Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

Томский государственный университет систем управления и радиоэлектроники

А.С. Перин

монтаж оптической муфты

Методические указания по выполнению лабораторной работы для студентов направления 11.03.02 «Инфокоммуникационные технологии и системы связи»

УДК 621.391.1.519.8(075.8) ББК 32.88-01я73 П274

Репензент:

Хатьков Н.Д., доцент кафедры сверхвысокочастотной и квантовой радиотехники, канд. техн. наук

Перин, Антон Сергеевич

П274 Монтаж оптической муфты: методические указания по выполнению лабораторной работы / А.С. Перин. – Томск: Томск. гос. ун-т систем упр. и радиоэлектроники, 2020. – 16 с.

Одной из важнейших операций при строительстве волоконно-оптической линии связи (ВОЛС) является монтаж оптической муфты. В методических рекомендациях приведены основные теоретические сведения по типам оптических муфт, приведена их классификация. Даны рекомендации по использованию оборудования для монтажа оптической муфты серии SNR-FOSC X и выполнению сварных соединений оптических волокон с помощью сварочного аппарата FiberFox Mini-4S.

Предназначено для студентов всех форм обучения, обучающихся по направлению подготовки бакалавров 11.03.02 "Инфокоммуникационные технологии и системы связи", профиль "Оптические системы и сети связи" по курсу «Проектирование, строительство и эксплуатация волоконно-оптических линий связи».

Одобрено на заседании каф. сверхвысокочастотной и квантовой радиотехники, протокол N = 2 от 01.10.2020

УДК 621.391.1.519.8(075.8) ББК 32.88-01я73

[©] Перин А.С., 2020

[©] Томск. гос. ун-т систем упр. и радиоэлектроники, 2020

ОГЛАВЛЕНИЕ

1 ВВЕДЕНИЕ	4
2 РУКОВОДСТВО ПО МОНТАЖУ МУФТЫ СЕРИИ SNR-FOSC-X	7
3 ПОРЯДОК ВЫПОЛНЕНИЯ РАБОТЫ	
5 СОДЕРЖАНИЕ ОТЧЕТА	
6 КОНТРОЛЬНЫЕ ВОПРОСЫ	
7 СПИСОК РЕКОМЕНДУЕМОЙ ЛИТЕРАТУРЫ	16

1 ВВЕДЕНИЕ

Цель работы: получение практических навыков при монтаже оптическое муфты серии SNR-FOSC X [1] и выполнении сварных соединений оптических волокон с помощью автоматического сварочного аппарата FiberFox Mini-4S [2].

Волоконно-оптической муфтой называется пассивное устройство, предназначенное для обеспечения защиты мест сварных соединений оптических волокон (ОВ) при монтаже волоконно-оптической линии связи (ВОЛС). Сконструирована муфта так, что не затрудняет доступ к волокну при осуществлении его обслуживания. Благодаря тому, что корпус муфты герметичный, ее можно применять почти в любых средах. Главное – правильно подобрать тип муфты при обустройстве сети.

Типы оптических муфты и их классификация.

В рядах оптических муфт эталонами могут и должны служить только те муфты, которые полностью соответствуют предъявляемым к ним требованиям [3].

Оптический кабель любой конструкции можно смонтировать в любой оптической муфте. Точнее, в любой муфте можно срастить волокна сваркой и уложить сварные соединения и запасы волокон в кассетах внутри муфты. Но загерметизировать вводы кабелей разных диаметров, обеспечить их продольную герметизацию, соединить или изолировать броню, соединить экраны алюмополиэтиленовых оболочек, вывести провода КИП можно только в специализированных муфтах, имеющих для этого особые элементы внутри корпуса и комплекты дополнительных внутренних и внешних деталей, устройств и приспособлений.

При этом нужно иметь в виду и то, что задача муфты не только позволить разместить в ней сросток волокон двух или нескольких кабелей, но и обеспечивать безопасность этого сростка в течение около 25-ти лет. А также обеспечивать возможность быстро находить и устранять повреждения через пять, десять и более лет после первоначального монтажа муфты. Поэтому оптические муфты являются специализированными устройствами, оснащёнными элементами, выполняющими определённые функции при первоначальном монтаже и при последующей многолетней эксплуатации муфты в колодце, в котловане или на опоре ЛЭП.

Специализация предполагает чёткую классификацию муфт и присвоение им квалификационных характеристик, отражающих их оснащение и возможности. Необходим и признаваемый всеми классификатор, позволяющий оценивать возможности муфт и выбирать их при проектировании и строительстве волоконно-оптических линий связи.

Муфты классифицируются по месту установки, по температуре эксплуатации и по разрывному усилию, которое должны выдерживать кабельные вводы. Муфты при этом делятся на шесть типов. Для каждого типа муфт определены места, в которых муфты могут устанавливаться. А также указано, какими свойствами должна обладать муфта определённого типа, и какие условия эксплуатации она должна выдерживать.

Муфты должны быть устойчивы к воздействию температур:

- а) типы 1, 2, 4, 5 от минус 40 °C до 50 °C (муфты для подводных и подземных кабелей);
 - б) тип 3 от минус 60 °C до 70 °C (муфты, устанавливаемые на открытом воздухе);
- в) тип 6 от 5 °C до 50 °C (муфты, предназначенные для аварийно-восстановительных работ от минус 30 °C).

Муфта может использоваться в качестве муфты сразу нескольких типов. Например, для сращивания самонесущих кабелей с установкой муфты на опоре (муфта 3-го типа) можно использовать муфты МТОК-ВЗ и МТОК-К6.

Но можно и самые простые и дешёвые — $MO\Gamma$ -T-3 и MTOK-J7. Ту или иную муфту выбирают с учётом количества вводимых в неё кабелей (от трёх до шести) и количества сварных соединений, которые необходимо разместить на кассетах муфты (от 16-ти сростков до 480-ти).

Существует ряд определений, классифицирующих оптические муфты по способу монтажа. Например, на магистральных и внутризоновых кабелях с металлическими жилами по способу монтажа различались муфты прямые, разветвительные, симметрирующие, конденсаторные, пупиновские, стыковые, изолирующие, газонепроницаемые.

На железнодорожных кабелях связи дополнительно к этому списку различались тройниковые разветвительные и врезные разветвительные муфты.

На городских кабелях различались *прямые*, *линейные разветвительные и станционные разветвительные муфты*.

Вот какие определения можно присвоить оптическим муфтам, различая их по способу монтажа и по оснащению (рисунок 1.1):

Прямая муфта — муфта, в которой сращиваются две строительные длины ОК одной марки.

Разветвительная муфта — муфта, в которую вводятся несколько отдельных ОК, один — основной и несколько ответвляющихся ОК, от двух до двадцати и более.

Разветвительная муфта с транзитом — муфта, в которую основной ОК вводится «транзитом», то есть без разрезания в овальный патрубок, а в остальные патрубки вводятся ответвляющиеся кабели, от одного до 8-ми.

Рисунок 1.1 – Виды оптических муфт

Изолирующая муфта — муфта, которая устанавливается в помещении ввода кабеля на оконечном пункте ВОЛС при необходимости заземления металлических элементов ОК — брони, упрочняющих проволок, экранов алюмополиэтиленовых оболочек, оплёток и т.д. Из изолирующей муфты можно вывести провода заземления, от брони линейного ОК.

Муфта кроссовая оптическая — муфта, используемая в качестве оконечного устройства в экстремальных условиях (крыши, опоры, уличные шкафы, неотапливаемые технические помещения). Муфта оснащается панелью с оптическими розетками. К розеткам с внутренней стороны подключаются разъёмы пигтейлов, приваренных к волокнам линейного кабеля. К наружной стороне розеток подключаются патчкорды, выводимые из муфты к абонентам. В кроссовых муфтах на сетях типа PON устанавливаются и оптические разветвители.

2 РУКОВОДСТВО ПО МОНТАЖУ МУФТЫ СЕРИИ SNR-FOSC-X

Проходная горизонтальная муфта для волоконно-оптического кабеля серии SNR-FOSC-X применяется для защиты мест сварки оптического кабеля в местах повышенных нагрузок и возможных внешних воздействий (рисунок 2.1). Эту муфту можно использовать для воздушных линий, для закладки в землю, для крепления к стене, для крепления к стене в вентиляционной системе.

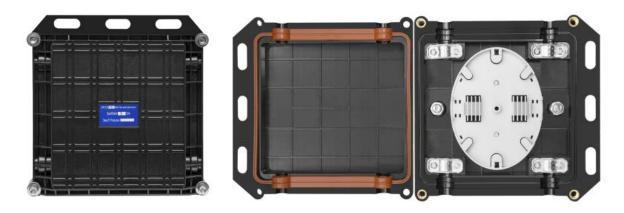


Рисунок 2.1 – Проходная горизонтальная муфта для волоконно-оптического кабеля серии SNR-FOSC-X: общий вид (слева) и внутренний конструктив (справа)

Муфта серии SNR-FOSC-X предназначена для сращивания и разветвления оптического кабеля при воздушной, настенной или подземной инсталляции (колодцы кабельной канализации). Плоская малогабаритная конструкция позволяет размещать муфту в ограниченном пространстве. Пазы с одной стороны корпуса позволяют удобно подвешивать муфту на несущем тросе. Муфта позволяет осуществлять ввод до 4 кабелей. Муфта укомплектована кассетой, которая позволяет размещать 8 гильз КДЗС (16 в два яруса), герметизация ввода осуществляется резиновыми уплотнителями и герметизирующей лентой. Рабочий диапазон температур от -40 до 65 ℃.

Основные технические характеристики муфты серии SNR-FOSC-X приведены в таблице 2.1.

Таолица 2.1 –	Гехнические хар	рактеристики му	фты серии	SNR-FOSC-X2
---------------	-----------------	-----------------	-----------	-------------

Параметр	Значение
Диаметр кабельных вводов, мм	$2 - \emptyset 12, 2 - \emptyset 15$
Габаритные размеры, мм	205 x 210 x 45
Вес, кг	1,0

Процесс монтажа состоит из нескольких операций, выполняемых в определенной последовательности. Этапы монтажа наглядно отражены в блок-схеме (рисунок 2.2).

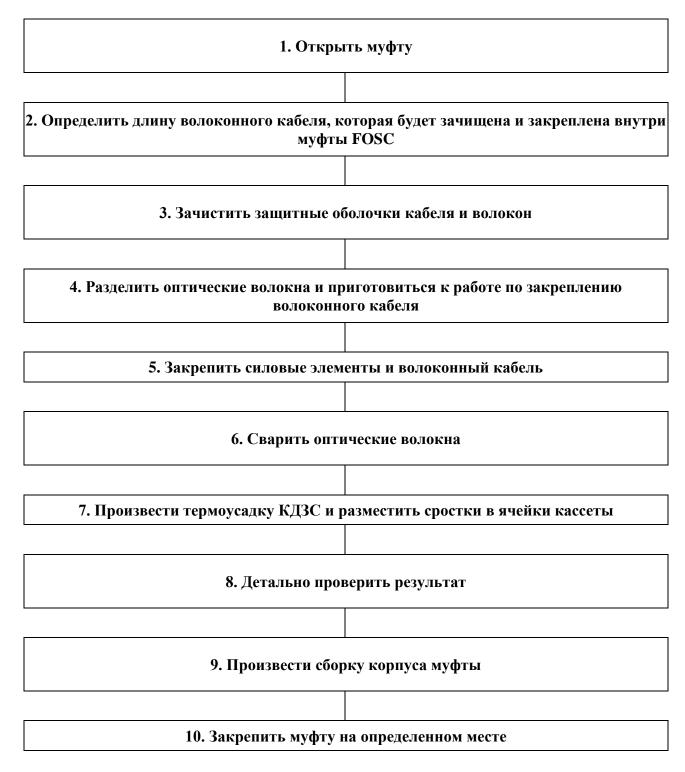


Рисунок 2.2 – Блок-схема по монтажу оптической муфты

3 ПОРЯДОК ВЫПОЛНЕНИЯ РАБОТЫ

Шаг 1. Открытие муфты

- Определите место установки муфты, подготовьте рабочее место и необходимый запас кабеля.
- Проверьте комплект поставки муфты, а также техническое состояние комплектующих (таблица 2.1).

Таблица 2.1 – Комплект поставки муфты серии SNR-FOSC-X

Наименование	Количество
Корпус	1 шт.
Герметизирующая прокладка	1 шт.
Механизм фиксации кабеля	1 комплект
Сплайс-кассета	1 шт.
Установочный инструмент	1 комплект
Расходные материалы: изолента, стяжки, кабельные маркеры, КДЗС	1 комплект

- При помощи шестигранного ключа поочередно извлеките болты из запорных вставок.
 Удалите запорные вставки.
- После этого открутите все болты, находящиеся на корпусе муфты. После того как все болты сняты, можно открыть муфту (рисунок 3.1).

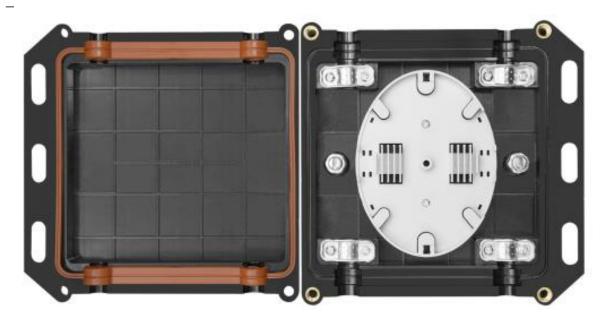


Рисунок 3.1 – Открытие муфты

Шаг 2. Определение длины волоконного кабеля.

- Отмерить участок кабеля в 1950 мм: этот запас используется для зачистки кабеля от защитных оболочек, ввода модулей в муфту, выделения волокон из модулей и последующей сварки.
- Отмерить участок кабеля в 60 мм: расстояние от герметизирующей прокладки до прижимной планки, закрепляющей кабель.
- Отмерить участок волокон в защитных модулях длиной 350 мм: расстояние от точки крепления кабеля в муфте до точки крепления модулей к сварочной кассете.
- Отмерить участок волокон длиной 1600 мм: после выделения волокон из защитных модулей данный запас укладывается внутри кассеты после сварки (рисунок 3.2).

Внимание! Делайте достаточный запас длины волокна для сварки на случай дефектов в ее процессе. Длина зачищенных от оболочек кабеля волокон также может быть определена согласно дополнительным требованиям по монтажу.

Рисунок 3.2 – Определение длины волоконного кабеля

Шаг 3. Зачистка защитных оболочек кабеля и волокон.

Удалите защитные оболочки волоконного кабеля до отмерянной метки с помощью специального кабельного ножа. Вскрытие защитных модулей с оптическим волокном производится стриппером. Для определения длины зачищаемых участков следуйте указаниям рисунка 3.2. В некоторых ситуациях, длина, на которую производится зачистка, может быть самостоятельно определена согласно дополнительным требованиям по монтажу (рисунок 3.3).

Внимание! Иногда бывает сложно снять всю оболочку кабеля целиком за один подход (например, в случае протяжки кабеля с металлическими силовыми элементами – прутками или гофрированной лентой). В этом случае рекомендуется удалять оболочки шаг за шагом небольшими участками по несколько сантиметров. Это позволит избежать повреждения оптических модулей и волокон.

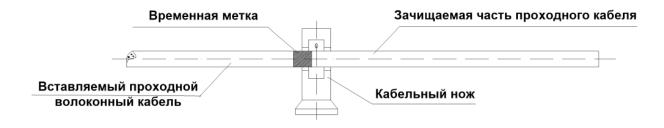


Рисунок 3.3 - Зачистка защитных оболочек кабеля

Шаг 4. Разделение оптических волокон и подготовка к работе по закреплению волоконного кабеля.

- Намотайте 2 слоя изоляционной ленты на оболочку кабеля. Удалите защитный модуль, каждое волокно отделите и очистите от гидрофобного заполнителя при помощи безворсовой салфетки и специальной жидкости (D-гель). Очищенные волокна смотайте в кольцо диаметром около 100 мм и закрепите изолентой.
- Данная муфта имеет 4 кабельных ввода. Количество используемых волоконных кабелей определяется преподавателем. Максимальное количество кабелей, которые можно установить в муфту равно четырем.
- Данная муфта подходит для следующих диаметров волоконных кабелей соответственно:
 - Port A: подходит для волоконных кабелей диаметром до 18 мм;
 - Port B: подходит для волоконных кабелей диаметром до 6 мм.
- Соответствующие входные/выходные порты выбираются в зависимости от диаметра используемых кабелей. Если диаметр волоконного кабеля меньше, чем диаметр отверстия порта, используйте герметизирующую ленту для его увеличения. При использовании герметизирующей ленты для увеличения диаметра контролируйте периметр кабеля с помощью специальных маркеров, которые поставляются в комплекте с муфтой.
- Оставьте около 35 мм длины центрального силового элемента от точки, где заканчиваются оболочки кабеля, излишки обрежьте (рисунок 3.4).

Внимание!

Прежде чем увеличивать диаметр кабеля герметизирующей лентой, кабель необходимо обтереть и зашлифовать абразивной тканью и очистить спиртом. Для отрезания силовых элементов кабеля пользуйтесь кусачками или тросокусами, если силовые элементы металлические; либо специальными ножницами, если кабель защищен кевларовыми нитями.

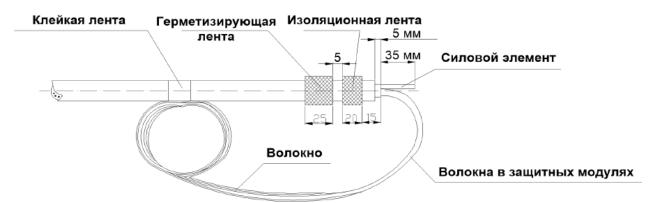


Рисунок 3.4 – Разделение оптических волокон

Шаг 5. Закрепление силовых элементов и волоконного кабеля.

- После завершения всех предыдущих операций снимите заглушки используемых портов, прижимную планку и гайку крепления силовых элементов. Еще раз внимательно проверьте и убедитесь в том, что подготовленный зачищенный волоконный кабель подходит для закрепления в выбранном месте. Если это не так, необходимо произвести дополнительную подгонку диаметра кабеля.
- Затяните прижимную планку, чтобы накрепко зафиксировать вставленный в порт волоконный кабель. Если диаметр кабеля слишком мал, нужно увеличить его с помощью изоляционной ленты.

- Затяните гайку крепления силовых элементов, прижав ею закрепляемые силовые элементы кабеля с помощью специального гаечного ключа (есть в комплекте), затем подтяните ее накрепко с помощью металлического гаечного ключа (должен быть выдан преподавателем).
- Оставив некоторый запас в пространстве основания муфты под соединительной кассетой, заведите в нее модули с оптическим волокном и закрепите их нейлоновыми стяжками. Модули закрепляются в кассете в специальных желобах, расположенных по углам. Нейлоновые стяжки крепятся через отверстия в желобах (рисунок 3.5).

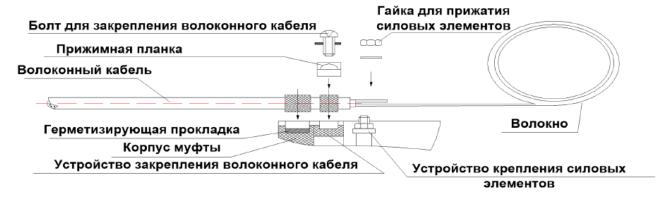


Рисунок 3.5 – Закрепление силовых элементов и волоконного кабеля

Шаг 6 и шаг 7. Сварка оптических волокон, термоусадка гильз КДЗС и размещение сростков в ячейки кассеты.

- Следуйте указаниям руководства пользователя используемого сварочного аппарата (FiberFox Mini-4S [2]) для того, чтобы сварить оптические волокна.
- Произведите термоусадку гильз КДЗС и разместите сростки в ячейки кассеты
- После окончания сварки всех волокон, первое сформированное волоконное кольцо должно быть помещено в дальнюю часть соединительной кассеты. Оставшиеся волокна должны быть скручены в форме колец с диаметром не менее 80 мм.
- Кольца помещаются в соединительную кассету вместе с усаженными в печи сварочного аппарата гильз КДЗС. При этом сначала закрепите КДЗС в одной из ячеек кассеты, затем укладывайте волоконные кольца, увеличивая их диаметр для оптимальной укладки (рисунок 3.6).

Внимание! В процессе сварки не допускайте спутывания и критичных изгибов оптического волокна.

Шаг 8. Детальная проверка результата.

Для того чтобы убедиться в соблюдении всех технических требований, должны быть выполнены следующие указания:

- Волокна в сплайс-кассете сварены и уложены аккуратно.
- Гильзы надежно зафиксированы в пазах сплайс-кассеты.
- Диаметр запасов оптических волокон соответствует техническим требованиям.
- Внутренние зажимы и стяжки затянуты накрепко.
- Незадействованные входные/выходные порты муфты закрыты заглушками.
- Герметизирующая прокладка уложена аккуратно и равномерно. Если нет, исправьте дефектные места с помощью герметизирующей ленты.

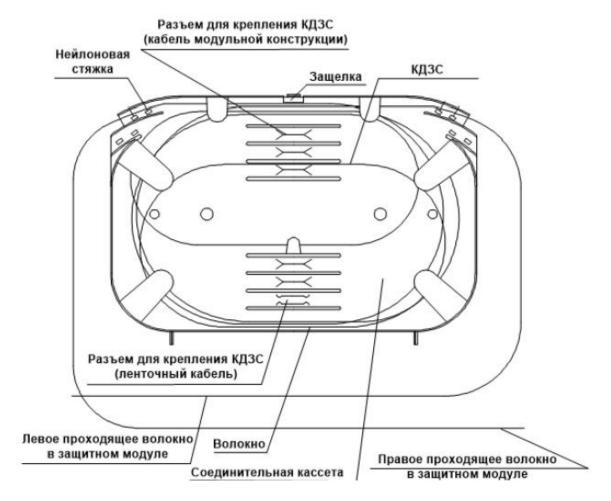


Рисунок 3.6 – Размещение сростков в ячейки кассеты

Внимание! В случае обнаружения каких-либо дефектов или проблем при установке, они должны быть решены немедленно, иначе это существенно скажется на качестве монтажа.

Шаг 9. Сборка корпуса муфты.

- Соедините крышку муфты с ее основанием точно и аккуратно.
- Вставьте закрепляющие болты в предназначенные для них отверстия и затяните их накрепко с помощью специального ключа.
- Установите на муфте запорные вставки в специальные разъемы. Вставки располагаются на муфте по паре с каждой стороны. Одна вставка в паре имеет отверстие с резьбой в середине, другая с отверстием без резьбы. Затяните накрепко болты запорных вставок специальным ключом.
- Затяните 4 крепежных болта по одному на каждом угле муфты соответственно.

Внимание! Очистите корпус муфты и уделяйте большое внимание строгому соблюдению последовательности вышеуказанных действий.

5 СОДЕРЖАНИЕ ОТЧЕТА

Отчет должен содержать:

- 1. Цель работы;
- Дога работы;
 Порядок работы;
 Результаты измерений затухания сварных соединений;
 Выводы по проделанной работе.
- 5. Ответы на контрольные вопросы.

6 КОНТРОЛЬНЫЕ ВОПРОСЫ

- 1. Какие виды оптических муфт вы знаете?
- 2. Почему радиус колес в оптической муфте необходимо делать более 80 мм?
- 3. Какие функции выполняют гильзы КЗДС?
- 4. Какие инструменты необходимы для монтажа оптической муфты?
- 5. Каков алгоритм действий при сварке оптического волокна?

7 СПИСОК РЕКОМЕНДУЕМОЙ ЛИТЕРАТУРЫ

- 1 Адамович В. В. и др. Монтаж муфт оптического кабеля: технологии и конструкции // Фотон-экспресс. -2005. -№ 2. C. 42-44.
- 2 Автоматический сварочный аппарат FiberFox Mini-4S. Руководство пользователя [Электронный ресурс]. Режим доступа: http://www.fiberfox.co.kr/pds/4Smanual.pdf
- 3 Горизонтальная проходная волоконно-оптическая соединительная муфта. Руководство по монтажу Модель: SNR-FOSC-X [Электронный ресурс]. Режим доступа: https://snr.systems/site/data-files/SNR%20Optical%20components/FOSC/SNR-FOSC-X.pdf