Министерство науки и высшего образования Российской Федерации

Томский государственный университет систем управления и радиоэлектроники

В. Д. Дмитриев Д. С. Брагин

Лабораторная работа №1 «AWRDE»

Методические указания по дисциплине «Автоматизированное проектирование СВЧ устройств» для студентов, обучающихся по направлению подготовки магистратура 11.04.01 – «Радиотехника», 11.04.02 – «Инфокоммуникационные технологии и системы связи»

Томск 2020

Рецензент(ы):

Фамилия И. О., должность, ученая степень

Бахтин А.А., заведующий кафедрой телекоммуникационных систем национального исследовательского университета МИЭТ, канд. техн. наук

Дмитриев, Владимир Дмитриевич

Д 534 Лабораторная работа №1 «AWRDE»: Методические указания по дисциплине «Автоматизированное проектирование СВЧ устройств» для студентов, обучающихся по направлению подготовки магистратура 11.04.01 – «Радиотехника», 11.04.02 – «Инфокоммуникационные технологии и системы связи» / В. Д. Дмитриев, Д. С. Брагин. – Томск: Томск. Гос. ун-т систем упр. И радиоэлектроники, 2020. – 14 с.

Представлены методические указания по выполнению лабораторной работы №1 «AWRDE» по дисциплине «Автоматизированное проектирование СВЧ устройств» для студентов, обучающихся по направлению подготовки магистратура 11.04.01 – «Радиотехника», 11.04.02 – «Инфокоммуникационные технологии и системы связи».

Одобрено на заседании каф. Телекоммуникаций и основ радиотехники, протокол № 3_ от _____26.11.2020 г._____

УДК 621.372 ББК 32.84

© Дмитриев В. Д., Брагин Д. С., 2020

© Томск. Гос. Ун-т систем упр. и радиоэлектроники, 2020

Оглавление

Введение	
1 Руководство по использованию AWRDE	5
1.1 Создание проекта (рабочего пространства)	
1.2 Создание схемы	б
1.3 Получение S-параметров	7
2 Лабораторное задание	
3 Варианты заданий	

Введение

Цель работы: Ознакомиться с САПР AWRDE, исследовать основные типы LC фильтров, построить графики S-параметров.

Задачи лабораторной работы:

1) Изучить основы использования САПР AWRDE.

2) Собрать опорные схемы фильтров.

3) Задать основные параметры элементам согласно вариантам.

4) Построить основные характеристики и сравнить результаты с расчетным заданием.

AWRDE (AWR Design Environment) – система автоматизированного проектирования (САПР) разработанная компанией National Instruments. САПР AWRDE способна решать широкий спектр задач сквозного проектирования сложных радиотехнических устройств и систем связного назначения.

В данной работе будут описаны методы построения фильтров с помощью САПР AWRDE.

Электрический фильтр – это четырехполюсник, устанавливаемый между источником питания и нагрузкой и служащий для беспрепятственного (с малым затуханием) пропускания токов одних частот и задержки (или пропускания с большим затуханием) токов других частот.

Полоса пропускания или полоса прозрачности фильтра – это диапазон частот, пропускаемых фильтром без затухания (с малым затуханием).

Полоса затухания или полоса задерживания (режекции) фильтра – это диапазон частот, пропускаемых с большим затуханием.

Качество фильтра считается тем выше, чем ярче выражены его фильтрующие свойства, т.е. чем сильнее возрастает затухание в полосе задерживания.

В качестве пассивных фильтров обычно применяются четырехполюсники на основе катушек индуктивности и конденсаторов.

Возможно также применение пассивных RC-фильтров, используемых при больших сопротивлениях нагрузки.

Фильтры применяются как в радиотехнике и технике связи, где имеют место токи достаточно высоких частот, так и в силовой электронике и электротехнике.

1 Руководство по использованию AWRDE

1.1 Создание проекта (рабочего пространства)

В главном окне программы выбрать Project->Circuit Schematic->New Schematic. После чего назовите проект и нажмите кнопку create. В результате чего откроется нового рабочего пространства.

Рисунок 1.1 – Создание схемы

∧ 🖬 🎻 Φ) ENG 14:07 31.10.2019 🔁

👯 🥜 🤗 🔚 💸 🚾

New Schematic		×
Enter a name for the Schematic:		
Schematic 1		
Create as a linked file	Create	Cancel

Рисунок 1.2 – Задание имени схемы

После чего необходимо выбрать Project->Elements->Circuit Elements->Lumped Elements. На рисунке 1.3 представлено окно построения схемы. Окно построения схемы выглядит следующим образом:

T File Edit View Draw Schematic	<u>Project</u> <u>Simulate</u> <u>Optio</u>	ns <u>T</u> ools Scripts <u>W</u> indow <u>H</u> elp (AWR			_ # ×
[] 😂 🖬 👗 🖻 🕆 🗠 여니 🤆	Q 🖸 🔁 📩 📩 📩 📩	99831D3132818	1. 19 B B C C B .		👷 🗞 🗢 🕍 T 🗐 • 💂	• 7
Coplanar Coplanar	Создание схемы Созд	Запуск моделирования ание иков	Поиск элементов по названию Уста	Порты новка	Тюнинг значений	
Inverter Peckage Veckage Veckage Veckage Veckage Obsolete Veckage	Траф	пков	"3e1	мли"		
Models Description						
Блок компонентов						
Project 🐨 Elements 🕀 Layout	<.					 · · · ·
Status Window						ų ×

Рисунок 1.3 – Основные элементы, которые используются при создании схемы

1.2 Создание схемы

В блоке компонентов заходим в раздел Elements->Circuit Elements->Lumped Elements, расставляем нужные нам элементы для нашей схемы, соединяем их между собой и расставляем земли:

T <u>F</u> ile <u>E</u> o	dit ⊻iew <u>D</u> raw S <u>c</u> hematic !	Project S	imula	te <u>C</u>	ptions	Ioc	ols	Scripts	Wi	ndow	He	p 🖉	WR																							-	6
C 😂 🖬	% ™®× ∽ ~ ® ∈	2 🖸 🏌	1	È i	Ì	184	8 8		<u>v</u>		2 8		-	9	1	10	Q11	과 ± LE GNC	PORT		₽₿	•	€®	-	6	ECH	T	a -	Ŧ								
Elements	s 7,	-	filte	r X																																	
- TS Circu	uit Elements 🔹 🗸		- 95	1. 1	12	C - C	3	K = E	0	ND.	- 62	8 1	1 8	19	12 - 3	6	13 - 2	- 81	99 -	S - 3	5 - 63	13	81	81 - 19		_2	68 88	36	81	9 S	- 30	- 62	8 9	0 - 63	10	12	80
•	APLAC	12.2	8	S. 12	12	<u>n</u> 53	12	8 - 8	0	AP.	2.55	10 1		82	$\alpha = \alpha$	55	2 0		22	a - a	- 53		8	S 83	IN	D	10.00	- 25	28	8 B	- 51	55	a = c	s - 61	12	12	
÷	Coplanar	25.25	$\langle \hat{q} \rangle$	$[0,1]_{ij}$		2 - 21	19	q = p	ID.	=01	1.10	$\hat{n} = i$	1 21		2		$\bar{n} = 0$	- 21		- 2		12	2	20 N	ID	=L'	1	÷.,	19	8	- 22	- 20	n = 0	r = r	12	15	22
i	General	0.12	10	81.85	13	10 - CI	12	10 10	C	=1 p	F.	12 1		10	18 - R		12 13	- 81	39	a 9	1.10	12	10	81 33	L=	1 n	Η.	10	21	a a	- 30	65	2 2	a - 23	10	10	30
~	Interconnects				10		12			1 .	12											10			~	-	-	- · ·								12	
	Linear Devices						V									- 10	0	-	175				1	1	Á		1	1		~							
	Lumpea Element						X	-	0.8		1				a 5	8 92			38	a .	a 90	-	1	20 10 20 10	U		J .	100	-	~							
	36 Counted Inductor		~	10.00						1 .	3		0				~		~										10						- 23	2	
	-m- inductor	1.0	1	8.9	14	8 6	12	8 8			-33	10		39 -	18 18		8	53	12	18 B		1	21	51 32	18	- 20	-18 BR	10	15	9 B	- 81	- 22	8 8		10		31
	- Inverter	50.22	8	35 82	10	19 - 19	12	6 S	88	0.0	58	10 I I	1.12	85	12 - A	- 98	82 - L	23	87	12 - S	58	82	1	SE 88	10	- 51	58 S	13	51	R 8	- 51	38	8 - S	5 S	82	12	
-	- Package	12 2	47	20 B)		2 2	2	9 8	201	22	255	8	8 23	CA	P				22.		1 25	12	2	20 22		22	36 B	9	2	÷.	22	255	а <u>а</u>	8 - 85	22	1	22
	-V- Resistor	, a a	1	$\approx \infty$	18	8 8	12	× - +	10	÷ - 4	- 63	19 - I		ID=	=C2		2.1	- 23	12	8 8	83	12	$ \cdot $	83 (A)	10	10	- 10 - 10 - 10 - 10 - 10 - 10 - 10 - 10		15	8 8		- 65		e - 8	23	12	8
Aodels	Description	,	8	9.8	2	8 8	8	e s	82	3 S	23	8		C=	1 pl	1	-	_			- 23	8	$^{\circ}$	s ::	\sim	8	2 2	$^{\circ}$	2	8 2 - 8	- 8	:23	8 8	s - 5	82	8	-
	Elat Circular Spiral Wire Inducto	10.0	23	88 193	12	55 - 52	25	21 - 52	10	2 5	122	2	1.1	335	2 5	12	÷	20	10	2 3	1 22	12	3	56 M	12	\$3	101 - 02	20	35	a a	- 53	122	1	1	12	12	5
CCIND	Coilcraft Inductor (Closed Form	8.8	80	81.15	32	8 8	15	2 2	35	1 I	23	15 - E	3 23	33	12 - 2	33	9 N		25	92 - 9	33	5	12	21 13	10	10	35 .03	(i)	23	85 - 33	- 33	23	15 - S	8 - 49	35	12	22
- CCIND2	Coilcraft Power Chip Inductor (0.8	99	8.0	12	8 - 61	58	n = n	19		- 63	8	8	19	a - 3	- 63	8	83	8	a 4		18	81	81.10	12	30	68 58	93	83	9 S		\mathbf{e}	8 9	а — ю	19	14	8
- CIND	Toroidal Coil Inductor (Closed F	1.1	~	a 22	22	a a	32	a a	12		-			32	a 4									n 12			s		10	a		100			12		
- COIL	Air wound coil	10.00	1	8 18		2 2	12	9 8	12	22	25	8		18	2		12	22			1.10	12	2	21 12		22	11 13	12	20	8	12	25	8 8	2 23	18	13	22
- IND	Inductor (Closed Form)		77	21.12	17		12	71 - 21	25		12	12 1		35		40		1	25			12	21	91 SS	12	22	12 13	71	21.1	a 8		12	12 12		25	17	12
- INDK	Inductor With Optional Couplin																																				
INDM	Mutual Inductance (Closed For		651	50 102	10	60 12	0.5	67 - 50	152	a 60	20	10 I	5	105	10 Å	5 33			1752	0.0	5 33	10	2	80 152	10	8	221 02	101	20	97 B	10	201	02 - 2	5 50	152	10	65
- INDQ	Inductor with Q (Closed Form)	10.01	3	88 BS	12	5 N	20	8 N	10	8 8		1	8		8 8		8.12			8 8			8	85 (S)	12	81	10.0	3	25	10	1	32	1	8	12	8	5
- INDQP	Inductor with frequency depen-	A 10.0	30	10.05	10	16 - 68	13	11 E	10	a 10	49	10 1	1 10	15	8 B	- 49	12 B	- 10	6	8.9	- 49		9	61.10	1	Ϋ́.	61.13	(4) (4)	81	e 3	×.	68	10 Q		10	Ξ.	1
	>	0.0	181	81.10	12	85 - 62	13	21 - 22	-	8 - 8	- 62	18 - 1	5 83	329	12 - 3	63	8 8	8	09	8.8	- 43	18	81	81.09	18	80	62.52	191	81	9 8	- 33	- 62	8 8	6 - 83	12	12	81
Project	🐨 Elements 🛞 Layout	<																1																			>
Status W	lindow																																				ą
TH STOCKS II							_																														-

Быстро задать значения номиналов элементов можно кликнув на число возле элемента, так же существует и другой вариант, кликните 2 раза по компоненту и вам откроется окно всех возможных параметров компонента.

aramet	ters St	atistic	s Disp	lay L	lser Att	ributes	Symbol	Layo	ut Model Options Vector
Name	Value C1	Unit	Tune	Opt	Limit	Lower	Upper	Step	Description Name
BC	1	pF							Capacitance
lame									
Ena	ble [Free	ze P	art Nu	mber	8			Show Secondary

Рисунок 1.5 – Задание значений элементам

После того как все номиналы компонентов расставлены, можно приступить к моделированию нашей схемы.

1.3 Получение S-параметров

S-параметры (или волновые параметры) используются для описания характеристик многополюсников СВЧ (смесителей, усилителей, циркуляторов и так далее). Физический смысл S-параметров:

S11, S22 – коэффициенты отражения от первого и второго порта соответственно;

S21 – коэффициент передачи с первого порта на второй;

S12 – коэффициент передачи со второго порта на первый.

САПР AWRDE может построить S-параметры любой схемы построенной в нем, а также может работать с файлами содержащими эти параметры (.s2p).

Рассмотрим пример построения схемы для получения S-параметров:

1. Установите начальную частоту(Start), конечную частоту(Stop) и шаг(Step) через который будут происходить измерения. Для этого откройте Project Options->Frequencies.

requencies	Schematics/Di	agrams Global Units	Interpolation/Passivity	Yield Options	
Current R	ange	Modify Range			
0.01 0.21 0.41 0.61 0.81 1.01 1.21 1.41 1.61 1.81 2.01	~	Start (GHz) 0.01 Stop (GHz) 10 Step (GHz) 0.2	Single point Add Delete Replace Apply		
51 points Delete	Selected	Sweep Type ① Linear 〇 Logarithmic	GHz	global units	

Рисунок 1.6 – Окно предустановки

2. Выберете элемент Port и присоедините его ко входу и выходу нашей цепи.

- Untitled Project - NI AWR Design Environment (12.02.7670 rev1, 64-bit) - [filter]	-		٥		×
T File Edit Yiew Draw Schematic Project Simulate Options Iools Scripts Window Help AWR				- 1	5 ×
□□●■米爾塔米々○國免國自動會會國家委出口回開發制國。國由國立在指語之間指令中已是,認會國王國。					
Image: Second sec				_	* ×
Image: Project PORT CAP IND Image: Project Options P=1 ID=C1 ID=L1 Image: Project Options P=1 C=7 118 pF ID=2 550 mHz		53 53 58	20 A		^
Global Definitions	9 B.	20 - 10	- 88 - 8	8 8 9 9	
	4 9	22	25 7	a a	
PORT	н н 1 - 14	е 10	-33 S -53 S	а з а з	
P=2 T=50 Obm	с с 1 с	53 74	201 E 201 B		
Graphs ID=C2		8	-	a a	
Wield Goals		20 22	53 3 23 7	8 8 8 8	
Dut States	a si a a	- 22	-63 - 8 -63 - 8	а н а н	
	a a	55	22 8		
The form of t	ц ц 9 в	20	- 20 - 20	а и а и	
		50 22			
	5 5		63 2	5 5	
Reproject Blements Blayout		*	23 8		× >
Status Window					ч×
En Copy All 🗙 🛪 國 S Errors (0) 🔬 Warnings (0) 🖓 Info (3) 🔚 💱					
Simulation - LIN:Filter.SFDOC Satisfar M Begin Simulate					^

Рисунок 1.7 – Схема для получения S параметров

3. Запускаем моделирование цепи, после чего необходимо построить графики. Далее выполняем действия в соответствии с приведенными ниже скриншотами.

Untitle	d Proje	ct - NI A	AWR Des	ign Environm	ent (12.02	.7670 rev1, 6	4-bit) - [filt	er]									
File	<u>E</u> dit	View	<u>D</u> raw	S <u>c</u> hematic	<u>P</u> roject	Simulate	<u>Options</u>	Tools	Scripts	Window	<u>H</u> elp	AWR					
! 🗅 😅	🖬 1 3	6 🖻 🕻	2×1	ທ ⇔ ₩	Q 🔂	🍅 🖮 🗖	r 📩 🖄	\$ 30	81	V= 1101 A		n 🖻 🚽 🔁 🖻	107	문 수 🕞 🔹	*	🔆 🗞 🚔 X=Y	T 🖾 🗸 🖕

Рисунок 1.8 – Создание нового графика

Правой кнопкой мыши щелкните по рабочей области графика и выберите Add New Measurement. В открывшемся окне выбираем Linear->Port Parameters->S. После чего постройте S11, S21.

Measuremen	t Type	Measurement	Search	Data Source Name	
- Linear AC	^	ABCD G H		all	~
Gain	e	S SDeltaM SDeltaP SModel		To Port Index	
Phas Port PreF	se Shifter Parameters Release	T Y Z		From Port Index	
	ility 🗸			Sweep Freq (FDOC)	
Scattering Coe	efficients (S Parame	ters)		Use for x-axis	~ >
		400		PORT_1	
Simulator	Default Linear		\sim	Plot all traces	~
Configuration	Default		\sim		
Complex Modi	fier				
OReal	◯ Imag. ◉ Mag.		gleU		

Рисунок 1.9 – Выбор параметров для построения графиков

4. Запускаем моделирование цепи

Рисунок 1.10 – Полученные S-параметры

2 Лабораторное задание

В ходе данной лабораторной работы вам необходимо ознакомиться САПР AWRDE. Построить два предложенных варианта схем LC-фильтров, рассчитать номиналы элементов, по полученным результатам построить зависимости S-параметров от частоты.

Рисунок 2.1 - Зависимость затухания от частоты

Рисунок 2.2 - Исходная схема для построения фильтров

Формулы расчета значений элементов фильтра №1:

$$L_{1} = \frac{f_{1}R}{\pi f_{2}(f_{2} - f_{1})} \tag{2.1}$$

$$L_2 = \frac{(f_1 + f_2)R}{4\pi f_1 f_2} \tag{2.2}$$

$$C_1 = \frac{f_2 - f_1}{4\pi f_1 f_2 R} \tag{2.3}$$

Формулы расчета значений элементов фильтра №2:

$$C_1 = \frac{f_1 + f_2}{4\pi f_1 f_2 R} \tag{2.4}$$

$$L_2 = \frac{(f_2 - f_1)R}{4\pi f_1 f_2} \tag{2.5}$$

$$C_2 = \frac{f_1}{\pi f_2 (f_2 - f_1)R} \tag{2.6}$$

Пример выполнения: R=50 Ом; $f_{H}=500 \text{ М} \Gamma \text{ Ц};$ $f_{B}=540 \text{ M} \Gamma \text{ Ц}.$ Расчет элементов схемы №1:

$$\begin{split} L_{1} &= \frac{f_{H}R}{\pi f_{\mathcal{B}}(f_{\mathcal{B}} - f_{H})} = 368.4 \text{HT}; \\ L_{2} &= \frac{(f_{H} + f_{\mathcal{B}})R}{4\pi f_{H}f_{\mathcal{B}}} = 15.3 \text{HT}; \\ C_{1} &= \frac{f_{\mathcal{B}} - f_{H}}{4\pi f_{H}f_{\mathcal{B}}R} = 0.25 \text{II}\Phi; \\ L &= \frac{L_{1}}{2} + L_{2} = 0.2 \text{MKT}; \end{split}$$

$$L = \frac{L_1}{2} + L_2 = 0.2 \text{mk} \Gamma \text{H}; \qquad (2.8)$$

$$C = 2C_1 = 0.5\pi\Phi.$$
 (2.9)

Расчет элементов схемы №2:

$$\begin{split} L_{2} = & \frac{(f_{\theta} - f_{H})R}{4\pi f_{\theta}f_{H}} = 0.59 \text{HT};\\ C_{1} = & \frac{f_{\theta} + f_{H}}{4\pi f_{\theta}f_{H}R} = 6.1 \text{In}\Phi;\\ C_{2} = & \frac{f_{H}}{\pi f_{\theta}(f_{\theta} - f_{H})R} = 0.147 \text{H}\Phi \end{split}$$

По результатам вычислений строим фильтр и график S-параметров:

Рисунок 2.3 - Схема собранного фильтра №1 в AWRDE

Рисунок 2.4 - Рассчитанные S-параметры фильтра №1

Рисунок 2.5 - Схема собранного фильтра №2 в AWRDE

Рисунок 2.6 – Рассчитанные S-параметры фильтра №2

3 Варианты заданий Вариант №1: R = 50 Om; $f_{\rm H} = 100 \text{ M} \Gamma \text{ц};$ $f_{\rm B} = 140 \text{ M} \Gamma$ ц; Вариант №2: R = 50 Om; $f_{\rm H} = 200 \, {\rm M} \Gamma {\rm II};$ $f_{\rm B} = 240 \, {\rm M} \Gamma$ ц; Вариант №3: R = 50 Om; $f_{\rm H} = 300 \, {\rm M} \Gamma$ ц; $f_{\rm B} = 340 \ {\rm M} \Gamma$ ц; Вариант №4: R = 50 Om; $f_{\rm H} = 400 \, {\rm M} \Gamma$ ц; $f_{\rm B} = 440 \, {\rm M} \Gamma$ ц; Вариант №5: R = 50 Om; $f_{\rm H} = 550 \, {\rm M} \Gamma$ ц; $f_{\rm B} = 590 \, {\rm M} \Gamma {\rm II};$ Вариант №6: R = 50 Om; $f_{\rm H} = 600 \, {\rm M} \Gamma$ ц; $f_{\rm B} = 640 \ {\rm M} \Gamma$ ц; Вариант №7: R = 50 Om; $f_{\rm H} = 700 \, {\rm M} \Gamma {\rm u};$ $f_{\rm B} = 740 \ {\rm M} \Gamma$ ц; Вариант №8: R = 50 Om; $f_{\rm H} = 800 \, {\rm M} \Gamma$ ц; $f_{\rm B} = 840 \ {\rm M} \Gamma$ ц; Вариант №9: R = 50 Om; $f_{\rm H} = 100 \text{ M} \Gamma$ ц; $f_{\rm B} = 120 \ {\rm M} \Gamma$ ц; Вариант №10: R = 50 Om; $f_{\rm H} = 280 \text{ M} \Gamma$ ц; f_в = 320 МГц.