# Министерство науки и высшего образования Российской Федерации

Федеральное государственное бюджетное образовательное учреждение высшего образования Томский государственный университет систем управления и радиоэлектроники (ТУСУР)

Кафедра физики

# ОПРЕДЕЛЕНИЕ ОТНОШЕНИЯ ТЕПЛОЕМКОСТЕЙ ГАЗА МЕТОДОМ КЛЕМАНА-ДЕЗОРМА

Руководство к лабораторной работе по физике для студентов всех специальностей

# Министерство науки и высшего образования Российской Федерации

Федеральное государственное бюджетное образовательное учреждение высшего образования Томский государственный университет систем управления и радиоэлектроники (ТУСУР)

| УТВЕРЖДАЮ<br>Зав. каф физики |
|------------------------------|
| <br>Е.М.Окс                  |
| 14 января 2019 г.            |

# ОПРЕДЕЛЕНИЕ ОТНОШЕНИЯ ТЕПЛОЕМКОСТЕЙ ГАЗА МЕТОДОМ КЛЕМАНА-ДЕЗОРМА

Руководство к лабораторной работе по физике для студентов всех специальностей

Разработчик: Доцент каф. физики \_\_\_\_\_E.B. Иванова 14 января 2019 г.

## ВВЕДЕНИЕ

Одним из основных тепловых свойств тел, широко используемых в термодинамическом исследовании, является теплоемкость. Значение теплоемкости зависит от вида процесса, приводящего к переходу системы из одного состояния в другое. Примерами простейших термодинамических процессов могут служить следующие:

- изотермический процесс, при котором температура системы не изменяется (T=const);
- 2) изохорический процесс, происходящий при постоянном объеме системы (V=const);
- 3) изобарический процесс, происходящий при постоянном давлении в системе (P=const).

Целью данной работы является изучение адиабатического и изохорического процессов в газах, определение отношения теплоемкостей (коэффициента Пуассона) и числа степеней свободы.

#### 1 КРАТКАЯ ТЕОРИЯ

Для тех макроскопических явлений, в которых одним из существенных параметров, определяющих состояние тел, является температура, первое начало термодинамики выражает закон сохранения и превращения энергии. Его можно сформулировать следующим образом: количество теплоты, сообщенное системе в процессе теплообмена ( $\delta Q$ ) идет на изменение ее внутренней энергии (dU) и на совершение системой работы против внешних сил ( $\delta A$ ).

$$\delta Q = dU + \delta A \tag{1.1}$$

Изменение внутренней энергии определенной массы идеального газа при изменении его температуры на dT градусов определяется по формуле:

$$dU = \frac{M}{\mu} \frac{i}{2} R dT, \qquad (1.2)$$

где M — масса газа;  $\mu$  - молярная масса; i — число степеней свободы молекулы газа; R — универсальная газовая постоянная.

Элементарная работа  $\delta$  А при изменении объема равна:

$$\delta A = P \, dV, \tag{1.3}$$

где P – давление газа; dV – изменение объема газа.

Теплоемкостью какого-либо тела называется величина, численно равная количеству теплоты, которое нужно сообщить телу, чтобы повысить темпе-

ратуру на один градус. Аналитически для удельной теплоемкости это определение записывается следующим образом:

$$c_{y\partial} = \frac{\delta Q}{M \cdot dT},\tag{1.4}$$

где  $\delta Q$  – количество теплоты, необходимое для изменения температуры единицы массы газа на dT градусов. Будем далее обозначать эту теплоемкость строчной буквой c. Измеряется она в джоулях на килограмм · кельвин (Дж/(кг · K)).

Молярная теплоемкость – теплоемкость моля этого вещества:

$$C = \frac{\mu \cdot \delta Q}{M \cdot dT}.$$
 (1.5)

Обозначать эту теплоемкость будем прописной буквой C, измеряется она в джоулях на моль $\square$ кельвин (Дж/(моль· K)).

Теплоемкость зависит от условий, при которых происходит нагревание тела, т.е. от характера процесса перехода системы из одного состояния в другое. Наибольший интерес представляет теплоемкость для случаев, когда нагревание производится при постоянном объеме или при постоянном давлении. В первом случае мы имеем дело с теплоемкостью при постоянном объеме (обозначается  $c_V$ ), во втором — с теплоемкостью при постоянном давлении  $(c_p)$ . Вычислим  $c_V$  (процесс изохорический). Для этого подставим выражения (1.2) и (1.3) в формулу первого начала термодинамики и получим:

$$\delta Q = \frac{M}{\mu} \frac{i}{2} R \cdot dT + P \cdot dV. \tag{1.6}$$

Для изохорического процесса  $P \cdot dV = 0$ , так как dV = 0 и, следовательно,

$$\delta Q = \frac{M}{\mu} \frac{i}{2} R \cdot dT$$
. Подставив данный результат в уравнение (1.5), найдем,

что молярная теплоемкость при постоянном объеме равна

$$C_V = \frac{i}{2}R. \tag{1.7}$$

Аналогично вычислим  $C_p$ , предварительно рассчитав  $P\cdot dV$ . Для изобарического процесса  $P\cdot dV=\frac{M}{\mu}R\cdot dT$ . Тогда

$$\delta Q = \frac{M}{\mu} \frac{i}{2} R \cdot dT + \frac{M}{\mu} R \cdot dT = \frac{M}{\mu} R(\frac{i}{2} + 1) dT$$
, следовательно, 
$$C_p = R(\frac{i}{2} + 1). \tag{1.8}$$

Сопоставляя выражения (1.7) и (1.8), получаем уравнение Майера

$$C_n = C_V + R. ag{1.9}$$

Введем обозначение  $C_p/C_V = \gamma$ . Подставив в отношение для  $\gamma$  выражения для  $C_p$  и  $C_V$ , получим зависимость коэффициента  $\gamma$  от числа степеней свободы

$$\gamma = \frac{i+2}{i} \tag{1.10}$$

Теплоемкости  $C_p$  и  $C_V$  для идеальных газов могут зависеть от температуры. Но во многих случаях они остаются практически постоянными в широких температурных интервалах. Отношение теплоемкости при постоянном давлении  $C_p$  к теплоемкости при постоянном объеме  $C_V$  называется коэффициентом Пуассона ( $\gamma$ ). Для газов теплоемкость при постоянном давлении больше теплоемкости при постоянном объеме  $C_p > C_V$ , так как при нагревании газа при постоянном давлении (изобарический процесс) подведенное к газу тепло идет на увеличении его внутренней энергии (а, следовательно, и температуры) и на совершение газом работы расширения для поддержания постоянного давления. Например, если газ заключен в сосуд с подвижным поршнем, обеспечивающим постоянное давление, то, нагреваясь, он расширяется и поднимает поршень, совершая таким образом работу против внешних сил. При нагревании при постоянном объеме (изохорический процесс) все тепло, подведенное к газу, идет на увеличение только его внутренней энергии.

Коэффициент Пуассона называется также показателем адиабаты, так как он входит в уравнение Пуассона

$$PV^{\gamma} = const, \tag{1.11}$$

которое характеризует адиабатический процесс, протекающий без теплообмена с окружающей средой  $\delta$  Q=0.

Зная величину  $\gamma$ , можно определить число степеней свободы молекулы газа и, следовательно, в самых общих чертах, ее структуру. Для одноатомного газа i=3, для двухатомного i=5, для молекул, состоящих из трех и более атомов, i=6. если правую и левую части уравнения Клапейрона-

Менделеева, связывающего параметры P,V и T какого-либо состояния газа, поделить на массу газа, то получим

$$P\frac{V}{M} = \frac{RT}{\mu},\tag{1.12}$$

где величина V/M называется удельным объемом газа. В дальнейшем будем обозначать ее  $V_{y\phi}$ . Можно легко показать, что уравнение Бойля-Мариотта и Пуассона справедливы и для случая, когда вместо объема газа V записывается в них  $V_{ya}$ .

Таким образом, значение  $\gamma$  определяется числом степеней свободы идеального газа. Коэффициент Пуассона  $\gamma$  для каждого газа является одной из его важнейших физических постоянных.

## 2 ОПИСАНИЕ ЭКСПЕРИМЕНТАЛЬНОЙ УСТАНОВКИ И МЕТОДИКИ ИЗМЕРЕНИЯ

Величину коэффициента Пуассона  $\gamma$  можно определить с помощью прибора Клемана и Дезорма, схема которого изображена на рисунке 2.1.

На рисунке 2.2 представлен вид экспериментальной установки

Для определения отношения теплоемкостей 
$$\gamma = \frac{c_p}{c_{\cdot \cdot \cdot}}$$
 для газа (возду-

ха), находящегося в баллоне, с ним проводят последовательность термодинамических процессов. Они представлены на  $P-V_{yg}$  — диаграмме на рисунке 2.3. Обозначим через  $P_0$ ,  $V_0$ ,  $T_0$  исходные величины термодинамических параметров газа в баллоне. Сначала в баллон накачивается воздух насосом (достаточно быстро), процесс 1-2. при этом газ в баллоне сжимается и нагревается (выше комнатной температуры). После изохорического остывания до начальной комнатной температуры (процесс 2-3) газ имеет некоторое давление  $P_1$  (выше атмосферного) и температуру  $T_0$ .

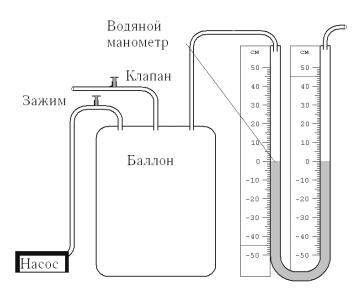



Рисунок 2.1 Схема экспериментальной установки

Для определения отношения теплоемкостей  $\gamma = \frac{c_p}{c_v}$  для газа (воздуха),

находящегося в баллоне, с ним проводят последовательность термодинамических процессов. Они представлены на  $P-V_{ya}$  — диаграмме на рисунке 2.3. Обозначим через  $P_0$ ,  $V_0$ ,  $T_0$  исходные величины термодинамических параметров газа в баллоне. Сначала в баллон накачивается воздух насосом (достаточно быстро,), процесс 1-2. при этом газ в баллоне сжимается и нагревается (выше комнатной температуры). После изохорического остывания до начальной комнатной температуры (процесс 2-3) газ имеет некоторое давление  $P_1$  (выше атмосферного) и температуру  $T_0$ . Затем открывают клапан, соединяя баллон с атмосферой, и газ адиабатически расширяется (процесс 3-4). Газ при этом охлаждается (ниже комнатной температуры), его давление падает до величины  $P_0$ .

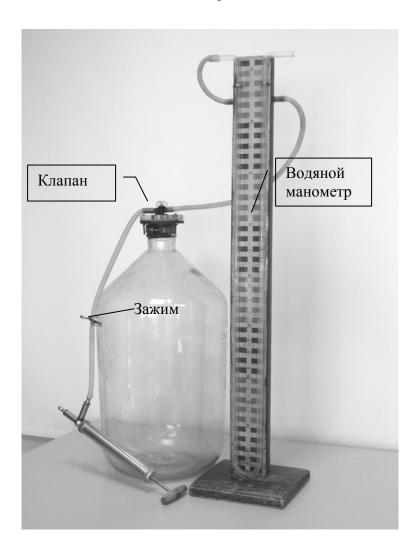



Рисунок 2.2 – Вид экспериментальной установки

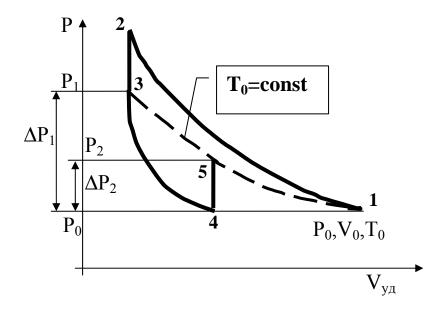



Рисунок 2.3. Р- $V_{yд}$  диаграмма процессов в газе

В момент достижения давления  $P_0$  клапан закрывается (быстро), и газ изохорически нагревается до комнатной температуры (процесс 4-5). В конечном состоянии давление газа  $P_2 > P_0$ , а температура равна комнатной  $T_0$ . Масса газа, находящегося в баллоне, в начальном состоянии выражается соотношением:

$$M_0 = \frac{P_0 V_0}{R T_0} \,\mu. \tag{2.1}$$

В течение всех рассмотренных термодинамических процессов масса газа в баллоне больше или равна  $M_0$ . Назовем массу  $M_0$  рабочей массой газа. Эта масса остается все время в баллоне. Накачиваемый и выпускаемый из баллона газ служит лишь для сжатия и расширения рабочей массы газа. Введем обозначения  $\Delta P_1 = P_1 - P_0$  u  $\Delta P_2 = P_2 - P_0$ . Разности давлений значительно меньше атмосферного давления  $P_0$ :  $\Delta P_1 << P_0$  u  $\Delta P_2 << P_0$ .

Воспользовавшись уравнением Пуассона (1.11), можно показать, что

$$\frac{P_0}{P_0 + \Delta P_1} = \left(\frac{P_0 + \Delta P_2}{P_0 + \Delta P_1}\right)^{\gamma}.$$
 (2.2)

Прологарифмируем (2.2) и получим:

$$\gamma = \frac{\lg P_0 - \lg(P_0 + \Delta P_1)}{\lg(P_0 + \Delta P_2) - \lg(P_0 + \Delta P_1)}.$$
 (2.3)

Величины  $P_0$ ,  $\Delta P_1 + P_0$ ,  $P_0 + \Delta P_2$  незначительно отличаются друг от друга и в первом приближении логарифмы этих величин можно заменить на их численные значения. В таком случае будем иметь:

$$\gamma = \frac{P_0 - P_0 \Delta P_1}{P_0 + \Delta P_2 - P_0 - \Delta P_1} = \frac{\Delta P_1}{\Delta P_1 - \Delta P_2},$$
 (2.4)

т.е. искомая величина равна

$$\gamma = \frac{c_P}{c_V} = \frac{\Delta P_1}{\Delta P_1 - \Delta P_2}.$$
 (2.5)

Следовательно, измерив значения  $\Delta P_1$  и  $\Delta P_2$ , можно рассчитать величину  $\gamma$ . В формулу (2.5) входит отношение давлений, поэтому безразлично, в каких единицах измерять изменения давления. Проще всего разности давлений измерять в миллиметрах водяного столба с помощью манометра, по-казанного на рисунках (2.1) и (2.2).

### 4 ПОРЯДОК ВЫПОЛНЕНИЯ РАБОТЫ

- 4.1 Накачать насосом в баллон воздух (процесс 1-2 на рис. 2.3) так, чтобы величина  $\Delta P_1$ , показываемая водяным манометром, составляла 20-25 см водяного столба. По возможности быстро закрыть зажимом подводящую трубку и подождать не менее двух минут, пока температура внутри баллона станет равной температуре окружающей среды.
- 4.2 Отсчитать разность уровней манометра  $\Delta P_1$  (отсчет производить по нижним границам менисков).
- 4.3 Нажимом сверху открыть клапан, соединяя на короткое время воздух в баллоне с атмосферой.
- 4.4 Подождав еще две минуты, пока температура воздуха в баллоне станет постоянной, отсчитать показания манометра  $\Delta P_2$  (в мм водяного столба).
- 4.5 Вычислить у, занести данные в таблицу 4.1.
- 4.6 Пункты 4.1-4.5 повторить девять раз.

- 4.7 Рассчитать  $\gamma_{cp}$ , оценить погрешность и записать окончательный результат с указанием его абсолютной и относительной погрешностей.
- 4.8 Определить число степеней свободы.

При таком методе определения коэффициента Пуассона необходимо выполнение следующих условий:

- 1) в процессе 3-4 (см. рис. 2.3) клапан баллона должен быть перекрыт в момент, когда давление в баллоне станет равны  $P_0$  9см. рис. 2.2);
- 2) время, в течение которого давление в баллоне уменьшается от  $P_1$  до  $P_0$ , должно быть достаточно мало, так, чтобы теплообменом с окружающим воздухом можно было пренебречь.

Таблица 4.1 Результаты прямых и косвенных измерений

| $\Delta P_1$ , mm | $\Delta P_{2,MM}$ | $(\Delta P_1 - \Delta P_2)$ , mm | γ | Примечание |
|-------------------|-------------------|----------------------------------|---|------------|
| 1                 |                   |                                  |   |            |
| 2                 |                   |                                  |   |            |
|                   |                   |                                  |   |            |
|                   |                   |                                  |   |            |
|                   |                   |                                  |   |            |
| 9                 |                   |                                  |   |            |

#### 5 КОНТРОЛЬНЫЕ ВОПРОСЫ

- 5.1 Какой газ называется идеальным?
- 5.2 Что такое степени свободы молекул? Как число степеней свободы связано с коэффициентом Пуассона  $\gamma$  ?
- 5.3 Чему равна теплоемкость идеального газа при адиабатическом процессе?
- 5.4 В каких единицах измеряются в системе СИ давление, объем, температура, молярные теплоемкости?
- 5. 5 Что такое молярные теплоемкости  $C_p$  и  $C_v$ ?
- 5.6 Чем молярная теплоемкость отличается от удельной, удельная от полной?
- 5.7 Что такое адиабатный процесс?
- 5.8 Что такое уравнение Пуассона?
- 5.4 Может ли случиться, что газ получает теплоту, а его внутренняя энергия уменьшается?
- 5.5 Изменяется ли внутренняя энергия идеального газа при изотермическом процессе?

- 5.6 Какое влияние на результат опытов может оказать наличие водяного пара в воздухе, которым наполнен баллон?
- 5.7 Какие из термодинамических параметров, используемых в данной работе, являются функциями состояния?
- 5.8 Какие из термодинамических параметров, используемых в данной работе, являются функциями процесса?
- 5.9 Как изменяется энтропия при адиабатическом процессе? Ее статистический и термодинамический смысл?
- 5.10 Чему равна теплоемкость при изотермическом процессе?
- 5.11 Какие из термодинамических параметров, используемых в данной работе, являются аддитивными?
- 5. 12 Какие из термодинамических параметров, используемых в данной работе, являются не аддитивными?
- 5.13 Что такое обратимые процессы?