МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РФ

Федеральное государственное бюджетное образовательное учреждение высшего образования

ТОМСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ СИСТЕМ УПРАВЛЕНИЯ И РАДИОЭЛЕКТРОНИКИ (ТУСУР)

Кафедра радиотехнических систем (РТС)

Якушевич Г.Н.

НЧ и ВЧ коррекция каскада с ОЭ

Учебное методическое пособие по лабораторной работе, практическим занятиям и самостоятельной работе для студентов направления «Инфокоммуникационные технологии и системы связи» по дисциплине «Схемотехника телекоммуникационных устройств»

Якушевич Г.Н.

«НЧ и ВЧ коррекция каскада с ОЭ»: Учебное методическое пособие по лабораторной работе, практическим занятиям и самостоятельной работы для студентов направления «Инфокоммуникационные технологии и системы связи» по дисциплине «Схемотехника телекоммуникационных устройств». Томск: ТУСУР. Научно-образовательный портал, 2019. – 10 с.

Учебное методическое пособие содержит описание компьютерной лабораторной работы, выполняемой в ходе изучения дисциплины «Схемотехника телекоммуникационных устройств» в среде Qucs. Пособие содержит так же краткую вводную теоретическую часть, расчетные соотношения, расчетное задание, контрольные вопросы, требования по оформлению отчета.

© Якушевич Г.Н. 2019 г. © ТУСУР, РТФ, каф. РТС, 2019 г.

Содержание

1 Расчетные соотношения по постоянному току	4
2 Расчетные соотношения каскада ОЭ с НЧ и ВЧ коррекцией	
3 Моделирование в программном продукте Qucs	
3.1 Моделирование с варьированием параметров	
4 Моделирование переходного процесса. Расчетные соотношения	8
5 Выводы по результатам моделирования	9
6 Контрольные вопросы	

Лабораторная работа по схемотехнике телекоммуникационных устройств № 2

НЧ и ВЧ коррекция каскада с ОЭ

Цель работы. Исследование частотных и временных характеристик НЧ и ВЧ коррекции каскада с ОЭ.

1 Расчетные соотношения по постоянному току

Для обеспечения необходимого режима каскада с общим эмиттером (ОЭ) по постоянному току используем схему эмиттерной стабилизации рабочей точки, приведенную на рис. 1.

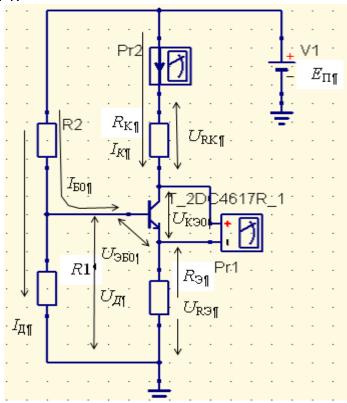


Рис. 1 Схема эмиттерной стабилизации рабочей точки усилительного каскада

Для стабилизации рабочей точки ток делителя $I_{\rm Д}$ и напряжение на эмиттерном сопротивлении $U_{\rm R3}$ выбирают из условий $I_{\rm Д}$ =(5-10) $I_{\rm E0}$ и $U_{\rm R3}$ =(3-5) $U_{\rm E30}$. Тогда напряжение источника питания равно

$$E_{\Pi} = U_{R9} + U_{K90} + U_{RK}$$

где $U_{K \ni 0}$ – напряжение коллектор-эмиттер в рабочей точке,

 U_{RK} – напряжение на коллекторном сопротивлении R_{K} равное U_{RK} =(0.5-2) U_{K30} .

1.1 Сопротивление в цепи эмиттера R_3 равно

$$R_{\ni} = \frac{U_{R\ni}}{I_{K0} + I_{E0}}$$
,

где I_{K0} и I_{50} — ток коллектора и ток базы в рабочей точке.

1.2 Сопротивления делителя в цепи базы рассчитываются по формулам

$$R1 = \frac{U_{R\Im} + U_{E\Im 0}}{I_{II}}, \quad R2 = \frac{E_{II} - (U_{R\Im} + U_{E\Im 0})}{I_{II} + I_{E0}}.$$

1.3 Сопротивление в цепи коллектора равно

$$R_{K} = \frac{U_{RK}}{I_{K0}}$$
.

Задание 1 Для своего варианта рассчитать номиналы сопротивлений для рабочей точки, заданной в табл.1 для U_{530} =0.72B, β =100.

Таблица 1

Варианты	заданий
----------	---------

Вариант	1	2	3	4	5	6	7	8	9
I _{KO}	4	4	4	5	5	5	6	6	6
U _{KO}	4	5	6	4	5	6	4	5	6

Результаты расчетов привести в таблице

			1 аблица
R1	R2	<i>R</i> k	Rэ
			_

2 Расчетные соотношения каскада с ОЭ с НЧ и ВЧ коррекцией

На рис. 2 приведена схема каскада с ОЭ с НЧ и ВЧ коррекцией. В данной схеме сопротивление коллекторной цепи состоит из двух сопротивлений R3 и R6, каждое из которых равно половине сопротивления R6.

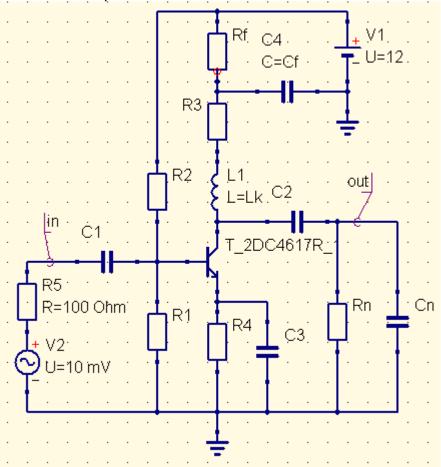


Рис. 2 Схема каскада с ОЭ с НЧ и ВЧ коррекцией

Для заданных частотных искажений $M_{\rm H}$, дБ= $M_{\rm HC1}$, дБ+ $M_{\rm HC2}$, дБ + $M_{\rm HC9}$, дБ на нижней частоте $f_{\rm H0707}$ номиналы разделительных и блокировочных емкостей рассчитываются по следующему соотношению

$$C = \frac{1}{2\pi f_{H0.707} \sqrt{M_{HC}^2 - 1} \cdot (R_{\pi} + R_{\Pi})},$$

где M_{HC} – частотные искажения в разах, приходящиеся на одну емкость, R_Π и R_Π – сопротивления слева и справа от емкости.

В таблице 2 приведены значения частотных искажений в дБ и разах.

Таблица 2

M_{HC} ,	0.25	0.5	0.75	1.0	1.25	1.5	1.75	2.0	2.25	2.5	2.75	3.0
дБ												
M_{HC} ,	1.029	1.059	1.09	1.122	1.155	1.189	1.223	1.259	1.296	1.334	1.372	1.413
раз												

Емкость нагрузки рассчитывается по выражению

$$C_H = \frac{1}{2\pi f_{B0.707} R_{2KB}}$$
,

где $f_{\rm B\,0.707}$ – верхняя граничная частота по уровню 0.707,

 $R_{\rm ЭКВ} = R3$ // Rn — эквивалентное сопротивление параллельного включения сопротивления R3 и сопротивления нагрузки Rn по переменному току.

Коэффициент усиления каскада с ОЭ по напряжению равен

$$K_U=S_0 R_{3KB}$$

где S₀=1/(r_Э+Δr), r_Э=25.6[мВ]/I_Э[мА], Δr≈1..2 Ома.

Из равенства $au_{{\scriptscriptstyle H}{\scriptscriptstyle Y}} = au_{{\scriptscriptstyle f}} = R3C_{{\scriptscriptstyle f}}$ находим выражение для емкости НЧ коррекции $C_{{\scriptscriptstyle f}}$

$$C_f = \frac{\tau_{H^q}}{R3} = \frac{1}{2\pi f_{H0.707} R3}.$$

Из равенства $au_{\scriptscriptstyle B} = au_{\scriptscriptstyle BK} = L_{\scriptscriptstyle K}/R3$ находим корректирующую индуктивность для ВЧ коррекции

$$L_K = \tau_B R3$$
.

Задание 2 Для своего варианта рассчитать коэффициент усиления каскада с ОЭ по напряжению, номиналы блокировочной и разделительных емкостей для коэффициентов частотных искажений на нижней граничной частоты заданной в таблице 3, номинал емкости нагрузки на верхней граничной частоте, заданной в таблице 4 при $R3 = R_{\rm f} = R_{\rm k}$ / 2 и номиналы емкости НЧ коррекции C_f и индуктивности ВЧ коррекции $L_{\rm K}$.

Таблица 3 Значения коэффициентов частотных искажений и нижней граничной частоты

		<u> </u>							
Варианты	1	2	3	4	5	6	7	8	9
<i>М</i> _{НС1} , дБ	1.25	0.75	1.0	1.0	0.75	0.5	0.5	0.25	0.75
<i>М</i> _{НС2} , дБ	0.5	1.0	0.75	0.5	0.75	1.0	0.5	0.75	0.25
<i>М</i> _{нсэ} , дБ	1.25	1.25	1.25	1.5	1.5	1.5.0	2.0	2.0	2.0
<i>f</i> _{н 0.707} , Гц	50	50	50	100	100	100	200	200	200

Таблица 4 8 1 2 3 5 6 Варианты 4 125 50 75 100 150 175 200 225 250 f_{B 0.707}, кГц

Результаты расчетов привести в таблице.

							Таблица
<i>K</i> u	C1	C2	C 3	Cf	Lĸ	R3	Rf

3 Моделирование в программном продукте Qucs

Чтобы открыть программный продукт Qucs щелкните два раза по ярлыку

откроется главное окно, затем щелкните два раза по вкладке «Справка», откроется содержание «Справки».

Содержание

- 1. Быстрый старт Аналоговое моделирование.
- 2. Быстрый старт Цифровое моделирование.
- 3. Быстрый старт Оптимизация.
- 4. Краткое описание действий.
- 5. Работа с подсхемами.
- 6. Краткое описание математических функций.
- 7. Перечень специальных символов.
- 8. Создание согласованных схем.
- 9. Описание установленных файлов Qucs.
- 10. Описание форматов файлов Qucs.

Изучить содержание разделов 1,4,5 программного продукта Qucs.

3.1 Моделирование с варьированием параметров

Собрать схему каскада с ОЭ приведенную на рис. З для моделирования с варьированием параметров. Поставить значения номиналов резисторов, рассчитанных в задании 1 и номиналы емкостей рассчитанных в задании 2 Добавить к схеме виды моделирования и уравнение для расчета ЛАЧХ (см. рис.3). Присвоить имя файлу и сохранить в папке на рабочем столе.

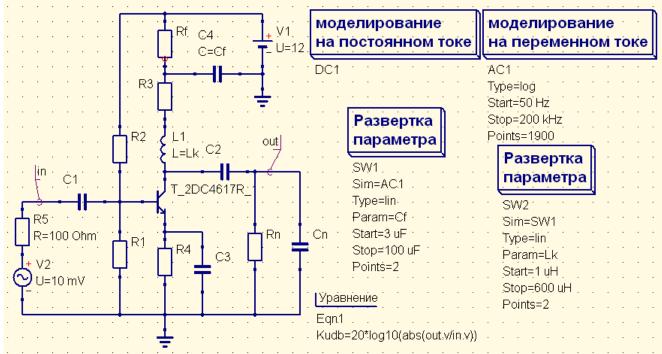


Рис. 3 Схема каскада с ОЭ с НЧ и ВЧ коррекцией с варьированием параметров.

В развертке параметров для корректирующей емкости Cf одно значение взять равным рассчитанному, а второе в 50-100 раз больше (ЛАЧХ без коррекции). В развертке параметров для корректирующей индуктивности $L\kappa$ одно значение взять равным рассчитанному, а второе в 50-100 раз меньше (ЛАЧХ без коррекции).

Для запуска моделирования нажмите кнопку моделирования на панели инструментов (или используйте меню: Моделирование->Моделировать). Чтобы увидеть результаты моделирования в классе компонентов "диаграммы", который выбирается автоматически нажмите на "Декартовая", перейдите в рабочую область и поместите ее, нажав левую кнопку мыши. Открывается диалоговое окно, где можно выбрать, что следует показать в новой диаграмме.

Промоделировать. Результаты моделирования в виде ЛАЧХ, приведенной на рис. 4.

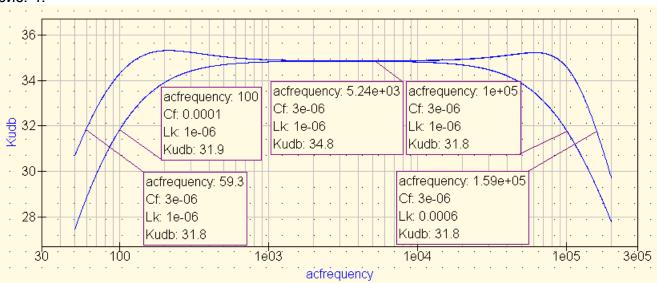


Рис. 4 ЛАЧХ каскада с ОЭ с НЧ и ВЧ коррекцией и без коррекции

Результаты моделирования представить в таблице.

		гаолица
	<i>f</i> _{H 0707}	f _{B 0707}
Без коррекции		
С коррекцией		

4 Моделирование переходного процесса

Расчетные соотношения

Рассчитать для своего варианта время установления t_{y} и Δ спад плоской вершины импульса по следующим соотношениям:

$$t_y=0.35/f_{B\ 0707}$$
,
 $\Delta=2\pi\ f_{H\ 0707}\ T_{N}$,

T_и – длительность импульса взять равной 0.2ms.

Скопировать схему рис.4, заменить на входе схемы источник сигнала, вид моделирования, вид и порядок моделирования в «Развертке параметров».

Схема каскада с ОЭ с НЧ и ВЧ коррекцией для моделирования переходного процесса при варьировании параметров приведена на рис.5.

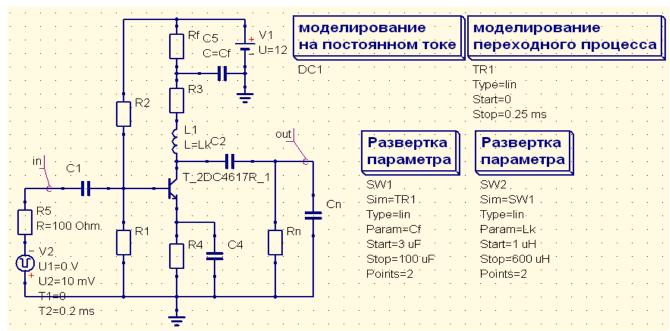


Рис 6 Схема каскада с ОЭ с НЧ и ВЧ коррекцией для моделирования переходного процесса с варьированием праметров

Промоделировать. Результаты моделирования представить в виде переходных характеристик (ПХ), приведенных на рис. 7а для области больших времен и на рис. 7б для области малых времен.

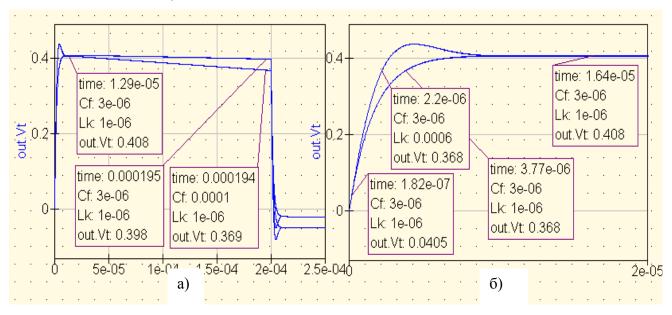


Рис.7 ПХ каскада с ОЭ с НЧ и ВЧ коррекцией и без корекции: для области больших времен (а), для области малых времен (б)

Результаты моделирования представить в таблице.

тебультаты моделирования представить в таблице.									
	$t_{\rm y1}$, us	t_{y2} , us	Δ_1 , %	Δ_2 , %					
Расчет									
Эксперимент									

5 Выводы по результатам моделирования

Выводы должны содержать ссылки на рисунки, объяснение поведений характеристик, физику поведения, сравнение характеристик при варьировании параметров.

6 Контрольные вопросы

- 1. Физика поведения ЛАЧХ каскада с ОЭ без коррекции.
- 2. Какие элементы вводятся в схему каскада с ОЭ для НЧ коррекции?
- 3. Физика поведения ЛАЧХ каскада с ОЭ с НЧ коррекцией?
- 4. Какие элементы вводятся в схему каскада с ОЭ для ВЧ коррекции?
- 5. Физика поведения ЛАЧХ каскада с ОЭ с ВЧ коррекцией?
- 6. Физика поведения ПХ каскада с ОЭ без коррекции.
- 7. Физика поведения ПХ каскада с ОЭ с коррекцией в области больших времен?
- 8. Физика поведения ПХ каскада с ОЭ с коррекцией в области малых времен?