Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

ТОМСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ СИСТЕМ УПРАВЛЕНИЯ И РАДИОЭЛЕКТРОНИКИ (ТУСУР)

Кафедра сверхвысокочастотной и квантовой радиотехники
(СВЧиКР)

кафедра сверхвысокочастотной и к	вантовои рад	иотехники
(СВЧиКР)		
	УT	ВЕРЖДАЮ
	Заведующи	й кафедрой СВЧ и КР
		С.Н. Шарангович
		2019 г.
монтаж оптической му	ФТЫ «SNR-	FOSC X»
Методические указания к лабораторной работе дл	я бакалавров	направления подготовки
11.03.02 – Инфокоммуникационные технолог	ии и системы	связи, дисциплины:
«Проектирование, строительство и	эксплуатаци	я ВОЛС»
		Разработчики:
		доцент каф. СВЧ и КР
		А. С. Перин

магистрант группы 158-М

_____С. Б. Зыль

Оглавление

3
3
7
9
14
14
14

1 Введение

Цель работы: Получение практических навыков при монтаже оптическое муфты типа «SNR-FOSC X». Выполнение сварных соединений оптических волокон с помощью сварочного аппарата FiberFox Mini-4S.

2 Теоретическая часть

Волоконно-оптической муфтой называется пассивное устройство, предназначенное для обеспечения защиты мест сварных соединений оптоволокон при устройстве ВОЛС. Сконструирована муфта так, что не затрудняет доступ к волокну при осуществлении его обслуживания. Благодаря тому, что корпус муфты герметичный, ее можно применять почти в любых средах. И главное, правильно подобрать тип муфты при обустройстве сети.

Современные оптические муфты и их классификация

В рядах оптических муфт эталонами могут и должны служить только те муфты, которые полностью соответствуют предъявляемым к ним требованиям. В данный исторический момент это «Правила применения муфт для монтажа кабелей связи» 2006 года.

С момента установки на ВОЛС первой отечественной муфты, изготовленной по продуманным техническим условиям после испытаний предварительных образцов, прошло более 25-ти лет. Опыт этих лет отражён в «Правилах». Конечно, этот документ не безупречен. Его можно и нужно обсуждать, и критиковать потому, что оптические муфты живут и развиваются. Они с каждым годом обретают новые свойства и возможности.

Оптический кабель любой конструкции можно смонтировать в любой оптической муфте. Точнее, в любой муфте можно срастить волокна сваркой и уложить сварные соединения и запасы волокон в кассетах внутри муфты. Но загерметизировать вводы кабелей разных диаметров, обеспечить их продольную герметизацию, соединить или изолировать броню, соединить экраны алюмополиэтиленовых оболочек, вывести провода КИП можно только в специализированных муфтах, имеющих для этого особые элементы внутри корпуса и комплекты дополнительных внутренних и внешних деталей, устройств и приспособлений.

При этом нужно иметь в виду и то, что задача муфты не только позволить разместить в ней сросток волокон двух или нескольких кабелей, но и обеспечивать безопасность этого сростка в течение последующих 25-ти лет. А также обеспечивать

возможность быстро находить и устранять повреждения через пять, десять и более лет после первоначального монтажа муфты.

Поэтому отечественные оптические муфты, например, муфты ЗАО «СВЯЗЬ СТРОЙ ДЕТАЛЬ» (ССД), являются специализированными устройствами, оснащёнными элементами, выполняющими определённые функции при первоначальном монтаже и при последующей многолетней эксплуатации муфты в колодце, в котловане или на опоре.

Специализация предполагает чёткую классификацию муфт и присвоение им квалификационных характеристик, отражающих их оснащение и возможности. Необходим и признаваемый всеми классификатор, позволяющий оценивать возможности муфт и выбирать их при проектировании и строительстве линий.

У нас с вами на сегодняшний день такой классификатор имеется. Это «Правила» 2006 года. Посмотрим, полностью ли отражает свойства и возможности оптических муфт этот документ, и каких характеристик для муфт не хватает для полного отражения особенностей их применения на различных волоконно-оптических сетях.

«Правила» классифицируют муфты по месту установки, по температуре эксплуатации и по разрывному усилию, которое должны выдерживать кабельные вводы. Муфты при этом делятся на шесть типов. Для каждого типа муфт определены места, в которых муфты могут устанавливаться. А также указано, какими свойствами должна обладать муфта определённого типа, и какие условия эксплуатации она должна выдерживать.

Например, в пункте 2.5.1. Правил записано:

Муфты должны быть устойчивы к воздействию температур:

- а) типы 1, 2, 4, 5 от минус 40 до 50° С (муфты для подводных и подземных кабелей);
 - б) тип 3 от минус 60 до 70° С (муфты, устанавливаемые на открытом воздухе);
- в) тип 6 от 5 до 50° С (муфты, предназначенные для аварийно-восстановительных работ от минус 30° С).

По нашему мнению, температурный диапазон для муфт 4-го типа должен быть расширен. Например, для муфт, установленных в котлованах, диапазона от минус 40 до 50° С вполне достаточно. Но опыт показал, что очень часто муфты на подземных ВОЛС приходится устанавливать на открытом воздухе. Например, на различных опорах, на железнодорожных мостах и автомобильных эстакадах, на оградах и различных металлоконструкциях на территориях промышленных предприятий. Поэтому, выбирая муфты, которые будут использоваться на подземной ВОЛС, связист-подрядчик или проектировщик с опытом работы выберет те муфты, которые, формально относясь к типу

4, в то же время способны работать при температурах, характерных для муфт типа 3. Поэтому все муфты ССД типа МТОК, которые могут использоваться в качестве муфт 4-го типа, способны работать в диапазоне от минус 60°С.

Кроме того, каждая муфта ССД может использоваться в качестве муфты сразу нескольких типов. Поэтому у компании ССД существует своя, дополнительная, система классификации оптических муфт, дополняющая систему «Правил» и позволяющая потребителям муфт выбирать из нескольких типоразмеров муфт вариант, полностью соответствующий требованиям «Правил», но отличающийся от других по размерам, по ёмкости и по цене. Например, для сращивания самонесущих кабелей с установкой муфты на опоре (муфта 3-го типа) можно использовать муфты МТОК-ВЗ и МТОК-К6.

Но можно и самые простые и дешёвые – МОГ-Т-3 и МТОК-Л7. Ту или иную муфту выбирают с учётом количества вводимых в неё кабелей (от трёх до шести) и количества сварных соединений, которые необходимо разместить на кассетах муфты (от 16-ти сростков до 480-ти).

Собственная классификация муфт предполагает деление оптических муфт на группы, соответствующие определённым конструкциям ОК.

Муфты делятся на: городские, подвесные (внутризоновые), универсальные, магистральные. Все они представлены в таблицах, позволяющих по конструкции кабеля подобрать муфту и комплект для ввода ОК. Это новые поколения муфт, выпускаемые по техническим условиям, разработанным в 2008-2009 годах с учётом требований «Правил» 2006 года.

Недостатки существующих систем классификации оптических муфт

Если представить всех потребителей, заинтересованных в как можно более полном представлении характеристик и особенностей оптических муфт, в виде цепочки с последовательно соединёнными звеньями, то она будет выглядеть так: «Заказчик» (оператор связи) — «Проектировщик» — «Подрядчик» — «Изготовитель муфт».

Опыт продаж муфт, начиная с 1987 года, показал, что «Заказчик» и «Проектировщик» при выборе муфт могут обойтись общей классификацией муфт по системе, представленной в «Правилах», без обозначения каких-либо особенностей монтажа муфт и их установки с защитой, заземлением, КИП и т.д. В результате «Подрядчик» получает проект, в котором о муфтах и о принадлежностях для них не сказано ничего (к сожалению, такие проекты встречаются довольно часто).

И вот, после анализа и уточнения такого проекта «Подрядчик» исследует трассу кабеля, определяет требования к муфтам, обращается к «Изготовителю» и они начинают диалог, в котором положения «Правил» 2006 года уже не упоминаются. Там используются

уже совершенно другие термины и определения, и учитывается всё: марка кабеля, особенности его конструкции, вариант монтажа муфты, её оснащение внутри корпуса, дополнительные принадлежности для установки, защиты и заземления муфт, специальные инструменты и приспособления.

Получается, что компании изготовителей муфт, для общения с конечными потребителями требуется новая, более полная система классификации муфт. В этой системе основой обязательно должны быть положения «Правил». Но, в то же время, к ним должны прибавляться термины и определения, выработанные заводом-изготовителем в процессе общения с потребителями.

Классификация муфт

Введен ряд определений, классифицирующих оптические муфты по способу монтажа. Большинство определений будет понятно всем связистам-линейщикам, кто использовал традиционные муфты на кабелях с металлическими жилами.

Например, на магистральных и внутризоновых кабелях с металлическими жилами по способу монтажа различались *муфты прямые, разветвительные, симметрирующие, конденсаторные, пупиновские, стыковые, изолирующие, газонепроницаемые.*

На железнодорожных кабелях связи дополнительно к этому списку различались тройниковые разветвительные и врезные разветвительные муфты.

На городских кабелях различались *прямые*, линейные разветвительные и станционные разветвительные муфты.

Опыт строительства и эксплуатации ВОЛС показал, что на ВОЛС различного назначения используются муфты, отличающиеся друг от друга по способу монтажа. Причём зачастую, этот способ монтажа требует от муфты наличия на корпусе и в комплекте муфты определённых деталей и материалов. Опыт общения с потребителями муфт свидетельствует о том, что необходимо ввести ещё несколько определений для муфт, чтобы отразить все варианты их монтажа и использования. То есть ввести новые варианты классификации с учётом предложений и замечаний потребителей.

Вот какие определения можно присвоить оптическим муфтам, различая их по способу монтажа и по оснащению:

Прямая муфта – муфта, в которой сращиваются две строительные длины ОК одной марки.

Разветвительная муфта – муфта, в которую вводятся несколько отдельных ОК, один – основной и несколько ответвляющихся ОК, от двух до двадцати и более.

Разветвительная муфта с транзитом — муфта, в которую основной ОК вводится «транзитом», то есть без разрезания в овальный патрубок, а в остальные патрубки вводятся ответвляющиеся кабели, от одного до 8-ми.

Изолирующая муфта — муфта, которая устанавливается в помещении ввода кабеля на оконечном пункте ВОЛС при необходимости заземления металлических элементов ОК — брони, упрочняющих проволок, экранов алюмополиэтиленовых оболочек, оплёток и т.д.

Из изолирующей муфты можно вывести провода заземления, от брони линейного OK.

Муфта кроссовая оптическая — муфта, используемая в качестве оконечного устройства в экстремальных условиях (крыши, опоры, уличные шкафы, неотапливаемые технические помещения). Муфта оснащается панелью с оптическими розетками. К розеткам с внутренней стороны подключаются разъёмы пигтейлов, приваренных к волокнам линейного кабеля. К наружной стороне розеток подключаются патчкорды, выводимые из муфты к абонентам. В кроссовых муфтах на сетях типа PON устанавливаются и оптические разветвители.

3 Руководство по монтажу муфты модели: SNR-FOSC-X

Проходная горизонтальная муфта для волоконно-оптического кабеля SNR-FOSC-X применяется для защиты мест сварки оптического кабеля в местах повышенных нагрузок и возможных внешних воздействий. Эту муфту можно использовать для воздушных линий, для закладки в землю, для крепления к стене, для крепления к стене в вентиляционной системе.

Данное руководство по монтажу предназначено для волоконно-оптической соединительной муфты (FOSC) как инструкция по установке.

Область применения:

Предназначена для сращивания и разветвления оптического кабеля при воздушной, настенной или подземной инсталляции (колодцы кабельной канализации). Плоская малогабаритная конструкция позволяет размещать муфту в ограниченном пространстве. Пазы с одной стороны корпуса позволяют удобно подвешивать муфту на несущем тросе. Рабочий диапазон температур от -40 до 65 ℃.

Основные технические характеристики и конфигурации.

Размеры и емкость:

Внешние размеры, мм	205x210x45
Масса, кг	1,0
Количество входных/выходных портов для кабеля	4
Диаметр волоконно-оптического кабеля, мм	6 – 15
Емкость муфты	8 волокон (16 в два яруса)

Основные составные части:

№	Название компонента	Количество	Функции
1	Корпус	1 шт.	Основная защита сварных соединений волоконно-оптического кабеля
2	Волоконно-оптическая соединительная кассета	1 кассета	Крепление КДЗС и оптических волокон внутри муфты
3	Основание	1 шт.	Крепление силовых элементов волоконного кабеля, и соединительных кассет
4	Винт	4 шт.	Крепление крышки к основанию муфты
5	Герметизирующая прокладка	1 комплект	Герметизация соединения крышки и основания муфты

Инструменты, необходимые для монтажа.

Название оборудования	Применение
Сварочный аппарат Mini-4S	Сварка оптических волокон
	Маркировка, временное крепление, очистка кабеля, модулей и оптических волокон, очистка кабеля, модулей
Чемодан с инструментами «FIS F10053»	и оптических волокон, скалывание оптических волокон, зачистка защитных покрытий оптических волокон, сборка
	муфты, Измерение волоконного кабеля, удаление
	защитных оболочек кабеля, срезание силовых элементов
	кабеля, влагоизоляция, пылеизоляция.

На рисунке 1 представлена схема по монтажу оптической муфты

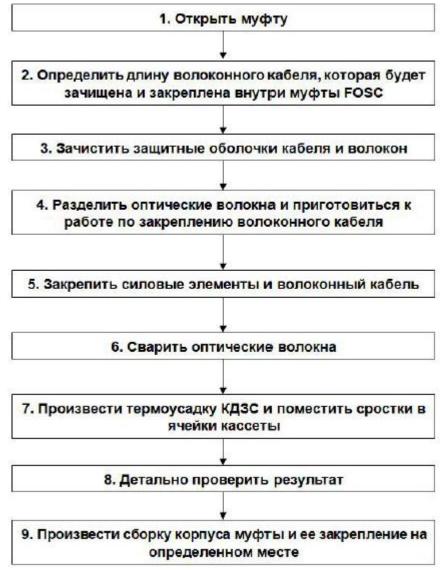


Рисунок 1 - Схема по монтажу оптической муфты

4 Порядок выполнения работы

Процесс монтажа муфты FOSC.

- 1. Открытие муфты:
- 1.1 Расчистите место работ и определите, где именно будет установлена муфта, затем разместите поблизости количество волоконного кабеля, требуемое для запаса.
- 1.2 Проверьте наличие всех указанных основных компонентов и аксессуаров внутри комплекта, а также их техническое состояние.
 - 1.3 Чтобы открыть муфту:
 - Извлеките все болты крышки муфты с помощью специального гаечного ключа.
 - Поднимите крышку вверх, откройте муфту.

- 1.4 Смотрите рисунок 1.
- 2. Определение длины волоконного кабеля, которая будет зачищена и закреплена внутри муфты FOSC

Определение длины волоконного кабеля:

- 2.1 Отмерить участок кабеля в 1950 мм: этот запас используется для зачистки кабеля от оболочек, заведения защитных модулей в муфту, выделения волокон из модулей и последующей сварки.
- 2.2 Отмерить участок кабеля в 60 мм: расстояние от герметизирующей прокладки до прижимной планки закрепляющей кабель.
- 2.3 Отмерить участок волокон в защитных модулях длиной 350 мм: расстояние от точки крепления кабеля в муфте до точки крепления модулей к сварочной кассете.
- 2.4 Отмерить участок волокон длиной 1600 мм: после выделения волокон из защитных модулей данный запас укладывается внутри кассеты после сварки.
 - 2.5 Смотрите рисунок 2.

Внимание! Делайте достаточный запас длины волокна для сварки на случай дефектов в ее процессе.

Длина зачищенных от оболочек кабеля волокон также может быть определена монтажником согласно требованиям по монтажу.

Рисунок 2 - Определение длины волоконного кабеля

- 3. Зачистка защитных оболочек кабеля и волокон:
- 3.1 Снимите защитные оболочки волоконного кабеля до отмерянной метки с помощью специального ножа или фена. Вскрытие защитных модулей с оптическим волокном производится стриппером. Для определения длины зачищаемых участков следуйте указаниям рисунка 2. В некоторых ситуациях, длина, на которую производится зачистка, может быть самостоятельно определена монтажником согласно требованиям по монтажу.

3.2 Смотрите рисунок 3.

Внимание! Иногда бывает сложно снять всю оболочку кабеля целиком за один подход (например, в случае протяжки кабеля с металлическими силовыми элементами – прутками или гофрированной лентой). В этом случае удобнее всего пользоваться специальным феном, либо аккуратно счищать оболочки шаг за шагом небольшими участками по несколько сантиметров, чтобы избежать разрыва оптических волокон.

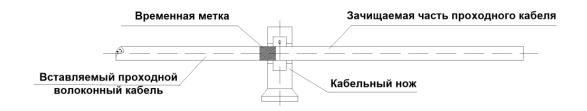


Рисунок 3 - Зачистка защитных оболочек кабеля и волокон

- 4. Разделение оптических волокон и приготовление к работе по закреплению волоконного кабеля:
- 4.1 Намотайте 2 слоя изоляционной ленты на оболочку кабеля. Затем удалите гидрофобный заполнитель, сняв защитный модуль, с помощью тканевой тряпки и специальной жидкости (либо бензина) для того чтобы разделить волокна. Каждое отделенное и протертое от гидрофоба волокно смотайте в кольцо диаметром около 100 мм и закрепите изолентой.
- 4.2 Данная муфта имеет 4 входных/выходных портов. Количество используемых волоконных кабелей определяется заказчиком согласно его действующим требованиям и необходимо удалить соответствующее количество заглушек портов.
- 4.3 Данная муфта подходит для следующих диаметров волоконных кабелей соответственно:
 - Port A: подходит для волоконных кабелей диаметром макс. 18 мм
 - Port B: подходит для волоконных кабелей диаметром макс. 6 мм
- 4.4 Соответствующие входные/выходные порты выбираются в зависимости от устанавливаемых кабелей. Если диаметр волоконного кабеля меньше, чем диаметр отверстия порта, используйте герметизирующую ленту для его увеличения. При использовании герметизирующей ленты для увеличения диаметра контролируйте периметр кабеля с помощью измерительной бумаги с соответствующими метками (Отверстие A, Отверстие B) которая идет в комплекте с муфтой.
- 4.5 Оставьте порядка 35 мм длины центрального силового элемента от точки, где заканчиваются оболочки кабеля, излишки обрежьте (смотрите рисунок 4).

Внимание!

- 1. Прежде чем увеличивать диаметр кабеля герметизирующей лентой, кабель необходимо обтереть и зашлифовать абразивной тканью и очистить спиртом.
- 2. Для отрезания силовых элементов кабеля пользуйтесь кусачками или тросокусами, если силовые элементы металлические; либо специальными ножницами, если кабель защищен кевларовыми нитями.

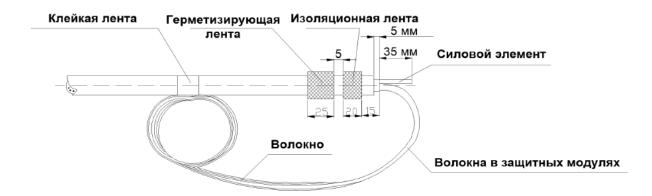


Рисунок 4 – Разделение оптических волокон

- 5. Закрепление силовых элементов и волоконного кабеля:
- 5.1 После завершения всех предыдущих операций снимите заглушки используемых портов, прижимную планку и гайку крепления силовых элементов. Еще раз внимательно проверьте и убедитесь в том, что подготовленный зачищенный волоконный кабель подходит для закрепления в выбранном месте. Если это не так, необходимо сразу же произвести дополнительную подгонку диаметра кабеля. В противном случае это сильно отразится на качестве монтажа.
- 5.2 Затяните прижимную планку, чтобы накрепко зафиксировать вставленный в порт волоконный кабель. Если диаметр кабеля слишком мал, нужно увеличить его с помощью изоляционной ленты.
- 5.3 Затяните гайку крепления силовых элементов, прижав ею, закрепляемые силовые элементы кабеля с помощью специального гаечного ключа (есть в комплекте), затем подтяните ее накрепко с помощью металлического гаечного ключа (должен быть выдан бригадиром).
- 5.4 Оставив некоторый запас в пространстве основания муфты под соединительной кассетой, заведите в нее модули с оптическим волокном и закрепите их нейлоновыми стяжками. Модули закрепляются в кассете в специальных желобах расположенных по углам. Нейлоновые стяжки крепятся через отверстия в желобах.
 - 5.5 Смотрите рисунок 5.

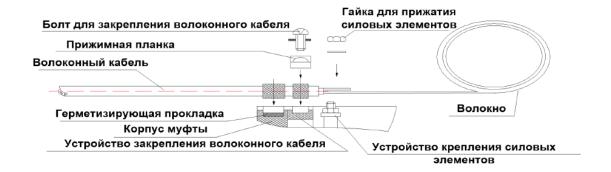


Рисунок 5 – Закрепление силовых элементов и волоконного кабеля

- 6. Сварка оптических волокон:
- 6.1 Следуйте указаниям руководства пользователя используемого сварочного аппарата Mini-4S для того чтобы сварить оптические волокна.
 - 7. Термоусадка КДЗС и помещение сростков в ячейки кассеты:
- 7.1 После окончания сварки всех волокон, первое сформированное волоконное кольцо должно быть помещено в дальнюю часть соединительной кассеты. Оставшиеся волокна должны быть скручены в форме колец с диаметром не менее 80 мм.
- 7.2 Кольца помещаются в соединительную кассету вместе с усаженными в печи сварочного аппарата КДЗС. При этом сначала закрепите КДЗС в одной из ячеек кассеты, затем укладывайте волоконные кольца, увеличивая их диаметр для оптимальной укладки.
 - 8. Детальная проверка результата.

Для того чтобы убедиться в соблюдении всех технических требований, должны быть выполнены следующие указания:

- 8.1 Волокна в соединительной кассете сварены и уложены аккуратно. Диаметр изгибов оптических волокон соответствует техническим требованиям.
 - 8.2 Внутренние зажимы и стяжки затянуты накрепко.
 - 8.3 Незадействованные входные/выходные порты муфты закрыты заглушками.
- 8.4 Контролируйте количество задействованной герметизирующей ленты в соответствие с необходимостью в ее использовании.
- 8.5 Герметизирующая прокладка уложена аккуратно и равномерно. Если нет, исправьте дефектные места с помощью герметизирующей ленты.
 - 8.6 Уплотните поверхность герметизирующей прокладки

Внимание! В случае обнаружения каких-либо дефектов или проблем при установке, они должны быть решены немедленно, иначе это существенно скажется на качестве монтажа.

9. Сборка корпуса муфты:

- 9.1 Соедините крышку муфты с ее основанием точно и аккуратно.
- 9.2 Вставьте закрепляющие болты в предназначенные для них отверстия и затяните их накрепко с помощью специального ключа.
- 9.3 Установите на муфте запорные вставки в специальные разъемы. Вставки располагаются на муфте по паре с каждой стороны. Одна вставка в паре имеет отверстие с резьбой в середине, другая с отверстием без резьбы. Затяните накрепко болты запорных вставок специальным ключом.
- 9.4 Затяните 4 крепежных болта по одному на каждом угле муфты соответственно.

Внимание! Очистите корпус муфты и уделяйте большое внимание строгому соблюдению последовательности вышеуказанных действий.

5 Содержание отчета

Отчет должен содержать:

- 1. Цель работы;
- 2. Краткое описание теоретического материала;
- 3. Результаты измерений;
- 4. Выводы по проделанной работе.

6 Контрольные вопросы

- 1. Какие виды оптических муфт вы знаете?
- 2. Почему радиус колес в оптической муфте необходимо делать более 80мм? Что произойдет если его сделать больше / меньше?

Рекомендуемая литература

- 1. «Автоматический сварочный аппарат FiberFox Mini-4S». Руководство пользователя Модель: Mini-4S. 30 с
- 2. «Горизонтальная проходная волоконно-оптическая соединительная муфта». Руководство по монтажу Модель: SNR-FOSC-X. – 20 с
- 3. Рабочая программа учебной дисциплины «Проектирование, строительство и эксплуатация ВОЛС» / Перин А.С. Томск: ТУСУР. 2018. 20 с