МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РФ

Федеральное государственное бюджетное образовательное учреждение высшего образования

ТОМСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ СИСТЕМ УПРАВЛЕНИЯ И РАДИОЭЛЕКТРОНИКИ (ТУСУР)

Кафедра радиотехнических систем (РТС)

Якушевич Г.Н.

Каскады с ОЭ с последовательной ОС по току, параллельной ОС по напряжению и комбинированной ОС

Учебное методическое пособие по лабораторной работе, практическим занятиям и самостоятельной работе для студентов направления «Инфокоммуникационные технологии и системы связи» по дисциплине «Схемотехника телекоммуникационных устройств»

Якушевич Г.Н.

«Каскады с ОЭ с последовательной ОС по току, параллельной ОС по напряжению и комбинированной ОС»: Учебное методическое пособие по лабораторной работе, практическим занятиям и самостоятельной работе для студентов направления «Инфокоммуникационные технологии и системы связи» по дисциплине «Схемотехника телекоммуникационных устройств». Томск: ТУСУР. Научно-образовательный портал, 2019. –11 с.

Учебное методическое пособие содержит описание компьютерной лабораторной работы, выполняемой в ходе изучения дисциплины «Схемотехника телекоммуникационных устройств» в среде Qucs. Пособие содержит так же краткую вводную теоретическую часть, расчетные соотношения, расчетное задание, контрольные вопросы, требования по оформлению отчета.

Содержание

1 Расчетные соотношения для каскада сОЭ с последовательной ОС по току	4
2 Моделирование в программном продукте Qucs	5
3 Моделирование каскада с ОЭ с последовательной ОС по току с	
варьированием параметров	5
4 Расчетные соотношения для каскада с ОЭ с параллельной ОС по напряжению	6
5 Моделирование каскада с ОЭ с параллельной ОС по напряжению	7
6 Расчетные соотношения для каскада сОЭ с комбинированной ОС	9
7 Моделирование каскада с ОЭ с комбинированной ОС	10
8 Выводы по результатам моделирования	11
9 Контрольные вопросы	11

Лабораторная работа по схемотехнике телекоммуникационных устройств № 4 Каскады с ОЭ с последовательной ОС по току, параллельной ОС по напряжению и комбинированной ОС

Цель работы: Исследование влияния последовательной ОС по току, параллельной ОС по напряжению и комбинированной ОС на основные параметры каскада с ОЭ.

1 Расчетные соотношения для каскада с ОЭ с последовательной ОС по току На рис. 1 приведена схема каскада с ОЭ с последовательной ОС по току.

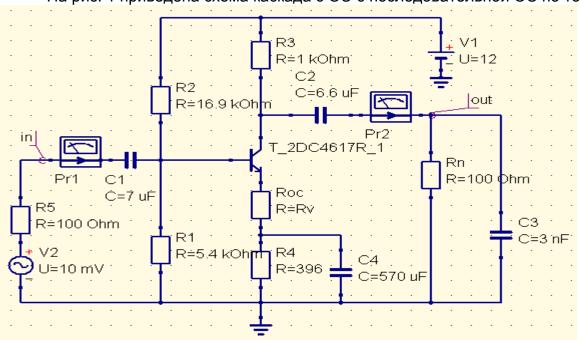


Рис. 1 Схема каскада с ОЭ с последовательной ОС по току

Коэффициент усиления каскада с ОЭ с последовательной ОС по току равен

$$K_{OC} = \frac{K_0}{1 + S_0 R_{OC}} \approx \frac{R_{3KB}}{R_{OC}},$$

где K_O = S_O R_H _{ЭКВ} - коэффициент усиления по напряжению каскада с ОЭ без ОС, S_0 =1/(r_9 + Δr) - крутизна транзистора, r_9 =25.6[мВ]/ I_9 [мА], Δr ≈1..2 Ома, I_9 ток эмиттера транзистора, K_{0C} -заданный коэффициент усиления по напряжению каскада с ОЭ с ОС, R_{H} _{ЭКВ}= R_3 // R_{D} — эквивалентное параллельное сопротивление R_3 сопротивления R_1 нагрузки по переменному току.

Тогда для заданного коэффициента усиления K_{OC} с последовательной ОС по току сопротивление ОС R_{OC} рассчитывается по формуле

$$R_{OC} = \frac{K_0 - K_{OC}}{K_{OC} S_0}$$
.

Номинал эмиттерного сопротивления равен R4=Rэ – Roc, где Rэ=396 Ом. Входное сопротивление каскада с ОЭ с последовательной ОС по току равно

$$R_{BXOC} = R_{BXO9} + (H_{219} + 1)R_{OC}$$
,

где $H_{21\ 9}$ – коэффициент усиления по току каскада с ОЭ, $R_{BX\ O9}=r_{5}$ +(1+ $H_{21\ O9}$)($r_{9}+\Delta r$) - входное сопротивление каскада с ОЭ, r_{6} – сопротивление базы транзистора.

Коэффициент усиления по току каскада с ОЭ с последовательной ОС по току равен

$$K_{1,00} \approx K_{1,00} = H_{21,0}$$

Задание1. Для своего варианта задания из табл. 2 для Ко = 37 дБ (71раз) рассчитать Roc, Rbx ос и R4.

Таблица 1

Варианты заданий

Вариант	1	2	3	4	5	6	7
Кос дБ (раз)	31 (35)	28 (25)	26 (20)	23.5 (15)	20 (10)	17.5 (7.5)	14 (5)

Результаты расчетов привести в таблице

T	аб	ЛИ	ца

Кос	Koc Roc Res		R4

2 Моделирование в программном продукте Qucs

Чтобы открыть программный продукт Qucs щелкните два раза по ярлыку

откроется главное окно, затем щелкните два раза по вкладке «Справка», откроется содержание «Справки».

Содержание

- 1. Быстрый старт Аналоговое моделирование.
- 2. Быстрый старт Цифровое моделирование.
- 3. Быстрый старт Оптимизация.
- 4. Краткое описание действий.
- 5. Работа с подсхемами.
- 6. Краткое описание математических функций.
- 7. Перечень специальных символов.
- 8. Создание согласованных схем.
- 9. Описание установленных файлов Qucs.
- 10. Описание форматов файлов Qucs.

Изучить содержание разделов 1,4,5 программного продукта Qucs.

3 Моделирование каскада с ОЭ с последовательной ОС по току с варьированием параметров

Собрать в Qucs схему каскада с ОЭ с последовательной ОС по току приведенную на рис. 2. Добавить к схеме виды моделирования и уравнения для расчета ЧХ (см. рис.3). Присвоить имя файлу и сохранить в папке на рабочем столе.

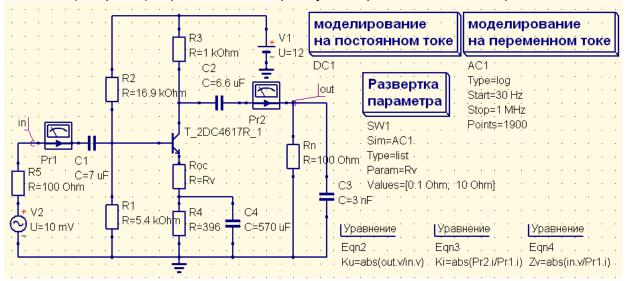


Рис.3 Схема каскада с ОЭ с последовательной ОС по току с варьированием параметров

В развертке параметров одно значение Roc взять равным 0.1 Ома (ЧХ без ОС), а второе равное рассчитанному (ЧХ с ОС).

Для запуска моделирования нажмите кнопку моделирования на панели инструментов (или используйте меню: Моделирование->Моделировать). Чтобы увидеть результаты моделирования в классе компонентов "диаграммы", который выбирается автоматически нажмите на "Декартовая", перейдите в рабочую область и поместите ее, нажав левую кнопку мыши. Открывается диалоговое окно, где можно выбрать, что следует показать в новой диаграмме.

Промоделировать. Результаты моделирования представить в виде ЧХ, приведенных на рис. 4 и в виде таблицы.

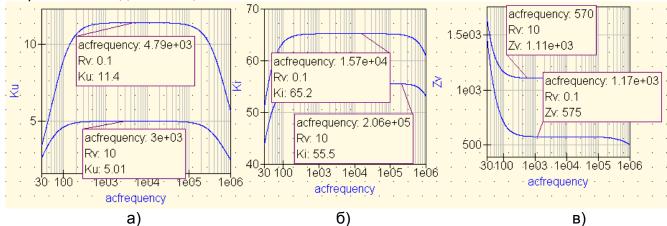


Рис. 4 ЧХ коэффициента усиления по напряжению Ku (a), коэффициента усиления по току Ki (б) и входного сопротивления Zv (в)

4 Расчетные соотношения для каскада с ОЭ с параллельной ОС по напряжению На рис. 5 приведена схема каскада с ОЭ с параллельной ОС по напряжению.

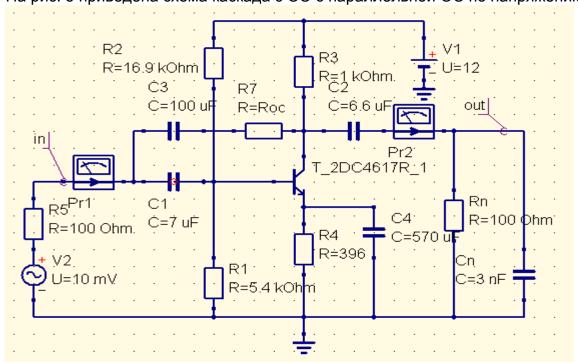


Рис. 5 Схема каскада с ОЭ с параллельной ОС по напряжению

Коэффициент усиления по напряжению каскада с ОЭ с параллельной ОС равен $K_{UOC} = S_0 \, R_{HOC} \,_{\sim} \,_{,}$

где $R_{HOC} = Rn$ жв $R_{OC} / (Rn$ жв + $R_{OC})$ - сопротивление нагрузки по переменному току, Rn жв = Rn R3 / (Rn + R3) - сопротивление нагрузки каскада с ОЭ.

Выражение для сопротивления параллельной ОС $R_{\rm OC}$ запишется

$$R_{OC} = R_{BX OC} (1 + K_{U OC}),$$

где $R_{BX\ OC}$ – входное сопротивление каскада с ОЭ с параллельной ОС по напряжению, заданное из условия согласования с сопротивлением генератора R_{Γ} : $R_{BX\ OC} = R_{\Gamma}$.

С учетом коэффициента усиления по напряжению каскада с ОЭ с параллельной ОС выражение для сопротивления параллельной ОС R_{OC} запишется

 R_{OC} = $(R_{BX\ OC}+R_{BX\ OC}S_0R_n)$ входное сопротивление каскада с ОЭ с параллельной ОС по напряжению равно

$$R_{BX OC} = R_{OC} / (1 + K_{U OC}).$$

Коэффициент усиления по току каскада с ОЭ с параллельной ОС по напряжению равен

$$K_{IOC} = K_{UOC} R_{BXOC} / R_{HOC} \approx S_0 R_{BXOC}$$

Задание2. Для своего варианта задания из табл. 2 рассчитать Roc, $K_{U OC}$, Rbx ос и $K_{I OC}$. Таблица 2

Варианты заданий 2 5 Вариант 1 7 3 6 Сопротивление 25 50 75 100 150 200 300 генератора R_{Γ}

Результаты расчетов привести в таблице

			1 аблица
Roc	K _{U OC}	<i>Rвх</i> ос	K _{I OC}

5 Моделирование каскада с ОЭ с параллельной ОС по напряжению

Собрать в Qucs схему каскада с ОЭ с параллельной ОС по напряжению, приведенную на рис.5. Добавить к схеме виды моделирования и уравнения для расчета ЧХ (см. рис.6). Присвоить имя файлу и сохранить в папке на рабочем столе.

В развертке параметров одно значение Roc взять равным 100 кОм (ЧХ без ОС), а второе равное рассчитанному (ЧХ с ОС).

Для запуска моделирования нажмите кнопку моделирования на панели инструментов (или используйте меню: Моделирование->Моделировать). Чтобы увидеть результаты моделирования в классе компонентов "диаграммы", который выбирается автоматически нажмите на "Декартовая", перейдите в рабочую область и поместите ее, нажав левую кнопку мыши. Открывается диалоговое окно, где можно выбрать, что следует показать в новой диаграмме.

Промоделировать. Результаты моделирования представить в виде ЧХ, приведенных на рис. 7.

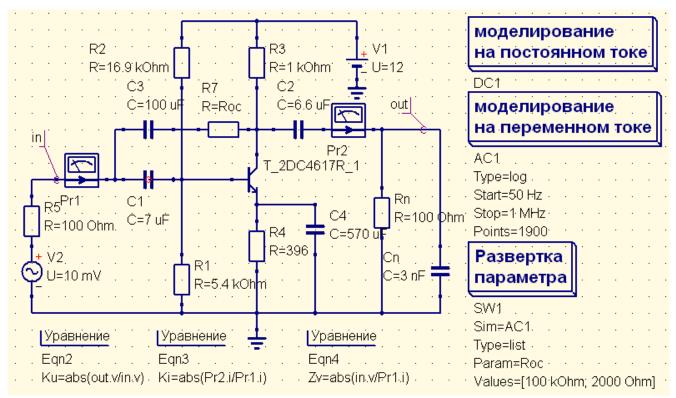


Рис.6 Схема каскада с ОЭ с параллельной ОС по напряжению с варьированием параметров

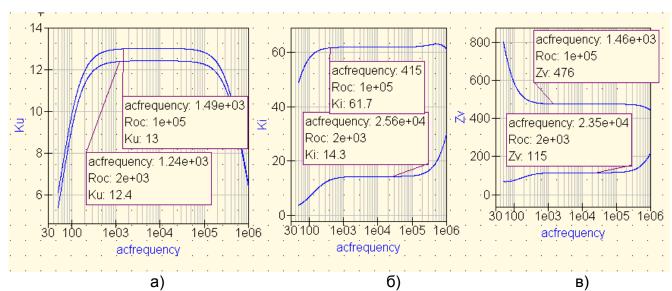


Рис. 7 ЧХ коэффициента усиления по напряжению Ku (a), коэффициента усиления по току Ki (б) и входного сопротивления Zv (в)

Результаты моделирования представить в таблице.

Таблица

	Ku	Ki	Zv
Без ОС			
С параллельной ОС по напряжению			

6 Расчетные соотношения для каскада с ОЭ с комбинированной ОС

На рис. 8 приведена схема каскада с ОЭ с комбинированной ОС.

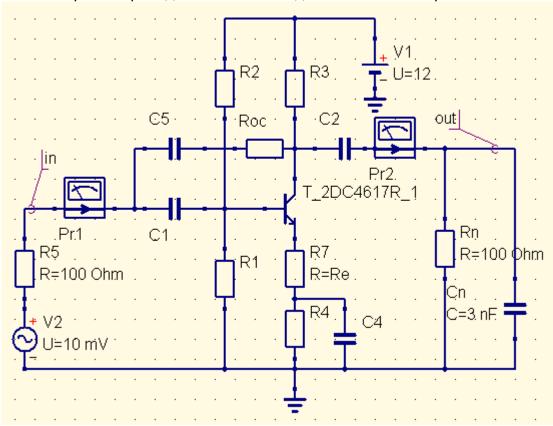


Рис. 8 Схема каскада с ОЭ с комбинированной ОС

$$Roc = Rn^2 / Reэкв$$
,

где Rn – сопротивление нагрузки, Re экв – эквивалентное сопротивление последовательной ОС по току.

Эквивалентное сопротивление последовательной ОС по току равно

Re
$$\ni \kappa e = Rn / K_{UOC} = r_{\ni} + \Delta r + Re$$
,

где $K_{U\ OC}$ – заданный коэффициент усиления по напряжению каскада с ОЭ с комбинированной ОС.

Тогда сопротивление последовательной ОС по току равно

$$Re = Re$$
 экв $-(r_{\ni} + \Delta r)$.

Коэффициент усиления по напряжению каскада с ОЭ с комбинированной ОС равен

$$K_{UOC} = S_{09} R_{HOC} \sim$$
,

где эквивалентная крутизна каскада с ОЭ с комбинированной ОС равна $S_{O\!S}=1$ / Re экв, сопротивление нагрузки по переменному току равно $R_{H\ OC}$ ~ =Rnэкв $R_{O\!C}$ / (Rnэкв + $R_{O\!C}$), Rnэкв = $Rn\ R3$ / (Rn + R3) - сопротивление нагрузки каскада с ОЭ

Входное сопротивление каскада с ОЭ с комбинированной ОС равно

$$R_{BX OC} = Roc / (1 + K_{U OC}).$$

Коэффициент усиления по току каскада с ОЭ с комбинированной ОС равен

$$K_{IOC} = K_{UOC} R_{BXOC} / R_{HOC} \sim S_0 R_{BXOC}$$

Номинал эмиттерного сопротивления равен R4=R9 – Re, R9=396 Ом. **Задание 3** Для своего варианта задания из табл. 3 рассчитать Roc, K_{UOC} , Rbx ос и K_{IOC} . Таблица 3

_	J
Варианть	ISSUSPINIA
рариантр	гзадании

				-			
Вариант	1	2	3	4	5	6	7
Сопротивление	25	50	75	100	150	200	300
генератора R_{Γ}							

Результаты расчетов привести в таблице

	гаолица				
Roc	Re	K _{U OC}	<i>Rвх</i> ос	K _{I OC}	

7 Моделирование каскада с ОЭ с комбинированной ОС

Собрать в Qucs схему каскада с ОЭ с параллельной ОС по напряжению, приведенную на рис.8. Добавить к схеме виды моделирования и уравнения для расчета ЧХ (см. рис.9). Присвоить имя файлу и сохранить в папке на рабочем столе.

В развертке параметров для последовательной ОС по току одно значение Re взять равным 0.1 Ома (ЧХ без ОС), а второе равное рассчитанному (ЧХ с ОС).

В развертке параметров для параллельной ОС по напряжению одно значение Roc взять равным рассчитанному для Re равным 0.1 Ома, а второе равное рассчитанному для Re своего варианта.

Для запуска моделирования нажмите кнопку моделирования на панели инструментов (или используйте меню: Моделирование->Моделировать). Чтобы увидеть результаты моделирования в классе компонентов "диаграммы", который выбирается автоматически нажмите на "Декартовая", перейдите в рабочую область и поместите ее, нажав левую кнопку мыши. Открывается диалоговое окно, где можно выбрать, что следует показать в новой диаграмме.

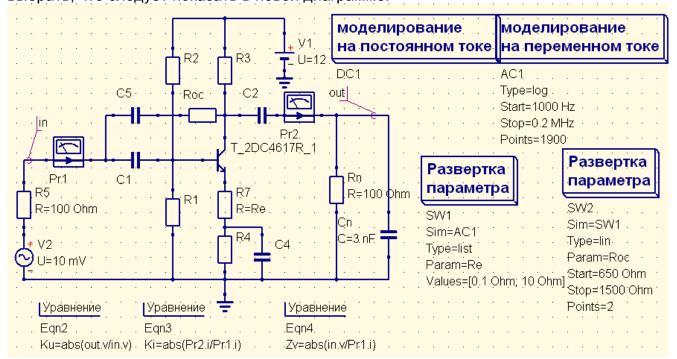


Рис. 9 Схема каскада с ОЭ с комбинированной ОС с варьированием параметров

Промоделировать. Результаты моделирования представить в виде ЧХ, приведенных на рис. 10 и в таблице.

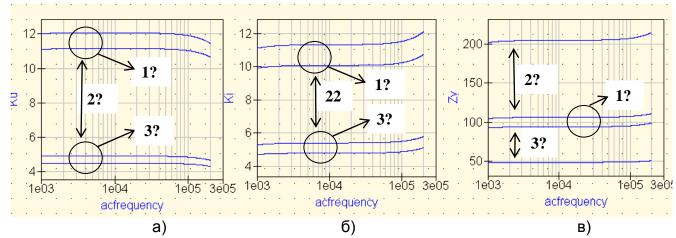


Рис. 10 ЧХ коэффициента усиления по напряжению Ku (a), коэффициента усиления по току Ki (б) и входного сопротивления Zv (в)

				і аолица
		Ku	Ki	Zv
Re=	R8=			

8 Выводы по результатам моделирования

Выводы должны содержать ссылки на рисунки, объяснение поведений характеристик, физику поведения, сравнение характеристик при варьировании параметров.

9 Контрольные вопросы

- 1. Как определить последовательную ОС по току?
- 2. Как определить параллельную ОС по напряжению?
- 3. Как изменяются параметры каскада с ОЭ при введении последовательную ОС по току?
- 4. Как изменяются параметры каскада с ОЭ при введении параллельной ОС по напряжению?
- 5. Какие достоинства комбинированной ОС?
- 6. Коэффициент усиления по напряжению каскада с ОЭ с последовательной ОС по току?
- 7. Коэффициент усиления по току каскада с ОЭ с параллельной ОС по напряжению?
- 8. Условие согласования каскада с ОЭ с комбинированной ОС?
- 9. Входное сопротивление каскада с ОЭ с параллельной ОС по напряжению?
- 10. Какой тип ОС параллельной ОС по напряжению?
- 11. Какой тип ОС последовательной ОС по току?