МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РФ Федеральное государственное бюджетное образовательное учреждение высшего образования

ТОМСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ СИСТЕМ УПРАВЛЕНИЯ И РАДИОЭЛЕКТРОНИКИ (ТУСУР)

Кафедра радиотехнических систем (РТС)

Якушевич Г.Н.

Исследование системы фазовой автоподстройки частоты

Учебное методическое пособие по лабораторной работе, практическим занятиям и самостоятельной работе для студентов направления «Инфокоммуникационные технологии и системы связи» по дисциплине «Радиоавтоматика» «Исследование системы фазовой автоподстройки частоты»: Учебное методическое пособие по лабораторной работе, практическим занятиям и самостоятельной работе для студентов направления «Инфокоммуникационные технологии и системы связи» по дисциплине «Радиоавтоматика». Томск: ТУСУР. Научно-образовательный портал, 2019. – 24 с.

Учебное методическое пособие содержит описание компьютерной лабораторной работы, выполняемой в ходе изучения дисциплины «Радиоавтоматика» в среде Electronics Workbench (EWB) (Multisim, Qucs). Пособие содержит так же краткую вводную теоретическую часть, расчетные соотношения, расчетное задание, контрольные вопросы, требования по оформлению отчета.

© Якушевич Г.Н. 2019 г. © ТУСУР, РТФ, каф. РТС, 2019 г.

Содержание

1 Исследование системы автоматической регулировки усиления	4
1.1. Цель работы	4
1.2. Краткие теоретические сведения	4
1.3 Структурная схема системы ФАПЧ	5
1.3.1 Структурная схема фазового дискриминатора	5
1.3.2 Структурная схема подстраиваемого генератора	8
1.3.3 Структурная схема фильтра низких частот	11
1.3.4 Структурная схема системы ФАПЧ в терминах частот	13
1.3.5 Структурная схема системы ФАПЧ в терминах расстроек	13
1.4 Описание лабораторного макета	16
1.5 Краткое описание программы Electronics Workbench (EWB)	18
1.6 Расчетное задание	23
1.7 Экспериментальное задание	23
1.8 Указания по выполнению работы	24
1.9 Указания по выполнению отчета	24
1.10 Контрольные вопросы	24

Лабораторная работа № 4

1 Исследование системы фазовой автоподстройки частоты

1.1 Цель работы

Исследование регулировочных характеристик системы фазовой автоподстройки частоты (ФАПЧ).

1.2 Краткие теоретические сведения

Система ФАПЧ применяется для получения высокостабильных колебаний в системах радиоавтоматики, в которых ошибка отклонения по частоте должна быть равна нулю. К таким системам радиоавтоматики относятся системы использующие телевидение, демодуляцию фазомодулированные сигналы, когерентный и корреляционный прием сигналов, синхронизацию коммутаторов каналов.

На рис. 1.1 приведены эпюры сигналов, поясняющие принцип работы системы ФАПЧ. Принцип работы системы ФАПЧ основан на том, что постоянство разности фаз $\Delta \varphi$ двух синусоидальных сигналов приводит к равенству частот этих сигналов $f_1 = f_2$.

Рис. 1.1 - Эпюры сигналов, поясняющие принцип работы системы ФАПЧ

Функциональная схема системы ФАПЧ, представленная на рис. 1.2, содержит эталонный генератор (ЭГ), фазовый дискриминатор (ФД), фильтр нижних частот (ФНЧ) и подстраиваемый генератор (ПГ).

Система ФАПЧ стабилизирует частоту ПГ по частоте сигнала высокостабильного ЭГ. ФД это устройство, предназначенное для преобразования разности фаз двух синусоидальных колебаний одинаковой частоты ЭГ f_C и ПГ f_{Γ} в напряжение ФД $U_{\Phi \Pi}$, которое через ФНЧ в виде

управляющего напряжения U_y подается на вход управляющего элемента ПГ. В установившемся режиме в системе устанавливается постоянная разность фаз между напряжением ЭГ и ПГ, при этом напряжение на выходе ФД также будет постоянным, в результате частота сигнала с ПГ окажется равной частоте сигнала с ЭГ (см. рис. 1.1).

Рис. 1.2 - Функциональная схема системы ФАПЧ

1.3 Структурная схема системы ФАПЧ

Структурная схема системы ФАПЧ моделируется на основе структурных схем функциональных звеньев: ФД, ПГ и ФНЧ. Чтобы построить структурные схемы звеньев, для каждого из них необходимо найти связь между входным воздействием и выходной величиной в виде математического описания.

1.3.1 Структурная схема фазового дискриминатора

ФД это устройство, у которого амплитуда и знак выходного напряжения определяется сдвигом фаз между двумя колебаниями.

Дискриминационная характеристика ФД (рис. 1.36) является периодической функцией определяемой следующей зависимостью $U_{\phi \Pi} = K_{\phi \Pi} \cdot \cos(\varphi)$.

Поэтому дискриминационная характеристика ФД имеет бесчисленное множество состояний равновесия, отличающихся на угол $\pm 2\pi n$. Проведем линеаризацию дискриминационной характеристики ΦД. считая. что устойчивым состоянием левый скат косинусоиды. Тогда является математическое описание функциональной зависимости между входными и выходной величинами $U_{\phi \not\square} = F(\phi)$ звена ФД, представленного на рис. 1.3а, на основе рис. 4.3б запишется в следующем виде

$$\Delta U_{\Phi \mathcal{I}} = K_{\Phi \mathcal{I}} \cdot \Delta \varphi,$$

где
$$\Delta \varphi = \int_{0}^{t} 2\pi (f_{\Gamma} - f_{C}) dt$$
.

Отсюда в операторной форме запишется

$$\Delta U_{\varphi \not \Box} = K_{\varphi \not \Box} \cdot \frac{2\pi}{p} \cdot \Delta f ,$$

где $\Delta f = f_{\Gamma} - f_C$.

Рис. 1.3 - Фазовый дискриминатор: функциональная схема (а), дискриминационная характеристика (б), структурная схема (в)

Структурная схема ФД для математического описания $\Delta U_{\phi \mu} = K_{\phi \mu} \cdot \frac{2\pi}{p} \cdot \Delta f$ содержит сумматор, интегратор и звено направленного

действия с коэффициентом передачи $K_{\phi\Pi}$ (рис. 1.3в).

Рассмотрим принципиальную схему ключевого ФД (рис. 1.4а).

Ключевой ФД на основе делителя напряжения, содержит сопротивление *R* и полевой транзистор *VT*, работающий в режиме управляемого сопротивления. На рис. 1.46 приведены эпюры напряжений, поясняющие работу ключевого ФД.

Рис. 1.4 Ключевой ФД: а) принципиальная схема, б) эпюры напряжений

При подаче на затвор полевого транзистора VT положительного импульса напряжения U_{Γ} сопротивление канала полевого транзистора возрастает, и напряжение сигнала U_C появляется на стоке в виде напряжения $U_{\phi a}$. При нулевом напряжении на затворе полевого транзистора сопротивление канала мало и напряжение сигнала U_C на стоке отсутствует. Напряжение $\Phi d U_{\phi a}$, соответствующее фазовому сдвигу, со стока полевого транзистора VT подается на вход $\Phi H4$, проходит через $\Phi H4$ и на выходе $\Phi H4$ выделяется управляющее напряжение U_y . Знак и величина управляющее напряжение U_C и генератора U_{Γ} и определяется следующим выражением

$$U_{Y} = \frac{U_{aMnC}}{\pi} COS(\varphi),$$

где $U_{aмn \ C}$ - амплитудное напряжение сигнала.

Из эпюр напряжений рис. 1.4б видно также, что при выполнении условия $U_{\Gamma} > U_{C}$ максимальное выходное напряжение ключевого ФД зависит как от фазового сдвига $\Delta \varphi$, так и от амплитуды входного сигнала U_{C} . Поэтому для постоянства максимального выходного напряжения ключевого ФД при изменении амплитуды входного сигнала вводят ограничители амплитуды.

1.3.2 Структурная схема подстраиваемого генератора

Подстраиваемый генератор содержит гетеродин и управляющий элемент, который под действием управляющего напряжения изменяет частоту гетеродина так, что в результате частота ПГ окажется равной частоте ЭГ $f_{\Gamma} = f_{C}$.

Математическое описание функциональной зависимости между входной и выходной величинами $f_{\Gamma} = F(U_{V})$ для звена ПГ (рис. 1.5а) найдем на основе линеаризации реальной (сплошная линия на рис. 1.5б) регулировочной характеристики ПГ при верхней настройке.

Рис. 1.5 - Схемы ПГ: а) функциональная схема, б) регулировочная характеристика (верхняя настройка: $f_{\Gamma} > f_{C}$ и $K_{y} * K_{\phi \not{A}} < 0$; нижняя настройка: $f_{\Gamma} < f_{C}$ и $K_{y} * K_{\phi \not{A}} > 0$), в) структурная схема

Из рис. 1.56 видно, что при малых отклонениях частоты гетеродина от ее номинального значения регулировочную характеристику ПГ можно

считать линейной и представить математическую взаимосвязь в следующем виде

$$f_{\Gamma} = -K_{Y} \cdot U_{Y} + f_{\Gamma 0} = \Delta f_{\Gamma} + f_{\Gamma 0} ,$$

где $f_{\Gamma O}$ – частота настройки гетеродина,

K_y – коэффициент передачи ПГ, определяемый крутизной регулировочной характеристики ПГ.

Структурная схема ПГ для математического описания $f_{\Gamma} = -K_{Y} \cdot U_{Y} + f_{\Gamma 0} = \Delta f_{\Gamma} + f_{\Gamma 0}$ содержит звено направленного действия с коэффициентом передачи – K_{Y} и сумматор (рис. 1.5в).

Управление частотой гетеродина осуществляется с помощью управляемых элементов. Для этого в *LC*-генераторах используются варикапы, в *RC*-генераторах – полевые транзисторы в режиме управляемого сопротивления.

На рис. 1.6а приведена схема *LC*-генератора, резонансная частота $f = \frac{1}{2\pi\sqrt{LC}}$ его подстраивается с помощью включенных параллельно контуру соединенных последовательно варикапов *VB1* и *VB2*, емкость которых зависит от управляющего напряжения U_y и напряжения смещения E_{CM} , подаваемые на них через высокоомные резисторы R_{VD} .

На рисунке 4.66 приведена зависимость емкости варикапа, обратно смещенного p-n перехода, от управляющего напряжения. Напряжение смещения E_{CM} обеспечивает рабочую точку на характеристике, что позволяет, как увеличивать, так и уменьшать емкость C_{V0} варикапа с помощью управляющего напряжения U_y и, соответственно, уменьшать или увеличивать резонансную частоту параллельного *LC* контура.

При нижней настройке ПГ увеличение частоты гетеродина приводит к увеличению напряжения $\Phi Д U_{\Phi Z}$ и управляющего напряжения U_{V} , при

этом приложенное к варикапу напряжение ΔU уменьшается, и емкость варикапа C_{VD} увеличивается (см. рис. 1.6б), частота ПГ уменьшается:

$$\uparrow f_{\Gamma} \to \uparrow U_{\Phi / I} \to \uparrow U_{Y} \to \downarrow \Delta U \to \uparrow C_{VD} \to \downarrow f_{\Gamma}.$$

и наоборот:

$$\downarrow f_{\Gamma} \to \downarrow U_{\Phi / I} \to \downarrow U_{Y} \to \uparrow \Delta U \to \downarrow C_{VD} \to \uparrow f_{\Gamma}$$

Рис. 1.6 - Принципиальная схема подстраиваемого *LC*-генератора на основе ОУ (а), вольт-фарадная характеристика варикапа (б)

На рис.1.7 приведены принципиальные схемы *RC*-генераторов на основе фазосдвигающей цепи и моста Вина с использованием ОУ, частота колебаний которых соответственно запишется

$$f = \frac{1}{2\pi RC\sqrt{5 \frac{R_{\Pi}}{R} + 1}} \qquad \text{if} \qquad f = \frac{1}{2\pi \sqrt{T_1 T_2}} \sqrt{KK_{OC}} ,$$

rge $T_1 = RC, T_2 = R_{\Pi}C, K = 1 + \frac{R_2}{R_1}, K_{OC} = \frac{1}{2 + R/R_{\Pi}}.$

Рис. 1.7 - Принципиальные схемы *RC*-генераторов на ОУ: а) на основе фазосдвигающей цепи, б) на основе моста Вина

В качестве переменного сопротивления R_{Π} можно использовать электрически управляемое сопротивление на основе полевого транзистора. Сопротивление канала полевого транзистора находится из выражения

$$R_{II} = R_0 \frac{1}{1 - U_y / U_{OTC}}$$

где R_0 - сопротивление канала полевого транзистора при напряжении на затворе равном нулю, U_{OTC} - напряжение отсечки полевого транзистора.

1.3.3 Структурная схема фильтра низких частот

С выхода ФД, как нелинейного звена, на вход ФНЧ поступает постоянное напряжение и спектр частот. ФНЧ предназначен для выделения из поступающего на его вход напряжения ФД $U_{\Phi Д}$ постоянного управляющего напряжения U_{y} и подавления спектра комбинационных частот и гармоник.

Математическое описание функциональной зависимости между входной и выходной величинами $U_{y} = F(U_{\phi \mu})$ функционального звена ФНЧ, представленного на рис. 1.8а, запишется в следующем виде

$$U_{\mathcal{Y}} = W_{\boldsymbol{\Phi}}(p) \cdot U_{\boldsymbol{\Phi} \boldsymbol{\mathcal{I}}}$$

Структурная схема ФНЧ для математического описания $U_{V} = W_{\Phi}(p) \cdot U_{\Phi \square}$ состоит из звена направленного действия, коэффициент передачи которого равен $W_{\Phi}(p)$ (рис. 1.8б).

Рис. 1.8 - Схемы ФНЧ: а) функциональная, б) структурная

На рис. 1.9а-1.96 приведены принципиальные схемы ФНЧ, реализованные на основе *RC*-звена и на основе операционного усилителя (ОУ), соответственно.

Рис. 1.9 - Принципиальные схемы ФНЧ: а) на основе *RC*-звена, б) на основе ОУ

Операторный коэффициент передачи для схемы ФНЧ на основе *RC*звена запишется в следующем виде

$$W_{\Phi}(p) = \frac{Y(p)}{X(p)} = \frac{1/pC}{R+1/pC} = \frac{1}{1+pT} ,$$

где T = RC – постоянная времени.

Недостатком схемы ФНЧ на основе *RC*-звена является то, что коэффициент передачи не может быть больше 1 и необходимость введения буферных каскадов последовательном соединении. Последнее при обусловлено реализация ФНЧ тем, что данная не является однонаправленной.

Операторный коэффициент передачи для схемы ФНЧ на основе ОУ запишется в следующем виде

$$W_{\Phi}(p) = \frac{Y(p)}{X(p)} = -\frac{Z_2(p)}{Z_1(p)} = \frac{K}{1+pT} ,$$

где $K = -R_2/R_1$, $T = R_2 C_2$.

Таким образом, коэффициент передачи ФНЧ на основе ОУ определяется отношением R_2 к R_1 , а верхняя граничная частота $\omega = 1/T$.

1.3.4 Структурная схема системы ФАПЧ в терминах частот

На рис. 1.10 приведена структурная схема системы ФАПЧ в терминах частот, состоящая из структурных схем звеньев ФД, ФНЧ и ПГ в терминах частот.

Рис. 1.10 - Структурная схема системы ФАПЧ в терминах частот

Полученная структурная схема системы ФАПЧ в терминах частот не удобна для анализа: во-первых, из-за наличия опорной частоты $f_{\Gamma 0}$; вовторых, как отмечалось выше, при анализе системы ФАПЧ важно относительное отклонение частоты. Поэтому упростим структурную схемы ФАПЧ в терминах частот обведенную на рис. 1.10 сплошной тонкой линией и определим структурную схему системы ФАПЧ в терминах расстроек.

1.3.5 Структурная схема системы ФАПЧ в терминах расстроек

Для структурной схемы системы ФАПЧ в терминах расстроек запишем:

1) текущее значение частоты гетеродина $f_{\Gamma} = f_{\Gamma 0} + \Delta f_{\Gamma}$,

2) текущее значение частоты сигнала $f_C = f_{C0} + \Delta f_C$,

3) ошибку системы ФАПЧ $\Delta f = f_{\Gamma} - f_{C} = (f_{\Gamma 0} + \Delta f_{\Gamma}) - (f_{C0} + \Delta f_{C}).$

С учетом того, что для системы $\Phi A \Pi \Psi f_{\Gamma 0} = f_{C0}$ получим

$$\Delta f = \Delta f_{\Gamma} - \Delta f_{C},$$

что соответствует сумматору в структурной схеме системы ФАПЧ в терминах расстроек. Теперь можно построить структурную схему системы ФАПЧ в терминах расстроек (рис. 1.11).

Рис. 1.11 - Структурная схема системы ФАПЧ в терминах расстроек

На основе структурной схемы системы Φ АПЧ в терминах расстроек (рис. 1.11), ошибка регулирования Δf запишется в следующем виде

$$\Delta f = \Delta f_C - \Delta f_\Gamma = \Delta f_C - \Delta f \cdot \frac{2\pi}{p} \cdot K_{\Phi \mu} \cdot W_{\Phi}(p) \cdot K_{\gamma}.$$

Отсюда получим

$$\Delta f = \frac{\Delta f_C}{1 + \frac{2\pi}{p} \cdot K_{\phi \mu} \cdot W_{\phi}(p) \cdot K_V}$$

Таким образом, статическая ошибка регулирования системы ФАПЧ $\Delta f = 0$, так как для статического стационарного режима p = 0.

При больших начальных расстройках начинают проявляться нелинейности элементов системы ФАПЧ. Проведем графический анализ работы системы ФАПЧ при больших расстройках.

Регулировочная характеристика системы ФАПЧ (рис. 1.12) в режиме слежения представляет прямую линию, совпадающую с осью абсцисс Δf_C .

Рис. 1.12 - Регулировочная характеристика системы ФАПЧ (а), эпюры управляющих напряжений U_y при вхождении в режим слежения (б), дискриминационная характеристика ФД с различными точками у стационарного режима (в)

Полосой удержания Π_{Y} называют область отклонений частот сигнала, соответствующей режиму слежения, если система вначале находилась в этой области, при этом полоса удержания равна $\Pi_{Y} = f_{YB} - f_{YH}$, где f_{YB} и f_{YH} - верхняя и нижняя частоты удержания, соответственно.

Полосой захвата Π_3 называют область отклонений частот сигнала, соответствующей режиму слежения, если система вначале находилась вне этой области, при этом полоса захвата равна $\Pi_3 = f_{3B} - f_{3H}$, где f_{3B} и f_{3H} - верхняя и нижняя частоты захвата, соответственно. При этом всегда выполняется соотношение $\Pi_V > \Pi_3$ (см. рис. 1.12а).

Таким образом, в полосе удержания в режиме слежения ошибка регулирования системы ФАПЧ $\Delta f = 0$ (рис. 1.12а). При этом между частотами колебаний ЭГ и ПГ устанавливается разность фаз $\Delta \varphi$, определяемая точками пересечения дискриминационной характеристики ФД с горизонтальными прямыми 1 или 2 (на рис. 1.12в точки у). Вне полосы удержания ошибка регулирования $\Delta f = \Delta f_C$ (см. рис. 1.12а). При этом колебания ЭГ и ПГ образуют биения, которые детектируются ФД и ослабленные ФНЧ поступают на вход управляющего элемента. При

сближении частот ЭГ и ПГ частота биений, поступающих на вход управляющего элемента, уменьшается, а амплитуда колебаний за счет уменьшения ослабления ФНЧ увеличивается. Форма напряжений при приближении к частоте захвата приведена на двух верхних эпюрах рис. 1.126. На частоте захвата амплитуды биений становится достаточной для вхождения системы ФАПЧ в режим слежения и появляется постоянное управляющее напряжение (нижняя эпюра рис. 1.126). При этом полоса захвата в системе ФАПЧ меньше полосы удержания $\Pi_3 < \Pi_y$. Это неравенство определяется наличием в системе ФАПЧ функционального звена ФНЧ.

Полосы удержания и захвата определяются из выражений

$$\Pi_{Y} = 2 K_{Y} U_{Y MAX}, \ \Pi_{3} = 1.21 \sqrt{\frac{\Pi_{Y}}{T_{\Phi H \Psi}}}$$

где - $U_{V MAX} = \frac{U_{a Mn C}}{\pi} K_{\phi \mu} K_{\phi \mu}$, а $T_{\phi \mu}$ - постоянная времени ФНЧ.

Таким образом, в системе ФАПЧ ошибка регулирования по частоте равна нулю за счет того, что в системе происходит слежение за разностью фаз колебаний ЭГ и ПГ.

1.4 Описание лабораторного макета

На рис. 1.13 приведена схема лабораторного макета для исследований регулировочных характеристик подстраиваемого генератора и системы ФАПЧ.

Схема лабораторного макета содержит подстраиваемый генератор (ПГ), фазовый детектор (ФД), фильтр нижних частот (ФНЧ), усилительинвертор (Уинв), сумматор (СУМ) и контрольно-измерительные приборы: функциональный генератор, генератор синусоидального сигнала, осциллограф, источники постоянного напряжения и вольтметр постоянного напряжения. Схема макета содержит три тумблера: тумблер 1 и тумблер три 1 исследования В положении используются для регулировочных генератора, положении 2 характеристик подстраиваемого а В _ регулировочных характеристик системы ФАПЧ, тумблер 2 - замыкает или размыкает цепь обратной связи системы ФАПЧ.

Рис. 1.13 – Схема лабораторного макета

На рис. 1.14 приведена принципиальная схема подстраиваемого *RC*-генератора на основе операционного усилителя и моста Вина.

Рис. 1.14 – Принципиальная схема *RC*-генератора на основе моста Вина

На рис. 1.15 приведены принципиальные схемы ФД и ФНЧ на основе операционных усилителей.

Рис. 1.15 – Принципиальные схемы ФД (а) и ФНЧ (б)

На рис. 1.16 приведены принципиальные схемы усилителя-инвертора и сумматора на основе операционных усилителей.

Рис. 1.16 – Принципиальные схемы Уинв (а) и СУМ (б)

1.5 Краткое описание программы Electronics Workbench (EWB)

Electronics Workbench (EWB) – разработка фирмы Interactive Image Technologies (www.interactive.com). Особенностью программы EWB является наличие контрольно измерительных приборов, по внешнему виду, органам управления и характеристикам максимально приближенных к их промышленным аналогам, что способствует приобретению практических навыков работы с наиболее распространёнными приборами. Программа легко усваивается и достаточно удобна в работе.

Запуск программы EWB

После вызова EWB из среды WINDOWS на экране появляется чистое окно. Для загрузки лабораторной работы надо выбрать команду Ореп из меню, а затем открыть папку "ФАПЧ" в которой находится файл

лабораторного макета для исследований регулировочных характеристик системы фазовой автоподстройки частоты (ФАПЧ).

Запуск программы анализа производится кнопкой "Пуск".

Контрольно-измерительные приборы

Осциллограф (Oscilloscope)

Лицевая панель осциллографа показана на рис. 1.17.

Осциллограф имеет два канала (CHANNEL) А и В с раздельной регулировкой чувствительности в диапазоне от 10 мкв/дел (mV/Div) до 5кВ/дел (kV/Div) и регулировкой смещения по вертикали (Y POS). Выбор режима по входу осуществляется нажатием кнопок **АС D .**.

Рис. 1.17 - Лицевая панель осциллографа

Режим АС предназначен для наблюдения только сигналов переменного тока (его ещё называют режим "закрытого входа", поскольку в этом режиме на входе усилителя включается разделительный конденсатор, не пропускающий постоянную составляющую). В режиме 0 входной зажим замыкается на землю. В режиме DC (включен по умолчанию) можно осциллографические измерения проводить как постоянного, так И переменного тока. Этот режим ещё называют режим "открытого входа",

поскольку входной сигнал поступает на вертикальный вход непосредственно. С правой стороны от кнопки DC расположен входной зажим.

Режим развертки выбирается кнопками **УЛТ В/А А/В**. В режиме Y/T (обычный режим) реализуются следующие режимы развертки: по вертикали – напряжение сигнала, по горизонтали – время; в режиме B/A: по вертикали – сигнал канала B, по горизонтали – сигнал канала A; в режиме A/B: по вертикали – сигнал канала A, по горизонтали – сигнал канала B.

В режиме Y/T длительность развертки (TIME BASE) может быть задана в диапазоне от 0,1 нс/дел (ns/div) до 1 с/дел (s/div) с возможностью установки смещения в тех же единицах по горизонтали, т. е. по оси X (X POS).

Заземление осциллографа осуществляется с помощью клеммы GROUND в правом верхнем углу прибора.

При ZOOM нажатии кнопки лицевая осциллографа панель существенно меняется (рис. 1.18) – увеличивается размер экрана, появляется возможность прокрутки изображения по горизонтали и его сканирования с помощью вертикальных визирных линий (синего и красного цвета), которые за треугольные ушки (они обозначены цифрами 1и 2) могут быть курсором установлены в любом месте экрана. При этом в индикаторных окошках под экраном приводятся результаты измерения напряжения, временных интервалов и их приращений (между визирными линиями).

Рис. 1.18 - Лицевая панель осциллографа в режиме ZOOM

Изображения можно инвертировать нажатием кнопки REVERSE и записать данные в файл нажатием кнопки SAVE. Возврат к исходному состоянию осциллографа производится нажатием кнопки REDUCE.

1 mV/100 kHz/0 Deg

~ ~ ~

Источник немодулированного сигнала

Для источника немодулированного переменного напряжения с помощью диалогового окна задаются: напряжение (Voltage), частота (Frequency) и начальная фаза (Fhase) синусоидального сигнала.

Функциональный генератор (Function Generator)

Лицевая функционального панель генератора показана на рис. 1.19.

Управление генератором осуществляется следующими органами управления:

21

выбор формы выходного сигнала синусоидальной (выбрана по умолчанию), треугольной и прямоугольной;

Рис. 1.19 - Лицевая панель функционального генератора

- установка частоты выходного сигнала; Frequency l1 kHz 🚔 Duty cycle 50 Ж установка коэффициента заполнения в процентах: для импульсных сигналов это отношение длительности импульса к периоду повторения – величина обратная скважности, для треугольных сигналов – соотношение между переднего и заднего фронтов; 😑 - установка амплитуды выходного сигнала; Amplitude 1 Offset ŧ 0 установка смещения (постоянной составляющей) выходного сигнала;

(i) 6 - выходные зажимы; при заземлении клеммы СОМ (общий) на клеммах "+" и "-" получаем парафазный сигнал.

Источник постоянного напряжения

Для источника постоянного напряжения с помощью диалогового окна, вызываемого двойным щелчком мыши по значку источника, задается значение ЭДС.

Common

Для вольтметра с помощью диалогового окна задаются: внутреннее сопротивление, режим измерения постоянного или переменного напряжения.

1.6 Расчетное задание

1. Рассчитать и построить регулировочную характеристику ПГ, приведенного на рис. 1.14, для сопротивления канала полевого транзистора при напряжении на затворе равном нулю $R_0 = 2\kappa Om$ и напряжении отсечки $U_{OTC} = 2B$.

2. По построенной регулировочной характеристике определить передаточную функцию управляемого элемента (крутизну) *K*_{*y*}.

3. Рассчитать максимальное напряжение управления U_{YMAX} , полосу удержания Π_{Y} , полосу захвата Π_{3} и построить регулировочную характеристику системы ФАПЧ для значения напряжения смещения на затворе $U_{CM} = 0.5B$.

4. Оценить устойчивость работы системы ФАПЧ.

1.7 Экспериментальное задание

1. Измерить регулировочную характеристику ПГ для разомкнутой системы ФАПЧ для значения напряжения смещения на сумматоре $U_{CM} = 0.5B$ (на затворе -0.5В), задавая значения напряжения настройки U_H от -1В до +1В.

2. Измерить с помощью осциллографа регулировочную характеристику управления замкнутой системы ФАПЧ для значения напряжения смещения на сумматоре $U_{CM} = 0.5B$, задавая напряжение настройки U_H треугольной формы с помощью функционального генератора.

3. Определить по регулировочной характеристике управления замкнутой системы ФАПЧ максимальные напряжения управления U_{YMAX} на частотах $f_{YB}, f_{YH}, f_{3B}, f_{3H}$, полосу удержания Π_{Y} , полосу захвата Π_{3} и построить регулировочную характеристику системы ФАПЧ.

4. Измерить регулировочные характеристики системы ФАПЧ в режиме слежения и вне режима слежения.

5. Измерить переходные характеристики системы ФАПЧ в режиме слежения.

 Определить максимальное напряжение сигнала U_{C MAX} при котором система ФАПЧ теряет устойчивость.

1.8 Указания по выполнению работы

При измерении регулировочной характеристики ПГ для определения значения частоты используется осциллограф.

При исследовании регулировочных характеристик ПГ и системы ФАПЧ устанавливается соответствующая развертка осциллографа.

1.9 Указания по оформлению отчета

Выводы должны быть сделаны по каждому пункту исследований и должны содержать: ссылки на рисунки, характер зависимостей, физическое и теоретическое объяснение зависимостей, сравнительный анализ.

1.10 Контрольные вопросы

1. Дайте определение регулировочной характеристики ПГ и системы ФАПЧ.

2. Объясните принцип регулировки частоты.

3. Дайте определение полосы захвата и полосы удержания.

4. Почему полоса удержания в системе ФАПЧ больше полосы захвата, могут ли они быть равны?

5. Каковы функции ФНЧ в системе ФАПЧ? Из каких соображений выбирается постоянная времени ФНЧ?

6. Объясните причины потери устойчивости системы ФАПЧ.