уравнения регрессии

$$Y^* = b_0 + b_1 \mathbf{x}.$$

Система нормальных уравнений для этого случая имеет вид

$$\sum_{i=1}^{N} y_i - \sum_{i=1}^{N} (b_0 + b_1 x_i) = 0;$$

$$\sum_{i=1}^{N} y_i x_i - \sum_{i=1}^{N} (b_0 + b_1 x_i) x_1 = 0,$$
(6.5)

или

$$b_0 N_0 + b_1 \sum_{i=1}^N x_i = \sum_{i=1}^N y_i;$$
 $b_0 \sum_{i=1}^N x_i + b_1 \sum_{i=1}^N x_i^2 = \sum_{i=1}^N y_i x_i.$

Коэффициенты b_0 и b_1 легко найти с помощью определителей:

$$b_{0} = \frac{\left| \sum\limits_{i=1}^{N} y_{i} \sum\limits_{i=1}^{N} x_{i} \right|}{\left| \sum\limits_{i=1}^{N} y_{i} x_{i} \sum\limits_{i=1}^{N} x_{i} \right|} = \frac{\sum\limits_{i=1}^{N} y_{i} \sum\limits_{i=1}^{N} x_{i}^{2} - \sum\limits_{i=1}^{N} y_{i} x_{i} \sum\limits_{i=1}^{N} x_{i}}{\left| \sum\limits_{i=1}^{N} x_{i} \sum\limits_{i=1}^{N} x_{i}^{2} \right|} = \frac{\sum\limits_{i=1}^{N} y_{i} \sum\limits_{i=1}^{N} x_{i}^{2} - \sum\limits_{i=1}^{N} y_{i} x_{i} \sum\limits_{i=1}^{N} x_{i}}{\left| \sum\limits_{i=1}^{N} x_{i} \sum\limits_{i=1}^{N} y_{i} \right|} = \frac{\sum\limits_{i=1}^{N} y_{i} \sum\limits_{i=1}^{N} x_{i}^{2} - \sum\limits_{i=1}^{N} y_{i} x_{i} \sum\limits_{i=1}^{N} x_{i}}{\left| \sum\limits_{i=1}^{N} x_{i} \sum\limits_{i=1}^{N} x_{i} \sum\limits_{i=1}^{N} x_{i} \sum\limits_{i=1}^{N} x_{i}} - \sum\limits_{i=1}^{N} x_{i} \sum\limits_{i=1}^{N} x_{i}}{\left| \sum\limits_{i=1}^{N} x_{i} \sum\limits_{i=1}^{N} x_{i} \sum\limits_{i=1}^{N} x_{i} \sum\limits_{i=1}^{N} x_{i}} \right|} = \frac{\sum\limits_{i=1}^{N} y_{i} \sum\limits_{i=1}^{N} x_{i} - \sum\limits_{i=1}^{N} y_{i} \sum\limits_{i=1}^{N} x_{i}}{\left| \sum\limits_{i=1}^{N} x_{i} \sum\limits_{i=1}^{N} x_{i} \sum\limits_{i=1}^{N} x_{i}} \right|}$$

Коэффициент b_0 проще найти по известному b_1 из системы (6.5):

$$b_0 = \overline{y} - b_1 \overline{x},\tag{6.6}$$

где \overline{y} и \overline{x} — средние значения y и x.

Уравнение (6.6) показывает, что между коэффициентами b_0 и b_1 существует корреляционная зависимость. Для оценки силы линейной связи между коэффициентами вычисляется выборочный ко-

эффициент корреляции

$$r^* = rac{1}{(N-1)S_xS_y}\sum_{i=1}^N (x_i-\overline{x})(y_i-\overline{y}),$$

где S_x и S_y — выборочные среднеквадратичные отклонения.

Величина r^* лежит в диапазоне $0\leqslant r^*\leqslant 1$. Если $r^*=0$, то корреляционная линейная связь между параметрами отсутствует. При $r^*=1$ между параметрами существует линейная функциональная зависимость.

В математической статистике считается, что при коэффициенте корреляции r=0.2...0.5 связь слабая; при 0.5...0.7 связь средняя; при $r\geqslant 0.7$ связь сильная [19].

После того как уравнение регрессии найдено, необходимо провести статистический анализ результатов. Этот анализ состоит в следующем: проверяется значимость всех коэффициентов регрессии в сравнении с ошибкой воспроизводимости и устанавливается адекватность уравнения в сравнении с ошибкой воспроизводимости. Такое исследование носит название регрессивного анализа. Для проведения регрессивного анализа необходимо выполнение следующих условий:

- входной параметр x измеряется с пренебрежительно малой ошибкой. Появление ошибки в y объясняется наличием в процессе не выявленных переменных, не вошедших в уравнение регрессии;
- результаты наблюдений над выходными величинами y_1, y_2, \ldots, y_N представляют собой независимые нормально распределенные случайные величины;
- при проведении эксперимента с объемом выборки N при условии, что каждый опыт проведен m раз, выборочные дисперсии должны быть однородными $S_1^2, S_2^2, \ldots, S_N^2$.

Определение однородности дисперсий сводится к следующему:

1. Определяется среднее из результатов параллельных опытов

$$\overline{y_i} = \frac{1}{m} \sum_{u=1}^m y_i u, \quad i = 1, 2, \dots, N.$$

2. Определяются выборочные дисперсии:

$$S_i^2 = \frac{1}{m-1} \sum_{u}^{m} (y_i u - \overline{y})^2, \quad i = 1, 2, \dots, N.$$

3. Находится сумма дисперсий

$$\sum_{i=1}^{N} S_i^2.$$

4. Составляется отношение

$$G_{\max} = rac{S_{\max}^2}{\sum\limits_{i=1}^{N} S_i^2},$$

где $S^2_{
m max}$ — максимальное значение выборочной дисперсии.

Если дисперсии однородны, то

$$G_{\max} < G_p(N, m-1),$$

где $G_p(N,m-1)$ — табулированное значение критерия Кохрена при уровне значимости p.

Если выборочные дисперсии однородны, рассчитывается дисперсия воспроизводимости

$$S_{ ext{воспр}}^2 = rac{1}{N} \sum_{i=1}^{N} S_i^2.$$

Число степеней свободы дисперсии f = N(m-1).

Дисперсия воспроизводимости необходима для оценки значимости коэффициентов регрессии.

Оценка значимости коэффициентов производится по критерию Стьюдента

$$t_j = \frac{|b_j|}{S_{b_j}},$$

где b_j-j -й коэффициент уравнения регрессии; S_{b_j} — среднее квадратичное отклонение j-го коэффициента от среднего значения

$$S_{b_i} = \mathbf{C}S_{\text{восп}},$$

где $S_{
m BOCII} = \sqrt{S_{
m BOCIIp}^2}$; C — элементы матрицы, обратной к информационной матрице (см. ниже раздел «Информационная матрица»).

Если t_j больше табличного $t_{\rm p}(f)$ для выбранного уровня значимости p и числа степеней свободы f, то коэффициент b_j значимо отличается от 0.

Незначимые коэффициенты исключаются из уравнения регрессии. Оставшиеся коэффициенты пересчитываются заново, поскольку коэффициенты коррелируют друг с другом. Адекватность урав-

нения проверяется по критерию Фишера:

$$F = \frac{S_{\rm oct}^2}{S_{\rm bochp}^2},$$

где $S^2_{\text{воспр}}$ — дисперсия воспроизводимости; $S^2_{\text{ост}}$ — остаточная дисперсия:

$$S_{ ext{oct}}^2 = rac{m}{N-l} \sum_{i=1}^N (y_i^* - \overline{y}_i)^2.$$

Находят табличное значение критерия Фишера $F_p(f_1,f_2)$ для уровня значимости p и числа степеней свободы $f_1=N-l$ и $f_2=N(m-1)$.

Если выполняется неравенство $F < F_p(f_1, f_2)$, то уравнение адекватно описывает эксперимент.

Если в функции (6.2) можно пренебречь квадратичными членами, то получим линейную регрессию, имеющую вид

$$Y^* = b_0 + \sum_{j=1}^{N} b_j x_j + \sum_{u,j;j \neq u}^{N} b_{uj} x_u x_j.$$
 (6.7)

Пусть функция Y^* зависит от двух параметров x_1 и x_2 . Тогда выражение (6.7) примет вид

$$Y^* = b_0 + b_1 x_1 + b_2 x_2 + b_{12} x_1 x_2. (6.8)$$

Необходимым условием минимума функции Φ (см. выражение (6.3)) является выполнение равенств

$$\frac{\partial \Phi}{\partial b_0} = 0; \quad \frac{\partial \Phi}{\partial b_1} = 0; \quad \frac{\partial \Phi}{\partial b_2} = 0; \quad \frac{\partial \Phi}{\partial b_{12}} = 0.$$

Для линейной регрессии (6.8) эти условия можно записать следующим образом:

$$\sum_{i=1}^{N} 2(y_i - y_i^*) \frac{\partial y^*}{\partial b_0} = 0;$$

$$\sum_{i=1}^{N} 2(y_i - y_i^*) \frac{\partial y^*}{\partial b_1} = 0;$$

$$\sum_{i=1}^{N} 2(y_i - y_i^*) \frac{\partial y^*}{\partial b_2} = 0;$$

$$\sum_{i=1}^{N} 2(y_i - y_i^*) \frac{\partial y^*}{\partial b_1} = 0.$$
(6.9)

Взяв производные от функции y^* по соответствующим параметрам, получим

$$\frac{\partial y^*}{\partial b_0} = 1; \quad \frac{\partial y^*}{\partial b_1} = x_1; \quad \frac{\partial y^*}{\partial b_2} = x_2; \quad \frac{\partial y^*}{\partial b_{12}} = x_2. \tag{6.10}$$

Подставив (6.10) в (6.9) и преобразовав полученные выражения, получим:

$$b_{0}N + b_{1}\sum_{i=1}^{N} x_{1i} + b_{2}\sum_{i=1}^{N} x_{2i} + b_{12}\sum_{i=1}^{N} x_{1i}x_{2i} = \sum_{i=1}^{N} y_{i}^{*};$$

$$b_{0}\sum_{i=1}^{N} x_{1i} + b_{1}\sum_{i=1}^{N} x_{1i}^{2} + b_{2}\sum_{i=1}^{N} x_{1i}x_{2i} + b_{12}\sum_{i=1}^{N} x_{1i}^{2}x_{2i} = \sum_{i=1}^{N} y_{i}^{*}x_{1i};$$

$$b_{0}\sum_{i=1}^{N} x_{2i} + b_{1}\sum_{i=1}^{N} x_{1i}x_{2i} + b_{2}\sum_{i=1}^{N} x_{2i}^{2} + b_{12}\sum_{i=1}^{N} x_{2i}^{2}x_{1i} = \sum_{i=1}^{N} y_{i}^{*}x_{2i};$$

$$b_{0}\sum_{i=1}^{N} x_{1i}x_{2i} + b_{1}\sum_{i=1}^{N} x_{1i}^{2}x_{2i} + b_{2}\sum_{i=1}^{N} x_{1i}x_{2i}^{2} + b_{12}\sum_{i=1}^{N} (x_{1i}x_{2i})^{2} =$$

$$= \sum_{i=1}^{N} y_{i}^{*}x_{1i}x_{2i}.$$

$$(6.11)$$

Коэффициенты b_0 , b_1 , b_2 , b_{12} находятся из системы уравнений (6.11), которая получала название системы нормальных уравнений Гаусса. В систему входит столько уравнений, сколько в уравнении регрессии имеется неопределенных коэффициентов.

Аналогичную систему уравнений можно получить и в том случае, если в выражении (6.2) учитывать и квадратичные эффекты.

Решать систему нормальных уравнений Гаусса наиболее просто можно с использованием определителей, которые будут рассмотрены ниже.

6.5. Параболическая регрессия

Если уравнение записано в виде полинома некоторой степени, то его коэффициенты находятся с применением метода наименьших квадратов решением системы линейных уравнений. Например, нужно найти коэффициенты квадратичной функции — параболы второго порядка

$$Y^* = b_0 + b_1 x + b_{11} x^2. (6.12)$$

В этом случае

$$\frac{\partial y^*}{\partial b_0} = 1;$$
 $\frac{\partial y^*}{\partial b_1} = x_1;$ $\frac{\partial y^*}{\partial b_2} = x_2;$ $\frac{\partial y^*}{\partial b_{11}} = x^2$

и система нормальных уравнений имеет вид

$$b_{0}N + b_{1}\sum_{i=1}^{N} x_{i} + b_{11}\sum_{i=1}^{N} x_{i}^{2} = \sum_{i=1}^{N} y_{i}^{*};$$

$$b_{0}\sum_{i=1}^{N} x_{i} + b_{1}\sum_{i=1}^{N} x_{i}^{2} + b_{11}\sum_{i=1}^{N} x_{i}^{3} = \sum_{i=1}^{N} y_{i}^{*}x_{i};$$

$$b_{0}\sum_{i=1}^{N} x_{i}^{2} + b_{1}\sum_{i=1}^{N} x_{i}^{3} + b_{11}\sum_{i=1}^{N} x_{i}^{4} = \sum_{i=1}^{N} y_{i}^{*}x_{i}^{2}.$$

$$(6.13)$$

Коэффициенты уравнения регрессии определим через статистические моменты, для этого разделим все члены уравнений (6.13) на N^2 и введем следующие обозначения:

$$m_{x} = \frac{1}{N} \sum_{i=1}^{N} x_{i}; \quad m_{y} = \frac{1}{N} \sum_{i=1}^{N} y_{i};$$

$$a_{2} = \frac{1}{N} \sum_{i=1}^{N} x_{i}^{2}; \quad a_{3} = \frac{1}{N} \sum_{i=1}^{N} x_{i}^{3}; \quad a_{4} = \frac{1}{N} \sum_{i=1}^{N} x_{i}^{4};$$

$$a_{11} = \frac{1}{N} \sum_{i=1}^{N} x_{i} y_{i}; \quad a_{21} = \frac{1}{N} \sum_{i=1}^{N} x_{i}^{2} y_{i}.$$

$$(6.14)$$

Из выражений (6.13) и (6.14) можно получить

$$b_0 + b_1 m_x + b_{11} a_2 = m_y;$$

 $b_0 m_x + b_1 a_2 + b_{11} a_3 = a_{11};$
 $b_0 a_2 + b_1 a_3 + b_{11} a_4 = a_{21}.$

Решив систему уравнений относительно коэффициентов с использованием определителей, получим:

$$b_0=rac{\Delta b_0}{\Delta}; \quad b_1=rac{\Delta b_1}{\Delta}; \quad b_{11}=rac{\Delta b_{11}}{\Delta},$$

где

$$\Delta b_0 = egin{array}{cccc} m_y & m_x & a_2 \ a_{11} & a_2 & a_3 \ a_{21} & a_3 & a_4 \ \end{array}; \quad \Delta b_1 = egin{array}{cccc} 1 & m_y & a_2 \ m_x & a_{11} & a_3 \ a_2 & a_{21} & a_4 \ \end{array};$$

$$\Delta b_{11} = egin{array}{cccc} 1 & m_x & m_y \ m_x & a_2 & a_{11} \ a_2 & a_3 & a_{21} \ \end{array} ; \quad \Delta = egin{array}{cccc} 1 & m_x & a_2 \ m_x & a_2 & a_3 \ a_{21} & a_3 & a_4 \ \end{array} .$$

После подстановки значений коэффициентов в уравнение (6.12) квадратичная модель примет вид

$$Y^* = rac{\Delta b_0}{\Delta} + rac{\Delta b_1}{\Delta} x + rac{\Delta b_{11}}{\Delta} x^2.$$

Аналогичными по структуре уравнениями будут определяться коэффициенты параболы любого порядка. Таким образом, когда экспериментальная зависимость определяется по методу наименьших квадратов полиномом некоторой степени, коэффициенты этого полинома находятся решением системы линейных уравнений. Коэффициенты этой системы представляют собой статистические моменты различных порядков, характеризующие систему величин (x,y), если её рассматривать как систему случайных величин.

6.6. Трансцендентная регрессия

При малых объёмах выборки N увеличение порядка полинома может привести к росту остаточной дисперсии. Для того чтобы уменьшить число неопределенных коэффициентов используют трансцендентную регрессию. Вычисление коэффициентов трансцендентной регрессии может оказаться весьма трудоёмким вследствие необходимости решать систему нелинейных уравнений. Вычисления упрощаются, если произвести замену переменных. Например, зависимость показательного и дробно-степенного типа: $Y^* = b_0 b_1^x$; $Y^* = b_0 x^{b_1}$ линеаризуется путем логарифмирования: $\ln Y^* = \ln b_0 + x \ln b_1$; $\ln Y^* = \ln b_0 + b_1 \ln x$. Положив $\ln Y^* = Z^*$; $\ln b_0 = a_0$; $\ln b_1 = a_1$; $\ln x = t$, получим линейные уравнения относительно новых переменных $Z^* = a_0 + a_1 x$; $Z^* = a_0 + b_1 t$.

Коэффициенты a_0, a_1, b_1 определяются по методу наименьших квадратов. По полученным данным a_0, a_1, b_1 определяют b_0, b_1 . Следует, однако, иметь в виду, что полученные таким образом коэффициенты регрессии являются смешанными оценками соответствующих генеральных коэффициентов, о которых мы подробно поговорим при рассмотрении так называемых дробных реплик.

В табл. 6.2 приведен ряд нелинейных функций и их линеаризующие преобразования, приводящие к уравнению y=a+bx.

 $u = \alpha e^{\beta \vartheta}$

Вид функции	Замена п	еременных	Выражение для параметров		
	y	x	a	b	
$u = \alpha + \frac{\beta}{\vartheta}$	u	$1/\vartheta$	α	β	
$u = \frac{\alpha}{\beta + \vartheta}$	1/u	θ	eta/lpha	1/lpha	
$u = \frac{\alpha \vartheta}{\beta + \vartheta}$	1/u	$1/\vartheta$	eta/lpha	1/lpha	
$u = \frac{\vartheta}{\alpha + \beta \vartheta}$	ϑ/u	θ	α	eta	
$u = \alpha \beta^{\vartheta}$	$\lg u$	ϑ	$\lg lpha$	$\lg\beta$	
$u = \alpha \vartheta^{\beta}$	$\lg u$	$\lg\vartheta$	$\lg lpha$	β	
$u = \alpha \vartheta^{\beta} + \gamma$	$\lg(u-\gamma)$	$\lg \vartheta$	$\lg lpha$	eta	
$u = \alpha \mathrm{e}^{\beta/\vartheta}$	$\lg u$	ϑ	$\lg \alpha$	β	

Таблица 6.2

6.7. Использование трансцендентной регрессии для моделирования проходного изолятора и определения оптимального числа секций в нем

 $1/\vartheta$

 $lg \alpha$

lg u

Изолятором называют электротехническое устройство, предназначенное для электрической изоляции и механического крепления электроустановок или их отдельных частей, находящихся под разными электрическими потенциалами.

Проходные изоляторы (вводы) используются в местах, где токоведущие части проходят через стены или перекрытия зданий, через ограждения электроустановок или вводятся внутрь металлических корпусов оборудования. Наиболее часто проходные изоляторы используются там, где напряжение нужно передать из одной среды в другую. Например, проходные изоляторы используют, если нужно передать напряжение из воздушной среды в масленую среду в высоковольтных трансформаторах. Большое распространение проходные изоляторы получили в ускорительной технике, где необходимо передать напряжение от высоковольтного источника, находящегося в воздухе, в масле или в сжатом газе, в вакуум, где происходит получение и ускорение пучка заряженных частиц.

Основными характеристиками изоляторов являются разрядные напряжения, геометрические параметры, а также номинальное напряжение электроустановки, для которой предназначен изолятор.

Габариты изолятора в основном лимитируются наиболее слабой с точки зрения электрической прочности стороной изолятора. В частности, когда высокое напряжение от источника передается из

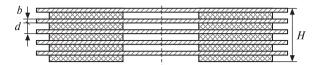


Рис. 6.2. Конструкция проходного секционированного изолятора

масла или сжатого газа в вакуум, габариты изолятора определяются вакуумной стороной изолятора, так как напряжение пробоя по поверхности диэлектрика в вакууме значительно ниже, чем по поверхности диэлектриков в упомянутых выше средах [28, 29]. Проведенные исследования показали, что пробивная напряженность поверхности диэлектрика в вакууме возрастает с уменьшением толщины испытуемого на электрическую прочность образца. Указанное положение находит свое отражение в конструкциях высоковольтных проходных изоляторов, применяемых в высоковольтных трансформаторах, ускорительной технике и т. д.

С целью повышения электрической прочности изоляторов их делят на множество секций проводящими градиентными кольцами. При этом применяют цилиндрическую или дисковую форму элементов секций [30–32]. Конструкция секционированного изолятора приведена на рис. 6.2.

Высоту секций в этих конструкциях изоляторов определяют, как правило, исходя из большого объема экспериментальных исследований, что связано со значительным расходом времени и материалов, идущих на изготовление испытуемых образцов.

Кроме того, полученный при исследованиях результат не гарантирует создания конструкции секционированного изолятора с оптимальными габаритами.

Наиболее распространенным способом выбора высоты диэлектрического кольца в секционированном изоляторе является методика, основанная на зависимости поверхностного пробивного напряжения изоляционного материала от толщины испытуемого образца [33]. Этот способ заключается в том, что набор образцов из одинакового изоляционного материала разной толщины, подвергают испытанию на электрическую прочность поверхности в какой-либо среде (вакуум, сжатый газ, трансформаторное масло). По полученным данным строят зависимость пробивного напряжения от толщины образца и определяют на этой зависимости точку изменения наклона кривой. Толщину изоляционного кольца секционированного изолятора выбирают такой, чтобы она не превышала толщины образца, при которой снятая зависимость, меняет свой наклон.

Однако такая технология весьма условна и не позволяет выбрать для проходного изолятора конкретную толщину диэлектрического кольца в секции, которая обеспечила бы получение максимальных пробивных градиентов при заданной высоте изолятора.

Оптимальная толщина диэлектрика в секционированных изоляторах заданной высоты зависит от толщины градиентных прокладок, материала диэлектрика и конструктивных особенностей изолятора. Поэтому для каждой конкретной конструкции проходного изолятора должна быть определена конкретная оптимальная толщина секционного кольца, а следовательно, и число колец в конструкции.

Попытка определения оптимального числа секций секционированного изолятора [34]. Определение числа секций в рассматриваемой работе заключается в том, что в макетном приспособлении, состоящем из набора секций в виде чередующихся электроизоляционных и электропроводящих кольцевых элементов с числом таких секций не менее четырех, замеряют распределение напряжения вдоль поверхности приспособления между соседними электропроводящими элементами при величинах испытательного напряжения, исключающих появление разрядов. По полученному графику находят тангенс угла наклона зависимости коэффициента неравномерности распределения напряжения по длине приспособления от произвольно выбранного числа его секций, а оптимальное число секций изолятора — из соотношения

$$N = \frac{(H+b)(g-c)}{b(1-c)},$$

где N — оптимальное число секций изолятора; H — высота макетного приспособления; b — толщина электропроводящего элемента; c — тангенс угла наклона зависимости коэффициента неравномерности распределения напряжения по длине приспособления от произвольно выбранного числа его секций; q — показатель степенной зависимости пробивной напряженности при пробое электроизоляционного элемента от его высоты.

Однако определение оптимального числа секций в изоляторе, как это будет показано ниже, не достигает той цели, которую декларирует название работы.

Еще одна попытка определения оптимального числа секций в изоляторе, изложена в [35]. Этот прием заключается в том, что известным способом определяют среднюю пробивную напряженность E_i изоляционного слоя высотой H и среднюю пробивную напряженность E_n набора из n произвольных, но равных по толщине изоляционных слоев, разделенных градиентными прокладками толщиной b,

причем высота набора должна равняться H, после чего определяют оптимальное число секций по формуле

$$N = \frac{H \ln E_n / E_i}{b[\ln n + \ln E_n / E_i]}.$$
 (6.15)

Следует отметить, что выбор толщины градиентного кольца диктуется условиями эксплуатации всего изолятора, технологией его сборки. В частности, при определении b учитывают электрическую прочность среды, окружающей изолятор, требования к механической прочности кольца.

Недостатком такого способа является низкая точность определения оптимального числа секций в изоляторе, что не позволяет при заданной высоте изолятора H и заданной толщине градиентной прокладки b получить максимально возможное пробивное напряжение для указанных габаритов изолятора. Кроме того, способ достаточно сложен и требует для своего воплощения, особенно для изоляторов с большими габаритами, изготовления испытательного стенда со сверхвысоким источником напряжения, что не всегда возможно воплотить в жизнь.

Задача заключалась в том, чтобы упростить способ и повысить точность определения оптимального числа секций в изоляторе, позволяющей получить максимальное значение пробивного напряжения для заданных габаритов изолятора [36–38].

Пробивное напряжение поверхности диэлектрика в любой среде и, в частности, в вакууме достаточно точно можно описать в виде степенной функции [54], имеющей вид

$$U = kd^{\alpha}, \tag{6.16}$$

где U — пробивное напряжение по поверхности диэлектрика, кВ; k и α — коэффициенты; d — толщина диэлектрика, мм.

Выражение (6.16) для секционированного изолятора, имеющего n секций, можно переписать в виде

$$U = U_1 n = k d^{\alpha} n = k \left(\frac{H - bn}{n}\right)^{\alpha} n = k n^{1 - \alpha} (H - bn)^{\alpha}, \qquad (6.17)$$

где U_1 — пробивное напряжение по поверхности диэлектрика одной секции толщиной d=(H-bn)/n, мм; n — число секций в изоляторе; H — высота изолятора, мм; b — толщина градиентного кольца, мм.

Выражение (6.17) является моделью проходного изолятора, в которой функция отклика — это величина пробивного напряжения поверхности изолятора U, а факторами, влияющими на функцию отклика, являются: высота изолятора H, число секций в изоля-

торе n, толщина b градиентных (метпллических) колец, толщина диэлектрика в одной секции d.

Для определения оптимального числа секций в секционированном изоляторе найдем максимум значения U. Для этого продифференцируем выражение (6.17) и приравняем значение производной к нулю:

$$\frac{\partial U}{\partial n} = k(1 - \alpha)n^{-\alpha}(H - bn)^{\alpha} - \alpha kn^{1-\alpha}b(H - bn)^{\alpha - 1} = 0.$$

Преобразовав это выражение, получим

$$\frac{\partial U}{\partial n} = (1 - \alpha) - \alpha n b (H - bn)^{-1} = 1 - \alpha - \frac{\alpha b n}{H - bn} = 0.$$
 (6.18)

Из уравнения (6.18) после преобразования получим

$$H - \alpha H = bn. \tag{6.19}$$

Из выражения (6.19) следует

$$N = n_{\text{oht}} = \frac{H(1-\alpha)}{b},\tag{6.20}$$

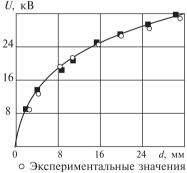
где N — оптимальное число секций в изоляторе.

Коэффициенты k и α в выражении (6.15) для каждого конкретного случая можно рассчитать методом наименьших квадратов, используя экспериментальные значения, полученные при снятии зависимости пробивного напряжения U от толщины диэлектрика d.

Рассмотрим процесс определения указанных коэффициентов на примере полиэтиленовых колец, помещенных в вакуум. Экспериментальные значения пробивных напряжений U полиэтиленовых колец от их толщины d приведены в табл. 6.3 и отображены на рис. 6.3 кружками.

Для упрощения нахождения коэффициентов k и α в формуле (6.15) линеаризуем уравнение. Для этого прологарифмируем указанное выражение и получим

$$ln U = ln k + \alpha ln d.$$
(6.21)



■ Расчетные по формуле

Рис. 6.3. Зависимость пробивного напряжения поверхности полиэтиленового образца в вакууме от его толщины

Введем обозначения $y = \ln U$, $b_0 = \ln k$, $x = \ln d$. С учетом

Таблица 6.3 Экспериментальные значения пробивных напряжений U полиэтиленовых колец от их толщины d

n	1	10	20	30	40	50	60	70	80	90	100
U , κB	83	304	433	518	574	606	613	595	447	433	0
d, mm	297	27	12	7	4,5	3	2	1,29	0,75	0,33	0

Таблица 6.4

i	1	2	3	4	5	6	7	8	$\sum_{i=1}^{8}$
d $x = \ln d$ $x^2 = (\ln d)^2$ U $y = \ln U$ $xy = \ln d \ln U$ U_{Teop}	2 0,693 0,480 10 2,302 1,596 10,2	4 1,386 1,922 13 2,565 3,555 13,6	8 2,079 4,324 19 2,944 6,121 18,3	10 2,303 5,302 21 3,045 7,012 20,1	16 2,773 7,687 24 3,178 8,813 24,4	20 2,996 8,974 27 3,296 9,874 26,8	25 3,219 10,36 29 3,367 10,84 29,4	30 3,40 11,6 30 3,40 11,6 31,7	18,85 50,62 24,1 59,38

введенных обозначений уравнение (6.21) можно записать в виде

$$y = b_0 + \alpha x. \tag{6.22}$$

Коэффициенты b_0 и α в уравнении (6.22) с использованием метода наименьших квадратов могут быть определены по выражениям, взятых из [36]:

$$b_{0} = \ln k = \frac{\sum_{i=1}^{N} y_{i} \sum_{i=1}^{N} x_{i}^{2} - \sum_{i=1}^{N} y_{i} x_{i} \sum_{i=1}^{N} x_{i}}{N \sum_{i=1}^{N} x_{i}^{2} - \left(\sum_{i=1}^{N} x_{i}\right)^{2}}; \alpha = \frac{N \sum_{i=1}^{N} y_{i} x_{i} - \sum_{i=1}^{N} y_{i} \sum_{i=1}^{N} x_{i}}{N \sum_{i=1}^{N} x_{i}^{2} - \left(\sum_{i=1}^{N} x_{i}\right)^{2}}.$$

$$(6.23)$$

Для расчета численных значений коэффициентов b_0 и α используем табл. 6.4.

Подставив численные значения в формулы (6.23), получим

$$b_0 = \ln k = \frac{\sum_{i=1}^{N} y_i \sum_{i=1}^{N} x_i^2 - \sum_{i=1}^{N} y_i x_i \sum_{i=1}^{N} x_i}{N \sum_{i=1}^{N} x_i^2 - \left(\sum_{i=1}^{N} x_i\right)^2} = \frac{24,098 \cdot 50,618 - 59,378 \cdot 18,85}{49,621} = 2,0257.$$

Проведя потенцирование, получим k = 7.648. Далее

$$\alpha = \frac{N \sum_{i=1}^{N} y_i x_i - \sum_{i=1}^{N} y_i \sum_{i=1}^{N} x_i}{N \sum_{i=1}^{N} x_i^2 - \left(\sum_{i=1}^{N} x_i\right)^2} = \frac{8 \cdot 59,378 - 24,098 \cdot 18,85}{8 \cdot 50,618 - 355,323} = 0,4187.$$

На рис. 6.4 черными квадратиками обозначены расчетные значения пробивного напряжения поверхности полиэтиленовых колец, определяемого по выражению (6.15).

Окончательный вид уравнения (6.15) после подстановки в него численных значений k=7.648 и $\alpha=0.4187$ примет вид

$$U = kd^{\alpha} = 7,648d^{0,4187}. (6.24)$$

Как следует из рис. 6.4, расчетные значения пробивного напряжения от толщины диэлектрика по формуле (6.24) практически полностью совпадают с экспериментальными значениями, т. е. формула (6.24) адекватно описывают эксперимент.

Экспериментальная проверка методики и сравнение с аналогами Задавшись высотой изолятора $H=300\,$ мм и толщиной градиентного кольца $b=3\,$ мм по формуле (6.17) был проведен расчет пробивных напряжений секционированных изоляторов при различной толщине d диэлектрических колец в секции. Результаты расчета приведены в табл. 6.4.

Как следует из табл. 6.4, для одной секции высотой $H=300~{\rm mm}$, в которой было одно градиентное кольцо толщиной $b=3~{\rm mm}$ и одно кольцо из полиэтилена толщиной $d=293~{\rm mm}$, расчетное пробивное напряжение составило 83 кВ. По мере увеличения числа секций, которому сопутствовало снижение толщины диэлектрика d в каждой секции, происходило повышение пробивного напряжения изолятора. Максимального значения пробивное напряжение достигало при числе секций 60. При дальнейшем увеличении числа секций происходило снижение пробивного напряжения. Это снижение было обусловлено тем, что при дроблении в изоляторе начиналось преобладание металлической составляющей, из-за возрастания в нем числа градиентных колец. Расчет оптимального число секций N в секционированном изоляторе высотой $H=300~{\rm mm}$ и толщиной градиентного кольца $b=3~{\rm mm}$ по формуле (6.20)

$$N = n_{\text{oht}} = \frac{H(1 - \alpha)}{b} = \frac{300(1 - 0.4187)}{3} = 58.13 \approx 58.$$

Толщина одной секции d при оптимальном количестве секций в изоляторе будет равна

$$d = \frac{H - b n_{ ext{oit}}}{n_{ ext{oit}}} = \frac{300 - 3 \cdot 58}{58} = 2{,}17 \text{ mm}.$$

Расчетное пробивное напряжение такого секционированного изолятора определим по формуле (6.15):

$$U_{\mathrm{A}} = k d^{\alpha} n = k \left(\frac{H - bn}{n} \right)^{\alpha} n = 7{,}648 \cdot 2{,}17^{0{,}4187} \cdot 58 = 613{,}6 \; \mathrm{kB}.$$

Рассчитанное предельное значение напряжения $U_{\rm д}=613,6~{\rm kB}$ указывает на то, что данный изолятор может быть использован в установках, рабочее напряжение которых не превышает напряжение $U_{\rm d}$.

Рис. 6.4. Испытательная вакуумная высоковольтная установка

В соответствии с проведенными расчетами был выполнен секционированный изолятор из полиэтиленовых плоских колец, внутренний диаметр которых составлял 200 мм, а внешний 300 мм, разделенных градиентными кольцами такого же размера, выполненными из нержавеющей стали. Изолятор был испытан на электрическую прочность на вакуумной установке, приведенной на рис. 6.4 [63].

Проверка предлагаемой методики определения оптимального числа секций в проходном изоляторе и сравнение её с аналогами осуществлялось следующим образом. Первоначально рассчитывалось оптимальное число секций в изоляторе по предлагаемой методике (6.24) и по методикам, предлагаемых аналогами, и рассчитывалось пробивное напряжения всей конструкции изолятора по формуле (6.24). После этого делались макеты изолятора, габариты и секции в которых были

выполнены в соответствии с проведенными расчетами. После изготовления макетов они испытывались на пробивное напряжение на высоковольтной пробивной установке [38], приведенной на рис. 6.4. Установка включала в себя вакуумную камеру и проходной изоля-

тор. Вакуумная камера представляла собой цилиндр, выполненный из нержавеющей стали. Высота цилиндра равнялась 750 мм, а его диаметр 1200 мм. Высота изолятора была равна 2870 мм.

Внутренний диаметр верхнего и нижнего оснований были равны соответственно 400 и 600 мм. Верхняя часть изолятора заглушалась крышкой, имеющей связь с токоведущей трубой. Источник напряжения представлял собой генератор импульсных напряжений (ГИН) выполненный по схеме Аркадьева—Маркса. ГИН был рассчитан на напряжение 3 миллиона вольт.

При испытании на указанной установке изготовленного макета изолятора, выполненного в соответствии с формулой (6.17) пробой произошел при напряжении $U=615~{\rm kB},\,$ что свидетельствовало об адекватности созданной нами методики расчета оптимального числа секций в изоляторе.

Для сравнения результатов, полученных выше с использованием предлагаемой нами методики, с результатами аналогов был произведен расчет оптимального числа секций в изоляторе по этим аналогам. Используя методику-аналог, предложенную в [35], определяли оптимальное число секций по выражению (6.15):

$$\begin{split} N &= \frac{H \ln E_n / E_i}{b [\ln n + \ln E_n / E_i]} = \frac{300 \cdot \ln 1,116 / 0,278}{3 [\ln 12 + \ln 1,116 / 0,278]} = \\ &= \frac{300 \cdot 1,39}{3 [2,485 + 1,39]} = 35,87 \approx 36. \end{split}$$

Толщина $d_{\rm cnpot}$ одной секции изолятора, выполненного в соответствии с аналогом, будет равна

$$d_{ ext{chipot}} = \frac{H - bN}{N} = \frac{300 - 3 \cdot 36}{36} = 5.3 \text{ mm}.$$

Пробивное напряжение секционированного изолятора, выполненного по аналогу [61] будет равно

$$U_{\text{прот}} = k \left(\frac{H-bN}{N}\right)^{\alpha} N = 7{,}648 \cdot 5{,}3^{0{,}4187} \cdot 36 = 553{,}5 \text{ кB}.$$

Как следует из приведенных цифр, предлагаемая в этом разделе методика, по сравнению методикой, изложенной в [35], позволяет повысить пробивное напряжение приведенного в примере изолятора высотой $H=300\,$ мм и толщиной градиентной прокладки $b=3\,$ мм на $11,7\,$ %.

В [34] авторы в примере конкретного выполнения утверждают, что при высоте изолятора $H=385\,$ мм и толщине прокладок из электропроводящего материала $b=5\,$ мм оптимальное число секций

N=10. Пробивное напряжение такого изолятора можно определить по формуле (6.17):

$$U_{\text{прот}} = k \left(\frac{H - bN}{N}\right)^{\alpha} N = 7{,}648 \left(\frac{385 - 5 \cdot 10}{10}\right)^{0{,}4187} \cdot 10 = 332{,}7 \text{ кB}.$$

В соответствии с предлагаемой нами методике по формуле (6.20) оптимальное число секций в изоляторе высотой $H=385~{\rm mm}$ и толщине прокладок из электропроводящего материала $b=5~{\rm mm}$ будет равно

$$N = n_{ ext{oht}} = rac{H(1 - lpha)}{b} = rac{385(1 - 0.4187)}{5} pprox 48.$$

Пробивное напряжение такого изолятора в соответствии с формулой (6.17) будет равно

$$U_{\text{прот}} = k \left(\frac{H - bN}{N}\right)^{\alpha} N = 7{,}648 \left(\frac{385 - 5 \cdot 48}{48}\right)^{0{,}4187} \cdot 48 = 583{,}1 \text{ кB}.$$

Таким образом, изолятор, оптимальное число секций в котором рассчитано по нашей методике, имеет в 1,75 раз более высокую пробивную прочность изолятора, чем изолятор, оптимальное число в котором определено по методике, предлагаемой в [34]. Рассмотренный подход к определению оптимального числа секций в изоляторе подробно отражён в патентах [36, 37] и в статье [38].

Таким образом, предложенный способ определения оптимального числа секций в проходном изоляторе по сравнению со способомпрототипом имеет более высокую точность определения оптимального числа секций в изоляторе, что позволяет при заданной высоте изолятора H и заданной толщине градиентной прокладки b получить максимально возможное пробивное напряжение для указанных габаритов изолятора. Кроме того, предлагаемый способ, по сравнению со способом-прототипом, достаточно прост и не требует для своего воплощения, особенно для изоляторов с большими габаритами, изготовления испытательного стенда со сверхвысоким источником напряжения, что не всегда возможно воплотить в жизнь. В частности, в рассмотренных нами примерах для реализации заявляемого способа достаточно того, чтобы экспериментальная высоковольтная установка позволяла получать напряжение не превышающего 30...35 кВ. Тогда как для реализации способа-прототипа необходимо, как следует из табл. 6.3, чтобы экспериментальная установка имела возможность экспериментировать при напряжениях 450...500 кВ, что более чем на порядок выше напряжения, необходимого для реализации заявляемого способа.

Предлагаемый способ позволяет, не меняя габаритов изолятора путем определения оптимального числа секций, повысить его электрическую прочность не менее чем на 11,7~%.

Кроме того, при заданном рабочем напряжении изолятора выбором оптимального числа его секций можно добиться сокращения габаритов и уменьшения стоимости изолятора.

7.1. Оценка тесноты нелинейной связи

Если считать, что уравнение регрессии найдено с достаточной степенью точности, то остаточная дисперсия обусловлена только наличием дисперсии воспроизводимости $S_{\text{ост}}^2 \approx S_{\text{воспр}}^2$. Чем меньше доля $S_{\text{ост}}^2$ в общей дисперсии S_y^2 , тем сильнее связь между y и x, ибо тем меньше случайности в этой связи. Поэтому силу связи можно характеризовать величиной

$$\xi = \frac{(N-l)S_{\text{oct}}^2}{(N-1)S_u^2}.$$

Связь тем сильнее, чем меньше ξ . Величина $\theta = \sqrt{1-\xi}$, $0 \leqslant \theta \leqslant 1$, называется корреляционным отношением. Чем больше θ , тем сильнее связь.

Если $\theta=1$, существует функциональная зависимость между параметрами. Только в случае нормального распределения равенство $\theta=0$ однозначно свидетельствует об отсутствии связи между случайными величинами.

Корреляционное отношение, как и коэффициент корреляции в линейной регрессии, характеризует тесноту связи между случайными величинами. Анализ силы связи по θ называется корреляционным анализом. В случае линейной регрессии корреляционное отношение равно коэффициенту корреляции

$$heta = \sqrt{1 - rac{N-2}{N-1} rac{S_{ ext{oct}}^2}{S_y^2}} = r^*.$$

7.2. Метод множественной корреляции

Если необходимо исследовать корреляционную связь между многими переменными, пользуются уравнением множественной регрессии

$$Y^* = b_0 + b_1 x_1 + b_2 x_2 + b_3 x_3 + \ldots + b_k x_k. \tag{7.1}$$

Таблица 7.1

Таблица 7.2

№ опыта	X_1	X_2	 X_k	Y
1 2	$x_{11} \\ x_{12}$	$x_{21} \\ x_{22}$	 x_{k1} x_{k2}	y_1 y_2
N	x_{1N}	x_{2N}	 x_{kN}	y_N

№ опыта	X_1^0	X_{2}^{0}	 X_k^0	Y^0
1 2	$x_{11}^{0} \\ x_{12}^{0}$	x_{21}^{0} x_{22}^{0}	 $\begin{array}{c} x_{k1}^0 \\ x_{k2}^0 \end{array}$	$y \\ y_2^0$
 N	x_{1N}^0	x_{2N}^0	 х х	y_N^0

Здесь мы уже имеем дело не с линией регрессии, а с поверхностью регрессии при k=2 и с гиперповерхностью при k>2. В общем случае эта поверхность называется поверхностью отклика.

При построении поверхности отклика на координатных осях факторного пространства откладываются численные значения параметров (факторов). Исходный статистический материал представляют в виде табл. 7.1.

Прежде всего, перейдём от натурального масштаба к новому, проводя нормировку всех значений случайных величин по формулам:

$$y_j^0 = \frac{y_j - \overline{y}}{S_y}; \quad x_{ji}^0 = \frac{x_{ji} - \overline{x}_j}{S_{x_j}}, \quad i = 1, 2, \dots, N; \ j = 1, 2, \dots, k, \ (7.2)$$

где y_j^0, x_{ji}^0 — нормированные значения соответствующих факторов; средние значения факторов; $\overline{y}, \overline{x}_{ji}^0$ — среднеквадратичные отклонения факторов от средних значений:

$$S_y = \sqrt{rac{1}{N-1} \sum_{i=1}^{N} (y_i - \overline{y})^2}; \quad S_{x_j} = \sqrt{rac{1}{N-1} \sum_{i=1}^{N} (x_{ji} - \overline{x}_j)^2}.$$

В табл. 7.2 приведен исходный статистический материал в новом масштабе. В новом масштабе $\overline{x}_j^0=0;$ $\overline{y}^0=0;$ $S_{x_j^0}^2=1;$ $S_{y_j^0}^2=1.$

Подставив в выражение

$$r_{\mathbf{x}y}^* = rac{1}{(N-1)S_xS_y}\sum_{i=1}^N (x_i-\overline{x})(y_i-\overline{y})$$

новые переменные, получим

$$r_{x_{j}^{0}x_{m}^{0*}} = \frac{1}{(N-1)S_{x_{j}^{0}}S_{x_{m}^{0}}} \sum_{i=1}^{N} (x_{j}^{0} - \overline{x}_{j}^{0})(x_{m}^{0} - \overline{x}_{m}^{0}) = \frac{1}{N-1} \sum_{i=1}^{N} x_{ji}^{0} x_{mi}^{0};$$

$$(7.3)$$

$$r_{x_{ij}^{0}y^{0*}} = \frac{1}{N-1} \sum_{i=1}^{N} x_{ij}^{0} y_{j}^{0}.$$
 (7.4)

Вычисленный по формулам (7.3) и (7.4) выборочный коэффи-

циент корреляции равен коэффициенту корреляции между переменными, выраженными в натуральном масштабе. Уравнение регрессии в новых переменных не имеет свободного члена. Для того чтобы показать это, вернемся к выражению (7.1):

$$Y^* = b_0 + b_1 x_1 + b_2 x_2 + b_3 x_3 + \ldots + b_k x_k.$$

Не записывая всю систему уравнений Гаусса для этого уравнения регрессии, выделим лишь первое из них, которое имеет вид

$$Nb_0 + b_1 \sum_{i=1}^{N} x_{1i} + b_2 \sum_{i=1}^{N} x_{2i} + \ldots + b_k \sum_{i=1}^{N} x_{ki} = \sum_{i=1}^{N} y_i.$$
 (7.5)

Разделим обе части уравнения (7.5) на N, получим

$$b_0 + b_1 \overline{x_1} + b_2 \overline{x_2} + \ldots + b_k \overline{x_k} = \overline{y}. \tag{7.6}$$

Вычтем из (7.1) уравнение (7.6), получим

$$Y^* - \overline{y} = b_1(x_1 - \overline{x_1}) + b_2(x_2 - \overline{x_2}) + \ldots + b_k(x_k - \overline{x_k}). \tag{7.7}$$

Помножим каждый из членов уравнения (7.7) и одновременно разделим на одну и ту же соответствующую данному члену среднеквадратическую величину:

$$\frac{S_y(Y^* - \overline{y})}{S_y} = \frac{S_{x_1}b_1(x_1 - \overline{x_1})}{S_{x_1}} + \dots + \frac{S_{x_k}b_k(x_k - \overline{x_k})}{S_{x_k}}.$$
 (7.8)

Учитывая, что по формулам нормирования (7.2)

$$rac{Y^*-\overline{y}}{S_y}=y^0; \quad rac{x_1-\overline{x_1}}{S_{x_1}}=x_1^0;\ldots; \quad rac{x_k-\overline{x_k}}{S_{x_k}}=x_k^0,$$

уравнение (7.8) принимает вид

$$Y^{0*} = a_1 x_1^0 + a_2 x_2^0 + \ldots + a_k x_k^0, \tag{7.9}$$

где $a_j = (S_{x_j}/S_y)b_j$.

Коэффициенты уравнения (7.9) находятся из условия

$$\Phi = \sum_{i=1}^N (Y_j^0 - Y_j^{0*})^2 = \min.$$

Условия min функции определяются так же, как и в случае зависимости от одной переменной:

$$\frac{\partial \Phi}{\partial a_1} = 0; \frac{\partial \Phi}{\partial a_2} = 0; \frac{\partial \Phi}{\partial a_3} = 0; \dots; \frac{\partial \Phi}{\partial a_k} = 0,$$

и система нормальных уравнений имеет вид

$$a_{1} \sum_{i=1}^{N} (x_{1i}^{0})^{2} + a_{2} \sum_{i=1}^{N} x_{1i}^{0} x_{2i}^{0} + \dots + a_{k} \sum_{i=1}^{N} x_{1i}^{0} x_{ki}^{0} = \sum_{i=1}^{N} x_{1i}^{0} y_{i}^{0};$$

$$a_{1} \sum_{i=1}^{N} x_{1i}^{0} x_{2i}^{0} + a_{2} \sum_{i=1}^{N} (x_{2i}^{0})^{2} + \dots + a_{k} \sum_{i=1}^{N} x_{2i}^{0} x_{ki}^{0} = \sum_{i=1}^{N} x_{2i}^{0} y_{i}^{0};$$

$$(7.10)$$

В систему (7.10) входит k уравнений, равное числу неопределенных коэффициентов.

Умножив левую и правую части уравнений на 1/(N-1). В результате этого при каждом коэффициенте a_j получается согласно (7.10) выборочный коэффициент корреляции $r_{x_j^0x_m^{0*}}$. Принимая во внимание, что

$$\frac{1}{N-1} \sum_{i=1}^{N} (x_{ji}^{0})^{2} = S_{x_{j}^{0}}^{2} = 1,$$

получаем систему нормальных уравнений:

Следует иметь в виду, что $r_{x_0^0x_m^0}=r_{x_m^0x_l^0}$. Коэффициенты корреляции легко вычисляются простым перемножением соответствующих столбцов табл. 7.2. Для многопараметричных процессов система (7.11) оказывается высокого порядка, и для её решения необходимо использовать вычислительную машину. Решив систему (7.11), рассчитывают коэффициент множественной корреляции

$$R = \sqrt{a_1 r_{y_0 x_1^0} + a_2 r_{y_0 x_2^0} + \ldots + a_k r_{y_0 x_k^0}}.$$

Коэффициент множественной корреляции $(0\leqslant R\leqslant 1)$ служит показателем силы связи в случае множественной регрессии.

В случае выборок небольшого объёма в величину R необходимо ввести коррекцию на систематическую ошибку. Чем меньше f=N-l, тем сильнее преувеличена сила связи, оцениваемая коэффициентом множественной корреляции. Формула для коррекции

$$R^* = \sqrt{1 - (1 - R^2) \frac{N - 1}{N - 2}},$$

где R^* — скорректированное значение коэффициента множественной корреляции; l — число коэффициентов уравнения регрессии (в случае (?.??) l=k+1).

Для практического использования уравнения (7.9) необходимо перейти к натуральному масштабу по формулам:

$$b_j=a_jrac{S_y}{S_{x_j}}, \quad j=1,2,3,\ldots,k; \ b_0=\overline{y}-\sum_{j=1}^kb_j\overline{x_j}.$$

При наличии параллельных опытов можно рассчитать дисперсию воспроизводимости и провести статистический анализ уравнения регрессии [39–44].

7.3. Получение уравнений множественной регрессии методом Брандона

По этому методу уравнение регрессии записывается в виде

$$Y = af_1(x_1)f_2(x_2)\cdots f_j(x_j)\cdots f_n(x_n), (7.12)$$

где $f_j(x_j)$ — любая функция величины x_j .

Порядок расположения факторов в (7.12) $x_1, x_2, \ldots, x_j, \ldots, x_n$ не безразличен для точности обработки результатов наблюдений: чем больше влияние на Y оказывает параметр x_j , тем меньше должен быть порядковый номер индекса j. Вид функции выбирается с помощью графических построений.

Вначале по точкам выборки системы величин Y, x_1, x_2, \ldots, x_n строится поле корреляции и эмпирическая линия $Y(x_1) = f_1(x_1)$ и методом наименьших квадратов рассчитываются коэффициенты этого уравнения регрессии. Затем строится выборка новой величины

$$Y_1 = \frac{Y}{f_1(x_1)}.$$

Эта величина не зависит от x_1 , а определяется только параметрами $x_2, \ldots x_j, \ldots, x_n$. Поэтому можно записать

$$Y = af_2(x_2) \cdots f_j(x_j) \cdots f_n(x_n).$$

По точкам новой выборки величин Y_1 и x_2 вновь строится поле корреляции и эмпирическая линия регрессии, характеризующая зависимость

$$Y(x_2) = f_2(x_2).$$

Рассчитываются её коэффициенты и вновь составляется выборка величины

$$Y_1 = rac{Y_1}{f_2(x_2)} = rac{Y}{f_1(x_1)f_2(x_2)}.$$

Эта величина уже не зависит от x_1 и x_2 и может быть определена из следующего уравнения регрессии:

$$Y = af_3(x_3) \cdots f_i(x_i) \cdots f_n(x_n).$$

Такая процедура определения функций $f_3(x_3)$, $f_4(x_4)$,... продолжается до получения выборки величины

$$Y_n = rac{Y_1}{f_2(x_2)} = rac{Y}{f_1(x_1)f_2(x_2)\cdots f_m(x_m)}.$$

Эта величина не зависит от всех факторов $x_1, x_2, \ldots, x_j, \ldots, x_n$ и определяется коэффициентом исходного уравнения (7.12):

$$\mathbf{a} = \frac{1}{n} \sum_{i=1}^{n} y_{n_i},$$

где n — объём выборки.

Примерами использования корреляционного анализа и метода Брандона являются работы [41–45]. Знакомство с использованием определителей начнем с простейшего случая решения и исследования системы двух уравнений с двумя неизвестными.

Пусть дана система:

$$a_1x + b_1y = c_1;$$

 $a_2x + b_2y = c_2.$ (8.1)

Для отыскания решения этой системы, т.е. совокупности таких значений $x=x_0,\ y=y_0,$ которые обращают в тождества оба уравнения системы, преобразуем (8.1). Для этого умножим первое из уравнений (8.1) на b_2 , второе — на b_1 и сложим, получим тогда новую систему:

$$(a_1b_2 - a_2b_1)x = c_1b_2 - a_2b_1; (a_1b_2 - a_2b_1)y = a_1c_2 - a_2c_1,$$
(8.2)

где каждое из уравнений содержит лишь одно неизвестное.

Заметим, что если $a_1b_2 - a_2b_1 \neq 0$, то от системы (8.2) можно аналогичным преобразованием вернуться обратно к системе (8.1),

для этого умножаем первое уравнение системы (8.2) на a_1 , второе — на b_1 и складываем; затем умножаем первое уравнение на a_2 , второе — на b_2 и снова складываем, тогда получим:

$$(a_1b_2-a_2b_1)(a_1x+b_1y)=c_1(a_1b_2-a_2b_1); \ (a_1b_2-a_2b_1)(a_2x+b_2y)=c_2(a_1b_2-a_2b_1).$$

Сокращая на $a_1b_2-a_2b_1$, придем к исходной системе (8.1). Отсюда следует, что системы (8.1) и (8.2) равносильны: каждое ранение системы (8.1) является решением системы (8.2), поскольку (8.2) есть следствие (8.1) и наоборот [поскольку (8.1) есть следствие системы (8.1)].

Из системы (8.2) получаем единственное решение системы (8.1)

$$x_0 = \frac{c_1 b_1 - c_2 b_1}{a_1 b_2 - a_2 b_1}; \quad y_0 = \frac{a_1 c_1 - a_2 c_1}{a_1 b_2 - a_2 b_1}.$$
 (8.3)

Выражения, которые являются коэффициентами системы (8.2) и фигурируют в правых частях формул (8.3), определяющих решение системы (8.1), получили название определителей второго порядка. Для их обозначения вводятся следующая символическая запись:

$$egin{aligned} a_1b_2-a_2b_1 = egin{bmatrix} a_1 & b_1 \ a_2 & b_2 \end{bmatrix}. \end{aligned}$$

В этих обозначениях числители формулы (8.4) запишутся в виде

$$c_1b_2 - c_2b_1 = \begin{vmatrix} c_1 & b_1 \\ c_2 & b_2 \end{vmatrix}; \quad a_1c_2 - a_2c_1 = \begin{vmatrix} a_1 & c_1 \\ a_2 & c_2 \end{vmatrix},$$
 (8.4)

а сами формулы имеют вид

$$x_{0} = \frac{\begin{vmatrix} c_{1} & b_{1} \\ c_{2} & b_{2} \end{vmatrix}}{\begin{vmatrix} a_{1} & b_{1} \\ a_{2} & b_{2} \end{vmatrix}}; \quad y_{0} = \frac{\begin{vmatrix} a_{1} & c_{1} \\ a_{2} & c_{2} \end{vmatrix}}{\begin{vmatrix} a_{1} & b_{1} \\ a_{2} & b_{2} \end{vmatrix}}$$
(8.5)

и именуются формулами Крамера.

Определитель $\begin{vmatrix} a_1 & b_1 \\ a_2 & b_2 \end{vmatrix}$, составленный из коэффициентов при неизвестных в уравнения системы (8.1), называется определителем этой системы: в первом горизонтальном ряде (так называемой первой строке) определителя стоят коэффициенты при x и y первого уравнения, во второй строке — второго, в первом вертикальном ряде (так называемом первом столбце) определителя стоят коэффициенты при x, во втором — коэффициенты при y. Определитель системы часто для краткости обозначают одной буквой Δ , а для определителей (8.4) вводятся обозначения Δ_1 и Δ_2 :

$$\Delta = egin{bmatrix} a_1 & b_1 \ a_2 & b_2 \end{bmatrix}; \quad \Delta_1 = egin{bmatrix} c_1 & b_1 \ c_2 & b_2 \end{bmatrix}; \quad \Delta_2 = egin{bmatrix} a_1 & c_1 \ a_2 & c_2 \end{bmatrix}.$$

Тогда формулы (8.5) запишутся так:

$$x_0 = \frac{\Delta_1}{\Delta}; \quad y_0 = \frac{\Delta_2}{\Delta}.$$

Заметим, что определители Δ_1 и Δ_2 получаются из определителя системы Δ заменой соответственно первого или второго столбца столбцом свободных членов уравнений (8.1).

Определитель третьего порядка есть число, определяемое следующим равенством

$$\begin{vmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{vmatrix} = a_1 \begin{vmatrix} b_2 & c_2 \\ b_3 & c_3 \end{vmatrix} - b_1 \begin{vmatrix} a_2 & c_2 \\ a_3 & c_3 \end{vmatrix} + c_1 \begin{vmatrix} a_2 & b_2 \\ a_3 & b_3 \end{vmatrix}.$$
(8.6)

Существуют и другие изображения первой части формулы, т. е. другие правила вычисления определителя третьего порядка, приводящие, однако, к тому же результату.

Условимся называть минором некоторого элемента данного определителя третьего порядка тот определитель второго порядка, который получится, если из определителя третьего порядка вычеркнуть столбец и строку, содержащие данный элемент.

Так, минором элемента b_1 будет определитель $\begin{vmatrix} a_2 & c_2 \\ a_3 & c_3 \end{vmatrix}$. Минор данного элемента, взятый со знаком «плюс», если сумма номеров строки и столбца, содержащих этот элемент, четная, и со знаком «минус», если сумма эта нечетная, называется алгебраическим дополнением данного элемента.

Алгебраические дополнения элементов условимся обозначать теми же буквами и с теми же индексами, что и сами элементы, но прописными [46, 47]. Так, алгебраическим дополнением элемента a_1 будет $A_1=+\begin{vmatrix}b_2&c_2\\b_3&c_3\end{vmatrix}$; алгебраическим дополнением b_1 будет $B_1==-\begin{vmatrix}a_2&c_2\\a_3&c_3\end{vmatrix}$; алгебраическим дополнением c_1 будет $C_1=+\begin{vmatrix}a_2&b_2\\a_3&b_3\end{vmatrix}$. Равенство (8.6) перепишется теперь так:

$$\Delta = \begin{vmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{vmatrix} = a_1 A_1 + b_1 B_1 + c_1 C_1. \tag{8.7}$$

Равенство (8.7) дает, как говорят, разложение определителя третьего порядка по элементам первой строки.

Можно доказать, что определитель третьего порядка может быть аналогичным способом разложен по элементам любой его строки и любого столбца, иными славами, определитель третьего порядка равен сумме произведений элементов любой его строки или столбца на их алгебраические дополнения, откуда получим в дополнение (8.7) еще пять следующих равенств:

$$\begin{split} &\Delta = a_2A_2 + b_2B_2 + c_2C_2; \\ &\Delta = a_3A_3 + b_3B_3 + c_3C_3; \\ &\Delta = a_1A_1 + a_2A_2 + a_3A_3; \\ &\Delta = b_1B_1 + b_2B_2 + b_3B_3; \\ &\Delta = c_1C_1 + c_2C_2 + c_3C_3. \end{split}$$

Сумма произведений элементов какой либо строки (или столбца) определителя на алгебраические дополнения соответствующих

элементов другой строки (другого столбца) равно нулю. Иными словами, справедливы 12 равенств следующего вида: $a_1A_2+b_1B_2+c_1C_2=0$ и еще 5 других, аналогичных равенств; $a_1B_1+a_2B_2+a_3B_3=0$ и еще 5 других, аналогичных равенств.

Используя изложенное выше, рассмотрим решение системы трех линейных уравнений с тремя неизвестными:

$$a_1x + b_1y + c_1z = d_1;$$

 $a_2x + b_2y + c_2z = d_2;$
 $a_3x + b_3y + c_3z = d_3.$ (8.8)

Определитель системы

$$\Delta = \begin{vmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{vmatrix}. \tag{8.9}$$

Преобразуем эту систему в такую, где каждое уравнение содержит лишь одно неизвестное. Для этого умножим уравнения (8.8) сначала на A_1, A_2, A_3 и сложим; затем на B_1, B_2, B_3 и снова сложим, наконец, на C_1, C_2, C_3 и опять сложим $(A_1, \ldots, C_3,$ как и раньше, — алгебраические дополнения элементов определителя), используя результаты (8.8) и (8.9), придем к новой системе уравнений:

$$\Delta x = A_1 d_1 + A_2 d_2 + A_3 d_3;$$

$$\Delta y = B_1 d_1 + B_2 d_2 + B_3 d_3;$$

$$\Delta z = C_1 d_1 + C_2 d_2 + C_3 d_3.$$
(8.10)

Если $\Delta \neq 0$, то система (8.10) равносильна исходной, чтобы в этом убедиться, достаточно сложить уравнения (8.10), скачала умножив их на a_1, b_1, c_1 , затем на d_2, b_2, c_2 и, наконец, на d_3, b_3, c_3 .

Найдем

$$\Delta(a_1x + b_1y + c_1z) = \Delta(a_1A_1 + b_1B_1 + c_1C_1) =$$

= $\Delta(a_1A_2 + b_1B_2 + c_1C_2) + \Delta(a_1A_3 + b_1B_3 + c_1C_3),$

или, используя (8.8) и (8.9),

$$\Delta(a_1x + b_1y + c_1z) = \Delta d_1;$$

 $\Delta(a_2x + b_2y + c_2z) = \Delta d_2;$
 $\Delta(a_3x + b_3y + c_3z) = \Delta d_3.$

Поскольку $\Delta \neq 0$, то, сокращая на Δ , получим исходную систему (8.8). Таким образом, равносильность (уравнений) выражений (8.8) и (8.10) доказана, поскольку каждая из них есть следствие другой, и они обе могут иметь, следовательно, только одни и те же реше-

ния. Выражения в правых частях уравнений (8.10) можно записать, используя (8.8) в виде определителей, получаемых из определителя Δ заменой его столбцов поочередно столбцом свободных членов:

$$A_1d_1+A_2d_2+A_3d_3=egin{array}{cccc} d_1 & b_1 & c_1 \ d_2 & b_2 & c_2 \ d_3 & b_3 & c_3 \ \end{array} ;$$
 $B_1d_1+B_2d_2+B_3d_3=egin{array}{cccc} a_1 & d_1 & c_1 \ a_2 & d_2 & c_2 \ a_3 & d_3 & c_3 \ \end{array} ;$ $C_1d_1+C_2d_2+C_3d_3=egin{array}{cccc} a_1 & b_1 & d_1 \ a_2 & b_2 & d_2 \ a_3 & b_3 & d_3 \ \end{array} .$

Вводя для этих определителей обозначения $\Delta_1, \Delta_2, \Delta_3$, запишем систему (8.10) в виде

$$\Delta x = \Delta_1; \quad \Delta y = \Delta_2; \quad \Delta z = \Delta_3.$$
 (8.11)

Отсюда находим единственное решение системы (8.11) $x=x_0,\ y=y_0,\ z=z_0$ и равносильной ей системы (8.8), в виде

$$x_0=rac{\Delta_1}{\Delta}; \quad y_0=rac{\Delta_2}{\Delta}; \quad z_0=rac{\Delta_3}{\Delta}.$$

Аналогично будут решаться системы линейных уравнений, имеющие 4, 5 и более неизвестных. Пользуясь изложенными выше правилами, в этом случае выражаем определители системы через алгебраические дополнения третьего, четвертого и т. д. порядков, а затем полученные результаты — через алгебраические дополнения второго порядка.

8.1. Информационная матрица

Используя систему нормальных уравнений Гаусса (6.11), составляют матрицу независимых переменных

$$\mathbf{F} = \begin{vmatrix} N & \sum_{i=1}^{N} x_{1i} & \sum_{i=1}^{N} x_{2i} & \sum_{i=1}^{N} x_{1i} x_{2i} \\ \sum_{i=1}^{N} x_{1i} & \sum_{i=1}^{N} x_{1i}^{2} & \sum_{i=1}^{N} x_{1i} x_{2i} & \sum_{i=1}^{N} x_{1i}^{2} x_{2i} \\ \sum_{i=1}^{N} x_{2i} & \sum_{i=1}^{N} x_{1i} x_{2i} & \sum_{i=1}^{N} x_{2i}^{2} & \sum_{i=1}^{N} x_{1i} x_{2i}^{2} \\ \sum_{i=1}^{N} x_{1i} x_{2i} & \sum_{i=1}^{N} x_{1i}^{2} x_{2i} & \sum_{i=1}^{N} x_{1i} x_{2i}^{2} & \sum_{i=1}^{N} (x_{1i} x_{2i})^{2} \end{vmatrix}.$$
(8.12)

Вид матрицы (8.12) полностью аналогичен виду определителя системы (6.11). Информационная матрица M равняется

$$\mathbf{M} = \mathbf{F}^{\mathrm{T}}\mathbf{F},\tag{8.13}$$

где $\mathbf{F}^{\scriptscriptstyle\mathrm{T}}$ — транспонированная матрица независимых переменных.

Tранспонированной по отношению к матрице A называют такую матрицу $A^{\scriptscriptstyle \mathrm{T}}$, которую получают путем изменения мест столбцов и строк матрицы A, например

$$\mathbf{A} = egin{array}{c|c} a_{11} & a_{12} \ a_{21} & a_{22} \ a_{31} & a_{32} \ \end{array}; \quad \mathbf{A}^{ ext{ iny T}} = egin{array}{c|c} a_{11} & a_{21} & a_{31} \ a_{12} & a_{22} & a_{32} \ \end{array}.$$

Умножение матриц. Две матрицы $\mathbf{A}=(a_{ij})_{m\cdot n}$ и $\mathbf{B}=(b_{ki})_{p\cdot q}$ можно умножать друг на друга только тогда, когда число столбцов матрицы, стоящей первым сомножителем, равно числу строк матрицы, стоящей вторым сомножителем. Таким образом, для вышеприведенных матриц \mathbf{A} и \mathbf{B} произведение $\mathbf{A}\mathbf{B}$ можно вычислить только тогда, когда n=p, а произведение $\mathbf{B}\mathbf{A}$, только тогда, когда q=m.

Пусть теперь даны две матрицы: $\mathbf{A}=(a_{ij})_{m\cdot n}$ и $\mathbf{B}=(b_{ki})_{n\cdot p}$. За их произведение \mathbf{AB} принимается по определению матрица $\mathbf{C}=(c_{ij})_{m\cdot p}$, элементы которой c_{ij} определяются следующими формулами:

$$c_{ij} = \sum_{k=1}^{n} a_{ik} b_{ki} = a_{i1} b_{1j} + a_{i2} b_{2j} + a_{i3} b_{3j} + \ldots + a_{in} b_{nj}, \quad i = 1, 2, 3, \ldots, m; \\ j = 1, 2, 3, \ldots, p.$$

Матрицы ${\bf A}\,{\bf B}$ и ${\bf B}\,{\bf A}$ не только не равны, но даже и разной структуры.

После того как по выражению (8.13) с помощью изложенных выше правил найдена информационная матрица \mathbf{M} , нужно определить элементы c_{ij}^{ν} и по ним найти S. Элементы c_{ij}^{ν} находятся из обратной матрицы \mathbf{M} по следующему правилу.

Пусть дана матрица

$$\mathbf{A} = egin{array}{ccc} a_{11} & a_{12} & a_{13} \ a_{21} & a_{22} & a_{23} \ a_{31} & a_{32} & a_{33} \ \end{array} ert; \quad \det(\mathbf{A})
eq 0,$$

где $\det(\mathbf{A}) \neq \Delta \neq 0$ — детерминант (определитель) матрицы \mathbf{A} . Обратная матрица \mathbf{A}^{-1} равна

$$\mathbf{A}^{-1} = \frac{1}{d(A)} \begin{vmatrix} \mathbf{A}_{11} & \mathbf{A}_{21} & \mathbf{A}_{31} \\ \mathbf{A}_{12} & \mathbf{A}_{22} & \mathbf{A}_{32} \\ \mathbf{A}_{13} & \mathbf{A}_{23} & \mathbf{A}_{33} \end{vmatrix}, \tag{8.14}$$

где \mathbf{A}_{ij} — алгебраическое дополнение элементов a_{ij} в определителе $\det(\mathbf{A})$. Читателю рекомендуется обратить внимание на порядок индексов в матрице (8.14). Матрица, построенная из алгебраических дополнений элементов не особой квадратной матрицы \mathbf{A} в определителе $d(\mathbf{A})$, в которой алгебраические дополнения элементов строк расположены по столбцам и наоборот, называется присоединенной матрицей матрицы \mathbf{A} и обозначается $\tilde{\mathbf{A}}$:

$$ilde{\mathbf{A}} = egin{array}{cccc} \mathbf{A}_{11} & \mathbf{A}_{21} & \mathbf{A}_{31} \ \mathbf{A}_{12} & \mathbf{A}_{22} & \mathbf{A}_{32} \ \mathbf{A}_{13} & \mathbf{A}_{23} & \mathbf{A}_{33} \ \end{pmatrix}.$$

Для двух квадратных матриц одного и того же порядка независимость их произведения от порядка сомножителей $(\mathbf{AB}=\mathbf{BA})$ возможна лишь в исключительных случаях. Такие матрицы называют коммутативными.

Пример 1.

$$\mathbf{A} = egin{bmatrix} 1 & 2 \ 3 & 1 \end{bmatrix}; \quad \mathbf{B} = egin{bmatrix} 2 & 1 \ 0 & 3 \ 1 & -1 \end{bmatrix}.$$

Произведение ${f AB}$ не имеет смысла. В то же время произведение ${f BA}$ можно найти

$$\mathbf{BA} = \begin{vmatrix} 2 \cdot 1 + 1 \cdot 3 & 2 \cdot 2 + 1 \cdot 1 \\ 0 \cdot 1 + 3 \cdot 3 & 0 \cdot 2 + 3 \cdot 1 \\ 1 \cdot 1 - 1 \cdot 3 & 1 \cdot 2 - 1 \cdot 1 \end{vmatrix} = \begin{vmatrix} 5 & 5 \\ 9 & 3 \\ -2 & 1 \end{vmatrix}.$$

Пример 2.

$$\mathbf{A} = \begin{vmatrix} 1 & 2 & 1 \\ 3 & 1 & 2 \end{vmatrix}; \quad \mathbf{B} = \begin{vmatrix} 2 & -1 \\ 1 & 3 \\ 0 & 1 \end{vmatrix}.$$

Возможны оба произведения:

$$\begin{split} \mathbf{AB} &= \begin{vmatrix} 1 \cdot 2 + 2 \cdot 1 + 1 \cdot 0 & 1 \cdot (-1) + 2 \cdot 3 + 1 \cdot 1 \\ 3 \cdot 2 + 1 \cdot 1 + 2 \cdot 0 & 3 \cdot (-1) + 1 \cdot 3 + 2 \cdot 1 \end{vmatrix} = \begin{vmatrix} 4 & 6 \\ 7 & 2 \end{vmatrix}; \\ \mathbf{BA} &= \begin{vmatrix} 2 \cdot 1 + (-1) \cdot 3 & 2 \cdot 2 + (-1) \cdot 1 & 2 \cdot 1 + (-1) \cdot 2 \\ 1 \cdot 1 + 3 \cdot 3 & 1 \cdot 2 + 3 \cdot 1 & 1 \cdot 1 + 3 \cdot 2 \\ 0 \cdot 1 + 1 \cdot 3 & 0 \cdot 2 + 1 \cdot 1 & 0 \cdot 1 + 1 \cdot 2 \end{vmatrix} = \\ &= \begin{vmatrix} -1 & 3 & 0 \\ 10 & 5 & 7 \\ 3 & 1 & 2 \end{vmatrix}. \end{split}$$

Из всего множества задач, которые приходится решать экспериментатору при исследовании интересующего его объекта или процесса, мы выделим следующие две встречающиеся на практике, пожалуй, наиболее часто:

- построение математической модели объекта, представляющей собой аналитическую зависимость между выходной переменной (откликом) и набором входных переменных (факторов);
- поиск оптимальных условий поведения объекта (протекания процесса), т.е. поиск таких значений факторов, при которых отклик (или некоторый функционал от него) достигает экстремума.

До сих пор рассматривались вопросы построения модели по результатам пассивного эксперимента. При этом вторая задача в этих условиях даже не рассматривалась, так как возможность её решения связана именно с целенаправленным поиском точек проведения эксперимента в пространстве факторов. В части II этого пособия рассмотрены обе отмеченные задачи в предположении, что экспериментатор имеет возможность целенаправленно влиять на условия проведения эксперимента (нужным образом устанавливать значения контролируешь переменных и число опытов) или, иными словами, может планировать эксперимент.

9.1. Сопоставление возможностей пассивного и активного экспериментов

Рассмотрим построение математической модели исследуемого процесса или явления в виде аналитической зависимости вида

$$y = f(x_1, x_2, \dots, x_m) + \varepsilon,$$

где y — наблюдаемое значение интересующего параметра (отклика); $x_1, x_2, ..., x_m$ — исследуемые факторы; ε — погрешность модели, связанная как с действием неучтенных факторов, так и с ошибками эксперимента; $\eta = f(x_1, x_2, \dots, x_m)$ — среднее значение отклика в точке $X = (x_1, x_2, \dots, x_m)$.

Приближенное определение функции $f(x_1,x_2,\ldots,x_m)$ по результатам пассивного эксперимента является задачей регрессионного анализа. Её решение было рассмотрено выше. При использовании результатов пассивного эксперимента мы предполагаем, что задана матрица плана

$$oldsymbol{\Pi} = egin{bmatrix} x_1 & x_2 & \dots & x_i & \dots & x_n \\ r_1 & r_2 & \dots & r_1 & \dots & r_n \end{bmatrix},$$

где $x_i,\,i=1,2,\ldots,n$, — точка факторного пространства X, где производятся измерения отклика; r_i — число параллельных опытов в точке x_i , так что $\sum\limits_{i=1}^n r_i=N$ — общее числе проведённых опытов.

Зная матрицу Π и результаты измерений отклика в виде матрицы $\mathbf{Y} = [\overline{y}_1, \overline{y}_2, \cdots, \overline{y}_n]^{\mathrm{T}}$, в регрессионном анализе рассматривают линейную модель для оценки f следующего вида:

$$\mathbf{Y} = \mathbf{F}(\mathbf{\Pi})\mathbf{\beta} + \mathbf{\epsilon},\tag{9.1}$$

где матрица независимых переменных

$$\mathbf{F}(\mathbf{\Pi}) = \begin{bmatrix} f_0(x_{11}) & f_0(x_{21}) & \dots & f_0(x_{m1}) \\ f_0(x_{12}) & f_0(x_{22}) & \dots & f_0(x_{m2}) \\ \dots & \dots & \dots \\ f_0(x_{1N}) & f_0(x_{23}) & \dots & f_0(x_{mN}) \end{bmatrix}.$$

зависит от выбранного плана эксперимента Π .

Используя МНК, мы нашли наилучшие (для данной матрицы Π) оценки b_k неизвестных параметров модели (9.1) и построили модель вида

$$y^*(x) = \sum_{k=0}^{l} b_k f_k(x).$$

На этом достижения пассивного эксперимента заканчиваются.

Спрашивается, а нельзя ли добиться большего путем специального выбора матрицы плана Π , т.е. путем планирования эксперимента? Например, мы знаем, что матрица ковариаций оценок

$$\mathbf{D}(b) = \sigma_y^2 \mathbf{C}(\mathbf{\Pi}); \quad \mathbf{C}(\mathbf{\Pi}) = (\mathbf{F}^{\mathsf{T}} \mathbf{F})^{-1}.$$

зависит от Π и, следовательно, можно попытаться найти такую матрицу Π^* , при которой $(\mathbf{D}(\mathbf{b},\Pi^*)$ была бы наименьшей в определенном смысле.

Таким образом, целенаправленный выбор матрицы плана Π ,

т.е. проведение активного эксперимента может дать, по-видимому (и действительно дает!), существенный выигрыш в точности определения модели.

Критерий наилучшего выбора матрицы плана Π может быть выбран по-разному, в зависимости от целей эксперимента. Отсюда и требования к наилучшей матрице Π могут быть различными. Различные критерии оптимальности будут рассмотрены ниже.

Но сначала убедимся в том, что выбор матрицы плана Π действительно влияет на точность оценок b_k .

9.2. Однофакторный и многофакторный эксперимент, преимущества последнего

Традиционный способ проведения эксперимента для установления зависимости вида (9.1) до появления теории планирования эксперимента (ТПЭ) являлся однофакторным. Это означает, что контролируемые переменные (факторы) варьировались по очереди при фиксировании в данном опыте всех остальных факторов. Оказывается, это не наилучший способ проведения эксперимента!

Если проводить многофакторный эксперимент, т. е. менять одновременно уровни нескольких факторов, то можно добиться более точной оценки модели (при том же объеме наблюдений N!). Происходит это за счет более рационального использования пространства факторов X, что можно проиллюстрировать на следующем примере.

Задача о взвешивании. Требуется определить массы $A,\ B$ и C трёх предметов, используя для этой цели пружинные весы.

Традиционную схему взвешивания (отвечающую схеме однофакторного эксперимента) можно представить в виде табл. 9.1 (где +1 означает, что предмет находился на весах, а -1, что он не взвешивался).

Здесь вначале делается «холостое» взвешивание для определения нулевой точки весов, а затем по очереди взвешивается каждый из предметов. Модель взвешивания можно записать в виде

$$y = \alpha_0 + \alpha_1 x_1 + \alpha_2 x_2 + \alpha_3 x_3, \tag{9.2}$$

Таблица 9.1

Номер опыта	A	В	C	Результат взвешивания
1	-1	-1	-1	y0
2	+1	-1	-1	y1
3	-1	+1	-1	y2
4	-1	-1	+1	y3

где

$$x_i = egin{cases} 1 & ext{ если i-й из трех предметов взвешивался;} \ 0, & ext{в противном случае.} \end{cases}$$

Ясно, что при всех $x_i=0$ имеем $y_0=\alpha_0$; при $x_i=1$, $x_1=x_2=0$ имеем $A=\alpha_1=y_1-y_0$ и т. д., каждая масса есть разности результатов двух взвешиваний независимо от числа предметов (факторов).

Дисперсия результатов взвешивания, следовательно, определяется в виде (для 1-го предмета)

$$D(A) = D(y_i - y_0) = 2Dy,$$

где Dy — ошибка взвешивания.

Аналогично D(B) = D(C) = 2Dy и не зависит от числа взвешиваемых предметов.

Запишем модель (9.2) в кодированных переменных (что нужно для сравнении этого способа взвешивания с другим — многофакторным):

$$x_i = rac{x_i - 1/2}{1/2} = egin{cases} +1 & ext{при взвешивании i-го предмета;} \ -1 & ext{в противном случае.} \end{cases}$$

Имеем

$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_3 x_3, \tag{9.3}$$

причем легко видеть, что $\alpha_i = 2\beta_i$, $\alpha_0 = \beta_0 - \sum \beta_i$.

Обратим внимание на вид матрицы независимых переменных в рассматриваемом случае:

$$\mathbf{F}_1 = \begin{bmatrix} 1 & -1 & -1 & -1 \\ 1 & +1 & -1 & -1 \\ 1 & -1 & +1 & -1 \\ 1 & -1 & -1 & +1 \end{bmatrix}.$$

Первый её столбец не ортогонален остальным, т. е. $\mathbf{F}_1^{ \mathrm{\scriptscriptstyle T} } \mathbf{F}_1 \neq \mathbf{D},$ где $\mathbf{D}-$ диагональная матрица.

Рассмотрим другую схему взвешивания, учитывающую влияние нескольких факторов одновременно (схема *многофакторного* эксперимента) и представленную в табл. 9.2.

Таблица 9.2

Номер опыта	A	В	C	Результат взвешивания
1	+1	-1	-1	y0
2	-1	+1	-1	y1
3	-1	-1	+1	y2
4	+1	+1	+1	y3

Матрица независимых переменных для модели (9.3) в этом случае имеет вид

$$\mathbf{F}_2 = \begin{bmatrix} 1 & +1 & -1 & -1 \\ 1 & -1 & +1 & -1 \\ 1 & -1 & -1 & +1 \\ 1 & +1 & +1 & +1 \end{bmatrix},$$

т. е. $\mathbf{F}_{2}^{\mathtt{T}}\mathbf{F}_{2}=\mathbf{D}$, так как все её столбцы ортогональны.

Оценки масс A, B и C и их точность найдем по общим формулам, полученным ранее для ортогональных матриц F:

$$b_1=rac{1}{N}\sum_{i=1}^N f_1(x_i)y_i=rac{1}{4}(y_1-y_2-y_3+y_4)$$
 или $lpha_1=rac{1}{2}(y_1-y_2-y_3+y_4);$ $b_2=rac{1}{N}\sum_{i=1}^N f_2(x_i)y_irac{1}{4}(-y_1+y_2-y_3+y_4)$ или $lpha_2=rac{1}{2}(-y_1+y_2-y_3+y_4);$ $b_3=rac{1}{N}\sum_{i=1}^N f_3(x_i)y_i=rac{1}{4}(-y_1-y_2+y_3+y_4)$ и $lpha_3=rac{1}{2}(-y_1-y_2+y_3+y_4).$

Учитывая независимость измерений y_i , имеем:

$$D\alpha_1 = DA = \frac{4}{4}Dy = Dy;$$

аналогично

$$D\alpha_2 = DB = Dy; \quad D\alpha_3 = DC = Dy,$$

т. е. дисперсия, связанная с ошибкой взвешивания, подучается вдвое меньше, чем при традиционном способе взвешивания, хотя в обоих случаях выполнялось по 4 опыта.

За счет чего получен выигрыш в точности? В первом случае эксперимент был поставлен так, что каждая масса была определена по результатам двух опытов, во втором случае она вычислялась ужа по результатам всех четырех опытов. Отсюда и удвоение точности.

Можно также сказать, что более высокая эффективность многофакторного эксперимента связана с более рациональным размещением точек эксперимента x_i в пространстве факторов. Это можно пояснить следующим образом. Столбцы матрицы \mathbf{F}_1 и \mathbf{F}_2 (кроме первого) задают координаты точек в трехмерном пространстве факторов $X=R_3$, которые расположены в вершинах куба с гранями, проходящими через точки ± 1 . Легко видать, что матрица \mathbf{F}_1 задает 4 смежные вершины куба (на рис. 9.1 они отмечены крестиками), которые заполняют лишь небольшую часть всего куба, т. е. возможной области изменения факторов x_1, x_2, x_3 . Матрица \mathbf{F}_2 , напротив,

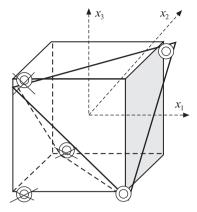


Рис. 9.1. Расположение точек в пространстве факторов при однофакторном эксперименте (отмечены крестиками) и при многофакторном (отмечены кружками)

задает 4 вершины куба, максимально разнесенные в пространстве $X=R_3$. Они образуют вершины правильного тетраэдра, вписанного в куб (на рис. 9.1 эти точки отмечены кружками).

Таким образом, радиус обследуемой сферы факторного пространства при многофакторном эксперименте существенно больше (как нетрудно подсчитать, $r=\sqrt{3}$), это обстоятельство играет решающее значение для моделей типа (9.3), линейных по факторам. Чем дальше мы разносим точки x_i в пространстве факторов X, тем точнее определяем вектор параметров модели β .

Пусть, например, все координаты точки x_i увеличены в k (k>1) раз, т.е. наблюдения проводятся в точках $x_i^*=kx_i$. Тогда матрица ковариаций $\mathbf{D}(b)$ вектора оценок преобразуется следующим образом:

$$\mathbf{D}(b) = \sigma^2 [\mathbf{F}^{ \mathrm{\scriptscriptstyle T} }(kx_i)\mathbf{F}(kx_i)]^{-1} = rac{\sigma^2}{k^2} (\mathbf{F}^{ \mathrm{\scriptscriptstyle T} }\mathbf{F})^{-1} o 0$$
 при $k o \infty$.

Таким образом, модель вида (9.3) будет тем точнее, чем дальше разнесены наблюдения x_i .

Для одного фактора этот вывод иллюстрируется рис. 9.2. Однако область изменения факторов Q в любом реальном эксперименте ограничена. Поэтому мы не можем сколь угодно увеличивать радиус обследуемой сферы пространства факторов.

Тем не менее оказывается, что, используя многофакторные планы, мы увеличиваем радиус обследуемой сферы просто за счет

Рис. 9.2. Зависимость ошибки в оценке коэффициента b_1 в модели $f(x) = \beta_0 + \beta_1 x$ от расстояния между точками (черные кружки — истинные значения, светлые кружки — значения, измеренные с ошибками)

свойств многомерного пространства, не увеличивая при этом интервалов варьирования по каждой переменной. Если каждая из переменных x_1 , x_2 , x_3 варьируется на двух уровнях (т. е. принимает значения ± 1), то объем обследуемого пространства ограничен кубом, координаты вершин которого задаются перестановкой чисел (± 1 , ± 1 , ± 1).

Очевидно, радиус сферы, в которую вписан трехмерный куб, $r=\sqrt{3}$. Переходя к пространству 4 факторов, нетрудно убедиться, что радиус сферы, в которую вписан четырехмерный куб с вершинами $(\pm 1,\,\pm 1,\,\pm 1,\,\pm 1),\,r=\sqrt{4}$; в пространстве 5 факторов радиус аналогичной сферы $\sqrt{5}$ и т.д.

Мы видим, что с ростом числа независимых переменных растет радиус обследуемой сферы при неизменных интервалах варьировании до каждой переменной!

9.3. Критерии оптимальности планов

Мы уже отмечали выше, что наилучший выбор матрицы плана Π при проведении активного эксперимента можно осуществить различным образом в зависимости от целей эксперимента. Иными словами, критерии оптимальности плана Π могут быть различными.

Различают три группы критериев оптимальности плана Π :

- 1) критерии, связанные со свойствами оценок коэффициентов модели b_k (которые определяются матрицей ковариаций $\mathbf{D}b_k$);
- 2) критерии, связанные с предсказательными свойствами модели, т.е. с дисперсией отклика $Dy^*(x)=d(x)$, которая зависит от матрицы $\mathbf{C}=(\mathbf{F}^{\mathrm{T}}\mathbf{F})^{-1};$
- 3) критерии, формулируемые без использования матрицы плана Π дисперсионной матрицы $\mathbf{C}=(\mathbf{F}^{\scriptscriptstyle \mathrm{T}}\mathbf{F})^{-1}.$

Прежде чем формулировать критерии оптимальности, поясним геометрический смысл матрацы ковариаций ${\bf D}b_k$ и дисперсии отклика $Dy^*(x).$

Геометрический смысл $\mathbf{D}b_k$ для двух неизвестных параметров. В пространстве параметров (β_1,β_2) вектор их оценок $\mathbf{b}=(b_1,b_2)$ является двумерной нормально распределенной случайной величиной с матрицей ковариаций $\mathbf{D}b_k$ и средним значением $\mathbf{\beta}=(\beta_1,\beta_2)$.

Возможные значения отклонений $b_1-\beta_1$ и $b_2-\beta_2$ характеризуются эллипсом рассеяния оценок (рис. 9.3). Площадь этого эллипса $S=2\pi\sqrt{Db_1}\sqrt{Db_2}$ пропорциональна $\det \mathbf{D}b$ — определителю матрицы $\mathbf{D}b$, который называют обобщенной дисперсией оценки b.

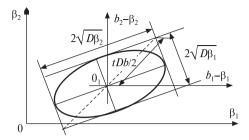


Рис. 9.3. Эллипс рассеяния вектора оценок

В пространстве параметров с числом измерений m>2 вместо эллипса рассматривают эллипсоид рассеяния, добавив еще, что длины осей эллипсоида рассеяния определяются средними квадратическими отклонениями $\sqrt{Db_k}$ оценок b_k соответствующих параметров модели.

Таким образом, определитель матрицы $\mathbf{D}b$ (обобщенная дисперсия) является обобщенной мерой точности вектора оценок b и геометрически пропорционален объему эллипсоида рассеяния этого вектора [19-26].

Геометрическая интерпретация дисперсии отклика. В пространстве факторов X величина $Dy^*(x)$ характеризует точность определения отклика y(x) в произвольной точке $x \in X$.

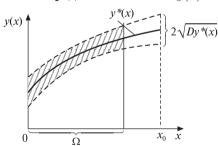


Рис. 9.4. График модели $y^*(x) = f(x, b)$ (сплошная кривая) и коридор возможных значений $y^*(x)$ (пунктирные линии)

приведены в табл. 9.3.

Случай одного фактора иллюстрирует рис. 9.4.

Заштрихованная часть относится к области Ω значений x, где проводился эксперимент.

Таким образом, двухсигмовый интервал возможных значений $y^*(x_0)$ в точке x_0 имеет вид $y^*(x_0) \pm \sqrt{Dy^*(x)}$.

Геометрическая интерпретация величин Db и $Dy^*(x)$ позволяет дать наглядный смысл каждому из критериев оптимальности плана. Сводка критериев оптимальности и их интерпретация

Список возможных критериев далеко не исчерпывается таблицей 9.3. Другие критерии отмечены в [48]. Но даже если ограничиться приведенными критериями, то возникает вопрос, как поступать «простому экспериментатору», какой из критериев выбирать?

Таблица 9.3

		таолица э.э
Критерий	Алгебраический смысл	Статистический смысл и геометрическая интерпретация
	1-я	группа
D-опти- мальность	$ \begin{array}{ll} \min_{\Pi} \det Db_k &= \\ = \min_{\Pi} \det C(\Pi) \end{array} $	Минимум обобщенной дисперсии. Минимум объёма эллипсоида рассеяния оценок параметров
А-опти- мальность	$\prod_{\substack{\Pi \\ \text{TOHADAHAIX}}} \operatorname{C}(\Pi);$ $\prod_{\substack{\Pi \\ \text{TOHADAHAIX}}} \operatorname{C}(\Pi)$	Минимальная средняя дисперсия оценок коэффициентов. Минимум суммы квадратов осей эллипсоида рассеяния или минимума длины диагонали прямоугольника, описанного около эллипсоида
Е-опти- мальность	$\min_{\Pi} \max_k \sqrt{Db_k}$	Отдельные оценки параметров не обладают слишком большими дисперсиями. Минимум максимальной оси
Ортого- нальность	$\mathrm{C}(\Pi) = rac{1}{N}\mathrm{E}\;(\mathrm{E} - еди-$ ничная матрица)	эллипсоида рассеяния Оценки параметров независимы, т. е. все Направления осей эллипсоида рас- сеяния параллельны координатным осям пространства параметров
	2-я	группа
G-опти- мальность	$\min_{\Pi} \max_{i} Dy^*(x_i)$	Минимум максимального значения дисперсии оценок отклика
Q-опти- мальность	$\min \sum_{i=1}^n Dy^*(x_i)$	Минимум средней дисперсии отклика
Ротота- бельность	$Dy^*(x_i) = f(\rho);$ $\rho = \sqrt{\sum_{i=1}^n x_i^2} - \text{рассто-}$ яние от точки $x = (x_1, x_2, \dots, x_m)$ до центра эксперимента	Постоянство дисперсии предсказания на равных расстояниях от центра эксперимента
		группа
Насыщен- ность Компози-	-	Степень близости общего числа опытов к числу неизвестных параметров модели Свойство плана П, означающее воз-
ционность		своиство плана 11, означающее возможность разделить эксперимент на части и реализовать каждую часть последовательно

К сожалению, общей теории выбора критериев оптимальности пока не существует [8, 48]. Поэтому при решении конкретных задач приходится руководствоваться ограничениями и возможностями конкретной ситуации. Очень часто удобно использовать ортогональные планы, позволяющие значительно упрощать числовые расчеты, особенно при поиске адекватной модели.

Наиболее общий, казалось бы, критерий D-оптимальности требует, как правило, слишком большого числа опытов и довольно гро-

моздких расчетов, связанных с применением ЭВМ. Поэтому его использование ограничивается, обычно, теми случаями, когда можно взять готовый план из каталога планов [19].

Положение, однако, существенно упрощается для важного на практике класса моделей — полиномиальных линейных моделей 1-го порядка. Общий вид такой модели для m факторов дает выражение

$$y(x_1, x_2, \dots, x_m) = \beta_0 + \sum_{k=1}^m \beta_k x_k,$$
 (9.4)

где x_1, x_2, \ldots, x_m — независимые переменные (кодированные).

Оказывается, что для модели (9.4) ортогональный план (при котором $\mathbf{F}^{\mathrm{T}}(\mathbf{\Pi})\mathbf{F}(\mathbf{\Pi})=N\mathbf{E}$, где \mathbf{E} — единичная матрица) является оптимальным и по всем другим критериям [24, 49].

Таким образом, планирование эксперимента при использовании линейных моделей 1-го порядка сводится к изучению ортогональных планов. Этот вопрос, а также вопросы планирования эксперимента при построении более общих моделей, чем (9.4), будет рассмотрен ниже.

9.4. Линейные модели 1-го порядка. Полный факторный эксперимент типа 2^m

Данная глава будет посвящена вопросам планирования эксперимента применительно к полиномиальным моделям 1-го и 2-го порядков.

Ортогональное планирование играет особую роль для моделей 1-го порядка, так как для них ортогональные планы являются одновременно оптимальными по всем остальным критериям. Поэтому в данном параграфе будут подробно рассмотрены вопросы построения ортогональных планов и их возможности применительно к моделям 1-го порядка.

В основе всех ортогональных планов лежит так называемый полный факторный эксперимент (ПФЭ) типа 2^m , при котором каждый из факторов в эксперименте может принимать одно из двух возможных значений или, как говорят, устанавливаться на одном из двух возможных уровней. В ПФЭ уровни каждого фактора комбинируются со всеми уровнями других факторов. Число экспериментов и при этом растет как 2^m , т. е. достаточно быстро. Поэтому при больших значениях $m\ (m>3)$ важное практическое значение имеют неполные (или, как говорят, дробные) факторные эксперименты, сохраняющие свойство ортогональности.

Прежде, чем переходить к рассмотрению $\Pi\Phi \Im$ типа 2^m , перечислим те вопросы, которые, непосредственно предшествуют выбору матрицы плана и составляют содержание так называемого этапа предпланирования эксперимента.

Этап предпланирования эксперимента. На этом этапе, непосредственно предшествующем выбору матрицы плана и проведению эксперимента, решается следующие основные вопросы:

- 1. Выбор факторов z_k , $k=1,2,\ldots,m$, подлежащих изучению, и выходной переменой (отклика) y.
- 2. Выбор области проведения эксперимента Ω в факторном пространстве Z.
- 3. Выбор базовой точки $z_0 = (z_{01}, z_{02}, \dots, z_{0m}) \in \Omega$ центра эксперимента.
- 4. Выбор интервалов варьирования $\Delta z,\ k=1,2,\ldots,m$, по каждому фактору z_k (предполагается, что каждый фактор z_k будет принимать два уровня $z_{k0}+\Delta z_k$ и $z_{k0}-\Delta z_k$).
 - 5. Кодирование переменных.

Рассмотрим подробнее каждый перечисленных пунктов.

Выбор факторов z_k , $k=1,2,\ldots,m$, которые включаются в модель, производится с учетом следующих обстоятельств.

Во-первых, факторы должны быть управляемыми, так как в противном случае невозможно производить эксперимент в соответствии с заданным планом. Например, такой фактор, как доля примеси в сырье при производстве некоторого продукта не является управляемым, его следует отнести к шумовому фону.

Во-вторых, факторы должны быть функционально независимыми. Например, рассматривая такие переменные, как ток, напряжение и активную мощность источника питания, в качестве факторов можно взять любые два из трех (например, напряжение и ток), так как все три переменные связаны функциональной зависимостью.

В-третьих, факторы должны быть совместимыми, т.е. комбинации их уровней, предусмотренных планом, должны быть безопасными и не давать бракованной продукции.

Наконец, предполагается, что в рассмотрение включены все существенные факторы. Решение этого вопроса находится в компетенции специалиста, располагающего априорной информацией о свойствах исследуемого объекта. Существуют специальные методы выделения существенных факторов и отсеивания несущественных [14].

Выбор выходной переменной (или переменных) определяется смыслом и целевой установкой решаемой задачи. При этом следует

иметь в виду, что выходная переменная должка отражать свойства и качества процесса в целом и должна измеряться достаточно точно.

Область проведения эксперимента Ω выбирается путем компромисса между желанием охватить возможно более широкую часть пространства факторов Z и стремлением получить простую и адекватную модель объекта, что возможно, как правило, в небольшой части области Z. При этом, разумеется, должны учитываться те ограничения на факторы z_k , которые определяются реальными условиями и смыслом задачи (например, время $t\geqslant 0$, температура T не выше некоторого значения T_{\max} и т.д.).

Базовая точка $z_0=(z_{01},z_{02},\ldots,z_{0m})$ выбирается либо в центре области ограничений Ω , если модель объекта строится сразу для всей области Ω , либо в центре каждой части Ω_0 , на которые Ω разбивается с целью поиска в каждой части наиболее простой модели объекта.

В этом случае, когда решается задача поиска оптимальных условий, в качестве базовой точки выбирается такая, в которой целевая функция принимает наилучшее значение по сравнению со всеми другими точками, изучаемыми в процессе предварительных исследований.

Интервалы варьирования Δz_k , $k=1,2,\ldots,m$, должны отвечать следующим условиям:

- Δz_k должна существенно превышать погрешность измерения по соответствующему фактору x_k ;
- Δz_k не должна превышать размеров области допустимых значений Ω и не должна быть настолько большой, чтобы математическое описание поверхности отклика было слишком грубым;
- приращение $\Delta \eta$ выходной переменной η , вызванное изменением управляемого фактора z_k на Δz_k должно существенно превышать погрешность измерения выхода $\Delta \eta$ (чтобы было возможный выделение $\Delta \eta$ на фоне шумов при небольшом числе параллельных опытов).

Ясно, что эти условия могут служить лишь некоторым ориентиром и не дает формализованного правила выбора Δz_k .

После выбора базовой точки $z_0=(z_{01},z_{02},\ldots,z_{0m})$ и интервалов варьирования $\Delta z_k,\ k=1,2,\ldots,m$, производится кодирование переменных z и переход к переменным x_k по формулам кодирования

$$x_k = \frac{z_k - z_{0k}}{\Delta z_k}, \quad k = 1, 2, \dots, m.$$
 (9.5)

Поскольку каждая переменная z_k принимает в каждом опыте лишь два уровня: нижний $z_{k0}-\Delta z_k$ и верхний $z_{k0}+\Delta z_k$, то ко-

дированная переменная x_k , $k=1,2,\ldots,m$, в каждом опыте может принимать значения либо +1 (верхний уровень), либо -1 (нижний уровень).

Преобразование переменных (9.5) есть линейное преобразование, которое переводит начало координат исходного пространства Z в точку z_0 , а прямоугольную область $\Omega_x = \{|x_{k0} - x_k| < \Delta x_k, k=1,2,\ldots,m\}$ в m-мерный гиперкуб Ω_x , грани которого отсекают на осях отрезки ± 1 , т.е.

$$\Omega_x = \{-1 \leqslant x_k \leqslant +1, \ k = 1, 2, \dots, m\}.$$

Оказывается, что если точки эксперимента $x_k=(x_{k1},x_{k2},\ldots,x_{km})$ выбирать в вершинах гиперкуба Ω_x определённым образом (как именно — указано ниже), то план Π будет ортогональным, т. е. информационная матрица $\mathbf{M}=(\mathbf{F}^{\mathrm{T}}\mathbf{F})$ будет диагональной:

$$\mathbf{M} = \mathbf{F}^{\mathrm{\scriptscriptstyle T}}\mathbf{F} = N\mathbf{E},$$

где
$$\mathbf{E} = egin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$
 — единичная матрица.

Полный факторный эксперимент типа 2^m . Один из способов построения ортогонального плана Π — это выбор в качестве точки эксперимента x_k в факторном пространстве всех вершин m-мерного куба Ω_x , т. е. построение $\Pi\Phi \ni 2^m$.

Определение. Полным факторным экспериментом типа 2^m называется множество всех точек в m-мерном пространстве кодированных переменных, координаты которых равны либо +1, либо -1.

Число точек в этом плане $n=2^m$, и они заполняют все вершины m-мерного куба. Следовательно, и минимальное число опытов при проведении ПФЭ 2^m равно $n=2^m$. Их больше n, если в некоторых точках проводятся параллельные опыты.

Нумерация точек плана может осуществляться по-разному. Мы будем следовать правилу «наращивания», которое применительно к плану Π_2 и состоит в следующем:

$$oldsymbol{\Pi}_2 = egin{bmatrix} oldsymbol{\Pi}_1 & oldsymbol{l}_1 \ oldsymbol{\Pi}_1 & oldsymbol{l}_2 \end{bmatrix}, \quad ext{где} \ oldsymbol{l}_1 = egin{bmatrix} 1 \ 1 \end{bmatrix} = egin{bmatrix} + \ + \end{bmatrix};$$

при m=3

$$oldsymbol{\Pi}_3 = egin{bmatrix} oldsymbol{\Pi}_2 & oldsymbol{l}_2 \ oldsymbol{\Pi}_2 & -oldsymbol{l}_2 \end{bmatrix}, \quad ext{где} \ oldsymbol{l}_2 = egin{bmatrix} 1 \ 1 \ 1 \ 1 \end{bmatrix}.$$

Вообще, если построен уже план Π_m , то план Π_{m+1} определя-

11p	имеры 1140 г. и оощее правил	о построения плана			
Размерность пространства	Точки эксперимента	План эксперимента			
m = 1	2 1 -1 0 1	$\Pi_1 = \begin{bmatrix} +1 \\ -1 \end{bmatrix} = \begin{bmatrix} + \\ - \end{bmatrix}$			
m = 2	$ \begin{array}{c c} 2 & x_2 \\ & x_1 \\ & x_1 \end{array} $	$\Pi_2 = \begin{bmatrix} +1 & +1 \\ -1 & +1 \\ +1 & -1 \\ -1 & -1 \end{bmatrix} = \begin{bmatrix} + & + \\ - & + \\ + & - \\ - & - \end{bmatrix}$			

Таблица 9.4Примеры ПФЭ 2^m и общее правило построения плана

ется по рекуррентному правилу (правилу «наращивания»):

$$oldsymbol{\Pi}_{m+1} = egin{bmatrix} oldsymbol{\Pi}_m & oldsymbol{\mathbf{l}}_m \ oldsymbol{\Pi}_m & -oldsymbol{\mathbf{l}}_m \end{bmatrix}, \quad ext{где } oldsymbol{\mathbf{l}}_m = egin{bmatrix} 1 \ \dots \ 1 \end{bmatrix}.$$

Убедимся в том, что $\Pi\Phi \ni$ типа 2^m , задаваемый матрицей плана Π_m , является ортогональным.

Пусть вначале m=3, и пусть функция отклика имеет вид

$$\eta = \sum_{k=0}^{3} \beta_k x_k + \sum_{k < j}^{3} \beta_{kj} x_k x_j + \beta_{123} x_1 x_2 x_3, \tag{9.6}$$

т. е. является полиномиальной моделью 1-го порядка со всеми взаимодействиям: парными $x_jx_k,\ k\neq j$ (или взаимодействиями 1-го порядка) и тройным $x_1x_2x_3$ (взаимодействием 2-го порядка). Попутно мы покажем, что для такой функции отклика могут быть получены МНК-оценки всех неизвестных коэффициентов $\{\beta_k\},\ \{\beta_{kj}\},\ \beta_{123}.$

Обозначим через x_{ku} значение переменной x_k , k=1,2,3, в u-м опыте, $u=1,2,\ldots,2^m=8$ (все $x_{ku}=\pm 1$) и выпишем матрицу независимых переменных, учитывая, что базисные функции в рассматриваемом случае равны:

$$f_0(x) = 1;$$
 $f_1(x) = x_1;$ $f_2(x) = x_2;$
 $f_3(x) = x_3;$ $f_4(x) = x_1x_2 = x_4;$
 $f_5(x) = x_1x_3 = x_5;$ $f_6(x) = x_2x_3 = x_6;$
 $f_7(x) = x_1x_2x_3 = x_7,$

где переменные x_4, \dots, x_7 — введены для удобства обозначений.

Матрица независимых переменных ${f F}=[f_k(x_u)]=[x_{ku}],$

 $k=0,1,\dots,7;\; u=1,2,\dots,8$, или в развернутом виде

Из последнего представления ${\bf F}$ видно, что 2-й, 3-й и 4-й столбцы образуют матрицу плана $\Pi\Phi \ni 2^3$, а последующие столбцы матрицы (с 5-го по 8-й) для парных и тройных взаимодействий получаются перемножением соответствующих столбцов матрицы плана Π_3 .

Для матрицы независимых переменных ${\bf F}$ выполняются следующие соотношения:

$$\sum_{u=1}^{n} x_{ku} = 0, \quad k = 1, 2, \dots 7;$$
(9.7)

$$\sum_{u=1}^{n} x_{ku}^{2} = n, \quad k = 0, 1, 2, \dots, 7;$$
(9.8)

$$\sum_{u=1}^{n} x_{kj} x_{ku} = 0, \quad k = 1, 2, \dots, k \neq j.$$
 (9.9)

Соотношение (9.13) является условием симметричности плана, оно означает, что точки плана расположены симметрично относительно начала координат (в пространстве кодированных переменных). Соотношение (9.14) называют условием нормировки, оно означает, что в ПФЭ предусмотрены лишь 2 уровня +1 и -1. Соотношение (9.15) означает, что столбцы матрицы \mathbf{F} попарно ортогональны и, следовательно, матрица $\mathbf{F}^{\mathrm{T}}\mathbf{F} = \mathbf{M}$ называемая информационной матрицей Фишера, является диагональной:

$$\mathbf{M}=(\mathbf{F}^{\mathrm{T}}\mathbf{F})-n\mathbf{E}_{n},$$
 где $\mathbf{E}_{n}=\begin{bmatrix}1&0&\dots&0\\0&1&\dots&0\\\dots&\dots&\dots&\dots\\0&0&\dots&1\end{bmatrix}_{n\times n}$ — единичная матрица.

Тем самым мы убедились в том, что план Π_3 для $\Pi\Phi \ni 2^m$ (m=3) является ортогональным. Ясно, что свойство сохраняет-

ся, если функция отклика (9.12) не содержит некоторые или даже все взаимодействия. Число неизвестных коэффициентов в модели (9.12) равно $l+1=1+m+C_m^2+C_m^3=8$ при m=3, а число опытов $n=2^m=8$, т. е. все коэффициенты $\beta_0,\ \beta_1,\ \beta_2,\ \beta_3,\ \beta_{12}=\beta_4,\ \beta_{13}=\beta_5,\ \beta_{23}=\beta_6,\ \beta_{123}=\beta_7,$ могут быть оценены независимо. В соответствии с общими формулами для ортогонального плана (см. гл. 3) имеем следующие МНК-оценки коэффициентов β_k и их дисперсии:

$$b_k=rac{1}{N}\sum_{u=1}^narphi_k(x_u)y_u,$$
 или $b_k=rac{1}{N}\sum_{u=1}^nx_{ku}y_u;$ $Db_k=\sigma^2/n,$ $k=0,1,2,\ldots,7,$

т. е. оценки $\{b_k\}$, $k=0,1,2,\ldots,7$, некоррелированы.

Если заранее известно, что некоторые (или все) взаимодействия в модели (9.10) отсутствует, то нетрудно видеть, что формулы для вычисления МНК-оценок остальных коэффициентов при этом сохраняются прежними. Ясно, что приведенные рассуждения и выводы остаются справедливы для ПФЭ 2^m при любом m>3), если только функция отклика представляет собой полиномиальную модель 1-го порядка, включающую, быть может, все взаимодействия переменных x_1, x_2, \ldots, x_m . Действительно, пусть функция отклика имеет вид

$$\eta = \beta_0 + \sum_{k=1}^m \beta_k x_k + \sum_{k < j}^m \beta_{kj} x_k x_j + \sum_{k < i < j}^{\beta_{kij}} x_k x_i x_j,$$

где произведение $x_1x_2\cdots x_m$ называется взаимодействием (m-1)-го порядка факторов x_1,x_2,\ldots,x_m . Тогда общее число неизвестных коэффициентов в модели (9.15)

$$l+1=1+m+C_m^2+C_m^3+\ldots+C_m^m=\sum_{k=0}^m C_m^k=2^m.$$

Но число опытов в ПФЭ 2^m равно $n=2^m$ тоже.

Таким образом, $\Pi\Phi\ni 2^m$ позволяет независимо оценить все коэффициенты в модели (9.10). Нетрудно также проверить, что матрица независимых переменных состоит из попарно ортогональных столбцов, а следовательно, матрица $\mathbf{F}^{\mathrm{T}}\mathbf{F}=\mathbf{M}$ является диагональной. Это значит, что план $\mathbf{\Pi}_m$ в $\Pi\Phi\ni 2^m$ является ортогональным и, следовательно, МНК-оценки и их дисперсии для коэффициентов модели (9.10) $\beta_0,\beta_1,\beta_2,\ldots,\beta_m,\beta_{12}=\beta_{m+1},\ldots=\beta_{1,\ldots,m}=\beta_l=2^{m-1}$

определяются по формулам:

$$b_n = rac{1}{n} \sum_{u=1}^n x_{uk} x_{uk}, \quad k = 0, 1, 2 \dots, l;$$
 $D(b_k) = \sigma^2/m, \quad k = 0, 1, \dots, l;$ $\operatorname{cov}(b_i, b_j), \quad i \neq j,$

где, напомним, x_{ku} — значение переменной x_k , $k=0,1,\ldots,l$, в u-м опыте, $u=0,1,\ldots,m$, причем $x_0=1$, $x_{m+1}=x_1x_2$, $x_{m+2}=x_1x_3$, $x_l=x_1x_2\cdots x_m$. Заметим, что выражение вида b_kx_k называют часто линейным эффектом переменной а $b_{1,\ldots,d}$; $x_1x_2\cdots x_d$, $d=2,3,\ldots,m$, — эффектом взаимодействия факторов x_1,x_2,\ldots,x_d .

9.5. Линейные модели 2-го порядка

Если изучение отклика у производится с целью отыскания его экстремальных значений, то модели 1-го порядка перестают работать — нужны модели 2-го порядка, где присутствуют лишь парные взаимодействия. К таким моделям приходится переходить также в том случае, когда проверка адекватности показала плохое согласие с моделью 1-го порядка:

$$\eta = \beta_0 + \sum_{k=1}^{m} \beta_k x_k + \sum_{i=m+1}^{2m} \beta_{ii} x_i^2 + \beta_{2m+1} x_1 x_2 + \beta_l x_{m+1} x_m.$$
 (9.10)

Общее число коэффициентов модели

$$l^* = 1 + m + m + C_m^2 = C_{m+2}^2.$$

Для их оценки $\Pi\Phi \ni$ типа 2^m на двух уровнях уже не годится, так как значений y на границе области проведения эксперимента Ω недостаточно для определения характера поверхности отклика. Поэтому для модели 2-го порядка нужно проводить эксперимент на 3 уровнях. Но $\Pi\Phi \ni$ типа 3^m требует слишком много наблюдений (по сравнению с числом неизвестных параметров) и, кроме того, не является ортогональным. Степень избыточности такого плана иллюстрирует табл. 9.5.

Поэтому для квадратичных моделей распределения применяют так называемые композиционные планы, предложенные Боксом. Хотя они и не являются D-оптимальными, но не слишком сильно проигрывая им в эффективности (измеряемой обобщенной дисперсии $\det \mathbf{D}[b_k]$, они существенно более экономичны в числе наблюдений.

Таблица 9.5

m	1	2	3	4	5
$C_{m+2}^2 = l^*$ 3^m	3	6	10	15	21
	3	9	27	81	243

Композиционные планы Бокса. Композиционный план, как следует из названия, скомпонован из «ядра», которым является план (полный либо дробный факторный) модели 1-го порядка, и дополнительных точек: центральной $(0,0,0,\ldots,0)$, в которой проводится n_0 измерений, и 2m так называемых звездных точек с координатами $(\pm\alpha,0,\ldots,0)$, $(0,\pm\alpha,0,\ldots,0)$, $(0,0,\ldots,\pm\alpha)$, расположенных на расстоянии α от середины рёбер гиперкуба.

Выбором длины «плеча» α и числа n композиционному плану могут быть приданы различные свойства, например, ортогональность или рототабальность.

Рассмотрим ортогональные центральные композиционные планы (ОЦКП).

Для обеспечения ортогональности достаточно положить $n_0=1$ и преобразовать модель 2-го порядка (9.10) следующим образом:

$$\eta = b_0 + \sum_{k=1}^{m} b_k x_k + \sum_{i=m+1}^{2m} b_{ii} (x_i^2 - \theta) + b_{2m+1} x_1 x_2 + b_l x_{m+1} x_m,$$
 (9.11)

где

$$\theta = \frac{1}{N} \sum_{i=1}^{N} x_{ij}^2 = \frac{2^{n-p} + \alpha^2}{N}.$$
 (9.12)

В равенстве (9.12) N — общее число точек в плане; 2^{n-p} — число точек ядра композиционного шина, являющегося $\Delta\Phi\Pi$ типа 2^{n-p} . Ясно, что (с учетом $n_0=1$) $N=2^{n-p}+2m+1$.

От модели (9.11) легко перейти к модели (9.12), учитывая, что

$$\beta_0 = b_0 - \theta \sum_{i=m+1}^{2m} b_i.$$

Для оценки коэффициентов модели (9.11) достаточно знать матрицу независимых переменных ${\bf F}$ и матрицу отклика ${\bf Y}$, представленные в табл. 9.6 для 3 факторов (m=3), где матрица $\Pi\Phi \ni 2^m$ обведена рамкой.

Можно проверить, что для обеспечения ортогональности столбцов матрицы ${\bf F}$ плечо α нужно определять из выражения

$$\alpha = \sqrt{2^{(m-p)/2}(\sqrt{N} - 2^{(m-p)/2})}.$$

	Таоли												
						Mar	грица F	1				Мат-	
	Номер	x_0	Мат	рица	плана	$x_1^2 - \theta$	$x_2^2 - \theta$	$x_3^2 - \theta$	$x_1 x_2$	$x_{1}x_{3}$	$x_{2}x_{3}$	рица Y	
	опыта		x_1	x_2	x_3							_	
Ядро	1	1	1	1	1	$I - \theta$	$I - \theta$	$I - \theta$	1	1	1	y_1	
пла-	2	1	-1	1	1	$I - \theta$	$I - \theta$	$I - \theta$	-1	-1	1	y_2	
на	3	1	1	-1	1	$I - \theta$	$I - \theta$	$I - \theta$	-1	1	-1	y_3	
2^m	4	1	-1	-1	1	$I - \theta$	$I - \theta$	$I - \theta$	1	-1	-1	y_4	
	5	1	1	1	-1	$I - \theta$	$I - \theta$	$I - \theta$	1	-1	-1	y_5	
	6	1	-1	1	-1	$I - \theta$	$I - \theta$	$I - \theta$	-1	1	-1	y_6	
	7	1	1	-1	-1	$I - \theta$	$I - \theta$	$I - \theta$	-1	-1	1	y_7	
	8	1	-1	-1	-1	$I - \theta$	$I - \theta$	$I - \theta$	1	1	1	y_8	
Звёз-	9	1	α	0	0	$\alpha^2 - \theta$	$-\theta$	$-\theta$	0	0	0	y_9	
дные	10	1	$-\alpha$	0	0	$\alpha^2 - \theta$	$-\theta$	$-\theta$	0	0	0	y_{10}	
-РОТ	11	1	0	α	0	$-\theta$	$\alpha^2 - \theta$	$-\theta$	0	0	0	y_{11}	
ки	12	1	0	$-\alpha$	0	$-\theta$	$\alpha^2 - \theta$	$-\theta$	0	0	0	y_{12}	
	13	1	0	0	α	$-\theta$	$-\theta$	$\alpha^2 - \theta$	0	0	0	y_{13}	
	14	1	0	0	$-\alpha$	$-\theta$	$-\theta$	$\alpha^2 - \theta$	0	0	0	y_{14}	
Цент.	15	1	0	0	0	$-\theta$	$-\theta$	$-\theta$	0	0	0	y_{15}	

Таблица 9.6

Значения α для различных m приведены в табл. 9.6. В силу ортогональности столбцов матрицы ${\bf F}$ информационная матрица плана ${\bf M}={\bf F}^{\rm T}{\bf F}$ будет диагональной следующего вида:

$$\mathbf{M} = egin{bmatrix} m_0 & 0 & 0 & 0 \ 0 & m_1 \mathbf{I}_m & 0 & 0 \ 0 & 0 & m_2 \mathbf{I}_m & 0 \ 0 & 0 & 0 & m_3 \mathbf{I}_m \end{bmatrix},$$

где $m_0=N=2^{m-p}+2m+1; m_1=2^{m-p}+2\alpha^2; m_2=2^{m-p}(1-\theta)^2++2(\alpha^2-\theta^2)+(2n-1)\theta^2; m_3=2^{m-p}; \mathbf{I}_m$ — единичная матрица $(m\times m);$ дисперсионная матрица $\mathbf{C}=\mathbf{M}^{-1}$ получается из \mathbf{M} обращением диагональных элементов m_i , т. е.

$$\mathbf{C} = egin{bmatrix} c_0 & 0 & 0 & 0 \ 0 & c_1 \mathbf{I}_m & 0 & 0 \ 0 & 0 & c_2 \mathbf{I}_m & 0 \ 0 & 0 & 0 & c_3 \mathbf{I}_m \end{bmatrix},$$

где $c_i = 1/m_i$, i = 0, 1, 2, 3.

Для коэффициентов исходной модели (9.10) можно записать следующие выражения:

$$b_0 = \frac{1}{N} \sum_{j=1}^{N} y_j - \theta \sum_{i=m+1}^{2m} b_i;$$
(9.13)

Таблица 9.7

Размерность	Ядро плана	N	α	θ	Элементы матрицы				
	Mps Intalia				c_0	c_1	c_2	c_3	
2 3 4 5 6	$ \begin{array}{c} 2^{2} \\ 2^{3} \\ 2^{4} \\ 2^{5-1} \\ 2^{6-1} \end{array} $	9 15 25 27 45	1 1,215 1,414 1,547 1,722	0,667 0,73 0,8 0,77 0,843	0,111 0,067 0,04 0,037 0,022	0,167 0,09 0,05 0,048 0,026	0,5 0,23 0,125 0,087 0,056	0,25 0,125 0,062 0,062 0.031	
7	2^{7-1}	79	1,722	0,843	0,022	0,026	0,039	0,016	

$$b_i = \begin{cases} \frac{1}{m} \sum_{j=1}^N x_{ij} y_j & \text{ при } i = 1, 2, \dots, m; \\ \frac{1}{m} \sum_{j=1}^N [x_{ij}^2 - \theta] y_j & \text{ при } i = m+1, \dots, 2m; \\ \frac{1}{m_3} \sum_{j=1}^N x_{rj} x_{kj} y_j & \text{ при } r \neq k; i = 2m+1, \dots, l; \\ S_i^2 = \begin{cases} S^2 c_0 & \text{ при } i = 0; \\ S^2 c_1 & \text{ при } i = 1, 2, \dots, m; \\ S^2 c_2 & \text{ при } i = m+1, \dots, 2m; \\ S^2 c_3 & \text{ при } i = 2m+1, \dots, l; \end{cases}$$

$$S_{b_0}^2 = S^2 (c_0 + n\theta^2 c_2),$$

 S^2 — оценка дисперсия воспроизводимости.

Для удобства пользователей сведём значения θ, α, c_i в табл. 9.7.

Заметим, что для числа факторов $m\leqslant 4$ в качестве ядра ортогонального композиционного плана может быть использован только ПФЭ. Для m=5, 6, 7 можно использовать (в качестве ядра) полуреплики 2^{m-1} , и лишь для m=8 можно использовать четвертьреплику 2^{m-2} . Это отражено в табл. 9.7.

Пример. Изучался процесс нормирования лакосажевых резисторов. В качестве выходной переменной y рассматривался процент годных изделий. Варьируемыми параметрами являлись: вязкость суспензии z_1 , температура при нанесении суспензии z_2 , скорость нанесения суспензии на подложку z_3 , температура при термической обработке z_4 . Для поиска оптимальных условий в окрестности режима, принятого по технологии, был проведан эксперимент на основе ОЦКП 2-го порядка для получения модели в виде полинома 2-го порядка. Уровни варьирования факторов выбраны были сле-

дующими: по фактору

$$z_1$$
: 7,0 ± 0,5, T. e. $x_1 = (z_1 - 7)/0,5$;
 z_2 : 25,0 ± 5, T. e. $x_2 = (z_2 - 25)/5$;
 z_3 : 4 ± 2, T. e. $x_3 = (z_3 - 4)/2$;
 z_4 : 130 ± 57, T. e. $x_4 = (z_4 - 130)/57$.

В соответствии с ОЦКП эксперимент был проведен в $N=2^4+$ $+ 2 \cdot 4 + 1 = 25$ точках и дал следующие значения y в соответствующих точках (вид плана аналогичен табл. 9.6):

- 11) 50,07; 16) 50,05; 6) 43,04; 21) 44,84; 1) 40,7;
- 2) 30,6; 7) 49,9; 12) 49,53; 17) 49,9; 22) 50,1; 3) 44,6; 8) 47,3; 13) 50,4; 18) 43,9; 23) 43,74;

- 4) 37,6; 9) 49,5; 14) 50,15; 19) 49,48; 24) 50,41; 5) 49,2; 10) 46,8; 15) 50,33; 20) 50,12; 25) 49,97.

Из табл. 9.7 находим $\alpha=1{,}414$ и $\theta=0{,}8,\ c_0=0{,}04,\ c_1=0{,}05,$ $c_2 = 0.125, c_3 = 0.062$. На основе формул (9.10) и (9.5) получаем модель процесса в виде

$$y^*(x) = 49.6 - 3.9x_1 + 1.98x_2 + 4.83x_3 + 6.3x_4 - 2.6x_1^2 + 0.3x_2^2 - 2.03x_3^2 - 2.43x_4^2 + 1.09x_1x_2 + 1.36x_1x_3 + 2.75x_1x_4 - 1.17x_2x_3 - 1.61x_2x_4 - 3.8x_3x_4.$$

Проверим адекватность модели. Оценка дисперсии воспроизводимости отклика $S^2=1.19$ с числом степеней свобода $\nu_2=3$ получена путем параллельных наблюдений, проведенных в некоторой точке вне рамок плана.

Остаточная сумма квадратов $\sum\limits_{i=1}^{N}(y_i-y_i^*)^2=52{,}2$ при числе степеней свободы ν_1 , равном разности числа наблюдений и числа l неизвестных параметров модели, т. е. $\nu_1=N-l=25-15=10.$

Следовательно, дисперсия неадекватности в данном случае $S_{\rm au}^2=5{,}22$ и дисперсионное отношение $F=5{,}22/1{,}19=4{,}38{,}$ табличное значение F-критерия при $\alpha=0.05\ F_T(\alpha,\nu_1,\nu_2)=8.79.$

Так как $F=4.38\leqslant F_T(\alpha,\nu_1,\nu_2)=8.79$, то модель считается адекватной.

Проверка значимости коэффициентов (при $\alpha = 0.05$) показывает, что незначимы коэффициенты при x_1^2 , x_1x_2 , x_2x_3 , которые следует исключить из модели, причем в силу ортогональности плана все остальные коэффициенты не изменяются, кроме b_0 , который в соответствий с (9.13) будет равен 49,7.

Рототабельные центральные композиционные планы (РЦКП) это планы, которые обеспечивают постоянство дисперсии отклика

Таблица 9.8

Тип плана	m	. = 4	m	= 5	m = 6	
I III IIIIai	N	$d_{\mathtt{max}}$	N	$d_{\mathtt{max}}$	N	$d_{ exttt{max}}$
Непрерывный D -оптимальный B_m Ортогональный Рототабельный	- 24 25 31	15 18,5 - 267	- 42 43 52	21 34 149 692	- 76 77 91	28 66 312 1726

 $Dy^*(x)$ на равных расстояниях от центра эксперимента (независимо от направления). При этом свойство ортогональности теряется, хотя информационная матрица таких планов $\mathbf{F}^{\mathrm{T}}\mathbf{F}=\mathbf{M}$ близка к диагональной, что позволяет получить удобные для ручного счета формулы оценок коэффициентов модели и их дисперсий [14].

РЦКП строится аналогично ортогональному плану, т.е. к ядру плана, в качестве которого может быть использован полный (2^m) либо дробный (2^{m-p}) факторный план, добавляются 2m звездных точек с плечом $\alpha=2^{(m-p)/4}$ и $n_0>1$ опытов в центре плана.

Величина n_0 выбирается из довольно искусственных соображений о постоянстве $Dy^*(x)$ внутри сферы единичного радиуса с центром в начале координат (кодированных переменных). Её значения для разных m приведены в [9]. Поскольку рототабельные планы не имеют явных преимуществ перед ОЦКП, проигрывая последним по точности, измеряемой обобщенной дисперсией (что будет отмечено ниже), мы не будем подробней их здесь рассматривать, отсылая интересующихся к [9].

Планами типа B_m называются композиционные планы с ядром в виде полного (2^m) факторного плана, дополненного 2m звездными точками с плечом $\alpha=1$. Иными словами, план типа B_m состоит из 2^m вершин m-мерного гиперкуба с координатами ± 1 и 2m центров (m-1)-мерных граней. Общее число точек плана $N=2^m+2m$. Сопоставление этих планов приведено в табл. 9.8 (где $d_{\max}=Dy^*(x)$).

Из табл. 9.7 видно, что по такому важному критерию, как максимальное значение дисперсии предсказания d_{\max} , планы типа B_m , ненамного уступают непрерывным D-оптимальным планам и существенно превосходят ОЦКП и РЦКП Бокса (при меньшем числе опытов N). Дополнительное преимущество планов типа B_m состоит в том, что их звездные точки находятся в пределах заданной области эксперимента Ω , а не выходят за неё, что часто бывает невозможно осуществить.

В [51] получены формулы для оценок коэффициентов квадра-

тичной модели и их дисперсий, имеющие вид:

$$b_0 = \frac{1}{2(m-1)} \left(\sum_{j=N_0+1}^{N} \overline{y}_j - \frac{1}{2^m - 1} \sum_{j=1}^{N_0} \overline{y}_j \right), \quad N_0 = 2^m; \quad (9.14)$$

$$b_{jj} = \frac{1}{2} \sum_{j=N_0+1}^{N} x_{ij}^2 \overline{y}_j - b_0; \quad b_j = \frac{1}{2+2^m} \sum_{j=1}^{N_0} x_{ij} \overline{y}_i;$$
 (9.15)

$$b_{jk} = \frac{1}{2^m} \sum_{i=1}^{N_0} x_{ij} x_{kj} \overline{y}_i; \tag{9.16}$$

$$Db_0 = rac{c_1 \sigma^2}{r}; \quad Db_{ii} = rac{c_2 \sigma^2}{r}; \quad Db_i = rac{\sigma^2}{r(2+2^m)}; \quad Db_0 = rac{\sigma^2}{r2^m},$$

где $c_1=\frac{2+m2^m}{(m-1)^2\cdot 2^{m+1}};\ c_2=\frac{[m(m-3)+3]\cdot 2^m+2}{(m-1)^2\cdot 2^{m+1}};\ N_0=2^m$ число точек ядра плана; $N=N_0+2m;\overline{y}_i$ — среднее значение отклика в j-й точке плана, определяемое по r параллельным опытам; σ^2 — дисперсия воспроизводимости.

Если некоторые из оценок параметров вида b_{jj} окажутся незначимыми, то необходимо произвести уточнение оценок остальных параметров b_{jj} и параметра b_0 по формулам:

$$\begin{split} b_0 &= \frac{1}{A} \left[(n-\nu-1) \left(2^{m-1} \sum_{j=N_0+1}^N \overline{y}_j - \sum_{j=1}^{N_0} \overline{y}_j \right) + \\ &+ (1+2^{m-1}) \sum_{i=1}^{\nu} \sum_{j=N_0+1}^N x_{ij}^2 \overline{y}_j \right]; \\ b_{jj} &= \frac{1}{A} \sum_{j=N_0+1}^N \overline{y}_j x_{ij}^2 - \frac{1}{A} \left\{ (m-1) \left[2^{m-1} \sum_{j=N_0+1}^{N_0} \overline{y}_j - \sum_{j=1}^{N_0} \overline{y}_j \right] - \\ &- [(m-2)2^{m-1} - 1] \sum_{i=1}^{\nu} \sum_{j=N_0+1}^N x_{ij}^2 \overline{y}_j \right\}, \end{split}$$

 The $A = 2^m [(m-1)^2 - \nu (n-2)] + 2\nu.$

В случае незначимости некоторых из оценок параметров вида b_i или b_{ik} уточнение оценок остальных параметров не производится.

Дисперсия оценки отклика определяется в виде

$$Dy^*(x) = \frac{\sigma^2}{r} \left(c_1 + c_4 \sum_{j=1}^m x_j^2 + c_2 \sum_{j=1}^m x_j^4 + c_5 \sum_{j < k}^m x_j^2 x_k^2 \right).$$

где
$$c_4=rac{1}{2+2^m}-c_3;\ c_5=rac{(m-1)^2-(m-2)\cdot 2^m+1}{(m-1)^2\cdot 2^m}.$$

Приведем пример использования плана типа B_m [27].

Пример. Изучался процесс электролиза для нанесения медного покрытия на стальные детали различной формы. В качестве отклика y рассматривалась доля анодного выхода металла, в качестве факторов были выбраны следующие переменные: концентрация главного компонента z_1 значение pH раствора z_2 , катодная плотность тока z_3 . Область действия указанных факторов и кодированные переменные имеют вид (без указания единиц измерения z_k):

$$0 \le z_1 \le 120 \Rightarrow x_1 = (z_1 - 60)/60;$$

 $8,2 \le z_2 \le 9 \Rightarrow x_1 = (z_2 - 8,6)/0,4;$
 $0,5 \le z_3 \le 4 \Rightarrow x_1 = (z_3 - 2,25)/1,75.$

В каждой точке плана B_3 , состоящем из $N_0=2^3=8$ точек ядра плана, а также в 2m=6 точках, расположенных в центрах граней 3-мерного куба и в центре плана (всего N=15) было проведено r=3 параллельных опыта, на основании которых вычислены следующие усреднённые значения отклика:

По формулам (9.14)–(9.17) были вычислены оценки параметров квадратичной модели и их дисперсии, в результате чего получена модель следующего вида (где все коэффициенты оказались значимыми):

$$y^*(x) = 77.5 - 29.7x_1 + 17.3x_2 - 10.4x_3 + 9.1x_1^2 - 8.0x_2^2 + 6.8x_3^2 - 19.3x_1x_2 + 19.4x_1x_3 - 11.4x_2x_3.$$
(9.18)

Оценка дисперсии воспроизводимости отклика (по r=3 параллельным опытам), усредненная по всем N=15 точкам, равна 5,93. Оценка дисперсии адекватности модели $\sigma_{\rm ag}^2$ равна 219,6. При уровне значимости $\alpha=0,05$ гипотеза об адекватности модели по критерию Фишера не подтвердилась. Это не означает, что мо-

дель (9.18) не дает полезной информации об изучаемом процессе. Её можно использовать для приближенного отыскания оптимальных условий протекания процесса. Последующее уточнение может быть найдено преобразованием этой модели с помощью перехода к новым факторам, специальным образом связанными о исходными. Пример такого перехода приведен в [52].

Некоторые сведения о D-оптимальных планах. Напомним, что D-оптимальный план Π позволяет получить оценки параметров регрессионной модели, имеющие минимально возможное рассеяние относительно центра распределения, так как он обеспечивает минимальный объем эллипсоида рассеяния оценок.

Теория D-оптимальных планов [12] развита применительно к так называемым непрерывным планам, под которыми понимаются планы вида

$$oldsymbol{\Pi} = egin{bmatrix} x_1 & x_2 & \dots & x_n \
u_1 &
u_2 & \dots &
u_n \end{bmatrix},$$

где $\sum\limits_{i=1}^n \nu_i=1$, а величина ν_i может принимать любые значения между 0 и 1; ν_i имеет смысл доли или частоты наблюдений в точке x_i .

Если $\nu_i=r_i/N$, т.е. существует такое целое число N, что число $N\nu_i=r_i$ тоже является целым, то непрерывный план называется точным, т.е. его можно в точности реализовать при проведении эксперимента. Однако не для всякого N можно найти такой точный план, что соотношение частот наблюдений в n точках плана было одинаковым с непрерывным планом. Это можно сделать, очевидно, лишь тогда, когда все произведения $N\nu_i$ — целые числа. Например, если в точках x_1 , x_2 , x_3 частоты наблюдений $\nu_1=0$,2; $\nu_2=0$,5; $\nu_3=0$,3, то такой план будет точным, ибо при N=10 имеем $r_1=N\nu_1=2$; $r_2=N\nu_2=5$; $r_3=N\nu_3=3$.

Но если частоты равны $\nu_1=0.5;~\nu_2=0.5-1/\sqrt{2};~\nu_3=1/\sqrt{2},$ то точного плана не существует, однако можно подобрать всегда приближенный дискретный план.

Приведём без доказательств ряд теорем о непрерывных D-оптимальных планах, характеризующих их «хорошие» свойства [2, 8, 25].

Теорема 1. Всегда существует непрерывный D-оптимальный план, сосредоточенный в конечном числе точек n, причем

$$l+1 \leqslant n \leqslant \frac{(l+1)(l+2)}{2} = C_{l+2}^2,$$

где $l+1=l^*$ — число неизвестных коэффициентов регрессионной модели.

Эта теорема позволяет, экспериментатору из бесконечного множества непрерывных D-оптимальных планов для выбранной модели выделить те, которые сосредоточены в малом числе точек.

$$\max_{x \in \Omega} d(x) = l + 1,$$

где Ω — область планирования эксперимента.

Эта теорема даёт способ проверки всякого непрерывного плана на близость к D-оптимальному путем вычисления показателя

$$\delta = (\max_{x \in \Omega} d(x)/l^*) - 1.$$

Чем ближе δ к нулю, тем ближе рассматриваемый непрерывный план к D-оптимальному.

Теорема 3. D-оптимальный план не меняется при линейном преобразовании области эксперимента Ω .

Это позволяет рассматривать D-оптимальные планы для некоторых стандартных областей, например для гиперкуба с координатами вершин в точках ± 1 , для шара и т. д. Изменение масштаба при переходе к исходным единицам измерения не повлияет на расположение и частоты точек D-оптимального плана. На основе этого свойства составлены каталоги D-оптимальных планов для типовых полиномиальных моделей [51].

Теорема 4. Непрерывный D-оптимальный план является одновременно и G-оптимальным (т. е. минимизирует $\max d(x)$), а если, кроме того, информационная матрица плана является диагональной, то он является и A-оптимальным.

В частности, как уже отмечалось выше, планы полного и дробного факторного эксперимента для линейных моделей 1-го порядка являются D-, G- и A-оптимальными при планировании на гиперкубе с координатами вершин в точках ± 1 , если матрица ${\bf F}$ плана не содержит одинаковых столбцов.

Непрерывные D-оптимальные планы на отрезке $\Omega = (-1,1)$. В случае одного фактора непрерывные D-оптимальные планы найдены и в аналитическом виде для полиномиальной модели произвольного порядка

$$\eta = \sum_{k=0}^d eta_k(x_k).$$

Эти планы сосредоточены в d+1 точке, причем частота всех точек одинаковы, т.е. $\nu_1=\nu_2=\ldots=\nu_{d+1}=1/(d+1)$, а координаты

точек плана x_i являются корнями полинома G(x) степени d+1, представляющего собой коэффициент при z^{d+1} в разложении функции $g(x)=\sqrt{1+2xz+z^2}$ в ряд Тейлора по степеням z в точке z=0.

Пример. Определить координаты точек непрерывного D-оптимального плана для квадратичной модели $\max \eta(x) = \beta_0 + \beta_1 x + \beta_2 x^2$.

Найдем коэффициент разложения g(x) по степеням z при z^3 (полагая $z\,=\,0$):

$$\left. \frac{1}{3} \left. \frac{\partial^3 g(z)}{\partial z^3} \right|_{z=0} = \left. \frac{1}{3} \frac{\partial^3}{\partial z^3} \sqrt{1 - 2xz + z^2} \right|_{z=0} = \frac{1}{2} x (1 - x^2).$$

Следовательно, искомые точки D-оптимального непрерывного плана есть корни полинома $G(x)=\frac{1}{2}x(1-x^2)$, т. е. $x_1=0$, $x_2=\pm 1$, $x_3=-1$, а частоты равны $\nu_1=\nu_2=\nu_3=1/3$. Отсюда легко получить точный D-оптимальный план, если положить N=r(d+1), где r — число повторений опыта в каждой точке задаваемое произвольно.

В [2] приведены значения координат точек непрерывных D-оптимальных планов для степени полинома $d=2,3,\ldots,8$, а также дисперсионные матрицы этих планов.

Непрерывные D-оптимальные планы Кифера и Коно. В случае квадратичной модели и планирования на гиперкубе $\Omega=\{|x_i|\leqslant 1,\ i=1,2,\ldots,m\}$ в работах Кифера и Коно [52] непрерывные D-оптимальные планы построены аналитически. Заметим, что в общем случае (т. е. для более сложных моделей и областей Ω) непрерывные D-оптимальные планы можно построить лишь численными методами.

Планы Кифера сосредоточены в следующих точках гиперкуба:

- в вершинах гиперкуба (множество точек плана E_0) с одинаковой частотой ν_0 ;
- в серединах ребер (множество E_1) с одинаковой частотой ν_1 ;
- в центрах двумерных граней (множество E_2) с одинаковой частотой ν_2 .

 Π ланы Коно отличаются от планов Кифера лишь тем, что вместо множества точек E_n берется центр гиперкуба E_n с частотой ν_n [52].

В табл. 9.9 приведены значения частот для этих планов (знаменатель соответствует плану Коно) и общее число точек планов. Отметим, что планы Кифера существуют лишь для числа факторов $m\leqslant 5$. В последнем столбце табл. 9.9 для сравнения приведены максимальные числа n_{\max} точек непрерывного D-оптимального плана.

Таблица 9.9

m	ĸ	шина уба ^Е 0	Серед $_{E_1}$		Центры граней E_2	K	ентр суба E_n		Число точек плана	Число коэф.	$n_{\mathtt{I}}$	$n_{\sf max}$	
	$ u_0$	$n_0 = 2^m$	$ u_1$	n_1	ν_2	n_2	ν_n	n_n	Кифера	Коно	l+1	C^2_{l+2}	
1	0,666	2	0,333	1	0	0	_	_	3	3	3	5	
2	0,583	4	0,321	4	0,096	1	0,096	1	9	9	6	15	
3	$\frac{0,576}{0,61}$	8	$\frac{0,227}{0,42}$	12	0,197	6	0,065	1	26	21	10	35	
4	$\frac{0,593}{0,45}$	16	$\frac{0,123}{0,502}$	32	0,284	24	0,047	1	72	49	15	70	
5	$\frac{0,617}{0,4}$	32	$\frac{0,025}{0,56}$	80	0,358	80	0,037	1	192	113	21	126	
6 7	-/0,36 -/0,33	64 128	-/0,61 -/0,65	192 448	1 1	_	0,027 0,022	1 1	1 1	257 577	28 36	210 330	

Из табл. 9.9 видно, что планы Коно начиная с $m\geqslant 3$ являются более экономичными, чем планы Кифера, хотя и они при $m=6,\,7$ превышают максимально необходимое число точек $n_{\rm max}$.

Практическое использование этих планов состоит в приближенной замене непрерывного D-оптимального плана дискретным планом. Например, для m=4 план Коно содержит 49 точек с частотами 0,45 для вершин куба, 0,5 — для середины ребер и 0,047 — для центра плана.

Если выделено N=100 наблюдений, то их нужно приблизительно расположить так: по r=3 наблюдения в вершинах куба $(3\cdot 16=48,\ N\nu_1=45)$, по r=2 наблюдения в серединах ребер $(2\cdot 32=64,\ N\nu_2=50)$ и $N\nu_3=4,7\approx 5$ наблюдений в центре — всего 119 опытов вместо 100.

9.5. Дробный факторный эксперимент

При большом числе исследуемых факторов ПФЭ становится недостаточно эффективным, так как число опытов с ростом k величивается по показательной функции. Правда, при этом снижаются ошибки в определении коэффициентов полинома, так как все опыты используются для оценки каждого из коэффициентов. Однако часто, особенно в начальной стадии исследования, бывает необходимо получить некоторые, пусть не особенно точные сведения о процессе при минимальных экспериментальных затратах.

Число опытов можно сократить, применяя при планировании дробные реплики от ПФЭ или дробный факторный эксперимент (ДФЭ). При этом удается сохранить преимущества ортогонально-

 $\label{eq: Table 1.10} \mbox{Таблица 9.10}$ Матрица планирования $\Delta\Phi$ Э 2^{3-1}

№ опыта	x_0	x_1	x_2	x_3	y
1	+1	-1	-1	+1	$egin{array}{c} y_1 \ y_2 \ y_3 \ y_4 \end{array}$
2	+1	+1	-1	-1	
3	+1	-1	+1	-1	
4	+1	+1	+1	+1	

го планирования. Предположим, что необходимо получить приближенное математическое описание процесса при трех технологических факторах, оказывающих влияние на выходной параметр.

Оказывается, что в этом случае можно ограничиться четырьмя опытами, если в плане для $\Pi\Phi\ni 2^2$ произведение x_1x_2 заменить третьей переменной x_3 ; эксперимент будет ставиться уже с включением третьей переменной, которая будет изменяться согласно столбцу x_1x_2 $\Pi\Phi\ni$ (табл. 9.10).

Такой сокращенный план — половина $\Pi\Phi\Theta$ — называется полурепликой от $\Pi\Phi\Theta$ 2^3 . Условное обозначение плана $\Delta\Phi\Theta$ — 2^{k-p} , где p — число взаимодействий, приравниваемых независимым переменным. Такое планирование дает возможность оценить свободный член b_0 и коэффициенты при линейных членах b_1, b_2 и b_3 .

Однако составление такой матрицы планирования возможно лишь в том случае, если предполагается, что отсутствует или мало влияние на выходной параметр эффектов взаимодействия и соответственно коэффициенты регрессии b_{ji} при парных произведениях равны нулю. Если эта предпосылка не выполняется, то найденные коэффициенты будут смешанными оценками для соответствующих генеральных коэффициентов в уравнении регрессии: $b_1=\beta_1+\beta_{23}$, $b_2=\beta_2+\beta_{13},\ b_3=\beta_3+\beta_{12}.$

Эти эффекты не могут быть раздельно оценены при планировании, состоящем всего из четырех опытов, так как здесь неразличимы столбцы для линейных членов и парных произведений.

Если после реализации первых четырех опытов у исследователя возникнут сомнения в том, что $b_{ji}=0$, то он может поставить еще четыре опыта, приравняв на этот раз $x_3=-x_1x_2$ (табл. 9.11). Пользуясь этим планом, можно оценить совместные эффекты: $b_1^*=\beta_1+\beta_{23}$, $b_2^*=\beta_2+\beta_{13},\ b_3^*=\beta_3+\beta_{12}$.

В этом случае элементы столбцов x_1 , x_2 , x_3 равны соответственно элементам столбцов x_2x_3 , x_1x_3 , x_1x_2 , взятым с обратным знаком.

Теперь после постановки уже восьми опытов в соответствии с

Таблица 9.11

Матрица планирования ДФЭ 2^{3-1}

№ опыта	x_0	x_1	x_2	x_3	y
1	+1	-1	-1	-1	y ₁
2	+1	+1	-1	+1	y ₂
3	+1	-1	+1	+1	y ₃
4	+1	+1	+1	-1	y ₄

приведенными планами можно получить раздельные оценки:

$$\begin{split} \beta_1 &= \frac{b_1^* + b_1}{2}; \quad \beta_2 &= \frac{b_2^* + b_2}{2}; \quad \beta_3 &= \frac{b_3^* + b_3}{2}; \\ \beta_{23} &= \frac{b_1^* - b_1}{2}; \quad \beta_{13} &= \frac{b_2^* - b_2}{2}; \quad \beta_{12} &= \frac{b_3^* - b_3}{2}. \end{split}$$

Необходимо заметить, что объединение представленных двух полуреплик дает нам ПФЭ 2^3 , поэтому раздельные оценки b_i и b_{ij} мы получим лишь с помощью ПФЭ.

Таким образом, сокращение числа опытов приводит к получению смешанных оценок коэффициентов. Матрица планирования $\Delta\Phi$ при фиксированных k и p может иметь различную систему смешивания, и, естественно, исследователь стремится к тому, чтобы максимальное число линейных эффектов, оказалось не смешанным с парными взаимодействиями. Отсюда актуальность вопроса о разрешающей способности дробной реплики, т. е. возможности раздельной оценки коэффициентов. Для характеристики разрешающей способности вводятся понятия «генерирующего соотношения» (ГС) и «определяющего контраста» (ОК).

Выше уже было показано, что $\Delta\Phi\ni 2^{3-1}$ может быть представлен двумя разными полурепликами, каждая из которых характеризуется одним из следующих генерирующих соотношений: $x_3=x_1x_2$; $x_3=-x_1x_2$.

Выражение ОК получается умножением левой и правой частей приведенных ГС на x_3 . При этом получаются элементы первого столбца матрицы планирования, которые всегда равны единице: $x_3^2 = 1 = x_1x_2x_3$; $x_3^2 = 1 = x_1x_2x_3$.

Значение ОК позволяет определить всю систему совместных оценок, не изучая матрицу планирования. Для этого надо последовательно помножить независимые переменные на ОК: $x_1=x_2x_3$; $x_1=-x_2x_3$; $x_2=x_1x_3$; $x_2=x_1x_3$; $x_3=x_1x_2$; $x_3=-x_1x_2$.

Чтобы получить высокую разрешающую способность, стремятся таким образом построить план $\Delta\Phi$, чтобы линейные эффекты были смешаны с взаимодействиями самого высокого порядка (они

чаще бывают равными 0) или с теми взаимодействиями, о которых априори известно, что они не оказывают влияния на процесс. Оценить разрешающую способность нам помогает Γ C: чем больше символов входит в Γ C, тем обычно выше разрешающая способность. Например, в эксперименте с k=4 в качестве генерирующих соотношений могут быть взяты: $x_4=x_1x_2x_3$ и $x_4=x_1x_2$. Определим ОК и с их помощью найдем системы совместных оценок:

```
\begin{array}{lll} 1 = x_1x_2x_3x_4; & 1 = x_1x_2x_4; \\ x_1 = x_2x_3x_4; & x_1 = x_2x_4; \\ x_2 = x_1x_3x_4; & x_2 = x_1x_4; \\ x_3 = x_1x_2x_4; & x_3 = x_1x_2x_3x_4; \\ x_4 = x_1x_2x_3; & x_4 = x_1x_2; \\ x_1x_2 = x_3x_4; & x_1x_3 = x_2x_3x_4; \\ x_1x_3 = x_2x_4; & x_2x_3 = x_1x_3x_4; \\ x_1x_4 = x_2x_3; & x_3x_4 = x_1x_2x_3. \end{array}
```

Таким образом, если экспериментатора интересуют оценки для линейных эффектов, то следует выбирать первое ГС.

При исследовании многофакторных технологических процессов применяют реплики и большей степени дробности (1/4; 1/8 и т. д.). С ростом числа независимых переменных растет разрешающая способность дробных реплик.

Вокс и Уилсон предложили использовать сочетание факторного эксперимента для локального описания поверхности отклика и шагового движения к экстремуму в направлении градиента. Таким построением эксперимента и определяется эффективность метода крутого восхождения для оптимизации технологических процессов.

10.1. Методы оптимизации

Наилучшим образом построить технологический процесс, определить оптимальные режимы его проведения— естественные стремления исследователя.

Однако до последнего времени эти вопросы очень часто решались интуитивно на основе опыта разработчика и технолога. Объясняется это высокой сложностью технологических процессов, обилием и разнообразием всевозможных связей внутри каждого процесса. Ведь для выбора оптимального технологического процесса необходимо сравнить различные варианты процесса, учесть и проанализировать влияние огромного числа факторов на параметры изделия; и все это надо делать в ограниченные сроки разработки техпроцесса. Поэтому часто выбирались не лучший вариант процесса, не лучшие режимы его проведения.

Естественно, что такое положение дел не могло удовлетворять быстро растущее и усложняющееся производство. Развитие вычислительной техники и кибернетики вызвало значительные изменения в методике оптимизации технологических процессов.

Здесь мы не будем рассматривать все методы оптимизации, а коснемся лишь тех, которые могут найти применение при исследовании технологических процессов РЭА.

Природа технологического процесса и задачи, стоящие перед исследователем, определяют тип модели, наиболее приемлемой для данного процесса. Сложность технологических процессов производства РЭА обусловливает особенности подхода к анализу и управлению ими, делает нецелесообразным полную и глубокую расшифровку механизма явлений, происходящих в них. В этом случае, когда не удается познать теории процесса и необходимо принимать решения в условиях неопределенности, желательно научиться управлять процессом эмпирически. В соответствии с этим для описания

технологических процессов РЭА наиболее приемлемыми являются эмпирические или статистические модели и при их исследовании экспериментально-статистические методы.

Одним из первых этапов при оптимизации технологических процессов является определение критерия оптимизации — выходной величины, значение которой будет положено в основу оценки процесса при его оптимизации.

Задача оптимизации сводится к нахождению таких условий проведения технологического процесса, при которых критерий оптимизации достигает экстремума.

При поиске экстремальной точки в отличие от аналитического исследования осуществляется локальное изучение поверхности отклика по результатам ряда опытов, специально поставленных около исходной точки.

Движение к экстремуму в многомерном пространстве независимых переменных осуществляется обычно не непрерывно, а шагами. Анализируя результаты экспериментов и, сравнивая их с результатами предыдущих, исследователь принимает решение о дальнейших действиях по поиску оптимума.

Экстремальное значение отклика достигается с помощью многократного последовательного изучения поверхности отклика и продвижения в факторном пространстве. Существует несколько экспериментальных методов оптимизации, различающихся способом определения направления движения и организацией самого движения.

Метод Гаусса—Зайделя. При оптимизации по методу Гаусса—Зайделя последовательное продвижение к экстремуму осуществляется путем поочередного варьирования каждым фактором до достижения частного экстремума выходной величины, т.е. в каждой серии опытов меняется только одна переменная x_i , а остальные остаются неизменяемыми (рис. 10.1). На рисунке изображены кривые равного выхода для одного из технологических про-

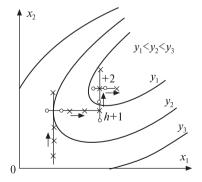


Рис. 10.1. Поиск экстремума функции методом Гаусса—Зайделя

цессов аналогично кривым равной высоты на географических картах. Таким образом, изображающая точка перемещается попеременно вдоль каждой из координатный осей $x_i, i=1,2,3,...,k$, факторно-

го пространства; переход к новой (i+1)-й координате осуществляется при достижении частного экстремума целевой функции y(X) по предыдущей координате, т.е. в точке X_ih , где

$$\frac{\partial y(X_i h)}{\partial x_i} = 0.$$

Чтобы не делать оговорок, здесь и далее будем предполагать, что мы ищем минимум, максимум находится аналогично, меняется только знак. После достижения частного экстремума по последней переменной x_k переходят снова к варьированию первой и т. д.; в результате изображающая точка приближается к экстремуму. Направление движения вдоль (i+1)-й координатной оси выбирается обычно по результатам двух пробных экспериментов в окрестностях точки частного экстремума по предыдущей переменной.

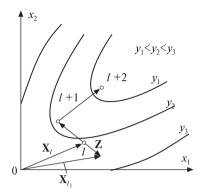
Поиск экстремума прекращается в точке, движение из которой в любом направлении не приводит к уменьшению значения выходного параметра. Точка, значение целевой функции в которой будет минимальным, и будет искомым оптимумом.

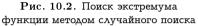
Точность определения оптимальной точки зависит от шага варьирования Δx_i , и иногда для увеличения точности уменьшают шаг при приближении к экстремуму. Важным моментом при постановке эксперимента является выбор исходной точки и шага варьирования. Здесь необходимо учитывать свойства изучаемого процесса, особенности технологии и методов измерения, т. е. привлекать всю априорную информацию об объекте исследования.

Метод Гаусса-Зайделя и его разновидности очень широко распространены на практике. Обычно экспериментаторы стараются изменять факторы по очереди, варьируя одним и стабилизируя в данной серии опытов другие факторы, оказывающие влияние на выходной параметр.

При увеличении числа независимых переменных до 5–6 применение метода Гаусса—Зайделя для оптимизации технологических процессов оказывается малоэффективным в силу резкого увеличения числа экспериментов.

Метод случайного поиска. Характерной чертой этого метода является случайный выбор направления движения на каждом шаге. Так, если изображающая точка после 1-го шага занимает \mathbf{X}_l положение в факторном пространстве, то следующий рабочий шаг будет совершен лишь после выполнения пробного эксперимента в точке $\mathbf{X}_{l_1} = \mathbf{X}_l + \mathbf{Z}$, где \mathbf{Z} — случайный вектор определенной длины (рис. 10.2).





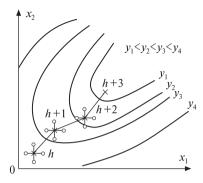


Рис. 10.3. Поиск экстремума функции методом градиента

Значения функций $y(\mathbf{X}_t)$ и $y(\mathbf{X}_i+\mathbf{Z})$ сравниваются, и производится (i+1)-й рабочий шаг вдоль вектора \mathbf{Z} по направлению к экстремуму. Как правило, длина рабочего шага превышает величину пробного.

Критерием выхода в область экстремума целевой функции является возрастание числа неудачных шагов, т. е. многократное повторение положения, когда $y(\mathbf{X}_l+\mathbf{Z})>y(\mathbf{X}_l).$

Очевидно, что метод случайного поиска очень прост, однако он применим лишь для очень простых ситуаций. Основными недостатками метода являются большая трудоемкость и длительность поиска экстремума.

Метод градиента. При оптимизации градиентным методом движение совершается в направлении наибольшего изменения критерия оптимизации, т. е. в направлении градиента целевой функции, причем, как и в методе случайного поиска, направление движения корректируется после каждого рабочего шага, т. е. каждый раз заново определяется значение градиента по результатам специально поставленных пробных экспериментов (рис. 10.3).

Поскольку координатами вектора

$$\operatorname{grad} y(X) = \left(\frac{\partial y}{\partial x_1}, \frac{\partial y}{\partial x_2}, \dots, \frac{\partial y}{\partial x_k}\right)$$

служат коэффициенты при линейных членах разложения функции y(X) в ряд Тейлора по степеням $X_i,\ i=l,2,\ldots,k$, то соответствующие компоненты вектора градиента могут быть получены как коэффициенты b_1,b_2,\ldots,b_k линейной аппроксимации поверхности отклика вблизи исходной точки X_0 :

$$y(X) = b_0 + b_1 x_1 + b_2 x_2 + b_3 x_3 + \ldots + b_k x_k. \tag{10.1}$$

Линейные коэффициенты $b_1,b_2,...$ обычно оцениваются экспериментально. Наиболее просто каждый из коэффициентов b_i определяется по результатам двух пробных экспериментов в окрестности исходной точки. В этом случае приращение целевой функции Δy , соответствующее приращению Δx_i , можно считать пропорциональным значению величины частной производной:

$$\frac{\partial y}{\partial x_i} \approx \frac{\Delta y}{\Delta x_i} = b_i, \quad i = 1, 2, 3 \dots, k.$$

После нахождения составляющих градиента выполняется рабочий шаг по направлению к экстремуму

$$X_{h+1} = X_h + \rho \operatorname{grad} y(X_h),$$

где $\operatorname{grad} y(X_h) = (b_{h_1}, b_{h_2}, \dots, b_{h_k}); \ \rho$ — параметр рабочего шага.

Показателем выхода в область оптимума является малое значение модуля градиента $|\operatorname{grad} y(X)|\cong 0$, т. е. все коэффициенты b_i , $i=1,2,\ldots,k$, становятся незначимыми или равными нулю.

Объем эксперимента в каждой точке равен 2k, где k — число факторов, оказывающих влияние на выходной параметр. Одним из важных вопросов при оптимизации как градиентным методом, так и другими методами является выбор шага. Если шаг слишком мал, потребуется большое число шагов и, следовательно, экспериментов; движение к оптимуму будет очень длительным, и наоборот, если размеры шага слишком велики, можно проскочить оптимум. Поэтому иногда при оптимизации изменяют шаг в зависимости от расстояния до экстремальной точки. Примером такого движения является метод Кифера—Вольфовица.

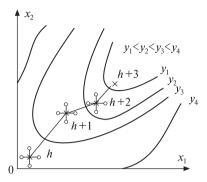
Метод Кифера—Вольфовица. Характерной чертой этого метода является зависимость размеров рабочего и пробного шагов от номера шага (h) или от расстояния до оптимума (рис. 10.4).

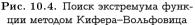
Так, размер рабочего шага определяется $\rho=\rho/(h\gamma)$, где ρ — некоторая постоянная величина, а γ определяется предполагаемым видом поверхности отклика $0<\gamma<0.5$; обычно $\gamma=0.25$.

Алгоритм движения к экстремуму по методу Кифера–Вольфовица такой же, как и в предыдущем методе:

$$X_{h+1} = X_h + \rho \operatorname{grad} y(X_h).$$

В рассматриваемом методе величина шага уменьшается в связи с уменьшением ρ , а также, как и при оптимизации градиентным методом, уменьшается при приближении к экстремуму за счет уменьшения величины градиента $\operatorname{grad} y$.





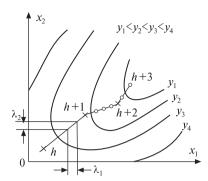


Рис. 10.5. Поиск экстремума методом крутого восхождения

Поскольку градиент определяет направление быстрейшего изменения функции, то методы, базирующиеся на таком выборе направления движения, обеспечивают быстрое приближение к экстремуму, однако имеются некоторые трудности, ограничивающие их применение.

Так, эти методы предполагают существование частных производных исследуемой неизвестной функции во всех точках, что практически не всегда возможно. Далее определение градиента производится на каждом шаге, что очень трудоемко, особенно при большом числе исследуемых факторов.

Метод крутого восхождения, или метод Бокса-Уилсона. Этот метод объединяет характерные элементы методов Гаусса-Зайделя и градиента. Так, шаговое движение при оптимизации методом крутого восхождения осуществляется в направлении наибольшего изменения функции или в направлении градиента, но в отличие от градиентного метода корректировка направления движения производится не после каждого шага, а после достижения частного экстремума целевой функции, как это делается при поиске оптимума по методу Гаусса-Зайделя (рис. 10.5).

Следует также отметить, что метод Бокса-Уилсона предполагает регулярное проведение статистического анализа промежуточных результатов на пути к экстремуму. Практически же поиск оптимума методом крутого восхождения выполняется по следующему плану.

- 1. Вблизи исходной точки X_0 проводится эксперимент для определения $\operatorname{grad} y(X_0)$. Результаты эксперимента подвергаются статистическому анализу, и определяются коэффициенты b_i уравнения (10.1).
 - 2. Вычисляются произведения $b_i \Delta x_i$, где Δx_i интервал варь-

ирования параметра x_i при исследовании поверхности отклика в окрестности исходной точки, т. е. при определении коэффициентов b_i . Фактор, для которого произведение $b_i \Delta x_i$ будет максимальным, принимается за базовый $(b_6 \Delta x_6)$.

3. Для базового фактора выбирается шаг движения λ_6 по направлению к оптимуму. После этого вычисляются размеры шагов при крутом восхождении по остальным переменным λ_i -процесса. Так как при движении к оптимуму по градиенту все исследуемые параметры должны изменяться пропорционально коэффициентам наклона поверхности отклика b_i , то

$$\lambda_i = \frac{b_i \Delta x_i}{|b_6 \Delta x_6|} \lambda_6,$$

при этом b_i берется со своим знаком.

4. Производятся так называемые мысленные опыты, которые заключаются в вычислении предсказанных уравнением (10.1) значений целевой функции в точках факторного пространства, лежащих на пути к экстремуму от исходной точки. Иными словами, осуществляется мысленное движение по градиенту к оптимуму. При этом i-я координата h-й точки на этом пути будет:

$$x_{hi}=x_{i1}+hrac{\lambda_i}{\Delta x_i},\quad h=1,2,\ldots,m;\;i=1,2,\ldots,k.$$

Отсюда прогнозируемое значение выходного параметра

$$y_h = b_0 + h \sum_{i=1}^h b_i rac{\lambda_i}{\Delta x_i}.$$

- 5. Некоторые из мысленных опытов (обычно через 2–5) реализуются для того, чтобы проверить соответствие аппроксимации процесса найденной зависимостью. Наблюдаемые значения сравниваются с предсказываемыми; точка, где в реальном опыте получено наиболее благоприятное (в нашем случае минимальное) значение выходного параметра, принимается за новую начальную точку (X_{h+1}) следующей серии опытов, поставленных аналогичным образом.
- 6. Поскольку каждый цикл крутого восхождения приближает нас к экстремуму, где крутизна поверхности отклика больше, рекомендуется выбирать шаг для каждой следующей серии опытов равным или меньшим, чем в предыдущей.
- 7. Эксперимент прекращается, когда все или почти все коэффициенты b_i уравнения получаются незначимыми или равными нулю. Это говорит о выходе в область экстремума целевой функции.

Пример 4. Пусть в результате полного факторного эксперимента (пример 2) получено адекватное уравнение регрессии

$$y_1 = 35.6 + 1.95x_1 - 1.35x_2.$$
 (10.2)

Здесь y_1 — выход продукта реакции; x_1 — температура; x_2 — концентрация реагента. Температура T при построении уравнения регрессии варьировалась в пределах 45...55 °C, а концентрация n в пределах 24...26 %.

Введем также в рассмотрение функцию отклика y_2 , характеризующую скорость химической реакции (кмоль·м³ч $^{-1}$). Пусть требуется, чтобы выполнялось условие $y_2\geqslant 2.5$.

Допустим, что ограничения на влияющие факторы имеют вид: $30~^{\circ}\text{C} \leqslant T = z_1 \leqslant 120~^{\circ}\text{C}; 10~\% \leqslant n = z_2 \leqslant 70~\%.$

Будем оптимизировать выход продукта реакции методом крутого восхождения.

Решение. Найдем центр плана, используя в размерной (реальной) системе координат

$$\begin{split} z_{01} &= \frac{z_{1\max} + z_{1\min}}{2} = \frac{55 + 45}{2} = 50; \\ z_{02} &= \frac{z_{2\max} + z_{2\min}}{2} = \frac{26 + 24}{2} = 25. \end{split}$$

Найдём интервалы варьирования

$$egin{aligned} \Delta z_1 &= rac{z_{1\, ext{max}} - z_{1\, ext{min}}}{2} = rac{55 - 45}{2} = 5; \ \Delta z_2 &= rac{z_{2\, ext{max}} - z_{2\, ext{min}}}{2} = rac{26 - 24}{2} = 1. \end{aligned}$$

В качестве базового фактора возьмем температуру. Поскольку шаг движения при крутом восхождении должен подчиняться неравенству $\Delta z_i^* \leqslant \Delta z_i$, т.е. $\Delta z_1^* \leqslant 5$ °C, выбираем шаг движения на крутом восхождении равным 4 °C, тогда

$$\gamma = \frac{\Delta z_1^*}{b_1 \Delta z_1} = \frac{4}{1,95 \cdot 5} = 0.41.$$

Шаг по концентрации на крутом восхождении

$$\Delta z_2^* = \gamma b_2 \Delta z_2 = 0.41(-1.35) \cdot 1 = -0.55 \%.$$

Для удобства ведения эксперимента шаги движения, рассчитанные по приведенной выше формуле, можно округлять. В данном случае удобно принять $\Delta z_2^* = -0.5~\%$.

В безразмерной (кодированной) системе координат, к которой

Номер опыта Z_1 Z_2 X_1 X_2 y_2^3 Центр плана 0 35.6 35.1 2.9 Интервал варьирования 1 1 Шаг движения -0,5-0,5Результаты опытов 24,5 1 54 -0,536,5 36,9 3,2 0,8 2 37,2 3.7 58 24.0 1.6 -1.037.4 3 23,5 38,5 62 2,4 -1,538,2 2,8 -2,066 23,0 3,2 39,1 40.7 2,3 5 70 22,5 4,0 -2,540,0 38,1 1,9 -3,040.9 37,2 22,0 4,8 1,6

Таблица 10.1 Результаты опытов по методу крутого восхождения

переходят по формулам

$$x_k = \frac{z_{0k} - z_k}{\Delta z_k},$$

шаги восхождения будут равны

$$\Delta x_1^* = \frac{4}{5} = 0.8; \quad \Delta x_2^* = \frac{24.5 - 25}{1} = -0.5.$$

Результаты, полученные по методу крутого восхождения внесём в табл. 10.1.

Обозначим через $y_1^{\rm p}$ — рассчитанное по выражению (10.2) значение функции отклика y_1 , а через $y_1^{\rm s}$ — экспериментальное значение той же функции; $y_2^{\rm s}$ — экспериментальное значение функции y_2 .

Как видно из результатов опытов, выполненных по методу крутого восхождения (см. табл. 10.1), в опыте 4 достигнут максимальный выход продукта реакции, однако скорость процесса в этом случае меньше допустимого значения, По-видимому, оптимальным режимом процесса следует считать условия опыта 3. Ограничения на z_1 и z_2 в ходе оптимизации не нарушены.

Симплексный метод. Симплексом называется k-мерный выпуклый многогранник, имеющий k+1 равноудаленных друг от друга вершин. Симплексом нулевой размерности является точка, одномерным симплексом — отрезок прямой, двумерным - треугольник, трехмерным — тетраэдр и т. д.

Во всех рассмотренных ранее методах оптимизации можно выделить пробные эксперименты, предназначенные для выявления направления движения, и рабочие шаги, выполняющие продвижение к экстремуму. Особенностью симплексного метода оптимизации является совмещение процессов изучения поверхности отклика и продвижения по ней к экстремуму. Это достигается тем, что эксперименты ставятся только в точках факторного пространства, соответствующих вершинам симплексов.

Действительно, после проведения исходной серии опытов, поставленных в вершинах правильного k-мерного симплекса, выявляется точка, соответствующая условиям, при которых получаются наихудшие результаты.

Далее используется важное свойство симплекса, по которому из любого симплекса можно, отбросив одну из вершин, получить новый симплекс, заменив отброшенную вершину ее зеркальным отражением относительно противоположной грани симплекса (гранью называют совокупность k точек k-мерного пространства). Если теперь отбросить точку с наихудшими результатами и построить на остав-

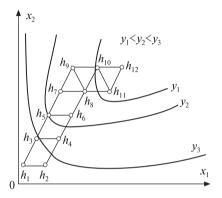


Рис. 10.6. Поиск экстремума симплексным методом

шейся грани новый симплекс, то, очевидно, центр нового симплекса будет смещен в направлении: худшая точка \rightarrow центр тяжести остальных точек или, иными словами, в направлении к экстремуму (рис. 10.6). Затем процесс отбрасывания вершины с наихудшим значением целевой функции и построения нового симплекса повторяется. Если значение выхода в новой вершине снова окажется наихудшим, то нужно вернуться к исходному симплексу и отбросить следующую по порядку вершину с плохим результатом.

В результате этого образуется цепочка симплексов, перемещающихся в факторном пространстве к точке экстремума. Следует подчеркнуть, что это перемещение к экстремуму происходит с каждым экспериментом.

Показателем выхода в район экстремума служит прекращение поступательного движения симплекса и начало вращения его вокруг одной из вершин, т. е. одна и та же точка последовательно встречается более чем в k+l симплексах. Следует подчеркнуть, что направление движения к оптимуму, определяемое с помощью симплекса, является в общем случае не самым крутым, траектория движения в этом случае представляет собой ломаную линию, колеблющуюся вокруг линии наиболее крутого восхождения.

10.2. Последовательное планирование эксперимента

Очень часто обработку в планирование эксперимента приходится вести по мере поступления данных, т. е. последовательно. Например, если построенная по исходным данным регрессионная модель оказалась неадекватной, то дополнительный эксперимент позволяет уточнить её, для чего нужно, вообще говоря, пересчитать сценки неизвестных параметров (исключение составляет ортогональное планирование). Можно, конечно, каждый раз при получении новой порции результатов эксперимента решать задачу как бы заново, используя всю накопленную информацию.

Однако такой путь весьма нерационален. Гораздо удобнее с вычислительной точки зрения при последовательном способе построения модели использовать рекуррентные алгоритмы оценивания. Такой путь особенно удобен при использовании ЦВМ. Приведем здесь краткое изложение такого подхода. Будем искать регрессионную модель уже отмеченного ранее вида:

$$\eta(x) = \sum_{k=0}^l eta_k f_k(x)$$
 или $\eta = oldsymbol{eta}^{ ext{ iny }} \mathbf{f}(x).$

Пусть на основе N наблюдений найдены оценка \mathbf{b}_N вектора коэффициентов $\boldsymbol{\beta}$, а также дисперсионная матрица \mathbf{C}_N и остаточная сумма квадратов \mathbf{S}_N , имеющих известные уже нам выражения, снабженные лишь индексом N:

$$\mathbf{b}_N = \mathbf{C}_N \mathbf{F}_N^{ \mathrm{\scriptscriptstyle T} } \mathbf{Y}_N; \quad \mathbf{C}_N = (\mathbf{F}_N^{ \mathrm{\scriptscriptstyle T} } \mathbf{F}_N)^{-1}; \\ \mathbf{S}_n = (\mathbf{Y}_N - \mathbf{F}_n \mathbf{b}_N) (\mathbf{Y}_N - \mathbf{F}_n \mathbf{b}_N) = \mathbf{Y}_N^{ \mathrm{\scriptscriptstyle T} } \mathbf{Y}_N - \mathbf{b}_N^{ \mathrm{\scriptscriptstyle T} } \mathbf{F}_N^{ \mathrm{\scriptscriptstyle T} } \mathbf{Y}_N.$$

Пусть теперь к N имевшимся наблюдениям добавлены ещё M наблюдений в точках x_{N+1},\ldots,x_{N+M} , определяющих матрицу независимых переменных $\mathbf{f}_M = [\mathbf{f}(x_{N+1}),\ldots,\mathbf{f}(x_{N+M})]^{\mathrm{\tiny T}}$ и матрицу $\mathbf{Y}_M = [\mathbf{Y}_{N+1},\ldots,\mathbf{Y}_{N+M}]^{\mathrm{\tiny T}}$.

Предполагается, что дисперсия ошибки наблюдений в новых точках та же, что и в предыдущих. Требуется построить алгоритм вычисления:

- 1) оценок \mathbf{b}_{N+M} через оценку \mathbf{b}_N матрицы \mathbf{f}_M и \mathbf{Y}_M ;
- 2) дисперсионной матрицы \mathbf{C}_{N+M} через матрицы \mathbf{C}_N и \mathbf{f}_M ;
- 3) остаточной суммы квадратов \mathbf{S}_{N+M} через \mathbf{S}_n , \mathbf{b}_N , \mathbf{f}_M и \mathbf{Y}_M .
- В [52] приведен вывод следующих соотношений, дающих ответ на поставленные вопросы:

$$\mathbf{C}_{N+M} = \mathbf{C}_N - \mathbf{C}_N \mathbf{F}_M^{\mathrm{\scriptscriptstyle T}} [\mathbf{F}_M \mathbf{C}_n \mathbf{F}_M^{\mathrm{\scriptscriptstyle T}} + \mathbf{I}_M]^{-1} \mathbf{F}_M \mathbf{C}_n;$$

$$\begin{aligned} \mathbf{b}_{N+M} &= \mathbf{b}_N + \mathbf{C}_n \mathbf{F}_M^{\mathrm{\scriptscriptstyle T}} [\mathbf{F}_M \mathbf{C}_n \mathbf{F}_M^{\mathrm{\scriptscriptstyle T}} + \mathbf{I}_M]^{-1} (\mathbf{Y}_M - \mathbf{F}_M \mathbf{b}_N); \\ \mathbf{S}_{N+M} &= \mathbf{S}_n (\mathbf{Y}_M - \mathbf{F}_M \mathbf{b}_N)^{\mathrm{\scriptscriptstyle T}} (\mathbf{I}_M + \mathbf{F}_M \mathbf{C}_n \mathbf{F}_M^{\mathrm{\scriptscriptstyle T}})^{-1} (\mathbf{Y}_M - \mathbf{F}_M \mathbf{b}_N), \end{aligned}$$

где \mathbf{I}_M — единичная матрица размера $M \times M$.

Приведенные соотношения принимают особенно простой вид при M=1, т. е. когда пересчет оценок коэффициентов ведется после каждого дополнительного опыта:

$$\mathbf{C}_{N+1} = \mathbf{C}_{N} - \mathbf{C}_{N} \mathbf{f}(x_{N+1}) \mathbf{f}^{\mathsf{T}}(x_{N+1}) \mathbf{C}_{N} [1 + \mathbf{f}^{\mathsf{T}}(x_{N+1}) \mathbf{C}_{N} \mathbf{f}(x_{N+1})]^{-1};$$

$$\mathbf{b}_{N+1} = \mathbf{b}_{N} + [\mathbf{Y}_{N+1} - \mathbf{f}^{\mathsf{T}}(x_{N+1}) \mathbf{b}_{N}] [1 + \mathbf{f}^{\mathsf{T}}(x_{N+1}) \mathbf{C}_{N} f(x_{N+1})]^{-1};$$

$$\mathbf{S}_{N+1} = \mathbf{S}_{n} + \mathbf{C}_{N} \mathbf{f}(x_{N+1}) [\mathbf{Y}_{N+1} - \mathbf{f}^{\mathsf{T}}(x_{N+1}) \mathbf{b}_{N}] \times (10.3)$$

$$\times [1 + \mathbf{f}^{\mathsf{T}}(x_{N+1}) \mathbf{C}_{N} \mathbf{f}(x_{N+1})]^{-1}.$$

Зная остаточную сумму квадратов, легко вычислить остаточную дисперсию (дисперсию неадекватности):

$$(\mathbf{S}_{ ext{all}}^2)_{N+M} = \mathbf{S}_{N+M}/(N+M+1).$$

Проиллюстрируем применение приведенных формул.

Пример. Пусть зависимость между откликом y и тремя факторами x_1, x_2, x_3 ищется в виде

$$\eta(x) = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_3 x_3,$$

где x_i — кодированные переменные $x_1 = z_1 - 4$; $x_2 = (z_2 - 1.4)/0.1$; $x_3 = (z_3 - 3)/0.5$.

Сначала был реализован ДФЭ 2^{3-1} с генерирующим соотношением $x_3=x_1x_2$. Статистический анализ результатов показал, что $b_2\approx 0$.

Причина такого результата могла быть объяснена чрезмерно большой дисперсией ошибок наблюдений, в связи с чем было предложено продолжить эксперимент для уточнения модели. После добавления двух опытов взятых для плана 2^{3-1} с генерирующим соотношением $x_3=x_1x_2$ были получены значимые оценки всех коэффициентов и опыты были прекращены.

Результаты расчетов приведены в табл. 10.2. Оценка дисперсии воспроизводимости, определенная по ряду параллельных опытов, равна 10,9 при числе степеней свободы $\nu_2=4$.

Используя формулы (10.3), найдем

$$\mathbf{C}_5 = rac{1}{32} \left[egin{array}{ccccc} 7 & 1 & 1 & -1 \ 1 & 7 & -1 & 1 \ 1 & -1 & 7 & 1 \ -1 & 1 & 1 & 7 \end{array}
ight];$$

Таблица 10.2

i	I	Тлаг	I	y_i	Оценки параметров		Db_{ki}	$t_{\mathtt{KP}}(S_k^2)_i$	S_i	$(S_k^2)_i$	$F = \frac{(S_k^2)_i}{S}$		
	x_{1i}	x_{2i}	x_{3i}		b_{0i}	b_{1i}	b_{2i}	b_{3i}					
1	$-1 \\ +1$	$-1 \\ -1$	$-1 \\ +1$	45 84,6	_	-	-	1 1		1 1		-	-
3 4	$-1 \\ +1$	+1 +1	$+1 \\ -1$	59,1 82,4	- 67,77	- 15,72	- 2 97	- 4,07	- 2,73	- 3,53	_ 0	_ 0	_
5	$-1 \\ +1$	$-1 \\ -1$	$+1 \\ -1$	58,2 67,9	68,4 67,3	15,09 14,02	3,34	4,70	2,38 2,04	3,28 3,04	12,7 49,3	,	1,17 2,26

$$\mathbf{b}_{5} = \begin{bmatrix} 67,8\\15,7\\2,97\\4,07 \end{bmatrix} + \frac{1}{8} \begin{bmatrix} 1\\-1\\1\\1 \end{bmatrix} (58,2-53,15) = \begin{bmatrix} 68,4\\15,09\\2,34\\4,7 \end{bmatrix};$$

$$\mathbf{S}_{5} = \frac{1}{2}(58,2-53,15)^{2} = 12,75.$$

Дисперсии оценок коэффициентов равны

$$(S_k^2)_5 = \frac{7}{32S^2} = 2.38.$$

Из табл. 10.2 видно, что после 5-го опыта коэффициент при x_2 остается незначимым.

Вычисления после 6-го опыта дают такие результаты:

$$\mathbf{b}_{5} = \begin{bmatrix} 68,4\\15,09\\2,34\\4,7 \end{bmatrix} + \frac{1}{64} \begin{bmatrix} 7 & 1 & 1 & -1\\1 & 7 & -1 & 1\\1 & -1 & 7 & 1\\-1 & 1 & 1 & 7 \end{bmatrix} \begin{bmatrix} 1\\1\\1\\1\\1 \end{bmatrix} (67,9-76,45) = \begin{bmatrix} 67,33\\14,03\\3,41\\5,77 \end{bmatrix};$$

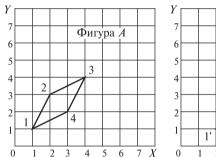
$$\mathbf{S}_{6} = 12,75 + \frac{(67,9-76,45)^{2}}{2} = 24,68;$$

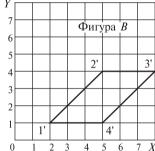
$$\mathbf{C}_{6} = \frac{1}{32} \begin{bmatrix} 6 & 0 & 2 & 0\\0 & 6 & 0 & 2\\2 & 0 & 6 & 2\\0 & 2 & 0 & 6 \end{bmatrix} \Rightarrow (S_{k}^{2}) = \frac{6}{32}S^{2} = 2,04.$$

Из табл. 10.2 видно, что после 6-го опыта все коэффициенты значимо отличаются от нуля. Кроме того, сопоставляя полученное значение $f=2{,}26$ с $f_{\rm kp}=10{,}64$ при уровне значимости $\alpha=0{,}05$, $\nu_1=2,\ \nu_2=4$, убеждаемся в адекватности линейной модели.

Задача 1 {4}*

Определите уравнения афинного преобразования, переводящих фигуру A в фигуру B:





Варианты ответа:

a)
$$x'=x;$$
 $x'=2y-x;$ $x'=2x-y;$ $x'=x+y;$ $y'=y;$ $y'=x+y;$ $y'=x+y;$ $y'=x+y;$ $y'=2y-x;$ $x'=2y-x;$ $x'=2x-y;$ $x'=x+y;$ $x'=x+y;$

Задача 2 {3}

Определите неверное высказывание:

- а) выходные параметры являются внутренними, на которые непосредственно влияет режим процесса;
- б) управляющие параметры можно считать внешними, что подчеркивает независимость их от значений режима процесса;
- в) входные параметры относятся к внутренним, величины которых определяются режимом процесса;
- г) возмущающие параметры могут быть и внешними, и внутренними.

^{*} В фигурных скобках проставлены баллы.

Задача 3 {7}

Запишите систему уравнений для определения коэффициентов уравнения регрессии $y=b_1x_1+b_2x_2$ по методу наименьших квадратов, используя таблицу результатов наблюдений и промежуточных расчетов

i	X_1	X_2	\overline{y}	X_1X_2	X_{1}^{2}	X_{2}^{2}	$X_1\overline{y}$	$X_2\overline{y}$
1 2	-6 1	-11 -3	-20 -9	66 -3	36 1	121 9	1120 -9	220 27
N=139	 5	14	 19	70	25	196	95	226
Сумма	406	1	1479	3533	3456	10525	12797	17340

Задача 4 {6}

Запишите численное выражение неравенства, при выполнении которого приведенные таблице выборочные дисперсии считаются однородными при уровне значимости p=0.05:

i	x_i	m	y	$S_i^2 = \frac{1}{m-1} \sum_{i=1}^m (y_{ji} - \overline{y}_j)^2$
1 2 3 $N = 4$	135 145 155 165	20 20 20 20	106,6 86,3 83,8 66,1	801 398 382 320
	600	80	342,8	1901

Задача 5 {5}

Укажите неверное определение:

- а) регрессионный анализ это метод определения коэффициентов модели, наиболее соответствующей набору экспериментальных данных. Причем ошибка (разность между моделью и любой экспериментальной точкой) обязательно должна быть равна нулю;
- б) регрессионный анализ может быть применен, если входные факторы x_1, x_2, \ldots, x_k измеряются с пренебрежимо малой ошибкой по сравнению с ошибкой в определении у и некоррелированы друг с другом;
- в) при регрессионном анализе определяется функциональная зависимость среднего значения y от x. Вид функции предполагается известным, и по заданным результатам наблюдений нужно найти оценки неизвестных параметров.

Задача 6 {6}

По результатам измерений x_1, x_2, x_3, y были вычислены коэффициенты полинома и t-критерий:

$$b_0 = 2,15;$$
 $b_{12} = 0,05;$ $t_0 = 55,2;$ $t_{12} = 1,28;$
 $b_1 = -0,1;$ $b_{13} = -0,05;$ $t_1 = 2,56;$ $t_{13} = 1,28;$
 $b_2 = -0,1;$ $b_{23} = 0;$ $t_2 = 2,56;$ $t_{23} = 0;$
 $b_3 = -0,2;$ $t_3 = 5,13.$

Запишите математическую модель исследуемого технологического процесса с учетом оценки значимости (проверки нуль-гипотезы $b_j=0$) коэффициентов b_j , если табличное значение критерия Стьюдента t(0.05;8)=2,306.

Задача 7 {7}

Результаты измерения входных x_1, x_2 и выходного y факторов исследуемого технологического процесса были преобразованы (пронормированы) по следующим формулам:

$$y_i^0 = \frac{y_i - 95,4}{15}; \quad x_{1i}^0 = \frac{x_{1i} - 7,4}{5,8}; \quad x_{2i}^0 = \frac{x_{2i} - 48,1}{15.6}.$$

Для этих данных мы имеем следующее уравнение регрессии в нормированном виде: $y^0=0.799x_1^0+0.358x_2^0$. Запишите численные выражения для определения коэффициентов b_0,b_1,b_2 .

Задача 8 {8}

Исследовалась функция Y от одного входного фактора X. Объём выборки N, число параллельных опытов m. Опишите последовательность действий, которые нужно произвести для того, чтобы оценить, какая аппроксимация лучше: $Y^* = b_0 + b_1 x$ или $Y^* = b_0 + b_1 x + b_{11} x^2$.

Задача 9 {5}

Что характеризует дисперсия воспроизводимости и остаточная дисперсия? Напишите формулы для определения этих дисперсий.

Задача 10 {3}

По какому из перечисленных критериев оценивается однородность дисперсий:

- а) по критерию Стьюдента;
- б) по критерию Кохрена;
- в) по критерию Фишера.

Задача 11 {3}

В таблице представлена матрица планирования и результаты экспериментов.

i	X_0	X_1	X_2	<i>X</i> ₃	\overline{Y}
1 2 3 4 5 6 7 N=8	1 1 1 1 1 1 1	-1 1 -1 1 -1 1 -1 1	-1 -1 1 1 -1 -1 1	-1 -1 -1 -1 1 1	49,14 39,16 48,20 42,58 56,08 46,10 60,58 54,56

Запишите численные выражения для определения коэффициентов уравнения регрессии $b_{12},\ b_{13},\ b_{23},\ b_{123}.$

Задача 12 {6}

Составьте матрицу планирования ДФЭ 2^{4-1} от ПФЭ, используя генерирующее соотношение $x_4=x_2x_3$.

Задача 13 {6}

Для составленной в задаче 12 матрицы планирования покажите выполнение свойства ортогональности (только сочетания, содержащие параметр x_4).

Задача 14 {6}

Для задачи 12 запишите систему совместных оценок коэффициентов $b_1,\ b_2,\ b_3,\ b_4,\ b_{12},\ b_{13},\ b_{14}.$

Задача 15 {6}

При поиске минимума методом покоординатного спуска были получены следующие значения параметров поиска и целевой функции:

N	i	x_1^N	x_2^N	Q^N	±	$x_1^{N\pm}$	$x_2^{N\pm}$	$Q^{N\pm}$	λ_1^N	λ_2^N	Прим.
0	1	20	10	53,6	+	24	10	64,9			$Q^{N+} > Q^N$
0	1	20	10	53,6	_	16	10	47,5			$Q^{N-} < Q^N$
1	1	16	10	47,5	_	12	10	36,9			$Q^{N-} < Q^N$
2	1	12	10	36,9	_	8	10	38,2			$Q^{N-} > Q^N$
2	1	12	10	36,9	+	16	10	47,5			$Q^{N+} > Q^N$
2	2	12	10	36,9	+	12	12	30,3			$Q^{N+} < Q^N$
3	2	12	12	30,3	+	12	14	33,б			$Q^{N+} > Q^N$
3	2	12	12	30,3	_	12	10	47,5			$Q^{N-} > Q^N$

При этом использованы следующие обозначения: $Q^N=Q(x^N)$; $x_i^{N\pm}=x_i^N\pm\Delta_i;\;Q^{N\pm}=Q(x^{N\pm}\Delta_i).$

По результатам поиска, приведенным в таблице, восстановите значения λ_1^N и λ_2^N .

Задача 16 {7}

В задаче поиска минимума методом Бокса–Уилсона в окрестности исходной точке $x^0=(0;0)$ получена линейная аппроксимация

поверхности отклика: $Q(x)=25+10x_1+4x_2$, где шаги варьирования $\Delta x_1=1,\ \Delta x_2=2,\$ а $\lambda_6=1.$ Произведите три «мысленных опыта», т. е. определите 3 прогнозируемых значения выходного параметра.

12.1. Практическая работа № 1

При производстве намоточных изделий РЭС (трансформаторов, электродвигателей, дросселей) для определения показателей их надежности требуется знание числа и протяженности дефектов в изоляций обмоточных проводов. В [15] разработан способ контроля указанных параметров. В основу контроля положен принцип зажигания коронного разряда между датчиком, на который подано высокое напряжение U, и жилой провода.

Исследования показали, что абсолютная погрешность определения протяженности дефектов Δl зависит от напряжения U на датчике, от емкости C и сопротивления R, стоящих в цепи формирования импульса дефекта, а также от скорости движения провода V.

Результаты статистических исследований погрешности определения протяженности дефекта Δl от величины влияющих на точность контроля параметров (U,R,C,V) приведены в табл. 12.1.

Используя результаты, приведенные в приложении, провести полный статистический анализ полученных данных и, в конечном счете, построить адекватную математическую модель исследуемого процесса. В практической работе № 1 проводится лишь первая часть статистического анализа — корреляционный анализ статистических данных.

Порядок выполнения работы

1. Используя табл. 12.1, найти среднестатистические значения параметра Δl для каждого конкретного значения $U,\ R,\ C,\ V.$

Таблица 12.1

N∘	Δl , mm	U , κB	C , п Φ	R, МОм	V, м/с
1	4,68	2	390	1	1
2	4,84	2	390	1	2
3	5,66	2	390	1	4
4	7,58	2	390	1	8

Окончание табл. 12.1

5 4,53 2 240 1 1 2 7 5,04 2 240 1 2 4 8 5,68 2 240 1 8 9 4,06 2 90 1 1 4 1 2 90 1 1 1 1 4 1 2 90 1 1 1 4 4 1 2 90 1 1 1 4 4 4 5 2 90 1 4 4 4 5 2 90 1 4 <th></th> <th>ı</th> <th></th> <th>1</th> <th>Ī</th> <th>ние табл. 12.1</th>		ı		1	Ī	ние табл. 12.1
6	Nº	Δl , mm	U , к $\mathsf B$	С, пФ	R, МОм	V, м/с
6	5	4,53	2	240	1	1
8 5,68 2 240 1 8 9 4,06 2 90 1 1 1 11 4,49 2 90 1 4 4 1 1 1 1 1 1 1 1 1 1 1 1 1 4 4 1 2 90 1 1 4 4 1 2 90 1 1 4 4 1 2 90 1 1 4	6		2		1	2
8 5,68 2 240 1 8 9 4,06 2 90 1 1 1 11 4,49 2 90 1 4 4 1 1 1 1 1 1 1 1 1 1 1 1 1 4 4 1 2 90 1 1 4 4 1 2 90 1 1 4 4 1 2 90 1 1 4	7		2		1	4
9	8		2		1	8
10 4,41 2 90 1 2 11 4,49 2 90 1 4 12 4,56 2 90 1 1 1 14 4,55 2 90 1 1 1 1 16 4,59 2 90 1 4 4 1 1 4 4 1 1 4 4 4 5 1 4 4 4 5 1 4 4 4 5 1 4 4 4 4 9 1 1 4 4 4 4 9 1 1 4 4 4 4 9 2 9 9 1 1 4 4 4 4 9 2 9 9 2 9 9 2 9 9 2 9 9 2 9 9 2 9 9 2 9 9 2 5 1 1 4 4 4 3	9		2		1	1
11 4,49 2 90 1 4 12 4,50 2 90 1 1 1 13 4,06 2 90 1 1 1 1 14 4,55 2 90 1 4 1 1 2 1 4 1			2		1	2
12 4,50 2 90 1 8 13 4,06 2 90 1 1 1 14 4,555 2 90 1 2 2 15 4,59 2 90 1 4 4 4 5 1 4 4 4 4 4 90 1 8 1 4 4 4 90 2,99 1 1 4 4 4 90 2,99 2 99 2,99 2 99 2,99 2 99 2,99 2 99 2,99 8 2 90 2,99 8 8 2 90 2,50 0 2,99 8 2 90 2,50 0 2,50 0 2 2,50 1 2 2 90 2,50 2 2 3 3 4 4 2 90 2,50 8 2 2 90 2,05 4 4 2 2 90 2,05 4 4 4 <td></td> <td></td> <td>2</td> <td></td> <td>1</td> <td>4</td>			2		1	4
13 4,06 2 90 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 <td>12</td> <td></td> <td>2</td> <td></td> <td>1</td> <td>8</td>	12		2		1	8
15 4,59 2 90 1 4 1 4 1 1 4 1 1 4 1 1 4 1 1 4 4 4 2 90 2,50 2 2 1 1 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1 1 4 1 1 4 1 4 1 1 4 1 1			2		1	1
15 4,59 2 90 1 4 1 4 1 1 4 1 1 4 1 1 4 1 1 4 4 4 2 90 2,50 2 2 1 1 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1 1 4 1 1 4 1 4 1 1 4 1 1			2		1	2
16 4,50 2 90 1 8 17 4,89 2 90 2,99 1 18 4,99 2 90 2,99 2 19 5,31 2 90 2,99 8 20 6,87 2 90 2,50 1 22 4,84 2 90 2,50 2 23 5,17 2 90 2,50 4 24 6,22 2 90 2,50 4 24 6,22 2 90 2,05 1 26 4,63 2 90 2,05 2 27 4,82 2 90 2,05 4 28 5,11 2 90 2,05 8 29 4,12 2 90 1,54 1 30 4,27 2 90 1,54 2 31 4,31 2 90 1,54 4 32 4,85 2 90 1,54		4 50	2		1	4
18 4,99 2 90 2,99 2 19 5,31 2 90 2,99 4 20 6,87 2 90 2,99 8 21 4,76 2 90 2,50 1 22 4,84 2 90 2,50 2 23 5,17 2 90 2,50 4 24 6,22 2 90 2,50 8 25 4,64 2 90 2,05 1 26 4,63 2 90 2,05 2 27 4,82 2 90 2,05 4 28 5,11 2 90 2,05 8 29 4,12 2 90 1,54 1 30 4,27 2 90 1,54 2 31 4,31 2 90 1,54 4 32 4,85 2 90 1,54 8 33 4,07 2 90 0,54 <td></td> <td></td> <td>2</td> <td></td> <td></td> <td>8</td>			2			8
18 4,99 2 90 2,99 2 19 5,31 2 90 2,99 4 20 6,87 2 90 2,99 8 21 4,76 2 90 2,50 1 22 4,84 2 90 2,50 2 23 5,17 2 90 2,50 4 24 6,22 2 90 2,50 8 25 4,64 2 90 2,05 1 26 4,63 2 90 2,05 2 27 4,82 2 90 2,05 4 28 5,11 2 90 2,05 8 29 4,12 2 90 1,54 1 30 4,27 2 90 1,54 2 31 4,31 2 90 1,54 4 32 4,85 2 90 1,54 8 33 4,07 2 90 0,54 <td></td> <td></td> <td>2</td> <td></td> <td>2 00</td> <td>1</td>			2		2 00	1
20 6,87 2 90 2,99 8 21 4,76 2 90 2,50 1 22 4,84 2 90 2,50 2 23 5,17 2 90 2,50 4 24 6,22 2 90 2,55 8 25 4,64 2 90 2,05 1 26 4,63 2 90 2,05 2 27 4,82 2 90 2,05 8 29 4,12 2 90 2,05 8 29 4,12 2 90 1,54 1 30 4,27 2 90 1,54 2 31 4,31 2 90 1,54 4 32 4,85 2 90 1,54 8 33 4,07 2 90 0,54 1 34 4,23 2			2			2
20 6,87 2 90 2,99 8 21 4,76 2 90 2,50 1 22 4,84 2 90 2,50 2 23 5,17 2 90 2,50 4 24 6,22 2 90 2,55 8 25 4,64 2 90 2,05 1 26 4,63 2 90 2,05 2 27 4,82 2 90 2,05 8 29 4,12 2 90 2,05 8 29 4,12 2 90 1,54 1 30 4,27 2 90 1,54 2 31 4,31 2 90 1,54 4 32 4,85 2 90 1,54 8 33 4,07 2 90 0,54 1 34 4,23 2			2			1
21 4,76 2 90 2,50 1 22 4,84 2 90 2,50 2 23 5,17 2 90 2,50 4 24 6,22 2 90 2,50 8 25 4,64 2 90 2,05 1 26 4,63 2 90 2,05 2 27 4,82 2 90 2,05 4 28 5,11 2 90 2,05 8 29 4,12 2 90 1,54 1 30 4,27 2 90 1,54 1 31 4,31 2 90 1,54 4 32 4,85 2 90 1,54 8 33 4,07 2 90 0,54 1 34 4,23 2 90 0,54 2 35 4,49 2 90 0,54 4 36 4,51 2 90 0,54 <td></td> <td></td> <td>2</td> <td></td> <td></td> <td>Ω</td>			2			Ω
22 4,84 2 90 2,50 2 23 5,17 2 90 2,50 4 24 6,22 2 90 2,50 8 25 4,64 2 90 2,05 1 26 4,63 2 90 2,05 2 27 4,82 2 90 2,05 4 28 5,11 2 90 2,05 8 29 4,12 2 90 1,54 1 30 4,27 2 90 1,54 2 31 4,31 2 90 1,54 4 32 4,85 2 90 1,54 8 33 4,07 2 90 0,54 1 34 4,23 2 90 0,54 2 35 4,49 2 90 0,54 4 36 4,51 2 90 0,54 4 38 1,04 0,5 90 0,54 4 39 1,31 0,5 90 0,54 4 40 1,53 0,5 90 0,54 4 <t< td=""><td></td><td></td><td>2</td><td></td><td></td><td>1</td></t<>			2			1
25 4,64 2 90 2,05 1 26 4,63 2 90 2,05 2 27 4,82 2 90 2,05 4 28 5,11 2 90 2,05 8 29 4,12 2 90 1,54 1 30 4,27 2 90 1,54 2 31 4,31 2 90 1,54 4 32 4,85 2 90 1,54 8 33 4,07 2 90 0,54 1 34 4,23 2 90 0,54 2 35 4,49 2 90 0,54 2 36 4,51 2 90 0,54 4 36 4,51 2 90 0,54 4 37 1,28 0,5 90 0,54 2 39 1,31 0,5 90 0,54 2 39 1,31 0,5 90 0			2			2
25 4,64 2 90 2,05 1 26 4,63 2 90 2,05 2 27 4,82 2 90 2,05 4 28 5,11 2 90 2,05 8 29 4,12 2 90 1,54 1 30 4,27 2 90 1,54 2 31 4,31 2 90 1,54 4 32 4,85 2 90 1,54 8 33 4,07 2 90 0,54 1 34 4,23 2 90 0,54 2 35 4,49 2 90 0,54 2 36 4,51 2 90 0,54 4 36 4,51 2 90 0,54 4 37 1,28 0,5 90 0,54 2 39 1,31 0,5 90 0,54 2 39 1,31 0,5 90 0			2			4
25 4,64 2 90 2,05 1 26 4,63 2 90 2,05 2 27 4,82 2 90 2,05 4 28 5,11 2 90 2,05 8 29 4,12 2 90 1,54 1 30 4,27 2 90 1,54 2 31 4,31 2 90 1,54 4 32 4,85 2 90 1,54 8 33 4,07 2 90 0,54 1 34 4,23 2 90 0,54 2 35 4,49 2 90 0,54 2 36 4,51 2 90 0,54 4 36 4,51 2 90 0,54 4 37 1,28 0,5 90 0,54 2 39 1,31 0,5 90 0,54 2 39 1,31 0,5 90 0			2			4
26 4,63 2 90 2,05 2 27 4,82 2 90 2,05 4 28 5,11 2 90 2,05 8 29 4,12 2 90 1,54 1 30 4,27 2 90 1,54 2 31 4,31 2 90 1,54 4 32 4,85 2 90 1,54 8 33 4,07 2 90 0,54 1 34 4,23 2 90 0,54 2 35 4,49 2 90 0,54 4 36 4,51 2 90 0,54 4 37 1,28 0,5 90 0,54 4 38 1,04 0,5 90 0,54 4 40 1,53 0,5 90 0,54 4 40 1,53 0,8 90 0,54 4 41 1,53 0,8 90 <			2			8
28 5,11 2 90 2,05 8 29 4,12 2 90 1,54 1 30 4,27 2 90 1,54 2 31 4,31 2 90 1,54 4 32 4,85 2 90 1,54 8 33 4,07 2 90 0,54 1 34 4,23 2 90 0,54 2 35 4,49 2 90 0,54 4 36 4,51 2 90 0,54 4 36 4,51 2 90 0,54 4 37 1,28 0,5 90 0,54 1 38 1,04 0,5 90 0,54 2 39 1,31 0,5 90 0,54 4 40 1,53 0,8 90 0,54 4 41 1,53 <td< td=""><td></td><td></td><td>2</td><td></td><td></td><td>1</td></td<>			2			1
28 5,11 2 90 2,05 8 29 4,12 2 90 1,54 1 30 4,27 2 90 1,54 2 31 4,31 2 90 1,54 4 32 4,85 2 90 1,54 8 33 4,07 2 90 0,54 1 34 4,23 2 90 0,54 2 35 4,49 2 90 0,54 4 36 4,51 2 90 0,54 4 36 4,51 2 90 0,54 4 37 1,28 0,5 90 0,54 1 38 1,04 0,5 90 0,54 2 39 1,31 0,5 90 0,54 4 40 1,53 0,8 90 0,54 4 41 1,53 <td< td=""><td></td><td></td><td>2</td><td></td><td></td><td>2</td></td<>			2			2
29 4,12 2 90 1,54 1 30 4,27 2 90 1,54 2 31 4,31 2 90 1,54 4 32 4,85 2 90 1,54 8 33 4,07 2 90 0,54 1 34 4,23 2 90 0,54 2 35 4,49 2 90 0,54 4 36 4,51 2 90 0,54 4 36 4,51 2 90 0,54 4 38 1,04 0,5 90 0,54 2 39 1,31 0,5 90 0,54 2 39 1,31 0,5 90 0,54 4 40 1,53 0,8 90 0,54 8 41 1,53 0,8 90 0,54 2 43 1,71 0,8 90 0,54 4 44 2,30 0,8 90			2			4
30 4,27 2 90 1,54 2 31 4,31 2 90 1,54 4 32 4,85 2 90 1,54 8 33 4,07 2 90 0,54 1 34 4,23 2 90 0,54 2 35 4,49 2 90 0,54 4 36 4,51 2 90 0,54 4 37 1,28 0,5 90 0,54 1 38 1,04 0,5 90 0,54 2 39 1,31 0,5 90 0,54 4 40 1,53 0,5 90 0,54 4 41 1,53 0,8 90 0,54 4 42 1,59 0,8 90 0,54 4 42 1,59 0,8 90 0,54 4 44 2,30 0,8 90 0,54 4 44 2,30 0,8 90			2			8
32 4,85 2 90 1,54 8 33 4,07 2 90 0,54 1 34 4,23 2 90 0,54 2 35 4,49 2 90 0,54 4 36 4,51 2 90 0,54 4 37 1,28 0,5 90 0,54 1 38 1,04 0,5 90 0,54 2 39 1,31 0,5 90 0,54 4 40 1,53 0,5 90 0,54 4 41 1,53 0,8 90 0,54 1 42 1,59 0,8 90 0,54 2 43 1,71 0,8 90 0,54 4 44 2,30 0,8 90 0,54 4 44 2,30 0,8 90 0,54 8 45 2,30 1,2 90 0,54 4 46 2,54 1,2 90 0,54 4 48 2,47 1,2 90 0,54 4 49 2,86 1,5 90 0,54 <td< td=""><td></td><td></td><td>2</td><td></td><td></td><td>1</td></td<>			2			1
32 4,85 2 90 1,54 8 33 4,07 2 90 0,54 1 34 4,23 2 90 0,54 2 35 4,49 2 90 0,54 4 36 4,51 2 90 0,54 4 37 1,28 0,5 90 0,54 1 38 1,04 0,5 90 0,54 2 39 1,31 0,5 90 0,54 4 40 1,53 0,5 90 0,54 4 41 1,53 0,8 90 0,54 1 42 1,59 0,8 90 0,54 2 43 1,71 0,8 90 0,54 4 44 2,30 0,8 90 0,54 4 44 2,30 0,8 90 0,54 8 45 2,30 1,2 90 0,54 4 46 2,54 1,2 90 0,54 4 48 2,47 1,2 90 0,54 4 49 2,86 1,5 90 0,54 <td< td=""><td></td><td></td><td>2</td><td></td><td></td><td>2</td></td<>			2			2
34 4,23 2 90 0,54 2 35 4,49 2 90 0,54 4 36 4,51 2 90 0,54 8 37 1,28 0,5 90 0,54 1 38 1,04 0,5 90 0,54 2 39 1,31 0,5 90 0,54 4 40 1,53 0,5 90 0,54 8 41 1,53 0,8 90 0,54 1 42 1,59 0,8 90 0,54 2 43 1,71 0,8 90 0,54 4 44 2,30 0,8 90 0,54 4 44 2,30 0,8 90 0,54 8 45 2,30 1,2 90 0,54 8 46 2,54 1,2 90 0,54 2 47 2,59 1,2 90 0,54 2 49 2,86 1,5 <td< td=""><td></td><td></td><td>2</td><td></td><td></td><td>4</td></td<>			2			4
34 4,23 2 90 0,54 2 35 4,49 2 90 0,54 4 36 4,51 2 90 0,54 8 37 1,28 0,5 90 0,54 1 38 1,04 0,5 90 0,54 2 39 1,31 0,5 90 0,54 4 40 1,53 0,5 90 0,54 8 41 1,53 0,8 90 0,54 1 42 1,59 0,8 90 0,54 2 43 1,71 0,8 90 0,54 4 44 2,30 0,8 90 0,54 4 44 2,30 0,8 90 0,54 8 45 2,30 1,2 90 0,54 8 45 2,30 1,2 90 0,54 2 47 2,59 1,2 90 0,54 2 48 2,47 1,2 90 0,54 4 49 2,86 1,5 90 0,54 2 51 3,18 1,5 90 0,54			2			8
35 4,49 2 90 0,54 4 36 4,51 2 90 0,54 8 37 1,28 0,5 90 0,54 1 38 1,04 0,5 90 0,54 2 39 1,31 0,5 90 0,54 4 40 1,53 0,5 90 0,54 4 41 1,53 0,8 90 0,54 1 42 1,59 0,8 90 0,54 2 43 1,71 0,8 90 0,54 4 44 2,30 0,8 90 0,54 4 45 2,30 1,2 90 0,54 1 46 2,54 1,2 90 0,54 2 47 2,59 1,2 90 0,54 4 48 2,47 1,2 90 0,54 8 49 2,86 1,5 90 0,54 1 50 3,10 1,5 90 0,54 2 51 3,18 1,5 90 0,54 2 53 3,65 1,8 90 0,54			2			1
36 4,51 2 90 0,54 8 37 1,28 0,5 90 0,54 1 38 1,04 0,5 90 0,54 2 39 1,31 0,5 90 0,54 4 40 1,53 0,5 90 0,54 4 41 1,53 0,8 90 0,54 1 42 1,59 0,8 90 0,54 2 43 1,71 0,8 90 0,54 4 44 2,30 0,8 90 0,54 8 45 2,30 1,2 90 0,54 1 46 2,54 1,2 90 0,54 2 47 2,59 1,2 90 0,54 4 48 2,47 1,2 90 0,54 8 49 2,86 1,5 90 0,54 1 50 3,10 1,5 90 0,54 2 51 3,18 1,5 90 0,54 8 53 3,65 1,8 90 0,54 1 54 3,74 1,8 90 0,54		4,23	2		0,54	2
37 1,28 0,5 90 0,54 1 38 1,04 0,5 90 0,54 2 39 1,31 0,5 90 0,54 4 40 1,53 0,5 90 0,54 8 41 1,53 0,8 90 0,54 1 42 1,59 0,8 90 0,54 2 43 1,71 0,8 90 0,54 4 44 2,30 0,8 90 0,54 4 44 2,30 0,8 90 0,54 4 45 2,30 1,2 90 0,54 1 46 2,54 1,2 90 0,54 2 47 2,59 1,2 90 0,54 4 48 2,47 1,2 90 0,54 8 49 2,86 1,5 90 0,54 2 51 3			2		0,54	4
38 1,04 0,5 90 0,54 2 39 1,31 0,5 90 0,54 4 40 1,53 0,5 90 0,54 8 41 1,53 0,8 90 0,54 1 42 1,59 0,8 90 0,54 2 43 1,71 0,8 90 0,54 4 44 2,30 0,8 90 0,54 8 45 2,30 1,2 90 0,54 1 46 2,54 1,2 90 0,54 2 47 2,59 1,2 90 0,54 4 48 2,47 1,2 90 0,54 8 49 2,86 1,5 90 0,54 1 50 3,10 1,5 90 0,54 2 51 3,18 1,5 90 0,54 4 52 3,28 1,5 90 0,54 8 53 3,65 1,8 90 0,54 1 54 3,74 1,8 90 0,54 4 55 3,77 1,8 90 0,54 <td></td> <td></td> <td></td> <td></td> <td></td> <td>8</td>						8
40 1,53 0,5 90 0,54 8 41 1,53 0,8 90 0,54 1 42 1,59 0,8 90 0,54 2 43 1,71 0,8 90 0,54 4 44 2,30 0,8 90 0,54 8 45 2,30 1,2 90 0,54 1 46 2,54 1,2 90 0,54 2 47 2,59 1,2 90 0,54 4 48 2,47 1,2 90 0,54 8 49 2,86 1,5 90 0,54 1 50 3,10 1,5 90 0,54 2 51 3,18 1,5 90 0,54 4 52 3,28 1,5 90 0,54 8 53 3,65 1,8 90 0,54 1 54 3,74 1,8 90 0,54 2 55 3,77 1,8 90 0,54 4			0,5			1
40 1,53 0,5 90 0,54 8 41 1,53 0,8 90 0,54 1 42 1,59 0,8 90 0,54 2 43 1,71 0,8 90 0,54 4 44 2,30 0,8 90 0,54 8 45 2,30 1,2 90 0,54 1 46 2,54 1,2 90 0,54 2 47 2,59 1,2 90 0,54 4 48 2,47 1,2 90 0,54 8 49 2,86 1,5 90 0,54 1 50 3,10 1,5 90 0,54 2 51 3,18 1,5 90 0,54 4 52 3,28 1,5 90 0,54 8 53 3,65 1,8 90 0,54 2 54 3,74 1,8 90 0,54 4 55 3,77 1,8					0,54	2
41 1,53 0,8 90 0,54 1 42 1,59 0,8 90 0,54 2 43 1,71 0,8 90 0,54 4 44 2,30 0,8 90 0,54 8 45 2,30 1,2 90 0,54 1 46 2,54 1,2 90 0,54 2 47 2,59 1,2 90 0,54 4 48 2,47 1,2 90 0,54 8 49 2,86 1,5 90 0,54 1 50 3,10 1,5 90 0,54 2 51 3,18 1,5 90 0,54 4 52 3,28 1,5 90 0,54 8 53 3,65 1,8 90 0,54 2 54 3,74 1,8 90 0,54 4 55 3,77 1,8 90 0,54 4			0,5			4
42 1,59 0,8 90 0,54 2 43 1,71 0,8 90 0,54 4 44 2,30 0,8 90 0,54 8 45 2,30 1,2 90 0,54 1 46 2,54 1,2 90 0,54 2 47 2,59 1,2 90 0,54 4 48 2,47 1,2 90 0,54 8 49 2,86 1,5 90 0,54 1 50 3,10 1,5 90 0,54 2 51 3,18 1,5 90 0,54 4 52 3,28 1,5 90 0,54 8 53 3,65 1,8 90 0,54 1 54 3,74 1,8 90 0,54 2 55 3,77 1,8 90 0,54 4						8
44 2,30 0,8 90 0,54 8 45 2,30 1,2 90 0,54 1 46 2,54 1,2 90 0,54 2 47 2,59 1,2 90 0,54 4 48 2,47 1,2 90 0,54 8 49 2,86 1,5 90 0,54 1 50 3,10 1,5 90 0,54 2 51 3,18 1,5 90 0,54 4 52 3,28 1,5 90 0,54 8 53 3,65 1,8 90 0,54 1 54 3,74 1,8 90 0,54 2 55 3,77 1,8 90 0,54 4					0,54	1
44 2,30 0,8 90 0,54 8 45 2,30 1,2 90 0,54 1 46 2,54 1,2 90 0,54 2 47 2,59 1,2 90 0,54 4 48 2,47 1,2 90 0,54 8 49 2,86 1,5 90 0,54 1 50 3,10 1,5 90 0,54 2 51 3,18 1,5 90 0,54 4 52 3,28 1,5 90 0,54 8 53 3,65 1,8 90 0,54 1 54 3,74 1,8 90 0,54 2 55 3,77 1,8 90 0,54 4						2
45 2,30 1,2 90 0,54 1 46 2,54 1,2 90 0,54 2 47 2,59 1,2 90 0,54 4 48 2,47 1,2 90 0,54 8 49 2,86 1,5 90 0,54 1 50 3,10 1,5 90 0,54 2 51 3,18 1,5 90 0,54 4 52 3,28 1,5 90 0,54 8 53 3,65 1,8 90 0,54 1 54 3,74 1,8 90 0,54 2 55 3,77 1,8 90 0,54 4						4
49 2,86 1,5 90 0,54 1 50 3,10 1,5 90 0,54 2 51 3,18 1,5 90 0,54 4 52 3,28 1,5 90 0,54 8 53 3,65 1,8 90 0,54 1 54 3,74 1,8 90 0,54 2 55 3,77 1,8 90 0,54 4						8
49 2,86 1,5 90 0,54 1 50 3,10 1,5 90 0,54 2 51 3,18 1,5 90 0,54 4 52 3,28 1,5 90 0,54 8 53 3,65 1,8 90 0,54 1 54 3,74 1,8 90 0,54 2 55 3,77 1,8 90 0,54 4			,			1
49 2,86 1,5 90 0,54 1 50 3,10 1,5 90 0,54 2 51 3,18 1,5 90 0,54 4 52 3,28 1,5 90 0,54 8 53 3,65 1,8 90 0,54 1 54 3,74 1,8 90 0,54 2 55 3,77 1,8 90 0,54 4						2
49 2,86 1,5 90 0,54 1 50 3,10 1,5 90 0,54 2 51 3,18 1,5 90 0,54 4 52 3,28 1,5 90 0,54 8 53 3,65 1,8 90 0,54 1 54 3,74 1,8 90 0,54 2 55 3,77 1,8 90 0,54 4						4
50 3,10 1,5 90 0,54 2 51 3,18 1,5 90 0,54 4 52 3,28 1,5 90 0,54 8 53 3,65 1,8 90 0,54 1 54 3,74 1,8 90 0,54 2 55 3,77 1,8 90 0,54 4			,			8
52 3,28 1,5 90 0,54 8 53 3,65 1,8 90 0,54 1 54 3,74 1,8 90 0,54 2 55 3,77 1,8 90 0,54 4						1
52 3,28 1,5 90 0,54 8 53 3,65 1,8 90 0,54 1 54 3,74 1,8 90 0,54 2 55 3,77 1,8 90 0,54 4						2
54 3,74 1,8 90 0,54 2 55 3,77 1,8 90 0,54 4			,			4
54 3,74 1,8 90 0,54 2 55 3,77 1,8 90 0,54 4						8
55 3,77 1,8 90 0,54 4						1
55 3,77 1,8 90 0,54 4 56 3,90 1,8 90 0,54 8						2
56 3,90 1,8 90 0,54 8						4
	56	3,90	1,8	90	0,54	8

- 2. Представить полученные значения в виде корреляционной таблины.
- 3. Определить коэффициенты корреляции между погрешностью определения протяженности дефекта Δl и каждым из варьируемых факторов, приведенных в табл. 12.1.
- 4. Используя полученные результаты корреляционного анализа, представить статистический материал в таблице, расположив влияющие на точность контроля факторы в столбцах таблицы таким образом, чтобы индекс столбца того или иного фактора был тем выше, чем слабее влияние данного фактора на Δl .
- 5. Провести анализ полученных результатов и сделать выводы по работе.

Содержание отчёта

- 1. Наименование работы, постановка задачи исследования и цель.
- 2. Таблицы, расчетные формулы и результаты проведённых вычислений.
 - 3. Результаты корреляционного анализа и выводы.

Вопросы для самопроверки

- 1. Что такое корреляционный анализ?
- 2. Для чего нужен корреляционный анализ?
- 3. По какому выражению рассчитываются коэффициенты корреляции между параметрами?
 - 4. Что показывает коэффициент корреляции?

12.2. Практическая работа № 2

Используя данные табл. 12.1, найти коэффициенты в одном из уравнений регрессии, приведенных в табл. 12.2, и провести регрессивный анализ полученного уравнения.

Порядок выполнения работы

- 1. Выписать из табл. 12.1 столбцы, необходимые для построения заданного Вам варианта уравнения регрессии, и внести их в созданную Вами таблицу.
- 2. Дополнить таблицу столбцами, необходимыми для построения заданной Вам регрессии.
 - 3. Рассчитать коэффициенты в уравнении регрессии.
- 4. Провести регрессионный анализ полученного уравнения регрессии и сделать выводы по работе.

Содержание отчёта

1. Наименование работы, постановка задачи исследования и цель.

Таблица 12.2

№ варианта	Вид уравнения
1	$\Delta l = b_0 + b_1 U + b_2 R + b_3 C + b_4 V$
2	$\Delta l = b_0 + b_1 U + b_2 R + b_{12} U R$
3	$\Delta l = b_0 + b_1 R + b_2 C + b_{12} R C$
4	$\Delta l = b_0 + b_1 U + b_2 C + b_{12} U C$
5	$\Delta l = b_0 + b_1 U + b_2 R + b_3 C + b_{12} U C + b_{11} U^2 + b_{22} R^2 + b_{33} C^2$
6	$\Delta l = b_0 + b_1 U + b_2 R + b_{12} U R + b_{11} U^2 + b_{22} R^2$
7	$\Delta l = b_0 + b_1 U + b_2 C + b_{12} U C + b_{11} U^2 + b_{33} C^2$
8	$\Delta l = b_0 + b_1 U + b_2 V + b_{12} U V + b_{11} U^2 + b_{33} V^2$
9	$\Delta l = b_0 + b_1 R + b_2 V + b_{12} R V + b_{11} R^2 + b_{33} V^2$
10	$\Delta l = b_0 + b_1 C + b_2 V + b_{12} C V + b_{11} C^2 + b_{33} V^2$
11	$\Delta l = b_0 + b_1 R + b_2 V + b_{12} RV + b_{11} R^2 + b_{33} V^2$
12	$\Delta l = b_0 + b_1 U + b_2 R + b_3 C + b_4 V + b_{12} U R + b_{13} U C + b_{23} R C$
13	$\Delta l = b_0 + b_1 U + b_2 R + b_3 C + b_4 V + b_{12} U R + b_{13} U C + b_{23} R V$
14	$\Delta l = b_0 + b_1 U + b_2 R + b_3 C + b_4 V + b_{12} U R + b_{13} U C + b_{23} V C$
15	$\Delta l = b_0 + b_1 U + b_2 R + b_3 C + b_4 V + b_{12} U R + b_{33} V^2$
16	$\Delta l = b_0 + b_1 U + b_2 R + b_3 C + b_4 V + b_{12} U R + b_{33} U^2$

- 2. Таблицы, расчетные формулы и результаты проведённых вычислений.
 - 3. Результаты регрессионного анализа и выводы.

Вопросы для самопроверки

- 1. Что такое регрессионный анализ?
- 2. Для чего нужен регрессионный анализ?
- 3. Как рассчитываются коэффициенты уравнения регрессии?
- 4. Что показывает коэффициенты регрессии?

12.3. Практическая работа № 3

Используя данные табл. 12.1, а также результаты корреляционного анализа работы 12.1, найти уравнение множественной регрессии методом Брандона.

Порядок выполнения работы

- 1. Запишите уравнение множественной регрессии по методу Брандона, расположив в нём факторы в соответствии с их влиянием на функцию отклика, используя результаты корреляционного анализа, проведенного в работе 12.1.
- 2. Выпишите из табл. 12.1 столбцы, необходимые для построения заданного Вам уравнения регрессии методом Брандона, расположив их в созданную Вами таблицу в соответствии с результатами корреляционного анализа.
- 3. Постройте необходимые графики, приведите таблицы и результаты вычислений, полученных при построении регрессии
 - 4. Рассчитать коэффициенты в уравнении регрессии.

Содержание отчёта

- 1. Наименование работы, постановка задачи исследования и цель.
- 2. Графики, таблицы, расчетные формулы и результаты проведённых вычислений.
 - 3. Результаты проведенных расчетов и выводы.

Вопросы для самопроверки

- 1. Когда используется метод Брандона?
- 2. Как располагаются факторы в уравнении регрессии по методу Брандона?
 - 3. Как рассчитываются коэффициенты уравнения регрессии?

12.4. Практическая работа № 4

Применение полного факторного эксперимента при нахождении оптимальных режимов контактно-реактивной диффузионной пайки сплава ОТ4. Изучали механические свойства паяных нахлесточных соединений. Критерием оптимизации была выбрана кратковременная прочность паяного соединения на срез $\tau_{\rm cp}$, МПа, при 20 °C.

Цель эксперимента — исследование влияния на прочность соединения следующих факторов режима пайки: X_1 — температура пайки, °C; X_2 — выдержки при температуре пайки, мин; X_3 — толщина покрытия припоя, мкм.

Способ пайки — контактно-реактивная диффузионная пайка; в качестве контактного покрытия использовали никель. Пайку проводили в вакуумной печи, при температуре пайки вакуум \approx 0,01 Па. Припой в виде покрытия наносили на одну из паяемых пластин. В процессе пайки к паяемым поверхностям прикладывали небольшое давление. Скорость нагрева образцов регулировали мощностью установки, паяное соединение охлаждали вместе с печью. Поверхности перед пайкой были очищены и протравлены. Величину нахлестки регламентировали конструкцией изделия.

Область определения, основной уровень и интервалы варьирования факторов:

Фактор X_1 . Учитывая температурные интервалы недопустимого роста зерна в сплаве OT4, начала контактно-реактивного плавления титана с никелем, устойчивого существования интерметаллидов, температуры рекристаллизации паяемого материала, была выбрана область определения для температурного интервала пайки от 950 до 1050 °C.

 Φ актор X_2 . Учитывая время до начала недопустимого роста зерна сплава ОТ4 при температуре пайки и образования прослойки

жидкой фазы в контакте с припоем, выбрана область определения для времени выдержки при температуре пайки от 0 до 240 с. На основе априорной информации и предварительных экспериментов были выбраны основные уровни и интервалы варьирования факторов (табл. 12.3).

Таблица 12.3

	X_1	X_2	<i>X</i> ₃
Основной уровень	975	45	_
Интервал варьирования	25	15	_
Верхний уровень	1000	60	50
Нижний уровень	950	30	15

Выбор плана эксперимента и построение матрицы планирования. Число факторов — три. Вид модели неизвестен. Выбираем полный факторный эксперимент: Тогда вид модели — неполная квадратичная регрессионная модель процесса, с учетом всех взаимодействий факторов. Матрица планирования опытов приведена в табл. 12.4.

Таблица 12.4

№ опыта	X_1	X_2	X_3	X_1X_2	X_1X_3	X_2X_3	$X_1X_2X_3$
1 2 3 4 5 6 7	+1 -1 +1 -1 +1 -1 +1 -1	+1 +1 -1 -1 +1 +1 -1	+1 +1 +1 +1 -1 -1 -1	+1 -1 -1 +1 +1 -1 -1 +1	+1 -1 -1 -1 -1 +1 -1	+1 +1 -1 -1 -1 -1 +1 +1	+1 -1 -1 +1 -1 -1 +1 +1

Примечание. Знак «+» — значение верхнего уровня фактора, знак «-» значение нижнего уровня фактора.

Порядок проведения параллельных опытов и результаты опытов (табл. 12.5).

Таблица 12.5

Номер опыта Порядок повторных с	пытов Y_1	Y_2	Y_3	\overline{Y}
1 8; 18; 13	31,6	32,0	32,2	31,93
2 3; 12; 24	25,9	26,1	26,0	26,00
3 11; 22; 15	28,3	28,4	28,6	28,43
4 6; 17; 14	23,1	23,1	23,1	23,10
5 2; 4; 19	135,1	34,9	34,9	35,00
6 23; 5; 7	32,3	32,5	32,6	312,47
7 1; 21; 9	30,9	31,0	31,1	31,00
8 20; 10; 16	29,0	28,6	28,7	28,77

Порядок выполнения работы

- 1. Перейти от натурального масштаба к кодируемому.
- 2. Рассчитать коэффициенты в уравнении регрессии.
- 3. Оценить однородность дисперсий.
- 4. Найти дисперсию воспроизводимости и оценить значимость коэффициентов
- 4. Найти остаточную дисперсию и оценить адекватность уравнения.

Содержание отчёта

- 1. Наименование работы, постановка задачи исследования и цель.
- 2. Таблицы, расчетные формулы и результаты проведённых вычислений.
 - 3. Результаты статистического анализа и выводы.

Вопросы для самопроверки

- 1. Как осуществляется переход при планировании экспериментов от натурального масштаба к кодированному?
- 2. Формулы для расчета коэффициентов в уравнении регрессии при использовании $\Pi\Phi \Im$?
- 3. По каким критериям оценивается однородность дисперсий, значимость коэффициентов и адекватность уравнения?
 - 4. Что показывает коэффициенты регрессии?

12.5. Практическая работа № 5

Известно, что пробивная напряженность поверхности диэлектрика в вакууме возрастает с уменьшением толщины испытуемого на электрическую прочность образца. Указанное положение находит свое отражение в конструкциях высоковольтных изоляторов, применяемых в высоковольтных трансформаторах, ускорительной технике и т. д. [21, 22].

С целью повышения электрической прочности изоляторов последние делят на множество секций проводящими градиентными кольцами. При этом применяют цилиндрическую или дисковую форму элементов секций. Высоту секций в этих конструкциях изоляторов определяют, как правило, исходя из большого объем экспериментальных исследований, что связано со значительным расходом времени и материалов, идущих на изготовление исптуемых образцов изоляторных секций. Кроме того, полученный при исследованиях результат не гарантирует создания конструкции секционированного изолятора с оптимальными габаритами. Техническая задача, поставленная в рамках настоящей работы, заключается в том, чтобы упростить способ и повысить точность определения оптимального числа секций в изоляторе, позволяющей получить максимальное значение пробивного напряжения для заданных габаритов изолятора.

Экспериментальные значения пробивных напряжений U пирексовых колец от их толщины d приведены в табл. 12.6.

Таблица	12.	(
---------	-----	---

Nº	1	2	3	4	5	6	7	8	\sum
d, mm	2	4	8	10	16	20	25	30	
U , κB	10	13	19	21	24	27	29	30	

Порядок выполнения работы

- 1. Используя табл. 12.6, построить график зависимости пробивного напряжения U от толщины диэлектрика d.
 - 2. Используя табл. 12.6, определить величины k и α в формуле

$$U = kd^{\alpha}. (12.1)$$

- 3. Используя полученные численные значения k и α , нанести на график зависимости пробивного напряжения U от толщины диэлектрика d, расчетные значения по формуле (12.1) значения U для тех же толщин диэлектрика, которые приведены в табл. 12.6.
 - 4. Найти производную $\partial U/\partial n$ используя выражение

$$U = kU_1^{\alpha}n = k\left(\frac{H-bn}{n}\right)^{\alpha}n = kn^{1-\alpha}(H-bn)^{\alpha},$$

где n — число секций в изоляторе; U_1 — пробивное напряжение одной секции толщиной d_1 ; $d_1=\frac{H-bn}{n}$; $U_1=k\left(\frac{H-bn}{n}\right)^{\alpha}$.

- 5. Преобразовав полученное выражение для производной $\frac{\partial U}{\partial n}$ и приравняв его к 0, найти формулу для определения оптимального числа секций в изоляторе $N=n_{\text{опт}}$.
- 6. Используя полученную формулу и численное значение величины α рассчитать $N=n_{\text{онт}}$ при следующих значениях: H=300 мм; b=3 мм.
- 7. Используя полученные результаты, рассчитать величину U для различных значений n в изоляторе, имеющим H=300 мм; b=3 мм. Расчетные значения свести в табл. 12.7 и построить график U от n.

Таблица 12.7

n	1	10	20	30	40	50	60	70	80	90	100
U , к $\mathsf B$											
d, mm											

Содержание отчёта

- 1. Наименование работы, постановка задачи исследования и цель.
- 2. Таблицы, расчетные формулы и результаты проведённых вычислений.
 - 3. Результаты статистического анализа и выводы.

Вопросы для самопроверки

- 1. Как изменяется пробивное напряжение по поверхности изолятора в вакууме?
- 2. Какая функция лучше всего подходит для аппроксимация зависимости пробивного напряжения по поверхности диэлектрика в вакууме от толщины диэлектрика?
- 3. Зависит ли уровень пробивного напряжения секционированного изолятора от числа секций в нем?
 - 4. Как определить оптимальное число секций в изоляторе?

12.6. Практическая работа № 6

Изучается напряжение при удлинении 300 % (функция отклика y) типовой протекторной резины на основе 70 % СКД и 30 % СКИ-3 в зависимости от содержания (в вес. ч.) трех компонентов: серы (z_1) , технического углерода (z_2) и пластификатора (z_3) [5].

При исследовании влиянии серы, технического углерода и пластификатора были выбраны пределы измерения дозировок: для серы — (1,1...2,5) вес.ч., для технического углерода — (45...65) вес.ч., для пластификатора ΠH -6 — (2...16) вес.ч.

Найти значение коэффициентов линейной регрессии вида

$$y(x_1,x_2,x_3) = \ = b_0 + b_1x_1 + b_2x_2 + b_3x_3 + b_{12}x_1x_2 + b_{13}x_1x_3 + b_{23}x_2x_3 + b_{123}x_1x_2x_3.$$

Для проведения регрессионного анализа используем матрицу плана, приведенного в табл. 12.8.

Столбец выходного параметра получен по результатам параллельных опытов, приведенных в табл. 12.9.

Таблица 12.8

№ опыта		-	з нату- асштабе	Фак	торы в си	мерной	Выходной параметр	
	z_1	z_2	z_3	x_0	x_1	x_2	x_3	\overline{Y}
1	1,1	45	2	+1	-1	-1	-1	50
2	2,5	45	2	+1	+1	-1	-1	88
3	1,1	65	2	+1	-1	+1	-1	86
4	2,5	65	2	+1	+1	+1	-1	140
5	1,1	45	16	+1	-1	-1	+1	27
6	2,5	45	16	+1	+1	-1	+1	50
7	1,1	65	16	+1	-1	+1	+1	50
8	2,5	65	16	+1	+1	+1	+1	100

Таблица 12.9

Выходной параметр

\overline{Y}	Y_1	Y_2	Y_3
50	47	53	50
88	90	89	85
86	88	85	84
140	144	137	139
27	25	27	29
50	50	46	54
50	51	52	47
100	104	100	96

Порядок проведения работы

- 1. Подготовить экспериментальные данные и получить допуск у преподавателя.
- 2. Определить область планирования эксперимента, число действующих факторов, функцию отклика.
- 3. Провести проверку экспериментальных данных на однородность и нормальность.
- 4. Провести расчет матрицы планирования полного факторного эксперимента, занести матрицу в протокол. Необходимо обратить внимание, что матрица заполняется в строгом соответствии с планом эксперимента.
- 5. Получить уравнение регрессии. Занести результаты в протокол. Провести сравнение экспериментальных и расчетных значений. Занести в протокол полученную таблицу.
- 6. Провести оценку значимости коэффициентов регрессии и оценку адекватности полученного уравнения. Результаты занести в протокол.
- 7. Рассчитать значения выходного параметра в 4 точках. Занести результаты в протокол.

- 8. Рассчитать отклонение расчетного значения выходного параметра от экспериментальных данных в центре плана.
 - 9. Написать отчет и сделать выводы о проделанной работе.

Содержание отчёта

- 1. Наименование работы, постановка задачи исследования и цель.
- 2. Таблицы, расчетные формулы и результаты проведённых вычислений.
 - 3. Результаты статистического анализа и выводы.

Вопросы для самопроверки

- 1. Методы активного эксперимента. Основные отличия методов пассивного и активного эксперимента.
 - 2. Понятие системы «черный ящик».
- 3. Порядок выборов действующих факторов, области определения эксперимента.
- 4. Вид уравнения регрессии при полном факторном эксперименте.
- 5. Построение матрицы планирования полного факторного эксперимента. Ее назначение. Порядок расчет коэффициентов математической модели.
 - 6. Определение значимости коэффициентов регрессии.
- 7. Анализ способов оценки адекватности полученного уравнения регрессии.
 - 8. Построение линий равного уровня функции отклика.
- 9. Определение типа поверхности функции отклика при полном двухфакторном эксперименте.
- 10. Достоинства и недостатки полного факторного эксперимента.

13.1. Лабораторная работа 1. Исследование процесса пропитки обмоточных изделий

К намоточным изделиям электротехнической и радиотехнической промышленностям относятся электрические машины, трансформаторы, дроссели, сельсины, катушки индуктивности фильтры, преобразователи и др. Факт широчайшего распространения данного вида изделий наглядно подтверждают цифры, показывающие потребление ими электрической энергии. Подсчитано, что только на долю асинхронных электродвигателей общепромышленного применения в Российской Федерации приходится 50 % всей вырабатываемой электроэнергии, а в США -64 %. Самым ненадежным узлом электрической машины является изоляция обмоток электрических машин. По современным данным, на долю обмоток асинхронных электродвигателей приходится 95...98 % общего числа отказов, причем на межвитковую изоляцию приходится 93 %, на межфазную — 5~% и на корпусную — 2~% всех отказов обмоток [54]. При этом убытки обусловлены не только большими затратами на ремонт или замену отказавших электродвигателей, составляющими около 80 % стоимости годового выпуска электрических машин, но и от простоя оборудования, в котором была задействована электрическая машина [54, 55].

Низкая надежность изоляции обмоток электрических машин во многом зависит от качества изоляции обмоточного провода, от намоточного оборудования и технологии пропитки. Именно в процессе пропитки обмоток пленкой пропиточного состава скрываются дефекты в витковой, межфазной и корпусной изоляции. В результате пропитки повышаются не только электроизоляционные свойства обмоток, но и повышается теплопроводность обмотки, её влагостойкость, монолитность и другие характеристики, повышающие надежность изоляции обмоток.

Все эти качественные изменения свойств обмотки после пропитки связаны с физическими свойствами самого пропиточного состава, а также и с числом этого пропиточного состава, проникшего в полости обмотки и оставшегося в них после операции компаундирования (сушки). Кроме того, качественные характеристики изоляции обмоток зависят от того, как пропиточный состав распределился по полостям обмотки. Потому вопрос о совершенствовании пропиточных составов и технологии пропитки обмоток весьма актуален [56, 57]. Качество пропитки оценивают коэффициентом пропитки, характеризующим степень заполненности пропиточным составом межвитковых и прикорпусных полостей обмотки. Можно выделить следующие три показателя качества пропитки:

- ullet усредненный коэффициент пропитки K_0 , показывающей степень заполнения пропиточным составом всех полостей обмотки;
- ullet коэффициент пропитки межвитковых полостей $K_{\scriptscriptstyle \mathrm{MB}}$;
- коэффициент пропитки прикорпусных полостей $K_{\text{ки}}$. Методики определения этих параметров описаны в патентах [56, 57]. В настоящей работе необходимо построить математическую модель зависимостей указанных выше коэффициентов от дозы пропиточного состава, температуры предварительной сушки $T_{\text{пр}}$ и поляризующего напряжения E, подаваемого на струю пропиточного

Порядок выполнения работы

состава V_{π} .

В табл. 13.1 приведены уровни варьируемых факторов, их обозначение и размерность.

Обо-Единица Кодовое Интервал Фактор Уровни измерезначеобозначеварьиро-+1ния ние ние вания V_{Λ} 141 122,5 104 16,5 Доза жидкого лака мл x_1 Температура предва- $^{\circ}C$ 86,0 73,05 60,1 12,95 T_{np} x_2 рительного нагрева 2 0 2 Поляризующее ĸΒ \mathbf{E} 4 x_3 напряжение

Таблица 13.1

На основании предварительных исследований следует ожидать, что параметры отклика, характеризующие качество пропитки, будут нелинейными функциями входных факторов. В общем случае квадратичный полином описывающий зависимость выходных параметров от входных, имеет вид:

$$Y^* = b_0 + b_1 x_1 + b_2 x_2 + b_3 x_3 + b_{11} x_1^2 + b_{22} x_2^2 + b_{33} x_3^2 + b_{12} x_1 x_2 + b_{13} x_1 x_3 + b_{23} x_2 x_3 + b_{123} x_1 x_2 x_3,$$

где $b_0, b_1, b_2, b_3, b_{11}, b_{22}, b_{33}, b_{12}, b_{13}, b_{23}, b_{123}$ — коэффициенты регрессии.

Для получения коэффициентов квадратичного полинома применяют композиционный план второго порядка. Матрица планирования в кодовых значениях факторов представлена в табл. 13.2.

Выходной параметр

Таблица 13.2

№ эксперимента	X1	X2	Х3
1	-1	-1	-1
2	-1	-1	+1
3	-1	+1	-1
4	-1	+1	+1
5	+1	-1	-1
6	+1	-1	+1
7	+1	+1	-1
8	+1	+1	+1
9	-1	0	0
10	+1	0	0
11	0	-1	0
12	0	+1	0
13	0	0	-1
14	0	0	+1
15	0	0	0

При проведений эксперимента возможно появление систематической ошибки. Для снижения их необходимо проводить рандомизацию планирования с использованием генератора случайных чисел.

По результатам планирования эксперимента определяют коэффициенты уравнения регрессии:

$$b_0=\frac{1}{2(m-1)}\left(\sum_{j=N_0+1}^N\overline{y}_j-\frac{1}{2^m-1}\sum_{j=1}^{N_0}\overline{y}_j\right),\quad N_0=2^m;$$

$$b_{jj}=\frac{1}{2}\sum_{j=N_0+1}^Nx_{ij}^2\overline{y}_j-b_0;\quad b_j=\frac{1}{2+2^m}\sum_{j=1}^{N_0}x_{ij}\overline{y}_i;$$

$$b_{jk}=\frac{1}{2^m}\sum_{j=1}^{N_0}x_{ij}x_{kj}\overline{y}_i;$$

$$Db_0=\frac{c_1\sigma^2}{r};\quad Db_{ii}=\frac{c_2\sigma^2}{r};\quad Db_i=\frac{\sigma^2}{r(2+2^m)};\quad Db_0=\frac{\sigma^2}{r2^m},$$
 где $c_1=\frac{2+m2^m}{(m-1)^2\cdot 2^{m+1}};\; c_2=\frac{[m(m-3)+3]\cdot 2^m+2}{(m-1)^2\cdot 2^{m+1}};\; N_0=2^m-1$ число точек «ядра» плана; $N=N_0+2m;\;\overline{y}_i$ — среднее значение

отклика в j-й точке плана, определяемое по r параллельным опытам; σ^2 — дисперсия воспроизводимости; m — число факторов; x_{ij} — значение i-й кодовой переменной в j-й точке плана.

Статистический анализ полученных результатов заключается в оценке однородности дисперсий, значимости коэффициентов уравнения регрессии, проверке адекватности модели. Оценка однородности дисперсий параметров отклика осуществляется по методике, изложенной выше (критерий Кохрена).

Результаты реализации плана занесены в табл. 13.3, 13.4 и 13.5.

Таблица 13.3

№ опыта	Варьируемые факторы			Коэффициент пропитки			
	X_1	X_2	X_3	K_{01}	K_{02}	K ₀₃	$\overline{K_0}$
1	-1	-1	-1	0,440	0,440	0,414	0,432
2	-1	-1	+1	0,482	0,475	0,472	0,476
3	-1	+1	-1	0,414	0,440	0,422	0,424
4	-1	+1	+1	0,486	0,482	0,463	0,477
5	+1	-1	-1	0,531	0,522	0,509	0,521
6	+1	-1	+1	0,515	0,540	0,557	0,538
7	+1	+1	-1	0,530	0,594	0,538	0,554
8	+1	+1	+1	0,660	0,571	0,585	0,602
9	-1	0	0	0,446	0,429	0,438	0,439
10	+1	0	0	0,622	0,600	0,611	0,611
11	0	-1	0	0,513	0,497	0,548	0,519
12	0	+1	0	0,530	0,489	0,518	0,512
13	0	0	-1	0,535	0,500	0,494	0,510
14	0	0	+1	0,547	0,589	0,598	0,578
15	0	0	0	0,517	0,499	0,518	0,511

Таблица 13.4

№ опыта	Варьируемые факторы			Коэффициент пропитки			
	X_1	X_2	X_3	$K_{\mathtt{KM1}}$	$K_{\mathtt{KM2}}$	$K_{ exttt{KM3}}$	$\overline{K_{\mathtt{KM}}}$
1	-1	-1	-1	0,120	0,090	0,159	0,123
2	-1	-1	+1	0,236	0,257	0,294	0,262
3	-1	+1	-1	0,093	0,106	0,107	0,102
4	-1	+1	+1	0,169	0,150	0,153	0,157
5	+1	-1	-1	0,223	0,206	0,199	0,209
6	+1	-1	+1	0,406	0,402	0,399	0,402
7	+1	+1	-1	0,103	0,164	0,113	0,127
8	+1	+1	+1	0,160	0,223	0,150	0,107
9	-1	0	0	0,106	0,088	0,128	0,439
10	+1	0	0	0,293	0,139	0,216	0,196
11	0	-1	0	0,232	0,232	0,200	0,221
12	0	+1	0	0,126	0,097	0,127	0,117
13	0	0	-1	0,087	0,173	0,142	0,134
14	0	0	+1	0,311	0,245	0,234	0,263
15	0	0	0	0,122	0,204	0,152	0,159

Таблица 13.5

№ опыта	Варь	ируемь	іе факторы	Коэффициент пропитки				
	X_1	X_2	<i>X</i> ₃	$K_{\mathtt{MB1}}$	K_{MB2}	$K_{\mathtt{MB3}}$	$\overline{K_{\mathtt{MB}}}$	
1 2	$-1 \\ -1$	$-1 \\ -1$	−1 +1	0,475 0,509	0,479 0,499	0,442 0,492	0,465 0,500	
3	-1	+1	-1	0,449	0,477	0,457	0,461	
4	-1	+1	+1	0,521	0,519	0,497	0,512	
5	+1	-1	-1	0,565	0,556	0,543	0,555	
6	+1	-1	+1	0,527	0,555	0,574	0,552	
7	+1	+1	-1	0,577	0,641	0,584	0,601	
8	+1	+1	+1	0,704	0,617	0,624	0,648	
9	-1	0	0	0,484	0,467	0,472	0,474	
10	+1	0	0	0,665	0,651	0,655	0,671	
11	0	-1	0	0,544	0,526	0,586	0,552	
12	0	+1	0	0,575	0,532	0,561	0,556	
13	0	0	-1	0,584	0,536	0,533	0,5551	
14	0	0	+1	0,573	0,627	0,638	0,613	
15	0	0	0	0,561	0,531	0,558	0,550	

Порядок проведения работы

- 1. Получить задание допуск у преподавателя.
- 2. Провести проверку экспериментальных данных на однородность и нормальность.
- 3. Получить уравнение регрессии. Занести результаты в протокол. Провести сравнение экспериментальных и расчетных значений. Занести в протокол полученную таблицу.
- 4. Провести оценку значимости коэффициентов регрессии и оценку адекватности полученного уравнения. Результаты занести в протокол.
- 5. Рассчитать значения выходного параметра в 4 точках. Занести результаты в протокол.
- 6. Рассчитать отклонение расчетного значения выходного параметра от экспериментальных данных в центре плана.
 - 7. Написать отчет и сделать выводы о проделанной работе.

Содержание отчёта

- 1. Наименование работы, постановка задачи исследования и цель.
- 2. Таблицы, расчетные формулы и результаты проведённых вычислений.
 - 3. Результаты статистического анализа и выводы.

Вопросы для самопроверки

- 1. Какой тип плана использовался в работе?
- 2. Что такое коэффициент пропитки обмоток и для чего его нужно контролировать?

- 3. По какому критерию оценивается значимость коэффициентов?
 - 4. По какому критерию оценивают однородность дисперсий?
- 5. По какому критерию оценивают адекватность уравнения регрессии?

13.2. Лабораторная работа 2. Исследование процесса пропитки обмоточных изделий в матричной форме

Используя экспериментальные данные, приведенные в таблицах работы 13.1, произвести регрессивный анализ в матричной форме.

Порядок выполнения работы

- 1. Записать матрицу F независимых переменных.
- 2. Записать транспонированную матрицу независимых переменных $\mathbf{F}^{\scriptscriptstyle \mathrm{T}}$.
 - 3. Найти матрицу Фишера $\mathbf{M} = \mathbf{F}^{\mathrm{T}}\mathbf{F}$.
 - 4. Найти дисперсионную матрицу ${f C} = {f M}^{-1}$.
- 5. Произвести оценку коэффициентов регрессии и регрессионный анализ.

Содержание отчёта

- 1. Наименование работы, постановка задачи исследования и цель.
- 2. Таблицы, расчетные формулы и результаты проведённых вычислений.
 - 3. Результаты статистического анализа и выводы

Вопросы для самопроверки

- 1. Что такое информационная матрица Фишера?
- 2. Что такое обратная матрица?
- 3. Как производится произведение матриц?
- 4. Что показывают элементы дисперсионной матрицы?
- 5. В чем достоинство проведения регрессионного анализа в матричном виде?
 - 4. По какому критерию оценивают однородность дисперсий?
- 5. По какому критерию оценивают адекватность уравнения регрессии?

Приложения

Значения критерия Стьюдента

f = N(m-1)	$t_{0,05}(f)$	f = N(m-1)	$t_{0,05}(f)$	f = N(m-1)	$t_{0,05}(f)$
1	12,710	11	2,201	21	2,080
2	4,303	12	1,179	22	2,074
3	2,182	13	2,160	23	2,069
4	2,776	14	2,145	24	2,064
5	2,571	15	2,131	25	2,060
6	2,447	16	2,120	26	2,056
7	2,365	17	2,110	27	2,052
8	2,306	18	2,101	28	2,048
9	2,262	19	2,093	29	2,045
10	2,228	20	2,086	30	2,044

Значения критерия Фишера для 5%-го уровня значимости (P=0.05)

- -			•				
$f_2 = N(m-1)$	$F_1 = N - l$						
	1	2	3	4			
4 8 12 16	7,7 5,3 4,8 4,12	6,9 4,5 3,9 3,63	6,6 4,1 3,5 3,23	6,4 3,8 3,3 3,01			

Критические значения коэффициента Кохрена (С-критерия) для доверительной вероятности p=95~% и числа степеней свободы ν

	-		-		-						
Число из-	јЧисл	ло стег	іеней (свобод	ы, ν						
мерений, N	1	2	3	4	5	6	8	10	16	36	∞
2	9985	9750	9392	9057	8772	8534	8159	7880	7341	6602	5000
3	9669	8709	0797	7454	7071	6771	6333	6025	5466	4748	3333
4	9065	7679	6841	6287	5895	5598	5175	4884	4366	3720	2500
5	8412	6838	5981	5441	5065	4783	4387	4118	3645	3066	2000
6	7808	6161	5321	4803	4447	4184	3817	3568	3135	2612	1667
7	7271	5612	4800	4307	3974	3726	3384	3154	2756	2278	1429
8	6798	5157	4377	3910	3595	3362	3043	2829	2462	2022	1250
9	6385	4775	4027	3584	7276	3067	2768	2568	2226	1820	1111
10	6020	4450	3733	3311	3029	2823	2541	2353	2032	1655	1000
12	5410	3924	3264	2880	2624	2439	2187	2020	1737	1403	0833
15	4709	3346	2758	2419	2195	2034	1815	1671	1429	1144	0667
20	3894	2705	2205	1921	1735	1602	1422	1303	1108	0879	0500
24	3434	2354	1907	1656	1493	1374	1216	1113	0942	0743	0417
30	2929	1980	1593	1377	1237	1137	1001	0921	0771	0604	0333
40	2370	1576	1259	1082	0968	0887	5950	0713	0595	0462	0250
60	1737	1131	0895	0765	0682	0623	0552	0497	0411	0316	0167
120	0998	0632	0495	0419	0371	0337	0292	0266	0218	0165	0083
∞	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000
D	7							_			

Все значения G-критерия меньше единицы, поэтому в таблице приведены лишь десятичные знаки, следующие после запятой, перед которой при пользовании таблицей нужно ставить ноль целых. Например, при $N=6,~\nu=3$ имеем $G_{0,95}=0,5321.$

ЛИТЕРАТУРА

- 1. Смирнов Г.В., Смирнов Д.Г. Моделирование и оптимизация технологических процессов РЭС: Учебное пособие. Томск.: Издательство Томского государственного университета систем управления и радиоэлектроники, 2007. 196 с.
- 2. Математическая теория планирования эксперимента / Под редакцией С.М. Ермакова. М.: Наука. Главная редакция физико-математической литературы, 1983. 392 с.
- 3. Основы научных исследований. Курс лекций (для студентов инженерных специальностей) / Сост. Н.Г. Бойко, О.В. Федоров Донецк: ДонНТУ, 2007. 76 с.
- 4. Смирнов Г.В. Моделирование и оптимизация объектов и процессов: Учебное пособие для магистрантов. Томск: ТУСУР, 2016. 216 с. https://edu.tusur.ru/publications/6495
- 5. ГОСТ 15467-79. Управление качеством продукции. Основные понятия. Термины и определения. М.: Изд-во стандартов, 1979.
- 6. Международные стандарты. Управление качеством продукции. ИСО 9000-9004, ИСО 8402. М.: Изд-во стандартов, 1988.
- 7. Национальный стандарт Российской Федерации ГОСТ Р ИСО 9001-2015. Системы менеджмента качества. Основные положения и словарь.
- 8. Адлер Ю.П., Маркова Е.В., Грановский Ю.В. Планирование эксперимента по поиску оптимальных условий. М.: Наука, 1988.
- 9. Планирование эксперимента в исследовании технологических процессов / Хартман К., Шнфер В. и др.; Под ред. Э.К. Лецкого. М.: Мир, 1977.
- 10. Налимов В.В, Голикова Т.К. Логические основания методов планирования эксперимента. М.: Металлургия, 1991.
- 11. Тимошенко Г.М., Зима П.Ф. Теория инженерного эксперимента. Учеб. пособие. К.: УМК ВО, 1991.
 - 12. Налимов В.З. Теория эксперимента. М.: Наука, 1981.
- 13. Ивоботенко В.А. и др. Планирование эксперимента в электромеханике. М.: Энергия, 1975.
- 14. Смирнов Г.В. Моделирование и оптимизация технологических процессов РЭС: Учебное методическое пособие для магистрантов 27.04.04 «Управление в технических системах» по профилю «Управление в светотехнических системах». Томск: ТУСУР, 2016. 216 с. https://edu.tusur.ru/training/publications/6043

 Λ итература 171

15. Седов Л.И. Методы подобия и размерности в механике. — М.: Наука, 1981.

- 16. Зедгинидзе И.Г. Планирование эксперимента для исследования многокомпонентных систем. М.: Наука, 1976.
- 17. Тейлор Дж. Введение в теорию ошибок. Пер. с англ. М.: Мир, 1985. 272 с.
- 18. Смирнов Н.Б., Дунин-Барковский И.В. Курс теории вероятностей и математической статистки для технических приложений. М.: Знание, 1990. 375 с.
- 19. Голикова Т.Н., Панченко О.А., Фридман М.З. Каталог планов второго порядка. Ч. І, ІІ. М.: Изд-во МГУ, 2000.
- 20. Вашкатов Д.Н. Планирование эксперимента в разведочном бурении. М.: Недра, 1985. 181 с.
- 21. Асатурян В.Н. Теория планирования эксперимента. Ч. І. М.: Изд. МИЭМ, 1994.
 - 22. Адлер Ю.П. Предпланирования эксперимента. М.: Знание, 1980.
- 23. Мойсюк В.Н. Элементы теории оптимального эксперимента. Ч. II. М.: Изд. МЭИ, 1996.
- 24. Федоров В.В. Теория оптимального эксперимента. М.: Наука, 2001.
- 25. Налимов В.В., Чернова Н.А. Статистические методы планирования экстремальных экспериментов. М.: Наука, 1989.
- 26. Гумбель К. Теория экстремальных распределений. М.: Наука, 1999.
 - 27. Дейвиц Г. Порядковые статистики. М.: Наука, 1999.
- 28. Сливков И.Н. Электроизоляция и разряд в вакууме. М.: Атомиздат, 1972. 304 с.
- 29. Месяц Г.А. (ред.) Импульсный разряд в диэлектриках. Сборник статей Новосибирск: Наука, 1985. 162 с.
- 30. Смирнов Г.В., Филатов А.Л. Секционированный электрический изолятор // А.с. СССР № 987684. Опубликовано: 07.01.83. Вюл. № 1.
- 31. Смирнов Г.В., Иванов С.П., Планкин Ю.В. Проходной секционированный изолятор // А.с. СССР № 781983. Опубликовано: 23.11.80. Вюл. № 43.
- 32. Смирнов Г.В. Проходной секционированный изолятор // А.с. СССР № 771736. Опубликовано: 15.10.80. Вюл. № 38.
- 33. Смирнов Г.В. Способ изготовления проходного вакуумного изолятора высокого напряжения // Патент РФ № 2557068. Опубликовано: 20.07.2015. Вюл. № 20.
- 34. Евлампиев С.В., Коршунов Г.С., Свиридов Ю.Ф. Способ определения оптимального числа секций секционированного изолятора // А.с. СССР № 1552235. Опубликовано: 23.03.90. Вюл. № 11.
- 35. Смирнов Г.В., Кассиров Г.М., Планкин Ю.В. Способ определения оптимального числа секций секционированного изолятора // А.с. СССР N_2 758266. Опубликовано: 23.08.80. Бюл. N_2 31.

172 Литература

36. Смирнов Г.В., Смирнов Д.Г. Патент РФ № 2581617. Способ определения оптимального количества секций секционированного изолятора ///Дата публикации заявки: 10.049. 2016 Бюл. № 105. Опубликовано: 20.04.2016 Бюл. № 11.

- 37. Смирнов Г.В., Смирнов Д.Г., Гумерова Г.В. Патент РФ № 2584543. Способ определения оптимального количества секций секционированного изолятора // Опубликовано: 20.05.2016 Вюл. № 14.
- 38. Смирнов Г.В. Оптимизация конструкции проходных секционированных изоляторов// Доклады Томского государственного университета систем управления и радиоэлектроники. 2017. Том 20, № 1. С. 141–149.
- 39. Смирнов Г.В. Экспериментальное изучение вакуумного пробоя сантиметровых промежутков на импульсах микросекундной длительности. дис. ... канд. техн. наук: 05.14.12. Томск, 1974. 130 с.
- 40. Смирнов Г.В., Смирнов Д.Г. Статистическая связь между заболеваниями щитовидной железы, сахарным диабетом, желчекаменной и мочекаменной болезнями// Материалы международной научно-практ. конференции «Электронные средства и системы управления». Томск: Издво института оптики атмосферы СОРАН, 2004, в трех частях, часть 2. С. 40–45.
- 41. Смирнов Г.В., Смирнов Д.Г. Статистический анализ связи между минеральным составом воды и заболеваниями человека зобом, уролитиазом, сахарной и желчекаменной болезнями. // Материалы Международной научно-практ. конференции «Электронные средства и системы управления». Томск: Изд-во института оптики атмосферы СОРАН, 2004, в
 трех частях, часть 2. С. 45–47.
- 42. Смирнов Г.В., Смирнов Д.Г., Зотова Н.В. Статистика некоторых заболеваний по районам Томской области/ / Проблемы информационной безопасности государства, общества и личности: Материалы 7-й Всероссийской научно-практической конференции. Томск, 16-18 февраля 2005 г. Томск: Изд-во ИОА СО РАН, 2005. С. 127-130.
- 43. Смирнов Г.В., Смирнов Д.Г., Зотова Н.В. Корреляционные связи между некоторыми заболеваниями // Материалы I Международной научно-практической конференции по лесопользованию, экологии и охране лесов: фундаментальные и прикладные аспекты. Томск. 21-22 марта 2005 г. С. 292–293.

44. ΠΟΒΤΟΡ π. 43!!!

- 45. Смирнов Г.В., Смирнов Д.Г., Зотова Н.В. Построение множественной регрессии влияния загрязнения воздуха на некоторые заболевания в Томске // Материалы I Международной научно-практической конференции по лесопользованию, экологии и охране лесов: фундаментальные и прикладные аспекты. Томск. 21-22 марта 2005 г. С. 293–295.
- 46. Соболев А.Б., Вигура М.А., Рыбалко А.Ф., Рыбалко Н.М. Матрицы, определители, системы: Учебное пособие. Екатеринбург: ГОУ ВПО УГТУ-УПИ, 2005. 41 с.

Литература 173

47. Юдин Д.А. Прикладные аспекты теории матриц. Учебное пособие. — Велгород: Изд-во ВГТУ, 2014. — 92 с.

- 48. Налимов В.В., Голикова Т.К. Логические основания для планирования эксперимента. М.: Металлургия, 1981. 183 с.
- 49. Джонсон Н., Лион Ф. Статистика и планирование эксперимента в науке и технике. М.: Мир, 1980. 211 с.
 - 50. ПОВТОР п. 9
- 51. Слоткин Ю.С. Оценка параметров экспоненциальных моделей // Тезисы докладов НТК. Горький, 1981. С. 90–95.
- 52. Слоткин Ю.С. Преобразование полиномиальных моделей // Заводская лаборатория. 1980. Т. 46, № 1. С. 67–64.
- 53. Тёскин О.И. Статистическая обработка и планирование эксперимента. М.: Изд-во МВТУ им. Н.Э. Ваумана, 1982. 75 с.
- 54. Смирнов Г.В. Надёжность изоляции обмоток электротехнических изделий. Томск: Изд-во Том. ун-та. 1990. 192 с.
- 55. Смирнов Г.В., Смирнов Д.Г. Пропитка обмоток электрических машин магнитодиэлектрическим композитом с ультрадисперсным никельцинковым наполнителем // Доклады Томского государственного университета систем управления и радиоэлектроники. 2016. Том 19, № 2. С. 99–102.
- 56. Смирнов Г.В., Смирнов Д.Г. Патент РФ № 2560714. Способ определения коэффициента пропитки обмоток электрических машин // Опубл. 20.08.2015. Бюл. № 23.
- 57. Смирнов Г.В., Смирнов Д.Г. Патент РФ № 2516276. Способ контроля отверждения пропитанной изоляции обмоток электротехнических изделий. Заявл. 25.09.2012 // Опубликовано: 20.05.2014. Бюл. № 14.

Оглавление

1.	ВВЕДЕНИЕ	3
	1.1. Объект исследования и его свойства	3
	1.2. Классификация факторов и параметров, влияющих на	
	ход технологического процесса	6
2.	МОДЕЛИРОВАНИЕ	11
	2.1. Модели, их классификация	11
	2.2. Построение моделей	12
	2.3. Физическая и математическая модели машины	13
	2.4. Решение и анализ математической модели динамической	
	системы	15
3.	подобие систем	22
	3.1. Некоторые определения и пояснения	22
	3.2. Типы моделирующих систем	26
	3.3. Теоремы подобия	27
	3.4. Критерии подобия. Перерасчет результатов модельных	
	испытаний на натуру	30
	3.5. π -теорема и ее следствия	31
	3.6. Определение критериев подобия с использованием тео-	
	рии размерностей	32
	3.7. Определение критериев подобия из уравнений процесса	36
4.	ОЦЕНКА НЕИЗВЕСТНЫХ ПАРАМЕТРОВ	39
	4.1. Основные понятия и определения	39
	4.2. Основные выборочные характеристики	41
	4.2.1. Построение таблиц распределений	41
	4.2.2. Связь между функцией распределения и гистограммой	45
	4.3. Метод моментов	47
	4.4. Точечные оценки параметров	53
	4.5. Интервальные оценки параметров	55
	4.6. Точные доверительные интервалы для параметров нор-	
	мального закона	56
	4.7. Обработка результатов измерений (две основные задачи	
	теория ошибок)	57
5.	ПРОВЕРКА СТАТИСТИЧЕСКИХ ГИПОТЕЗ	59
	5.1. Понятия критерия и правило проверки гипотез	59

Оглавление 175

	5.2. Правило наилучшего выбора критической области	61
	5.3. Проверка стандартных гипотез	63
6.	МОДЕЛИ І ТИПА	66
	6.1. Определение пассивного и активного эксперимента	66
	6.2. Метод наименьших квадратов	69
	6.3. Методы регрессивного и корреляционного анализа	70
	6.4. Линейная регрессия от одного параметра	71
	6.5. Параболическая регрессия	76
	6.6. Трансцендентная регрессия	78
	6.7. Использование трансцендентной регрессии для модели-	
	рования проходного изолятора и определения оптималь-	
	ного числа секций в нем	79
7.	КОРРЕЛЯЦИОННЫЙ АНАЛИЗ	90
	7.1. Оценка тесноты нелинейной связи	90
	7.2. Метод множественной корреляции	90
	7.3. Получение уравнений множественной регрессии методом	
	Брандона	93
8.	ЭЛЕМЕНТЫ ТЕОРИИ ОПРЕДЕЛИТЕЛЕЙ	96
	8.1. Информационная матрица	100
9.		_
	РИМЕНТА	103
	9.1. Сопоставление возможностей пассивного и активного	
	экспериментов	103
	9.2. Однофакторный и многофакторный эксперимент, пре-	
	имущества последнего	105
	9.3. Критерии оптимальности планов	109
	9.4. Линейные модели 1-го порядка. Полный факторный	
	эксперимент типа 2^m	112
	9.5. Линейные модели 2-го порядка	119
	9.6. Дробный факторный эксперимент	130
10	. ПЛАНИРОВАНИЕ ЭКСПЕРИМЕНТА ПРИ ПОИС-	•
	КЕ ОПТИМАЛЬНЫХ УСЛОВИЙ	134
	10.1. Методы оптимизации	134
	10.2. Последовательное планирование эксперимента	144
11	. КОНТРОЛЬНЫЕ РАБОТЫ	147
12	. ПРАКТИЧЕСКИЕ РАБОТЫ	152
	12.1. Практическая работа № 1	152
	12.2. Практическая работа № 2	154
	12.3. Практическая работа № 3	155

176 Оглавление

12.4. Практическая работа № 4	156
12.5. Практическая работа № 5	158
12.6. Практическая работа № 6	160
13. ЛАБОРАТОРНЫЕ РАБОТЫ	163
13.1. Лабораторная работа 1. Исследование процесса пропит-	
ки обмоточных изделий	163
13.2. Лабораторная работа 2. Исследование процесса пропит-	
ки обмоточных изделий в матричной форме	168
Приложения	169
Литература	170