МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РФ

Федеральное государственное бюджетное образовательное учреждение высшего образования

ТОМСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ СИСТЕМ УПРАВЛЕНИЯ И РАДИОЭЛЕКТРОНИКИ (ТУСУР)

Кафедра радиотехнических систем (РТС)

Якушевич Г.Н.

Исследование характеристик типовых линейных звеньев систем радиоавтоматики

Учебное методическое пособие по лабораторной работе, практическим занятиям и самостоятельной работе для студентов направления «Инфокоммуникационные технологии и системы связи» по дисциплине «Радиоавтоматика»

Якушевич Г.Н.

«Исследование характеристик типовых линейных звеньев систем радиоавтоматики»: Учебное методическое пособие по лабораторной работе, практическим занятиям и самостоятельной работе для студентов направления «Инфокоммуникационные технологии и системы связи» по дисциплине «Радиоавтоматика». Томск: ТУСУР. Научно-образовательный портал, 2019. — 31 с.

Учебное методическое пособие содержит описание компьютерной лабораторной работы, выполняемой в ходе изучения дисциплины «Радиоавтоматика» в среде Electronics Workbench (EWB) (Multisim, Qucs). Пособие содержит так же краткую вводную теоретическую часть, расчетные соотношения, расчетное задание, контрольные вопросы, требования по оформлению отчета.

© Якушевич Г.Н. 2019 г. © ТУСУР, РТФ, каф. РТС, 2019 г.

Содержание

1. Исследование характеристик типовых линеиных звеньев	
систем радиоавтоматики	4
1.1. Цель работы	4
1.2. Краткие теоретические сведения	4
1.3. Типовые звенья систем радиоавтоматики	10
1.4 Описание лабораторного макета	23
1.4.1. Краткое описание программы Electronics Workbench (EWB)	23
1.4.2. Запуск программы EWB	24
1.4.3. Контрольно-измерительные приборы	24
1.5 Расчетное задание	29
1.6 Экспериментальное задание	29
1.7. Указания по выполнению работы	30
1.8. Указания по выполнению отчета	30
1.9. Контрольные вопросы	31

Лабораторная работа №1.

1 Исследование характеристик типовых линейных звеньев систем радиоавтоматики

1.1. Цель работы

Исследование частотных и переходных характеристик типовых линейных звеньев систем радиоавтоматики.

1.2. Краткие теоретические сведения

Динамические свойства линейных звеньев и систем могут быть описаны дифференциальными уравнениями. Наибольшее распространение в теории систем радиоавтоматики получила операторная форма записи дифференциальных уравнений, при которой оперируют не с оригиналами величин, а с их изображениями по Лапласу, что позволяет ввести понятие передаточной функции.

Передаточная функция в общем случае имеет вид

$$W(p) = \frac{y(p)}{x(p)} = \frac{b_m p^m + b_{m-1} p^{m-1} + \dots + b_0}{a_n p^n + a_{n-1} p^{n-1} + \dots + a_0} = \frac{B(p)}{A(p)},$$
(1.1)

где $a_m, \dots, a_0, b_m, \dots, b_0$ - коэффициенты, определяемые параметрами звена, p – оператор Лапласа,

n, m — числа, определяющие порядок уравнений ($m \le n$ для физически реализуемых звеньев),

B(p), A(p) — полиномы числителя и знаменателя передаточной функции.

Для исследования характеристик типовых линейных звеньев систем радиоавтоматики используют типовые воздействия: в частотной области – гармоническое, во временной области – единичное ступенчатое или единичное импульсное.

Исследование частотных характеристик типовых линейных звеньев систем радиоавтоматики.

Если на вход линейной системы поступает синусоидальный сигнал определенной частоты, то выходной сигнал будет также синусоидальным, иметь ту же частоту, но другие амплитуду и фазу. Представляя входной и выходной сигнал амплитудами $x(j\omega)$ и $y(j\omega)$, изменения амплитуды и фазы можно характеризовать комплексным коэффициентом передачи

$$W(j\omega) = \frac{y(j\omega)}{x(j\omega)} \ . \tag{1.2}$$

Комплексным коэффициентом передачи можно рассматривать как одну из форм записи передаточной функции для случая синусоидального воздействия. Для получения выражения для комплексного коэффициента передачи из передаточной функции заменим в выражении (1.2) p на $j\omega$ и получим

$$W(j\omega) = \frac{b_m (j\omega)^m + b_{m-1} (j\omega)^{m-1} + \dots + b_0}{a_n (j\omega)^n + a_{n-1} (j\omega)^{n-1} + \dots + a_0}.$$
 (1.3)

Комплексным коэффициентом передачи можно записать в виде суммы вещественной и мнимой части или в показательной форме

$$W(j\omega) = U(\omega) + jV(\omega) = |W(j\omega)|e^{j\varphi(\omega)}, \qquad (1.4)$$

где $W(j\omega)$ — комплексный коэффициент передачи — называется амплитуднофазовой характеристикой (AФX),

 $|W(j\omega)| = \sqrt{U^2(\omega) + V^2(\omega)}$ — модуль комплексного коэффициента передачи — называется амплитудно-частотной характеристикой (АЧХ),

 $\varphi(\omega) = arc \ tg[V(\omega)/U(\omega)]$ — аргумент комплексного коэффициента передачи — называется фазо-частотной характеристикой (ФЧХ),

 $U(\omega) = \text{Re}[W(j\omega)]$ и $V(\omega) = \text{Im}[W(j\omega)]$ — вещественная и мнимая части комплексного коэффициента передачи.

При анализе систем радиоавтоматики чаще используют логарифмическую амплитудно-частотную характеристику (ЛАЧХ)

$$L(\omega)$$
,дБ=20lg $|W(j\omega)|$ (1.5)

и логарифмическую фазо-частотную характеристику (ЛФЧХ)

$$\varphi(\omega) = arctg[V(\omega)/U(\omega)]. \tag{1.6}$$

На рис. 1.1 приведены логарифмические амплитудно-частотные и фазочастотные характеристики (ЛАЧХ и ЛФЧХ) и асимптотические логарифмические амплитудно-частотные и фазо-частотные характеристики (АЛАЧХ и АЛФЧХ) типового апериодического звена первого порядка.

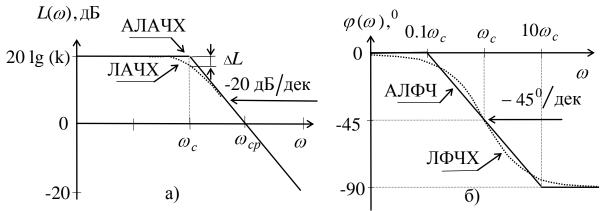


Рис. 1.1. Логарифмические и асимптотические логарифмические частотные характеристики: а) ЛАЧХ и АЛАЧХ; б) ЛФЧХ и АЛФЧХ.

По логарифмическим частотным характеристикам определяют следующие параметры типовых звеньев:

- 1) низкочастотный коэффициент передачи k;
- 2) сопрягающие частоты ω_c и постоянные времени $T=1/\omega_C$;
- 3) наклон ЛАЧХ и ЛФЧХ;
- 4) частоту среза ω_{cp} , на которой $L(\omega_{cp}) = 0$.

По частотным характеристикам можно судить о точности работы звена (системы радиоавтоматики) в установившемся режиме и поведении звена в переходном режиме. Так, например, чем больше коэффициент передачи k, тем выше точность работы типового звена (системы радиоавтоматики) в

установившемся режиме, чем меньше частота среза ω_{cp} , тем больше длительность переходного процесса.

Исследование переходных характеристик типовых линейных звеньев систем радиоавтоматики.

Если известны реакции линейной системы на элементарные (типовые) воздействия, то можно определить реакцию системы на любое произвольное воздействие. В качестве типовых воздействий при исследовании переходных характеристик используют единичное ступенчатое и единичное импульсное воздействия, приведенные на рис. 1.2.

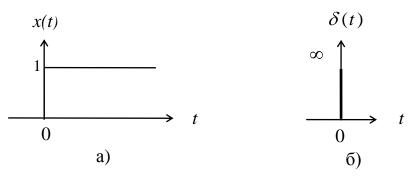


Рис. 1.2. Типовые воздействия: а) единичное ступенчатое; б) единичное импульсное.

Математическое выражение для единичного ступенчатого воздействия может быть записано в виде

$$1(t) = \begin{cases} 0 & npu \ t = 0, \\ 1 & npu \ t \ge 0. \end{cases}$$
 (1.7)

Под единичным импульсным воздействием понимают предельно короткий импульс

$$\delta(t) = \begin{cases} \infty & npu \ t = 0, \\ 0 & npu \ t \neq 0, \end{cases}$$
 (1.8)

площадь которого равна единице

$$\int_{-\infty}^{\infty} \delta(t) dt = 1.$$
 (1.9)

Выражение для единичного импульса в математике принято называть дельта-функцией.

Графическое изображение реакции системы на единичное ступенчатое воздействие называется переходной характеристикой.

Аналитическое выражение переходной характеристики обозначается h(t) и называется переходной характеристикой.

Графическое изображение реакции системы на единичное импульсное воздействие называется импульсной переходной характеристикой.

Аналитическое выражение импульсной переходной характеристики обозначается $\omega(t)$ и называется импульсной переходной функцией или весовой функцией (функцией веса).

Алгоритм нахождения переходной характеристики с помощью преобразования Лапласа следующий:

1) записываем выражение для передаточной функции

$$W(p) = \frac{B(p)}{A(p)} , \qquad (1.10)$$

2) применяя прямое преобразование Лапласа, находим изображение оригинала входного воздействия

$$x(p) = L\{x(t)\}$$
, (1.11)

3) находим изображение на выходе

$$y(p) = W(p) \cdot x(p) , \qquad (1.12)$$

4) используя обратное преобразование Лапласа, находим оригинал выходной функции или реакцию системы на входное воздействие

$$y(t) = L^{-1}\{y(p)\}. \tag{1.13}$$

Для единичного ступенчатого воздействия изображение оригинала входного воздействия равно

$$x(p) = L\{1(t)\} = \frac{1}{p}$$
 (1.14)

Для единичного импульсного воздействия изображение оригинала входного воздействия равно

$$x(p) = L\{\delta(t)\}=1$$
 (1.15)

Общий вид переходной характеристики приведен на рис. 1.3. По переходной характеристике можно определить следующие показатели качества переходного процесса.

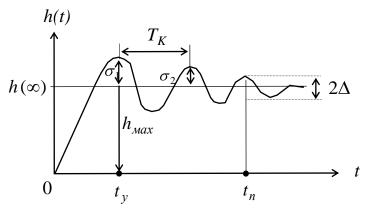


Рис. 1.3. Переходная характеристика с показателями качества переходного процесса

Длительность переходного процесса t_n — интервал времени от начала переходного процесса до момента времени, когда отклонение выходной величины от установившегося значения $h(\infty)$ становится меньше $\Delta = (1 \div 5)\%$, определяет быстродействие системы.

Время установления первого максимума t_y — время достижения первого максимума выходного сигнала, определяет скорость изменения выходного сигнала в переходном процессе.

Перерегулирование σ — максимальное отклонение выходной величины от установившегося значения: $\sigma = \frac{h_{max} - h(\infty)}{h(\infty)} 100\%$.

Мера колебательности C — отношение первых соседних максимумов переходного процесса $C = \frac{\sigma_2}{\sigma_1} 100\%$.

Частота колебаний f_K — частота колебаний переходного процесса $f_K = \frac{1}{T_K}, \ \text{где } T_K \text{ -период колебаний переходного процесса}.$

Число колебаний N — число колебаний за время переходного процесса (обычно число колебаний $N=1\div 2$).

Ошибка регулирования в установившемся режиме — отличие установившегося значения $h(\infty)$ от единицы.

1.3. Типовые звенья систем радиоавтоматики

Различают семь типовых звеньев систем радиоавтоматики:

- 1) пропорциональное звено;
- 2) апериодическое звено первого порядка;
- 3) апериодическое звено второго порядка (колебательное, консервативное);
- 4) интегрирующее звено;
- 5) дифференцирующее звено;
- 6) форсирующее звено;
- 7) запаздывающее звено.

В табл. 1.1 приведены дифференциальные уравнения и передаточные функции типовых звеньев систем радиоавтоматики.

В табл. 1.2-1.3 приведены выражения для частотных и логарифмических частотных функций (характеристик), определяющие изменение амплитуды и фазы выходной величины типового звена в установившемся режиме при приложении на входе гармонического воздействия.

В табл. 1.4 приведены выражения для временных функций (переходной и импульсной переходной характеристик) типовых звеньев систем радиоавтоматики при типовых воздействиях (единичном ступенчатом 1(t) и единичном импульсном δ (1)).

Частотные, логарифмические частотные и временные функции (характеристики) типовых звеньев систем радиоавтоматики приведены в табл. 1.5-1.7.

В табл. 1.8 приведены схемы моделей типовых звеньев.

Таблица 1.1 Дифференциальные уравнения и передаточные функции типовых звеньев

Тип звена	Дифференциальное уравнение	Передаточная функция
Пропорциональное	y(t) = k x(t)	k
Апериодическое звено 1-го порядка	$T\frac{dy(t)}{dt} + y(t) = k x(t)$	$\frac{k}{1+pT}$
Апериодическое звено 2-го порядка	$T^{2} \frac{d^{2} y(t)}{dt^{2}} + T_{1} \frac{dy(t)}{dt} + y(t) = k x(t)$	$\frac{k}{1+2\zeta T p + T^2 p^2}$
Интегрирующее	$y(t) = \int_{0}^{t} k x(t) dt$	$\frac{k}{p}$
Дифференцирующее	$y(t) = k \frac{dx(t)}{dt}$	k p
Форсирующее	$y(t) = k \frac{dx(t)}{dt} + k x(t)$	k(1+pT)
Запаздывающее	y(t) = k x(t - T)	e^{-pT}

Таблица 1.2 Частотные функции типовых звеньев

Тип звена	AΦX, W(jω)	AЧХ, $ig W(j\omega)ig $	ФЧХ, $\varphi(\omega)$
Пропорциональное	k	k	0
Апериодическое первого порядка	$\frac{k}{1+j\omega T}$	$\frac{k}{\sqrt{1+(\omega T)^2}}$	–arctg(ωT)
Апериодическое второго порядка	$\frac{k}{1 - (\omega T)^2 + j2\zeta \omega T}$	$\frac{k}{\sqrt{[1-(\omega T)^2]^2+(2\zeta \omega T)^2}}$	$-arctg\left(\frac{2\zeta\omega T}{1-(\omega T)^2}\right)$
Интегрирующее	$-jk/\omega$	k/ω	$-\pi/2$
Дифференцирующее	jkω	kω	$\pi/2$
Форсирующее	$k(1+j\omega T)$	$k\sqrt{1+(\omega T)^2}$	arctg (ωT)
Запаздывающее	$k e^{-j\omega T}$	k	$-\omega T$

Таблица 1.3 Логарифмические частотные функции типовых звеньев

Тип звена	ЛАЧХ, $L(\omega)$, дБ	ЛАФХ, $\varphi(\omega)$
Пропорциональное	$20\lg k$	0
Апериодическое первого порядка	$20 \lg k - 20 \lg \sqrt{1 + (\omega T)^2}$	-arctg (ωT)
Апериодическое второго порядка	$20 \lg k - 20 \lg \sqrt{[1 - (\omega T)^2]^2 + (2\zeta \omega T)^2}$	$-arctg\left(\frac{2\zeta\omega T}{1-(\omega T)^2}\right)$
Интегрирующее	$20 \lg k - 20 \lg \omega$	$-\pi/2$
Дифференцирующее	$20 \lg k + 20 \lg \omega$	$\pi/2$
Форсирующее	$20 \lg k + 20 \lg \sqrt{1 + (\omega T)^2}$	arctg (ωT)
Запаздывающее	$20\lg k$	$-\omega T$

Таблица 1.4 Временные функции типовых звеньев

Тип звена	$\Pi X, h(t)$	ИПХ, $\omega(t)$
Пропорциональное	k1(t)	0
Апериодическое первого порядка	$k(1-e^{-\frac{t}{T}})$	$\frac{k}{T}e^{-\frac{t}{T}}$
Апериодическое второго порядка	$k\left[1 - e^{-\frac{\zeta}{T}t} \left(\cos\frac{\sqrt{1 - \zeta^2}}{T}t + \frac{\zeta}{\sqrt{1 - \zeta^2}}\sin\frac{\sqrt{1 - \zeta^2}}{T}t\right)\right]$	$\frac{k}{T\sqrt{1-\zeta^2}}e^{-\frac{\zeta}{T}t}\sin\frac{\sqrt{1-\zeta^2}}{T}t$
Интегрирующее	$k \cdot t$	k
Дифференцирующее	$k \cdot \delta$ (1)	$k\frac{d\delta(t)}{dt}$
Форсирующее	$h(t) = k[T\delta(t) + 1(t)]$	$k \left[T \frac{d \delta(t)}{d t} + \delta(t) \right]$
Запаздывающее	$k \cdot 1(t-T)$	$k \cdot \delta (t-T)$

Таблица 1.5 Частотные характеристики типовых звеньев

Тип звена	АФХ	АЧХ	ФЧХ
Пропор- циональ- ное	$ \begin{array}{c} jV \uparrow \\ & \downarrow \\ & \downarrow \\ & U \end{array} $	$k \qquad W(j\omega) $ ω	$0 \qquad \qquad \stackrel{\varphi(\omega), 0}{\longrightarrow} \qquad \qquad$
Апериоди- ческое первого порядка	$ \begin{array}{c c} \downarrow & \downarrow &$	$0.707 \qquad \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$ \begin{array}{c} \phi(\omega), \\ 0 \\ -45 \\ -90 \end{array} $
Апериоди- ческое второго порядка	$ \begin{array}{c} iV \\ \omega = \infty \\ \hline \omega = 0 \\ \hline W(j\omega) \\ U \end{array} $ $ \begin{array}{c} \omega = 0 \\ \hline W(j\omega) \\ \omega \\ c = \frac{1}{T} \end{array} $	$k = 1/T$ $W(j\omega) _{\zeta_1 < \zeta_2 < \zeta_3}$ $\omega = 1/T$	$ \begin{array}{c c} 0 & \emptyset \\ -90^{0} & \emptyset \\ -180^{0} & & \swarrow \end{array} $

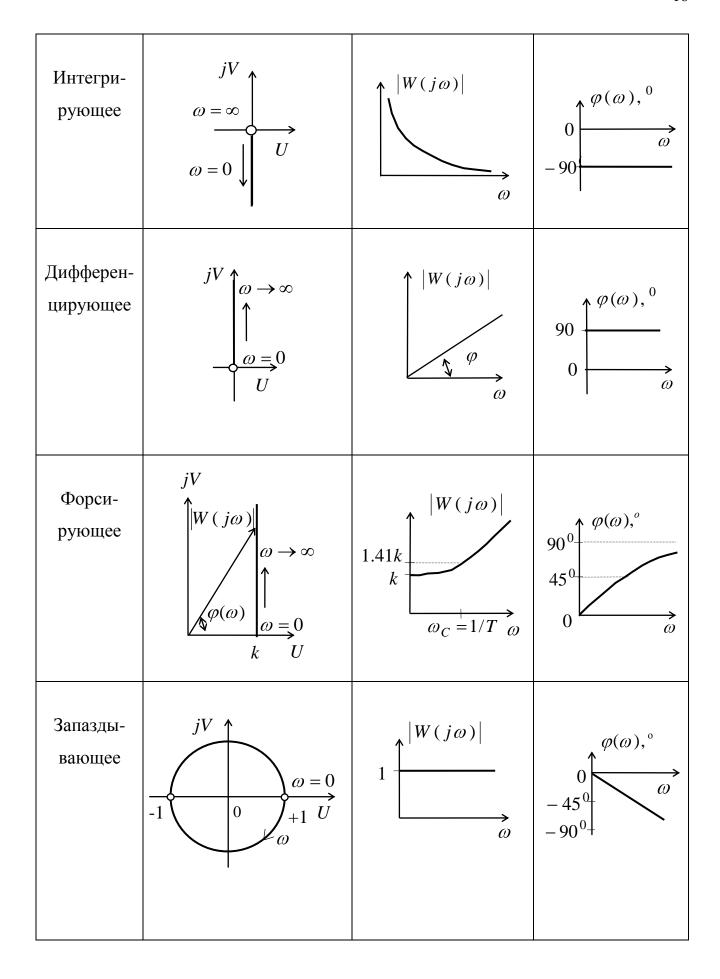


 Таблица 1.6

 Логарифмические частотные характеристики типовых звеньев

Тип звена	ЛАФХ	ЛФЧХ
Пропор- циональ- ное	$L(\omega)$, дБ $20 \lg k$ \longrightarrow ω	$ \begin{array}{c} \varphi(\omega), {}^{0} \\ 0 \end{array} $
Апериоди- ческое первого порядка	$L(\omega)$, д E АЛАЧХ -20 д E /дек ω $C = 1/T$ ω	$\varphi(\omega)$, $\varphi(\omega$
Апериоди- ческое второго порядка	$L(\omega)$,дБ λ АЛАЧХ $\omega_C = 1/T$ λ	$\varphi(\omega),^{0}$ -90^{0} -180^{0}

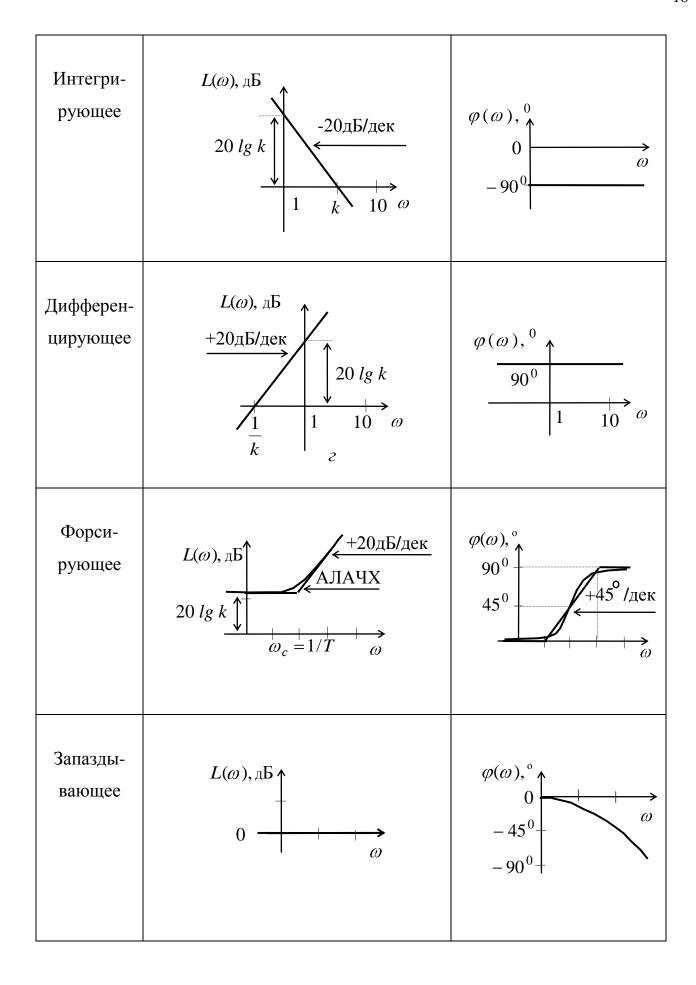


Таблица 1.7 Переходные характеристики типовых звеньев

Тип звена	ПХ	ИПХ
Пропор- циональ- ное	$ \begin{array}{c} x(t) \\ k \\ \hline 0 \\ \end{array} $	$ \begin{array}{c} \delta(t) \\ k \delta(t) \\ \downarrow \\ 0 \qquad t \end{array} $
Апериоди- ческое первого порядка	$h(t) \uparrow T \\ k $	$ \begin{array}{c} \omega(t) \\ \frac{k}{T} \\ 0 \\ \end{array} $
Апериоди- ческое второго порядка	$h(t) \uparrow \qquad \zeta_1 < \zeta_2 < \zeta_3 \\ 0 \qquad \qquad t$	$0 \xrightarrow{\zeta_1 < \zeta_2 < \zeta_3} t$

Интегри- рующее	$h(t) \uparrow \varphi \\ 0 \qquad t$	$\begin{pmatrix} \omega(t) \\ k \\ 0 \end{pmatrix}$
Дифферен- цирующее	$h(t) \uparrow \\ kS(t) \downarrow \\ 0 \qquad t$	$\omega(t) = k \frac{d \delta(t)}{d t}$
Форси- рующее	$ \begin{array}{c} h(t) \\ k\delta(t) \\ k \end{array} $	$\omega(t) = k \left[T \frac{d \delta(t)}{d t} + \delta(t) \right]$
Запазды- вающее	$ \begin{array}{c} h(t) \uparrow \\ k \\ \hline $	$ \begin{array}{c} \omega(t) \uparrow \\ \downarrow \\ \downarrow \\ T \end{array} $ $k \delta(t)$

Таблица 1.8 Схемы моделей типовых звеньев

Тип звена	Схема	Коэффициенты
		передаточных функций
Пропорциональное	R_{2} R_{2} R_{2} 10 10 10 10 10 10 10 10	$W(p)$ =- k , где для 1 положения тумблера k = R_2/R_1 , для 2 положения тумблера k = $(R_2+R_1^i)/R_1$.
Апериодическое 1-го порядка	R_{2} 10κ C_{1} 3300 C_{2} 0.01	$W(p) = -k/(1+pT)$, где $k = R_2/R_1$, для 1 положения тумблера $T = R_2 \cdot C_1$ для 2 положения тумблера $T = R_2 \cdot C_2$.
Апериодическое 2 -го порядка $(\zeta \ge 1)$. Колебательное $(\zeta < 1)$. Консервативное $(\zeta = 0)$.	R_1 1 C_1 C_3 1200 R_3 R_4 11 12 12 12 12 12 12 12	$W(p) = \frac{k}{T^2 p^2 + 2\zeta T p + 1},$ где для 1 положения тумблеров $T_1 = R_1 C_1, T_2 = R_2 C_1, T_3 = R_4 C_2$ $K_3 = \frac{R_4}{R_3}, K_4 = \frac{R_5}{R_6}, k = \frac{T_2}{T_1 K_4},$ $T = \sqrt{\frac{T_2 T_3}{K_3 K_4}}, \zeta = \frac{1}{2} \sqrt{\frac{T_2}{T_3 K_3 K_4}}.$

Интегрирующее	R 10K ———————————————————————————————————	$W(p) = -\frac{1}{pT}$, где $T = RC$.
Дифференци- рующее	C R 10K	W(p) = -pT, где $T = RC$.
Форсирующее	C_1 R_2 0.01 10 K R_1 0.01	W(p)=- k $(1+pT)$, где k = R_2/R_1 , T = R_1C_1 .
Запаздывающее	R_{3} R_{2} 10κ R_{1} 10κ C_{1} 0.01	$W(p) = \frac{1-pT}{1+pT},$ где $T = R_1C_1.$

1.4. ОПИСАНИЕ ЛАБОРАТОРНОГО МАКЕТА

На рис. 1.4 приведена схема лабораторного макета для исследования частотных и переходных характеристик типовых звеньев систем радиоавтоматики.

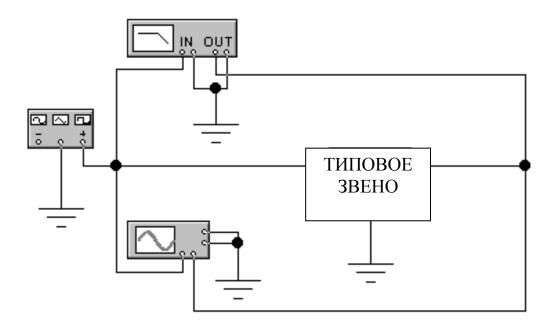


Рис. 1.4. Схема лабораторного макета

Схема макета содержит обобщенное типовое звено в виде подсхемы и контрольно измерительные приборы: функциональный генератор, осциллограф и измеритель АЧХ и ФЧХ. Для исследования частотных характеристик типовых звеньев используется измеритель АЧХ и ФЧХ, для исследования переходных характеристик — функциональный генератор и осциллограф.

1.4.1. Краткое описание программы Electronics Workbench (EWB)

Electronics Workbench (EWB) – разработка фирмы Interactive Image Technologies (www.interactive.com). Особенностью программы EWB является наличие контрольно измерительных приборов, по внешнему виду, органам управления и характеристикам максимально приближенных к их промышленным аналогам, что способствует приобретению практических

навыков работы с наиболее распространёнными приборами. Программа легко усваивается и достаточно удобна в работе.

1.4.2. Запуск программы EWB

После вызова EWB из среды WINDOWS на экране появляется чистое окно. Для загрузки лабораторной работы надо выбрать команду Ореп из меню, а затем открыть папку "Радиоавтоматика" в которой находятся файлы лабораторных макетов для исследования частотных и переходных характеристик типовых звеньев систем радиоавтоматики. Запуск программы анализа производится кнопкой "Пуск".

1.4.3. Контрольно-измерительные приборы

Функциональный генератор (Function Generator)

Лицевая функционального панель генератора показана на рис. 1.5.

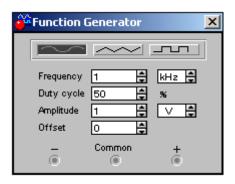
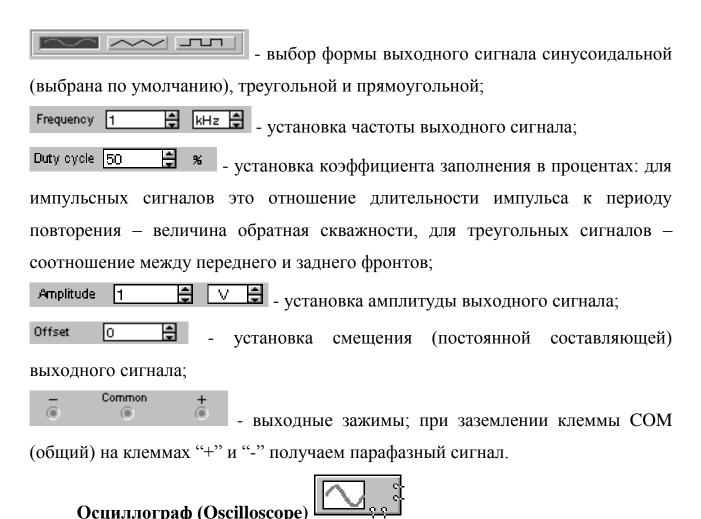



Рис. 1.5. Лицевая панель функционального генератора

Управление генератором осуществляется следующими органами управления:

Лицевая панель осциллографа показана на рис. 1.6.

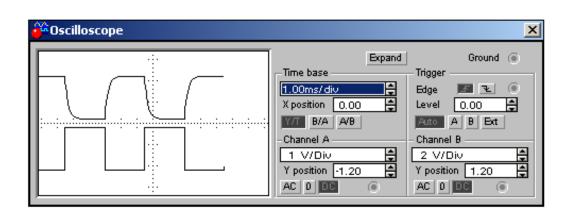


Рис. 1.6. Лицевая панель осциллографа

Осциллограф имеет два канала (CHANNEL) A и В с раздельной регулировкой чувствительности в диапазоне от 10 мкв/дел (mV/Div) до 5кВ/дел (kV/Div) и регулировкой смещения по вертикали (Y POS). Выбор режима по для наблюдения только сигналов переменного тока (его ещё называют режим "закрытого входа", поскольку в этом режиме на входе усилителя включается разделительный конденсатор, не пропускающий постоянную составляющую). В режиме 0 входной зажим замыкается на землю. В режиме DC (включен по умолчанию) проводить осциллографические онжом измерения как постоянного, так и переменного тока. Этот режим ещё называют режим "открытого входа", поскольку входной сигнал поступает на вертикальный вход непосредственно. С правой стороны от кнопки DC расположен входной зажим.

Режим развертки выбирается кнопками **ТИТ ВИА АИВ**. В режиме Y/Т (обычный режим) реализуются следующие режимы развертки: по вертикали — напряжение сигнала, по горизонтали — время; в режиме В/А: по вертикали — сигнал канала В, по горизонтали — сигнал канала А; в режиме А/В: по вертикали — сигнал канала А, по горизонтали — сигнал канала В.

В режиме Y/T длительность развертки (TIME BASE) может быть задана в диапазоне от 0,1 нс/дел (ns/div) до 1 с/дел (s/div) с возможностью установки смещения в тех же единицах по горизонтали, т. е. по оси X (X POS).

В режиме Y/Т предусмотрен также ждущий режим (TRIGGER) с запуском развертки (EDGE) по переднему или заднему фронту запускающего сигнала (выбирается напжатием кнопок , при регулируемом уровне(LEVEL) запуска, а также в режиме AUTO (от канала A, от канала B или от внешнего источника (EXT), подключаемого к зажиму в блоке управления TRIGGER. Названные режимы работы выбираются кнопками

Заземление осциллографа осуществляется с помощью клеммы GROUND в правом верхнем углу прибора.

При нажатии кнопки ZOOM лицевая панель осциллографа существенно меняется (рис. 7) — увеличивается размер экрана, появляется возможность прокрутки изображения по горизонтали и его сканирования с помощью вертикальных визирных линий (синего и красного цвета), которые за треугольные ушки (они обозначены цифрами 1и 2) могут быть курсором установлены в любом месте экрана. При этом в индикаторных окошках под экраном приводятся результаты измерения напряжения, временных интервалов и их приращений (между визирными линиями).

Изображения можно инвертировать нажатием кнопки REVERSE и записать данные в файл нажатием кнопки SAVE. Возврат к исходному состоянию осциллографа производится нажатием кнопки REDUCE.

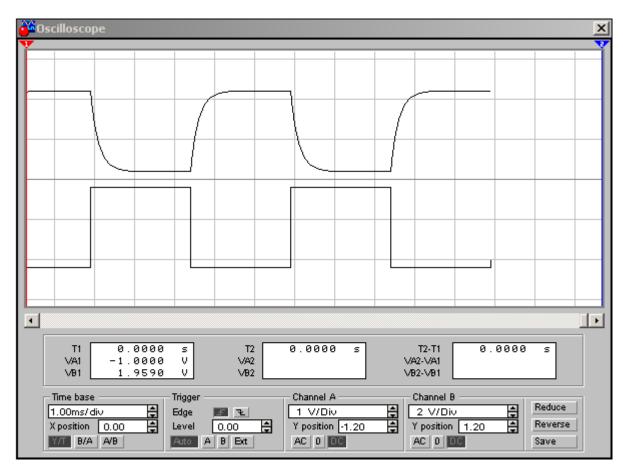


Рис. 1.7. Лицевая панель осциллографа в режиме ZOOM

Измеритель АЧХ и ФЧХ (Bode Plotter)

Лицевая панель измерителя АЧХ и ФЧХ показана на рис. 1.8. Измеритель предназначен для анализа амплитудно-частотных (при нажатой кнопке MAGNITUDE, включена по умолчанию) и фазо-частотных (при нажатой кнопке PHASE) характеристик при логарифмической (кнопка LOG, включена по умолчанию) или линейной (кнопка LIN) шкале по осям Y (VERTICAL) и X (HORIZONTAL).

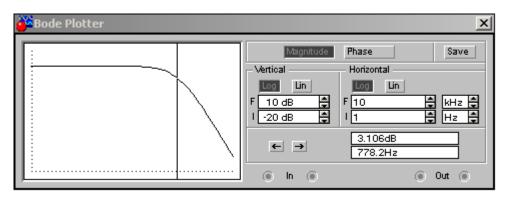


Рис. 1.8. Лицевая панель измерителя АЧХ и ФЧХ

Настройка измерителя заключается в выборе пределов измерения коэффициента передачи и вариации частоты с помощью кнопок в окошках F – максимальное минимальное Значение значение. частоты соответствующее ей значение коэффициента передачи или фазы индицируются в окошках в правом нижнем углу измерителя. Значения указанных величин в отдельных точках АЧХ или ФЧХ можно получить с помощью вертикальной визирной линейки, находящейся в исходном состоянии в начале координат и перемещаемой по графику мышью или кнопками \leftarrow и \rightarrow . Результаты измерения можно записать также в текстовый файл. Для этого необходимо нажать кнопку SAVE и в диалоговом окне указать имя файла (по умолчанию предлагается имя схемного файла). В полученном таким образом текстовом файле с расширением .bod AЧХ и ФЧХ представляется в табличном виде.

Подключение прибора к исследуемой схеме осуществляется с помощью зажимов IN (вход) и ОUТ (выход). Левые клеммы зажимов подключаются соответственно к входу и выходу исследуемого устройства, а правые – к общей шине. К входу устройства необходимо подключить функциональный генератор или источник переменного напряжения, при этом каких-либо настроек в этих устройствах не требуется.

1.5. РАСЧЕТНОЕ ЗАДАНИЕ

Рассчитать и построить асимптотические ЛАЧХ и ЛФЧХ, переходные характеристики типовых звеньев систем радиоавтоматики (пропорционального, апериодического 1-го порядка, апериодического 2-го порядка, интегрирующего, дифференцирующего, форсирующего и запаздывающего), схемы которых приведены в табл. 1.8, для всех положений тумблеров S. Определить сопрягающие частоты, частоты среза, а для колебательного звена - коэффициент демпфирования ζ .

1.6. ЭКСПЕРИМЕНТАЛЬНОЕ ЗАДАНИЕ

- 1. Вызвать EWB из среды WINDOWS на экране, выбрать команду Open из меню, а затем открыть папку "Радиоавтоматика" в которой находятся файлы лабораторных макетов для исследования частотных и переходных характеристик типовых звеньев систем радиоавтоматики. Запуск программы анализа производится кнопкой "Пуск".
- 2. Измерить и построить АЧХ и ФЧХ, ПХ типовых звеньев систем радиоавтоматики: пропорционального, апериодического 1-го порядка, апериодического 2-го порядка, интегрирующего, дифференцирующего, форсирующего и запаздывающего для всех положений тумблеров S.
- 3. По экспериментальным частотным характеристикам определить коэффициенты передачи, частоты среза, сопрягающие частоты, а по ним –

постоянные времени. Сравнить расчетные и экспериментальные частотные характеристики.

4. По экспериментальным переходным характеристикам определить время установления, характер зависимостей, а для колебательного звена – время установления первого максимума, длительность переходного процесса, перерегулирование, меру колебательности, частоту колебаний. Сравнить расчетные и экспериментальные переходные характеристики.

1.7. УКАЗАНИЯ ПО ВЫПОЛНЕНИЮ РАБОТЫ

При выборе диапазона часто для измерения частотных характеристик необходимо ориентироваться на величины постоянных времени звеньев, а также на сопрягающие частоты и частоты среза.

При исследовании переходных характеристик необходимо помнить, что длительность входных импульсов должна превышать длительность переходных процессов в звеньях.

1.8. УКАЗАНИЯ ПО ОФОРМЛЕНИЮ ОТЧЕТА

В отчете экспериментальные и расчетные логарифмические частотные характеристики и переходные характеристики для каждого звена строятся, соответственно, на одном рисунке.

Выводы должны быть сделаны по каждому пункту исследований и должны содержать: ссылки на рисунки, характер зависимостей, физическое и теоретическое объяснение зависимостей, сравнительный анализ.

1.9. КОНТРОЛЬНЫЕ ВОПРОСЫ

- 1. Что такое передаточная функция, какова её связь с частотными и переходными характеристиками?
- 2. Какие типовые воздействия Вы знаете? Дайте определение, запишите математические выражения.
- 3. Какие звенья систем радиоавтоматики относятся к типовым звеньям? Перечислите эти звенья
- 4. Что такое логарифмические и асимптотические логарифмические частотные характеристики типовых звеньев? На какой частоте и чему равна максимальная погрешность представления ЛАЧХ апериодического звена асимптотической ЛАЧХ?
- 5. Что такое годограф типового звена? Постройте годограф для апериодического звена второго порядка.
- 6. Какие параметры типовых звеньев определяют по логарифмическим частотным характеристикам?
- 7. Какие показатели качества переходного процесса определяют по переходным характеристикам?